WO2023005300A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2023005300A1
WO2023005300A1 PCT/CN2022/089381 CN2022089381W WO2023005300A1 WO 2023005300 A1 WO2023005300 A1 WO 2023005300A1 CN 2022089381 W CN2022089381 W CN 2022089381W WO 2023005300 A1 WO2023005300 A1 WO 2023005300A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
light
trace
area
nfc antenna
Prior art date
Application number
PCT/CN2022/089381
Other languages
English (en)
French (fr)
Other versions
WO2023005300A9 (zh
Inventor
董晓勇
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22847918.4A priority Critical patent/EP4287399A1/en
Publication of WO2023005300A1 publication Critical patent/WO2023005300A1/zh
Publication of WO2023005300A9 publication Critical patent/WO2023005300A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils

Definitions

  • the present application relates to the technical field of NFC antennas, in particular to an electronic device.
  • NFC antennas There are two types of near field communication (NFC) antennas, one of which is multiplexed with other antennas, and the other is a separate NFC antenna.
  • NFC antennas For the independent NFC antenna, there are currently two mainstream layout schemes, one is to surround the camera bracket for a week, and the other is to arrange it side by side with the camera bracket on the back cover of the electronic device.
  • the first arrangement will make it impossible for the NFC antenna to be routed, and the second arrangement will reduce the layout area of the NFC antenna. Neither arrangement can guarantee the NFC antenna. radiation performance.
  • this application provides an electronic device that can be used in scenarios where the number of cameras is increasing and the camera bracket is increasing.
  • the NFC antenna still has good radiation performance.
  • the present application provides an electronic device.
  • the electronic device includes: a rear cover, a camera bracket, and an NFC antenna.
  • the camera bracket is arranged on the back cover, and includes a first surface and a second surface opposite to each other.
  • the first surface of the camera bracket faces the outside of the electronic device.
  • the camera bracket is provided with a first light hole, and the first light hole is used to be opposite to the first flashlight or the first camera.
  • the NFC antenna is laid on the first surface of the camera bracket.
  • the first orthographic projection of the NFC antenna on the first surface of the camera bracket falls into the first surface of the camera bracket and does not overlap with the first light hole, so that the NFC antenna avoids the first light hole.
  • the first orthographic projection of the NFC antenna on the first surface of the camera support falls into the first surface, that is, the NFC antenna is laid on the first surface.
  • the camera bracket arranged on the back cover will also increase, and the area of the first surface will also increase accordingly.
  • the area of the area surrounded by the NFC antenna in this embodiment will also follow the area of the first surface. increase and increase.
  • the radiation performance of the NFC antenna is positively correlated with the area of the area enclosed by the NFC antenna. Therefore, when the area of the area enclosed by the NFC antenna increases, the radiation performance of the NFC antenna is improved.
  • the camera bracket itself is the back cover of the electronic device, it is not in the stacking path from the display screen of the electronic device to the back cover, and its thickness is usually not considered as a factor for thinning the electronic device. Therefore, if the NFC antenna is laid on the first surface, and it is not in the stacking path from the display screen of the electronic device to the back cover, then the NFC antenna will not become a bottleneck for thinning the electronic device.
  • first light holes there are multiple first light holes, and the multiple first light holes are arrayed in a ring on the camera bracket. It should be understood that when the camera bracket has a plurality of first light holes, the size of the camera bracket is larger, so the area of the first surface is larger. Based on this, the area of the area enclosed by the NFC antenna laid on the first surface can be guaranteed, so that the radiation performance of the NFC antenna can be guaranteed.
  • the NFC antenna is provided with ferrite and metal traces along the edge of the ferrite.
  • the area of the metal trace on the first orthographic projection is a trace projection area, and the trace projection area is a ring.
  • the first light through hole is located inside the ring corresponding to the trace projection area.
  • the trace projection area is circular, so the metal trace is also circular. Since the first light holes are located inside the ring corresponding to the projection area of the wires, the metal wires are laid between the first light holes and the edge of the camera bracket, and the first light holes are surrounded by the metal wires its interior. It can be seen that the metal trace is a ring located between the first light through hole and the edge of the camera bracket. As the number of cameras increases, the number of first light holes increases, and the camera support will also increase, resulting in a corresponding increase in the area of the first surface. It should be understood that when the area of the first surface increases, the area of any ring located between the first light through hole and the edge of the camera bracket will also increase accordingly. Based on this, the wiring area of the metal wiring (which is a ring located between the first light hole and the edge of the camera bracket) is increased, so that the radiation performance of the NFC antenna is improved.
  • the minimum distance between the edge line of the first light hole and the edge line of the camera bracket is greater than the first threshold.
  • the first threshold is at least the trace width of the metal trace. In this way, it is possible to ensure that there is enough space between the first optical hole and the edge of the camera bracket to lay the NFC antenna, so as to ensure the radiation performance of the NFC antenna.
  • the NFC antenna is provided with ferrite and metal traces along the edge of the ferrite.
  • the area of the metal trace on the first orthographic projection is a trace projection area, and the trace projection area is a ring.
  • the first light through hole is located outside the ring corresponding to the trace projection area.
  • the trace projection area is circular, so the metal trace is also circular. Since the first light through holes are all located outside the ring corresponding to the trace projection area, the metal traces are laid at positions inside the array path of the first light through holes. It can be seen that the metal wiring is a ring located inside the array path of the first light through hole. As the number of cameras increases, the number of first light holes increases, and the camera support will also increase, resulting in a corresponding increase in the area of the first surface. It should be understood that when the area of the first surface increases, the area of any ring located within the array path of the first light through holes will also increase accordingly. Based on this, the wiring area of the metal wiring (which is a ring located inside the array path of the first light through hole) is increased, so that the radiation performance of the NFC antenna is improved.
  • the minimum distance between the edge line of the first light hole and the edge line of the camera bracket is smaller than the second threshold.
  • the second threshold is at least the trace width of the metal trace.
  • the space between the first light hole and the edge of the camera bracket is too small to lay the NFC antenna. It should be understood that when the overall structure of the camera bracket is large and the space between the first light through hole and the edge of the camera bracket is small, the area within the array path of the first light through hole must be relatively large. In this case, the scheme of laying the metal wires inside the array path of the first light hole can be implemented in this scenario to ensure the radiation performance of the NFC antenna.
  • two adjacent first light through holes on the array path are respectively a first adjacent hole and a second adjacent hole.
  • the NFC antenna has an extension area extending along a first direction, the first direction is away from the geometric center of the camera bracket, and faces between the first adjacent hole and the second adjacent hole.
  • the existence of the extension region enables the NFC antenna to harvest the area enclosed by the metal traces in the extension region, so the radiation performance of the NFC antenna is improved.
  • the distance between the first adjacent hole and the second adjacent hole in the array direction is greater than a third threshold, and the third threshold is at least three times the width of the metal wire.
  • the part of the metal trace located in the extension area includes a first trace and a second trace. Both the first trace and the second trace extend toward the second direction and pass through a position between the first adjacent hole and the second adjacent hole.
  • the first wiring and the second wiring are arranged at intervals in the third direction.
  • the third direction is the array direction of the first adjacent holes and the second adjacent holes, and the second direction is perpendicular to the third direction.
  • the radiation performance of the NFC antenna can be greatly improved through the extension region only when the routing area of the metal traces in the extension region is large enough, and the existence of the extension region is meaningful.
  • the spacing between the first adjacent hole and the second adjacent hole in the array direction is greater than the third threshold, it means that the spacing between the first adjacent hole and the second adjacent hole is relatively large.
  • the distance between the first trace and the second trace passing through the position between the first adjacent hole and the second adjacent hole can be kept relatively large, so as to obtain a sufficiently large trace area.
  • both the first trace and the second trace are traced along the second direction, and can maintain the same interval as the first adjacent hole and the second adjacent hole respectively, which can be more beautiful on the one hand, and on the other hand, Avoid the problem that the gap is too large on one side and the gap is too small on the other side, which makes it difficult to process.
  • the distance between the first trace and the second trace is maintained in the third direction. Since the trace area of the metal trace is determined by the area surrounded by the metal trace, when the first trace and the second trace are in the When there is a spacing in the third direction, the routing area can be harvested through the extension area, and the existence of the extension area is meaningful.
  • the distance between the first adjacent hole and the second adjacent hole in the array direction is smaller than a fourth threshold, and the fourth threshold is at least three times the wire width of the metal wire.
  • the part of the metal trace located in the extension area includes a first trace and a second trace. The first routing and the second routing gradually approach in a second direction, and the second direction is perpendicular to the array direction of the first adjacent holes and the second adjacent holes.
  • the distance between the first adjacent hole and the second adjacent hole in the array direction is smaller than the fourth threshold, it means that the distance between the first adjacent hole and the second adjacent hole is not too large.
  • the first routing and the second routing both extend toward the second direction, the distance between the first routing and the second routing is also small, so routing is more difficult, and it is difficult for processing The workmanship is extremely demanding.
  • the space between the first trace and the second trace is relatively small, and the benefit of the trace area that can be obtained is small. Harvesting a smaller wiring area under a more difficult processing technology is undoubtedly not worth the candle.
  • the first trace and the second trace are in a state of gradually gathering in the second direction, and there will be no gap between the first adjacent hole and the second adjacent hole in the array direction. Not too big and difficult to route.
  • this embodiment can harvest the routing area of the metal trace in the extension region, thereby improving the radiation performance of the NFC antenna.
  • the NFC antenna is provided with ferrite and metal traces along the edge of the ferrite.
  • the area of the metal trace on the first orthographic projection is a trace projection area, and the trace projection area is a ring.
  • Parts of the plurality of first light holes are located outside the ring corresponding to the line projection area; the rest of the plurality of first light holes are located inside the ring corresponding to the line projection area.
  • the first light hole can be used to install a camera, a flash, or a sensor, different first light holes can be used to install different devices, and their sizes may be inconsistent, so there may be some gaps between the first light hole and the edge of the camera bracket.
  • the space between some of the first light holes and the edge of the camera bracket is relatively large.
  • the wiring can be carried out at the position between the first light hole and the edge of the camera bracket to maximize the wiring area, thereby improving the radiation performance of the NFC antenna.
  • the first light through hole is located outside the ring corresponding to the line projection area.
  • the first threshold is at least the trace width of the metal trace.
  • the metal wiring can be routed from here, so as to surround the first through hole inside it, and obtain the area benefit of this part.
  • an avoidance hole is provided on the NFC, and the area of the avoidance hole on the first orthographic projection is an avoidance area, and the avoidance area is located inside the ring corresponding to the routing projection area.
  • a second light hole is also provided on the camera bracket, the second light hole overlaps with the avoidance area, and the second light hole is used to face the second flashlight, the second sensor, or the second camera.
  • the avoidance area overlaps with the second light passage hole, that is, the second light passage hole is opened in the area where the camera support is facing the avoidance hole.
  • the avoidance area is located inside the ring corresponding to the trace projection area, which means that the avoidance hole is opened within the metal trace area, and the opening of the avoidance hole does not affect the trace area of the metal trace, so it does not affect the radiation of the NFC antenna. performance impact.
  • this embodiment adds an additional light hole without increasing the size of the camera bracket. Therefore, it can support the installation of one more camera, which is conducive to meeting the trend of increasing the number of cameras.
  • the above-mentioned electronic device also includes a decorative lens.
  • the edge of the first surface of the camera bracket is provided with an adhesive area, and the decorative lens is fixed on the first surface of the camera bracket by connecting with the adhesive area.
  • the NFC antenna is arranged between the decorative lens and the first surface of the camera bracket, and the first front projection and the back glue area do not overlap.
  • the decorative lens can protect and beautify the camera.
  • the first orthographic projection and the adhesive area do not overlap, that is, the NFC antenna needs to be laid away from the adhesive area, so as to avoid warping caused by the NFC antenna when the decorative lens is installed, resulting in failure to achieve good adhesion and sealing.
  • Fig. 1 is the structural representation of three kinds of NFC antennas that the embodiment of the present application provides;
  • Fig. 2 is a schematic diagram of the arrangement position of the NFC antenna on the electronic device in a possible design scheme
  • Fig. 3 is the sectional view obtained by cutting Fig. 2 along the A-A section line;
  • FIG. 4 is a schematic diagram of the arrangement position of the NFC antenna on the electronic device in another possible design scheme
  • FIG. 5 is a schematic structural diagram of an electronic device provided by some embodiments of the present application.
  • FIG. 6 is a cross-sectional view obtained by cutting the electronic device shown in FIG. 5 along the B-B cutting line;
  • FIG. 7 is a schematic diagram of the trace width of the metal trace in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of electronic equipment provided by other embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by other embodiments of the present application.
  • first”, “second”, and “third” are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first”, “second” and “third” may explicitly or implicitly include one or more of these features.
  • ring refers to a shape obtained by extending an outer edge with a predetermined shape inward for a predetermined distance to form an inner edge. Based on this, the ring has an outer edge line and an inner edge line, the inner edge of the ring refers to the area within the inner edge line of the ring, and the outer edge of the ring refers to the area outside the outer edge line of the ring, which will not be described in detail later. It should be understood that in the embodiment of the present application, the ring may be a circular ring or a non-circular ring, for example, a square ring, a polygonal ring, and the like.
  • the NFC antenna includes ferrite and metal wires.
  • the metal wiring is used for electromagnetic wave radiation
  • the ferrite is used to reduce the risk of mutual interference between the NFC antenna and other electronic components of the electronic device (such as components on the motherboard) to form eddy currents.
  • the ferrite includes two opposite surfaces, and metal traces are laid on one side of the ferrite along the edge of the ferrite.
  • the radiation performance of the NFC antenna is mainly affected by the area surrounded by metal traces (hereinafter referred to as the trace area, when the metal traces are multiple coils, usually the area surrounded by the outermost coil is the trace area).
  • the influence of the area is basically not affected by whether there is ferrite in the wiring area, and the larger the wiring area, the better the radiation performance of the NFC antenna. Whether there is ferrite in the wiring area affects the anti-interference effect of the NFC antenna.
  • the NFC antenna 30 includes a ferrite 31 and a metal wire 32 along the edge of the ferrite 31 .
  • the wiring area of the metal wiring 32 is the area A1.
  • the wiring area of the metal wiring 32 is area B1 .
  • the wiring area of the metal wiring 32 is the area C1 .
  • FIG. 2 is a schematic diagram of an arrangement position of an NFC antenna on an electronic device in a possible design scheme.
  • the electronic device includes a rear cover 10 , a camera bracket 20 and an NFC antenna 30 .
  • the camera bracket 20 and the NFC antenna 30 are both arranged on the back cover 10 .
  • the camera bracket 20 is used for installing a camera of an electronic device.
  • the camera bracket 20 is also used for installing a flash or a sensor.
  • the "installation” here means that the setting of the camera bracket 20 needs to have a certain cooperation relationship with the camera, the flashlight, or the sensor respectively, and it does not mean that there must be a certain relationship between the camera, the flashlight, or the sensor and the camera bracket 20 respectively. have a direct connection.
  • the light hole on the camera bracket is in a direct relationship with the camera.
  • there may also be a connection relationship which is not specifically limited in this embodiment of the present application.
  • the camera support 20 can play the role of decorating the camera, flashlight, or sensor, and on the other hand, can protect the camera, flashlight, or sensor from being damaged.
  • the NFC antennas 30 are distributed along the circumferential direction of the camera bracket 20 and surround the outside of the camera bracket 20 .
  • the routing area of the NFC antenna 30 will also become larger.
  • the laying of the metal routing of the NFC antenna 30 will be blocked by other components (such as batteries) inside the electronic device, so that it cannot be routed. Wire.
  • the design scheme shown in FIG. 2 cannot support the laying of the NFC antenna 30 with a large wiring area. In the scene where the area of the camera bracket 20 is too large, it is necessary to find other ways to ensure the wiring area of the NFC antenna 30. , to ensure the radiation performance of the NFC antenna 30.
  • FIG. 3 is a cross-sectional view obtained by cutting the electronic device shown in FIG. 2 along the cutting line A-A.
  • the electronic device includes a back cover 10 , a middle frame 50 , and a display screen 40 .
  • the display screen 40 and the rear cover 10 are respectively disposed on opposite sides of the middle frame 50 and form a cavity.
  • the main board 60 , the main board bracket 70 for supporting the main board 60 , and the NFC antenna 30 are stacked in the cavity. It can be seen that the NFC antenna 30 is a device on the stacking path of the electronic device in the thickness direction. With the popularity of ultra-thin electronic devices, the thickness of the NFC antenna 30 is also one of the bottlenecks in reducing the thickness of the whole device.
  • FIG. 4 is a schematic diagram of an arrangement position of an NFC antenna in another possible design solution. Different from the solutions shown in FIG. 2 and FIG. 3 , the camera bracket 20 and the NFC antenna 30 are distributed side by side on the back cover 10 of the electronic device, and the NFC antenna 30 is located on the side of the camera bracket 20 .
  • the NFC antenna 30 is also a device on the stacking path of the electronic device in the thickness direction, that is, the thickness of the NFC antenna 30 is still the bottleneck for the thinning of the whole device.
  • the routing of the NFC antenna 30 will be affected by the area occupied by the camera bracket 20 .
  • the current development trend of electronic equipment is that the camera module is getting bigger and bigger, and the number of cameras is getting more and more. Based on this, the area of the rear cover 10 occupied by the camera bracket 20 will also become larger and larger.
  • the arrangement of the NFC antenna 30 shown in Fig. 1 and Fig. 4 cannot meet the development requirements of electronic equipment.
  • the NFC antenna 30 is a device on the stacking path of the electronic device in the thickness direction.
  • the wiring method of the NFC antenna in the prior art cannot guarantee the radiation performance of the NFC antenna.
  • the application provides an improved electronic device.
  • the electronic device can ensure the routing area of the NFC antenna in a scene with a large camera bracket, thereby ensuring the radiation performance of the NFC antenna, and making the NFC antenna no longer a bottleneck for thinning the electronic device.
  • the electronic equipment in the embodiments of the present application may be mobile phones, tablet computers, desktops, laptops, handheld computers, notebook computers, ultra-mobile personal computers (ultra-mobile personal computer, UMPC), netbooks, and cellular phones , personal digital assistant (personal digital assistant, PDA), augmented reality (augmented reality, AR) ⁇ virtual reality (virtual reality, VR) equipment and other equipment with NFC antenna and camera, the embodiment of the present application is specific to the electronic equipment The form is not particularly limited.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by some embodiments of the present application.
  • Fig. 6 is a cross-sectional view taken along the line B-B in Fig. 5 .
  • the electronic device is a mobile phone, including a middle frame 50 (not shown in FIG. 5 ), a display screen 40 (not shown in FIG. 5 ), and a rear cover 10 .
  • the middle frame 50 is used to fix and support the functional devices in the electronic equipment, and the middle frame 50 is usually made of metal materials such as stainless steel and aluminum alloy.
  • the display screen 40 and the rear cover 10 are respectively disposed on opposite sides of the middle frame 50 , and the display screen 40 , the middle frame 50 and the rear cover 10 are stacked.
  • the display screen 40 is provided with functional devices such as a front camera module, an earpiece, and a supplementary light.
  • functional devices such as a motherboard 60 , a battery, and a speaker are disposed between the rear cover 10 and the middle frame 50 .
  • a mounting hole is opened on the rear cover 10, and the mounting hole is used for mounting a camera assembly of an electronic device.
  • the camera assembly includes a camera bracket 20 , and a camera, a flashlight, or a sensor installed in the camera bracket 20 (not shown in FIG. 5 ).
  • the sensor can be a laser ranging (time of flight, TOF) sensor, an ambient light sensor, an infrared temperature sensor and other devices that require light to participate in detection.
  • the camera bracket 20 is also called a camera decoration, and its shape may be circular. It should be understood that although FIG. 5 illustrates a case where the camera support 20 is circular, the camera support 20 may also be in other regular or approximately regular shapes such as ellipse, rectangle, and rhombus, which are not specifically limited in this embodiment of the present application.
  • the camera bracket 20 is inserted into the installation hole opened on the back cover 10 , so as to be installed on the back cover 10 .
  • the camera bracket 20 includes a first surface S1 and a second surface S2 (not shown in FIG. 5 ), which are oppositely arranged.
  • the first surface S1 of the installed camera bracket 20 is the side facing the outside of the electronic device.
  • the camera bracket 20 is provided with four first light holes, which are respectively light hole K1, light hole K2, light hole K3, and light hole K4, wherein the light hole K1 can be opposite to the camera for installation Camera, in this case, the light can enter the camera through the light hole K1, so as to achieve shooting; the light hole K1 can also be opposite to the flashlight for installing a flashlight, in this case, the light emitted by the flashlight can pass through the light hole K1
  • the light hole K1 realizes illumination; the light hole K1 can also be opposite to the sensor for installing the sensor. In this case, the sensor can monitor the external environment through the light hole K1.
  • the "installation” here means that the setting of the light hole K1 needs to have a direct relationship with the camera, the flashlight, or the sensor respectively, and does not mean that there is a direct relationship between the camera, the flashlight, or the sensor and the camera bracket 20 respectively. direct connection. Of course, in other embodiments, there may also be a direct connection relationship, which is not specifically limited in this embodiment of the present application. Subsequent related content refers to this definition, and will not be repeated in the following text.
  • the other first light holes can be implemented in the same manner, which will not be repeated here. It should be understood that, generally speaking, an electronic device only has one flashlight. Based on this, there is only one first light through hole in the electronic device for installing the flashlight. It should be noted that although FIG.
  • the number of first light through holes is four and the four first light through holes are in a square array
  • the number of first light holes may be other numbers, such as 3, 4, 5, or even more. It should be understood that as the number of cameras of electronic devices increases, the number of required first light holes also increases accordingly. The more the number of the first light holes, the larger the size of the corresponding camera support 20 and the larger the occupied area of the rear cover. Generally speaking, when the camera bracket 20 has more than three first light holes, the rear cover area occupied by the camera bracket 20 is larger.
  • the light through hole K1 , the light through hole K2 , the light through hole K3 , and the light through hole K4 are arrayed along a square ring.
  • the annular array of the light hole K1, the light hole K2, the light hole K3, and the light hole K4 along the square refers to the light hole K1, the light hole K2, the light hole K3, and the light hole K4.
  • the circles that is, the geometric centers
  • the geometric center refers to the centermost position of an object with certain symmetry, such as the center of a circle, the center of a sphere, the intersection of two diagonals of a parallelogram, and the like. Based on this, in other embodiments, if the first light hole is in other shapes, such as rhombus, square, rectangle, etc., in this case, the intersection point of the two diagonal lines is the geometric center of the first light hole.
  • other annular array path arrays may also be present, such as elliptical rings, rectangular rings, rhombus rings, polygonal rings, etc., which are not specifically described in this embodiment of the present application. limited.
  • the electronic device further includes an NFC antenna 30 .
  • the NFC antenna 30 is laid on the first surface S1 of the camera support 20, and the orthographic projection (i.e. the first orthographic projection) of the NFC antenna 30 on the first surface S1 along the thickness direction of the electronic device (i.e. the Z direction shown by the arrow in FIG. 6 ) ) falls into the first surface S1, that is, the NFC antenna 30 is laid on the first surface S1.
  • laying of the NFC antenna 30 can be realized by digging a groove on the first surface S1 of the camera bracket 20 .
  • the common protrusion height is 0.85-1.0 mm, or higher, such as 2-3 mm. It can be seen that the thickness of the camera bracket 20 is large enough, and the strength is sufficient to support NFC antenna 30 is laid on its surface by digging grooves.
  • the camera bracket 20 itself protrudes from the back cover 10 of the electronic device, it is not in the stacking path of the electronic device from the display screen 40 to the back cover 10, and its thickness is generally not considered for thinning the electronic device. factor. Therefore, laying the NFC antenna 30 on the first surface S1 increases the thickness of the camera assembly protruding from the back cover 10 rather than increasing the thickness of the electronic device. Compared with the solutions shown in FIG. 2 and FIG. 4 , the NFC antenna 30 is not in the stacking path from the display screen to the back cover 10 , so the NFC antenna will not become a bottleneck for thinning the electronic device, and the electronic device can also be thinned. thickness of.
  • the NFC antenna 30 is laid on the first surface S1 of the camera bracket 20 by digging a groove, and the NFC antenna 30 can also be flush with the first surface S1 of the camera bracket 20, so that the camera assembly does not protrude from the rear cover 10. thickness of.
  • the embodiment of the present application only illustrates and describes the part of the NFC antenna 30 located inside the camera support 20 . It should be understood that the NFC antenna 30 also has a part located outside the camera bracket 20, and this part is provided with a feeding point.
  • the NFC antenna 30 is coupled to the radio frequency module on the main board 60 (shown in FIG. 6 , not shown in FIG. 5 ) through a feeding point.
  • the radio frequency module receives electromagnetic waves through the NFC antenna 30, frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor; go out.
  • the connection between the NFC antenna 30 and the main board 60 can be made by contacting the feeding point of the NFC antenna 30 on the camera bracket 20 with the shrapnel installed on the main board 60 .
  • the height of the elastic pieces used in this embodiment is higher.
  • a longer flexible printed circuit (FPC) can also be used.
  • the end where the feeding point of the NFC antenna 30 is located can be fixed on the mainboard support 70 , and at this time, a common elastic piece is used to abut against the mainboard support 70 .
  • the FPC can also be replaced with the NFC connection method here, or it can be replaced with a board-to-board connector (board to board, B2B).
  • the orthographic projection (i.e. the first orthographic projection) of the NFC antenna 30 on the first surface S1 and the light through hole K1 , the light hole K2 , the light hole K3 , and the light hole K4 do not overlap, so that the NFC antenna avoids the light hole K1 , the light hole K2 , the light hole K3 , and the light hole K4 . In this way, the NFC antenna 30 will not block the first light hole.
  • the NFC antenna 30 includes a ring-shaped ferrite 31 , and the metal trace 32 traced along the edge of the ferrite 31, the metal trace 32 is also ring-shaped, and its area on the first orthographic projection is the trace projection area. Since the metal trace 32 is circular, the projected area of the trace is also circular.
  • the light hole K1 , the light hole K2 , the light hole K3 , and the light hole K4 are all located inside the ring corresponding to the line projection area. In other words, the metal wire 32 surrounds the light hole K1 , the light hole K2 , the light hole K3 , and the light hole K4 inside.
  • the metal wire 32 surrounds the light hole K1, the light hole K2, the light hole K3, and the light hole K4 inside, and, as can be seen from FIG. 5, the area inside the metal wire 32 is not laid. Ferrite, that is to say, the light through hole K1, the light through hole K2, the light through hole K3, the light through hole K4 and the ferrite 31 do not overlap, therefore, the first orthographic projection and the first light through hole do not intersect In this way, the NFC antenna 30 can avoid the first light through hole, so as to avoid affecting the normal operation of the device facing the first light through hole.
  • FIG. 5 illustrates that the ferrite 31 is a hollow ring structure.
  • the ferrite 31 can also be configured to only avoid the structure of the light hole K1, the light hole K2, the light hole K3, and the light hole K4, that is, on the inner side of the first surface S1, except The position of the first optical hole (abbreviated as the area within the metal trace 32 ) is laid with ferrite 31 . In this way, the risk of mutual interference between the NFC antenna 30 and other electronic components of the electronic device to form eddy currents can be further reduced, which is not specifically limited in this embodiment of the present application.
  • the ferrite area where the metal wiring 32 passes has a stronger anti-interference effect than the ferrite area where the metal wiring 32 does not pass (the area inside the metal wiring 32). good.
  • the radiation performance of the NFC antenna 30 is determined by the routing area of the metal trace 32, whether ferrite is laid in the area within the metal trace 32 will have a small effect on the improvement of the radiation performance of the NFC antenna 30, and the cost and processing difficulty are considered. Factors, usually choose the scheme shown in Figure 5 to lay the ferrite 31.
  • the above-mentioned electronic device further includes a decorative lens 80, and the decorative lens 80 is fixed on the second A surface S1.
  • the above-mentioned NFC antenna 30 is disposed between the decorative lens 80 and the first surface S1 , and does not overlap with the adhesive area 90 . That is to say, the NFC antenna 30 needs to be laid away from the adhesive area 90 to avoid warping caused by the NFC antenna 30 when the decorative lens 80 is installed, thus failing to achieve good adhesion and sealing.
  • the solution shown in FIG. 5 is usually applied in a scene where the rear cover area occupied by the camera bracket 20 is large and the space between the first light hole and the edge of the camera bracket 20 is large. In this way, it is possible to ensure that there is a large enough area between the first optical hole and the camera bracket 20 to lay the NFC antenna 30 to meet the radiation performance of the NFC antenna 30 .
  • the minimum distance between the edge line of the first light through hole and the edge line of the camera bracket 20 is greater than the first threshold, it can be considered as the space between the first light through hole and the edge of the camera bracket 20 larger.
  • the minimum distance between the edge line of the first light through hole and the edge line of the camera bracket 20 refers to the distance between the two positions closest to the edge line of the first light through hole and the edge line of the camera bracket 20 .
  • the light through hole K1 is used as an example for illustration below, and other first light through holes can be referred to for implementation. Please refer to Fig. 5, when the camera support 20 is circular and the light-through hole K1 is circular, a straight line is made from the center of the circle of the camera support 20 to the center of the light-through hole K1, and the straight line is respectively connected to the edge line of the camera support 20 and the light-through hole.
  • the edge line of hole K1 intersects at point M and point N, and the distance between point M and point N is the minimum distance mentioned above.
  • the minimum distance is the smallest distance between the center of the light hole K1 and the sides of the camera bracket 20.
  • the above-mentioned first threshold is at least the wire width of the metal wire 32 .
  • the trace width of the metal trace 32 refers to the width occupied by all the coils surrounding the ferrite 31 (a circle of the metal trace 32 around the ferrite 31 is a coil, and FIG. 5 has two coils), and does not refer to The width of a single metal trace 32 .
  • the metal trace 32 surrounding the ferrite 31 has three coils, and the trace width of the metal trace 32 is marked by a line with double arrows.
  • the first threshold is greater than the trace width of the metal trace 32 .
  • the trace width of the metal trace 32 is generally 2.5 mm
  • the width of the adhesive area 90 is generally 1 mm
  • the distance between the adhesive area 90 and the outer edge line of the metal trace 32 is It is usually 0.5 mm
  • the distance from the inner edge line of the metal wire 32 to the first light hole is usually 1 mm. Therefore, the first threshold can be twice the wire width of the metal wire 32 .
  • FIG. 5 shows that the ferrite 31 and the metal wire 32 are circular
  • the NFC antenna 30 also presents a circular shape as a whole.
  • the NFC antenna 30 may also have other shapes, which are not specifically limited in this embodiment of the present application.
  • the shape of the NFC antenna 30 can be differentiated according to the shape of the camera support 20, the position of the first light hole, the size of the window of the decorative lens 80 (shown in FIG. 6 ), and other factors to ensure that The normal structural protection, the type identification information of the camera component, the laying effect of parameter information, etc., hide the NFC antenna 30 under the decorative pattern of a compact disk (CD) on the decorative lens 80 to the greatest extent.
  • CD compact disk
  • the projection area of the traces is ring-shaped, so the metal traces 32 are also ring-shaped. Since the first light holes are all located inside the ring corresponding to the projection area of the wires, the metal wires 32 are laid at the position between the first light holes and the edge of the camera bracket 20, and the first light holes are covered by the metal wires. 32 enclosed within it. It can be seen that the metal trace 32 is a ring located between the first light through hole and the edge of the camera bracket 20 . As the number of cameras increases, the number of first light holes increases, and the camera bracket 20 will also increase, resulting in a corresponding increase in the area of the first surface S1.
  • the wiring area of the metal wiring 32 (which is a ring located between the first light hole and the edge of the camera bracket 20 ) is increased, so that the radiation performance of the NFC antenna 30 is improved.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by another embodiment of the present application. Different from the electronic device shown in FIG. 5 , in this electronic device, the overall structure of the camera bracket 20 is larger, and the space between the first light hole and the edge of the camera bracket 20 is smaller. Exemplarily, when the minimum distance between the edge line of the first light hole and the edge line of the camera bracket 20 is smaller than the second threshold, it can be determined that the space between the first light hole and the edge of the camera bracket 20 is small.
  • the second threshold is at least the wire width of the metal wire 32 .
  • the specific implementation of the minimum distance between the edge line of the first light through hole and the edge line of the camera bracket 20 can refer to the relevant content in FIG. repeat.
  • first threshold and the second threshold may be the same value or different values, which is not specifically limited in this embodiment of the present application. Obviously, in this case, the space between the first light hole and the edge of the camera bracket 20 is not enough to implement the solution shown in FIG. 5 .
  • the array path of the first light through holes (the geometric centers of the first light through holes)
  • the closed path formed by connecting end to end in turn, the area within the square dotted line in the figure) is larger.
  • the area within the array path of the first light hole has a sufficiently large area for laying the NFC antenna 30 .
  • the light hole K1, the light hole K2, the light hole K3, and the light hole K4 are located outside the ring corresponding to the projection area of the wiring. , and does not overlap with the first orthographic projection.
  • the first light through hole is located outside the metal trace 32 , and the metal trace 32 is laid inside the array path of the first light through hole.
  • the metal wire 32 is routed along the edge of the ferrite 31 , there is also a projected area of the ferrite 31 outside the ring corresponding to the wire projection area.
  • the light through hole K1, the light through hole K2, the light through hole K3, and the light through hole K4 are not only located outside the ring corresponding to the line projection area, but also do not overlap with the first orthographic projection. Therefore, in this embodiment
  • the first light hole in the example is not actually laid on the outside of the metal wiring 32 , but is laid on the outside of the NFC antenna 30 .
  • FIG. 8 shows that the ferrite 31 is a solid structure, in other embodiments, it can also be set as a ring structure. For specific implementation, refer to the relevant content in FIG. 5 , where No longer.
  • the metal wire 32 is also ring-shaped. Since the first light holes are all located outside the ring corresponding to the wire projection area, the metal wires 32 are laid at positions inside the array path of the first light holes. It can be seen that the metal wiring 32 is a ring located inside the array path of the first light through holes. As the number of cameras increases, the number of first light holes increases, and the camera bracket 20 will also increase, resulting in a corresponding increase in the area of the first surface S1. It should be understood that when the area of the first surface S1 increases, the area of any ring located within the array path of the first light through holes will also increase accordingly. Based on this, the wiring area of the metal wiring 32 (which is a ring located inside the array path of the first light hole) is increased, so that the radiation performance of the NFC antenna 30 is improved.
  • the NFC antenna 30 has four extension areas, which are respectively: the extension area Q1, the extension area Q2, the extension area Q3,
  • the extension area Q4 the implementation of the extended area Q1 will be described below as an example, and other extended areas can be referred to for implementation.
  • the extension area Q1 extends toward the second direction (indicated by the dotted arrow in the figure), and passes through the adjacent light through hole K1 (that is, the first adjacent hole) and the light through hole K2 on the array path (indicated by the square dotted line in the figure). (i.e. the position between the second adjacent holes).
  • the second direction is away from the center of the first surface S1 (ie, the geometric center of the first surface S1 ), and is perpendicular to the array direction of the light holes K1 and the light holes K2 .
  • the array direction of the light-through hole K1 and the light-through hole K2 refers to the direction of the center line connecting the circle center (geometric center) of the light-through hole K1 and the circle center (geometric center) of the light-through hole K2 .
  • the array direction of the light-through holes K1 and the light-through holes K2 is referred to as the third direction for short below.
  • the extension area Q1 is also laid with ferrite and metal traces of ferrite edge traces.
  • the part of the metal trace 32 located in the extension area Q1 includes a first trace L1 and a second trace L2. Both the first trace L1 and the second trace L2 extend in the second direction, passing through the position between the light through hole K1 and the light through hole K2, and the first trace L1 and the second trace L2 are in the third direction interval setting.
  • the existence of the extension area Q1 enables the NFC antenna 30 to harvest the routing area of the metal wire 32 in the extension area Q1 , so the radiation performance of the NFC antenna 30 is improved.
  • both the first trace L1 and the second trace L2 are traced along the second direction, and can maintain the same distance from the light through hole K1 and the light through hole K2 respectively, which can be more beautiful on the one hand, and on the other hand , to avoid the problem that the gap is too large while the gap is too small and difficult to process.
  • the distance between the first wiring L1 and the second wiring L2 is maintained in the third direction.
  • the wiring area of the metal wiring 32 is determined by the area surrounded by the metal wiring 32, when the first wiring L1 and the second wiring L2 When the second routing L2 has a distance in the third direction, the routing area can be harvested through the extension region Q1 , and the existence of the extension region Q1 is meaningful.
  • the extension area Q1 may also deviate from the center of the first surface S1 and extend toward other positions between the light hole K1 and the light hole K2 .
  • the first wiring L1 and the second wiring L2 also extend to other positions between the light hole K1 and the light hole K2.
  • the solution in which the extension region Q1 extends toward other positions makes the first wiring L1 and the second wiring L2 respectively
  • the gaps between the light-through holes K1 and the light-through holes K2 are inconsistent, on the one hand, it is not beautiful, and on the other hand, there is a problem that the gap is too large and the gap is too small, which makes it difficult to process.
  • the extension area Q1 may not pass through the position between the light through hole K1 and the light through hole K2 .
  • the first wiring L1 and the second wiring L2 do not pass through the position between the light through hole K1 and the light through hole K2 .
  • the area of the extension region Q1 is large enough.
  • the area of the extended region Q1 is larger. Since the metal wiring 32 is routed around the edge of the ferrite 31, when the area of the ferrite in the extension area Q1 is larger, the routing area of the metal wiring 32 is also larger, and the radiation performance of the NFC antenna 30 is improved. good.
  • the solution shown in FIG. 8 is usually applied to scenarios where the distance between the light hole K1 and the light hole K2 is relatively large. Only in this way can a larger distance be maintained between the first wiring L1 and the second wiring L2 to obtain a sufficiently large wiring area.
  • the distance between the light through hole K1 and the light through hole K2 in the array direction is greater than a third threshold, and the third threshold is at least three times the width of the metal wire 32, which is regarded as the distance between the light through hole K1 and the light through hole K2.
  • the distance between the light holes K2 is relatively large.
  • the distance between the light through hole K1 and the light through hole K2 in the array direction refers to the distance between the circle center of the light through hole K1 and the circle center of the light through hole K2 .
  • the specific definition of the trace width of the metal trace 32 can refer to the solution shown in FIG. 5 , and will not be repeated here.
  • the extension area Q1 needs to keep a distance from the light through hole K1 and the light through hole K2 to avoid, and when the distance between the first wiring L1 and the second wiring L2 is small, on the one hand there is
  • the third threshold may be greater than three times the width of the metal wire 32 .
  • the trace width of the metal trace 32 is usually 2.5mm, therefore, the trace width of the first trace L1 and the second trace L2 are both 2.5mm.
  • the distance between the first trace L1 and the second trace L2 is 5 mm
  • the distance between the light through hole K1 and the edge line of the extension area Q1 (close to the edge line of the first trace L1) is 1 mm
  • the distance between the light through hole K2 and the edge line of the extension area Q1 is 1 mm.
  • the distance between the edge lines of the extension region Q1 (edge lines close to the second trace L2 ) is 1 mm
  • the third threshold may be four times the trace width of the metal trace 32 .
  • FIG. 9 is a schematic structural diagram of an electronic device provided by another embodiment of the present application. Different from the electronic device shown in FIG. 8 , in this electronic device, the distance between the light through holes K1 and the light through holes K2 in the array direction is not too large. Exemplarily, when the distance between the light hole K1 and the light hole K2 in the array direction is smaller than the fourth threshold, the fourth threshold is at least three times the width of the metal wire 32, which can be regarded as the light hole K1 The distance from the through hole K2 in the array direction is not too large. Wherein, the specific implementation of the fourth threshold may also refer to the implementation of the third threshold.
  • the fourth threshold and the third threshold may take the same value or different values, which is not specifically limited in this embodiment of the present application.
  • the distance between the extended area Q1 and the light through hole K1 and the light through hole K2 is too small, and the distance between the first trace L1 and the second trace L2 is also too small. Smaller, therefore, the difficulty of wiring is relatively high, and the requirements for processing technology are extremely high.
  • the space between the first wiring L1 and the second wiring L2 is relatively small, and the benefit of the wiring area that can be obtained is small. Harvesting a smaller wiring area under a more difficult processing technology is undoubtedly not worth the candle. Based on this, different from the electronic device shown in FIG.
  • the extended area Q1 is also taken as an example for description.
  • the extension area Q1 extends along the second direction and passes through a position between the light hole K1 and the light hole K2 .
  • the first wiring L1 and the second wiring L2 on the extension area Q1 gradually approach in the second direction.
  • the gradual approaching of the first trace L1 and the second trace L2 in the second direction means that the distance between two corresponding points on the first trace L1 and the second trace L1 is within the second direction, where the two corresponding points on the first trace L1 and the second trace L1 refer to a straight line extending in the third direction (perpendicular to the second direction), which is respectively connected to the first trace Two points where the line L1 intersects with the second trace L1.
  • the solution shown in FIG. 9 can harvest the routing area of the metal trace 32 in the extension region Q1, thereby improving the radiation performance of the NFC antenna.
  • the extension area Q1 may not pass through the space between the light hole K1 and the light hole K2, and the extension area Q1 may also move toward other positions between the light hole K1 and the light hole K2.
  • the first trace L1 and the second trace L2 can also approach in other directions between the light hole K1 and the light hole K2, which is not specifically limited in the embodiment of the present application, and the specific implementation effect can be referred to FIG. 8 The solution shown will not be repeated here.
  • the embodiment of the present application also provides an electronic device as shown in FIG. 10 below.
  • FIG. 10 is a schematic structural diagram of electronic equipment provided by other embodiments of the present application.
  • an avoidance hole 33 is also provided on the NFC antenna 30 (at the same position as the light-through hole K5 ).
  • the area of the avoidance hole K5 on the first orthographic projection is an avoidance area, and the avoidance area is located inside the ring corresponding to the routing projection area.
  • the avoidance area overlaps with the light through hole K5 (ie, the second light through hole).
  • the light hole K5 is opened in the area where the camera support 20 faces the avoidance hole 33.
  • the light hole K5 can be opposite to the camera, in this case, the light can enter the camera through the avoidance hole 33 and the light hole K5 successively, thereby realizing shooting; the light hole K5 can also be opposite to the flashlight, in this case , the light emitted by the flashlight can pass through the light hole K5 and the escape hole 33 to the outside of the electronic device in order to realize the irradiation; the light hole K5 can also be opposite to the sensor. In this case, the sensor can pass through the avoidance hole 33 and the pass The light hole K5 monitors the external environment.
  • the avoidance area is located on the inner side of the ring corresponding to the wire projection area, which means that the avoidance hole 33 is opened in the area within the metal wire 32.
  • the radiation performance of the NFC antenna 30 is affected.
  • the solution shown in FIG. 10 has one more light hole in this embodiment without increasing the size of the camera bracket. Therefore, It can support the installation of one more camera, which is conducive to meeting the trend of increasing the number of cameras.
  • avoidance holes 33 may also be provided on the NFC antenna 30 to increase the number of cameras.
  • the first light hole can be used to install a camera, a flashlight, or a sensor. It can be seen that different first light holes can be installed with different devices, and their sizes may be inconsistent. Generally speaking, when the first light hole is installed with a flash, a smaller sensor, or a smaller camera, the first light hole is smaller; when the first light hole is installed with a larger camera or sensor , the first aperture is larger. Based on this, in practical applications, there may be scenes where the space between some of the first light holes and the edge of the camera bracket 20 is relatively small, and the space between some of the first light holes and the edge of the camera bracket 20 is relatively large. Fig. 5, Fig. 8, Fig. 9 and Fig. 10 are the same, or the space between all the first light through holes and the edge of the camera support 20 is larger, or the space between all the first light through holes and the edge of the camera support 20 Small space.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by other embodiments of the present application.
  • the minimum distances between the edge lines of the light hole K1 , the light hole K2 , and the light hole K4 and the edge line of the camera bracket 20 are consistent with those shown in FIG. 9 , and are all smaller than the first threshold. Different from the electronic device shown in FIG. 9, in this electronic device, the minimum distance between the edge line of the light through hole K3 and the edge line of the camera bracket 20 is greater than the first threshold, therefore, the distance between the edge of the light through hole K3 and the edge of the camera bracket 20 is greater than the first threshold. The space between them is larger, which can support the laying of NFC antennas to obtain a larger routing area.
  • the light hole K3 is located inside the ring corresponding to the projection area of the wires.
  • the metal wire 32 surrounds the light hole K3 inside.
  • FIG. 11 shows that among the four first light through holes, only the distance between the light through hole K3 and the edge of the camera bracket 20 is relatively large. In other embodiments, there may also be more first light holes with a larger distance from the edge of the camera support 20, and its implementation process is similar to that of the light hole K3, which will not be repeated here.
  • the electronic device shown in FIG. 11 can also refer to the solution shown in FIG. 10 , and an avoidance hole 33 is opened on the NFC antenna 30 to increase the number of cameras, which is not specifically limited in this embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供一种电子设备。该电子设备包括:后盖、摄像头支架、以及NFC天线。其中,摄像头支架设置于后盖上,且包括相对设置的第一表面和第二表面。摄像头支架的第一表面朝向电子设备的外侧。摄像头支架上设有第一通光孔,第一通光孔用于与第一闪光灯或第一摄像头相对。NFC天线铺设于摄像头支架的第一表面。NFC天线在摄像头支架的第一表面的第一正投影,落入摄像头支架的第一表面内,且和第一通光孔不交叠,以使NFC天线避让第一通光孔。本申请提能够在摄像头的个数越来越多,摄像头支架越来越大的场景中,使得NFC天线仍然具有良好的辐射性能。

Description

一种电子设备
本申请要求于2021年07月30日提交国家知识产权局、申请号为202110873589.6、发明名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及NFC天线技术领域,尤其涉及一种电子设备。
背景技术
目前电子设备的发展趋势是摄像头模组越来越大,摄像头的个数越来越多。基于此,摄像头支架所占用的后盖面积也会越来越大。
近场通信(near field communication,NFC)天线的形态分为两种,其中一种是和其他天线复用,另一种是单独的NFC天线。针对单独的NFC天线,目前较为主流的布置方案有两种,一种是环绕摄像头支架一周,另一种是和摄像头支架并排在电子设备的后盖上。但随着摄像头支架所占用的后盖面积的增大,第一种布置方案会使得NFC天线无法走线,第二种方案将使得NFC天线的布置区域缩小,两种布置方案均无法保证NFC天线的辐射性能。
发明内容
为了解决现有的NFC天线的布置方案无法保证NFC天线的辐射性能的问题,本申请提供了一种电子设备,能够在摄像头的个数越来越多,摄像头支架越来越大的场景中,使得NFC天线仍然具有良好的辐射性能。
本申请提供一种电子设备。该电子设备包括:后盖、摄像头支架、以及NFC天线。其中,摄像头支架设置于后盖上,且包括相对设置的第一表面和第二表面。摄像头支架的第一表面朝向电子设备的外侧。摄像头支架上设有第一通光孔,第一通光孔用于与第一闪光灯或第一摄像头相对。NFC天线铺设于摄像头支架的第一表面。NFC天线在摄像头支架的第一表面的第一正投影,落入摄像头支架的第一表面内,且和第一通光孔不交叠,以使NFC天线避让第一通光孔。
本实施例中,NFC天线在摄像头支架的第一表面的第一正投影落入第一表面内,也就是说,NFC天线铺设于第一表面内。随着摄像头个数的增加,设置于后盖上的摄像头支架也将增大,第一表面的面积也会相应增大。相比于第一表面的面积较小的情况而言,同样是铺设于第一表面内的同一相对位置,本实施例中NFC天线所围成的区域的面积也将跟随第一表面的面积的增大而增大。需要说明的是,NFC天线的辐射性能跟NFC天线所围成的区域的面积正相关,因此,当NFC天线所围成的区域的面积增大时,NFC天线的辐射性能得以提升。
此外,由于摄像头支架本身电子设备的后盖,其不在电子设备的显示屏到后盖的堆叠路径中,其厚度通常不纳为减薄电子设备所考虑的因素。因此,将NFC天线铺设于第一表面内,其也不在电子设备的显示屏到后盖的堆叠路径的堆叠路径中,那么NFC天线不会成为电子设备减薄的瓶颈。
可选的,第一通光孔的数量为多个,多个第一通光孔在摄像头支架上沿环形阵列。应理解,当摄像头支架具有多个第一通光孔时,该摄像头支架的尺寸较大,从而第一表面的面积较大。基于此,铺设在第一表面内的NFC天线所围成的区域的面积能够得到保证,从而NFC天线的辐射性能可以得到保障。
一种可能的设计方案,NFC天线上设置有铁氧体、以及沿所述铁氧体边缘走线的金属走线。金属走线在第一正投影上的区域为走线投影区域,走线投影区域为环形。第一通光孔位于走线投影区域对应的环形内侧。
该设计方案中,走线投影区域为环形,那么金属走线也为环形。由于第一通光孔均位于走线投影区域对应的环形内侧,因此,金属走线铺设于第一通光孔和摄像头支架的边缘之间的位置,第一通光孔被金属走线包围在其内部。可见,金属走线为位于第一通光孔和摄像头支架的边缘之间的环形。随着摄像头个数的增加,第一通光孔的数量增多,摄像头支架也将增大,从而导致第一表面的面积相应增大。应理解,当第一表面的面积增大时,位于第一通光孔和摄像头支架的边缘之间的任意环形的面积也将随之增大。基于此,金属走线(为位于第一通光孔和摄像头支架的边缘之间的环形)的走线面积得以提高,从而NFC天线的辐射性能得以提升。
可选的,第一通光孔的边缘线与摄像头支架的边缘线之间的最小间距大于第一阈值。其中,第一阈值至少为金属走线的走线宽度。如此,才能够保证第一通光孔与摄像头支架边缘之间具有足够的空间铺设NFC天线,以保证NFC天线的辐射性能。
另一种可能的设计方案,NFC天线上设置有铁氧体、以及沿所述铁氧体边缘走线的金属走线。金属走线在第一正投影上的区域为走线投影区域,走线投影区域为环形。第一通光孔位于走线投影区域对应的环形外侧。
该设计方案中,走线投影区域为环形,那么金属走线也为环形。由于第一通光孔均位于走线投影区域对应的环形外侧,因此,金属走线铺设于第一通光孔的阵列路径以内的位置。可见,金属走线为位于第一通光孔的阵列路径以内的环形。随着摄像头个数的增加,第一通光孔的数量增多,摄像头支架也将增大,从而导致第一表面的面积相应增大。应理解,当第一表面的面积增大时,位于第一通光孔的阵列路径以内的任意环形的面积也将随之增大。基于此,金属走线(为位于第一通光孔的阵列路径以内的环形)的走线面积得以提高,从而NFC天线的辐射性能得以提升。
可选的,第一通光孔的边缘线与摄像头支架的边缘线之间的最小间距小于第二阈值。其中,第二阈值至少为金属走线的走线宽度。在此情况下,第一通光孔与摄像头支架边缘之间的空间较小,不足以铺设NFC天线。应理解,当摄像头支架整体构造较大,而第一通光孔与摄像头支架边缘之间的空间较小时,势必第一通光孔的阵列路径以内的区域较大。在此情况下,金属走线铺设于第一通光孔的阵列路径以内的位置的方案可以在该场景下实施,以保证NFC天线的辐射性能。
可选的,阵列路径上相邻的两个第一通光孔分别为第一相邻孔和第二相邻孔。NFC天线具有沿第一方向延伸的延伸区域,第一方向背离摄像头支架的几何中心,并朝向第一相邻孔和第二相邻孔之间。本实施例中,延伸区域的存在,使得NFC天线收获了金属走线在延伸区域走线所围成的区域的面积,因此,NFC天线的辐射性能得以提升。
作为一种可选的实施例,第一相邻孔和第二相邻孔在阵列方向上的间距大于第三 阈值,第三阈值至少为金属走线的走线宽度的三倍。金属走线位于延伸区域的部分包括第一走线和第二走线。第一走线和第二走线均向第二方向延伸,并穿过第一相邻孔和第二相邻孔之间的位置。第一走线和第二走线在第三方向上间隔设置。其中,第三方向为第一相邻孔和第二相邻孔的阵列方向,第二方向垂直于第三方向。
需要说明的是,只有当延伸区域中金属走线的走线面积足够大时,NFC天线的辐射性能才能够通过延伸区域得到较大的提升,延伸区域的存在才是有意义的。
本实施例中,当第一相邻孔和第二相邻孔在阵列方向上的间距大于第三阈值时,代表第一相邻孔和第二相邻孔之间的间距较大。在此情况下,穿过第一相邻孔和第二相邻孔之间的位置的第一走线和第二走线才可以保持较大的间距,以获得足够大的走线面积。此外,第一走线和第二走线均沿第二方向走线,可以分别和第一相邻孔和第二相邻孔之间保持相同的间隔,一方面可以更美观,另一方面,避免存在一边间隔过大,一边间隔过小而不易加工的问题。并且,第一走线和第二走线在第三方向上保持间距,由于金属走线的走线面积由金属走线所围成的区域决定,因此,当第一走线和第二走线在第三方向上具有间距时,才能够通过延伸区域收获走线面积,延伸区域的存在才是意义的。
作为另一种可选的实施例,第一相邻孔和第二相邻孔在阵列方向上的间距小于第四阈值,第四阈值至少为金属走线的走线宽度的三倍。金属走线位于延伸区域的部分包括第一走线和第二走线。第一走线和第二走线在第二方向上逐渐靠拢,第二方向垂直于第一相邻孔和第二相邻孔的阵列方向。
需要说明的是,当第一相邻孔和第二相邻孔在阵列方向上的间距小于第四阈值时,代表第一相邻孔和第二相邻孔之间的间距不算大。在此情况下,若第一走线和第二走线均朝向第二方向延伸,那么第一走线和第二走线之间的间距也较小,因此,走线难度较大,对于加工工艺的要求极高。此外,第一走线和第二走线之间的间距较小,可以获得的走线面积收益较小。在较难的加工工艺下收获较小的走线面积,无疑来说是得不偿失的。基于此,本实施例中,第一走线和第二走线在第二方向上处于逐渐收拢的状态,将不会由于通第一相邻孔和第二相邻孔在阵列方向上的间距不算大而走线困难的情况。此外,相比于不存在延伸区域的方案而言,该实施例可以收获金属走线在延伸区的走线面积,从而可以提高NFC天线的辐射性能。
又一种可能的设计方案,NFC天线上设置有铁氧体、以及沿所述铁氧体边缘走线的金属走线。金属走线在第一正投影上的区域为走线投影区域,走线投影区域为环形。多个第一通光孔的部分位于走线投影区域对应的环形外侧;多个第一通光孔的剩余部分位于走线投影区域对应的环形内侧。
由于第一通光孔可以用于安装摄像头、闪光灯、或传感器,因此,不同的第一通光孔可以安装不同的器件,其大小可能不一致,从而可能存在部分第一通光孔与摄像头支架边缘之间的空间较小,部分第一通光孔与摄像头支架边缘之间的空间较大的情况。针对与摄像头支架边缘之间的空间较小的第一通光孔而言,位于走线投影区域对应的环形内侧,即被金属走线包围在其内部;针对与摄像头支架边缘之间的空间较大的第一通光孔而言,位于走线投影区域对应的环形外侧,即位于金属走线的外侧。可见,本实施例中充分利用了可以在第一通光孔和摄像头支架的边缘之间走线的位置进 行走线,最大程度地扩大走线面积,从而提高NFC天线的辐射性能。
示例性的,当第一通光孔的边缘线与摄像头支架的边缘线之间的最小间距小于第一阈值时,第一通光孔位于走线投影区域对应的环形外侧。其中,第一阈值至少为金属走线的走线宽度。当第一通光孔的边缘线与摄像头支架的边缘线之间的最小间距大于第一阈值时,第一通光孔位于走线投影区域对应的环形内侧。
本示例中,当第一通光孔的边缘线与摄像头支架的边缘线之间的最小间距小于第一阈值,可以视为该第一通光孔与摄像头支架边缘之间的空间较小,金属走线无法从此处走线;当第一通光孔的边缘线与摄像头支架的边缘线之间的最小间距大于第一阈值,可以视为该第一通光孔与摄像头支架边缘之间的空间较大,金属走线可以从此处走线,从而将该第一通孔包围在其内部,获得该部分的面积收益。
可选的,NFC上开设有避让孔,避让孔在第一正投影上的区域为避让区域,避让区域位于走线投影区域对应的环形内侧。摄像头支架上还设置有第二通光孔,第二通光孔与避让区域重叠,第二通光孔用于与第二闪光灯、第二传感器、或第二摄像头相对。
本实施例中,避让区域与第二通光孔重叠,也就是说,在摄像头支架正对避让孔的区域开设第二通光孔。应理解,避让区域位于走线投影区域对应的环形内侧,代表避让孔开设在金属走线以内的区域,避让孔的开设并未影响金属走线的走线面积,从而并未对NFC天线的辐射性能造成影响。在保障了NFC天线的辐射性能的前提下,本实施例在不增加摄像头支架尺寸的基础上多一个通光孔,因此,可以支持多安装一个摄像头,有利于满足摄像头数量增多的趋势。
可选的,上述电子设备还包括装饰镜片。摄像头支架的第一表面的边缘设置有背胶区,装饰镜片通过与背胶区连接,从而固定在摄像头支架的第一表面。NFC天线,设置于装饰镜片和摄像头支架的第一表面之间,且第一正投影和背胶区不交叠。本实施例中,装饰镜片可以保护和美化摄像头。第一正投影和背胶区不交叠,也即NFC天线需要避开背胶区铺设,以避免装饰镜片安装时,由于NFC天线而导致翘曲,从而发生无法实现良好的粘合和密封。
附图说明
图1为本申请实施例提供的三种NFC天线的结构示意图;
图2为一种可能的设计方案中NFC天线在电子设备上的布置位置示意图;
图3为沿A-A剖切线对图2进行剖切所获得的剖面图;
图4为另一种可能的设计方案中NFC天线在电子设备上的布置位置示意图;
图5为本申请一些实施例提供的电子设备的结构示意图;
图6为沿B-B剖切线对图5所示的电子设备进行剖切所获得的剖面图;
图7为本申请实施例对金属走线的走线宽度的示意图;
图8为本申请另一些实施例提供的电子设备的结构示意图;
图9为本申请另一些实施例提供的电子设备的结构示意图;
图10为本申请另一些实施例提供的电子设备的结构示意图;
图11为本申请另一些实施例提供的电子设备的结构示意图。
具体实施方式
在本申请实施例中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,“环形”,是指由具有预定形状的外边缘向内延伸预定距离形成内边缘后所获得的形状。基于此,环形具有外边缘线和内边缘线,环形内侧是指位于环形内边缘线以内的区域,环形外侧是指环形外边缘线以外的区域,后续不再赘述。应理解,本申请实施例中,环形可以是圆环形,也可以是非圆环形,例如,方形的环形、多边形的环形等。
随着技术的发展,手机、平板电脑、笔记本电脑等电子设备内一般都具有NFC功能,以实现移动支付等功能。NFC天线的辐射性能对于NFC功能起着至关重要的作用。
需要说明的是,NFC天线包括铁氧体以及金属走线。其中,金属走线用于电磁波辐射,铁氧体用于降低NFC天线与电子设备的其他电子元器件(例如主板上的各器件)相互干扰形成涡流的风险。铁氧体包括相对的两个面,金属走线沿铁氧体的边缘铺设于铁氧体的其中一面。NFC天线的辐射性能主要受金属走线所围成的区域(后续简称为走线区域,当金属走线为多个线圈时,通常以最外的线圈所围成的区域为走线区域)的面积影响(后续简称为走线面积),基本不受走线区域内是否存在铁氧体所影响,且走线面积越大,NFC天线的辐射性能越好。走线区域内是否存在铁氧体影响的是NFC天线的防干扰效果。
如图1所示,图1中的(a)中,NFC天线30包括铁氧体31和沿铁氧体31边缘走线的金属走线32。其中,金属走线32的走线区域为区域A1。区别于图1中的(a),图1中的(b)中,金属走线32的走线区域为区域B1。区别于图1中的(a),图1中的(c)中,金属走线32的走线区域为区域C1。通过对比图1中的(a)和(b)可见,走线区域A1的走线面积大于走线区域B1的走线面积,图1中的(a)所示的NFC天线的辐射性能更好;通过对比图1中的(b)和(c)可见,走线区域A1内不存在铁氧体,走线区域C1内存在铁氧体,但由于走线区域A1的走线面积和走线区域C1的走线面积相同,因此,图1中的(a)所示的NFC天线的辐射性能大致相同。
基于此,如何保证NFC天线的走线面积,以及如何在有限的空间内获得最大的走线面积收益,对于保证NFC天线的辐射性能至关重要。
请参阅图2,图2为一种可能的设计方案中NFC天线在电子设备上的布置位置示意图。电子设备包括后盖10、摄像头支架20和NFC天线30。其中,摄像头支架20和NFC天线30均设置在后盖10上。摄像头支架20用于安装电子设备的摄像头,在一些实施例中,若电子设备包括闪光灯或传感器,摄像头支架20还用于安装闪光灯或传感器。应理解,此处的“安装”是指摄像头支架20的设置需要分别和摄像头、闪光灯、或传感器之间具有一定的配合关系,并不表示摄像头、闪光灯、或传感器分别和摄像头支架20之间一定具有直接的连接关系。例如,摄像头支架上的通光孔和摄像头正对关系。当然,在其他实施例中,也可以具有连接关系,本申请实施例对此不作具体限 定。
一方面,摄像头支架20可以起到装饰摄像头、闪光灯、或传感器的作用,另一方面,可以保护摄像头、闪光灯、或传感器不受损坏。如图2所示,NFC天线30沿摄像头支架20的周向分布,环绕在摄像头支架20的外侧。
该设计方案中,当摄像头支架20占据的后盖10面积变大时,NFC天线30的走线面积也会变大。然而,由于电子设备的内部空间有限,当NFC天线30的走线面积变大时,NFC天线30的金属走线的铺设将会受到电子设备内部的其他部件(如电池)的阻挡,从而无法走线。换而言之,图2所示的设计方案无法支持大走线面积的NFC天线30的铺设,在摄像头支架20的面积过大的场景中,需要寻求其他方式来保证NFC天线30的走线面积,以保证NFC天线30的辐射性能。
请参阅图3,图3为沿A-A剖切线对图2所示的电子设备进行剖切所获得的剖面图。电子设备包括后盖10、中框50、以及显示屏40。显示屏40和后盖10分别设置于中框50的相对两侧,并形成一空腔。空腔内堆叠了主板60、用于支撑主板60的主板支架70、以及NFC天线30。可见,NFC天线30为电子设备在厚度方向的堆叠路径上的器件。随着超薄电子设备的流行,NFC天线30的厚度也是整机减薄中的瓶颈之一。
请参阅图4,图4为另一种可能的设计方案中NFC天线的布置位置示意图。区别于图2和图3所示的方案,摄像头支架20和NFC天线30并排分布在电子设备的后盖10上,NFC天线30位于摄像头支架20的侧边。
该设计方案中,当摄像头支架20占据的后盖10面积变大时,NFC天线30可利用的面积空间将被挤压,基于此,NFC天线30的走线面积将变小,从而无法保证NFC天线30的辐射性能。此外,图4所示的方案中,NFC天线30同样为电子设备在厚度方向的堆叠路径上的器件,即NFC天线30的厚度仍然是整机减薄的瓶颈。
可见,上述两种实施例方式中,NFC天线30的走线均会受到摄像头支架20所占据的面积的影响。然而,目前电子设备的发展趋势是摄像头模组越来越大,摄像头的个数越来越多。基于此,摄像头支架20所占用的后盖10面积也会越来越大。很显然,图1和图4所示的NFC天线30的布置方式无法满足电子设备的发展要求。
此外,上述两种实施例方式中,NFC天线30为电子设备在厚度方向的堆叠路径上的器件。
为了解决现有技术中NFC天线为电子设备减薄的瓶颈,以及随着摄像头支架所占用的面积的变大,现有技术中NFC天线的走线方式无法保证NFC天线的辐射性能的问题,本申请提供了一种改进的电子设备。
该电子设备能够在摄像头支架较大的场景中,保证NFC天线的走线面积,从而保证NFC天线的辐射性能,并且使NFC天线不再成为电子设备减薄的瓶颈。应理解,本申请实施例中的电子设备可以是手机、平板电脑、桌面型、膝上型、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等具有NFC天线和摄像头的设备中,本申请实施例对该电子设备的具体形态不作特殊限制。
下面将结合附图对本申请实施例的实施方式进行详细描述。
请参阅图5和图6,图5为本申请一些实施例提供的电子设备的结构示意图。图6为沿图5中的B-B剖切线剖切得到的剖面图。该电子设备为手机,包括中框50(图5中未示出)、显示屏40(图5中未示出)、后盖10。其中,中框50用于对电子设备内的功能器件起到固定支撑作用,中框50通常由不锈钢、铝合金等金属材料制作。显示屏40和后盖10分别设置于中框50的相对两侧,且显示屏40、中框50和后盖10层叠设置。在一些实施例中,显示屏40上设置有前置摄像头模块、听筒、补光灯等功能器件。在一些实施例中,后盖10与中框50之间设有主板60、电池、扬声器等功能器件。此外,后盖10上开设有安装孔,安装孔用于安装电子设备的摄像头组件。
如图5所示,摄像头组件包括摄像头支架20、以及安装于摄像头支架20内的摄像头、闪光灯、或传感器(图5未示出)。传感器可以为激光测距(time of flight,TOF)传感器,环境光传感器,红外测温传感器等需要光参与检测的器件。摄像头支架20也称为摄像头装饰件,其形状可以为圆形。应理解,虽然图5示意了摄像头支架20为圆形的情况,但摄像头支架20还可以为椭圆形、矩形、菱形等其他规则或近似规则的形状,本申请实施例对此不作具体限定。其中,摄像头支架20嵌入后盖10上开设的安装孔中,从而安装于后盖10上。摄像头支架20包括相对设置的第一表面S1和第二表面S2(图5中未示出),安装好的摄像头支架20的第一表面S1为朝向电子设备的外侧的一面。
摄像头支架20上开设有四个第一通光孔,分别为通光孔K1、通光孔K2、通光孔K3、通光孔K4,其中,通光孔K1可以与摄像头相对,用于安装摄像头,在此情况下,光线可穿过通光孔K1进入摄像头,从而实现拍摄;通光孔K1也可以与闪光灯相对,用于安装闪光灯,在此情况下,闪光灯发射的光线可穿过通光孔K1,从而实现照射;通光孔K1还可以与传感器相对,用于安装传感器,在此情况下,传感器可通过通光孔K1对外界环境进行监测。应理解,此处的“安装”是指通光孔K1的设置需要分别和摄像头、闪光灯、或传感器之间具有正对关系,并不表示摄像头、闪光灯、或传感器分别和摄像头支架20之间具有直接的连接关系。当然,在其他实施例中,也可以具有直接的连接关系,本申请实施例对此不作具体限定。后续涉及到相关内容均参照此定义,后文不再赘述。其他的第一通光孔可以同样的方式实施,此处不再赘述。应理解,通常而言,电子设备只具备一个闪光灯。基于此,电子设备中只有一个第一通光孔用于安装闪光灯。需要说明的是,虽然图5示意了第一通光孔的数量为四个,且四个第一通光孔呈方形阵列的情况,但该示例不应该理解为对本申请的特殊限制。在其他实施例中,第一通光孔的数量可以为其他数量,例如3个、4个、5个、甚至更多。应理解,随着电子设备的摄像头的增加,所需的第一通光孔的数量也随之增加。第一通光孔数量越多,对应的摄像头支架20的尺寸越大,所占用的后盖面积也越大。通常而言,当摄像头支架20具有三个以上的第一通光孔时,该摄像头支架20所占用的后盖面积较大。
此外,通光孔K1、通光孔K2、通光孔K3、通光孔K4沿正方形的环形阵列。具体而言,通光孔K1、通光孔K2、通光孔K3、通光孔K4沿正方形的环形阵列,是指通光孔K1、通光孔K2、通光孔K3、通光孔K4的圆形(即几何中心)依次首尾相连 形成正方形的阵列路径(图中正方形的虚线示意)。应理解,几何中心是指具有一定对称性的物体最中心的位置,如圆心、球心、平行四边形两对角线的交点等。基于此,在其他实施例中,若第一通光孔为其他形状,如菱形、正方形、长方形等,在此情况下,则两对角线的交点为第一通光孔的几何中心。此外,需要说明的是,在其他实施例中,也可以呈其他环形的阵列路径阵列,例如椭圆形的环形、矩形的环形、菱形的环形、多边形的环形等,本申请实施例对此不作具体限定。
如图5所示,为了实现NFC功能,该电子设备还包括NFC天线30。NFC天线30铺设在摄像头支架20的第一表面S1,且NFC天线30沿电子设备的厚度方向(即图6中箭头示出的Z方向)在第一表面S1的正投影(即第一正投影)落入第一表面S1内,即NFC天线30铺设于第一表面S1内。具体的,可以通过在摄像头支架20的第一表面S1挖槽的方式实现NFC天线30的铺设。由于摄像头支架20本身凸出于后盖10的高度较高,常见的凸出高度为0.85~1.0mm,或者更高,如2~3mm,可见,摄像头支架20的厚度足够大,强度也足够支撑在其表面挖槽铺设NFC天线30。
需要说明的是,由于摄像头支架20本身凸出于电子设备的后盖10,其不在电子设备从显示屏40到后盖10的堆叠路径中,其厚度通常不纳为减薄电子设备所考虑的因素。因此,将NFC天线30铺设于第一表面S1内,增加的是摄像头组件凸出于后盖10的厚度,并非增加电子设备的厚度。相比于图2和图4所示的方案而言,NFC天线30不在显示屏到后盖10的堆叠路径中,那么NFC天线不会成为电子设备减薄的瓶颈,而且还可以减薄电子设备的厚度。此外,通过挖槽的方式将NFC天线30铺设在摄像头支架20的第一表面S1,NFC天线30也可以和摄像头支架20的第一表面S1平齐,从而不增加摄像头组件凸出于后盖10的厚度。
还需要说明的是,本申请实施例仅对NFC天线30位于摄像头支架20内侧的部分进行了示意和描述。应理解,NFC天线30还具有位于摄像头支架20外侧的部分,该部分设置有馈电点。NFC天线30通过馈电点与主板60(图6示出、图5未示出)上的射频模块耦接。射频模块经由NFC天线30接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器;射频模块还可以对处理器发送的信号进行调频,放大,经NFC天线30转为电磁波辐射出去。
此外,本实施例中,由于NFC天线30从电子设备厚度方向的堆叠路径中移至了摄像头支架20内,NFC天线30与主板60之间的距离变远了,因此,NFC天线30和主板60之间的连接相比于目前的NFC天线的连接方案来说,存在一些差异。具体而言,如图6所示,NFC天线30和主板60之间,可以通过安装于主板60的弹片抵接摄像头支架20上的NFC天线30的馈电点进行连接。相比于普通弹片而言,本实施例中所使用的弹片的高度更高。此外,也可以使用较长的柔性电路板(flexible printed circuit,FPC)。在此情况下,可以将NFC天线30的馈电点所在的一端固定在主板支架70上,此时,采用普通弹片抵接主板支架70。FPC也可以换成此处NFC的连接方式也可以更换成板到板连接器(board to board,B2B)。
如图5所示,为了避免NFC天线30的铺设影响第一通光孔所对应的器件的正常工作,NFC天线30在第一表面S1的正投影(即第一正投影)和通光孔K1、通光孔K2、通光孔K3、通光孔K4均不交叠,以使NFC天线避让通光孔K1、通光孔K2、 通光孔K3、通光孔K4。如此,NFC天线30将不会存在遮挡第一通光孔的情况。
为了使得第一正投影和通光孔K1、通光孔K2、通光孔K3、通光孔K4均不交叠,图5所示的电子设备中,NFC天线30包括环形的铁氧体31,以及沿铁氧体31边缘走线的金属走线32,金属走线32也为环形,其在第一正投影上的区域为走线投影区域。由于金属走线32为环形,那么走线投影区域也为环形。通光孔K1、通光孔K2、通光孔K3、通光孔K4均位于走线投影区域对应的环形内侧。换而言之,金属走线32将通光孔K1、通光孔K2、通光孔K3、通光孔K4包围在其内部。
本实施例中,金属走线32将通光孔K1、通光孔K2、通光孔K3、通光孔K4包围在其内部,并且,由图5可见,金属走线32以内的区域未铺设铁氧体,也就是说,通光孔K1、通光孔K2、通光孔K3、通光孔K4和铁氧体31也不重叠,因此,第一正投影和第一通光孔不交叠,如此NFC天线30可以避让第一通光孔,从而避免影响第一通光孔所对的器件的正常工作。
应理解,虽然图5示意了铁氧体31为空心的环状结构。但在其他实施例中,铁氧体31也可以设置为仅避开通光孔K1、通光孔K2、通光孔K3、通光孔K4的构造,即在第一表面S1的内侧,除第一通光孔的位置(简称为金属走线32以内的区域)均铺设铁氧体31。如此,可以进一步降低NFC天线30与电子设备的其他电子元器件相互干扰形成涡流的风险,本申请实施例对此不作具体限定。需要说明的是,金属走线32经过的铁氧体区域,相较于金属走线32未经过的铁氧体区域(金属走线32以内的区域)而言,所起到的防干扰效果更好。鉴于NFC天线30的辐射性能由金属走线32的走线面积决定,金属走线32以内的区域是否铺设铁氧体,对NFC天线30的辐射性能的提升效果较小,且考虑成本和加工难度的因素,通常会选择图5所示的方案铺设铁氧体31。
为了保护和美化摄像头,在一些实施例中,如图6所示,上述电子设备还包括装饰镜片80,装饰镜片80通过与第一表面S1的边缘的背胶区90粘接,从而固定在第一表面S1。上述NFC天线30设置于装饰镜片80和第一表面S1之间,且和背胶区90不交叠。也就是说,NFC天线30需要避开背胶区90铺设,以避免装饰镜片80安装时,由于NFC天线30而导致翘曲,从而发生无法实现良好的粘合和密封。
需要说明的是,图5所示的方案通常应用于摄像头支架20所占用的后盖面积较大,且第一通光孔与摄像头支架20边缘之间的空间较大的场景中。如此,才能够保证有第一通光孔与摄像头支架20之间有足够大的面积铺设NFC天线30,以满足NFC天线30的辐射性能。在一些实施例中,当第一通光孔的边缘线与摄像头支架20的边缘线之间的最小间距大于第一阈值时,可以认定为第一通光孔与摄像头支架20边缘之间的空间较大。
其中,第一通光孔的边缘线与摄像头支架20的边缘线之间的最小间距,是指第一通光孔的边缘线和摄像头支架20的边缘线最靠近的两个位置之间的间距。下面以通光孔K1举例说明,其他第一通光孔可以参照实施。请参阅图5,当摄像头支架20为圆形,通光孔K1为圆形时,以摄像头支架20的圆心到通光孔K1的圆心作直线,直线分别与摄像头支架20的边缘线、通光孔K1的边缘线相交于M点、N点,M点和N点之间的间距即为上述最小间距。在其他实施例中,当摄像头支架20为矩形、通光孔 K1为圆形时,上述最小间距为通光孔K1的圆心到摄像头支架20各边的间距中最小的间距。
上述第一阈值至少为金属走线32的走线宽度。金属走线32的走线宽度是指铁氧体31上环绕的所有线圈(金属走线32环绕铁氧体31一圈为一个线圈,图5具有两个线圈)所占据的宽度,而并非指单根金属走线32的宽度。示例性的,如图7所示,铁氧体31上环绕的金属走线32有三个线圈,金属走线32的走线宽度通过双箭头的线标注。考虑到金属走线32需要分别与背胶区90、以及第一通孔保持间距,以避让背胶区90和第一通孔,优选地,第一阈值大于金属走线32的走线宽度。示例性的,现有加工工艺下,金属走线32的走线宽度通常为2.5mm,背胶区90的宽度通常为1mm,背胶区90和金属走线32的外边缘线之间的间距通常为0.5mm,金属走线32的内边缘线到第一通光孔的间距通常为1mm,因此,第一阈值可以为金属走线32的走线宽度的两倍。
应理解,虽然图5示意了铁氧体31和金属走线32均为圆环形,NFC天线30整体上也呈现圆环形的情形。在其他实施例中,NFC天线30也可以为其他形状,本申请实施例对此不作具体限定。应理解,为了美观效果,NFC天线30的形状可以根据摄像头支架20的形状,第一通光孔的位置,装饰镜片80(图6示出)开窗的大小等因素进行差异化的设计,保证正常的结构防护、摄像头组件的类型标识信息、参数信息等文字的铺设效果等,把NFC天线30最大化地隐藏在装饰镜片80的光盘(compact disk,CD)装饰纹下方。
图5所示的电子设备中,走线投影区域为环形,那么金属走线32也为环形。由于第一通光孔均位于走线投影区域对应的环形内侧,因此,金属走线32铺设于第一通光孔和摄像头支架20的边缘之间的位置,第一通光孔被金属走线32包围在其内部。可见,金属走线32为位于第一通光孔和摄像头支架20的边缘之间的环形。随着摄像头个数的增加,第一通光孔的数量增多,摄像头支架20也将增大,从而导致第一表面S1的面积相应增大。应理解,当第一表面S1的面积增大时,位于第一通光孔和摄像头支架20的边缘之间的任意环形的面积也将随之增大。基于此,金属走线32(为位于第一通光孔和摄像头支架20的边缘之间的环形)的走线面积得以提高,从而NFC天线30的辐射性能得以提升。
请参阅图8,图8为本申请另一些实施例提供的电子设备的结构示意图。区别于图5所示的电子设备,该电子设备中,摄像头支架20整体构造较大,而第一通光孔与摄像头支架20边缘之间的空间较小的场景。示例性的,当第一通光孔的边缘线与摄像头支架20的边缘线之间的最小间距小于第二阈值时,可以认定为第一通光孔与摄像头支架20的边缘的空间较小。其中,第二阈值至少为金属走线32的走线宽度。第一通光孔的边缘线与摄像头支架20的边缘线之间的最小间距的具体实施可以参照图5的相关内容,第二阈值的具体实施也可参照第一阈值的实施,此处不再赘述。应理解,第一阈值和第二阈值可以为同一取值,也可以为不同取值,本申请实施例对此不作具体限定。显然,在此情况下,第一通光孔和摄像头支架20边缘之间的空间不足以实施图5所示的方案。
应理解,当摄像头支架20整体构造较大,而第一通光孔与摄像头支架20边缘之 间的空间较小时,通常第一通光孔的阵列路径(多个第一通光孔的几何中心依次首尾相连形成的闭合路径,图中正方形的虚线示意)以内的区域较大。如此,第一通光孔的阵列路径以内的区域有足够大的面积铺设NFC天线30。基于此,区别于图5所示的电子设备,图8所示的电子设备中,通光孔K1、通光孔K2、通光孔K3、通光孔K4位于走线投影区域对应的环形外侧,并且和第一正投影不交叠。换而言之,图8所示的方案中,第一通光孔位于金属走线32的外侧,金属走线32铺设于第一通光孔的阵列路径以内的位置。
应理解,由于金属走线32沿铁氧体31边缘走线,因此走线投影区域对应的环形外侧还存在铁氧体31的投影区域。而本实施例中,通光孔K1、通光孔K2、通光孔K3、通光孔K4不仅位于走线投影区域对应的环形外侧,还和第一正投影不交叠,因此,本实施例中的第一通光孔实质上并不是铺设在金属走线32的外侧,而是铺设在NFC天线30的外侧。还应理解,该实施例中,虽然图8示意了铁氧体31为实心结构,在其他实施例中,也可以将其设置为环状结构,具体实施可以参照图5的相关内容,此处不再赘述。
图8所示的电子设备中,走线投影区域为环形,那么金属走线32也为环形。由于第一通光孔均位于走线投影区域对应的环形外侧,因此,金属走线32铺设于第一通光孔的阵列路径以内的位置。可见,金属走线32为位于第一通光孔的阵列路径以内的环形。随着摄像头个数的增加,第一通光孔的数量增多,摄像头支架20也将增大,从而导致第一表面S1的面积相应增大。应理解,当第一表面S1的面积增大时,位于第一通光孔的阵列路径以内的任意环形的面积也将随之增大。基于此,金属走线32(为位于第一通光孔的阵列路径以内的环形)的走线面积得以提高,从而NFC天线30的辐射性能得以提升。
如图8所示,为了获得尽可能大的走线面积收益,以提高NFC天线30的辐射性能,NFC天线30具有四个延伸区域,分别为:延伸区域Q1、延伸区域Q2、延伸区域Q3、延伸区域Q4,下面以延伸区域Q1为例进行说明其具体实施,其他延伸区域可以参照实施。
延伸区域Q1往第二方向(图中虚线箭头示意)延伸,并穿过在阵列路径(图中方形虚线示意)上相邻的通光孔K1(即第一相邻孔)和通光孔K2(即第二相邻孔)之间的位置。第二方向背离第一表面S1的圆心(即第一表面S1的几何中心),并垂直于通光孔K1和通光孔K2的阵列方向。通光孔K1和通光孔K2的阵列方向,是指连接通光孔K1的圆心(几何中心)和通光孔K2的圆心(几何中心)的中心线所在的方向。为方便说明,以下将通光孔K1和通光孔K2的阵列方向简称为第三方向。
其中,延伸区域Q1同样铺设有铁氧体和铁氧体边缘走线的金属走线。金属走线32位于延伸区域Q1的部分包括第一走线L1和第二走线L2。第一走线L1和第二走线L2均向第二方向延伸,穿过通光孔K1和通光孔K2之间的位置,并且第一走线L1和第二走线L2在第三方向上间隔设置。
本实施例中,延伸区域Q1的存在,使得NFC天线30收获了金属走线32在延伸区域Q1走线的走线面积,因此,NFC天线30的辐射性能得以提升。此外,第一走线L1和第二走线L2均沿第二方向走线,可以分别和通光孔K1、以及通光孔K2之间保 持相同的间隔,一方面可以更美观,另一方面,避免存在一边间隔过大,一边间隔过小而不易加工的问题。并且,第一走线L1和第二走线L2在第三方向上保持间距,由于金属走线32的走线面积由金属走线32所围成的区域决定,因此,当第一走线L1和第二走线L2在第三方向上具有间距时,才能够通过延伸区域Q1收获走线面积,延伸区域Q1的存在才是意义的。
当然,在其他实施例中,延伸区域Q1也可以背离第一表面S1的圆心,并朝通光孔K1和通光孔K2之间的其他位置延伸。对应的,第一走线L1和第二走线L2也往通光孔K1和通光孔K2之间的其他位置延伸。应理解,相比于朝第二方向延伸的方案而言,延伸区域Q1朝其他位置(例如偏向于通光孔K1的方向)延伸的方案,使得第一走线L1和第二走线L2分别和通光孔K1、以及通光孔K2之间的间隔不一致,一方面不够美观,另一方面,存在一边间隔过大,一边间隔过小而不易加工的问题。
此外,延伸区域Q1也可以不穿过通光孔K1和通光孔K2之间的位置。对应的,第一走线L1和第二走线L2也不穿过通光孔K1和通光孔K2之间的位置。应理解,由于影响NFC天线30的辐射性能最关键的因素是金属走线32的走线面积,金属走线32的走线面积越大,NFC天线30的辐射性能越好。因此,相比于延伸区域Q1不穿过通光孔K1和通光孔K2之间的位置的方案而言,图8所示的方案中,延伸区域Q1穿过了通光孔K1和通光孔K2之间的位置。如此,延伸区域Q1的面积才足够大。延伸区域Q1的面积越大。由于金属走线32绕铁氧体31边缘走线,因此,当延伸区域Q1的铁氧体的面积越大时,金属走线32的走线面积也就越大,NFC天线30的辐射性能越好。
需要说明的是,只有当延伸区域Q1中金属走线32的走线面积足够大时,NFC天线30的辐射性能才能够通过延伸区域Q1得到较大的提升,延伸区域Q1的存在才是有意义的。为了使得金属走线32在延伸区域Q1的走线获得足够大的走线面积,图8所示的方案通常应用于通光孔K1和通光孔K2之间的间距较大的场景中。只有如此,第一走线L1和第二走线L2之间才可以保持较大的间距,以获得足够大的走线面积。
在一些实施例中,通光孔K1和通光孔K2在阵列方向上的间距大于第三阈值,第三阈值至少为金属走线32的走线宽度的三倍,视为通光孔K1和通光孔K2之间的间距较大。其中,通光孔K1和通光孔K2在阵列方向上的间距是指通光孔K1的圆心和通光孔K2的圆心之间的间距。金属走线32的走线宽度的具体定义可以参考图5所示的方案,此处不再赘述。在此场景中,由于第一走线L1和第二走线L2已经占据了两个金属走线32的走线宽度,在不考虑避让通光孔K1和通光孔K2的间距的情况下,第一走线L1和第二走线L2之间还剩余至少一个金属走线32的走线宽度。因此,当第三阈值至少为金属走线32的走线宽度的三倍时,通光孔K1和通光孔K2之间的间距足够大,图8所示的方案才可以通过向延伸区域Q1获得足够大的面积收益。
具体实施过程中,考虑到延伸区域Q1需要分别与通光孔K1和通光孔K2保持间距以进行避让,并且,当第一走线L1和第二走线L2的间距较小时,一方面存在走线困难的问题,另一方面存在面积收益较低、NFC性能提升较少的问题,第三阈值可以大于金属走线32的走线宽度的三倍。示例性的,现有加工工艺下,金属走线32的走线宽度通常为2.5mm,因此,第一走线L1和第二走线L2的走线宽度均为2.5mm。第 一走线L1和第二走线L2之间的间距为5mm,通光孔K1到延伸区域Q1的边缘线(靠近第一走线L1的边缘线)的间距为1mm,通光孔K2到延伸区域Q1的边缘线(靠近第二走线L2的边缘线)的间距为1mm,因此,第三阈值可以为金属走线32的走线宽度的四倍。
请参阅图9,图9为本申请另一些实施例提供的电子设备的结构示意图。区别于图8所示的电子设备,该电子设备中,通光孔K1和通光孔K2在阵列方向上的间距不算大。示例性的,当通光孔K1和通光孔K2在阵列方向上的间距小于第四阈值时,第四阈值至少为金属走线32的走线宽度的三倍,可以视为通光孔K1和通光孔K2在阵列方向上的间距不算大。其中,第四阈值的具体实施也可参照第三阈值的实施。应理解,第四阈值和第三阈值可以取同一数值,也可以取不同数值,本申请实施例对此不作具体限定。在此情况下,若采用图8所示的方案,延伸区域Q1分别靠通光孔K1和通光孔K2的间距过小,且第一走线L1和第二走线L2之间的间距也较小,因此,走线难度较大,对于加工工艺的要求极高。此外,第一走线L1和第二走线L2之间的间距较小,可以获得的走线面积收益较小。在较难的加工工艺下收获较小的走线面积,无疑来说是得不偿失的。基于此,区别于图8所示的电子设备,图9所示的电子设备中,同样以延伸区域Q1为例进行说明。延伸区域Q1沿第二方向延伸,并穿过通光孔K1和通光孔K2之间的位置。但延伸区域Q1上的第一走线L1和第二走线L2在第二方向上逐渐靠拢。
具体而言,第一走线L1和第二走线L2在第二方向上逐渐靠拢是指,第一走线L1和第二走线L1上相对应的两个点之间的间隔在第二方向上逐渐减小,其中,第一走线L1和第二走线L1上相对应的两个点是指,在第三方向(垂直于第二方向)上延伸的直线,分别与第一走线L1和第二走线L1相交的两个点。
该方案中,若第一走线L1和第二走线L2在第二方向上处于逐渐靠拢的状态,那么,在经过通光孔K1和通光孔K2之间的位置时,第一走线L1和第二走线L2分别与通光孔K1和通光孔K2的间距都较大,将不会由于通光孔K1和通光孔K2在阵列方向上的间距不算大而走线困难的情况。此外,相比于不存在延伸区域Q1的方案而言,图9所示方案可以收获金属走线32在延伸区域Q1的走线面积,从而可以提高NFC天线的辐射性能。
应理解,在其他实施例中,延伸区域Q1也可以不穿过通光孔K1和通光孔K2之间,并且延伸区域Q1也可以朝通光孔K1和通光孔K2之间的其他位置延伸,第一走线L1和第二走线L2也可以在通光孔K1和通光孔K2之间的其他方向上靠拢,本申请实施例对此不作具体限定,具体实施效果可以参见图8所示的方案,此处不再赘述。
需要说明的是,影响NFC天线30的辐射性能最关键的因素是金属走线32的走线面积。金属走线32的走线区域内是否存在铁氧体,对NFC天线30的辐射性能的影响较小。基于此,本申请实施例还提供如下图10所示的电子设备。
请参阅图10,图10为本申请另一些实施例提供的电子设备的结构示意图。区别于图9所示的电子设备,该电子设备中,NFC天线30上还开设有避让孔33(与通光孔K5统一位置)。避让孔K5在第一正投影上的区域为避让区域,避让区域位于走线投影区域对应的环形内侧。其中,避让区域与通光孔K5(即第二通光孔)重叠。换而 言之,在摄像头支架20正对避让孔33的区域开设通光孔K5。其中,通光孔K5可以与摄像头相对,在此情况下,光线可依次穿过避让孔33、通光孔K5进入摄像头,从而实现拍摄;通光孔K5也可以与闪光灯相对,在此情况下,闪光灯发射的光线可依次穿过通光孔K5、避让孔33射向电子设备外侧,从而实现照射;通光孔K5还可以与传感器相对,在此情况下,传感器可通过避让孔33、通光孔K5对外界环境进行监测。
应理解,避让区域位于走线投影区域对应的环形内侧,代表避让孔33开设在金属走线32以内的区域,避让孔33的开设并未影响金属走线32的走线面积,从而并未对NFC天线30的辐射性能造成影响。在保障了NFC天线30的辐射性能的前提下,图10所示的方案相比于图9所示的方案,在不增加摄像头支架尺寸的基础上,本实施例多一个通光孔,因此,可以支持多安装一个摄像头,有利于满足摄像头数量增多的趋势。
还应理解,图8所示的方案中,同样可以在NFC天线30上开设有避让孔33,以增加摄像头的数量。
需要说明的是,第一通光孔可以用于安装摄像头、闪光灯、或传感器,可见,不同的第一通光孔可以安装不同的器件,其大小可能不一致。通常而言,当第一通光孔安装闪光灯、体积较小的传感器、或体积较小的摄像头时,第一通光孔较小,当第一通光孔安装体积较大的摄像头或传感器时,第一通光孔较大。基于此,在实际应用中,可能存在部分第一通光孔与摄像头支架20边缘之间的空间较小,部分第一通光孔与摄像头支架20边缘之间的空间较大的场景,并非像图5、图8、图9、以及图10一样,要么所有第一通光孔均与摄像头支架20边缘之间的空间较大,要么所有第一通光孔均与摄像头支架20边缘之间的空间较小。
在一些实施例中,当第一通光孔的边缘线与摄像头支架20的边缘线之间的最小间距小于第一阈值时,可以视为第一通光孔与摄像头支架20边缘之间的空间较小;当第一通光孔的边缘线与摄像头支架20的边缘线之间的最小间距大于第一阈值时,可以视为第一通光孔与摄像头支架20边缘之间的空间较大,其中,第一阈值的具体实施可以参考图7对于第一阈值的描述,此处不再赘述。示例性的,请参阅图11,图11为本申请另一些实施例提供的电子设备的结构示意图。该电子设备中,通光孔K1、通光孔K2、通光孔K4的边缘线分别与摄像头支架20的边缘线之间的最小间距和图9一致,均小于第一阈值。区别于图9所示的电子设备,该电子设备中,通光孔K3的边缘线与摄像头支架20的边缘线之间的最小间距大于第一阈值,因此,通光孔K3与摄像头支架20边缘之间的空间较大,可以支持铺设NFC天线,以获得较大的走线面积。
基于此,区别于图9所示的方案,图11所示的电子设备中,通光孔K3位于走线投影区域对应的环形内侧。换而言之,金属走线32将通光孔K3包围在其内部。可见,本实施例中充分利用了摄像头支架20上可以走线的位置(通光孔K3与摄像头支架20边缘之间的位置),可以最大程度地扩大走线面积,提高NFC天线30的辐射性能。
应理解,当通光孔K3被金属走线32包围在其内部时,NFC天线30上需要开设避让孔34,避让孔34正对通光孔K3。此外,图11虽然示意了四个第一通光孔中,仅有通光孔K3与摄像头支架20边缘之间的间距较大的情况。在其他实施例中,也可 以存在更多的第一通光孔与摄像头支架20边缘之间的间距较大,其实施过程和通光孔K3类似,此处不再赘述。
还应理解,图11所示的电子设备也可以参照图10所示的方案,在NFC天线30上开设有避让孔33,以增加摄像头的数量,本申请实施例对此不作具体限定。

Claims (13)

  1. 一种电子设备,其特征在于,包括:
    后盖;
    摄像头支架,所述摄像头支架设置于所述后盖上,且包括相对设置的第一表面和第二表面;其中,所述摄像头支架的第一表面朝向所述电子设备的外侧;所述摄像头支架上设有第一通光孔,所述第一通光孔用于与第一闪光灯、第一传感器或第一摄像头相对;
    NFC天线,铺设于所述摄像头支架的第一表面;
    其中,所述NFC天线在所述摄像头支架的第一表面的第一正投影,落入所述摄像头支架的第一表面内,且和所述第一通光孔不交叠,以使所述NFC天线避让所述第一通光孔。
  2. 根据权利要求1所述的电子设备,其特征在于,所述第一通光孔的数量为多个;
    多个所述第一通光孔在所述摄像头支架上沿环形阵列。
  3. 根据权利要求2所述的电子设备,其特征在于,所述NFC天线上设置有铁氧体、以及沿所述铁氧体边缘走线的金属走线;所述金属走线在所述第一正投影上的区域为走线投影区域,所述走线投影区域为环形;
    所述第一通光孔位于所述走线投影区域对应的环形内侧。
  4. 根据权利要求3所述的电子设备,其特征在于,所述第一通光孔的边缘线与所述摄像头支架的边缘线之间的最小间距大于第一阈值,其中,所述第一阈值至少为所述金属走线的走线宽度。
  5. 根据权利要求2所述的电子设备,其特征在于,所述NFC天线上设置有铁氧体、以及沿所述铁氧体边缘走线的金属走线;所述金属走线在所述第一正投影上的区域为走线投影区域,所述走线投影区域为环形;
    所述第一通光孔位于走线投影区域对应的环形外侧。
  6. 根据权利要求5所述的电子设备,其特征在于,所述第一通光孔的边缘线与所述摄像头支架的边缘线之间的最小间距小于第二阈值,其中,所述第二阈值至少为所述金属走线的走线宽度。
  7. 根据权利要求5或6所述的电子设备,其特征在于,所述第一通光孔的阵列路径上,相邻的两个所述第一通光孔分别为第一相邻孔和第二相邻孔;
    所述NFC天线具有沿第一方向延伸的延伸区域,所述第一方向背离所述摄像头支架的第一表面的几何中心,并朝向所述第一相邻孔和所述第二相邻孔之间。
  8. 根据权利要求7所述的电子设备,其特征在于,所述第一相邻孔和所述第二相邻孔在阵列方向上的间距大于第三阈值,所述第三阈值至少为所述金属走线的走线宽度的三倍;
    所述金属走线位于所述延伸区域的部分包括第一走线和第二走线;所述第一走线和所述第二走线均向第二方向延伸,并穿过所述第一相邻孔和所述第二相邻孔之间的位置;
    所述第一走线和所述第二走线在第三方向上间隔设置,其中,所述第三方向为所述第一相邻孔和所述第二相邻孔的阵列方向,所述第二方向垂直于所述第三方向。
  9. 根据权利要求7所述的电子设备,其特征在于,所述第一相邻孔和所述第二相邻孔在阵列方向上的间距小于第四阈值,所述第四阈值至少为所述金属走线的走线宽度的三倍;
    所述金属走线位于所述延伸区域的部分包括第一走线和第二走线;所述第一走线和所述第二走线在第二方向上逐渐靠拢,其中,所述第二方向垂直于所述第一相邻孔和所述第二相邻孔的阵列方向。
  10. 根据权利要求2所述的电子设备,其特征在于,所述NFC天线上设置有铁氧体、以及沿所述铁氧体边缘走线的金属走线;所述金属走线在所述第一正投影上的区域为走线投影区域,所述走线投影区域为环形;
    所述多个第一通光孔的部分位于所述走线投影区域对应的环形外侧;
    所述多个第一通光孔的剩余部分位于所述走线投影区域对应的环形内侧。
  11. 根据权利要求10所述的电子设备,其特征在于,
    当所述第一通光孔的边缘线与所述摄像头支架的边缘线之间的最小间距小于第一阈值时,所述第一通光孔位于所述走线投影区域对应的环形外侧,其中,所述第一阈值至少为所述金属走线的走线宽度;
    当所述第一通光孔的边缘线与所述摄像头支架的边缘线之间的最小间距大于所述第一阈值时,所述第一通光孔位于所述走线投影区域对应的环形内侧。
  12. 根据权利要求5至11任一项所述的电子设备,其特征在于,所述NFC上开设有避让孔,所述避让孔在所述第一正投影上的区域为避让区域,所述避让区域位于所述走线投影区域对应的环形内侧;
    所述摄像头支架上还设置有第二通光孔,所述第二通光孔与所述避让区域重叠,所述第二通光孔用于与第二闪光灯、第二传感器、或第二摄像头相对。
  13. 根据权利要求1至12任一项所述的电子设备,其特征在于,还包括装饰镜片;
    所述摄像头支架的第一表面的边缘设置有背胶区,所述装饰镜片通过与所述背胶区连接,从而固定在所述摄像头支架的第一表面;
    所述NFC天线,设置于所述装饰镜片和所述摄像头支架的第一表面之间,且所述第一正投影和所述背胶区不交叠。
PCT/CN2022/089381 2021-07-30 2022-04-26 一种电子设备 WO2023005300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22847918.4A EP4287399A1 (en) 2021-07-30 2022-04-26 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110873589.6 2021-07-30
CN202110873589.6A CN115693081A (zh) 2021-07-30 2021-07-30 一种电子设备

Publications (2)

Publication Number Publication Date
WO2023005300A1 true WO2023005300A1 (zh) 2023-02-02
WO2023005300A9 WO2023005300A9 (zh) 2023-05-25

Family

ID=85057717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089381 WO2023005300A1 (zh) 2021-07-30 2022-04-26 一种电子设备

Country Status (3)

Country Link
EP (1) EP4287399A1 (zh)
CN (1) CN115693081A (zh)
WO (1) WO2023005300A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055009A1 (en) * 2013-08-20 2015-02-26 Samsung Electro-Mechanics Co., Ltd. Camera module and electronic device including the same
CN106898883A (zh) * 2017-02-28 2017-06-27 深圳市万普拉斯科技有限公司 近场通信nfc天线及移动终端
CN109037905A (zh) * 2018-08-08 2018-12-18 联想(北京)有限公司 一种天线及电子设备
CN210780900U (zh) * 2019-11-07 2020-06-16 RealMe重庆移动通信有限公司 终端设备
CN211556118U (zh) * 2020-02-20 2020-09-22 Oppo广东移动通信有限公司 电子设备
CN112003967A (zh) * 2020-07-28 2020-11-27 华为技术有限公司 一种电子设备的壳体组件和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055009A1 (en) * 2013-08-20 2015-02-26 Samsung Electro-Mechanics Co., Ltd. Camera module and electronic device including the same
CN106898883A (zh) * 2017-02-28 2017-06-27 深圳市万普拉斯科技有限公司 近场通信nfc天线及移动终端
CN109037905A (zh) * 2018-08-08 2018-12-18 联想(北京)有限公司 一种天线及电子设备
CN210780900U (zh) * 2019-11-07 2020-06-16 RealMe重庆移动通信有限公司 终端设备
CN211556118U (zh) * 2020-02-20 2020-09-22 Oppo广东移动通信有限公司 电子设备
CN112003967A (zh) * 2020-07-28 2020-11-27 华为技术有限公司 一种电子设备的壳体组件和电子设备

Also Published As

Publication number Publication date
WO2023005300A9 (zh) 2023-05-25
CN115693081A (zh) 2023-02-03
EP4287399A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US11355831B2 (en) Antenna system and mobile terminal
CN111434095A (zh) 天线模块及包括天线模块的电子装置
WO2020259298A1 (zh) 终端设备
US11856696B2 (en) Electronic device including interposer
US20230199096A1 (en) Antenna and electronic device including same
WO2021103975A1 (zh) 一种屏蔽盖、屏蔽罩、装备印刷电路板及电子设备
US20230403795A1 (en) Electronic device including interposer
US20220400572A1 (en) Electronic device comprising interposer
KR102436198B1 (ko) 안테나 장치를 포함하는 전자 장치
WO2021068747A1 (zh) 装饰组件、摄像装置和电子设备
US20210251070A1 (en) Electronic device including printed circuit board having shielding structure
WO2023005300A1 (zh) 一种电子设备
US20220417350A1 (en) Cover and Electronic Device
US10819018B2 (en) Conductive structure disposed to correspond to antenna module and electronic device including the same
US10923799B2 (en) Antenna structure and electronic device therewith
US20230110601A1 (en) Antenna and electronic device including same
US8847147B2 (en) Optical-electrical module with metal film for preventing EMI leakage
US20240186701A1 (en) Electronic device
CN115336398A (zh) 包括地线的印刷电路板
KR20220128212A (ko) 안테나를 포함하는 전자 장치
KR102457138B1 (ko) 커넥터를 포함하는 전자 장치
JP2000114588A (ja) 光伝送素子
KR20200047213A (ko) 그라운드 보강 구조를 포함하는 전자 장치
US20230127318A1 (en) Electronic device including shielding member and heat radiating structure
US20230420826A1 (en) Antenna and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18279257

Country of ref document: US

Ref document number: 2022847918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022847918

Country of ref document: EP

Effective date: 20230829

NENP Non-entry into the national phase

Ref country code: DE