WO2023005239A1 - 星历信息获取方法、指示方法、通信节点及存储介质 - Google Patents

星历信息获取方法、指示方法、通信节点及存储介质 Download PDF

Info

Publication number
WO2023005239A1
WO2023005239A1 PCT/CN2022/082527 CN2022082527W WO2023005239A1 WO 2023005239 A1 WO2023005239 A1 WO 2023005239A1 CN 2022082527 W CN2022082527 W CN 2022082527W WO 2023005239 A1 WO2023005239 A1 WO 2023005239A1
Authority
WO
WIPO (PCT)
Prior art keywords
ephemeris information
rrc
mac
information
time
Prior art date
Application number
PCT/CN2022/082527
Other languages
English (en)
French (fr)
Inventor
牛丽
戴博
沙秀斌
陆婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020237022389A priority Critical patent/KR20230125217A/ko
Priority to EP22847859.0A priority patent/EP4254822A1/en
Publication of WO2023005239A1 publication Critical patent/WO2023005239A1/zh
Priority to US18/215,759 priority patent/US20230345396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management

Definitions

  • the present application relates to the technical field of wireless communication networks, for example, to a method for obtaining ephemeris information, an indicating method, a communication node and a storage medium.
  • the base station will broadcast the ephemeris information through the system information, so that the user equipment (User Equipment, UE) can obtain the position of the satellite.
  • the UE can obtain its own position through the Global Navigation Satellite System (GNSS). After obtaining its own position and the position of the satellite, it can calculate the distance between itself and the satellite, and calculate the distance between the UE and the serving node based on this.
  • Uplink synchronization information required for uplink synchronization that is, ephemeris information, such as: time advance. If the UE and the serving node maintain uplink synchronization, the UE can send uplink data, and the serving node can successfully decode it. Otherwise, the UE will lose uplink synchronization and need to stop uplink transmission, and the serving node cannot decode successfully.
  • the ephemeris information obtained by the UE will be invalid, and the satellite position calculated by the UE and the distance between the UE and the satellite will also be invalid. If the UE cannot obtain valid ephemeris information and cannot guarantee uplink synchronization, uplink data cannot be transmitted, which affects communication reliability.
  • the present application provides a method for obtaining ephemeris information, an indicating method, a communication node and a storage medium.
  • An embodiment of the present application provides a method for acquiring ephemeris information, including: determining that a user equipment UE is in a state of uplink out-of-synchronization; and obtaining ephemeris information in a case of uplink out-of-synchronization.
  • the embodiment of the present application also provides an indication method, including: sending ephemeris acquisition indication information, the indication information is used to instruct the user equipment UE to determine that the UE is in the state of uplink out-of-synchronization, and to obtain the ephemeris calendar information.
  • the embodiment of the present application also provides a communication node, including: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a communication node including: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the program, the above-mentioned acquisition of ephemeris information is realized. method or method of instruction.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the above-mentioned ephemeris information acquisition method or indication method is realized.
  • Fig. 1 is a flow chart of a method for obtaining ephemeris information provided by an embodiment
  • Fig. 2 is a schematic diagram of obtaining ephemeris information provided by an embodiment
  • Fig. 3 is another schematic diagram of obtaining ephemeris information provided by an embodiment
  • Fig. 4 is another schematic diagram of obtaining ephemeris information provided by an embodiment
  • Fig. 5 is another schematic diagram of obtaining ephemeris information provided by an embodiment
  • Fig. 6 is a schematic structural diagram of an ephemeris information acquisition device provided by an embodiment
  • Fig. 7 is a schematic diagram of a hardware structure of a communication node provided by an embodiment.
  • FIG. 1 is a flowchart of a method for obtaining ephemeris information provided by an embodiment. As shown in FIG. 1 , the method provided by this embodiment includes step 110 and step 120 .
  • step 110 it is determined that the user equipment UE is in a state of uplink out-of-synchronization.
  • step 120 ephemeris information is acquired in the case of uplink out-of-sync.
  • the UE acquires new ephemeris information when it is determined that it is in a state of uplink out-of-sync due to ephemeris information failure.
  • the ephemeris information provides a basis for calculating the distance between the UE and the satellite, realizing the uplink synchronization between the UE and the serving node, and ensuring the transmission of uplink data.
  • the state of uplink out-of-synchronization can be discovered through UE's Medium Access Control layer (Medium Access Control, MAC) or Radio Resource Control (Radio Resource Control, RRC); ephemeris information can be obtained through MAC or RRC.
  • Medium Access Control layer Medium Access Control layer
  • RRC Radio Resource Control
  • the method also includes:
  • Step 112 Clear the Hybrid Automatic Repeat Request (HARQ) cache through the MAC, stop the uplink synchronization timer, and release uplink resources.
  • HARQ Hybrid Automatic Repeat Request
  • the ephemeris information becomes invalid, and related operations related to uplink synchronization can be stopped through the MAC to save resources.
  • step 120 includes: acquiring ephemeris information through MAC or RRC.
  • the method further includes: Step 122: Start a timer through MAC or RRC.
  • the MAC or RRC can start a timer, and the UE acquires ephemeris information during the running of the timer.
  • the start condition of the timer includes one of the following:
  • MAC instructs RRC to obtain ephemeris information
  • RRC instructs MAC to lose synchronization due to ephemeris information failure
  • RRC instructs MAC to obtain ephemeris information.
  • the stop condition of the timer includes: the ephemeris information is successfully obtained through MAC or RRC.
  • the method further includes: Step 130: If the timer expires, the acquisition of ephemeris information fails.
  • step 120 includes: monitoring the physical downlink control channel (Physical Downlink Control Channel, PDCCH) scrambled by the System Information-Radio Network Tempory Identity (SI-RNTI) through the MAC, and receiving The corresponding physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), PDSCH carries ephemeris information.
  • PDCCH Physical Downlink Control Channel
  • SI-RNTI System Information-Radio Network Tempory Identity
  • step 120 includes: monitoring the PDCCH scrambled by the Cell-Radio Network Tempory Identity (C-RNTI) through the MAC, the PDCCH scrambled by the C-RNTI carries the first indication information, the first The indication information is used to indicate that the PDCCH is scheduled to be the PDSCH carrying the ephemeris information.
  • C-RNTI Cell-Radio Network Tempory Identity
  • step 120 includes: receiving PDSCH carrying ephemeris information on a specific time-frequency resource through MAC; At least one of the starting position, bandwidth, and modulation and coding level (Modulation and Coding Scheme, MCS) of the start position is determined.
  • MCS Modulation and Coding Scheme
  • the specific time-frequency resource for receiving the PDSCH and related parameters may be configured or indicated by the network side.
  • step 120 includes: receiving PDSCH carrying ephemeris information at a configured interval through MAC; wherein, the interval is determined according to at least one of the interval period, the start position of the interval, and the interval duration.
  • the interval for receiving the PDSCH and related parameters may be configured or indicated by the network side.
  • the method further includes: Step 140: Determine a physical random access channel (Physical Random Access Channel, PRACH) resource for random access according to the PDCCH scrambled by the C-RNTI.
  • PRACH Physical Random Access Channel
  • the UE can initiate random access (Random Access, RACH).
  • RACH Random Access
  • the method also includes:
  • Step 150 In the case of successfully obtaining the ephemeris information, send second indication information to the MAC through RRC, the second indication information is used to indicate the success of the ephemeris information acquisition or uplink synchronization, or to instruct the MAC to send a random access message to the target cell input request.
  • the method also includes:
  • Step 160 In the case of failure to obtain the ephemeris information, the RRC enters an idle state, or instructs the RRC to initiate an RRC reestablishment process through the MAC.
  • the method also includes:
  • Step 170 When the ephemeris information is obtained successfully, send a random access request to the target cell through MAC.
  • the method also includes:
  • Step 180 In the case of failure to acquire ephemeris information, send third indication information to RRC through MAC, the third indication information is used to instruct RRC to enter idle state, or to instruct RRC to initiate RRC reestablishment process.
  • the method also includes:
  • Step 190 In the case of failure to acquire the ephemeris information, re-acquire the ephemeris information, and send an RRC reestablishment request to the serving cell out of synchronization.
  • the method further includes: Step 142: Randomly select PRACH resources within the configured time window.
  • the method further includes: Step 144: Randomly generate a time window, and select a PRACH resource within the generated time window.
  • the method further includes: Step 146: Generate a time window according to the service type, and select a PRACH resource within the time window corresponding to the current service type.
  • the method further includes: Step 148: Generate a start time according to the service type, and select a PRACH resource according to the start time.
  • the method further includes: Step 102: receiving configuration information, where the configuration information includes at least one of the following:
  • Indication information for enabling the UE to obtain ephemeris information in the connected state; timer timing duration; time-frequency resources of PRACH; period of PRACH; starting position of PRACH; number of repetitions of PRACH; frequency domain position of PRACH;
  • time-frequency resource of PDCCH the period of PDCCH; the starting position of PDCCH; the number of repetitions of PDCCH; the frequency domain position of PDCCH;
  • the time-frequency resource of the measurement gap the period of the measurement gap; the starting position of the measurement gap; the duration of the measurement gap;
  • the time-domain starting position of a specific time-frequency resource the period of a specific time-frequency resource; the duration of a specific time-frequency resource; the starting position of a specific time-frequency resource in the frequency domain;
  • the modulation and coding level MCS corresponding to the time-frequency resource;
  • an indication method is also provided, and the method can be applied to a network side, such as a base station.
  • the indication method provided in this embodiment includes step 210: sending ephemeris acquisition indication information, the indication information is used to instruct the user equipment UE to determine that the UE is in a state of uplink out-of-synchronization, and acquire ephemeris information in the case of uplink out-of-synchronization.
  • the network side instructs the UE to obtain new ephemeris information when it is determined that it is in an uplink out-of-sync state due to ephemeris information failure, in order to calculate the distance between the UE and the satellite, and realize the UE and the serving node
  • Uplink synchronization provides a basis to ensure the transmission of uplink data.
  • the method further includes: Step 220: Send configuration information, the configuration information includes at least one of the following: indication information for enabling the UE to obtain ephemeris information in the connected state; timer timing duration; PRACH The time-frequency resources of the PRACH; the period of the PRACH; the starting position of the PRACH; the number of repetitions of the PRACH; the frequency domain position of the PRACH;
  • time-frequency resource of PDCCH the period of PDCCH; the starting position of PDCCH; the number of repetitions of PDCCH; the frequency domain position of PDCCH;
  • the time-frequency resource of the measurement gap the period of the measurement gap; the starting position of the measurement gap; the duration of the measurement gap;
  • the time-domain starting position of a specific time-frequency resource the period of a specific time-frequency resource; the duration of a specific time-frequency resource; the starting position of a specific time-frequency resource in the frequency domain;
  • the modulation and coding level MCS corresponding to the time-frequency resource;
  • This example describes the process of MAC discovering uplink out-of-sync and obtaining ephemeris information through RRC.
  • the base station will broadcast the ephemeris information through the system information, so that the UE can obtain the position of the satellite.
  • UE can obtain its own position through GNSS.
  • the UE can calculate the distance between itself and the satellite, and based on this, calculate the ephemeris information required for the UE and the base station to maintain uplink synchronization, such as: time advance. If the UE and the base station maintain uplink synchronization, the UE can send uplink data, and the base station can successfully decode it. Otherwise, the UE will lose uplink synchronization and need to stop uplink transmission, and the base station cannot decode successfully.
  • the UE wants to resume uplink data transmission, it needs to reacquire the ephemeris information and recalculate the ephemeris information of the UE.
  • IoT Internet of Things
  • the UE When the ephemeris information of the UE becomes invalid, the ephemeris information needs to be acquired again. For example, the UE starts a timer after acquiring the ephemeris information each time. If the timer expires, the corresponding ephemeris information becomes invalid. In this case, the UE obtains the ephemeris information again.
  • Fig. 2 is a schematic diagram of obtaining ephemeris information provided by an embodiment.
  • the MAC of the UE finds that the uplink is out of synchronization, and indicates to the RRC, and the RRC obtains the ephemeris information. If the RRC obtains the ephemeris information successfully, it indicates uplink synchronization to the MAC, and the MAC can initiate the RACH process; if the RRC fails to obtain the ephemeris information, the RRC executes the operation returning to the idle (IDLE) state, or initiates the RRC reconstruction process.
  • IDLE idle
  • the base station broadcasts in the system information or configures an indication bit in the RRC message to enable the UE to read the ephemeris information in the connected state, that is, the indication information for enabling the UE to obtain the ephemeris information in the connected state. If the base station enables this function, the UE reads the ephemeris information again after the ephemeris information becomes invalid.
  • Step 1 When the MAC discovers that the UE's uplink is out of sync due to ephemeris information failure, the MAC will clear the HARQ buffer (Buffer), stop all uplink synchronization-related timers, and release uplink resources, such as the Physical Uplink Control Channel (Physical Uplink Control Channel) , PUCCH) and physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), etc.
  • uplink resources such as the Physical Uplink Control Channel (Physical Uplink Control Channel) , PUCCH) and physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), etc.
  • Step2a The MAC instructs the RRC to instruct the RRC to cause the UE to lose uplink synchronization due to invalid ephemeris information, or the MAC instructs the RRC to obtain the ephemeris information.
  • the RRC After the RRC receives the instruction from the MAC, the RRC starts the timer. During the running of the timer, RRC obtains the ephemeris information. If the RRC successfully obtains the ephemeris information during the running of the timer, the RRC stops the timer. The RRC may indicate to the MAC that the ephemeris information has been successfully obtained or indicate uplink synchronization, or indicate the MAC to initiate the RACH. If the timer expires, the RRC returns to the IDLE state, or initiates an RRC re-establishment process.
  • Step2b MAC instructs RRC to cause UE out of uplink synchronization due to invalid ephemeris information, or MAC instructs RRC to acquire ephemeris information, and MAC starts a timer.
  • the ephemeris information indicated by the MAC received by the RRC is invalid, causing the UE to lose synchronization in uplink, and the RRC obtains the ephemeris information. If the RRC successfully acquires the ephemeris information during the running of the timer, the RRC indicates to the MAC that the ephemeris information is successfully acquired or indicates uplink synchronization, or instructs the MAC to initiate an RACH.
  • the MAC During the running of the timer, if the MAC receives an instruction from RRC, the MAC will stop the timer. If the timer expires, the MAC indicates to the RRC that the uplink is out of sync. After receiving the instruction, the RRC executes the operation of returning to the IDLE state, or initiates the RRC reconstruction process.
  • Step2c MAC instructs RRC to cause UE uplink out of synchronization due to ephemeris information failure, or MAC instructs RRC to acquire ephemeris information.
  • the RRC obtains the ephemeris information. If the RRC successfully acquires the ephemeris information, the RRC indicates to the MAC that the ephemeris information is successfully acquired or uplink synchronization is obtained, or the MAC is instructed to initiate an RACH.
  • Step3 If the RRC indicates that the ephemeris information is obtained successfully, or the RRC instructs the MAC to initiate RACH, and the UE maintains uplink synchronization, the MAC will initiate the RACH process according to the configured PRACH resources.
  • step2a, step2b and step2c is executed.
  • the base station may broadcast the timing duration of the timer configured in the system information or in the RRC message.
  • the base station will broadcast in the system information or configure the time-frequency resource of PRACH in the RRC message, including: PRACH period, starting position, repetition times, frequency domain position, etc., the PRACH is used for sending after the UE successfully reads the ephemeris information to the base station.
  • This example describes the process of the MAC discovering that the uplink is out of sync and obtaining the ephemeris information.
  • the UE When the ephemeris information of the UE becomes invalid, the ephemeris information needs to be acquired again. For example, the UE starts a timer after acquiring the ephemeris information each time. If the timer expires, the corresponding ephemeris information becomes invalid. In this case, the UE obtains the ephemeris information again.
  • FIG. 3 is another schematic diagram of obtaining ephemeris information provided by an embodiment.
  • the MAC when the MAC finds out of uplink synchronization, the MAC obtains the ephemeris information. If the ephemeris information is obtained successfully, the MAC initiates the RACH process. If the acquisition of ephemeris information fails, the MAC instructs the RRC, and the RRC executes the operation of returning to the IDLE state, or initiates the RRC reconstruction process.
  • the base station broadcasts in the system information or configures an indication bit in the RRC message to enable the UE to read the ephemeris information in the connected state, that is, the indication information for enabling the UE to obtain the ephemeris information in the connected state. If the base station enables this function, the UE reads the ephemeris information again after the ephemeris information becomes invalid.
  • Step 1 When the MAC discovers that the UE's uplink is out of sync due to ephemeris information failure, the MAC will clear the HARQ Buffer, stop all uplink synchronization-related timers, and release uplink resources, including PUCCH, PUSCH, etc.
  • Step2a UE acquires ephemeris information.
  • the UE's MAC starts a timer.
  • the MAC monitors the PDCCH scrambled by the SI-RNTI and receives the corresponding PDSCH, and the PDSCH carries the ephemeris information.
  • the timer is stopped. If the timer expires, the MAC instructs the RRC to fail to obtain the ephemeris information.
  • Step2b UE acquires ephemeris information.
  • the UE's MAC starts a timer.
  • the MAC monitors the PDCCH scrambled by the C-RNTI.
  • the MAC successfully monitors the PDCCH surrounded by the C-RNTI, and the PDCCH carries an indicator bit, indicating that the PDCCH schedules the PDSCH carrying the ephemeris information, and then stops the timer. If the timer expires, the MAC instructs the RRC to fail to obtain the ephemeris information.
  • step2c UE acquires ephemeris information.
  • the MAC starts a timer.
  • the MAC receives the PDSCH on a specific time-frequency resource, and the PDSCH carries ephemeris information.
  • the UE if the UE successfully receives the PDSCH on a specific time-frequency resource, the UE will stop the timer.
  • the MAC indicates that the RRC obtains the ephemeris information successfully. If the timer expires, the MAC instructs the RRC to fail to obtain the ephemeris information.
  • step2d UE acquires ephemeris information.
  • the MAC starts a timer.
  • the MAC receives the PDSCH at the interval (Gap) configured by the base station, and the PDSCH carries the ephemeris information. In this gap, the UE will not monitor the PDCCH on the uplink search space (Uplink Search Space, USS), but only detect the PDSCH.
  • the MAC if the MAC successfully receives the PDSCH within the Gap, the MAC will stop the timer. The MAC indicates that the RRC obtains the ephemeris information successfully. If the timer expires, the MAC instructs the RRC to fail to obtain the ephemeris information.
  • Step2e The UE also receives the PRACH resources configured by the base station.
  • the UE monitors the PDCCH scrambled by the C-RNTI, and the PDCCH carries a dedicated PRACH resource, which is used for the UE to initiate the RACH process after acquiring synchronization.
  • Step3 If the MAC indicates that the ephemeris information has been obtained successfully, and the UE maintains uplink synchronization, the MAC will initiate the RACH process according to the configured PRACH resources.
  • step2a, step2b, step2c and step2d is executed.
  • the base station will broadcast in the system information or the duration of the timer configured in the RRC message.
  • the base station will broadcast in the system information or configure the time-frequency resources of PRACH in the RRC message, including: the period of PRACH, the starting position, the number of repetitions and/or the frequency domain position, etc.
  • the PRACH is used for the UE to successfully read the ephemeris information sent to the base station.
  • the base station will broadcast in the system information or configure the time-frequency resources of the PDCCH in the RRC message, including: the period of the PDCCH, the starting position, the number of repetitions and/or the frequency domain position, etc.
  • the PDCCH is used when the UE reads the ephemeris information
  • the PDCCH includes a Machine Type Communication Physical Downlink Control Channel (MPDCCH), a narrowband Physical Downlink Control Channel (Narrowband Physical Downlink Control Channel, NPDCCH) and/or PDCCH, etc.
  • MPDCCH Machine Type Communication Physical Downlink Control Channel
  • NPDCCH narrowband Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • the base station will broadcast in the system information or configure the time-frequency resource of the GAP in the RRC message, including: the period, starting position and/or duration of the Gap, etc.
  • the base station will broadcast in the system information or configure specific time-frequency resources in the RRC message or in the PDCCH, including the starting position in the time domain, the period in the time domain, the duration in the time domain, the starting position in the frequency domain, bandwidth and/or or MCS etc.
  • This example describes the process of RRC discovering that the uplink is out of sync and obtaining ephemeris information.
  • the UE When the ephemeris information of the UE becomes invalid, the ephemeris information needs to be acquired again. For example, the UE starts a timer after acquiring the ephemeris information each time. If the timer expires, the corresponding ephemeris information becomes invalid. In this case, the UE obtains the ephemeris information again.
  • Fig. 4 is another schematic diagram of obtaining ephemeris information provided by an embodiment.
  • the RRC finds that the ephemeris information is invalid, and the RRC acquires the ephemeris information. If the acquisition is successful, the RRC instructs the MAC, and the MAC initiates the RACH process. If the acquisition fails, the RRC executes the operation of returning to the IDLE state, or initiates the RRC reconstruction process.
  • the base station will broadcast in the system information or configure an indication bit in the RRC message to enable the UE to read the ephemeris information in the connected state, that is, the indication information for enabling the UE to obtain the ephemeris information in the connected state. If the base station enables this function, the UE reads the ephemeris information again after the ephemeris information becomes invalid.
  • Step1 When the RRC finds that the UE loses uplink synchronization due to invalid ephemeris information, the RRC obtains the ephemeris information.
  • Step2 When the RRC obtains the ephemeris information, the RRC starts the timer. During the running of the timer, RRC will obtain the ephemeris information. If the RRC successfully obtains the ephemeris information during the running of the timer, the RRC will stop the timer. The RRC may indicate to the MAC the successful acquisition of ephemeris information or indicate uplink synchronization. If the timer expires, the RRC returns to the IDLE state, or initiates an RRC re-establishment process.
  • Step3 If the MAC indicates that the ephemeris information has been obtained successfully, and the UE maintains uplink synchronization, the MAC will initiate the RACH process according to the configured PRACH resources.
  • the base station broadcasts the duration of the timer configured in the system information or in the RRC message.
  • the base station will broadcast in the system information or configure the time-frequency resources of PRACH in the RRC message, including: the period of PRACH, the starting position, the number of repetitions and/or the frequency domain position, etc.
  • the PRACH is used for the UE to successfully read the ephemeris information sent to the base station.
  • the base station will broadcast in the system information or configure the time-frequency resource of the Gap in the RRC message, including: the period, starting position and/or duration of the Gap, etc.
  • This example describes the process of RRC discovering uplink out-of-sync and obtaining ephemeris information through MAC.
  • the UE When the ephemeris information of the UE becomes invalid, the ephemeris information needs to be acquired again. For example, the UE starts a timer after acquiring the ephemeris information each time. If the timer expires, the corresponding ephemeris information becomes invalid. In this case, the UE obtains the ephemeris information again.
  • Fig. 5 is a schematic diagram of another method of obtaining ephemeris information provided by an embodiment.
  • the RRC finds that the ephemeris information is invalid, and instructs the MAC, and the MAC obtains the ephemeris information. If the acquisition is successful, the MAC initiates the RACH process, indicating that the RRC acquisition is successful. If the acquisition of ephemeris information fails, the MAC instructs the RRC to fail to obtain the ephemeris information, and the RRC executes the operation of returning to the IDLE state, or initiates the RRC reconstruction process.
  • the base station will broadcast in the system information or configure an indication bit in the RRC message to enable the UE to read the ephemeris information in the connected state, that is, the indication information for enabling the UE to obtain the ephemeris information in the connected state. If the base station enables this function, the UE reads the ephemeris information again after the ephemeris information becomes invalid.
  • Step1 When the RRC finds that the UE loses uplink synchronization due to invalid ephemeris information, the RRC obtains the ephemeris information.
  • Step2a When the RRC obtains the ephemeris information, the RRC starts a timer and instructs the MAC to obtain the ephemeris information, or the ephemeris information becomes invalid and the UE loses uplink synchronization.
  • the MAC receives the instruction, the MAC will clear the HARQ Buffer, stop all uplink synchronization-related timers, and release uplink resources, including PUCCH and PUSCH.
  • the MAC starts to monitor the SI-RNTI plus the PDCCH, and receives the corresponding PDSCH, and the PDSCH carries the ephemeris information.
  • the MAC If the MAC successfully monitors the PDCCH wrapped around the SI-RNTI, the MAC instructs the RRC to obtain the ephemeris information successfully. During the running of the timer, if the RRC receives the MAC and successfully obtains the ephemeris information, the RRC will stop the timer. If the timer expires, the RRC returns to the IDLE state, or initiates an RRC re-establishment process.
  • Step2b When the RRC obtains the ephemeris information, the RRC starts the timer. And instruct the MAC to obtain the ephemeris information, or the ephemeris information becomes invalid and causes the UE to lose synchronization in uplink.
  • the MAC receives the instruction, the MAC will clear the HARQ Buffer, stop all uplink synchronization-related timers, and release uplink resources, including PUCCH and PUSCH.
  • the MAC starts to monitor the PDCCH added by the C-RNTI.
  • the MAC If the MAC successfully monitors the PDCCH surrounded by the C-RNTI, and the PDCCH carries an indicator bit, indicating that the PDCCH schedules the PDSCH carrying the ephemeris information, the MAC indicates that the RRC obtains the ephemeris information successfully.
  • the RRC During the running of the timer, if the RRC receives the MAC and successfully obtains the ephemeris information, the RRC will stop the timer. If the timer expires, the RRC returns to the IDLE state, or initiates an RRC re-establishment process.
  • Step2c When the RRC obtains the ephemeris information, the RRC starts the timer. And instruct the MAC to obtain the ephemeris information, or the ephemeris information becomes invalid and causes the UE to lose synchronization in uplink.
  • the MAC When the MAC receives the instruction, the MAC will clear the HARQ Buffer, stop all uplink synchronization-related timers, and release uplink resources, including PUCCH and PUSCH.
  • the MAC starts to receive the PDSCH on a specific time-frequency resource, and the PDSCH carries ephemeris information. If the UE successfully receives the PDSCH on a specific time-frequency resource, the MAC indicates that the RRC has successfully obtained the ephemeris information.
  • the RRC During the running of the timer, if the RRC receives the MAC and successfully obtains the ephemeris information, the RRC will stop the timer. If the timer expires, the RRC returns to the IDLE state, or initiates an RRC re-establishment process.
  • step2d When the RRC obtains the ephemeris information, the RRC starts the timer. And instruct the MAC to obtain the ephemeris information, or the ephemeris information becomes invalid and causes the UE to lose synchronization in uplink.
  • the MAC When the MAC receives the instruction, the MAC will clear the HARQ Buffer, stop all uplink synchronization-related timers, and release uplink resources, including PUCCH and PUSCH.
  • the MAC receives the PDSCH on the gap configured by the base station, and the PDSCH carries the ephemeris information. In this gap, the UE will not monitor the PDCCH on the USS, but only detects the PDSCH.
  • the RRC During the running of the timer, if the RRC receives an indication that the MAC has successfully obtained the ephemeris information, the RRC will stop the timer. If the timer expires, the RRC returns to the IDLE state, or initiates an RRC re-establishment process.
  • Step2e The UE also receives the PRACH resources configured by the base station.
  • the UE monitors the PDCCH surrounded by the C-RNTI, and the PDCCH carries a dedicated PRACH resource, which is used for the UE to initiate the RACH process after acquiring synchronization.
  • Step3 If the MAC indicates that the ephemeris information has been obtained successfully, and the UE maintains uplink synchronization, the MAC will initiate the RACH process according to the configured PRACH resources.
  • step2a, step2b, step2c and step2d is executed.
  • the base station will broadcast in the system information or the duration of the timer configured in the RRC message.
  • the base station will broadcast in the system information or configure the time-frequency resources of PRACH in the RRC message, including: the period of PRACH, the starting position, the number of repetitions and/or the frequency domain position, etc.
  • the PRACH is used for the UE to successfully read the ephemeris information sent to the base station.
  • the base station will broadcast in the system information or configure specific time-frequency resources in the RRC message or in the PDCCH, including the starting position in the time domain, the period in the time domain, the duration in the time domain, the starting position in the frequency domain, bandwidth and/or or MCS etc.
  • This example describes the process of initiating RRC re-establishment due to ephemeris information failure.
  • the UE will perform cell selection, select a target cell, read the system information of the target cell, and send an RRC re-establishment request message.
  • the UE in the RRC reestablishment process triggered by the failure to obtain ephemeris information, if the signal quality of the original cell does not deteriorate, the UE can still choose to connect to the original cell. Moreover, the UE needs to reacquire the ephemeris information instead of other system information. In this example, the RRC reconstruction process is simplified.
  • the UE selects the original cell (that is, the cell whose uplink is out of sync). If the system information of the original cell is valid, the system information includes, for example, Master Information Block (Master Information Block, MIB), System Information Block (Systym Information Block, SIB) such as SIB1 and SIB2, etc., excluding system information carrying ephemeris information) , in this case, the UE does not receive the paging message due to system information update, and the UE will apply the saved information and will not obtain it again.
  • Master Information Block MIB
  • SIB System Information Block
  • SIB System Information Block
  • the UE Due to the RRC reestablishment process triggered by the failure to acquire the ephemeris information, the UE acquires the ephemeris information again. If the ephemeris information is successfully acquired within a certain period of time, the UE sends an RRC reconstruction request message. Otherwise, UE will enter idle state.
  • This example describes the process of resolving preamble conflicts.
  • the UE in the ILDE state is called, the UE in the ILDE state is calling, the UE in the inactive state (INACTIVE) wants to restore the connection, or the UE in the connected state wants to restore the link, etc.
  • Ephemeris information is sent periodically through system information.
  • these UEs will read the ephemeris information at the time of the next ephemeris information transmission, and send PRACH at the next closest PRACH time. Then these UEs may have Preamble conflicts and PRACH congestion.
  • the base station enables the UE to avoid PRACH congestion through system information or RRC message configuration, and instructs the UE through fourth indication information.
  • the conflict resolution method is as follows:
  • Method 1 The UE randomly selects PRACH resources within the time window.
  • the base station configures the length of a time window through system information or an RRC message, and the time window is long enough to include multiple PRACH transmission resources, including frequency domain, time domain and Preamble.
  • the UE reads the ephemeris information, according to the time window configured by the base station, the starting time of the time window is selected as the time when the first available PRACH resource is located, and the length of the time window is configured by the base station.
  • the UE determines available PRACH transmission resources within the time window, randomly selects one of these PRACH transmission resources, and then transmits the PRACH.
  • the UE judges possible PRACH transmission resources within the time window, and first randomly selects a moment in the time domain, then randomly selects a frequency domain resource in the frequency domain, and finally randomly selects a Preamble.
  • Method 2 The UE randomly generates a time window, and selects a PRACH resource within the time window.
  • the base station configures the minimum granularity of a time window and the value range of the window length of the time window through system information or an RRC message, such as the maximum value of the window length and the minimum value of the window length.
  • the UE generates a random number of the time window length, and the window length of the time window is the product of the minimum granularity and the random number of the window length.
  • the UE After reading the ephemeris information, the UE selects the start time of the time window as the time when the first available PRACH resource is located, and the length of the time window is generated by the above-mentioned UE.
  • the UE determines available PRACH transmission resources within the time window, randomly selects one of these PRACH transmission resources, and then transmits the PRACH.
  • the UE judges possible PRACH transmission resources within the time window, and first randomly selects a moment in the time domain, then randomly selects a frequency domain resource in the frequency domain, and finally randomly selects a Preamble.
  • Method 3 The UE generates time windows of different lengths according to service types, and then selects PRACH resources within the time windows.
  • the base station configures multiple time window parameters through system information or an RRC message, including the minimum granularity and the value range of the window length.
  • each parameter is associated with one or more service types, for example, the value range of time window 1 corresponds to the calling party, the value range of time window 2 corresponds to the called party, and the value range of time window 3 corresponds to the connection recovery link.
  • the UE reads the ephemeris information, it selects the parameters of the corresponding time window according to its own business type, and generates a random number of the time window length within the value range of the window length.
  • the window length of the time window is The product of the minimum granularity and the random number of the window length.
  • the UE selects the start time of the time window as the time when the first available PRACH resource is located, and the length of the time window is generated by the above-mentioned UE.
  • the UE determines available PRACH transmission resources within the time window, randomly selects one of these PRACH transmission resources, and then transmits the PRACH.
  • the UE judges possible PRACH transmission resources within the time window, and first randomly selects a moment in the time domain, then randomly selects a frequency domain resource in the frequency domain, and finally randomly selects a Preamble.
  • Method 4 UE selects PRACH resources according to the start time of service type generation time.
  • the base station configures the minimum granularity of a time start time through system information or an RRC message.
  • the UE calculates the time start time according to the service type. For example, the start time of link recovery link in connected state is 0*minimum granularity, the starting time of called time is 1*minimum granularity, the starting time of calling time is 2*minimum granularity, UE has read the ephemeris After the information is, according to the generated time start time, select a PRACH transmission resource after the start time, and then send the PRACH.
  • FIG. 6 is a schematic structural diagram of an apparatus for obtaining ephemeris information provided by an embodiment.
  • the device for obtaining ephemeris information includes:
  • the out-of-synchronization determining module 310 is configured to determine that the user equipment UE is in a state of uplink out-of-synchronization
  • the information acquisition module 320 is configured to acquire ephemeris information when the uplink is out of sync.
  • the apparatus for acquiring ephemeris information in this embodiment acquires new ephemeris information when it is determined that the ephemeris information is out of sync due to failure of the ephemeris information.
  • the ephemeris information By obtaining the ephemeris information, it provides a basis for calculating the distance between the UE and the satellite, realizing the uplink synchronization between the UE and the serving node, and ensuring the transmission of uplink data.
  • the device also includes:
  • the pre-operation module is configured to clear the HARQ buffer through the MAC, stop the uplink synchronization timer, and release uplink resources.
  • the information acquiring module 320 is configured to: acquire ephemeris information through MAC or RRC.
  • the device further includes: starting a timer through MAC or RRC.
  • the start condition of the timer includes one of the following:
  • MAC instructs RRC to obtain ephemeris information
  • RRC instructs MAC to lose synchronization due to ephemeris information failure
  • RRC instructs MAC to obtain ephemeris information.
  • the stop condition of the timer includes: successfully obtaining ephemeris information through MAC or RRC.
  • the device further includes: a failure module, configured to fail to acquire ephemeris information if the timer expires.
  • the information acquisition module 320 is configured to: monitor the PDCCH scrambled by the SI-RNTI through the MAC, and receive the corresponding PDSCH, where the PDSCH carries ephemeris information.
  • the information acquisition module 320 is configured to: monitor the PDCCH scrambled by the C-RNTI through the MAC, the PDCCH scrambled by the C-RNTI carries first indication information, and the first indication information is used to indicate the The above-mentioned PDCCH schedules the PDSCH carrying ephemeris information.
  • the information acquisition module 320 is configured to: receive the PDSCH carrying ephemeris information on a specific time-frequency resource through MAC; At least one of the duration in the time domain, the starting position in the frequency domain, the bandwidth, and the MCS is determined.
  • the information acquisition module 320 is configured to: receive the PDSCH carrying ephemeris information at a configured interval through MAC; wherein, the interval is based on at least A certainty.
  • the device further includes: a resource determination module configured to determine a PRACH resource for random access according to the PDCCH scrambled by the C-RNTI.
  • the device also includes:
  • the first indication module is configured to send second indication information to the MAC through RRC when the ephemeris information is successfully obtained, and the second indication information is used to indicate that the ephemeris information is obtained successfully or uplink synchronization, or is used to indicate the
  • the MAC sends a random access request to the target cell.
  • the device also includes:
  • the second instructing module is configured to, in the case of failing to obtain the ephemeris information, the RRC enters an idle state, or instructs the RRC to initiate an RRC reestablishment process through the MAC.
  • the device also includes:
  • the access request module is configured to send a random access request to the target cell through the MAC when the ephemeris information is successfully obtained.
  • the device also includes:
  • the third indication module is configured to send third indication information to RRC through MAC in the case of failure to obtain ephemeris information, and the third indication information is used to instruct RRC to enter an idle state, or to instruct the RRC to initiate RRC rebuilding process.
  • the device also includes:
  • the re-acquisition module is configured to re-acquire the ephemeris information when the ephemeris information fails to be obtained, and send an RRC re-establishment request to the serving cell that is out of synchronization.
  • the device further includes: a resource selection module configured to randomly select PRACH resources within a configured time window.
  • the device further includes: a resource selection module, configured to: randomly generate a time window, and select a PRACH resource within the generated time window.
  • a resource selection module configured to: randomly generate a time window, and select a PRACH resource within the generated time window.
  • the device further includes: a resource selection module, configured to: generate a time window according to the service type, and select a PRACH resource within the time window corresponding to the current service type.
  • a resource selection module configured to: generate a time window according to the service type, and select a PRACH resource within the time window corresponding to the current service type.
  • the device further includes: a resource selection module, configured to: generate a start time according to a service type, and select a PRACH resource according to the start time.
  • a resource selection module configured to: generate a start time according to a service type, and select a PRACH resource according to the start time.
  • the device further includes: a configuration receiving module configured to receive configuration information, and the configuration information includes at least one of the following:
  • Indication information for enabling the UE to obtain ephemeris information in the connected state; timer timing duration; time-frequency resources of PRACH; period of PRACH; starting position of PRACH; number of repetitions of PRACH; frequency domain position of PRACH;
  • time-frequency resource of PDCCH the period of PDCCH; the starting position of PDCCH; the number of repetitions of PDCCH; the frequency domain position of PDCCH;
  • the time-frequency resource of the measurement gap the period of the measurement gap; the starting position of the measurement gap; the duration of the measurement gap;
  • the time-domain starting position of a specific time-frequency resource the period of a specific time-frequency resource; the duration of a specific time-frequency resource; the starting position of a specific time-frequency resource in the frequency domain;
  • the modulation and coding level MCS corresponding to the time-frequency resource;
  • the ephemeris information acquisition device proposed in this embodiment and the ephemeris information acquisition method proposed in the above-mentioned embodiments belong to the same inventive concept, and the technical details not described in detail in this embodiment can be referred to any of the above-mentioned embodiments, and this embodiment has the same characteristics as The beneficial effects of the method for obtaining ephemeris information are the same.
  • the embodiment of the present application also provides an indicating device.
  • the unit includes:
  • the instruction module is configured to send ephemeris acquisition instruction information, the instruction information is used to instruct the user equipment UE to determine that the UE is in a state of uplink out-of-synchronization, and to acquire ephemeris information in the case of uplink out-of-synchronization.
  • the device for obtaining ephemeris information in this embodiment by instructing the UE to obtain new ephemeris information when it is determined that it is in a state of uplink out-of-synchronization due to ephemeris information failure, calculates the distance between the UE and the satellite, and realizes The uplink synchronization between the UE and the serving node provides a basis to ensure the transmission of uplink data.
  • the device also includes:
  • the configuration module is configured to send configuration information, and the configuration information includes at least one of the following:
  • Indication information for enabling the UE to obtain ephemeris information in the connected state; timer timing duration; time-frequency resources of PRACH; period of PRACH; starting position of PRACH; number of repetitions of PRACH; frequency domain position of PRACH;
  • time-frequency resource of PDCCH the period of PDCCH; the starting position of PDCCH; the number of repetitions of PDCCH; the frequency domain position of PDCCH;
  • the time-frequency resource of the measurement gap the period of the measurement gap; the starting position of the measurement gap; the duration of the measurement gap;
  • the time-domain starting position of a specific time-frequency resource the period of a specific time-frequency resource; the duration of a specific time-frequency resource; the starting position of a specific time-frequency resource in the frequency domain;
  • the modulation and coding level MCS corresponding to the time-frequency resource;
  • the ephemeris information acquisition device proposed in this embodiment and the ephemeris information acquisition method proposed in the above-mentioned embodiments belong to the same inventive concept, and the technical details not described in detail in this embodiment can be referred to any of the above-mentioned embodiments, and this embodiment has the same characteristics as The beneficial effects of the method for obtaining ephemeris information are the same.
  • FIG. 7 is a schematic diagram of a hardware structure of a communication node provided by an embodiment.
  • the communication node provided by the present application includes a memory 52, a processor 51, and a program stored in the memory and operable on the processor. A computer program. When the processor 51 executes the program, the above-mentioned ephemeris information acquisition method or indication method is realized.
  • the communication node can also include a memory 52; the processor 51 in the communication node can be one or more, and a processor 51 is taken as an example in FIG. 7; the memory 52 is used to store one or more programs; the one or more The program is executed by the one or more processors 51, so that the one or more processors 51 implement the ephemeris information acquisition method or indication method as described in the embodiment of the present application.
  • the communication node also includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51, the memory 52, the communication device 53, the input device 54 and the output device 55 in the communication node may be connected through a bus or in other ways. In FIG. 7, connection through a bus is taken as an example.
  • the input device 54 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to perform information sending and receiving communication according to the control of the processor 51 .
  • Memory 52 can be configured to store software programs, computer-executable programs and modules, such as the program instructions/modules corresponding to the ephemeris information acquisition method described in the embodiment of the present application (for example, ephemeris information acquisition Out-of-sync determination module 310 and information acquisition module 320 in the device).
  • the memory 52 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the communication node, and the like.
  • the memory 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 52 may further include memory located remotely relative to the processor 51, and these remote memories may be connected to the communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present application further provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the ephemeris information obtaining method or indicating method described in any one of the embodiments of the present application is implemented.
  • the method for obtaining ephemeris information includes: determining that the user equipment UE is in a state of uplink out-of-synchronization; and obtaining ephemeris information in the case of uplink out-of-synchronization.
  • the indication method includes: sending ephemeris acquisition indication information, where the indication information is used to instruct a user equipment UE to determine that the UE is in a state of uplink out-of-synchronization, and acquire ephemeris information in the case of uplink out-of-synchronization.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to: an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more conductors, portable computer disks, hard disks, Random Access Memory (RAM), read-only memory (Read Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above .
  • a computer readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to: wireless, wires, optical cables, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to: wireless, wires, optical cables, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program codes for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through the Internet using an Internet service provider). connect).
  • LAN local area network
  • WAN wide area network
  • connect such as AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • Any logical flow block diagrams in the drawings of this application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), Optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • Data processors may be any Types, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), programmable logic devices (Field-Programmable Gate Array , FGPA) and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices
  • processors based on multi-core processor architectures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Security & Cryptography (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种星历信息获取方法、指示方法、通信节点及存储介质。该星历信息获取方法确定用户设备UE处于上行失步的状态(110);在上行失步的情况下,获取星历信息(120)。

Description

星历信息获取方法、指示方法、通信节点及存储介质
相关申请的交叉引用
本申请基于申请号为202110865071.8,申请日为2021年07月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信网络技术领域,例如涉及一种星历信息获取方法、指示方法、通信节点及存储介质。
背景技术
在卫星通信场景下,基站会通过系统信息广播星历信息,便于用户设备(User Equipment,UE)获得卫星的位置。UE可以通过全球导航卫星系统(Global Navigation Satellite System,GNSS)获得自身的位置,在获得自身的位置和卫星的位置后,可以计算自身和卫星之间的距离,并据此计算UE和服务节点保持上行同步需要的上行同步信息,即星历信息,例如:时间提前量。如果UE和服务节点保持了上行同步,UE就可以发送上行数据,服务节点也能成功解码,否则,UE就会上行失步,需要停止上行发送,服务节点也不能解码成功。
由于卫星的移动,UE获取的星历信息会失效,UE计算的卫星位置以及UE和卫星之间的距离也会失效。如果UE无法获取到有效的星历信息,无法保证上行同步,则上行数据无法传输,影响通信的可靠性。
发明内容
本申请提供一种星历信息获取方法、指示方法、通信节点及存储介质。
本申请实施例提供一种星历信息获取方法,包括:确定用户设备UE处于上行失步的状态;在上行失步的情况下,获取星历信息。
本申请实施例还提供了一种指示方法,包括:发送星历获取指示信息,所述指示信息用于指示用户设备UE确定UE处于上行失步的状态,并在上行失步的情况下获取星历信息。
本申请实施例还提供了一种通信节点,包括:存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的星历信息获取方法或指示方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的星历信息获取方法或指示方法。
附图说明
图1为一实施例提供的一种星历信息获取方法的流程图;
图2为一实施例提供的一种获取星历信息的示意图;
图3为一实施例提供的另一种获取星历信息的示意图;
图4为一实施例提供的又一种获取星历信息的示意图;
图5为一实施例提供的再一种获取星历信息的示意图;
图6为一实施例提供的一种星历信息获取装置的结构示意图;
图7为一实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请实施例中,提供一种星历信息获取方法,该方法可应用于UE。图1为一实施例提供的一种星历信息获取方法的流程图,如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,确定用户设备UE处于上行失步的状态。
在步骤120中,在上行失步的情况下,获取星历信息。
本实施例中,UE在确定其由于星历信息失效而处于上行失步的状态的情况下,获取新的星历信息。通过获取星历信息,为计算UE与卫星之间的距离、实现UE与服务节点的上行同步提供依据,保证上行数据的传输。其中,上行失步的状态可以通过UE的介质访问控制层(Medium Access Control,MAC)或无线资源控制(Radio Resource Control,RRC)发现;星历信息可以通过MAC或RRC获取。
在一实施例中,该方法还包括:
步骤112:通过MAC清空混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)缓存,停止上行同步的定时器,并释放上行资源。
本实施例中,在上行失步的情况下,星历信息失效,通过MAC可以停止上行同步的相关操作,以节省资源。
在一实施例中,步骤120包括:通过MAC或RRC获取星历信息。
在一实施例中,该方法还包括:步骤122:通过MAC或RRC启动定时器。
本实施例中,MAC或RRC可启动定时器,UE在定时器运行期间获取星历信息。
在一实施例中,定时器的启动条件包括以下之一:
通过MAC确定由于星历信息失效导致上行失步;
通过RRC确定由于星历信息失效导致上行失步;
MAC指示RRC由于星历信息失效导致上行失步;
MAC指示RRC获取星历信息;
RRC指示MAC由于星历信息失效导致上行失步;
RRC指示MAC获取星历信息。
在一实施例中,定时器的停止条件包括:通过MAC或RRC成功获取到星历信息。
在一实施例中,该方法还包括:步骤130:若定时器超时,则星历信息获取失败。
在一实施例中,步骤120包括:通过MAC监听系统信息无线网络临时标识(System Information-Radio Network Tempory Identity,SI-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH),并接收对应的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),PDSCH携带星历信息。
在一实施例中,步骤120包括:通过MAC监听小区无线网络临时标识(Cell-Radio Network Tempory Identity,C-RNTI)加扰的PDCCH,C-RNTI加扰的PDCCH携带第一指示信息,第一指示信息用于指示PDCCH调度的是携带星历信息的PDSCH。
在一实施例中,步骤120包括:通过MAC在特定时频资源上接收携带星历信息的PDSCH;其中,特定时频资源根据时域的起始位置、时域周期、时域时长、频域的起始位置、带宽以 及调制编码等级(Modulation and Coding Scheme,MCS)中的至少一种确定。
本实施例中,接收PDSCH的特定时频资源及其相关的参数可以由网络侧配置或指示。
在一实施例中,步骤120包括:通过MAC在配置的间隔上接收携带星历信息的PDSCH;其中,间隔根据间隔周期、间隔的起始位置和间隔持续时间中的至少一种确定。
本实施例中,接收PDSCH的间隔及其相关参数可以由网络侧配置或指示。
在一实施例中,该方法还包括:步骤140:根据C-RNTI加扰的PDCCH,确定随机接入的物理随机接入信道(Physical Random Access Channel,PRACH)资源。
本实施例中,基于PRACH资源,UE可发起随机接入(Random Access,RACH)。
在一实施例中,该方法还包括:
步骤150:在成功获取星历信息的情况下,通过RRC向MAC发送第二指示信息,第二指示信息用于指示星历信息获取成功或者上行同步,或者用于指示MAC向目标小区发送随机接入请求。
在一实施例中,该方法还包括:
步骤160:在获取星历信息失败的情况下,RRC进入空闲态,或者通过MAC指示RRC发起RRC重建过程。
在一实施例中,该方法还包括:
步骤170:在成功获取星历信息的情况下,通过MAC向目标小区发送随机接入请求。
在一实施例中,该方法还包括:
步骤180:在获取星历信息失败的情况下,通过MAC向RRC发送第三指示信息,第三指示信息用于指示RRC进入空闲态,或者用于指示RRC发起RRC重建过程。
在一实施例中,该方法还包括:
步骤190:在星历信息获取失败的情况下,重新获取星历信息,并向上行失步的服务小区发送RRC重建请求。
在一实施例中,该方法还包括:步骤142:在配置的时间窗内随机选择PRACH资源。
在一实施例中,该方法还包括:步骤144:随机生成时间窗,并在生成的时间窗内选择PRACH资源。
在一实施例中,该方法还包括:步骤146:根据业务类型生成时间窗,并在当前业务类型对应的时间窗内选择PRACH资源。
在一实施例中,该方法还包括:步骤148:根据业务类型生成起始时刻,并根据起始时刻选择PRACH资源。
在一实施例中,该方法还包括:步骤102:接收配置信息,配置信息包括以下至少之一:
用于使能UE在连接态获取星历信息的指示信息;定时器定时时长;PRACH的时频资源;PRACH的周期;PRACH的起始位置;PRACH的重复次数;PRACH的频域位置;
或PDCCH的时频资源;PDCCH的周期;PDCCH的起始位置;PDCCH的重复次数;PDCCH的频域位置;
或测量间隙的时频资源;测量间隙的周期;测量间隙的起始位置;测量间隙的持续时间;
或特定时频资源;特定时频资源的时域起始位置;特定时频资源的周期;特定时频资源的时长;特定时频资源的频域起始位置;特定时频资源的带宽;特定时频资源对应的调制与编码等级MCS;
或时间窗长度;时间窗的最小粒度;时间窗长度的取值范围;业务类型关联的时间窗的最小粒度;业务类型关联的时间窗长度的取值范围;起始时刻的最小粒度。
在本申请实施例中,还提供一种指示方法,该方法可应用于网络侧,例如基站。
本实施例提供的指示方法包括步骤210:发送星历获取指示信息,所述指示信息用于指示用户设备UE确定UE处于上行失步的状态,并在上行失步的情况下获取星历信息。
本实施例中,网络侧指示UE在确定其由于星历信息失效而处于上行失步的状态的情况下,获取新的星历信息,为计算UE与卫星之间的距离、实现UE与服务节点的上行同步提供依据,保证上行数据的传输。
在一实施例中,该方法还包括:步骤220:发送配置信息,所述配置信息包括以下至少之一:用于使能UE在连接态获取星历信息的指示信息;定时器定时时长;PRACH的时频资源;PRACH的周期;PRACH的起始位置;PRACH的重复次数;PRACH的频域位置;
或PDCCH的时频资源;PDCCH的周期;PDCCH的起始位置;PDCCH的重复次数;PDCCH的频域位置;
或测量间隙的时频资源;测量间隙的周期;测量间隙的起始位置;测量间隙的持续时间;
或特定时频资源;特定时频资源的时域起始位置;特定时频资源的周期;特定时频资源的时长;特定时频资源的频域起始位置;特定时频资源的带宽;特定时频资源对应的调制与编码等级MCS;
或时间窗长度;时间窗的最小粒度;时间窗长度的取值范围;业务类型关联的时间窗的最小粒度;业务类型关联的时间窗长度的取值范围;起始时刻的最小粒度。
以下通过示例对星历信息获取过程进行说明。
示例一
本示例描述MAC发现上行失步并通过RRC获取星历信息的流程。
在卫星场景下,基站会通过系统信息广播星历信息,便于UE获得卫星的位置。UE可以通过GNSS获得自己的位置。UE获得自己的位置和卫星的位置后,可以计算自己和卫星之间的距离,并根据此,计算UE和基站保持上行同步需要的星历信息,例如:时间提前量。如果UE和基站保持了上行同步,UE就可以发送上行数据,基站也能成功解码,否则,UE就会上行失步,需要停止上行发送,基站也不能解码成功。
如果由于卫星的移动,UE获取的星历信息可能会失效,UE计算的卫星位置以及UE和卫星之间的距离失效了,那么UE计算的星历信息也失效了。如果UE要恢复上行数据传输,就需要重新获取星历信息,重新计算UE的星历信息。但是,对于物联网(Internet of Things,IoT)中的UE,不能同时进行数据的收发,也不能同时接收系统信息和下行专有数据,需要一个专门的时间接收星历信息。解决方法如下:
当UE的星历信息失效了,需要重新获取星历信息,例如,UE在每次获取星历信息后,启动一个定时器,如果该定时器超时了,则相应的星历信息失效。这种情况下,UE重新获取星历信息。
图2为一实施例提供的一种获取星历信息的示意图。如图2所示,UE的MAC发现上行失步,指示给RRC,RRC获取星历信息。如果RRC获取星历信息成功,则向MAC指示上行同步,MAC可发起RACH过程;如果RRC获取星历信息失败,则RRC执行回到空闲(IDLE)态的操作,或者发起RRC重建过程。
具体过程如下:
基站在系统信息中广播或者在RRC消息中配置使能UE在连接态读取星历信息的指示位,即用于使能UE在连接态获取星历信息的指示信息。如果基站使能了该功能,UE在星历信息失效后,重新读取星历信息。
step 1:当MAC发现了由于星历信息失效导致UE上行失步,MAC会清空HARQ缓存(Buffer),停止所有上行同步相关的定时器,释放上行资源,例如物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)等。
step2a:MAC指示RRC由于星历信息失效导致UE上行失步,或者MAC指示RRC获取星历信息。RRC收到MAC的指示后,RRC启动定时器。在定时器运行期间,RRC获取星历信息。如果在定时器运行期间,RRC成功获取了星历信息,RRC停止定时器。RRC可向MAC指示成功获取星历信息或者指示上行同步,或者指示MAC发起RACH。如果定时器超时,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
step2b:MAC指示RRC由于星历信息失效导致UE上行失步,或者MAC指示RRC获取星历信息,MAC启动定时器。RRC收到MAC指示的星历信息失效导致UE上行失步,RRC获取星历信息。如果在定时器运行期间,RRC成功获取星历信息,RRC向MAC指示成功获取星历信息或者指示上行同步,或者指示MAC发起RACH。MAC在定时器运行期间,如果收到RRC的指示,MAC会停止定时器。如果定时器超时,MAC向RRC指示上行失步等。RRC接收到指示后,执行回到IDLE态的操作,或者发起RRC重建过程。
step2c:MAC指示RRC由于星历信息失效导致UE上行失步,或者MAC指示RRC获取星历信息。RRC收到MAC指示后,RRC获取星历信息。如果RRC成功获取星历信息,RRC向MAC指示成功获取星历信息或者上行同步,或者指示MAC发起RACH。
step3:如果RRC指示成功获取星历信息,或者RRC指示MAC发起RACH,并且,UE保持了上行同步,MAC会根据配置的PRACH资源,发起RACH过程。
其中,step2a、step2b和step2c择一执行。基站可在系统信息中广播或者在RRC消息中配置的定时器的定时时长。基站会在系统信息中广播或者在RRC消息中配置PRACH的时频资源,包括:PRACH的周期,起始位置,重复次数,频域位置等,该PRACH用于UE成功读取星历信息后发送给基站。
示例二
本示例描述MAC发现上行失步并获取星历信息的流程。
当UE的星历信息失效了,需要重新获取星历信息,例如,UE在每次获取星历信息后,启动一个定时器,如果该定时器超时了,则相应的星历信息失效。这种情况下,UE重新获取星历信息。
图3为一实施例提供的另一种获取星历信息的示意图,如图3所示,MAC发现上行失步,MAC获取星历信息。如果获取星历信息成功后,MAC发起RACH过程。如果获取星历信息失败,MAC指示RRC,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
具体过程如下:
基站在系统信息中广播或者在RRC消息中配置使能UE在连接态读取星历信息的指示位,即用于使能UE在连接态获取星历信息的指示信息。如果基站使能了该功能,UE在星历信息失效后,重新读取星历信息。
step 1:当MAC发现了由于星历信息失效导致UE上行失步,MAC会清空HARQ Buffer,停止所有上行同步相关的定时器,释放上行资源,包括PUCCH,PUSCH等。
step2a:UE获取星历信息。当由于星历信息失效导致UE上行失步,UE的MAC启动定时器。在定时器运行期间,MAC监听SI-RNTI加扰的PDCCH,并接收对应的PDSCH,而PDSCH携带的就是星历信息。在定时器运行期间,MAC成功监听到了SI-RNTI相关的 PDCCH,则停止定时器。如果定时器超时,MAC指示RRC获取星历信息失败。
step2b:UE获取星历信息。当由于星历信息失效导致UE上行失步,UE的MAC启动定时器。在定时器运行期间,MAC监听C-RNTI加扰的PDCCH。在定时器运行期间,MAC成功监听到了C-RNTI加绕的PDCCH,且该PDCCH携带了指示位,表示该PDCCH调度的是携带了星历信息的PDSCH,则停止定时器。如果定时器超时,MAC指示RRC获取星历信息失败。
step2c:UE获取星历信息。当由于星历信息失效导致UE上行失步,MAC启动定时器。在定时器运行期间,MAC在特定时频资源上,接收PDSCH,且该PDSCH携带了星历信息。在定时器运行期间,UE在特定时频资源上,成功接收到了PDSCH,UE会停止定时器。MAC指示RRC获取星历信息成功。如果定时器超时,MAC指示RRC获取星历信息失败。
step2d:UE获取星历信息。当由于星历信息失效导致UE上行失步,MAC启动定时器。在定时器运行期间,MAC在基站配置的间隔(Gap)上,接收PDSCH,且该PDSCH携带了星历信息。在该Gap内,UE不会在上行搜索空间(Uplink Search Space,USS)上监听PDCCH,只检测PDSCH。在定时器运行期间,MAC在Gap内,成功接收到了PDSCH,MAC会停止定时器。MAC指示RRC获取星历信息成功。如果定时器超时,MAC指示RRC获取星历信息失败。
step2e:UE也接收到基站配置的PRACH资源。UE监听到C-RNTI加扰PDCCH,且该PDCCH携带了专用的PRACH资源,用于UE在获取同步后,发起RACH过程。
step3:如果MAC指示成功获取星历信息,并且,UE保持了上行同步,MAC会根据配置的PRACH资源,发起RACH过程。
其中,step2a、step2b、step2c和step2d择一执行。基站会在系统信息中广播或者在RRC消息中配置的定时器的时长。基站会在系统信息中广播或者在RRC消息中配置PRACH的时频资源,包括:PRACH的周期、起始位置、重复次数和/或频域位置等,该PRACH用于UE成功读取星历信息后发送给基站。
基站会在系统信息中广播或者在RRC消息中配置PDCCH的时频资源,包括:PDCCH的周期、起始位置、重复次数和/或频域位置等,该PDCCH用于UE读取星历信息时进行监听,PDCCH包括机器类型通信物理下行控制信道(Machine Type Communication Physical Downlink Control Channel,MPDCCH)、窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)和/或PDCCH等。
基站会在系统信息中广播或者在RRC消息中配置GAP的时频资源,包括:Gap的周期、起始位置和/或持续时间等。
基站会在系统信息中广播或者在RRC消息或在PDCCH中配置特定的时频资源,包括时域上的起始位置、时域周期、时域时长、频域上的起始位置、带宽和/或MCS等。
示例三
本示例描述RRC发现上行失步并获取星历信息的流程。
当UE的星历信息失效了,需要重新获取星历信息,例如,UE在每次获取星历信息后,启动一个定时器,如果该定时器超时了,则相应的星历信息失效。这种情况下,UE重新获取星历信息。
图4为一实施例提供的又一种获取星历信息的示意图。如图4所示,RRC发现星历信息失效,RRC获取星历信息。如果获取成功后,RRC指示MAC,MAC发起RACH过程。如果获取失败,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
具体过程如下:
基站会在系统信息中广播或者在RRC消息中配置使能UE在连接态读取星历信息的指示位,即用于使能UE在连接态获取星历信息的指示信息。如果基站使能了该功能,UE在星历信息失效后,重新读取星历信息。
step1:当RRC发现了由于星历信息失效导致UE上行失步,RRC获取星历信息。
step2:当RRC获取星历信息时,RRC启动定时器。在定时器运行期间,RRC会获取星历信息。如果在定时器运行期间,RRC成功获取了星历信息,RRC会停止定时器。RRC可向MAC指示的成功获取星历信息或者指示上行同步。如果定时器超时,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
step3:如果MAC指示成功获取星历信息,并且,UE保持了上行同步,MAC会根据配置的PRACH资源,发起RACH过程。
其中,基站会在系统信息中广播或者在RRC消息中配置的定时器的时长。基站会在系统信息中广播或者在RRC消息中配置PRACH的时频资源,包括:PRACH的周期、起始位置、重复次数和/或频域位置等,该PRACH用于UE成功读取星历信息后发送给基站。
基站会在系统信息中广播或者在RRC消息中配置Gap的时频资源,包括:Gap的周期、起始位置和/或持续时间等。
示例四
本示例描述RRC发现上行失步并通过MAC获取星历信息的流程。
当UE的星历信息失效了,需要重新获取星历信息,例如,UE在每次获取星历信息后,启动一个定时器,如果该定时器超时了,则相应的星历信息失效。这种情况下,UE重新获取星历信息。
图5为一实施例提供的再一种获取星历信息的示意图。如图5所示,RRC发现星历信息失效,指示MAC,MAC获取星历信息。如果获取成功后,MAC发起RACH过程,指示RRC获取成功。如果获取星历信息失败,MAC指示RRC获取失败,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
具体过程如下:
基站会在系统信息中广播或者在RRC消息中配置使能UE在连接态读取星历信息的指示位,即用于使能UE在连接态获取星历信息的指示信息。如果基站使能了该功能,UE在星历信息失效后,重新读取星历信息。
step1:当RRC发现了由于星历信息失效导致UE上行失步,RRC获取星历信息。
step2a:当RRC获取星历信息时,RRC启动定时器,并指示MAC获取星历信息,或者星历信息失效导致UE上行失步。当MAC接收到指示后,MAC会清空HARQ Buffer,停止所有上行同步相关的定时器,释放上行资源,包括PUCCH和PUSCH等。MAC开始监听SI-RNTI加绕PDCCH,并接收对应的PDSCH,而PDSCH携带的就是星历信息。如果MAC成功监听到了SI-RNTI加绕的PDCCH,MAC指示RRC获取星历信息成功。在定时器运行期间,如果RRC接收到了MAC成功获取了星历信息,RRC会停止定时器。如果定时器超时,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
step2b:当RRC获取星历信息时,RRC启动定时器。并指示MAC获取星历信息,或者星历信息失效导致UE上行失步。当MAC接收到指示后,MAC会清空HARQ Buffer,停止所有上行同步相关的定时器,释放上行资源,包括PUCCH和PUSCH等。MAC开始监听C-RNTI加绕的PDCCH。如果MAC成功监听到了C-RNTI加绕的PDCCH,且该PDCCH携 带了指示位,表示该PDCCH调度的是携带了星历信息的PDSCH,MAC指示RRC获取星历信息成功。在定时器运行期间,如果RRC接收到了MAC成功获取了星历信息,RRC会停止定时器。如果定时器超时,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
step2c:当RRC获取星历信息时,RRC启动定时器。并指示MAC获取星历信息,或者星历信息失效导致UE上行失步。当MAC接收到指示后,MAC会清空HARQ Buffer,停止所有上行同步相关的定时器,释放上行资源,包括PUCCH和PUSCH等。MAC开始在特定时频资源上,接收PDSCH,且该PDSCH携带了星历信息。如果UE在特定时频资源上,成功接收到了PDSCH,MAC指示RRC获取星历信息成功。在定时器运行期间,如果RRC接收到了MAC成功获取了星历信息,RRC会停止定时器。如果定时器超时,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
step2d:当RRC获取星历信息时,RRC启动定时器。并指示MAC获取星历信息,或者星历信息失效导致UE上行失步。当MAC接收到指示后,MAC会清空HARQ Buffer,停止所有上行同步相关的定时器,释放上行资源,包括PUCCH和PUSCH等。MAC在基站配置的Gap上,接收PDSCH,且该PDSCH携带了星历信息。在该Gap内,UE不会在USS上监听PDCCH,只检测PDSCH。在定时器运行期间,如果RRC接收到了MAC成功获取了星历信息的指示,RRC会停止定时器。如果定时器超时,RRC执行回到IDLE态的操作,或者发起RRC重建过程。
step2e:UE也接收到基站配置的PRACH资源。UE监听到C-RNTI加绕PDCCH,且该PDCCH携带了专用的PRACH资源,用于UE在获取同步后,发起RACH过程。
step3:如果MAC指示成功获取星历信息,并且,UE保持了上行同步,MAC会根据配置的PRACH资源,发起RACH过程。
其中,step2a、step2b、step2c和step2d择一执行。基站会在系统信息中广播或者在RRC消息中配置的定时器的时长。基站会在系统信息中广播或者在RRC消息中配置PRACH的时频资源,包括:PRACH的周期、起始位置、重复次数和/或频域位置等,该PRACH用于UE成功读取星历信息后发送给基站。
基站会在系统信息中广播或者在RRC消息或在PDCCH中配置特定的时频资源,包括时域上的起始位置、时域周期、时域时长、频域上的起始位置、带宽和/或MCS等。
示例五
本示例描述由于星历信息失败出发RRC重建的流程。
在RRC重建过程中,UE会进行小区选择,选择目标小区,读取目标小区的系统信息,并发送RRC重建请求消息。但是,由于获取星历信息失败而触发的RRC重建过程,如果原小区的信号质量并没有变差,UE还可以选择到原小区上。而且UE需要重新获取星历信息,而不是其他系统信息,本示例中,简化了RRC重建过程。
由于获取星历信息失败而触发的RRC重建过程,UE选择到原小区(即上行失步的小区)。如果原小区的系统信息有效,系统信息例如包括主系统信息块(Master Information Block,MIB)、系统信息块(Systym Information Block,SIB)如SIB1和SIB2等,不包括携带星历信息的系统信息),这种情况下UE没有收到由于系统信息更新导致的寻呼消息,UE会应用保存的信息,不再重新获取。
由于获取星历信息失败而触发的RRC重建过程,UE重新获取星历信息。如果在一定时间内,获取星历信息成功,UE就发送RRC重建请求消息。否则,UE会进入空闲态。
示例六
本示例描述解决前导码(Preamble)冲突的流程。
UE需要发起上行数据时,例如,处于ILDE态的UE被呼,处于ILDE态的UE主呼,处于非激活态(INACTIVE)的UE要恢复连接,或者处于连接态的UE要恢复链路等等,这种情况下需要根据星历信息,计算卫星的位置,进而估计UE和卫星之间的时间信息,例如,上行提前量,最后再发起RACH过程。星历信息是通过系统信息周期性进行发送的。如果两次星历信息发送的间隔中,多个UE要发起RACH,这些UE会在下一个星历信息发送的时刻都读取星历信息,并在接下来最接近的PRACH时刻发送PRACH。那么这些UE就可能Preamble冲突,发生PRACH拥塞。
解决冲突的方法如下:
基站通过系统信息或者RRC消息配置使能UE避免PRACH拥塞,并通过第四指示信息指示UE。在使能的情况下,解决冲突的方法具体如下:
方法一:UE在时间窗内随机选择PRACH资源。基站通过系统信息或者RRC消息配置一个时间窗的长度,并且该时间窗足够长,能包含多个PRACH的发送资源,包括频域、时域和Preamble。当UE读取了星历信息后,根据基站配置的时间窗,选择时间窗的起始时刻为第一个可用的PRACH资源所在的时刻,时间窗的窗长由基站配置。UE判断在时间窗内可用的PRACH的发送资源,UE随机选择这些PRACH的发送资源中的一个发送资源,然后发送PRACH。或者UE判断在时间窗内可能的PRACH的发送资源,UE先在时域随机选择一个时刻,再在频域上随机选择一个频域资源,最后随机选择一个Preamble。
方法二:UE随机生成时间窗,在时间窗内选择PRACH资源。基站通过系统信息或者RRC消息配置一个时间窗的最小粒度,以及时间窗的窗长的取值范围,例如窗长最大值和窗长最小值。当UE根据基站配置的时间窗的最小粒度,在窗长的取值范围内,生成一个时间窗窗长的随机数,该时间窗的窗长是最小粒度和窗长的随机数的积。UE读取了星历信息后,选择时间窗的起始时刻为第一个可用的PRACH资源所在的时刻,时间窗的窗长由上述UE生成。UE判断在时间窗内可用的PRACH的发送资源,UE随机选择这些PRACH的发送资源中的一个发送资源,然后发送PRACH。或者UE判断在时间窗内可能的PRACH的发送资源,UE先在时域随机选择一个时刻,再在频域上随机选择一个频域资源,最后随机选择一个Preamble。
方法三:UE根据业务类型生成不同长度的时间窗,然后在时间窗内选择PRACH资源。基站通过系统信息或者RRC消息配置多个时间窗的参数,包括最小粒度,窗长的取值范围。且每个参数关联一个或多个业务类型,例如,时间窗1的取值范围对应主呼,时间窗2的取值范围对应被呼,时间窗3的取值范围对应连接态恢复链路。当UE读取了星历信息后,根据自己的业务类型,选择对应的时间窗的参数,在窗长的取值范围内,生成一个时间窗窗长的随机数,该时间窗的窗长是最小粒度和窗长的随机数的积。UE读取了星历信息后,选择时间窗的起始时刻为第一个可用的PRACH资源所在的时刻,时间窗的窗长由上述UE生成。UE判断在时间窗内可用的PRACH的发送资源,UE随机选择这些PRACH的发送资源中的一个发送资源,然后发送PRACH。或者UE判断在时间窗内可能的PRACH的发送资源,UE先在时域随机选择一个时刻,再在频域上随机选择一个频域资源,最后随机选择一个Preamble。
方法四:UE根据业务类型生成时间起始时刻,选择PRACH资源。基站通过系统信息或者RRC消息配置一个时间起始时刻的最小粒度。UE根据业务类型,计算时间起始时刻。 例如,连接态恢复链路的时间起始时刻为0*最小粒度,被呼的时间起始时刻为1*最小粒度,主呼的时间起始时刻为2*最小粒度,UE读取了星历信息后为,根据生成的时间起始时刻,选择在起始时刻之后的PRACH发送资源,然后发送PRACH。
本申请实施例还提供一种星历信息获取装置。图6为一实施例提供的一种星历信息获取装置的结构示意图。如图6所示,所述星历信息获取装置包括:
失步确定模块310,设置为确定用户设备UE处于上行失步的状态;
信息获取模块320,设置为在上行失步的情况下,获取星历信息。
本实施例的星历信息获取装置,在确定由于星历信息失效而处于上行失步的状态的情况下,获取新的星历信息。通过获取星历信息,为计算UE与卫星之间的距离、实现UE与服务节点的上行同步提供依据,保证上行数据的传输。
在一实施例中,该装置还包括:
前置操作模块,设置为通过MAC清空HARQ缓存,停止上行同步的定时器,并释放上行资源。
在一实施例中,信息获取模块320,设置为:通过MAC或RRC获取星历信息。
在一实施例中,该装置还包括:通过MAC或RRC启动定时器。
在一实施例中,定时器的启动条件包括以下之一:
通过MAC确定由于星历信息失效导致上行失步;
通过RRC确定由于星历信息失效导致上行失步;
MAC指示RRC由于星历信息失效导致上行失步;
MAC指示RRC获取星历信息;
RRC指示MAC由于星历信息失效导致上行失步;
RRC指示MAC获取星历信息。
在一实施例中,所述定时器的停止条件包括:通过MAC或RRC成功获取到星历信息。
在一实施例中,该装置还包括:失败模块,设置为若所述定时器超时,则星历信息获取失败。
在一实施例中,信息获取模块320,设置为:通过MAC监听SI-RNTI加扰的PDCCH,并接收对应的PDSCH,所述PDSCH携带星历信息。
在一实施例中,信息获取模块320,设置为:通过MAC监听C-RNTI加扰的PDCCH,所述C-RNTI加扰的PDCCH携带第一指示信息,所述第一指示信息用于指示所述PDCCH调度的是携带星历信息的PDSCH。
在一实施例中,信息获取模块320,设置为:通过MAC在特定时频资源上接收携带星历信息的PDSCH;其中,所述特定时频资源根据时域的起始位置、时域周期、时域时长、频域的起始位置、带宽以及MCS中的至少一种确定。
在一实施例中,信息获取模块320,设置为:通过MAC在配置的间隔上接收携带星历信息的PDSCH;其中,所述间隔根据间隔周期、间隔的起始位置和间隔持续时间中的至少一种确定。
在一实施例中,该装置还包括:资源确定模块,设置为根据C-RNTI加扰的PDCCH,确定随机接入的PRACH资源。
在一实施例中,该装置还包括:
第一指示模块,设置为在成功获取星历信息的情况下,通过RRC向MAC发送第二指示信息,所述第二指示信息用于指示星历信息获取成功或者上行同步,或者用于指示所述 MAC向目标小区发送随机接入请求。
在一实施例中,该装置还包括:
第二指示模块,设置为在获取星历信息失败的情况下,RRC进入空闲态,或者通过MAC指示所述RRC发起RRC重建过程。
在一实施例中,该装置还包括:
接入请求模块,设置为在成功获取星历信息的情况下,通过MAC向目标小区发送随机接入请求。
在一实施例中,该装置还包括:
第三指示模块,设置为在获取星历信息失败的情况下,通过MAC向RRC发送第三指示信息,所述第三指示信息用于指示RRC进入空闲态,或者用于指示所述RRC发起RRC重建过程。
在一实施例中,该装置还包括:
重获模块,设置为在星历信息获取失败的情况下,重新获取星历信息,并向上行失步的服务小区发送RRC重建请求。
在一实施例中,该装置还包括:资源选择模块,设置为在配置的时间窗内随机选择PRACH资源。
在一实施例中,该装置还包括:资源选择模块,设置为:随机生成时间窗,并在生成的时间窗内选择PRACH资源。
在一实施例中,该装置还包括:资源选择模块,设置为:根据业务类型生成时间窗,并在当前业务类型对应的时间窗内选择PRACH资源。
在一实施例中,该装置还包括:资源选择模块,设置为:根据业务类型生成起始时刻,并根据所述起始时刻选择PRACH资源。
在一实施例中,该装置还包括:配置接收模块,设置为接收配置信息,所述配置信息包括以下至少之一:
用于使能UE在连接态获取星历信息的指示信息;定时器定时时长;PRACH的时频资源;PRACH的周期;PRACH的起始位置;PRACH的重复次数;PRACH的频域位置;
或PDCCH的时频资源;PDCCH的周期;PDCCH的起始位置;PDCCH的重复次数;PDCCH的频域位置;
或测量间隙的时频资源;测量间隙的周期;测量间隙的起始位置;测量间隙的持续时间;
或特定时频资源;特定时频资源的时域起始位置;特定时频资源的周期;特定时频资源的时长;特定时频资源的频域起始位置;特定时频资源的带宽;特定时频资源对应的调制与编码等级MCS;
或时间窗长度;时间窗的最小粒度;时间窗长度的取值范围;业务类型关联的时间窗的最小粒度;业务类型关联的时间窗长度的取值范围;起始时刻的最小粒度。
本实施例提出的星历信息获取装置与上述实施例提出的星历信息获取方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行星历信息获取方法相同的有益效果。
本申请实施例还提供一种指示装置。该装置包括:
指示模块,设置为发送星历获取指示信息,所述指示信息用于指示用户设备UE确定UE处于上行失步的状态,并在上行失步的情况下获取星历信息。
本实施例的星历信息获取装置,通过指示UE在确定其由于星历信息失效而处于上行失 步的状态的情况下,获取新的星历信息,为计算UE与卫星之间的距离、实现UE与服务节点的上行同步提供依据,保证上行数据的传输。
在一实施例中,该装置还包括:
配置模块,设置为发送配置信息,所述配置信息包括以下至少之一:
用于使能UE在连接态获取星历信息的指示信息;定时器定时时长;PRACH的时频资源;PRACH的周期;PRACH的起始位置;PRACH的重复次数;PRACH的频域位置;
或PDCCH的时频资源;PDCCH的周期;PDCCH的起始位置;PDCCH的重复次数;PDCCH的频域位置;
或测量间隙的时频资源;测量间隙的周期;测量间隙的起始位置;测量间隙的持续时间;
或特定时频资源;特定时频资源的时域起始位置;特定时频资源的周期;特定时频资源的时长;特定时频资源的频域起始位置;特定时频资源的带宽;特定时频资源对应的调制与编码等级MCS;
或时间窗长度;时间窗的最小粒度;时间窗长度的取值范围;业务类型关联的时间窗的最小粒度;业务类型关联的时间窗长度的取值范围;起始时刻的最小粒度。
本实施例提出的星历信息获取装置与上述实施例提出的星历信息获取方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行星历信息获取方法相同的有益效果。
本申请实施例还提供了一种通信节点,通信节点可以为UE或网络侧节点。图7为一实施例提供的一种通信节点的硬件结构示意图,如图7所示,本申请提供的通信节点,包括存储器52、处理器51以及存储在存储器上并可在处理器上运行的计算机程序,处理器51执行所述程序时实现上述的星历信息获取方法或指示方法。
通信节点还可以包括存储器52;该通信节点中的处理器51可以是一个或多个,图7中以一个处理器51为例;存储器52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的星历信息获取方法或指示方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储器52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图7中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。
存储器52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述星历信息获取方法对应的程序指令/模块(例如,星历信息获取装置中的失步确定模块310和信息获取模块320)。存储器52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储器52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器52可进一步包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的星历信息获取方法或指示方法。该星历信息获取方法包括:确定用户设备UE处于上行失步的状态;在上行失步的情况下,获取星历信息。该指示方法包括:发送星历获取指示信息,所述指示信息用于指示用户设备UE确定UE处于上行失步的状态,并在上行失步的情况下获取星历信息。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的若干实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑 电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
通过若干非限制性的示例,上文已提供了对本申请的若干实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (26)

  1. 一种星历信息获取方法,包括:
    确定用户设备UE处于上行失步的状态;
    在上行失步的情况下,获取星历信息。
  2. 根据权利要求1所述的方法,还包括:
    通过介质访问控制层MAC清空混合自动重传请求HARQ缓存,停止上行同步的定时器,并释放上行资源。
  3. 根据权利要求1所述的方法,其中所述获取星历信息,包括:
    通过MAC或无线资源控制RRC获取星历信息。
  4. 根据权利要求1所述的方法,还包括:通过MAC或RRC启动定时器。
  5. 根据权利要求4所述的方法,其中,所述定时器的启动条件包括以下之一:
    通过MAC确定由于星历信息失效导致上行失步;
    通过RRC确定由于星历信息失效导致上行失步;
    MAC指示RRC由于星历信息失效导致上行失步;
    MAC指示RRC获取星历信息;
    RRC指示MAC由于星历信息失效导致上行失步;
    RRC指示MAC获取星历信息。
  6. 根据权利要求4所述的方法,其中,所述定时器的停止条件包括:
    通过MAC或RRC成功获取到星历信息。
  7. 根据权利要求4所述的方法,还包括:
    若所述定时器超时,则星历信息获取失败。
  8. 根据权利要求1所述的方法,其中所述获取星历信息,包括:
    通过MAC监听系统信息无线网络临时标识SI-RNTI加扰的物理下行控制信道PDCCH,并接收对应的物理下行共享信道PDSCH,所述PDSCH携带星历信息。
  9. 根据权利要求1所述的方法,其中所述获取星历信息,包括:
    通过MAC监听小区无线网络临时标识C-RNTI加扰的PDCCH,所述C-RNTI加扰的PDCCH携带第一指示信息,所述第一指示信息用于指示所述PDCCH调度的是携带星历信息的PDSCH。
  10. 根据权利要求1所述的方法,其中所述获取星历信息,包括:
    通过MAC在特定时频资源上接收携带星历信息的PDSCH;
    其中,所述特定时频资源根据时域的起始位置、时域周期、时域时长、频域的起始位置、带宽以及调制编码等级MCS中的至少一种确定。
  11. 根据权利要求1所述的方法,其中所述获取星历信息,包括:
    通过MAC在配置的间隔上接收携带星历信息的PDSCH;
    其中,所述间隔根据间隔周期、间隔的起始位置和间隔持续时间中的至少一种确定。
  12. 根据权利要求1所述的方法,还包括:
    根据C-RNTI加扰的PDCCH,确定随机接入的物理随机接入信道PRACH资源。
  13. 根据权利要求1所述的方法,还包括:
    在成功获取星历信息的情况下,通过RRC向MAC发送第二指示信息,所述第二指示信息用于指示星历信息获取成功或者上行同步,或者用于指示所述MAC向目标小区发送随机接入请求。
  14. 根据权利要求1所述的方法,还包括:
    在获取星历信息失败的情况下,RRC进入空闲态,或者通过MAC指示所述RRC发起RRC重建过程。
  15. 根据权利要求1所述的方法,还包括:
    在成功获取星历信息的情况下,通过MAC向目标小区发送随机接入请求。
  16. 根据权利要求1所述的方法,还包括:
    在获取星历信息失败的情况下,通过MAC向RRC发送第三指示信息,所述第三指示信息用于指示RRC进入空闲态,或者用于指示所述RRC发起RRC重建过程。
  17. 根据权利要求1所述的方法,还包括:
    在星历信息获取失败的情况下,重新获取星历信息,并向上行失步的服务小区发送RRC重建请求。
  18. 根据权利要求1所述的方法,还包括:
    在配置的时间窗内随机选择PRACH资源。
  19. 根据权利要求1所述的方法,还包括:
    随机生成时间窗,并在生成的时间窗内选择PRACH资源。
  20. 根据权利要求1所述的方法,还包括:
    根据业务类型生成时间窗,并在当前业务类型对应的时间窗内选择PRACH资源。
  21. 根据权利要求1所述的方法,还包括:
    根据业务类型生成起始时刻,并根据所述起始时刻选择PRACH资源。
  22. 根据权利要求1所述的方法,还包括:接收配置信息,所述配置信息包括以下至少之一:
    用于使能UE在连接态获取星历信息的指示信息;定时器定时时长;PRACH的时频资源;PRACH的周期;PRACH的起始位置;PRACH的重复次数;PRACH的频域位置;
    或PDCCH的时频资源;PDCCH的周期;PDCCH的起始位置;PDCCH的重复次数;PDCCH的频域位置;
    或测量间隙的时频资源;测量间隙的周期;测量间隙的起始位置;测量间隙的持续时间;
    或特定时频资源;特定时频资源的时域起始位置;特定时频资源的周期;特定时频资源的时长;特定时频资源的频域起始位置;特定时频资源的带宽;特定时频资源对应的调制与编码等级MCS;
    或时间窗长度;时间窗的最小粒度;时间窗长度的取值范围;业务类型关联的时间窗的最小粒度;业务类型关联的时间窗长度的取值范围;起始时刻的最小粒度。
  23. 一种指示方法,包括:
    发送星历获取指示信息,所述指示信息用于指示用户设备UE确定UE处于上行失步的状态,并在上行失步的情况下获取星历信息。
  24. 根据权利要求23所述的方法,还包括:
    发送配置信息,所述配置信息包括以下至少之一:
    用于使能UE在连接态获取星历信息的指示信息;定时器定时时长;PRACH的时频资源;PRACH的周期;PRACH的起始位置;PRACH的重复次数;PRACH的频域位置;
    或PDCCH的时频资源;PDCCH的周期;PDCCH的起始位置;PDCCH的重复次数;PDCCH的频域位置;
    或测量间隙的时频资源;测量间隙的周期;测量间隙的起始位置;测量间隙的持续时间;
    或特定时频资源;特定时频资源的时域起始位置;特定时频资源的周期;特定时频资源的时长;特定时频资源的频域起始位置;特定时频资源的带宽;特定时频资源对应的调制与 编码等级MCS;
    或时间窗长度;时间窗的最小粒度;时间窗长度的取值范围;业务类型关联的时间窗的最小粒度;业务类型关联的时间窗长度的取值范围;起始时刻的最小粒度。
  25. 一种通信节点,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1-22中任一项所述的星历信息获取方法或如权利要求23-24中任一项所述的指示方法。
  26. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1-22中任一项所述的星历信息获取方法或如权利要求23-24中任一项所述的指示方法。
PCT/CN2022/082527 2021-07-29 2022-03-23 星历信息获取方法、指示方法、通信节点及存储介质 WO2023005239A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237022389A KR20230125217A (ko) 2021-07-29 2022-03-23 궤도력 정보 취득 방법, 표시 방법, 통신 노드, 및저장 매체
EP22847859.0A EP4254822A1 (en) 2021-07-29 2022-03-23 Ephemeris information acquisition method, indication method, communication node, and storage medium
US18/215,759 US20230345396A1 (en) 2021-07-29 2023-06-28 Ephemeris information acquisition method, indication method, communication node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110865071.8 2021-07-29
CN202110865071.8A CN115694593A (zh) 2021-07-29 2021-07-29 星历信息获取方法、指示方法、通信节点及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/215,759 Continuation US20230345396A1 (en) 2021-07-29 2023-06-28 Ephemeris information acquisition method, indication method, communication node, and storage medium

Publications (1)

Publication Number Publication Date
WO2023005239A1 true WO2023005239A1 (zh) 2023-02-02

Family

ID=85057792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082527 WO2023005239A1 (zh) 2021-07-29 2022-03-23 星历信息获取方法、指示方法、通信节点及存储介质

Country Status (5)

Country Link
US (1) US20230345396A1 (zh)
EP (1) EP4254822A1 (zh)
KR (1) KR20230125217A (zh)
CN (2) CN115694593A (zh)
WO (1) WO2023005239A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117858158B (zh) * 2024-03-07 2024-05-10 上海移芯通信科技股份有限公司 一种基于nb-iot的非地面网络通讯方法及通讯终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043292A (zh) * 2006-03-24 2007-09-26 大唐移动通信设备有限公司 高速下行分组接入系统的分组调度方法及其应用的基站
CN101674128A (zh) * 2008-09-12 2010-03-17 大唐移动通信设备有限公司 数据传输控制方法和装置
CN101772150A (zh) * 2008-12-30 2010-07-07 华为技术有限公司 通信方法、用户设备及系统
US20130143595A1 (en) * 2008-03-31 2013-06-06 Golba Llc Determining the Position of a Mobile Device Using the Characteristics of Received Signals and a Reference Database

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043292A (zh) * 2006-03-24 2007-09-26 大唐移动通信设备有限公司 高速下行分组接入系统的分组调度方法及其应用的基站
US20130143595A1 (en) * 2008-03-31 2013-06-06 Golba Llc Determining the Position of a Mobile Device Using the Characteristics of Received Signals and a Reference Database
CN101674128A (zh) * 2008-09-12 2010-03-17 大唐移动通信设备有限公司 数据传输控制方法和装置
CN101772150A (zh) * 2008-12-30 2010-07-07 华为技术有限公司 通信方法、用户设备及系统

Also Published As

Publication number Publication date
CN118018100A (zh) 2024-05-10
KR20230125217A (ko) 2023-08-29
CN115694593A (zh) 2023-02-03
EP4254822A1 (en) 2023-10-04
US20230345396A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
US11006362B2 (en) Appratus and method for beam failure recovery in a wireless communication system
KR101253414B1 (ko) 무선 통신 시스템에서 구식 시스템 정보에 기초한 랜덤 액세스의 방지
US11497078B2 (en) Apparatus and method for DRX mechanisms for single HARQ process operation in NB-IoT
US20220286970A1 (en) Data sending method and apparatus, data receiving method and apparatus, first node, and second node
WO2020191764A1 (en) Method and apparatus for fast serving cell activation
US20220104158A1 (en) Method and device for processing timing advance (ta), and method and device for sending indication information
US10736151B2 (en) Random access for a wireless device
EP3198919B1 (en) Methods and apparatus for minimization of drive testing
US20230300935A1 (en) Methods and apparatus for beam failure recovery for sidelink unicast communications
EP4013174A1 (en) Data transmission method and apparatus, and computer-readable storage medium
WO2017121070A1 (zh) 激活类系统信息的传输方法、装置和设备
JP2023521786A (ja) 測定方法、装置、機器および記憶媒体
US20230345396A1 (en) Ephemeris information acquisition method, indication method, communication node, and storage medium
EP4333489A1 (en) Sdt failure reporting method, terminal device, and network device
CN110636578B (zh) 一种请求系统消息的方法、装置、存储介质及终端
WO2020199204A1 (en) Indication of random access response transmission
US20210250976A1 (en) Method of determining ambiguous period, terminal and network-side device
EP4284055A1 (en) Channel transmission method and apparatus, terminal, base station, and storage medium
CN114286288B (zh) 信息传输方法、资源选择方法、装置及电子设备
CN115334683A (zh) 用于随机接入的方法、设备和存储介质
CN112839378A (zh) 数据的传输方法和设备
WO2022206159A1 (zh) 信道发送、接收方法、通信节点及存储介质
CN111132354A (zh) Tci的自动修改方法及装置、存储介质、终端
WO2024027739A1 (zh) 一种通信方法及装置
WO2023248667A1 (ja) 端末装置、基地局装置、及び端末装置における方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237022389

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022847859

Country of ref document: EP

Effective date: 20230630

NENP Non-entry into the national phase

Ref country code: DE