WO2023007638A1 - Position estimation device, position estimation method, and position estimation program - Google Patents

Position estimation device, position estimation method, and position estimation program Download PDF

Info

Publication number
WO2023007638A1
WO2023007638A1 PCT/JP2021/027982 JP2021027982W WO2023007638A1 WO 2023007638 A1 WO2023007638 A1 WO 2023007638A1 JP 2021027982 W JP2021027982 W JP 2021027982W WO 2023007638 A1 WO2023007638 A1 WO 2023007638A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheels
moving body
specific area
entered
vibration
Prior art date
Application number
PCT/JP2021/027982
Other languages
French (fr)
Japanese (ja)
Inventor
新大 青沼
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/027982 priority Critical patent/WO2023007638A1/en
Publication of WO2023007638A1 publication Critical patent/WO2023007638A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a position estimation device, a position estimation method, and a position estimation program for estimating the position of a mobile object.
  • Methods for identifying the position of a mobile object include a method that uses signals received by the mobile object from GNSS (Global Navigation Satellite System) satellites, and a method that uses equipment provided in the work area where the mobile object moves.
  • GNSS Global Navigation Satellite System
  • the present invention provides a position estimation device, a position estimation method, and a position estimation program capable of estimating the position of a mobile object with a simple configuration.
  • the first invention is A position estimating device that includes wheels and a drive source, and estimates the position of a moving body configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source, an acquisition unit that acquires detection information representing the vibration generated in the moving body or the load input to the wheel; Based on the detection information acquired by the acquisition unit, it is determined whether or not the moving body has entered a specific area in which the moving body can generate a predetermined vibration or a predetermined load can be applied to the wheels when the moving body enters the vehicle. a judgment unit; an estimating unit that estimates the position of the moving object based on the determination result of the determining unit;
  • a position estimation device comprising:
  • the second invention is A computer for estimating the position of a moving object that includes wheels and a drive source and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source, Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel, determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters; estimating the position of the mobile object based on the determination result of the determination; A position estimation method that performs processing.
  • the third invention is A computer for estimating the position of a mobile body that includes wheels and a drive source, and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source, Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel, determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters; estimating the position of the mobile object based on the determination result of the determination; It is a position estimation program that causes the process to be executed.
  • a position estimating device capable of estimating the position of a mobile object with a simple configuration.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a transport robot 10
  • FIG. 2 is a block diagram showing an example of a functional configuration of a control device 11
  • FIG. 4 is a flow chart showing an example of a position estimation method executed by the control device 11.
  • FIG. FIG. 4 is a diagram showing a specific example of detecting entry of the transport robot 10 into a specific area;
  • the transport robot 10 of the present embodiment drives wheels WL each comprising a pair of left and right front wheels FW and rear wheels RW, and drive wheels (for example, a pair of left and right front wheels FW) among the wheels WL.
  • a motor MOT as a drive source, a control device 11 that controls the entire transfer robot 10, and a loading platform (not shown) are provided. Then, it travels), and transports the load mounted on the loading platform to a predetermined transport destination.
  • the motor MOT may be supplied with power from a battery (not shown) provided in the transport robot 10, or may be supplied with power from the outside of the transport robot 10 using wireless power transmission or the like. good too. Further, in the present embodiment, an example in which the motor MOT is employed as the drive source will be described, but other power source such as an engine may be employed as the drive source instead of or in addition to the motor MOT. .
  • the transport robot 10 moves within a work area that has a receiving area where cargo is loaded onto the loading platform and an unloading area where the cargo is transported.
  • the work area in which the transport robot 10 moves is assumed to be an apartment complex having an entrance hall serving as a receiving area and a plurality of rooms including a room serving as an unloading area. That is, the transport robot 10 transports the cargo loaded on the platform at the entrance hall of the receiving area to the room designated as the destination. At this time, the transport robot 10 autonomously moves according to the control by the control device 11 .
  • the transport robot 10 is equipped with a GNSS (Global Navigation Satellite System) receiver 12, for example.
  • the GNSS receiver 12 identifies the latitude and longitude of the point where the GNSS receiver 12 (i.e., the carrier robot 10) is located based on the signals received from the GNSS satellites, and collects information indicating the identified latitude and longitude (hereinafter referred to as position information ) is output to the control device 11 .
  • position information information indicating the identified latitude and longitude
  • the control device 11 When the luggage is loaded on the loading platform in the entrance hall, the control device 11 includes map data including information representing the position of the entrance hall, each room, and each passage connecting these, and the GNSS receiver 12 Based on the position information at that time acquired from , a route from the entrance hall (strictly speaking, the position of the transport robot 10 at that time) to the room designated as the unloading area is searched. Then, when the route to the room designated as the unloading area is searched for, the control device 11 moves the transport robot 10 along this route to transport the cargo to the room designated as the unloading area. Let the transportation take place.
  • the transfer robot 10 is provided with LIDAR (Laser Imaging Detection and Ranging), and the measurement results of this LIDAR are collated with the three-dimensional point cloud data of the work area prepared in advance to determine the position of the transfer robot 10. It may be specified and position information about the point may be acquired.
  • the point at which the transport robot 10 is located may be specified using both the signal received by the GNSS receiver 12 from the GNSS satellite and the measurement result by LIDAR, and the position information about the point may be obtained.
  • the point where the transport robot 10 is located may be specified using odometry (autonomous navigation) using the detection result of the sensor 13, which will be described later, and the position information about the point may be acquired.
  • the transport robot 10 may enter a specific area within the work area as it moves.
  • the specific area is an area that is partitioned using a door, wall, or the like and that can be entered through a predetermined entrance.
  • the entrance hall and each room correspond to the specific area.
  • this elevator may also be included in the specific area.
  • the specific area has a step on the floor surface at the entrance thereof. This is the area where the load is input. Therefore, in the present embodiment, the entry of the transfer robot 10 into the specific area is detected using the step provided at the entrance of the specific area.
  • the floor surface of the entrance of the specific area is provided with a railing.
  • This slippery rail functions as the step.
  • the step provided at the entrance of the specific area is originally used (that is, for a purpose other than detecting the entry of the transfer robot 10 into the specific area), and the specific area is detected. It is detected that the transfer robot 10 has entered the . Therefore, there is no need to newly add dedicated equipment to the work area to detect the entry of the transfer robot 10 into the specific area, and it is possible to reduce the cost and labor required to install such equipment. be.
  • the transport robot 10 includes a sensor 13 as a so-called internal sensor of the transport robot 10.
  • the sensor 13 includes a sensor capable of detecting vibration generated in the transport robot 10 .
  • Sensors capable of detecting vibrations generated in the transport robot 10 include, for example, angular velocities in the pitch, roll, and yaw directions of the transport robot 10,
  • An IMU Inertial Measurement Unit capable of detecting acceleration can be employed.
  • the sensor 13 further includes, for example, a so-called vehicle speed sensor capable of detecting the moving speed (in other words, running speed) of the transport robot 10 . Then, the sensor 13 outputs detection information representing the result of detection by its own device to the control device 11 . As a result, information representing vibration generated in the transport robot 10 (hereinafter also referred to as vibration information), information representing the moving speed of the transport robot 10 (hereinafter also referred to as speed information), etc. are sent from the sensor 13 to the control device as detection information. 11.
  • the vibration information can be, for example, information that can specify the content of the vibration (e.g., amplitude and period) occurring in the transport robot 10 .
  • the control device 11 is an example of the position estimation device of the present invention, and includes, for example, a processor that performs various calculations, a storage medium that stores various information, and an interface ( (none of which are shown).
  • the control device 11 includes, for example, an acquisition unit 20, a position estimation unit 30, and a drive control unit 40 as functional units realized by a processor executing a program stored in a storage medium. And prepare.
  • the acquisition unit 20 acquires various types of information necessary for the control device 11 to estimate the position of the transport robot 10 and passes the acquired information to the position estimation unit 30 .
  • the information acquired by the acquisition unit 20 includes position information output from the GNSS receiver 12 to the control device 11, detection information output from the sensor 13 to the control device 11, and the like. Further, the detection information acquired by the acquisition unit 20 may include vibration information, speed information, and the like, as described above.
  • the position estimation unit 30 estimates the position of the transport robot 10 based on the information acquired by the acquisition unit 20 .
  • the position estimating unit 30 includes a determining unit 31 that determines whether or not the transport robot 10 has entered the specific area based on the detection information acquired by the acquiring unit 20, and and an estimating unit 32 for estimating the position of the transport robot 10 based on the position of the transport robot 10 .
  • the estimation unit 32 estimates the position within the specific area as the position of the transport robot 10 . That is, in this case, if the position indicated by the position information acquired by the acquisition unit 20 is a position outside the specific region, the estimation unit 32 corrects the position indicated by the position information to a position within the specific region, It is derived as an estimation result of the position of the robot 10 . Also, in this case, if the position indicated by the position information acquired by the acquisition unit 20 is a position within the specific area, the estimation unit 32 directly derives the position indicated by the position information as the estimation result of the position of the transport robot 10. You may
  • the estimating unit 32 estimates the position of the transport robot 10 as being outside the specific area. That is, in this case, if the position indicated by the position information obtained by the obtaining unit 20 is a position outside the specific area, the estimating unit 32 directly derives the position indicated by the position information as the estimation result of the position of the transport robot 10. do. Further, in this case, if the position indicated by the position information acquired by the acquisition unit 20 is a position within the specific region, the estimation unit 32 corrects the position indicated by the position information to a position outside the specific region, and conveys the position. It may be derived as an estimation result of the position of the robot 10 .
  • the determination unit 31 determines that the transport robot 10 has entered the specific area when detection information indicating that a predetermined vibration has occurred in the transport robot 10 is acquired. That is, when the transfer robot 10 enters the specific area, it will climb over the step at the entrance of the specific area, so it is assumed that the transfer robot 10 will vibrate according to the height of the step. be.
  • the vibration generated when the transfer robot 10 climbs over the step at the entrance of the specific area is experimentally obtained, and the vibration is used as a condition for determining that the transfer robot 10 has entered the specific area. It is set in the determination unit 31 . By doing so, it is possible to accurately detect that the transport robot 10 has entered the specific area.
  • the vibration that is the condition for determining that the transport robot 10 has entered the specific area can be vibration with an amplitude of a predetermined value or more.
  • the determination unit 31 it is possible to prevent the determination unit 31 from erroneously determining that the transport robot 10 has entered the specific area based on small vibrations generated in the transport robot 10 due to the influence of disturbance. Therefore, it is possible to accurately detect that the transport robot 10 has entered the specific area.
  • Small vibrations that occur in the transport robot 10 due to the influence of external disturbances include, for example, vibrations that occur when the transport robot 10 climbs over pebbles that have fallen in the passage, and vibrations that occur in the transport robot 10 due to wind and the like. Vibration that occurs can be mentioned.
  • the determining unit 31 may determine that the transport robot 10 has entered the specific area when detection information indicating that the transport robot 10 has vibrated has been obtained a plurality of times. That is, the transport robot 10 has front wheels FW and rear wheels RW. For this reason, when the transport robot 10 enters the specific area, the transport robot 10 is subjected to multiple vibrations, the vibration when the front wheels FW run over the step and the vibration when the rear wheels RW run over the step. expected to occur. In other words, when the transport robot 10 vibrates only once, it means that the vibration due to the influence of the disturbance has occurred singly, or only the front wheels FW have entered the specific area (in other words, the transport robot 10 has not entered the specific area).
  • the determining unit 31 determines that the transport robot 10 has entered a specific area, so that the vibration due to the influence of the disturbance occurs only once. It is possible to avoid the judgment unit 31 judging that the transfer robot 10 has entered the specific area in a state where the transfer robot 10 has not completely entered the specific area. It is possible to accurately detect the entry.
  • the determination unit 31 indicates that a second vibration substantially identical to the first vibration has occurred in the transfer robot 10 after the detection information indicating that the first vibration has occurred in the transfer robot 10 is acquired. It may be determined that the transport robot 10 has entered the specific area when the detection information is acquired. That is, in order for the transport robot 10 to enter the specific area, the step that the front wheels FW get over and the step that the rear wheels RW get over are the same. Therefore, it is assumed that the vibration generated when the front wheels FW run over a step and the vibration generated when the rear wheels RW run over a step are substantially the same vibration.
  • detection information indicating that the first vibration has occurred in the transfer robot 10 is obtained, detection information indicating that the second vibration substantially identical to the first vibration has occurred in the transfer robot 10 is obtained.
  • the determining unit 31 determines that the transport robot 10 has entered the specific area, it is possible to more accurately detect that the transport robot 10 has entered the specific area.
  • the determining unit 31 may determine that the transport robot 10 has entered the specific area when detection information indicating that the transport robot 10 has vibrated has been obtained multiple times within a predetermined period. That is, it is assumed that a time difference corresponding to the moving speed of the transport robot 10 occurs between the timing at which the front wheels FW run over the step and the timing at which the rear wheels RW run over the step. For this reason, for example, even if a predetermined period of time elapses after the detection information indicating that the first vibration has occurred in the transfer robot 10 is acquired, the detection indicating that the second vibration has occurred in the transfer robot 10 cannot be detected. If no information is acquired, there is a high possibility that the first vibration is caused by disturbance.
  • the determining unit 31 determines that the transport robot 10 has entered a specific area. It is possible to prevent the determination unit 31 from erroneously determining that the transport robot 10 has entered the specific area based on the vibration generated in the transport robot 10, and accurately detect that the transport robot 10 has entered the specific area. It becomes possible to Further, if the above-mentioned predetermined period is a period corresponding to the moving speed of the transfer robot 10, the length of the period can be set to an appropriate length. It becomes possible to detect with much higher accuracy.
  • the determination unit 31 may determine whether or not the transport robot 10 has entered the specific area based on the detection information when the transport robot 10 is positioned near the specific area.
  • the control device 11 is provided with a storage unit 50 implemented by the above-described storage medium or the like.
  • the storage unit 50 stores the aforementioned map data in a state that the position estimation unit 30 can refer to.
  • the determination unit 31 refers to this position information and the map data stored in the storage unit 50 to determine whether the position of the transport robot 10 is near the specific area. determine whether or not A condition for determining that the position of the transport robot 10 is in the vicinity of the specific area is set in the determination unit 31 in advance, for example.
  • the condition for determining that the position of the transport robot 10 is near the specific area is that the position indicated by the position information is within a range of 1 [m] from the entrance of the specific area in plan view. can be done.
  • the determination unit 31 determines whether the transport robot 10 has entered the specific area based on the detection information, as described above. On the other hand, if the determination unit 31 determines that the position of the transport robot 10 is not near the specific area, for example, it does not determine whether the transport robot 10 has entered the specific area based on the detection information. By doing so, even if the transfer robot 10 vibrates due to the influence of disturbance at a position away from the specific area, the determination unit 31 may erroneously determine that the transfer robot 10 has entered the specific area based on this vibration. You can avoid making decisions. Therefore, it is possible to accurately detect that the transport robot 10 has entered the specific area.
  • the conditions for determining that the transport robot 10 has entered the specific area may be different for each specific area.
  • the vibration generated when the transfer robot 10 climbs over the step at the entrance of each specific area is experimentally obtained, and the vibration generated when the transfer robot 10 climbs over the specific area and the step at the entrance of the specific area. are associated with each other and stored.
  • the determination unit 31 determines that the position of the transport robot 10 is near the specific area, the vibration that is the condition associated with the specific area and the vibration generated in the transport robot 10 Based on this, it may be determined whether or not the transport robot 10 has entered the specific area. By doing so, it is possible to more accurately detect that the transport robot 10 has entered the specific area.
  • the position estimation unit 30 passes the position of the transport robot 10 obtained as an estimation result to the drive control unit 40 .
  • the drive control unit 40 transports the robot along the route to the room designated as the unloading area.
  • the motor MOT is controlled so that the robot 10 moves.
  • the transport robot 10 can transport the cargo to the room designated as the unloading area.
  • the storage unit 50 for storing the map data is provided inside the control device 11, but the present invention is not limited to this.
  • the storage unit 50 may be provided outside the control device 11 so that the control device 11 can access it via a network such as the Internet.
  • the control device 11 first determines whether or not the position of the transport robot 10 is near the specific area (step S11). Then, when it is determined that the position of the transport robot 10 is not near the specific area (step S11: NO), the control device 11 ends the series of processes shown in FIG. 3 as it is. In this way, when the series of processes shown in FIG. 3 is finished without executing the process of step S17, which will be described later, the control device 11, for example, adopts the position indicated by the position information as the position of the transport robot 10. do.
  • step S11 determines whether or not a predetermined vibration is detected in the transport robot 10 (step S12). ). Then, when it is determined that the predetermined vibration is not detected (step S12: NO), the control device 11 ends the series of processes shown in FIG. 3 as it is.
  • step S12 when it is determined that the predetermined vibration has been detected (step S12: YES), the control device 11 stores that the predetermined vibration has been detected (step S13), The corresponding time count is started (step S14).
  • step S14 for example, when the moving speed of the transport robot 10 is v1, the control device 11 sets a predetermined T1[s] (where T1>0) in the timer counter, and from this T1[s] to 0 countdown to.
  • the control device 11 sets a predetermined T2[s] (where 0 ⁇ T2 ⁇ T1) in the timer counter, and this T2[ s] to 0. Thereby, it is possible to count the time according to the moving speed of the transport robot 10 .
  • control device 11 determines whether a predetermined vibration is detected again in the transfer robot 10 before the count started in step S14 reaches 0 (step S15). If it is determined that the predetermined vibration has not been detected again (step S15: NO), the control device 11 ends the series of processes shown in FIG. 3 as it is.
  • step S15 when it is determined that the predetermined vibration has been detected again (step S15: YES), the control device 11 determines that the transport robot 10 has entered the specific area (step S16). If the position indicated by the position information is outside the specified area and the position of the transport robot 10 needs to be corrected, the control device 11 changes the position of the transport robot 10 to a position within the specified area. After correcting (step S17), the series of processes shown in FIG. 3 ends.
  • step S17 if the position indicated by the position information is in a position within a specific area and the position of the transport robot 10 does not need to be corrected, the control device 11 does not execute the process of step S17.
  • the series of processes shown in FIG. 3 may be terminated as they are.
  • the transport robot 10 enters the room 120, which is the specific area, from the passage 110 (see the arrow indicated by symbol A in FIG. 4).
  • a step 121 is provided on the floor at the entrance of the room 120 , that is, on the floor at the boundary between the passage 110 and the room 120 .
  • a step 121 is a railing corresponding to a door 122 provided at the entrance of the room 120 .
  • the first vibration Vi1 having the amplitude equal to or greater than the predetermined value Th is generated in the transport robot 10.
  • time t2 which is a time within a predetermined period from time t1
  • the pair of left and right rear wheels RW get over the step 121 this time.
  • vibration Vi2 is generated in the transfer robot 10 . Therefore, in the example shown in FIG. 4, the control device 11 determines that the transfer robot 10 has entered the room 120 at time t2.
  • the second vibration Vi2 is substantially the same vibration as the first vibration Vi1.
  • the transfer robot 10 retreats for some reason, and the front wheels FW get over the step 121 again. It is also assumed that When such a situation occurs, the front wheel FW runs over the step 121 twice, so that substantially the same vibration such as the first vibration Vi1 and the second vibration Vi2 shown in FIG. This will occur in the transfer robot 10 . As a result, it may be erroneously detected that the transfer robot 10 has entered the room 120 even though the transfer robot 10 has not actually entered the room 120 .
  • the control device 11 changes the movement state of the transport robot 10 (for example, the sign of the movement speed of the transport robot 10 from “+ (that is, moving forward)” to "-"). (i.e., backward)", or whether the gear position of the transfer robot 10 is changed to "reverse”, etc.), and also refer to the monitoring result to determine whether the transfer robot 10 has entered a specific area.
  • the control device 11 changes the movement state of the transport robot 10 (for example, the sign of the movement speed of the transport robot 10 from "+ (that is, moving forward)" to "-"). (i.e., backward)", or whether the gear position of the transfer robot 10 is changed to "reverse”, etc.), and also refer to the monitoring result to determine whether the transfer robot 10 has entered a specific area.
  • This makes it possible to more accurately detect that the transport robot 10 has entered the specific area.
  • a sensor capable of detecting the load input to the wheels WL (for example, the front wheels FW) is provided as the sensor 13.
  • the sensor 13 outputs detection information including information representing the load input to the wheel WL (hereinafter also referred to as load information) to the control device 11 .
  • the acquisition unit 20 of the control device 11 acquires the detection information including the load information output from the sensor 13 to the control device 11, and the determination unit 31 determines whether or not the transport robot 10 has entered the specific area. is determined based on the load information acquired by the acquisition unit 20 instead of the vibration information in the above-described embodiment.
  • the determination unit 31 acquires load information indicating that a predetermined load has been input to the wheels WL. It may be determined that the transport robot 10 has entered the specific area when the transport robot 10 has entered the specific area. This prevents the determination unit 31 from erroneously determining that the transport robot 10 has entered the specific area based on the small load applied to the wheels WL due to the influence of the disturbance. Therefore, it is possible to accurately detect that the transport robot 10 has entered the specific area.
  • the determination unit 31 acquires the load information indicating that the load has been input to the wheels WL a plurality of times. It may be determined that the transport robot 10 has entered the specific area when the transport robot 10 has entered the specific area. This prevents the determination unit 31 from erroneously determining that the transfer robot 10 has entered the specific area based on the load, even if a relatively large load is singly input to the wheels WL due to the influence of disturbance. can be avoided. This makes it possible to accurately detect that the transport robot 10 has entered the specific area.
  • the determination unit 31 determines that the load information indicating that the first load has been input to the wheels WL is It may be determined that the transport robot 10 has entered the specific area when load information indicating that a second load substantially the same as the first load has been input to the wheels WL is acquired after the acquisition. . More specifically, the determination unit 31 determines that a second load substantially the same as the first load is input to the rear wheels RW after load information indicating that the first load is input to the front wheels FW is acquired. It may be determined that the transport robot 10 has entered the specific area when load information indicating that the transport robot 10 has entered the specific area is obtained.
  • the steps that the front wheels FW get over and the steps that the rear wheels RW get over are the same. Therefore, it is assumed that the load input to the front wheels FW when the front wheels FW run over a bump and the load input to the rear wheels RW when the rear wheels RW run over a bump are substantially the same load. be. Therefore, after obtaining the load information indicating that the first load has been input to the front wheels FW, the load information indicating that the second load substantially identical to the first load has been input to the rear wheels RW is acquired. By having the determination unit 31 determine that the transport robot 10 has entered the specific area when the information is acquired, it is possible to accurately detect that the transport robot 10 has entered the specific area.
  • the determination unit 31 determines whether or not the transfer robot 10 has entered the specific area based on the load input to the front wheels FW and the load input to the rear wheels RW, for example, the sensor 13
  • the sensor 13 it should be noted that a sensor or the like capable of detecting the load applied to the front wheels FW and the load applied to the rear wheels RW is required.
  • control device 11 which is an example of the position estimation device of the present invention
  • the present invention is not limited to this.
  • a server device that can communicate with the transport robot 10 via a network such as the Internet may be provided with some or all of the functional units of the control device 11 described above.
  • the transport robot 10 transmits the position information acquired by the GNSS receiver 12, the detection information acquired by the sensor 13, and the like to the server device as the control device 11 via the network.
  • the server device estimates the position of the transport robot 10 in the same manner as in the above-described embodiment, and appropriately transmits a predetermined instruction to the transport robot 10. , controls the movement of the transport robot 10 .
  • the server device can appropriately move the transport robot 10 to transport the package in the same manner as in the above-described embodiment.
  • the position estimation method described in the above embodiments can be realized by executing a prepared program on a computer.
  • the position estimation program is stored in a computer-readable storage medium such as a memory and executed by being read from the storage medium.
  • the position estimation program may be distributed via a network such as the Internet.
  • the position of the transport robot 10 that autonomously moves within a predetermined work area is estimated, but the application of the present invention is not limited to this. That is, according to the present invention, it is possible to estimate the position of an arbitrary mobile body that has wheels and a drive source and that is configured to be capable of autonomous movement by driving the drive wheels of the wheels with the drive source. be.
  • a moving body (transport robot 10) which is provided with wheels (wheels WL) and a drive source (motor MOT), and which is capable of autonomous movement by driving the drive wheels of the wheels by the drive source.
  • a position estimation device (control device 11) for estimating a position
  • an acquisition unit acquisition unit 20
  • detection information representing the vibration generated in the moving object or the load input to the wheel
  • a determination unit determination unit 31
  • an estimating unit estimating unit 32
  • the position estimation device includes a front wheel (front wheel FW) and a rear wheel (rear wheel RW),
  • the determination unit determines that the mobile body has entered the specific area when the detection information indicating that the vibration has occurred in the mobile body or that the load has been input to the wheels is acquired a plurality of times. to decide, Position estimator.
  • the position estimation device indicates that a second vibration substantially identical to the first vibration has occurred in the moving body after the detection information indicating that the first vibration has occurred in the moving body is acquired.
  • a second load substantially the same as the first load is applied to the rear wheels. determining that the moving body has entered the specific area when the detection information indicating that the input has been obtained; Position estimator.
  • the position estimation device is a period corresponding to the moving speed of the moving body, Position estimator.
  • the predetermined period can be a period of appropriate length.
  • the position estimation device determines whether or not the moving body has entered the specific area based on the detection information when the moving body is positioned near the specific area.
  • Position estimator determines whether or not the moving body has entered the specific area based on the detection information when the moving body is positioned near the specific area.
  • a computer for estimating the position of a moving object that includes wheels and a drive source and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source, Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel, determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters; estimating the position of the mobile object based on the determination result of the determination; The location estimation method that performs the processing.
  • a computer for estimating the position of a moving object that includes wheels and a drive source, and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source, Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel, determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters; estimating the position of the mobile object based on the determination result of the determination; A position estimation program that causes processing to be performed.
  • transport robot (moving body)
  • control device position estimation device
  • acquisition unit 31 determination unit
  • estimation unit WL wheel FW front wheel RW rear wheel MOT motor (driving source)

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A control device (11) for estimating the position of a transport robot (10), which is provided with wheels (WL) and a motor (MOT) and is configured to be capable of autonomous movement by driving drive wheels among the wheels (WL) by means of the motor (MOT), comprises: an acquisition unit (20) that acquires detection information representing a vibration generated in the transport robot (10) or a load input to the wheels (WL); a determination unit (31) that determines, on the basis of the detection information acquired by the acquisition unit (20), whether or not the transport robot (10) has entered a specific area in which a predetermined vibration can occur in the transport robot (10) or a predetermined load can be input to the wheels (WL) when entering; and an estimation unit (32) that estimates the position of the transport robot (10) on the basis of the determination result of the determination unit (31).

Description

位置推定装置、位置推定方法、及び位置推定プログラムPosition estimation device, position estimation method, and position estimation program
 本発明は、移動体の位置を推定する位置推定装置、位置推定方法、及び位置推定プログラムに関する。 The present invention relates to a position estimation device, a position estimation method, and a position estimation program for estimating the position of a mobile object.
 従来から、所定の作業領域内を自律移動しながら作業を行う作業ロボットなどの移動体が知られている。また、特許文献1には、ロボット本体に設けられた視覚センサから入力された画像を画像処理することにより、作業領域の出入口に貼付されたマーカを認識すると、そのマーカの存在位置を出入口の位置として記憶するようにした技術が記載されている。 Mobile objects such as work robots that perform work while autonomously moving within a predetermined work area have been known for some time. Further, in Japanese Patent Laid-Open No. 2002-100000, when a marker attached to the entrance/exit of a work area is recognized by image processing of an image input from a visual sensor provided in a robot main body, the position of the entrance/existence of the marker is detected. A technique for storing as
日本国特開2002-287824号公報Japanese Patent Application Laid-Open No. 2002-287824
 自律移動する移動体を適切に移動させるためには、その移動体の位置の把握が不可欠である。移動体の位置を特定する方法としては、移動体がGNSS(Global Navigation Satellite System)衛星から受信した信号を用いる方法や、移動体が移動する作業領域に設けられた設備を利用する方法などがあるものの、より簡素な構成で移動体の位置を推定可能とする技術が望まれていた。  In order to properly move a mobile object that moves autonomously, it is essential to know the position of the mobile object. Methods for identifying the position of a mobile object include a method that uses signals received by the mobile object from GNSS (Global Navigation Satellite System) satellites, and a method that uses equipment provided in the work area where the mobile object moves. However, there has been a demand for a technique capable of estimating the position of a moving object with a simpler configuration.
 本発明は、簡素な構成で移動体の位置を推定可能な位置推定装置、位置推定方法、及び位置推定プログラムを提供する。 The present invention provides a position estimation device, a position estimation method, and a position estimation program capable of estimating the position of a mobile object with a simple configuration.
 第1発明は、
 車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定する位置推定装置であって、
 前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得する取得部と、
 進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記取得部によって取得された検出情報に基づき判断する判断部と、
 前記判断部の判断結果に基づき前記移動体の位置を推定する推定部と、
 を備える、位置推定装置である。
The first invention is
A position estimating device that includes wheels and a drive source, and estimates the position of a moving body configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
an acquisition unit that acquires detection information representing the vibration generated in the moving body or the load input to the wheel;
Based on the detection information acquired by the acquisition unit, it is determined whether or not the moving body has entered a specific area in which the moving body can generate a predetermined vibration or a predetermined load can be applied to the wheels when the moving body enters the vehicle. a judgment unit;
an estimating unit that estimates the position of the moving object based on the determination result of the determining unit;
A position estimation device comprising:
 第2発明は、
 車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定するコンピュータが、
 前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得し、
 進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断し、
 前記判断の判断結果に基づき前記移動体の位置を推定する、
 処理を実行する、位置推定方法である。
The second invention is
A computer for estimating the position of a moving object that includes wheels and a drive source and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel,
determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters;
estimating the position of the mobile object based on the determination result of the determination;
A position estimation method that performs processing.
 第3発明は、
 車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定するコンピュータに、
 前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得し、
 進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断し、
 前記判断の判断結果に基づき前記移動体の位置を推定する、
 処理を実行させる、位置推定プログラムである。
The third invention is
A computer for estimating the position of a mobile body that includes wheels and a drive source, and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel,
determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters;
estimating the position of the mobile object based on the determination result of the determination;
It is a position estimation program that causes the process to be executed.
 本発明によれば、簡素な構成で移動体の位置を推定可能な位置推定装置、位置推定方法、及び位置推定プログラムを提供できる。 According to the present invention, it is possible to provide a position estimating device, a position estimating method, and a position estimating program capable of estimating the position of a mobile object with a simple configuration.
搬送ロボット10の概略構成の一例を示す図である。1 is a diagram showing an example of a schematic configuration of a transport robot 10; FIG. 制御装置11の機能的構成の一例を示すブロック図である。2 is a block diagram showing an example of a functional configuration of a control device 11; FIG. 制御装置11が実行する位置推定方法の一例を示すフローチャートである。4 is a flow chart showing an example of a position estimation method executed by the control device 11. FIG. 特定領域への搬送ロボット10の進入を検出する場合の具体的な一例を示す図である。FIG. 4 is a diagram showing a specific example of detecting entry of the transport robot 10 into a specific area;
 以下、本発明の位置推定装置、位置推定方法、及び位置推定プログラムの一実施形態を、図面を参照しながら詳細に説明する。以下の実施形態では、所定の作業領域内を自律移動する搬送ロボットの位置を推定するようにした例を説明する。 Hereinafter, one embodiment of the position estimation device, position estimation method, and position estimation program of the present invention will be described in detail with reference to the drawings. In the following embodiments, an example will be described in which the position of a carrier robot that autonomously moves within a predetermined work area is estimated.
<搬送ロボット>
 まず、図1を参照して、本実施形態の搬送ロボットの概略構成について説明する。図1に示すように、本実施形態の搬送ロボット10は、それぞれ左右一対の前輪FW及び後輪RWからなる車輪WLと、車輪WLのうちの駆動輪(例えば左右一対の前輪FW)を駆動する駆動源としてのモータMOTと、搬送ロボット10全体を統括制御する制御装置11と、不図示の荷台と、を備え、制御装置11による制御にしたがってモータMOTが駆動輪を駆動することにより移動(換言すると走行)し、荷台に搭載された荷物を所定の搬送先まで搬送する装置である。
<Conveyor robot>
First, with reference to FIG. 1, the schematic configuration of the transport robot of this embodiment will be described. As shown in FIG. 1, the transport robot 10 of the present embodiment drives wheels WL each comprising a pair of left and right front wheels FW and rear wheels RW, and drive wheels (for example, a pair of left and right front wheels FW) among the wheels WL. A motor MOT as a drive source, a control device 11 that controls the entire transfer robot 10, and a loading platform (not shown) are provided. Then, it travels), and transports the load mounted on the loading platform to a predetermined transport destination.
 モータMOTには、搬送ロボット10が備えるバッテリ(不図示)などから電力が供給されるようにしてもよいし、搬送ロボット10の外部からワイヤレス電力伝送などを用いて電力が供給されるようにしてもよい。また、本実施形態では、モータMOTを駆動源として採用した例を説明するが、モータMOTに代えて、あるいはモータMOTに加えて、エンジンなどの他の動力源を駆動源として採用してもよい。 The motor MOT may be supplied with power from a battery (not shown) provided in the transport robot 10, or may be supplied with power from the outside of the transport robot 10 using wireless power transmission or the like. good too. Further, in the present embodiment, an example in which the motor MOT is employed as the drive source will be described, but other power source such as an engine may be employed as the drive source instead of or in addition to the motor MOT. .
 搬送ロボット10は、荷台への荷物の積み込みが行われる荷受場と、荷物の搬送先となる荷下ろし場と、を有する作業領域内を移動する。本実施形態では、一例として、搬送ロボット10が移動する作業領域を、荷受場となるエントランスホールと、荷下ろし場となる部屋を含む複数の部屋と、を有する集合住宅とする。すなわち、搬送ロボット10は、荷受場のエントランスホールにて荷台に搭載された荷物を、その搬送先として指定された部屋まで搬送する。このとき、搬送ロボット10は、制御装置11による制御にしたがって自律移動する。 The transport robot 10 moves within a work area that has a receiving area where cargo is loaded onto the loading platform and an unloading area where the cargo is transported. In this embodiment, as an example, the work area in which the transport robot 10 moves is assumed to be an apartment complex having an entrance hall serving as a receiving area and a plurality of rooms including a room serving as an unloading area. That is, the transport robot 10 transports the cargo loaded on the platform at the entrance hall of the receiving area to the room designated as the destination. At this time, the transport robot 10 autonomously moves according to the control by the control device 11 .
 具体的に説明すると、搬送ロボット10は、例えば、GNSS(Global Navigation Satellite System)受信機12を備える。GNSS受信機12は、GNSS衛星から受信した信号に基づき、GNSS受信機12(すなわち搬送ロボット10)が位置する地点の緯度及び経度を特定し、特定した緯度及び経度を示す情報(以下、位置情報ともいう)を制御装置11へ出力する。 Specifically, the transport robot 10 is equipped with a GNSS (Global Navigation Satellite System) receiver 12, for example. The GNSS receiver 12 identifies the latitude and longitude of the point where the GNSS receiver 12 (i.e., the carrier robot 10) is located based on the signals received from the GNSS satellites, and collects information indicating the identified latitude and longitude (hereinafter referred to as position information ) is output to the control device 11 .
 制御装置11は、エントランスホールにて荷台に荷物が搭載されると、エントランスホール、各部屋、及びこれらをつなぐ各通路の位置などをあらわす情報を含んで構成される地図データと、GNSS受信機12から取得したそのときの位置情報とに基づき、エントランスホール(厳密にはそのときの搬送ロボット10の位置)から、荷下ろし場として指定された部屋までの経路を探索する。そして、制御装置11は、荷下ろし場として指定された部屋までの経路が探索されると、この経路に沿って搬送ロボット10を移動させることで、荷下ろし場として指定された部屋までの荷物の搬送を行わせる。 When the luggage is loaded on the loading platform in the entrance hall, the control device 11 includes map data including information representing the position of the entrance hall, each room, and each passage connecting these, and the GNSS receiver 12 Based on the position information at that time acquired from , a route from the entrance hall (strictly speaking, the position of the transport robot 10 at that time) to the room designated as the unloading area is searched. Then, when the route to the room designated as the unloading area is searched for, the control device 11 moves the transport robot 10 along this route to transport the cargo to the room designated as the unloading area. Let the transportation take place.
 なお、本実施形態では、GNSS受信機12がGNSS衛星から受信した信号に基づき、搬送ロボット10が位置する地点についての位置情報を取得するようにした例を説明するが、これに限らない。例えば、搬送ロボット10にLIDAR(Laser Imaging Detection and Ranging)を設けて、このLIDARによる計測結果を、あらかじめ用意された作業領域の3次元点群データと照合することで搬送ロボット10が位置する地点を特定し、その地点についての位置情報を取得するようにしてもよい。また、GNSS受信機12がGNSS衛星から受信した信号と、LIDARによる計測結果との両方を用いて搬送ロボット10が位置する地点を特定し、その地点についての位置情報を取得するようにしてもよい。さらに、例えば、後述するセンサ13の検出結果を用いたオドメトリ(自律航法)を用いて搬送ロボット10が位置する地点を特定し、その地点についての位置情報を取得するようにしてもよい。 In this embodiment, an example in which the GNSS receiver 12 acquires position information about the point where the transport robot 10 is located based on signals received from GNSS satellites will be described, but the present invention is not limited to this. For example, the transfer robot 10 is provided with LIDAR (Laser Imaging Detection and Ranging), and the measurement results of this LIDAR are collated with the three-dimensional point cloud data of the work area prepared in advance to determine the position of the transfer robot 10. It may be specified and position information about the point may be acquired. Alternatively, the point at which the transport robot 10 is located may be specified using both the signal received by the GNSS receiver 12 from the GNSS satellite and the measurement result by LIDAR, and the position information about the point may be obtained. . Furthermore, for example, the point where the transport robot 10 is located may be specified using odometry (autonomous navigation) using the detection result of the sensor 13, which will be described later, and the position information about the point may be acquired.
 ところで、搬送ロボット10は、移動に伴って、作業領域内の特定領域に進入することがある。例えば、特定領域は、扉や壁などを用いて区画され、所定の入口を介して進入可能な領域である。本実施形態では、エントランスホール及び各部屋などが特定領域に該当する。また、作業領域にエレベータが設けられていれば、このエレベータも特定領域に含むこととしてもよい。 By the way, the transport robot 10 may enter a specific area within the work area as it moves. For example, the specific area is an area that is partitioned using a door, wall, or the like and that can be entered through a predetermined entrance. In this embodiment, the entrance hall and each room correspond to the specific area. Moreover, if an elevator is provided in the work area, this elevator may also be included in the specific area.
 このような特定領域を含む作業領域において、搬送ロボット10を適切に移動させるためには、特定領域に搬送ロボット10が進入したことを精度よく検出することが望まれる。しかしながら、例えば、前述した位置情報だけでは特定領域への搬送ロボット10の進入を精度よく検出することが難しい場合がある。また、特定領域に搬送ロボット10が進入したことを精度よく検出するために、特定領域の入口などに専用の設備(例えばビーコンやICリーダ)を設けることも考えられるが、このようにした場合には、専用の設備を設置するためにコストや手間がかかるおそれがある。 In order to appropriately move the transfer robot 10 in a work area including such a specific area, it is desirable to accurately detect that the transfer robot 10 has entered the specific area. However, for example, it may be difficult to accurately detect the entry of the transport robot 10 into a specific area only with the above-described position information. Further, in order to accurately detect that the transport robot 10 has entered the specific area, it is conceivable to provide a dedicated facility (for example, a beacon or an IC reader) at the entrance of the specific area. However, there is a risk that it will take a lot of time and money to install dedicated equipment.
 そこで、本実施形態では、コストなどの増加を抑制可能な簡易な構成で、特定領域に搬送ロボット10が進入したことを精度よく検出できるようにし、適切な位置を移動体の位置として推定することを可能にする。 Therefore, in the present embodiment, it is possible to accurately detect that the transport robot 10 has entered a specific area with a simple configuration that can suppress an increase in cost, etc., and to estimate an appropriate position as the position of the mobile body. enable
 具体的に説明すると、本実施形態において、特定領域は、その入口の床面に段差が設けられており、この段差によって、進入時に搬送ロボット10に所定の振動が発生したり車輪WLに所定の荷重が入力されたりする領域となっている。そこで、本実施形態では、このように特定領域の入口に設けられた段差を利用して、特定領域に搬送ロボット10が進入したことを検出する。 Specifically, in this embodiment, the specific area has a step on the floor surface at the entrance thereof. This is the area where the load is input. Therefore, in the present embodiment, the entry of the transfer robot 10 into the specific area is detected using the step provided at the entrance of the specific area.
 さらに詳述すると、特定領域の入口には、扉が設けられている。このため、特定領域の入口の床面には、沓摺りが設けられている。この沓摺りが、上記の段差として機能する。つまり、本実施形態では、元から(すなわち特定領域への搬送ロボット10の進入を検出するための用途とは別の用途で)特定領域の入口に設けられている段差を利用して、特定領域に搬送ロボット10が進入したことを検出する。したがって、特定領域への搬送ロボット10の進入を検出するために専用の設備を作業領域に新たに追加せずともよく、このような設備を設置するためのコストや手間を削減することも可能である。 In more detail, there is a door at the entrance to the specific area. For this reason, the floor surface of the entrance of the specific area is provided with a railing. This slippery rail functions as the step. In other words, in the present embodiment, the step provided at the entrance of the specific area is originally used (that is, for a purpose other than detecting the entry of the transfer robot 10 into the specific area), and the specific area is detected. It is detected that the transfer robot 10 has entered the . Therefore, there is no need to newly add dedicated equipment to the work area to detect the entry of the transfer robot 10 into the specific area, and it is possible to reduce the cost and labor required to install such equipment. be.
 以下、本実施形態について具体的に説明する。 The present embodiment will be specifically described below.
 図1に示すように、搬送ロボット10は、搬送ロボット10のいわゆる内界センサとしてのセンサ13を備える。センサ13は、搬送ロボット10に生じた振動を検出可能なセンサを含んで構成される。搬送ロボット10に生じた振動を検出可能なセンサとしては、例えば、搬送ロボット10におけるピッチ方向、ロール方向、及びヨー方向の各角速度と、搬送ロボット10における前後方向、左右方向、及び上下方向の各加速度とを検出可能なIMU(Inertial Measurement Unit:慣性計測装置)を採用することができる。 As shown in FIG. 1, the transport robot 10 includes a sensor 13 as a so-called internal sensor of the transport robot 10. The sensor 13 includes a sensor capable of detecting vibration generated in the transport robot 10 . Sensors capable of detecting vibrations generated in the transport robot 10 include, for example, angular velocities in the pitch, roll, and yaw directions of the transport robot 10, An IMU (Inertial Measurement Unit) capable of detecting acceleration can be employed.
 また、センサ13は、例えば、搬送ロボット10の移動速度(換言すると走行速度)を検出可能ないわゆる車速センサをさらに含んで構成される。そして、センサ13は、自装置による検出結果をあらわす検出情報を制御装置11へ出力する。これにより、搬送ロボット10に生じた振動をあらわす情報(以下、振動情報ともいう)や、搬送ロボット10の移動速度を示す情報(以下、速度情報ともいう)などが検出情報としてセンサ13から制御装置11へ送られ得る。なお、振動情報は、例えば、搬送ロボット10に生じた振動の内容(例えば振幅や周期)を特定可能な情報とすることができる。 Further, the sensor 13 further includes, for example, a so-called vehicle speed sensor capable of detecting the moving speed (in other words, running speed) of the transport robot 10 . Then, the sensor 13 outputs detection information representing the result of detection by its own device to the control device 11 . As a result, information representing vibration generated in the transport robot 10 (hereinafter also referred to as vibration information), information representing the moving speed of the transport robot 10 (hereinafter also referred to as speed information), etc. are sent from the sensor 13 to the control device as detection information. 11. Note that the vibration information can be, for example, information that can specify the content of the vibration (e.g., amplitude and period) occurring in the transport robot 10 .
<制御装置>
 制御装置11は、本発明の位置推定装置の一例であり、例えば、各種演算を行うプロセッサ、各種情報を記憶する記憶媒体、制御装置11の内部と外部とのデータの入出力を制御するインターフェイス(いずれも不図示)などを含んで構成されるコンピュータである。
<Control device>
The control device 11 is an example of the position estimation device of the present invention, and includes, for example, a processor that performs various calculations, a storage medium that stores various information, and an interface ( (none of which are shown).
 図2に示すように、制御装置11は、例えば、記憶媒体に記憶されたプログラムをプロセッサが実行することによって実現される機能部として、取得部20と、位置推定部30と、駆動制御部40と、を備える。 As shown in FIG. 2, the control device 11 includes, for example, an acquisition unit 20, a position estimation unit 30, and a drive control unit 40 as functional units realized by a processor executing a program stored in a storage medium. And prepare.
 取得部20は、制御装置11が搬送ロボット10の位置を推定するために必要な各種情報を取得して、取得した情報を位置推定部30へ渡す。取得部20によって取得される情報としては、GNSS受信機12から制御装置11に対して出力された位置情報や、センサ13から制御装置11に対して出力された検出情報などを挙げることができる。また、取得部20によって取得される検出情報には、前述したように、振動情報や速度情報などが含まれ得る。 The acquisition unit 20 acquires various types of information necessary for the control device 11 to estimate the position of the transport robot 10 and passes the acquired information to the position estimation unit 30 . The information acquired by the acquisition unit 20 includes position information output from the GNSS receiver 12 to the control device 11, detection information output from the sensor 13 to the control device 11, and the like. Further, the detection information acquired by the acquisition unit 20 may include vibration information, speed information, and the like, as described above.
 位置推定部30は、取得部20によって取得された情報に基づき搬送ロボット10の位置を推定する。具体的に説明すると、位置推定部30は、特定領域に搬送ロボット10が進入したか否かを取得部20によって取得された検出情報に基づき判断する判断部31と、判断部31の判断結果に基づき搬送ロボット10の位置を推定する推定部32と、を含んで構成される。 The position estimation unit 30 estimates the position of the transport robot 10 based on the information acquired by the acquisition unit 20 . Specifically, the position estimating unit 30 includes a determining unit 31 that determines whether or not the transport robot 10 has entered the specific area based on the detection information acquired by the acquiring unit 20, and and an estimating unit 32 for estimating the position of the transport robot 10 based on the position of the transport robot 10 .
 推定部32は、例えば、特定領域に搬送ロボット10が進入したと判断部31によって判断された場合には、特定領域内の位置を搬送ロボット10の位置として推定する。すなわち、この場合、取得部20によって取得された位置情報が示す位置が特定領域外の位置であれば、推定部32は、位置情報が示す位置から特定領域内の位置に補正した位置を、搬送ロボット10の位置の推定結果として導出する。また、この場合、取得部20によって取得された位置情報が示す位置が特定領域内の位置であれば、推定部32は、位置情報が示す位置を、そのまま搬送ロボット10の位置の推定結果として導出してもよい。 For example, when the determination unit 31 determines that the transport robot 10 has entered the specific area, the estimation unit 32 estimates the position within the specific area as the position of the transport robot 10 . That is, in this case, if the position indicated by the position information acquired by the acquisition unit 20 is a position outside the specific region, the estimation unit 32 corrects the position indicated by the position information to a position within the specific region, It is derived as an estimation result of the position of the robot 10 . Also, in this case, if the position indicated by the position information acquired by the acquisition unit 20 is a position within the specific area, the estimation unit 32 directly derives the position indicated by the position information as the estimation result of the position of the transport robot 10. You may
 一方、推定部32は、特定領域に搬送ロボット10が進入していないと判断部31によって判断された場合には、搬送ロボット10の位置を特定領域外の位置と推定する。すなわち、この場合、取得部20によって取得された位置情報が示す位置が特定領域外の位置であれば、推定部32は、位置情報が示す位置を、そのまま搬送ロボット10の位置の推定結果として導出する。また、この場合、取得部20によって取得された位置情報が示す位置が特定領域内の位置であれば、推定部32は、位置情報が示す位置から特定領域外の位置に補正した位置を、搬送ロボット10の位置の推定結果として導出してもよい。 On the other hand, when the determining unit 31 determines that the transport robot 10 has not entered the specific area, the estimating unit 32 estimates the position of the transport robot 10 as being outside the specific area. That is, in this case, if the position indicated by the position information obtained by the obtaining unit 20 is a position outside the specific area, the estimating unit 32 directly derives the position indicated by the position information as the estimation result of the position of the transport robot 10. do. Further, in this case, if the position indicated by the position information acquired by the acquisition unit 20 is a position within the specific region, the estimation unit 32 corrects the position indicated by the position information to a position outside the specific region, and conveys the position. It may be derived as an estimation result of the position of the robot 10 .
 判断部31は、例えば、所定の振動が搬送ロボット10に発生したことをあらわす検出情報が取得された場合に、特定領域に搬送ロボット10が進入したと判断する。すなわち、特定領域に進入する際に、搬送ロボット10は特定領域の入口にある段差を乗り越えることになるため、搬送ロボット10にはその段差の高さなどに応じた振動が発生することが想定される。 For example, the determination unit 31 determines that the transport robot 10 has entered the specific area when detection information indicating that a predetermined vibration has occurred in the transport robot 10 is acquired. That is, when the transfer robot 10 enters the specific area, it will climb over the step at the entrance of the specific area, so it is assumed that the transfer robot 10 will vibrate according to the height of the step. be.
 そこで、例えば、特定領域の入口にある段差を搬送ロボット10が乗り越えることにより発生する振動を実験的に求め、その振動を、特定領域に搬送ロボット10が進入したと判断するための条件として、あらかじめ判断部31に設定しておく。このようにすることで、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。 Therefore, for example, the vibration generated when the transfer robot 10 climbs over the step at the entrance of the specific area is experimentally obtained, and the vibration is used as a condition for determining that the transfer robot 10 has entered the specific area. It is set in the determination unit 31 . By doing so, it is possible to accurately detect that the transport robot 10 has entered the specific area.
 一例として、特定領域に搬送ロボット10が進入したと判断するための条件となる振動は、振幅が所定値以上の振動とすることができる。これにより、外乱の影響により搬送ロボット10に発生する小さな振動に基づき、特定領域に搬送ロボット10が進入したと判断部31が誤って判断してしまうことを回避できる。したがって、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。 As an example, the vibration that is the condition for determining that the transport robot 10 has entered the specific area can be vibration with an amplitude of a predetermined value or more. As a result, it is possible to prevent the determination unit 31 from erroneously determining that the transport robot 10 has entered the specific area based on small vibrations generated in the transport robot 10 due to the influence of disturbance. Therefore, it is possible to accurately detect that the transport robot 10 has entered the specific area.
 なお、外乱の影響により搬送ロボット10に発生する小さな振動としては、例えば、通路に落ちていた小石などを搬送ロボット10が乗り越えた際に発生する振動や、風などに起因して搬送ロボット10に発生する振動を挙げることができる。 Small vibrations that occur in the transport robot 10 due to the influence of external disturbances include, for example, vibrations that occur when the transport robot 10 climbs over pebbles that have fallen in the passage, and vibrations that occur in the transport robot 10 due to wind and the like. Vibration that occurs can be mentioned.
 また、判断部31は、振動が搬送ロボット10に発生したことをあらわす検出情報が複数回取得された場合に、特定領域に搬送ロボット10が進入したと判断してもよい。すなわち、搬送ロボット10は、前輪FWと後輪RWとを有する。このため、特定領域に搬送ロボット10が進入した場合には、前輪FWが段差を乗り越えたときの振動と、後輪RWが段差を乗り越えたときの振動との複数回の振動が搬送ロボット10に発生することが想定される。換言すれば、搬送ロボット10に1回しか振動が発生していない場合には、外乱の影響による振動が単発的に発生した、あるいは前輪FWだけ特定領域に進入している(換言すると搬送ロボット10が特定領域に進入しきっていない)といった状態であることが想定される。 Further, the determining unit 31 may determine that the transport robot 10 has entered the specific area when detection information indicating that the transport robot 10 has vibrated has been obtained a plurality of times. That is, the transport robot 10 has front wheels FW and rear wheels RW. For this reason, when the transport robot 10 enters the specific area, the transport robot 10 is subjected to multiple vibrations, the vibration when the front wheels FW run over the step and the vibration when the rear wheels RW run over the step. expected to occur. In other words, when the transport robot 10 vibrates only once, it means that the vibration due to the influence of the disturbance has occurred singly, or only the front wheels FW have entered the specific area (in other words, the transport robot 10 has not entered the specific area).
 そこで、振動が搬送ロボット10に発生したことをあらわす検出情報が複数回取得された場合に、特定領域に搬送ロボット10が進入したと判断部31に判断させることで、外乱の影響による振動が単発的に発生した、あるいは搬送ロボット10が特定領域に進入しきっていない状態で、特定領域に搬送ロボット10が進入したと判断部31が判断してしまうことを回避でき、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。 Therefore, when the detection information indicating that the transport robot 10 has vibrated multiple times, the determining unit 31 determines that the transport robot 10 has entered a specific area, so that the vibration due to the influence of the disturbance occurs only once. It is possible to avoid the judgment unit 31 judging that the transfer robot 10 has entered the specific area in a state where the transfer robot 10 has not completely entered the specific area. It is possible to accurately detect the entry.
 さらに、判断部31は、第1の振動が搬送ロボット10に発生したことをあらわす検出情報が取得された後に第1の振動と略同一の第2の振動が搬送ロボット10に発生したことをあらわす検出情報が取得された場合に、特定領域に搬送ロボット10が進入したと判断してもよい。すなわち、特定領域に搬送ロボット10が進入するために、前輪FWが乗り越える段差と、後輪RWが乗り越える段差とは同じものである。このため、前輪FWが段差を乗り越えたときに発生する振動と、後輪RWが段差を乗り越えたときに発生する振動とは、略同一の振動となることが想定される。 Further, the determination unit 31 indicates that a second vibration substantially identical to the first vibration has occurred in the transfer robot 10 after the detection information indicating that the first vibration has occurred in the transfer robot 10 is acquired. It may be determined that the transport robot 10 has entered the specific area when the detection information is acquired. That is, in order for the transport robot 10 to enter the specific area, the step that the front wheels FW get over and the step that the rear wheels RW get over are the same. Therefore, it is assumed that the vibration generated when the front wheels FW run over a step and the vibration generated when the rear wheels RW run over a step are substantially the same vibration.
 そこで、第1の振動が搬送ロボット10に発生したことをあらわす検出情報が取得された後に第1の振動と略同一の第2の振動が搬送ロボット10に発生したことをあらわす検出情報が取得された場合に、特定領域に搬送ロボット10が進入したと判断部31に判断させることで、特定領域に搬送ロボット10が進入したことを一層精度よく検出することが可能となる。 Therefore, after detection information indicating that the first vibration has occurred in the transfer robot 10 is obtained, detection information indicating that the second vibration substantially identical to the first vibration has occurred in the transfer robot 10 is obtained. In this case, by making the determining unit 31 determine that the transport robot 10 has entered the specific area, it is possible to more accurately detect that the transport robot 10 has entered the specific area.
 また、判断部31は、振動が搬送ロボット10に発生したことをあらわす検出情報が所定の期間に複数回取得された場合に、特定領域に搬送ロボット10が進入したと判断してもよい。すなわち、前輪FWが段差を乗り越えるタイミングと、後輪RWが段差を乗り越えるタイミングとには、搬送ロボット10の移動速度に応じた時間差が発生することが想定される。このため、例えば、第1の振動が搬送ロボット10に発生したことをあらわす検出情報が取得された後に所定の期間が経過しても、第2の振動が搬送ロボット10に発生したことをあらわす検出情報が取得されないような場合には、第1の振動が外乱の影響により発生したものである可能性が高い。 Further, the determining unit 31 may determine that the transport robot 10 has entered the specific area when detection information indicating that the transport robot 10 has vibrated has been obtained multiple times within a predetermined period. That is, it is assumed that a time difference corresponding to the moving speed of the transport robot 10 occurs between the timing at which the front wheels FW run over the step and the timing at which the rear wheels RW run over the step. For this reason, for example, even if a predetermined period of time elapses after the detection information indicating that the first vibration has occurred in the transfer robot 10 is acquired, the detection indicating that the second vibration has occurred in the transfer robot 10 cannot be detected. If no information is acquired, there is a high possibility that the first vibration is caused by disturbance.
 そこで、振動が搬送ロボット10に発生したことをあらわす検出情報が所定の期間に複数回取得された場合に、特定領域に搬送ロボット10が進入したと判断部31に判断させることで、外乱の影響により搬送ロボット10に発生した振動に基づき、特定領域に搬送ロボット10が進入したと判断部31が誤って判断してしまうことを回避でき、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。また、上記の所定の期間を、搬送ロボット10の移動速度に応じた期間とすれば、当該期間の長さを適切な長さとすることができるため、特定領域に搬送ロボット10が進入したことを一層精度よく検出することが可能となる。 Therefore, when the detection information indicating that the transport robot 10 has vibrated is obtained multiple times in a predetermined period, the determining unit 31 determines that the transport robot 10 has entered a specific area. It is possible to prevent the determination unit 31 from erroneously determining that the transport robot 10 has entered the specific area based on the vibration generated in the transport robot 10, and accurately detect that the transport robot 10 has entered the specific area. It becomes possible to Further, if the above-mentioned predetermined period is a period corresponding to the moving speed of the transfer robot 10, the length of the period can be set to an appropriate length. It becomes possible to detect with much higher accuracy.
 また、判断部31は、搬送ロボット10が特定領域の付近に位置しているときに、特定領域に搬送ロボット10が進入したか否かを検出情報に基づき判断してもよい。具体的に説明すると、例えば、制御装置11には、前述した記憶媒体などにより実現される記憶部50が設けられる。記憶部50は、位置推定部30が参照可能な状態で、前述した地図データを記憶する。 Further, the determination unit 31 may determine whether or not the transport robot 10 has entered the specific area based on the detection information when the transport robot 10 is positioned near the specific area. Specifically, for example, the control device 11 is provided with a storage unit 50 implemented by the above-described storage medium or the like. The storage unit 50 stores the aforementioned map data in a state that the position estimation unit 30 can refer to.
 そして、判断部31は、取得部20によって位置情報が取得されると、この位置情報と、記憶部50が記憶する地図データとを参照して、搬送ロボット10の位置が特定領域付近であるか否かを判断する。搬送ロボット10の位置が特定領域付近であると判断するための条件は、例えば、あらかじめ判断部31に設定される。一例として、搬送ロボット10の位置が特定領域付近であると判断するための条件は、位置情報が示す位置が平面視で特定領域の入口から1[m]以内の範囲に含まれることとすることができる。 Then, when the position information is acquired by the acquisition unit 20, the determination unit 31 refers to this position information and the map data stored in the storage unit 50 to determine whether the position of the transport robot 10 is near the specific area. determine whether or not A condition for determining that the position of the transport robot 10 is in the vicinity of the specific area is set in the determination unit 31 in advance, for example. As an example, the condition for determining that the position of the transport robot 10 is near the specific area is that the position indicated by the position information is within a range of 1 [m] from the entrance of the specific area in plan view. can be done.
 そして、判断部31は、搬送ロボット10の位置が特定領域付近であると判断した場合には、前述したように、特定領域に搬送ロボット10が進入したか否かを検出情報に基づき判断する。一方、判断部31は、搬送ロボット10の位置が特定領域付近でないと判断した場合には、例えば、検出情報に基づく、特定領域に搬送ロボット10が進入したか否かの判断を行わない。このようにすることで、特定領域から離れた位置で外乱の影響により搬送ロボット10に振動が発生したとしても、この振動に基づき、特定領域に搬送ロボット10が進入したと判断部31が誤って判断してしまうことを回避できる。したがって、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。 Then, when determining that the position of the transport robot 10 is near the specific area, the determination unit 31 determines whether the transport robot 10 has entered the specific area based on the detection information, as described above. On the other hand, if the determination unit 31 determines that the position of the transport robot 10 is not near the specific area, for example, it does not determine whether the transport robot 10 has entered the specific area based on the detection information. By doing so, even if the transfer robot 10 vibrates due to the influence of disturbance at a position away from the specific area, the determination unit 31 may erroneously determine that the transfer robot 10 has entered the specific area based on this vibration. You can avoid making decisions. Therefore, it is possible to accurately detect that the transport robot 10 has entered the specific area.
 また、特定領域に搬送ロボット10が進入したと判断するための条件は、特定領域ごとに異なるようにしてもよい。例えば、各々の特定領域の入口の段差を搬送ロボット10が乗り越えることにより発生する振動を実験的にそれぞれ求め、特定領域とその特定領域の入口の段差を搬送ロボット10が乗り越えることにより発生する振動とを対応付けて記憶しておく。 Also, the conditions for determining that the transport robot 10 has entered the specific area may be different for each specific area. For example, the vibration generated when the transfer robot 10 climbs over the step at the entrance of each specific area is experimentally obtained, and the vibration generated when the transfer robot 10 climbs over the specific area and the step at the entrance of the specific area. are associated with each other and stored.
 そして、判断部31は、例えば、搬送ロボット10の位置が特定領域付近であると判断した場合には、その特定領域に対応付けられた条件となる振動と、搬送ロボット10に発生した振動とに基づき、その特定領域に搬送ロボット10が進入したか否かを判断してもよい。このようにすれば、特定領域に搬送ロボット10が進入したことを一層精度よく検出することが可能となる。 Then, for example, when the determination unit 31 determines that the position of the transport robot 10 is near the specific area, the vibration that is the condition associated with the specific area and the vibration generated in the transport robot 10 Based on this, it may be determined whether or not the transport robot 10 has entered the specific area. By doing so, it is possible to more accurately detect that the transport robot 10 has entered the specific area.
 位置推定部30は、推定結果として得られた搬送ロボット10の位置を駆動制御部40へ渡す。駆動制御部40は、例えば、記憶部50が記憶する地図データと、位置推定部30によって推定された搬送ロボット10の位置とに基づき、荷下ろし場として指定された部屋までの経路に沿って搬送ロボット10が移動するように、モータMOTを制御する。これにより、搬送ロボット10に荷下ろし場として指定された部屋までの荷物の搬送を行わせることができる。 The position estimation unit 30 passes the position of the transport robot 10 obtained as an estimation result to the drive control unit 40 . For example, based on the map data stored in the storage unit 50 and the position of the transport robot 10 estimated by the position estimation unit 30, the drive control unit 40 transports the robot along the route to the room designated as the unloading area. The motor MOT is controlled so that the robot 10 moves. As a result, the transport robot 10 can transport the cargo to the room designated as the unloading area.
 なお、ここでは説明した例では、地図データを記憶する記憶部50を制御装置11の内部に設けるようにしたが、これに限らない。例えば、記憶部50を、インターネットなどのネットワークを介して制御装置11が適宜アクセス可能な状態で、制御装置11の外部に設けるようにしてもよい。 In the example described here, the storage unit 50 for storing the map data is provided inside the control device 11, but the present invention is not limited to this. For example, the storage unit 50 may be provided outside the control device 11 so that the control device 11 can access it via a network such as the Internet.
<位置推定方法>
 次に、図3を参照して、制御装置11が実行する位置推定方法の一例について説明する。この位置推定方法を制御装置11に実行させる位置推定プログラムは、例えば、制御装置11の記憶媒体などにあらかじめ記憶されている。
<Position estimation method>
Next, an example of the position estimation method executed by the control device 11 will be described with reference to FIG. A position estimation program that causes the control device 11 to execute this position estimation method is stored in advance in, for example, a storage medium of the control device 11 .
 図3に示すように、制御装置11は、まず、搬送ロボット10の位置が特定領域付近であるか否かを判断する(ステップS11)。そして、搬送ロボット10の位置が特定領域付近でないと判断した場合には(ステップS11:NO)、制御装置11は、そのまま図3に示す一連の処理を終了する。このように、後述のステップS17の処理を実行することなく図3に示す一連の処理を終了した場合には、制御装置11は、例えば、位置情報が示す位置をそのまま搬送ロボット10の位置として採用する。 As shown in FIG. 3, the control device 11 first determines whether or not the position of the transport robot 10 is near the specific area (step S11). Then, when it is determined that the position of the transport robot 10 is not near the specific area (step S11: NO), the control device 11 ends the series of processes shown in FIG. 3 as it is. In this way, when the series of processes shown in FIG. 3 is finished without executing the process of step S17, which will be described later, the control device 11, for example, adopts the position indicated by the position information as the position of the transport robot 10. do.
 一方、搬送ロボット10の位置が特定領域付近であると判断した場合には(ステップS11:YES)、制御装置11は、搬送ロボット10において所定の振動が検出されたか否かを判断する(ステップS12)。そして、所定の振動が検出されていないと判断した場合には(ステップS12:NO)、制御装置11は、そのまま図3に示す一連の処理を終了する。 On the other hand, when it is determined that the position of the transport robot 10 is near the specific area (step S11: YES), the control device 11 determines whether or not a predetermined vibration is detected in the transport robot 10 (step S12). ). Then, when it is determined that the predetermined vibration is not detected (step S12: NO), the control device 11 ends the series of processes shown in FIG. 3 as it is.
 一方、所定の振動が検出されたと判断した場合には(ステップS12:YES)、制御装置11は、所定の振動が検出されたことを記憶するとともに(ステップS13)、搬送ロボット10の移動速度に応じた時間のカウントを開始する(ステップS14)。 On the other hand, when it is determined that the predetermined vibration has been detected (step S12: YES), the control device 11 stores that the predetermined vibration has been detected (step S13), The corresponding time count is started (step S14).
 ステップS14において、例えば、制御装置11は、搬送ロボット10の移動速度がv1である場合にはタイマカウンタに所定のT1[s](ただしT1>0)をセットし、このT1[s]から0までのカウントダウンを行う。一方、制御装置11は、搬送ロボット10の移動速度がv2(ただしv2>v1)である場合にはタイマカウンタに所定のT2[s](ただし0<T2<T1)をセットし、このT2[s]から0までのカウントダウンを行う。これにより、搬送ロボット10の移動速度に応じた時間のカウントが可能である。 In step S14, for example, when the moving speed of the transport robot 10 is v1, the control device 11 sets a predetermined T1[s] (where T1>0) in the timer counter, and from this T1[s] to 0 countdown to. On the other hand, when the moving speed of the transport robot 10 is v2 (where v2>v1), the control device 11 sets a predetermined T2[s] (where 0<T2<T1) in the timer counter, and this T2[ s] to 0. Thereby, it is possible to count the time according to the moving speed of the transport robot 10 .
 そして、制御装置11は、ステップS14で開始したカウントが0となる前に搬送ロボット10において所定の振動が再度検出されたか否かを判断する(ステップS15)。所定の振動が再度検出されなかったと判断した場合には(ステップS15:NO)、制御装置11は、そのまま図3に示す一連の処理を終了する。 Then, the control device 11 determines whether a predetermined vibration is detected again in the transfer robot 10 before the count started in step S14 reaches 0 (step S15). If it is determined that the predetermined vibration has not been detected again (step S15: NO), the control device 11 ends the series of processes shown in FIG. 3 as it is.
 一方、所定の振動が再度検出されたと判断した場合には(ステップS15:YES)、制御装置11は、特定領域に搬送ロボット10が進入したと判断する(ステップS16)。そして、制御装置11は、位置情報が示す位置が特定領域外の位置であるなどして搬送ロボット10の位置の補正が必要な状態であれば、搬送ロボット10の位置を特定領域内の位置に補正して(ステップS17)、図3に示す一連の処理を終了する。 On the other hand, when it is determined that the predetermined vibration has been detected again (step S15: YES), the control device 11 determines that the transport robot 10 has entered the specific area (step S16). If the position indicated by the position information is outside the specified area and the position of the transport robot 10 needs to be corrected, the control device 11 changes the position of the transport robot 10 to a position within the specified area. After correcting (step S17), the series of processes shown in FIG. 3 ends.
 なお、もし、位置情報が示す位置が特定領域内の位置であるなどして搬送ロボット10の位置の補正が必要ない状態であれば、制御装置11は、ステップS17の処理を実行することなく、そのまま図3に示す一連の処理を終了してもよい。 Note that if the position indicated by the position information is in a position within a specific area and the position of the transport robot 10 does not need to be corrected, the control device 11 does not execute the process of step S17. The series of processes shown in FIG. 3 may be terminated as they are.
<特定領域への搬送ロボットの進入を検出する場合の具体的な一例>
 次に、図4を参照して、特定領域への搬送ロボット10の進入を検出する場合の具体的な一例について説明する。なお、図4では、図1に示した搬送ロボット10の構成要素のうち、前輪FW及び後輪RW以外の図示を省略する。
<Specific example of detecting entry of a transfer robot into a specific area>
Next, a specific example of detecting entry of the transfer robot 10 into a specific area will be described with reference to FIG. In FIG. 4, illustration of components of the transfer robot 10 shown in FIG. 1 other than the front wheels FW and the rear wheels RW is omitted.
 図4に示す例において、搬送ロボット10は、通路110から、特定領域である部屋120へ進入するものとする(図4中の符号Aで示す矢印を参照)。また、部屋120の入口の床面、すなわち通路110と部屋120との境界部の床面には、段差121が設けられている。段差121は、部屋120の入口に設けられた扉122に対応する沓摺りである。 In the example shown in FIG. 4, the transport robot 10 enters the room 120, which is the specific area, from the passage 110 (see the arrow indicated by symbol A in FIG. 4). A step 121 is provided on the floor at the entrance of the room 120 , that is, on the floor at the boundary between the passage 110 and the room 120 . A step 121 is a railing corresponding to a door 122 provided at the entrance of the room 120 .
 図4中の符号Bで示す吹き出し内には、搬送ロボット10が通路110から部屋120へ進入することにより搬送ロボット10に発生する振動(すなわちセンサ13によって検出される振動)の一例を示した。 An example of the vibration generated in the transfer robot 10 when the transfer robot 10 enters the room 120 from the passage 110 (that is, the vibration detected by the sensor 13) is shown in the balloon indicated by symbol B in FIG.
 すなわち、図4に示す例では、まず、左右一対の前輪FWが段差121を乗り越える時期t1において、振幅が所定値Th以上となる第1の振動Vi1が搬送ロボット10に発生する。その後、時期t1から所定期間内の時期である時期t2において、今度は左右一対の後輪RWが段差121を乗り越えるため、第1の振動Vi1と同様に、振幅が所定値Th以上となる第2の振動Vi2が搬送ロボット10に発生する。したがって、図4に示す例の場合、制御装置11は、時期t2において、部屋120に搬送ロボット10が進入したと判断する。なお、ここで、第2の振動Vi2は、図4に示すように、第1の振動Vi1と略同一の振動となっている。 That is, in the example shown in FIG. 4, first, at the timing t1 when the pair of left and right front wheels FW get over the step 121, the first vibration Vi1 having the amplitude equal to or greater than the predetermined value Th is generated in the transport robot 10. After that, at time t2, which is a time within a predetermined period from time t1, the pair of left and right rear wheels RW get over the step 121 this time. vibration Vi2 is generated in the transfer robot 10 . Therefore, in the example shown in FIG. 4, the control device 11 determines that the transfer robot 10 has entered the room 120 at time t2. Here, as shown in FIG. 4, the second vibration Vi2 is substantially the same vibration as the first vibration Vi1.
 ところで、例えば、前輪FWが段差121を乗り越えた後で後輪RWが段差121を乗り越える前に、なんらかの理由により搬送ロボット10が後退し、再度、前輪FWが段差121を乗り越えるといったような事態が発生することも想定される。このような事態が発生した場合には、前輪FWが段差121を2回乗り越えることから、図4に示した第1の振動Vi1および第2の振動Vi2といったような略同一の振動が2回、搬送ロボット10に発生することになる。その結果、実際には部屋120に搬送ロボット10が進入していないにもかかわらず、部屋120に搬送ロボット10が進入したと誤検出されてしまう可能性がある。 By the way, for example, after the front wheels FW have crossed over the step 121 and before the rear wheels RW have crossed over the step 121, the transfer robot 10 retreats for some reason, and the front wheels FW get over the step 121 again. It is also assumed that When such a situation occurs, the front wheel FW runs over the step 121 twice, so that substantially the same vibration such as the first vibration Vi1 and the second vibration Vi2 shown in FIG. This will occur in the transfer robot 10 . As a result, it may be erroneously detected that the transfer robot 10 has entered the room 120 even though the transfer robot 10 has not actually entered the room 120 .
 そこで、このような誤検出が発生するのを抑制するために、制御装置11は、搬送ロボット10の移動状態(例えば、搬送ロボット10の移動速度の符号が「+(すなわち前進)」から「-(すなわち後退)」に変わったか、搬送ロボット10のギアポジションが「リバース」になったかなど)を監視し、その監視結果も参照して、特定領域に搬送ロボット10が進入したかを判断するようにしてもよい。これにより、特定領域に搬送ロボット10が進入したことを一層精度よく検出することが可能となる。 Therefore, in order to suppress the occurrence of such an erroneous detection, the control device 11 changes the movement state of the transport robot 10 (for example, the sign of the movement speed of the transport robot 10 from "+ (that is, moving forward)" to "-"). (i.e., backward)", or whether the gear position of the transfer robot 10 is changed to "reverse", etc.), and also refer to the monitoring result to determine whether the transfer robot 10 has entered a specific area. can be This makes it possible to more accurately detect that the transport robot 10 has entered the specific area.
<変形例>
 次に、前述した実施形態の変形例について説明する。前述した実施形態では、搬送ロボット10に発生した振動に基づき特定領域への搬送ロボット10の進入を検出するようにしたが、これに限らない。例えば、特定領域への進入時には、入口の段差を乗り越えるために、車輪WLには所定の荷重が入力されることが想定される。したがって、車輪WLに入力された荷重に基づき特定領域への搬送ロボット10の進入を検出するようにしてもよい。
<Modification>
Next, a modified example of the embodiment described above will be described. In the above-described embodiment, entry of the transport robot 10 into the specific area is detected based on vibration generated in the transport robot 10, but the present invention is not limited to this. For example, when entering a specific area, it is assumed that a predetermined load is input to the wheels WL in order to get over the step at the entrance. Therefore, the entry of the transfer robot 10 into the specific area may be detected based on the load input to the wheels WL.
 車輪WLに入力された荷重に基づき特定領域への搬送ロボット10の進入を検出する場合、例えば、センサ13として、車輪WL(例えば前輪FW)に入力された荷重を検出可能なセンサを設ける。この場合、センサ13は、車輪WLに入力された荷重をあらわす情報(以下、荷重情報ともいう)を含む検出情報を制御装置11へ出力する。そして、制御装置11の取得部20は、センサ13から制御装置11に対して出力された荷重情報を含む検出情報を取得し、判断部31は、特定領域に搬送ロボット10が進入したか否かを、前述した実施形態における振動情報に代えて、取得部20によって取得された荷重情報に基づき判断する。このように、振動情報に代えて、荷重情報に基づき特定領域に搬送ロボット10が進入したか否かを判断するようにした場合も、前述した実施形態と同様の効果を得ることができる。 When detecting the entry of the transfer robot 10 into a specific area based on the load input to the wheels WL, for example, a sensor capable of detecting the load input to the wheels WL (for example, the front wheels FW) is provided as the sensor 13. In this case, the sensor 13 outputs detection information including information representing the load input to the wheel WL (hereinafter also referred to as load information) to the control device 11 . Then, the acquisition unit 20 of the control device 11 acquires the detection information including the load information output from the sensor 13 to the control device 11, and the determination unit 31 determines whether or not the transport robot 10 has entered the specific area. is determined based on the load information acquired by the acquisition unit 20 instead of the vibration information in the above-described embodiment. Thus, even if it is determined whether or not the transport robot 10 has entered the specific area based on the load information instead of the vibration information, it is possible to obtain the same effect as the above-described embodiment.
 また、特定領域に搬送ロボット10が進入したか否かを荷重情報に基づき判断するように構成した際に、判断部31は、所定の荷重が車輪WLに入力されたことをあらわす荷重情報が取得された場合に、特定領域に搬送ロボット10が進入したと判断するようにしてもよい。これにより、外乱の影響により車輪WLに入力された小さな荷重に基づき、特定領域に搬送ロボット10が進入したと判断部31が誤って判断してしまうことを回避できる。したがって、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。 Further, when it is configured to determine whether or not the transport robot 10 has entered the specific area based on the load information, the determination unit 31 acquires load information indicating that a predetermined load has been input to the wheels WL. It may be determined that the transport robot 10 has entered the specific area when the transport robot 10 has entered the specific area. This prevents the determination unit 31 from erroneously determining that the transport robot 10 has entered the specific area based on the small load applied to the wheels WL due to the influence of the disturbance. Therefore, it is possible to accurately detect that the transport robot 10 has entered the specific area.
 また、特定領域に搬送ロボット10が進入したか否かを荷重情報に基づき判断するように構成した際に、判断部31は、荷重が車輪WLに入力されたことをあらわす荷重情報が複数回取得された場合に、特定領域に搬送ロボット10が進入したと判断するようにしてもよい。これにより、外乱の影響によりある程度大きな荷重が単発的に車輪WLに入力されたとしても、この荷重に基づき、特定領域に搬送ロボット10が進入したと判断部31が誤って判断してしまうことを回避できる。これにより、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。 Further, when it is configured to determine whether or not the transport robot 10 has entered the specific area based on the load information, the determination unit 31 acquires the load information indicating that the load has been input to the wheels WL a plurality of times. It may be determined that the transport robot 10 has entered the specific area when the transport robot 10 has entered the specific area. This prevents the determination unit 31 from erroneously determining that the transfer robot 10 has entered the specific area based on the load, even if a relatively large load is singly input to the wheels WL due to the influence of disturbance. can be avoided. This makes it possible to accurately detect that the transport robot 10 has entered the specific area.
 また、特定領域に搬送ロボット10が進入したか否かを荷重情報に基づき判断するように構成した際に、判断部31は、第1の荷重が車輪WLに入力されたことをあらわす荷重情報が取得された後に第1の荷重と略同一の第2の荷重が車輪WLに入力されたことをあらわす荷重情報が取得された場合に、特定領域に搬送ロボット10が進入したと判断してもよい。より詳述すると、判断部31は、第1の荷重が前輪FWに入力されたことをあらわす荷重情報が取得された後に第1の荷重と略同一の第2の荷重が後輪RWに入力されたことをあらわす荷重情報が取得された場合に、特定領域に搬送ロボット10が進入したと判断してもよい。 Further, when it is configured to determine whether or not the transfer robot 10 has entered the specific area based on the load information, the determination unit 31 determines that the load information indicating that the first load has been input to the wheels WL is It may be determined that the transport robot 10 has entered the specific area when load information indicating that a second load substantially the same as the first load has been input to the wheels WL is acquired after the acquisition. . More specifically, the determination unit 31 determines that a second load substantially the same as the first load is input to the rear wheels RW after load information indicating that the first load is input to the front wheels FW is acquired. It may be determined that the transport robot 10 has entered the specific area when load information indicating that the transport robot 10 has entered the specific area is obtained.
 すなわち、特定領域に搬送ロボット10が進入するために、前輪FWが乗り越える段差と、後輪RWが乗り越える段差とは同じものである。このため、前輪FWが段差を乗り越えるときに前輪FWに入力される荷重と、後輪RWが段差を乗り越えるときに後輪RWに入力される荷重とは、略同一の荷重となることが想定される。したがって、第1の荷重が前輪FWに入力されたことをあらわす荷重情報が取得された後に、第1の荷重と略同一の第2の荷重が後輪RWに入力されたことをあらわす荷重情報が取得された場合に、特定領域に搬送ロボット10が進入したと判断部31に判断させることで、特定領域に搬送ロボット10が進入したことを精度よく検出することが可能となる。なお、判断部31が、前輪FWに入力された荷重と後輪RWに入力された荷重とに基づき、特定領域に搬送ロボット10が進入したか否かを判断するためには、例えば、センサ13として、前輪FWに入力された荷重と、後輪RWに入力された荷重とのそれぞれを検出可能なセンサなどが必要となる点に留意されたい。 That is, in order for the transport robot 10 to enter the specific area, the steps that the front wheels FW get over and the steps that the rear wheels RW get over are the same. Therefore, it is assumed that the load input to the front wheels FW when the front wheels FW run over a bump and the load input to the rear wheels RW when the rear wheels RW run over a bump are substantially the same load. be. Therefore, after obtaining the load information indicating that the first load has been input to the front wheels FW, the load information indicating that the second load substantially identical to the first load has been input to the rear wheels RW is acquired. By having the determination unit 31 determine that the transport robot 10 has entered the specific area when the information is acquired, it is possible to accurately detect that the transport robot 10 has entered the specific area. In order for the determination unit 31 to determine whether or not the transfer robot 10 has entered the specific area based on the load input to the front wheels FW and the load input to the rear wheels RW, for example, the sensor 13 However, it should be noted that a sensor or the like capable of detecting the load applied to the front wheels FW and the load applied to the rear wheels RW is required.
 また、前述した実施形態では、本発明の位置推定装置の一例である制御装置11を搬送ロボット10に設けた例を説明したが、これに限らない。例えば、インターネットなどのネットワークを介して搬送ロボット10と通信可能なサーバ装置に、前述した制御装置11の一部あるいは全部の機能部を設けてもよい。このようにした場合、例えば、搬送ロボット10は、GNSS受信機12によって取得した位置情報、センサ13によって取得した検出情報などを、ネットワークを介して、制御装置11としてのサーバ装置へ送信する。そして、サーバ装置は、搬送ロボット10から受信したこれらの情報に基づき、前述した実施形態と同様に搬送ロボット10の位置を推定しつつ、搬送ロボット10に対して所定の指示を適宜送信することで、搬送ロボット10の移動を制御する。これにより、サーバ装置は、搬送ロボット10を適切に移動させ、前述した実施形態と同様に荷物の搬送を行わせることができる。 Also, in the above-described embodiment, an example in which the control device 11, which is an example of the position estimation device of the present invention, is provided in the transport robot 10 has been described, but the present invention is not limited to this. For example, a server device that can communicate with the transport robot 10 via a network such as the Internet may be provided with some or all of the functional units of the control device 11 described above. In this case, for example, the transport robot 10 transmits the position information acquired by the GNSS receiver 12, the detection information acquired by the sensor 13, and the like to the server device as the control device 11 via the network. Then, based on the information received from the transport robot 10, the server device estimates the position of the transport robot 10 in the same manner as in the above-described embodiment, and appropriately transmits a predetermined instruction to the transport robot 10. , controls the movement of the transport robot 10 . As a result, the server device can appropriately move the transport robot 10 to transport the package in the same manner as in the above-described embodiment.
 また、前述した実施形態で説明した位置推定方法は、あらかじめ用意されたプログラムをコンピュータで実行することにより実現できる。本位置推定プログラムは、メモリなどのコンピュータが読み取り可能な記憶媒体に記憶され、記録媒体から読み出されることによって実行される。また、本位置推定プログラムは、インターネットなどのネットワークを介して配布されるものであってもよい。 Also, the position estimation method described in the above embodiments can be realized by executing a prepared program on a computer. The position estimation program is stored in a computer-readable storage medium such as a memory and executed by being read from the storage medium. Also, the position estimation program may be distributed via a network such as the Internet.
 以上、本発明の各実施形態について説明したが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形や置換を加えることができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications and replacements can be made without departing from the gist of the present invention.
 例えば、前述した実施形態では、所定の作業領域内を自律移動する搬送ロボット10の位置を推定するようにしたが、本発明の適用対象はこれに限られない。すなわち、本発明によれば、車輪と駆動源とを備え、車輪のうちの駆動輪を駆動源が駆動することにより自律移動可能に構成された任意の移動体の位置を推定することが可能である。 For example, in the above-described embodiment, the position of the transport robot 10 that autonomously moves within a predetermined work area is estimated, but the application of the present invention is not limited to this. That is, according to the present invention, it is possible to estimate the position of an arbitrary mobile body that has wheels and a drive source and that is configured to be capable of autonomous movement by driving the drive wheels of the wheels with the drive source. be.
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素などを示しているが、これに限定されるものではない。 At least the following matters are described in this specification. In addition, although the parenthesis shows the components corresponding to the above-described embodiment, the present invention is not limited to this.
 (1) 車輪(車輪WL)と駆動源(モータMOT)とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体(搬送ロボット10)の位置を推定する位置推定装置(制御装置11)であって、
 前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得する取得部(取得部20)と、
 進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記取得部によって取得された検出情報に基づき判断する判断部(判断部31)と、
 前記判断部の判断結果に基づき前記移動体の位置を推定する推定部(推定部32)と、
 を備える、位置推定装置。
(1) A moving body (transport robot 10) which is provided with wheels (wheels WL) and a drive source (motor MOT), and which is capable of autonomous movement by driving the drive wheels of the wheels by the drive source. A position estimation device (control device 11) for estimating a position,
an acquisition unit (acquisition unit 20) for acquiring detection information representing the vibration generated in the moving object or the load input to the wheel;
Based on the detection information acquired by the acquisition unit, it is determined whether or not the moving body has entered a specific area in which the moving body can generate a predetermined vibration or a predetermined load can be applied to the wheels when the moving body enters the vehicle. a determination unit (determination unit 31);
an estimating unit (estimating unit 32) that estimates the position of the moving object based on the determination result of the determining unit;
A position estimator, comprising:
 (1)によれば、簡易な構成で、特定領域に移動体が進入したことを精度よく検出でき、適切な位置を移動体の位置として推定することを可能にする。 According to (1), it is possible to accurately detect that a moving body has entered a specific area with a simple configuration, and to estimate an appropriate position as the position of the moving body.
 (2) (1)に記載の位置推定装置であって、
 前記判断部は、前記所定の振動が前記移動体に発生したこと、又は前記所定の荷重が前記車輪に入力されたことをあらわす前記検出情報が取得された場合に、前記特定領域に前記移動体が進入したと判断する、
 位置推定装置。
(2) The position estimation device according to (1),
When the detection information indicating that the predetermined vibration is generated in the moving body or that the predetermined load is applied to the wheels is acquired, the determination unit moves the moving body to the specific area. determines that has entered
Position estimator.
 (2)によれば、外乱の影響などにより特定領域に移動体が進入したと判断部が誤って判断してしまうことを抑制でき、特定領域に移動体が進入したことを精度よく検出することが可能となる。 According to (2), it is possible to prevent the judging unit from erroneously judging that the moving body has entered the specific area due to the influence of disturbance or the like, and accurately detect that the moving body has entered the specific area. becomes possible.
 (3) (1)又は(2)に記載の位置推定装置であって、
 前記車輪は、前輪(前輪FW)と後輪(後輪RW)とを含み、
 前記判断部は、振動が前記移動体に発生したこと、又は荷重が前記車輪に入力されたことをあらわす前記検出情報が複数回取得された場合に、前記特定領域に前記移動体が進入したと判断する、
 位置推定装置。
(3) The position estimation device according to (1) or (2),
The wheels include a front wheel (front wheel FW) and a rear wheel (rear wheel RW),
The determination unit determines that the mobile body has entered the specific area when the detection information indicating that the vibration has occurred in the mobile body or that the load has been input to the wheels is acquired a plurality of times. to decide,
Position estimator.
 (3)によれば、特定領域に移動体が進入したことを精度よく検出することが可能となる。 According to (3), it is possible to accurately detect that a moving object has entered a specific area.
 (4) (3)に記載の位置推定装置であって、
 前記判断部は、第1の振動が前記移動体に発生したことをあらわす前記検出情報が取得された後に前記第1の振動と略同一の第2の振動が前記移動体に発生したことをあらわす前記検出情報が取得された場合、又は、第1の荷重が前記前輪に入力されたことをあらわす前記検出情報が取得された後に前記第1の荷重と略同一の第2の荷重が前記後輪に入力されたことをあらわす前記検出情報が取得された場合に、前記特定領域に前記移動体が進入したと判断する、
 位置推定装置。
(4) The position estimation device according to (3),
The determination unit indicates that a second vibration substantially identical to the first vibration has occurred in the moving body after the detection information indicating that the first vibration has occurred in the moving body is acquired. When the detection information is acquired, or after the detection information indicating that the first load is applied to the front wheels is acquired, a second load substantially the same as the first load is applied to the rear wheels. determining that the moving body has entered the specific area when the detection information indicating that the input has been obtained;
Position estimator.
 (4)によれば、外乱の影響などにより特定領域に移動体が進入したと判断部が誤って判断してしまうことを抑制でき、特定領域に移動体が進入したことを精度よく検出することが可能となる。 According to (4), it is possible to prevent the judging unit from erroneously judging that the moving body has entered the specific area due to the influence of disturbance or the like, and accurately detect that the moving body has entered the specific area. becomes possible.
 (5) (3)に記載の位置推定装置であって、
 前記判断部は、振動が前記移動体に発生したこと、又は荷重が前記車輪に入力されたことをあらわす前記検出情報が所定の期間に複数回取得された場合に、前記特定領域に前記移動体が進入したと判断する、
 位置推定装置。
(5) The position estimation device according to (3),
When the detection information indicating that a vibration has occurred in the moving body or that a load has been input to the wheels is obtained a plurality of times in a predetermined period, the determination unit determines that the moving body is placed in the specific area. determines that has entered
Position estimator.
 (5)によれば、外乱の影響などにより特定領域に移動体が進入したと判断部が誤って判断してしまうことを抑制でき、特定領域に移動体が進入したことを精度よく検出することが可能となる。 According to (5), it is possible to prevent the judging unit from erroneously judging that the moving body has entered the specific area due to the influence of disturbance or the like, and accurately detect that the moving body has entered the specific area. becomes possible.
 (6) (5)に記載の位置推定装置であって、
 前記所定の期間は、前記移動体の移動速度に応じた期間である、
 位置推定装置。
(6) The position estimation device according to (5),
The predetermined period is a period corresponding to the moving speed of the moving body,
Position estimator.
 (6)によれば、所定の期間を適切な長さの期間とすることができる。 According to (6), the predetermined period can be a period of appropriate length.
 (7) (1)から(6)のいずれかに記載の位置推定装置であって、
 前記判断部は、前記移動体が前記特定領域の付近に位置しているときに、前記特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断する、
 位置推定装置。
(7) The position estimation device according to any one of (1) to (6),
The determining unit determines whether or not the moving body has entered the specific area based on the detection information when the moving body is positioned near the specific area.
Position estimator.
 (7)によれば、特定領域から離れた位置で外乱の影響などにより移動体に振動が発生したり車輪に荷重が入力されたりしても、これらに基づき特定領域に移動体が進入したと判断部が誤って判断してしまうことを抑制でき、特定領域に移動体が進入したことを精度よく検出することが可能となる。 According to (7), even if the moving body vibrates due to the influence of disturbance or the load is input to the wheels at a position away from the specific area, it is determined that the moving body has entered the specific area based on these. It is possible to prevent the determination unit from making an erroneous determination, and to accurately detect that the moving object has entered the specific area.
 (8) 車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定するコンピュータが、
 前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得し、
 進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断し、
 前記判断の判断結果に基づき前記移動体の位置を推定する、
 処理を実行する、位置推定方法。
(8) A computer for estimating the position of a moving object that includes wheels and a drive source and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel,
determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters;
estimating the position of the mobile object based on the determination result of the determination;
The location estimation method that performs the processing.
 (8)によれば、簡易な構成で、特定領域に移動体が進入したことを精度よく検出でき、適切な位置を移動体の位置として推定することを可能にする。 According to (8), it is possible to accurately detect that a moving body has entered a specific area with a simple configuration, and to estimate an appropriate position as the position of the moving body.
 (9) 車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定するコンピュータに、
 前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得し、
 進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断し、
 前記判断の判断結果に基づき前記移動体の位置を推定する、
 処理を実行させる、位置推定プログラム。
(9) A computer for estimating the position of a moving object that includes wheels and a drive source, and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel,
determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters;
estimating the position of the mobile object based on the determination result of the determination;
A position estimation program that causes processing to be performed.
 (9)によれば、簡易な構成で、特定領域に移動体が進入したことを精度よく検出でき、適切な位置を移動体の位置として推定することを可能にする。 According to (9), it is possible to accurately detect that a moving body has entered a specific area with a simple configuration, and to estimate an appropriate position as the position of the moving body.
 10 搬送ロボット(移動体)
 11 制御装置(位置推定装置)
 20 取得部
 31 判断部
 32 推定部
 WL 車輪
 FW 前輪
 RW 後輪
 MOT モータ(駆動源)
 
10 transport robot (moving body)
11 control device (position estimation device)
20 acquisition unit 31 determination unit 32 estimation unit WL wheel FW front wheel RW rear wheel MOT motor (driving source)

Claims (9)

  1.  車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定する位置推定装置であって、
     前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得する取得部と、
     進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記取得部によって取得された検出情報に基づき判断する判断部と、
     前記判断部の判断結果に基づき前記移動体の位置を推定する推定部と、
     を備える、位置推定装置。
    A position estimating device that includes wheels and a drive source, and estimates the position of a moving body configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
    an acquisition unit that acquires detection information representing the vibration generated in the moving body or the load input to the wheel;
    Based on the detection information acquired by the acquisition unit, it is determined whether or not the moving body has entered a specific area in which the moving body can generate a predetermined vibration or a predetermined load can be applied to the wheels when the moving body enters the vehicle. a judgment unit;
    an estimating unit that estimates the position of the moving object based on the determination result of the determining unit;
    A position estimator, comprising:
  2.  請求項1に記載の位置推定装置であって、
     前記判断部は、前記所定の振動が前記移動体に発生したこと、又は前記所定の荷重が前記車輪に入力されたことをあらわす前記検出情報が取得された場合に、前記特定領域に前記移動体が進入したと判断する、
     位置推定装置。
    The position estimation device according to claim 1,
    When the detection information indicating that the predetermined vibration is generated in the moving body or that the predetermined load is applied to the wheels is acquired, the determination unit moves the moving body to the specific area. determines that has entered
    Position estimator.
  3.  請求項1又は2に記載の位置推定装置であって、
     前記車輪は、前輪と後輪とを含み、
     前記判断部は、振動が前記移動体に発生したこと、又は荷重が前記車輪に入力されたことをあらわす前記検出情報が複数回取得された場合に、前記特定領域に前記移動体が進入したと判断する、
     位置推定装置。
    The position estimation device according to claim 1 or 2,
    The wheels include front wheels and rear wheels,
    The determination unit determines that the mobile body has entered the specific area when the detection information indicating that the vibration has occurred in the mobile body or that the load has been input to the wheels is acquired a plurality of times. to decide,
    Position estimator.
  4.  請求項3に記載の位置推定装置であって、
     前記判断部は、第1の振動が前記移動体に発生したことをあらわす前記検出情報が取得された後に前記第1の振動と略同一の第2の振動が前記移動体に発生したことをあらわす前記検出情報が取得された場合、又は、第1の荷重が前記前輪に入力されたことをあらわす前記検出情報が取得された後に前記第1の荷重と略同一の第2の荷重が前記後輪に入力されたことをあらわす前記検出情報が取得された場合に、前記特定領域に前記移動体が進入したと判断する、
     位置推定装置。
    The position estimation device according to claim 3,
    The determination unit indicates that a second vibration substantially identical to the first vibration has occurred in the moving body after the detection information indicating that the first vibration has occurred in the moving body is acquired. When the detection information is acquired, or after the detection information indicating that the first load is applied to the front wheels is acquired, a second load substantially the same as the first load is applied to the rear wheels. determining that the moving body has entered the specific area when the detection information indicating that the input has been obtained;
    Position estimator.
  5.  請求項3に記載の位置推定装置であって、
     前記判断部は、振動が前記移動体に発生したこと、又は荷重が前記車輪に入力されたことをあらわす前記検出情報が所定の期間に複数回取得された場合に、前記特定領域に前記移動体が進入したと判断する、
     位置推定装置。
    The position estimation device according to claim 3,
    When the detection information indicating that a vibration has occurred in the moving body or that a load has been input to the wheels is obtained a plurality of times in a predetermined period, the determination unit determines that the moving body is placed in the specific area. determines that has entered
    Position estimator.
  6.  請求項5に記載の位置推定装置であって、
     前記所定の期間は、前記移動体の移動速度に応じた期間である、
     位置推定装置。
    The position estimation device according to claim 5,
    The predetermined period is a period corresponding to the moving speed of the moving body,
    Position estimator.
  7.  請求項1から6のいずれか1項に記載の位置推定装置であって、
     前記判断部は、前記移動体が前記特定領域の付近に位置しているときに、前記特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断する、
     位置推定装置。
    The position estimation device according to any one of claims 1 to 6,
    The determining unit determines whether or not the moving body has entered the specific area based on the detection information when the moving body is positioned near the specific area.
    Position estimator.
  8.  車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定するコンピュータが、
     前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得し、
     進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断し、
     前記判断の判断結果に基づき前記移動体の位置を推定する、
     処理を実行する、位置推定方法。
    A computer for estimating the position of a moving object that includes wheels and a drive source and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
    Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel,
    determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters;
    estimating the position of the mobile object based on the determination result of the determination;
    The location estimation method that performs the processing.
  9.  車輪と駆動源とを備え、前記車輪のうちの駆動輪を前記駆動源が駆動することにより自律移動可能に構成された移動体の位置を推定するコンピュータに、
     前記移動体に発生した振動又は前記車輪に入力された荷重をあらわす検出情報を取得し、
     進入時に前記移動体に所定の振動が発生し得る又は前記車輪に所定の荷重が入力され得る特定領域に前記移動体が進入したか否かを前記検出情報に基づき判断し、
     前記判断の判断結果に基づき前記移動体の位置を推定する、
     処理を実行させる、位置推定プログラム。
     
    A computer for estimating the position of a mobile body that includes wheels and a drive source, and is configured to be capable of autonomous movement by driving the drive wheels of the wheels by the drive source,
    Acquiring detection information representing the vibration generated in the moving body or the load input to the wheel,
    determining based on the detection information whether the moving body has entered a specific area in which a predetermined vibration may occur in the moving body or a predetermined load may be applied to the wheels when the moving body enters;
    estimating the position of the mobile object based on the determination result of the determination;
    A position estimation program that causes processing to be performed.
PCT/JP2021/027982 2021-07-28 2021-07-28 Position estimation device, position estimation method, and position estimation program WO2023007638A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027982 WO2023007638A1 (en) 2021-07-28 2021-07-28 Position estimation device, position estimation method, and position estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027982 WO2023007638A1 (en) 2021-07-28 2021-07-28 Position estimation device, position estimation method, and position estimation program

Publications (1)

Publication Number Publication Date
WO2023007638A1 true WO2023007638A1 (en) 2023-02-02

Family

ID=85087702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027982 WO2023007638A1 (en) 2021-07-28 2021-07-28 Position estimation device, position estimation method, and position estimation program

Country Status (1)

Country Link
WO (1) WO2023007638A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118798A (en) * 2010-12-01 2012-06-21 Nippon Soken Inc Driving support apparatus and driving support system
JP2020205044A (en) * 2019-06-17 2020-12-24 シーオス株式会社 Unmanned transportation vehicle and transportation operation method using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118798A (en) * 2010-12-01 2012-06-21 Nippon Soken Inc Driving support apparatus and driving support system
JP2020205044A (en) * 2019-06-17 2020-12-24 シーオス株式会社 Unmanned transportation vehicle and transportation operation method using same

Similar Documents

Publication Publication Date Title
CN106289275B (en) Unit and method for improving positioning accuracy
CN110031019B (en) Slip detection processing method for automatic driving vehicle
JP4781300B2 (en) Position detection apparatus and position detection method
US9183463B2 (en) Orientation model for a sensor system
WO2021057894A1 (en) Inertial navigation error correction method based on vehicle zero speed detection
US7860651B2 (en) Enhanced inertial system performance
US20170234988A1 (en) Bias and misalignment compensation for 6-dof imu using gnss/ins data
US20080195316A1 (en) System and method for motion estimation using vision sensors
CN106053879A (en) Fail operational vehicle speed estimation through data fusion
CN111854740B (en) Inertial navigation system capable of dead reckoning in a vehicle
CN103270543A (en) Driving assist device
US20190316914A1 (en) Speed-bump based localization enhancement
CN107076559B (en) Method and system for matching navigation systems
CN112572460A (en) Method and apparatus for estimating yaw rate with high accuracy, and storage medium
CN114670840A (en) Dead angle estimation device, vehicle travel system, and dead angle estimation method
WO2023007638A1 (en) Position estimation device, position estimation method, and position estimation program
JP6916705B2 (en) Self-driving vehicle position detector
CN113917512B (en) Positioning method and device for automatic driving vehicle, electronic equipment and storage medium
CN111982179B (en) Abnormality detection device, abnormality detection method, and computer-readable medium
CN114919590A (en) Method and device for determining speed of automatic driving vehicle, electronic equipment and storage medium
US20220342087A1 (en) Method for processing gps position signals in a vehicle
CN116182841A (en) Fusion type vehicle positioning method and system
CN113985466A (en) Combined navigation method and system based on pattern recognition
CN114902071A (en) Method for suppressing uncertainty measurement data of an environmental sensor
CN113280813A (en) Inertial measurement data compensation method and device based on neural network model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE