WO2023005877A1 - 一种液压支架智能供液泵站及控制方法 - Google Patents

一种液压支架智能供液泵站及控制方法 Download PDF

Info

Publication number
WO2023005877A1
WO2023005877A1 PCT/CN2022/107630 CN2022107630W WO2023005877A1 WO 2023005877 A1 WO2023005877 A1 WO 2023005877A1 CN 2022107630 W CN2022107630 W CN 2022107630W WO 2023005877 A1 WO2023005877 A1 WO 2023005877A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic support
pump
group
emulsion
flow
Prior art date
Application number
PCT/CN2022/107630
Other languages
English (en)
French (fr)
Inventor
曹超
赵继云
寇子明
吴娟
王浩
黄笛
王云飞
叶警涛
Original Assignee
中国矿业大学
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 太原理工大学 filed Critical 中国矿业大学
Publication of WO2023005877A1 publication Critical patent/WO2023005877A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/0004Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor along the working face
    • E21D23/0017Pile type supports
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/006Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor provided with essential hydraulic devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/006Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor provided with essential hydraulic devices
    • E21D23/0065Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor provided with essential hydraulic devices driven, or automatically, e.g. electrically-hydraulically controlled
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/16Hydraulic or pneumatic features, e.g. circuits, arrangement or adaptation of valves, setting or retracting devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/16Hydraulic or pneumatic features, e.g. circuits, arrangement or adaptation of valves, setting or retracting devices
    • E21D23/18Hydraulic or pneumatic features, e.g. circuits, arrangement or adaptation of valves, setting or retracting devices of advancing mechanisms
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/16Hydraulic or pneumatic features, e.g. circuits, arrangement or adaptation of valves, setting or retracting devices
    • E21D23/26Hydraulic or pneumatic control

Definitions

  • the invention relates to a hydraulic support intelligent liquid supply pump station and a control method, belonging to the field of mine equipment.
  • Shearer, hydraulic support and scraper conveyor are the three main equipments in fully mechanized coal mining face.
  • the hydraulic support and its liquid supply system can Whether it works stably and reliably is the key to efficient and safe production in coal mining face.
  • the current liquid supply system of the fully mechanized mining face in coal mines still has a multi-pump system that is difficult to quickly respond to the timely liquid demand of the support of the working face, and the system is simple.
  • the control mode causes the system pressure response to lag, the pressure shock is severe, and the long pipeline and complex and large system characteristics lead to serious pressure loss in the liquid supply system.
  • Emulsion pumping station is a device for delivering high-pressure emulsion for hydraulic supports.
  • the emulsion pump station of the hydraulic support mainly has the following problems: (1)
  • the existing liquid supply system uses frequency conversion to adjust the output flow of the emulsion pump.
  • the response speed of the high-power frequency conversion system is not fast enough, the flow control resolution is not high, and it cannot be accurately matched.
  • the invention provides an intelligent liquid supply pump station for a hydraulic support and a control method, which can continuously adjust the liquid supply volume of the emulsion pump station, dynamically and real-time match the liquid demand of the hydraulic support, and maintain the pressure stability of the hydraulic system.
  • a hydraulic support intelligent liquid supply pump station including a hydraulic support group, a small flow servo pump group and several groups of large flow frequency conversion pump groups;
  • the hydraulic support group includes several hydraulic supports arranged in parallel, and each hydraulic support is provided with an actuator;
  • One end of the small-flow servo pump group is connected to the emulsion tank, the other end of the small-flow servo pump group is connected to the hydraulic support group, several groups of large-flow frequency conversion pump groups are set in parallel, and one end of each group of large-flow variable frequency pump groups is connected to the hydraulic pressure
  • the bracket group is connected, and the other end of each group of high-flow frequency conversion pump group is connected with the emulsion tank;
  • the small flow servo pump set includes a servo motor, a first filter, a small flow pump, a first one-way valve and a first overflow valve, the small flow pump communicates with the servo motor and passes through the servo motor Driven, the inlet of the small flow pump communicates with the first filter, its outlet communicates with the inlet of the first overflow valve and the inlet of the first one-way valve respectively, and the outlet of the first overflow valve communicates with the emulsion tank;
  • the large-flow variable-frequency pump set includes a large-flow variable-frequency pump, a second filter, a second check valve, a second overflow valve, a frequency converter, an unloading valve group, and a third check valve , a pressure gauge and an accumulator
  • the high-flow variable-frequency pump includes a connected large-flow pump and a variable-frequency motor
  • the large-flow pump is driven by a variable-frequency motor
  • a frequency converter is installed on the variable-frequency motor
  • the inlet of the large-flow pump communicates with the second filter , the outlet of which communicates with the inlet of the second relief valve and the inlet of the second one-way valve respectively
  • the outlet of the second one-way valve communicates with the inlet of the third one-way valve through the unloading valve group
  • the third one-way valve The pressure gauge and the accumulator are connected in sequence, and the outlet of the second overflow valve is connected with the emulsion tank;
  • the actuator includes a pushing cylinder, which is connected with the scraper conveyor, and the coal shearer is erected on the scraper conveyor, and the pushing cylinder drives the hydraulic support to execute pushing the scraper conveyor, lowering frame, moving Rack and lifting operation;
  • a control method based on the intelligent liquid supply pump station of the hydraulic support specifically comprising the following steps:
  • Step S1 According to the displacement signal of the displacement sensor installed on each hydraulic support push cylinder, obtain the position of the hydraulic support that is working;
  • Step S2 Based on the acquired position of the working hydraulic support, combined with the periodic working process of the hydraulic support, estimate the working start time of the next hydraulic support;
  • Step S3 According to the position of the emulsion pump station and the position of the hydraulic support to be performed, calculate the relative position of the hydraulic support to be performed and the emulsion pump station;
  • Step S4 Combining the speed of each hydraulic support and the coal shearer to determine the action sequence and duration of the hydraulic support actuator, and calculate the pressure loss and residence time of the power transmission from the pump station to the upcoming action actuator;
  • Step S5 Based on the liquid demand of the emulsion of the hydraulic support to be executed in the last working cycle, predict the liquid demand of the emulsion of the hydraulic support to be executed and the start time of liquid supply, and establish the liquid supply model of the emulsion pump station;
  • Step S6 According to the emulsion volume predicted by the emulsion pump station liquid supply model, judge the emulsion volume demand, control the opening and closing of the small flow servo pump group and several groups of large flow frequency conversion pump groups, and control the emulsion supply volume of the emulsion pump station Perform dynamic control;
  • step S6 if it is predicted that the liquid demand of the hydraulic support group is small, only the servo motor of the small flow servo pump group is started, and the servo motor drives the small flow pump to provide emulsion for the hydraulic support;
  • step S6 if it is predicted that the hydraulic support group needs a large-flow emulsion, simultaneously start the variable-frequency motors of the first group of large-flow variable-frequency pumps and the servo motors of the small-flow servo pumps, and turn on the matching of the first group of large-flow variable-frequency pumps.
  • the unloading valve group, the large flow pump in the first group of large flow frequency conversion pump group re-delivers the emulsion pumped from the emulsion tank to the emulsion tank, and the small flow pump pumps the emulsion from the emulsion tank to supply to the hydraulic pressure bracket;
  • variable frequency motors of the first group of large flow frequency conversion pumps reach a stable operating frequency
  • the unloading valve group is closed, and the large flow pumps of the first group of large flow variable frequency pumps and the small flow pumps of the small flow servo pumps are fed from the emulsion simultaneously.
  • the emulsion is pumped out of the tank and supplied to the hydraulic support;
  • the large flow pump of the large flow frequency conversion pump group and the small flow pump of the small flow servo pump group pump out the emulsion from the emulsion tank and supply it to the hydraulic support
  • the liquid demand of the hydraulic support Small-scale fluctuations occur, adjust the servo motor in the small-flow servo pump group, thereby changing the liquid supply volume of the small-flow pump, and obtaining the liquid demand matched by the hydraulic support
  • the hydraulic pump of the first group of large-flow variable-frequency pumps supply liquid stably, continue to start the second group of large-flow variable-frequency pumps, the third group of large-volume variable-frequency pumps, and the first Several groups of large-scale variable-frequency pumps gradually realize the increase of liquid supply;
  • step S5 according to the predicted action of the hydraulic support fed back by the displacement sensor of the push cylinder, the time deviation of the actual action, and the amount of emulsion required for the next working cycle of the corresponding hydraulic support, it is revised to reduce the overall control Cumulative error in the method.
  • the present invention has the following beneficial effects:
  • the hydraulic support intelligent liquid supply pump station provided by the present invention can not only realize the continuous adjustment of the hydraulic support and the emulsion pump station, but also solve the unstable liquid supply and response during the start-up process of the large flow pump when controlling it Low speed and other problems, to avoid the waste caused by turning on the large flow pump when the liquid required by the bracket is small;
  • the present invention predicts the amount of emulsion required by the hydraulic support in advance by establishing a real-time liquid supply model of the hydraulic system of the hydraulic support in the emulsion pump station of a working cycle, predicts and controls the supply of the emulsion pump station, and reduces the system delay time to stabilize the system pressure;
  • the present invention uses the displacement sensor in the hydraulic support to push the oil cylinder, real-time feedback and monitoring the operation process of the hydraulic support, according to the periodic characteristics of the hydraulic support's time-sharing action, dynamically predicts the liquid demand of the hydraulic support, and controls the intelligent liquid supply of the hydraulic support in advance
  • the liquid supply volume of each pump in the pumping station ensures that the long-distance power transmission to the hydraulic support can meet the work needs in time, thereby stabilizing the pressure of the hydraulic support liquid supply pumping station, avoiding severe impact, and eliminating the friction during the long-distance power transmission of the hydraulic support. Pressure response hysteresis.
  • Fig. 1 is the schematic diagram of the structural system of the hydraulic support intelligent liquid supply pump station provided by the present invention
  • Fig. 2 is the hydraulic principle diagram of the hydraulic support intelligent liquid supply pump station provided by the present invention.
  • Fig. 3 is a side view of the hydraulic support provided by the present invention in groups
  • Fig. 4 is the top view of the scraper conveyor in the coal mining face provided by the present invention, which is ready to push and slide in groups;
  • Fig. 5 is a top view of the scraper conveyors on the coal mining face provided by the present invention pushing and sliding in groups;
  • Fig. 6 is a flow chart for predicting the amount of liquid required for the emulsion when the hydraulic support provided by the present invention is working;
  • Fig. 7 is a block diagram of the control structure of the hydraulic support provided by the present invention.
  • 1 is the servo motor
  • 2 is the first filter
  • 3 is the small flow pump
  • 4 is the first one-way valve
  • 5 is the first overflow valve
  • 6 is the frequency conversion motor
  • 7 is the frequency converter
  • 8 is the second Two filters
  • 9 is the large flow pump
  • 10 is the second overflow valve
  • 11 is the emulsion tank
  • 12 is the second one-way valve
  • 13 is the unloading valve group
  • 14 is the third one-way valve
  • 15 is the pressure
  • 16 is an accumulator
  • 17 is a coal area
  • 18 is a scraper conveyor
  • 19 is a hydraulic support
  • 20 is a shearer
  • 21 is a displacement sensor.
  • FIG. 1 shows the schematic diagram of the whole structure system of the liquid pumping station.
  • the application mainly includes a hydraulic support group, a small flow servo pump group and several groups of large flow variable frequency pump groups; said hydraulic supports 19 are arranged in parallel, and each hydraulic support 19 is provided with an actuator , here, the executive mechanism includes a pushing cylinder, which is connected with the scraper conveyor 18, and the coal mining machine 20 rides on the scraping conveyor 18, and the coal mining machine 20 is located at the coal mining face of the mining area 17; it needs to be explained Yes, the actuator of the hydraulic support 19 actually includes structures such as a column, a column cylinder for driving the column, and a pushing jack, etc.
  • the pushing cylinder is used emphatically, so other structures will not be described in detail.
  • each group of hydraulic supports 19 includes several hydraulic supports 19 arranged in parallel.
  • three The hydraulic supports 19 are displayed in groups.
  • Fig. 3 is a side view of the hydraulic supports 19 being pushed (moving the scraper conveyor).
  • the fourth, fifth and sixth hydraulic supports 19 are in progress Pushing (moving scraper conveyor), the seventh, eighth and ninth hydraulic supports 19 are ready to push (moving scraper conveyor), the fourth, fifth and sixth are shown in Figure 5
  • the hydraulic support 19 has finished pushing away (moving the scraper conveyor), and the seventh, eighth and ninth hydraulic supports 19 are pushing away (moving the scraper conveyor).
  • the matching liquid supply is the small flow servo pump group and several groups of large flow frequency conversion pump groups; as shown in Figure 1 in the embodiment, the small flow rate One end of the servo pump group is connected to the emulsion tank 11, the other end of the small flow servo pump group is connected to the hydraulic support group 19, several groups of large flow frequency conversion pump groups are arranged in parallel, and one end of each group of large flow frequency conversion pump groups is connected to the hydraulic pressure
  • the brackets 19 are connected in groups, and the other end of each group of large-flow frequency conversion pump groups is connected with the emulsion tank 11.
  • the small flow servo pump group includes a servo motor 1, a first filter 2, a small flow pump 3, a first one-way valve 4 and a first overflow valve 5, and the small flow pump 3 communicates with the servo motor 1 and Driven by the servo motor 1, the inlet of the small flow pump 3 communicates with the first filter 2, and its outlet communicates with the inlet of the first overflow valve 5 and the inlet of the first one-way valve 4 respectively, and the inlet of the first overflow valve 5 The outlet communicates with the emulsion tank 11.
  • the large-flow frequency conversion pump set includes a large-flow frequency conversion pump, a second filter 8, a second check valve 12, a second overflow valve 10, a frequency converter 7, an unloading valve group 13, a third check valve 14, and a pressure gauge 15 and an accumulator 16,
  • the large flow variable frequency pump includes a connected large flow pump 9 and a variable frequency motor 6, the large flow pump 9 is driven by a variable frequency motor 6, a frequency converter 7 is installed on the variable frequency motor 6, and the entrance of the large flow pump 9 It communicates with the second filter 8, and its outlet communicates with the inlet of the second overflow valve 10 and the inlet of the second one-way valve 12 respectively, and the outlet of the second one-way valve 12 connects with the third one-way valve through the unloading valve group 13
  • the inlet of the valve 14 is connected, and the pressure gauge 15 and the accumulator 16 are also connected in sequence on the third one-way valve 14 , and the outlet of the second overflow valve 10 is connected with the emulsion tank 11 .
  • the frequency conversion motor 6 and the servo motor 1 of the small-flow servo pump set open the unloading valve group 13 matched with the first group of large-flow variable-frequency pump sets.
  • the unloading valve group 13 includes multiple unloading valves.
  • the unloading function is carried out, that is, the large flow pump 9 in the first group of large flow frequency conversion pumps retransmits the emulsion pumped out of the emulsion tank 11 to the emulsion tank 11, and only the small flow pump 3 pumps the emulsion from the emulsion tank 11.
  • the large-flow pump 9 of the large-flow frequency conversion pump group and the small-flow pump 3 of the small-flow servo pump group pump out the emulsion from the emulsion tank 11 and supply it to the hydraulic support 19, when the liquid demand of the hydraulic support 19 Small-scale fluctuations occur, adjust the servo motor 1 in the small-flow servo pump group, thereby changing the liquid supply volume of the small-flow pump 3, and obtaining the matching liquid demand of the hydraulic support 19.
  • this application includes several groups of large-flow variable-frequency pump groups.
  • the first group of large-flow variable-frequency pump groups After the high-flow pump 9 stably supplies liquid, continue to start the second group of large-flow variable-frequency pump groups, the third group of large-scale flow variable-frequency pump groups, and the first several groups of large-scale flow variable-frequency pump groups.
  • the pumps 9 are all in a stable liquid supply state, and gradually realize the increase of the liquid supply volume.
  • the so-called liquid supply demand of the hydraulic support 19 needs to be predicted in advance, not only to obtain the most accurate liquid demand, but also because the hydraulic support 19 needs to keep the system pressure basically stable during the working process, but due to the complex and changeable downhole environment, Moreover, the hydraulic pipeline is long, so it is difficult to control the start and stop of the emulsion pump station in time to supply liquid to the system so that the system pressure is basically in a stable state. For example, when it is detected that the pressure of the hydraulic support 19 system is low and the emulsion is needed, the signal is transmitted to the controller of the frequency converter 7, and the large flow pump 9 is turned on to output the emulsion, and the emulsion is transported to the hydraulic support 19 through a long pipeline. The response delay time is long, which seriously affects the control performance of the system, and it is difficult to keep the system pressure in a basically constant state.
  • the emulsion liquid supply of the emulsion pump station also has a latent period characteristic, that is, the same hydraulic support
  • the system pressure fluctuation characteristics and the liquid supply characteristics of the emulsion pump station are basically the same when the scraper conveyor 18, the lifting column and the frame are moved twice before and after 19; and because the geological conditions around the two working cycles before and after the hydraulic support 19 are different and The length of the pipeline changes, resulting in differences in the system pressure fluctuation characteristics and the liquid supply characteristics of the emulsion pump station during the two forward and backward pushes of the same hydraulic support 19 by the scraper conveyor 18, lifting frame and moving frame, but the adjacent two This difference in period is small.
  • Step S1 According to the displacement signals of the displacement sensors 21 installed on the hydraulic cylinders of each hydraulic support 19, obtain the work being performed. The position of the hydraulic support 19;
  • Step S2 Based on the acquired position of the hydraulic support 19 that is currently working, and in combination with the periodic working process of the hydraulic support 19, estimate the working start time of the next hydraulic support 19;
  • Step S3 According to the position of the emulsion pumping station and the position of the hydraulic support 19 about to perform work, calculate the relative position of the hydraulic support 19 about to perform work and the emulsion pumping station;
  • Step S4 Combining the speeds of each hydraulic support 19 and coal shearer 20 to determine the action sequence and duration of the actuators of the hydraulic supports 19, and calculate the pressure loss and residence time of the power transmission from the pump station to the actuators to be executed;
  • Step S5 Based on the fluid demand of the hydraulic support 19 that is about to act in the last working cycle, predict the liquid demand for the emulsion of the hydraulic support 19 that is about to act and the start time of the liquid supply, and establish a liquid supply model for the emulsion pumping station.
  • the hydraulic support intelligent liquid supply pump station provided by this application can provide emulsion when small-flow actuators such as side guard cylinders and balance cylinders are working without turning on large-flow frequency conversion pumps; secondly, it can solve the problem of frequency conversion Pressure fluctuations and shocks caused by low-frequency instability when the motor is turned on; in addition, by establishing a real-time liquid supply model of the hydraulic system of the support in a working cycle, the real-time required emulsion volume of the hydraulic support can be predicted in advance, and the emulsion can be predicted and controlled The liquid supply of the pump station is continuously adjusted to match the liquid demand of the hydraulic support in real time to ensure the reliable operation of the hydraulic support.
  • connection in this application may be a direct connection between components or an indirect connection between components through other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种液压支架智能供液泵站,包括液压支架组、小流量伺服泵组、多个组大流量变频泵组、多个并联设置的液压支架(19),每个液压支架(19)均设置执行机构;执行机构包括推移油缸,推移油缸与刮板输送机(18)相连,采煤机(20)骑行在刮板输送机(18)上,采煤机(20)位于回采区(17)的采煤工作面;还公开了液压支架智能供液泵站的控制方法;能够避免剧烈冲击,消除液压支架动力长距离传递过程中的压力响应滞后效应。

Description

一种液压支架智能供液泵站及控制方法
技术领域
本发明涉及一种液压支架智能供液泵站及控制方法,属于矿山装备领域。
背景技术
当前,我国煤炭综合机械化生产正从自动化向智能化方向发展。采煤机、液压支架、刮板输送机是煤矿综采工作面的三个主要设备,工作面支架群与采煤机、刮板输送机精稳协同工作中,液压支架及其供液系统能否稳定可靠工作是采煤工作面高效安全生产的关键。面对如此大规模的系统和复杂多变载荷工况,当前煤矿井下综采工作面供液系统还存在多泵系统供液难以快速响应工作面支架及时用液需要,系统简单的开关式稳压控制模式导致系统压力响应滞后、压力冲击剧烈,长管路和复杂大系统特征导致供液系统压力损失严重等问题。
乳化液泵站是为液压支架输送高压乳化液的设备。当前,液压支架的乳化液泵站主要存在以下问题:⑴现有供液系统利用变频调节乳化液泵输出流量大小,大功率变频系统响应速度不够迅速,流量控制分辨率不高,无法准确匹配工作面的实时用液需求,导致系统压力冲击剧烈,系统元件损害严重;⑵当液压支架的护帮板油缸、平衡油缸等小流量执行机构工作时,仍需开启变频电机带动大流量泵工作,造成大量的乳化液通过溢流阀溢流,浪费能量;⑶泵站和工作面液压支架之间采用长管路供液,再加之工作面多变的负载特性,使供液系统难以准确及时获得载荷变化及实时需求信息,存在供液系统的流量压力输出控制滞后液压支架实际工作动力需求这一突出问题,严重影响工作面设备的协同工作。
因此亟需提供一种关于液压支架的智能供液泵站以及控制方法,能够在护帮板油缸、平衡油缸等小流量执行机构工作时提供乳化液,而无需开启大流量变频泵;其次,能够解决变频电机开启时因低频不稳定性造成的压力波动和冲击;此外还尽量可以提前预测液压支架实时所需乳化液量,以保障液压支架的稳定工作。
发明内容
本发明提供一种液压支架智能供液泵站及控制方法,能够连续调节乳化液泵站的供液量,动态实时匹配液压支架的需液量,维持液压系统压力稳定。
本发明解决其技术问题所采用的技术方案是:
一种液压支架智能供液泵站,包括液压支架组、小流量伺服泵组以及若干组大流量变频泵 组;
所述液压支架组包括若干并联设置的液压支架,每个液压支架均设置执行机构;
小流量伺服泵组的一端与乳化液箱连通,小流量伺服泵组的另一端与液压支架组连通,若干组大流量变频泵组并联设置,每组大流量变频泵组汇集后的一端与液压支架组连通,每组大流量变频泵组的另一端与乳化液箱连通;
作为本发明的进一步优选,所述小流量伺服泵组包括伺服电机、第一过滤器、小流量泵、第一单向阀以及第一溢流阀,小流量泵与伺服电机连通且通过伺服电机驱动,小流量泵的入口与第一过滤器连通,其出口分别与第一溢流阀的入口、第一单向阀的入口连通,第一溢流阀的出口与乳化液箱连通;
作为本发明的进一步优选,所述大流量变频泵组包括大流量变频泵、第二过滤器、第二单向阀、第二溢流阀、变频器、卸荷阀组、第三单向阀、压力表以及蓄能器,所述大流量变频泵包括连通的大流量泵和变频电机,大流量泵通过变频电机驱动,变频电机上安装变频器,大流量泵的入口与第二过滤器连通,其出口分别与第二溢流阀的入口、第二单向阀的入口连通,第二单向阀的出口通过卸荷阀组与第三单向阀的入口连通,在第三单向阀上还顺次连通压力表和蓄能器,所述第二溢流阀的出口与乳化液箱连通;
作为本发明的进一步优选,所述执行机构包括推移油缸,推移油缸与刮板输送机相连,在刮板输送机上架设采煤机,推移油缸驱动液压支架执行推移刮板输送机、降架、移架以及升架操作;
在推移油缸上安装位移传感器;
一种基于所述液压支架智能供液泵站的控制方法,具体包括以下步骤:
步骤S1:依据各液压支架推移油缸上安装的位移传感器的位移信号,获取正在执行工作的液压支架位置;
步骤S2:通过获取的正在执行工作液压支架的位置,结合液压支架周期性的工作过程,推测下一台液压支架的工作起始时刻;
步骤S3:根据乳化液泵站的位置结合即将执行工作的液压支架的位置,计算出即将执行工作的液压支架与乳化液泵站的相对位置;
步骤S4:结合各个液压支架与采煤机的速度确定液压支架执行机构的动作顺序和时长,计算出动力传递从泵站到即将执行动作执行机构的压力损失和滞留时间;
步骤S5:结合即将执行动作的液压支架上个工作周期乳化液需液量,预测即将执行动作的液压支架乳化液需液量及供液起始时间,建立乳化液泵站供液模型;
步骤S6:依据乳化液泵站供液模型预测的乳化液量,判断乳化液量需求,控制小流量伺服泵组以及若干组大流量变频泵组的启闭,对乳化液泵站的供液量进行动态控制;
作为本发明的进一步优选,
步骤S6中,若预测到液压支架组的需液量小,仅启动小流量伺服泵组的伺服电机,伺服电机带动小流量泵为液压支架提供乳化液;
作为本发明的进一步优选,
步骤S6中,若预测到液压支架组需要大流量乳化液时,同时启动第一组大流量变频泵组的变频电机和小流量伺服泵组的伺服电机,打开第一组大流量变频泵组匹配的卸荷阀组,第一组大流量变频泵组内的大流量泵将乳化液箱泵出的乳化液重新输送至乳化液箱,小流量泵从乳化液箱中泵出乳化液供应至液压支架;
当第一组大流量变频泵组的变频电机达到稳定工作频率后,关闭卸荷阀组,第一组大流量变频泵组的大流量泵以及小流量伺服泵组的小流量泵同时从乳化液箱泵出乳化液供应至液压支架;
作为本发明的进一步优选,在大流量变频泵组的大流量泵以及小流量伺服泵组的小流量泵由乳化液箱泵出乳化液供应至液压支架的过程中,当液压支架的需液量发生小范围波动,调节小流量伺服泵组中的伺服电机,从而改变小流量泵的供液量,获取液压支架匹配的需液量;作为本发明的进一步优选,当预测到液压支架组需液量进一步提高时,基于步骤S6的步骤,在第一组大流量变频泵组的大流量泵稳定供液后,继续启动第二组大流量变频泵组、第三组大量流变频泵组以及第若干组大量流变频泵组,逐渐实现供液量的增大;
作为本发明的进一步优选,步骤S5中,根据推移油缸的位移传感器反馈液压支架的预测动作、实际动作的时间偏差以及对应液压支架下一个工作周期所需要的乳化液量进行修订,减小整个控制方法中的累积误差。
通过以上技术方案,相对于现有技术,本发明具有以下有益效果:
1、本发明提供的液压支架智能供液泵站不仅可以实现液压支架以及乳化液泵站的连续调节,在对其进行控制时,还能解决大流量泵启动过程中的不稳定供液和响应速度低等问题,避免支架需液量小时开启大流量泵造成的浪费;
2、本发明通过建立液压支架的液压系统在一个工作循环的乳化液泵站实时供液量模型,提前预测液压支架所需要的乳化液量,预测控制乳化液泵站的供液量,减少系统的延迟时间,稳定系统压力;
3、本发明利用液压支架推移油缸中的位移传感器,实时反馈和监测液压支架的运行过程, 依照液压支架分时动作的周期特性,动态预测液压支架的需液量,提前控制液压支架智能供液泵站中各泵的供液量,保证动力长距离传输到液压支架后能够及时满足工作需要,从而稳定液压支架供液泵站的压力,避免剧烈冲击,消除液压支架动力长距离传递过程中的压力响应滞后效应。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明提供的液压支架智能供液泵站的结构系统示意图;
图2是本发明提供的液压支架智能供液泵站液压原理图;
图3是本发明提供的液压支架成组推移过程的侧视图;
图4是本发明提供的采煤工作面刮板输送机准备成组推溜的俯视图;
图5是本发明提供的采煤工作面刮板输送机成组推溜完成的俯视图;
图6是本发明提供的液压支架工作时乳化液需液量的预测流程图;
图7是本发明提供的液压支架的控制结构框图。
图中:1为伺服电机,2为第一过滤器,3为小流量泵,4为第一单向阀,5为第一溢流阀,6为变频电机,7为变频器,8为第二过滤器,9为大流量泵,10为第二溢流阀,11为乳化液箱,12为第二单向阀,13为卸荷阀组,14为第三单向阀,15为压力表,16为蓄能器,17为煤区,18为刮板输送机,19为液压支架,20为采煤机,21为位移传感器。
具体实施方式
现在结合附图对本发明作进一步详细的说明。本申请的描述中,需要理解的是,术语“左侧”、“右侧”、“上部”、“下部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本发明的限制。本实施例中采用的具体尺寸只是为了举例说明技术方案,并不限制本发明的保护范围。
为了解决目前乳化液泵站无法准确匹配煤区工作面实时用液需求,同时因为无法实时匹配用液需求导致的执行机构能量浪费或者输出控制滞后等问题,本申请提供了一种液压支架智能供液泵站,图1给出了其整个结构系统的原理示意图。
从图1中可以看出,本申请主要包括液压支架组、小流量伺服泵组以及若干组大流量变频泵组;所述包括若干并联设置的液压支架19,每个液压支架19均设置执行机构,这里,执行机构包括推移油缸,推移油缸与刮板输送机18相连,采煤机20骑行在刮板输送机 18上,采煤机20位于回采区17的采煤工作面;需要说明的是,液压支架19的执行机构其实还包括如立柱、驱动立柱的立柱油缸、推移千斤顶等等结构,这里着重使用到的是推移油缸,因此其他结构不做赘述。
在对智能供液泵站进行具体阐述前,申请人对液压支架19通过执行机构实现的一个工作过程做一个解释,即为液压支架19的立柱油缸收回完成降架过程,推移油缸拉液压支架19向回采区17的采煤工作面方向移动完成移架动作,立柱油缸伸出完成升架过程,液压支架19的推移油缸推动刮板输送机18向采煤工作面方向移动这个四个过程,这四个过程不断循环动作使得采煤工作面不断向前推进。而液压支架19的推移油缸具体推移过程,为了提高移动液压支架19的效率,常常成组动作,每组液压支架19如前述指出的,包括若干并联设置的液压支架19,在实施例中以三台液压支架19成组动作进行展示,图3是液压支架19正在进行推溜(推移刮板输送机)的侧视图,图4中第四台、第五台以及第六台液压支架19正在进行推溜(推移刮板输送机),第七台、第八台以及第九台液压支架19准备推溜(推移刮板输送机),图5中显示第四台、第五台以及第六台液压支架19已经完成推溜(推移刮板输送机),第七台、第八台以及第九台液压支架19正在推溜(推移刮板输送机)。
接着,需要对液压支架19进行匹配供液,以完成上述工作周期,实现匹配供液的即为小流量伺服泵组以及若干组大流量变频泵组;实施例中如图1所示,小流量伺服泵组的一端与乳化液箱11连通,小流量伺服泵组的另一端与液压支架19组连通,若干组大流量变频泵组并联设置,每组大流量变频泵组汇集后的一端与液压支架19组连通,每组大流量变频泵组的另一端与乳化液箱11连通。图2所示,小流量伺服泵组包括伺服电机1、第一过滤器2、小流量泵3、第一单向阀4以及第一溢流阀5,小流量泵3与伺服电机1连通且通过伺服电机1驱动,小流量泵3的入口与第一过滤器2连通,其出口分别与第一溢流阀5的入口、第一单向阀4的入口连通,第一溢流阀5的出口与乳化液箱11连通。大流量变频泵组包括大流量变频泵、第二过滤器8、第二单向阀12、第二溢流阀10、变频器7、卸荷阀组13、第三单向阀14、压力表15以及蓄能器16,所述大流量变频泵包括连通的大流量泵9和变频电机6,大流量泵9通过变频电机6驱动,变频电机6上安装变频器7,大流量泵9的入口与第二过滤器8连通,其出口分别与第二溢流阀10的入口、第二单向阀12的入口连通,第二单向阀12的出口通过卸荷阀组13与第三单向阀14的入口连通,在第三单向阀14上还顺次连通压力表15和蓄能器16,所述第二溢流阀10的出口与乳化液箱11连通。
在对液压支架19进行供液时需要针对不同需求量进行相应操作,通常有以下几种需求,第一种,若液压支架需要大流量乳化液时,同时启动第一组大流量变频泵组的变频电机 6和小流量伺服泵组的伺服电机1,打开第一组大流量变频泵组匹配的卸荷阀组13,卸荷阀组13内包括多个卸荷阀,是对大流量泵9进行卸荷作用,即第一组大流量变频泵组内的大流量泵9将乳化液箱11泵出的乳化液重新输送至乳化液箱11,仅有小流量泵3从乳化液箱11中泵出乳化液供应至液压支架19;当第一组大流量变频泵组的变频电机6达到稳定工作频率后,关闭卸荷阀组13,第一组大流量变频泵组的大流量泵9以及小流量伺服泵组的小流量泵3(此时还需要降低小流量伺服泵的转速)同时从乳化液箱11泵出乳化液供应至液压支架19。当然,在大流量变频泵组的大流量泵9以及小流量伺服泵组的小流量泵3由乳化液箱11泵出乳化液供应至液压支架19的过程中,当液压支架19的需液量发生小范围波动,调节小流量伺服泵组中的伺服电机1,从而改变小流量泵3的供液量,获取液压支架19匹配的需液量。
第二种,若液压支架19组的需液量小,仅启动小流量伺服泵组的伺服电机1,伺服电机1带动小流量泵3为液压支架19提供乳化液。
在对液压支架19供液过程中,还存在一种需求,即需要更加多的乳化液,这里需要重点提出本申请包括若干组大流量变频泵组的原因,在第一组大流量变频泵组的大流量泵9稳定供液后,继续启动第二组大流量变频泵组、第三组大量流变频泵组以及第若干组大量流变频泵组,继续启动的前期均是前序的大流量泵9均处于稳定供液状态,逐渐实现供液量的增大。
所谓液压支架19的供液需求,需要提前进行预测,不仅可以获取最准确的需液量,还有是因为液压支架19工作过程中需要保持系统的压力基本稳定,但是由于井下环境复杂多变,而且液压管路较长,因此难以及时控制乳化液泵站的启停为系统供液使得系统压力基本处于稳定的状态。如当检测到液压支架19系统压力低需要乳化液时,信号传递到变频器7的控制器上,开启大流量泵9输出乳化液,乳化液再经长管路运输到液压支架19,该过程响应延迟时间长,严重影响到系统的控制性能,很难使系统压力处于基本恒定的状态。
而需要实现乳化液需液量的准确预测,就需要建立乳化液泵站供液模型,乳化液泵站供液模型的建立是基于液压支架19在工作过程中乳化液泵站供液量的潜周期特性,具体是因为液压支架19推移刮板输送机18、液压支架19降架、液压支架19移架和液压支架19升架为一个工作循环,液压支架19工作过程具有周期性,然而由于供液距离随需要动作的液压支架19位置的变化而变化,使得液压支架19的液压系统压力波动具有潜周期特性,因而乳化液泵站的乳化液供液量也存在潜周期特性,即同一液压支架19前后两次推移刮板输送机18、升降柱和移架过程中系统压力波动特性和乳化液泵站的供液量特性基本相同;又 因为液压支架19前后两个工作周期周围地质状况不同和管路长度发生改变,导致同一液压支架19前后两次推移刮板输送机18、升降架和移架过程中系统压力波动特性和乳化液泵站的供液量特性存在差别,但是相邻两种周期的该差别较小。
在实施例中,如图6所示,给出了建立乳化液泵站供液模型的具体过程,步骤S1:依据各液压支架19推移油缸上安装的位移传感器21的位移信号,获取正在执行工作的液压支架19位置;
步骤S2:通过获取的正在执行工作液压支架19的位置,结合液压支架19周期性的工作过程,推测下一台液压支架19的工作起始时刻;
步骤S3:根据乳化液泵站的位置结合即将执行工作的液压支架19的位置,计算出即将执行工作的液压支架19与乳化液泵站的相对位置;
步骤S4:结合各个液压支架19与采煤机20的速度确定液压支架19执行机构的动作顺序和时长,计算出动力传递从泵站到即将执行动作执行机构的压力损失和滞留时间;
步骤S5:结合即将执行动作的液压支架19上个工作周期乳化液需液量,预测即将执行动作的液压支架19乳化液需液量及供液起始时间,建立乳化液泵站供液模型。
最后,根据推移油缸的位移传感器21可以反馈液压支架19的预测动作以及实际动作的时间偏差,进而对应液压支架19下一个工作周期所需要的乳化液量进行修订,减小整个控制方法中的累积误差,此工作过程如图7所示。
综上可知,通过本申请提供的液压支架智能供液泵站,能够在护帮板油缸、平衡油缸等小流量执行机构工作时提供乳化液,而无需开启大流量变频泵;其次,能够解决变频电机开启时因低频不稳定性造成的压力波动和冲击;此外,通过建立支架液压系统在一个工作循环中的实时供液量模型,提前预测液压支架实时所需的乳化液量,预测控制乳化液泵站供液量连续调节,实时匹配液压支架的需液量,保障液压支架可靠工作。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
本申请中所述的“和/或”的含义指的是各自单独存在或两者同时存在的情况均包括在内。
本申请中所述的“连接”的含义可以是部件之间的直接连接也可以是部件间通过其它部件的间接连接。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种液压支架智能供液泵站,其特征在于:包括液压支架组、小流量伺服泵组以及若干组大流量变频泵组;
    所述液压支架组包括若干并联设置的液压支架(19),每个液压支架(19)均设置执行机构;小流量伺服泵组的一端与乳化液箱(11)连通,小流量伺服泵组的另一端与液压支架(19)组连通,若干组大流量变频泵组并联设置,每组大流量变频泵组汇集后的一端与液压支架(19)组连通,每组大流量变频泵组的另一端与乳化液箱(11)连通。
  2. 根据权利要求1所述的液压支架智能供液泵站,其特征在于:所述小流量伺服泵组包括伺服电机(1)、第一过滤器(2)、小流量泵(3)、第一单向阀(4)以及第一溢流阀(5),小流量泵(3)与伺服电机(1)连通且通过伺服电机(1)驱动,小流量泵(3)的入口与第一过滤器(2)连通,其出口分别与第一溢流阀(5)的入口、第一单向阀(4)的入口连通,第一溢流阀(5)的出口与乳化液箱(11)连通。
  3. 根据权利要求1所述的液压支架智能供液泵站,其特征在于:所述大流量变频泵组包括大流量变频泵、第二过滤器(8)、第二单向阀(12)、第二溢流阀(10)、变频器(7)、卸荷阀组(13)、第三单向阀(14)、压力表(15)以及蓄能器(16),所述大流量变频泵包括连通的大流量泵(9)和变频电机(6),大流量泵(9)通过变频电机(6)驱动,变频电机(6)上安装变频器(7),大流量泵(9)的入口与第二过滤器(8)连通,其出口分别与第二溢流阀(10)的入口、第二单向阀(12)的入口连通,第二单向阀(12)的出口通过卸荷阀组(13)与第三单向阀(14)的入口连通,在第三单向阀(14)上还顺次连通压力表(15)和蓄能器(16),所述第二溢流阀(10)的出口与乳化液箱(11)连通。
  4. 根据权利要求1所述的液压支架智能供液泵站,其特征在于:所述执行机构包括推移油缸,推移油缸与刮板输送机(18)相连,在刮板输送机(18)上架设采煤机(20),推移油缸驱动液压支架(19)执行推移刮板输送机(18)、降架、移架以及升架操作;在推移油缸上安装位移传感器(21)。
  5. 一种基于权利要求1-4任一所述液压支架智能供液泵站的控制方法,其特征在于:具体包括以下步骤:
    步骤S1:依据各液压支架(19)推移油缸上安装的位移传感器(21)的位移信号,获取正在执行工作的液压支架(19)位置;
    步骤S2:通过获取的正在执行工作液压支架(19)的位置,结合液压支架(19)周期性的工作过程,推测下一台液压支架(19)的工作起始时刻;
    步骤S3:根据乳化液泵站的位置结合即将执行工作的液压支架(19)的位置,计算出即将 执行工作的液压支架(19)与乳化液泵站的相对位置;
    步骤S4:结合各个液压支架(19)与采煤机(20)的速度确定液压支架(19)执行机构的动作顺序和时长,计算出动力传递从泵站到即将执行动作执行机构的压力损失和滞留时间;
    步骤S5:结合即将执行动作的液压支架(19)上个工作周期乳化液需液量,预测即将执行动作的液压支架(19)乳化液需液量及供液起始时刻,建立乳化液泵站供液模型;
    步骤S6:依据乳化液泵站供液模型预测的乳化液量,判断乳化液量需求,控制小流量伺服泵组以及若干组大流量变频泵组的启闭,对乳化液泵站的供液量进行动态控制。
  6. 根据权利要求5所述液压支架智能供液泵站的控制方法,其特征在于:
    步骤S6中,若预测到液压支架组的需液量小,仅启动小流量伺服泵组的伺服电机(1),伺服电机(1)带动小流量泵(3)为液压支架(19)提供乳化液。
  7. 根据权利要求5所述液压支架智能供液泵站的控制方法,其特征在于:
    步骤S6中,若预测到液压支架组需要大流量乳化液时,同时启动第一组大流量变频泵组的变频电机(6)和小流量伺服泵组的伺服电机(1),打开第一组大流量变频泵组匹配的卸荷阀组(13),第一组大流量变频泵组内的大流量泵(9)将乳化液箱(11)泵出的乳化液重新输送至乳化液箱(11),小流量泵(3)从乳化液箱(11)中泵出乳化液供应至液压支架(19);
    当第一组大流量变频泵组的变频电机(6)达到稳定工作频率后,关闭卸荷阀组(13),第一组大流量变频泵组的大流量泵(9)以及小流量伺服泵组的小流量泵(3)同时从乳化液箱(11)泵出乳化液供应至液压支架(19)。
  8. 根据权利要求7所述液压支架智能供液泵站的控制方法,其特征在于:在大流量变频泵组的大流量泵(9)以及小流量伺服泵组的小流量泵(3)由乳化液箱(11)泵出乳化液供应至液压支架(19)的过程中,当液压支架(19)的需液量发生小范围波动,调节小流量伺服泵组中的伺服电机(1),从而改变小流量泵(3)的供液量,获取液压支架(19)匹配的需液量。
  9. 根据权利要求7所述液压支架智能供液泵站的控制方法,其特征在于:当预测到液压支架组需液量进一步提高时,基于步骤S6的步骤,在第一组大流量变频泵组的大流量泵(9)稳定供液后,继续启动第二组大流量变频泵组、第三组大量流变频泵组以及第若干组大量流变频泵组,逐渐实现供液量的增大。
  10. 根据权利要求5所述液压支架智能供液泵站的控制方法,其特征在于:步骤S5中,根据推移油缸的位移传感器(21)反馈液压支架(19)的预测动作、实际动作的时间偏差以及 对应液压支架(19)下一个工作周期所需要的乳化液量进行修订,减小整个控制方法中的累积误差。
PCT/CN2022/107630 2021-07-28 2022-07-25 一种液压支架智能供液泵站及控制方法 WO2023005877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110856913.3A CN113719306B (zh) 2021-07-28 2021-07-28 一种液压支架智能供液泵站及控制方法
CN202110856913.3 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023005877A1 true WO2023005877A1 (zh) 2023-02-02

Family

ID=78674153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107630 WO2023005877A1 (zh) 2021-07-28 2022-07-25 一种液压支架智能供液泵站及控制方法

Country Status (2)

Country Link
CN (1) CN113719306B (zh)
WO (1) WO2023005877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117743988A (zh) * 2024-02-20 2024-03-22 太原理工大学 液压支架初撑后承压状态的即时预测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113719306B (zh) * 2021-07-28 2022-05-06 中国矿业大学 一种液压支架智能供液泵站及控制方法
CN114810177A (zh) * 2022-04-29 2022-07-29 北京天玛智控科技股份有限公司 乳化液泵站的稳压供液控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043713A (ja) * 2008-08-18 2010-02-25 Caterpillar Japan Ltd 作業用機械における油圧ポンプの制御システム
CN106286438A (zh) * 2016-09-20 2017-01-04 山西汾西矿业(集团)有限责任公司 综采工作面乳化液泵恒压供液系统及其控制方法
CN108518243A (zh) * 2018-04-13 2018-09-11 北京天地玛珂电液控制系统有限公司 一种综采工作面智能供液方法及系统
CN110307193A (zh) * 2019-07-09 2019-10-08 中国矿业大学 一种大流量阀-泵联合控制乳化液泵站及其控制方法
US20200158143A1 (en) * 2017-06-14 2020-05-21 Kawasaki Jukogyo Kabushiki Kaisha Hydraulic system
CN113719306A (zh) * 2021-07-28 2021-11-30 中国矿业大学 一种液压支架智能供液泵站及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752757A (en) * 1948-10-06 1956-07-03 Joy Mfg Co Apparatus for mine roof control
CN104533478A (zh) * 2014-12-19 2015-04-22 郑州煤矿机械集团股份有限公司 用于采煤工作面回收乳化液的液压系统
CN106567870A (zh) * 2015-10-13 2017-04-19 哈尔滨市永恒鑫科技开发有限公司 一种高压大流量节能乳化液泵站集成系统
CN207093298U (zh) * 2017-08-08 2018-03-13 贵州盘江矿山机械有限公司 一种矿用节能乳化液泵站
CN210769590U (zh) * 2019-09-09 2020-06-16 霍州煤电集团吕临能化有限公司庞庞塔煤矿 一种煤矿综采面远距离恒压供液系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043713A (ja) * 2008-08-18 2010-02-25 Caterpillar Japan Ltd 作業用機械における油圧ポンプの制御システム
CN106286438A (zh) * 2016-09-20 2017-01-04 山西汾西矿业(集团)有限责任公司 综采工作面乳化液泵恒压供液系统及其控制方法
US20200158143A1 (en) * 2017-06-14 2020-05-21 Kawasaki Jukogyo Kabushiki Kaisha Hydraulic system
CN108518243A (zh) * 2018-04-13 2018-09-11 北京天地玛珂电液控制系统有限公司 一种综采工作面智能供液方法及系统
CN110307193A (zh) * 2019-07-09 2019-10-08 中国矿业大学 一种大流量阀-泵联合控制乳化液泵站及其控制方法
CN113719306A (zh) * 2021-07-28 2021-11-30 中国矿业大学 一种液压支架智能供液泵站及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117743988A (zh) * 2024-02-20 2024-03-22 太原理工大学 液压支架初撑后承压状态的即时预测方法
CN117743988B (zh) * 2024-02-20 2024-04-19 太原理工大学 液压支架初撑后承压状态的即时预测方法

Also Published As

Publication number Publication date
CN113719306A (zh) 2021-11-30
CN113719306B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023005877A1 (zh) 一种液压支架智能供液泵站及控制方法
WO2021004397A1 (zh) 一种大流量阀-泵联合控制乳化液泵站及其控制方法
CN101864965B (zh) 压力流量复合同步控制的节能型盾构推进系统
CN108383039B (zh) 一种节能型步进式升降机构液压控制系统
CN102278124B (zh) 盾构隧道掘进机节能液压推进系统
WO2023005878A1 (zh) 一种液压支架智能供液系统及工作方法
CN110424997B (zh) 预测工作面液压支架系统跟机速度及液压稳定性的方法
CN201581382U (zh) 一种电液比例控制活塞式双吊点液压启闭机
CN103643922A (zh) 一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法
CN201679504U (zh) 一种压力流量复合同步控制的节能型盾构推进系统
CN102650304A (zh) 基于比例阀控蓄能器调节偏载的液压同步驱动系统
CN104632794A (zh) 直驱式液压启闭机电液伺服系统
CN210769590U (zh) 一种煤矿综采面远距离恒压供液系统
CN202579384U (zh) 基于比例阀控蓄能器调节偏载的液压同步驱动系统
CN105437396A (zh) 密炼机泵控上顶栓液压系统
CN105351293A (zh) 一种被动容积同步系统的能量回收系统
CN102635581B (zh) 用于超深径向井作业的液压控制系统
CN102155007B (zh) 斜拉门式启闭机小车驱动机构的液压系统
CN106089178B (zh) 一种注气点移动控制装置及其控制方法
CN108252984A (zh) 一种变频泵控液压锚杆钻机钻臂摆角控制方法
CN103423225A (zh) 一种低能耗液压开式行走系统及控制方法
CN203626760U (zh) 一种低矮型超长冲程智能控制卷扬式提拉采油系统
CN113757221A (zh) 一种供液速度和位置开环控制方法
CN115217504A (zh) 综采工作面精准移架系统
CN211901133U (zh) 一种刮板输送机用闭式液压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE