WO2023005105A1 - 一种神经套管的制备方法、装置、电子设备及存储介质 - Google Patents

一种神经套管的制备方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023005105A1
WO2023005105A1 PCT/CN2021/137765 CN2021137765W WO2023005105A1 WO 2023005105 A1 WO2023005105 A1 WO 2023005105A1 CN 2021137765 W CN2021137765 W CN 2021137765W WO 2023005105 A1 WO2023005105 A1 WO 2023005105A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
polarization
electret
nerve
electret film
Prior art date
Application number
PCT/CN2021/137765
Other languages
English (en)
French (fr)
Inventor
方鹏
曹江浪
李光林
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023005105A1 publication Critical patent/WO2023005105A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/1128Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis of nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1132End-to-end connections

Definitions

  • the embodiments of the present invention relate to nerve sleeve preparation technology, in particular to a preparation method, device, electronic equipment and storage medium of nerve sleeve.
  • anastomosis of nerve axon stumps is an effective method for repair.
  • the nerve sleeve In terms of accelerating the anastomosis of stumps and promoting the growth of nerve cells, the nerve sleeve not only creates a microenvironment enriched with various neurotrophic factors, prevents the growth of peripheral connective tissue and the formation of neuromas, but also ensures that the axons at the stumps are not compressed . Because the electric field has a regulating effect on the growth of nerve cells, it can promote the regeneration of nerve cell axons and surrounding nerves.
  • the nerve sleeve that can provide electric field stimulation has a greater and more direct effect on the repair of nerve damage.
  • the electric field has a regulating effect on the growth of nerve cells, and can promote the regeneration of nerve cell axons and peripheral nerve tissue.
  • the electric field has a regulating effect on the growth of nerve cells, and can promote the regeneration of nerve cell axons and peripheral nerve tissue.
  • the invention provides a preparation method, a device, an electronic device and a storage medium of a nerve sleeve, so as to realize the effect of regulating and promoting the regeneration of nerve cells and tissues through an electret.
  • an embodiment of the present invention provides a method for preparing a nerve sleeve, including:
  • the polarized electret film is properly cut to make a nerve sleeve.
  • said obtaining the dried electret film and placing it on a multi-voltage polarization platform, before said multi-voltage polarization platform is used to generate the polarization voltage also includes:
  • the electret film is cleaned.
  • the method further includes:
  • the method further includes:
  • the polarized electret was left for several hours.
  • the said polarized electret film after the said polarized electret film is properly cut to make the nerve sleeve, it also includes:
  • the nerve sleeve was sterilized using ultraviolet light.
  • the voltages in multiple regions of the electret film are increasing or decreasing.
  • the material of the nerve sleeve is a biocompatible and degradable electret.
  • the embodiment of the present invention also provides a nerve sleeve preparation device, the device comprising:
  • An acquisition module configured to acquire a dry electret film and place it on a multi-voltage polarization platform, the multi-voltage polarization platform is used to generate a polarization voltage
  • a first adjustment module configured to adjust the polarization voltage to a first voltage, and polarize the first region of the electret film
  • a second adjustment module configured to adjust the polarization voltage to a second voltage, and polarize the second region of the electret film
  • the cutting module is used to properly cut the polarized electret film to make a nerve sleeve.
  • an embodiment of the present invention also provides an electronic device, the electronic device comprising:
  • processors one or more processors
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are made to implement the nerve sleeve preparation method as described above.
  • an embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, the computer program includes program instructions, and when the program instructions are executed by a processor, the above-mentioned any one of the above-mentioned Preparation method of neural sleeve.
  • the embodiment of the present invention discloses a preparation method, device, electronic equipment, and storage medium of a nerve sleeve.
  • the method includes: obtaining a dry electret film and placing it on a multi-voltage polarization table, and the multi-voltage polarization
  • the platform is used to generate a polarization voltage; adjust the polarization voltage to a first voltage to polarize the first region of the electret film; adjust the polarization voltage to a second voltage to polarize the electret film
  • the second region of the electret film is polarized; the polarized electret film is properly cut to make a nerve sleeve.
  • the preparation method of a nerve sleeve provided by the embodiment of the present invention solves the problem that there is no nerve sleeve with electric field stimulation in the prior art by using electrets to prepare a nerve sleeve with a gradient electric field, and realizes the Electret to regulate and promote the regeneration of nerve cells and tissues.
  • Fig. 1 is a method flowchart of a preparation method of a nerve sleeve provided in Embodiment 1 of the present invention
  • Fig. 2 is a schematic structural view of an electret film in Example 1 of the present invention.
  • Fig. 3 is a schematic diagram of the electric field shown in the section along the axis of the nerve sleeve in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a multi-voltage polarization station in Embodiment 1 of the present invention.
  • Fig. 5 is a method flowchart of a preparation method of a nerve sleeve provided in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a nerve sleeve preparation device provided in Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of a device provided by Embodiment 4 of the present invention.
  • first”, “second”, etc. may be used herein to describe various directions, actions, steps or elements, etc., but these directions, actions, steps or elements are not limited by these terms. These terms are only used to distinguish a first direction, action, step or element from another direction, action, step or element.
  • a first module could be termed a second module, and, similarly, a second module could be termed a first module, without departing from the scope of the present application. Both the first module and the second module are modules, but they are not the same module.
  • the terms “first”, “second”, etc. should not be interpreted as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • Fig. 1 is a method flow chart of a preparation method of a nerve sleeve provided in Embodiment 1 of the present invention.
  • the preparation method of a nerve sleeve provided by the embodiment of the present invention is applicable to the case of preparing a nerve sleeve based on an electret Specifically, the preparation method of a nerve sleeve provided by Embodiment 1 of the present invention includes:
  • Step 100 obtaining a dry electret film and placing it on a multi-voltage polarization platform, which is used to generate polarization voltages.
  • an electret is a dielectric material that exhibits a "quasi-permanent" charge.
  • the charges in an electret can be “real" charges, for example, surface charges stored on the surface of the material and space charges stored in the bulk of the material; dipolar charges, that is, orientation dipoles (or displacement charges); or Both have it in common.
  • Electrets are generally formed by ordinary dielectric materials treated by corona charging, electric breakdown charging and other methods. Common electrets include polytetrafluoroethylene (PTFE), fluorinated ethylene propylene copolymer (FEP), polychlorotrifluoroethylene (PCTFE), polypropylene (PP), polylactic acid (PLA) and other electrets.
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene propylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PP polypropylene
  • PDA polylactic acid
  • FIG. 2 is a schematic structural diagram of the electret thin film in this embodiment, and four polarized regions are taken as an example for illustration in this embodiment.
  • the V1, V2, V3, and V4 sleeve areas in the nerve sleeve correspond to the V1, V2, V3, and V4 polarization areas of the electret, and the voltages in multiple areas of the electret film are increasing or decreasing.
  • Fig. 3 Fig.
  • FIG. 3 is a schematic diagram of the electric field shown in the axis section of the nerve sleeve in this embodiment, the surface of the polarization area of the nerve sleeve 2 corresponding to the sleeve axis 1 due to the V1, V2, V3, and V4 sleeve areas
  • the magnitude of the potential increases or decreases sequentially, and the direction of the electric field in the nerve casing 2 changes along the direction of increasing or decreasing electric field strength.
  • the direction of the electric field in the nerve sleeve 2 changes along the direction of increasing or decreasing electric field intensity, therefore, when the nerve sleeve 2 is sheathed at the nerve wound, the direction along the nerve tissue surface and the direction vertical to the nerve tissue
  • the direction of the surface has the effect of an electric field, which can not only promote the regeneration of nerve cells and tissues, but also promote the effective accumulation of various neurotrophic factors and other substances, and accelerate the repair of nerve damage.
  • the inside of the nerve sleeve The electric field strength decreases sequentially from bottom to top.
  • Fig. 4 is a structural schematic diagram of a multi-voltage polarization platform in this embodiment, multi-voltage
  • the polarizing table is composed of a polarizing plate, an electret layer, an isolation ring and a shielding cover, wherein the isolation ring is fixed on the cover edge of the shielding cover.
  • the electret layer is placed on the polarizing plate.
  • Multiple shielding covers are closely arranged on the electret (no shielding cover is placed in the area that needs polarization), and the isolation ring on the shielding cover is in contact with the electret layer.
  • both the polarizing plate and the shield cover are grounded (GND).
  • the polarizing plate and the shielding cover are made of metal materials
  • the isolation ring is made of non-metallic materials
  • the electret layer is an electret film to be polarized.
  • Step 110 adjusting the polarization voltage to a first voltage, and polarizing the first region of the electret film.
  • the V1 polarization region of the electret is polarized by adjusting the polarization voltage to U1.
  • the multi-voltage polarization No shielding cover is placed in the V1 polarization area on the stage, and shielding covers are placed in the V2, V3, and V4 polarization areas, so as to achieve the effect of only polarizing the V1 polarization area.
  • Step 120 adjusting the polarization voltage to a second voltage, and polarizing the second region of the electret film.
  • the polarization voltage is adjusted to U2, and the V2 polarization region of the electret is polarized, which is the same as in step 110.
  • no shielding cover is placed on the V2 polarization region on the multi-voltage polarization table, V1 , V3, and V4 polarization areas are placed with shielding covers, so as to achieve the effect of only polarizing the V2 polarization area.
  • regions V3 and V4 are polarized in the same way.
  • polarization is performed sequentially according to the above method, which will not be repeated in this embodiment.
  • Step 130 appropriately cutting the polarized electret film to make a nerve sleeve.
  • the polarized electret film is properly cut to meet the size of the nerve, etc., and the sleeve axis passes through all the polarized regions of the electret, specifically, the nerve sleeve
  • the material used is an electret with good biocompatibility and degradability.
  • the embodiment of the present invention discloses a preparation method of a nerve sleeve, the method comprising: obtaining a dry electret film and placing it on a multi-voltage polarization table, and the multi-voltage polarization table is used to generate a polarization voltage; adjusting the polarizing voltage to a first voltage to polarize the first region of the electret film; adjusting the polarizing voltage to a second voltage to polarize the second region of the electret film The polarized electret film is properly cut to make a nerve sleeve.
  • the preparation method of a nerve sleeve provided by the embodiment of the present invention solves the problem that there is no nerve sleeve with electric field stimulation in the prior art by using electrets to prepare a nerve sleeve with a gradient electric field, and realizes the Electret to regulate and promote the regeneration of nerve cells and tissues.
  • Fig. 5 is a method flow chart of a preparation method of a nerve sleeve provided in Embodiment 2 of the present invention. This embodiment is expanded on the basis of Embodiment 1.
  • a nerve sleeve provided in the embodiment of the present invention The preparation method is suitable for preparing nerve sleeves based on electrets.
  • the preparation method of a nerve sleeve provided in Embodiment 1 of the present invention includes:
  • Step 200 cleaning the electret film.
  • the electret film to be polarized is firstly cleaned to remove dust, oil stains, etc. on the surface of the film to keep its surface clean and prevent users from being infected during use.
  • Step 210 obtaining a dried electret film and placing it on a multi-voltage polarization platform, where the multi-voltage polarization platform is used to generate polarization voltages.
  • an electret is a dielectric material that exhibits a "quasi-permanent" charge.
  • the charges in an electret can be “real" charges, for example, surface charges stored on the surface of the material and space charges stored in the bulk of the material; dipolar charges, that is, orientation dipoles (or displacement charges); or Both have it in common.
  • Electrets are generally formed by ordinary dielectric materials treated by corona charging, electric breakdown charging and other methods. Common electrets include polytetrafluoroethylene (PTFE), fluorinated ethylene propylene copolymer (FEP), polychlorotrifluoroethylene (PCTFE), polypropylene (PP), polylactic acid (PLA) and other electrets.
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene propylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PP polypropylene
  • PDA polylactic acid
  • V1, V2, V3, and V4 sleeve areas in the nerve sleeve correspond to the V1, V2, V3, and V4 polarization areas of the electret, and the voltages in multiple areas of the electret film are increasing or decreasing. Since the surface potentials of the electret polarization regions corresponding to the V1, V2, V3, and V4 casing regions increase or decrease sequentially, the direction of the electric field in the nerve casing changes along the direction of increasing or decreasing electric field strength.
  • the nerve When the sleeve is placed on the nerve wound, it has an electric field effect along the direction of the surface of the nerve tissue and the direction perpendicular to the surface of the nerve tissue, which can not only promote the regeneration of nerve cells and tissues, but also promote the production of various neurotrophic factors and other substances. Effective aggregation, accelerate the repair of nerve damage.
  • a multi-voltage polarization table which consists of a polarization plate, an electret layer, an isolation ring, and a shielding cover. Wherein the isolation ring is fixed on the cover edge of the shielding cover.
  • the electret layer is placed on the polarizing plate.
  • shielding covers are closely arranged on the electret (no shielding cover is placed in the area that needs polarization), and the isolation ring on the shielding cover is in contact with the electret layer. Both the polarizing plate and the shield cover are grounded (GND).
  • the polarizing plate and the shielding cover are made of metal materials
  • the isolation ring is made of non-metallic materials
  • the electret layer is an electret film to be polarized.
  • Step 220 adjusting the polarization voltage to a first voltage, and polarizing the first region of the electret film.
  • the V1 polarization region of the electret is polarized by adjusting the polarization voltage to U1.
  • the multi-voltage polarization No shielding cover is placed in the V1 polarization area on the stage, and shielding covers are placed in the V2, V3, and V4 polarization areas, so as to achieve the effect of only polarizing the V1 polarization area.
  • Step 230 adjusting the polarization voltage to a second voltage, and polarizing the second region of the electret film.
  • the polarization voltage is adjusted to U2, and the V2 polarization region of the electret is polarized, which is the same as in step 110.
  • no shielding cover is placed on the V2 polarization region on the multi-voltage polarization table, V1 , V3, and V4 polarization areas are placed with shielding covers, so as to achieve the effect of only polarizing the V2 polarization area.
  • Step 240 judging whether all regions of the electret film are polarized, and if not, screening out non-polarized regions for polarization.
  • the number of polarized areas of the electret and the number of sleeve areas of the nerve sleeve can be multiple, and the specific situation needs to be determined according to actual usage conditions.
  • the polarization voltage of each polarized region of the electret is determined according to the actual electret material and the electric field required by the nerve sleeve.
  • the size of electret and nerve sleeve is determined according to the actual situation of nerve injury.
  • the V1 and V2 regions have been processed in step 220 and step 230, and in this step, the V3 and V4 regions also need to be processed, and the polarization voltage is adjusted to U3 , to polarize the V3 polarization area of the electret (the shielding cover is not placed in the V3 polarization area on the multi-voltage polarization table, and the shielding cover is placed in the V1, V2, V4 polarization areas).
  • Step 250 placing the polarized electret sheet for several hours.
  • the polarized electret is placed for 24 hours, and the specific storage time can also be adjusted adaptively according to the actual situation, and the next step can be carried out after the surface potential value of the electret tends to be stable. .
  • Step 260 appropriately cutting the polarized electret film to make a nerve sleeve.
  • the polarized electret film is properly cut to meet the size of the nerve, etc., and the sleeve axis passes through all the polarized regions of the electret, specifically, the nerve sleeve
  • the material used is an electret with good biocompatibility and degradability.
  • Step 270 sterilize the nerve sleeve with ultraviolet light.
  • the electret nerve cannula is sterilized by ultraviolet rays to ensure its safety and infection-free, which improves user experience.
  • the embodiment of the present invention discloses a preparation method of a nerve sleeve, the method comprising: obtaining a dry electret film and placing it on a multi-voltage polarization table, and the multi-voltage polarization table is used to generate a polarization voltage; adjusting the polarizing voltage to a first voltage to polarize the first region of the electret film; adjusting the polarizing voltage to a second voltage to polarize the second region of the electret film The polarized electret film is properly cut to make a nerve sleeve.
  • the preparation method of a nerve sleeve provided by the embodiment of the present invention solves the problem that there is no nerve sleeve with electric field stimulation in the prior art by using electrets to prepare a nerve sleeve with a gradient electric field, and realizes the Electret to regulate and promote the regeneration of nerve cells and tissues.
  • the nerve sleeve preparation device of the embodiment of the present invention can implement the preparation method of the nerve sleeve provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for performing the method.
  • Fig. 6 is a schematic structural diagram of a neural sleeve preparation device 300 in an embodiment of the present invention. Referring to Fig. 6, the nerve sleeve preparation device 300 provided by the embodiment of the present invention may specifically include:
  • the acquisition module 310 is used to acquire the dried electret film and place it on a multi-voltage polarization platform, and the multi-voltage polarization platform is used to generate polarization voltages.
  • the first adjustment module 320 is configured to adjust the polarization voltage to a first voltage to polarize the first region of the electret film.
  • the second adjustment module 330 is configured to adjust the polarization voltage to a second voltage to polarize the second region of the electret film.
  • the cutting module 340 is configured to properly cut the polarized electret film to make a nerve sleeve.
  • the obtained dry electret film is placed on a multi-voltage polarization platform, and before the multi-voltage polarization platform is used to generate the polarization voltage, it also includes:
  • the electret film is cleaned.
  • the adjusting the polarization voltage to the second voltage, after polarizing the second region of the electret film further includes:
  • the adjusting the polarization voltage to the second voltage, after polarizing the second region of the electret film further includes:
  • the polarized electret was left for several hours.
  • the said polarized electret film is properly cut to make the nerve sleeve, it also includes:
  • the nerve sleeve was sterilized using ultraviolet light.
  • the voltages in multiple regions of the electret film are increasing or decreasing.
  • the material of the nerve sleeve is an electret with good biocompatibility and degradability.
  • the embodiment of the present invention discloses a nerve sleeve preparation device, which includes: an acquisition module, used to acquire a dried electret film and place it on a multi-voltage polarization platform, and the multi-voltage polarization platform is used for generating a polarization voltage; a first adjustment module, configured to adjust the polarization voltage to a first voltage, and polarize the first region of the electret film; a second adjustment module, configured to adjust the polarization The voltage is the second voltage, and the second region of the electret film is polarized; the cutting module is used for properly cutting the polarized electret film to make a nerve sleeve.
  • the preparation method of a nerve sleeve provided by the embodiment of the present invention solves the problem that there is no nerve sleeve with electric field stimulation in the prior art by using electrets to prepare a nerve sleeve with a gradient electric field, and realizes the Electret to regulate and promote the regeneration of nerve cells and tissues.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • the electronic device 400 includes a memory 410 and a processor 420, and the number of processors 420 in the electronic device 400 may be one or more
  • a processor 420 is taken as an example; the memory 410 and the processor 420 in the server may be connected through a bus or in other ways.
  • the connection through a bus is taken as an example.
  • the memory 410 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the preparation method of the nerve sleeve in the embodiment of the present invention (for example, a nerve sleeve In the pipe preparation device 300, the processor 420 executes the server/terminal/ Various functional applications and data processing of the server are to realize the preparation method of the above-mentioned nerve sleeve.
  • processor 420 is used to run the computer program stored in the memory 410 to implement the following steps:
  • the polarized electret film is properly cut to make a nerve sleeve.
  • the computer program of the electronic device provided by the embodiment of the present invention is not limited to the above-mentioned method operations, and can also perform related operations in the preparation method of the nerve sleeve provided by any embodiment of the present invention .
  • the memory 410 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 410 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 410 may further include a memory that is remotely located relative to the processor 420, and these remote memories may be connected to a server/terminal/server through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present invention discloses an electronic device for preparing a nerve sleeve, which is used to perform the following method: obtain a dry electret film and place it on a multi-voltage polarization table, and the multi-voltage polarization table is used to generate a pole Polarizing voltage; adjusting the polarizing voltage to the first voltage, polarizing the first region of the electret film; adjusting the polarizing voltage to the second voltage, polarizing the second area of the electret film The region is polarized; the polarized electret film is properly cut to make a nerve sleeve.
  • the preparation method of a nerve sleeve provided by the embodiment of the present invention solves the problem that there is no nerve sleeve with electric field stimulation in the prior art by using electrets to prepare a nerve sleeve with a gradient electric field, and realizes the Electret to regulate and promote the regeneration of nerve cells and tissues.
  • Embodiment 5 of the present invention also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to perform a preparation method of a nerve sleeve when executed by a computer processor, the method comprising:
  • the polarized electret film is properly cut to make a nerve sleeve.
  • the computer-executable instructions are not limited to the above-mentioned method operations, and can also execute a neural casing provided by any embodiment of the present invention. Related operations in the preparation method.
  • the computer-readable storage medium in the embodiments of the present invention may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code contained on a storage medium may be transmitted using any appropriate medium, including - but not limited to wireless, wires, optical cables, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present invention may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or terminal.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • the embodiment of the present invention discloses a nerve sleeve preparation storage medium, which is used to perform the following method: obtain a dry electret film and place it on a multi-voltage polarization stage, and the multi-voltage polarization stage is used to generate a pole Polarizing voltage; adjusting the polarizing voltage to the first voltage, polarizing the first region of the electret film; adjusting the polarizing voltage to the second voltage, polarizing the second area of the electret film The region is polarized; the polarized electret film is properly cut to make a nerve sleeve.
  • the preparation method of a nerve sleeve provided by the embodiment of the present invention solves the problem that there is no nerve sleeve with electric field stimulation in the prior art by using electrets to prepare a nerve sleeve with a gradient electric field, and realizes the Electret to regulate and promote the regeneration of nerve cells and tissues.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Prostheses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种神经套管(2)的制备方法、装置(300)、电子设备(400)及存储介质(410),该方法包括:获取干燥的驻极体薄膜并放置在多电压极化台上,多电压极化台用于生成极化电压;调整极化电压为第一电压,对驻极体薄膜的第一区域进行极化;调整极化电压为第二电压,对驻极体薄膜的第二区域进行极化;将极化后的驻极体薄膜进行适当裁剪制成神经套管(2)。所提供的一种神经套管(2)的制备方法,通过使用驻极体制备具有梯度电场的神经套管(2),解决了现有技术中没有具有电场刺激作用的神经套管(2)的问题,实现了通过驻极体来调控和促进神经细胞和组织的再生的效果。

Description

一种神经套管的制备方法、装置、电子设备及存储介质 技术领域
本发明实施例涉及神经套管制备技术,尤其涉及一种神经套管的制备方法、装置、电子设备及存储介质。
背景技术
神经细胞再生能力较弱,损伤后不能以分裂增殖的方式进行修复,故将神经轴突断端进行吻合是进行修复的有效方法。神经套管在加速断端吻合、促进神经细胞生长方面,不仅创造各类神经营养因子富集的微环境,防止外周结缔组织长入及神经瘤生成,还可保证断端轴突不受卡压。由于电场对神经细胞的生长具有调控作用,能促进神经细胞轴突和组织周围神经再生。能够提供电场刺激的神经套管,对神经损伤的修复具有更大更直接的促进作用。
而在现有技术中,电场对神经细胞的生长具有调控作用,能促进神经细胞轴突和周围神经组织再生。目前还没有具有电场刺激作用的神经套管的发明应用。
技术问题
本发明提供一种神经套管的制备方法、装置、电子设备及存储介质,以实现通过驻极体来调控和促进神经细胞和组织的再生的效果。
技术解决方案
第一方面,本发明实施例提供了一种神经套管的制备方法,包括:
获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;
调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;
调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;
将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
可选的,所述获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压之前还包括:
对所述驻极体薄膜进行清洁处理。
可选的,所述调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化之后还包括:
判断所述驻极体薄膜的所有区域是否都被极化,若否,则筛选出未被极化的区域进行极化。
可选的,所述调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化之后还包括:
将所述极化后的驻极体薄放置多个小时。
可选的,所述将所述极化后的驻极体薄膜进行适当裁剪制成神经套管之后还包括:
对所述神经套管使用紫外线进行消毒处理。
可选的,所述驻极体薄膜的多个区域内电压为递增或者递减。
可选的,所述神经套管的材料为生物相容性良好并且可降解的驻极体。
第二方面,本发明实施例还提供了一种神经套管的制备装置,该装置包括:
获取模块,用于获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;
第一调整模块,用于调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;
第二调整模块,用于调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;
裁剪模块,用于将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
第三方面,本发明实施例还提供了一种电子设备,所述电子设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述任一所述的神经套管的制备方法。
第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序包括程序指令,该程序指令被处理器执行时实现如上述任一所述的神经套管的制备方法。
有益效果
本发明实施例公开了一种神经套管的制备方法、装置、电子设备及存储介质,该方法包括:获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。本发明实施例提供的一种神经套管的制备方法,通过使用驻极体制备具有梯度电场的神经套管,解决了现有技术中没有具有电场刺激作用的神经套管的问题,实现了通过驻极体来调控和促进神经细胞和组织的再生的效果。
附图说明
图1为本发明实施例一提供的一种神经套管的制备方法的方法流程图;
图2为本发明实施例一中驻极体薄膜的结构示意图;
图3为本发明实施例一中神经套管沿轴线截面所示的电场示意图;
图4为本发明实施例一中多电压极化台的结构示意图;
图5为本发明实施例二提供的一种神经套管的制备方法的方法流程图;
图6为本发明实施例三提供的一种神经套管的制备装置的结构示意图;
图7为本发明实施例四提供的一种设备的结构示意图。
本发明的实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一模块为第二模块,且类似地,可将第二模块称为第一模块。第一模块和第二模块两者都是模块,但其不是同一模块。术语“第一”、“第二”等而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
实施例一
图1为本发明实施例一提供的一种神经套管的制备方法的方法流程图,本发明实施例提供的一种神经套管的制备方法适用于根据驻极体来制备神经套管的情况,具体地,本发明实施例一提供的一种神经套管的制备方法包括:
步骤100、获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压。
在本实施例中,驻极体是一种呈现“准永久”电荷的电介质材料。驻极体中的电荷可以是“真实”电荷,例如,储存在材料表面的表面电荷和储存在材料体内的空间电荷;也可以使偶极电荷,即取向偶极子(或位移电荷);或两者共有之。驻极体一般是由普通电介质材料经电晕充电法、电击穿充电法等方法处理后形成的。常见的驻极体有聚四氟乙烯(PTFE)、氟化乙丙烯共聚物(FEP)、聚三氟氯乙烯(PCTFE)、聚丙烯(PP)、聚乳酸(PLA)等驻极体。本发明所述神经套管的材料采用生物相容性良好、可降解的驻极体,如聚乳酸(PLA)驻极体,其厚度在几微米到几百微米的范围内。
具体地,参阅图2,图2为本实施例中驻极体薄膜的结构示意图,在本实施例中以四个极化区域为例进行说明。其中神经套管中V1、V2、V3、V4套管区域对应为驻极体的V1、V2、V3、V4极化区域,所述驻极体薄膜的多个区域内电压为递增或者递减。参阅图3,图3为本实施例中神经套管沿轴线截面所示的电场示意图,套管轴线1由于V1、V2、V3、V4套管区域对应的神经套管2的极化区域的表面电位大小依次递增或递减,神经套管2内的电场方向沿电场强度大小递增或递减的方向变化,由于V1、V2、V3、V4套管区域对应的驻极体极化区域的表面电位大小依次递增或递减,神经套管2内的电场方向沿电场强度大小递增或递减的方向变化,因此,所述神经套管2套合在神经创伤处时,沿着神经组织表面的方向和垂直神经组织表面的方向具有电场作用,这样不仅可以促进神经细胞及组织的再生,还可以促进各类神经营养因子等物质的有效聚集,加速神经损伤的修复,具体地,在图3中,神经套管内部电场强度从下到上依次递减。在对驻极体薄膜进行极化处理之前,将干燥的驻极体薄膜方在多电压极化台上,参阅图4,图4为本实施例中多电压极化台的结构示意图,多电压极化台由极化板、驻极体层、隔离圈、屏蔽盖组成,其中隔离圈固定屏蔽盖的盖沿上。驻极体层放置在极化板上。驻极体上紧密排列放置多个屏蔽盖(需要极化的区域不放置屏蔽盖),其中屏蔽盖上的隔离圈与驻极体层接触。极化板和屏蔽盖均接地(GND)。该装置中,极化板、屏蔽盖均由金属材料制成,隔离圈由非金属材料制成,驻极体层为待极化的驻极体薄膜。
步骤110、调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化。
在本实施例中,将干燥的驻极体薄膜方在多电压极化台上后,通过调整极化电压为U1,对驻极体的V1极化区域进行极化,此时多电压极化台上V1极化区域不放置屏蔽盖,V2、V3、V4极化区域放置屏蔽盖,从而达到仅对V1极化区域进行极化的效果。
步骤120、调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化。
在本实施例中,调整极化电压为U2,对驻极体的V2极化区域进行极化,与步骤110中相同,此时多电压极化台上V2极化区域不放置屏蔽盖,V1、V3、V4极化区域放置屏蔽盖,从而达到仅对V2极化区域进行极化的效果。
在本实施例中,根据同样的方式对V3和V4区域进行极化,在替代实施例中,存在多个极化区域时也根据上述方式进行依次极化,在本实施例中不再赘述。
步骤130、将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
在本实施例中,将所述极化后的驻极体薄膜进行适当裁剪使其符合神经尺寸扥等,并且套管轴线通过驻极体的全部极化区域,具体地,所述神经套管的材料为生物相容性良好并且可降解的驻极体。
本发明实施例公开了一种神经套管的制备方法,该方法包括:获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。本发明实施例提供的一种神经套管的制备方法,通过使用驻极体制备具有梯度电场的神经套管,解决了现有技术中没有具有电场刺激作用的神经套管的问题,实现了通过驻极体来调控和促进神经细胞和组织的再生的效果。
实施例二
图5为本发明实施例二提供的一种神经套管的制备方法的方法流程图,本实施例是在实施例一的基础上进行了拓展,在本发明实施例提供的一种神经套管的制备方法适用于根据驻极体来制备神经套管的情况,具体地,本发明实施例一提供的一种神经套管的制备方法包括:
步骤200、对所述驻极体薄膜进行清洁处理。
在本实施例中,首先对将待极化的驻极体薄膜进行清洁处理,去除薄膜表面的灰尘、油渍等,保持其表面清洁,防止用户在使用时受到感染。
步骤210、获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压。
在本实施例中,驻极体是一种呈现“准永久”电荷的电介质材料。驻极体中的电荷可以是“真实”电荷,例如,储存在材料表面的表面电荷和储存在材料体内的空间电荷;也可以使偶极电荷,即取向偶极子(或位移电荷);或两者共有之。驻极体一般是由普通电介质材料经电晕充电法、电击穿充电法等方法处理后形成的。常见的驻极体有聚四氟乙烯(PTFE)、氟化乙丙烯共聚物(FEP)、聚三氟氯乙烯(PCTFE)、聚丙烯(PP)、聚乳酸(PLA)等驻极体。本发明所述神经套管的材料采用生物相容性良好、可降解的驻极体,如聚乳酸(PLA)驻极体,其厚度在几微米到几百微米的范围内。
具体地,在本实施例中以四个极化区域为例进行说明。其中神经套管中V1、V2、V3、V4套管区域对应为驻极体的V1、V2、V3、V4极化区域,所述驻极体薄膜的多个区域内电压为递增或者递减。由于V1、V2、V3、V4套管区域对应的驻极体极化区域的表面电位大小依次递增或递减,神经套管内的电场方向沿电场强度大小递增或递减的方向变化,因此,所述神经套管套合在神经创伤处时,沿着神经组织表面的方向和垂直神经组织表面的方向具有电场作用,这样不仅可以促进神经细胞及组织的再生,还可以促进各类神经营养因子等物质的有效聚集,加速神经损伤的修复。在对驻极体薄膜进行极化处理之前,将干燥的驻极体薄膜方在多电压极化台上,多电压极化台由极化板、驻极体层、隔离圈、屏蔽盖组成,其中隔离圈固定屏蔽盖的盖沿上。驻极体层放置在极化板上。驻极体上紧密排列放置多个屏蔽盖(需要极化的区域不放置屏蔽盖),其中屏蔽盖上的隔离圈与驻极体层接触。极化板和屏蔽盖均接地(GND)。该装置中,极化板、屏蔽盖均由金属材料制成,隔离圈由非金属材料制成,驻极体层为待极化的驻极体薄膜。
步骤220、调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化。
在本实施例中,将干燥的驻极体薄膜方在多电压极化台上后,通过调整极化电压为U1,对驻极体的V1极化区域进行极化,此时多电压极化台上V1极化区域不放置屏蔽盖,V2、V3、V4极化区域放置屏蔽盖,从而达到仅对V1极化区域进行极化的效果。
步骤230、调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化。
在本实施例中,调整极化电压为U2,对驻极体的V2极化区域进行极化,与步骤110中相同,此时多电压极化台上V2极化区域不放置屏蔽盖,V1、V3、V4极化区域放置屏蔽盖,从而达到仅对V2极化区域进行极化的效果。
步骤240、判断所述驻极体薄膜的所有区域是否都被极化,若否,则筛选出未被极化的区域进行极化。
在本实施例中,驻极体的极化区域数量和神经套管的套管区域数量可以为多个,具体地情况需要根据实际使用情况进行确定。驻极体各极化区域的极化电压根据实际驻极体材料和神经套管所需电场情况来确定。驻极体和神经套管的尺寸根据神经损伤实际情况确定。示例性的,当存在4个极化区域时,在步骤220和步骤230中已将V1和V2区域进行处理,在本步骤中,还需要对V3和V4区域进行处理,调整极化电压为U3,对驻极体的V3极化区域进行极化(多电压极化台上V3极化区域不放置屏蔽盖,V1、V2、V4极化区域放置屏蔽盖)。调整极化电压为U4,对驻极体的V4极化区域进行极化(多电压极化台上V4极化区域不放置屏蔽盖,V1、V2、V3极化区域放置屏蔽盖)。据此,已完成对4个极化区域的极化,当出现多个极化区域时,根据此方式依次进行极化。
步骤250、将所述极化后的驻极体薄放置多个小时。
在本实施例中,将极化后的驻极体放置24小时,具体放置时间也可以根据实际情况进行适应性的调整,等到驻极体的表面电位值趋于稳定后即可进行下一步处理。
步骤260、将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
在本实施例中,将所述极化后的驻极体薄膜进行适当裁剪使其符合神经尺寸扥等,并且套管轴线通过驻极体的全部极化区域,具体地,所述神经套管的材料为生物相容性良好并且可降解的驻极体。
步骤270、对所述神经套管使用紫外线进行消毒处理。
在本实施例中,通过紫外线对驻极体神经套管进行消毒处理,保证其安全无感染,提高了用户的使用体验。
本发明实施例公开了一种神经套管的制备方法,该方法包括:获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。本发明实施例提供的一种神经套管的制备方法,通过使用驻极体制备具有梯度电场的神经套管,解决了现有技术中没有具有电场刺激作用的神经套管的问题,实现了通过驻极体来调控和促进神经细胞和组织的再生的效果。
实施例三
本发明实施例的神经套管的制备装置可以实行本发明任意实施例所提供的神经套管的制备方法,具备执行方法相应的功能模块和有益效果。图6是本发明实施例中的一种神经套管的制备装置300的结构示意图。参照图6,本发明实施例提供的神经套管的制备装置300具体可以包括:
获取模块310,用于获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压。
第一调整模块320,用于调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化。
第二调整模块330,用于调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化.
裁剪模块340,用于将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
进一步的,所述获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压之前还包括:
对所述驻极体薄膜进行清洁处理。
进一步的,所述调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化之后还包括:
判断所述驻极体薄膜的所有区域是否都被极化,若否,则筛选出未被极化的区域进行极化。
进一步的,所述调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化之后还包括:
将所述极化后的驻极体薄放置多个小时。
进一步的,所述将所述极化后的驻极体薄膜进行适当裁剪制成神经套管之后还包括:
对所述神经套管使用紫外线进行消毒处理。
进一步的,所述驻极体薄膜的多个区域内电压为递增或者递减。
进一步的,所述神经套管的材料为生物相容性良好并且可降解的驻极体。
本发明实施例公开了一种神经套管的制备装置,该装置包括:获取模块,用于获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;第一调整模块,用于调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;第二调整模块,用于调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;裁剪模块,用于将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。本发明实施例提供的一种神经套管的制备方法,通过使用驻极体制备具有梯度电场的神经套管,解决了现有技术中没有具有电场刺激作用的神经套管的问题,实现了通过驻极体来调控和促进神经细胞和组织的再生的效果。
实施例四
图7为本发明实施例提供的一种电子设备的结构示意图,如图7所示,该电子设备400包括存储器410、处理器420,电子设备400中处理器420的数量可以是一个或多个,图7中以一个处理器420为例;服务器中的存储器410、处理器420可以通过总线或其他方式连接,图7中以通过总线连接为例。
存储器410作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的神经套管的制备方法对应的程序指令/模块(例如,一种神经套管的制备装置300中获取模块310、第一调整模块320、第二调整模块330、裁剪模块340)处理器420通过运行存储在存储器410中的软件程序、指令以及模块,从而执行服务器/终端/服务器的各种功能应用以及数据处理,即实现上述的神经套管的制备方法。
其中,处理器420用于运行存储在存储器410中的计算机程序,实现如下步骤:
获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;
调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;
调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;
将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
在其中一个实施例中,本发明实施例所提供的一种电子设备,其计算机程序不限于如上的方法操作,还可以执行本发明任意实施例所提供的神经套管的制备方法中的相关操作。
存储器410可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器410可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器410可进一步包括相对于处理器420远程设置的存储器,这些远程存储器可以通过网络连接至服务器/终端/服务器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本发明实施例公开了一种神经套管的制备电子设备,用于执行以下方法:获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。本发明实施例提供的一种神经套管的制备方法,通过使用驻极体制备具有梯度电场的神经套管,解决了现有技术中没有具有电场刺激作用的神经套管的问题,实现了通过驻极体来调控和促进神经细胞和组织的再生的效果。
实施例五
本发明实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种神经套管的制备方法,该方法包括:
获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;
调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;
调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;
将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的一种神经套管的制备方法中的相关操作。
本发明实施例的计算机可读存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
存储介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或终端上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本发明实施例公开了一种神经套管的制备存储介质,用于执行以下方法:获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。本发明实施例提供的一种神经套管的制备方法,通过使用驻极体制备具有梯度电场的神经套管,解决了现有技术中没有具有电场刺激作用的神经套管的问题,实现了通过驻极体来调控和促进神经细胞和组织的再生的效果。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种神经套管的制备方法,其特征在于,包括:
    获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;
    调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;
    调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;
    将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
  2. 根据权利要求1中所述的神经套管的制备方法,其特征在于,所述获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压之前还包括:
    对所述驻极体薄膜进行清洁处理。
  3. 根据权利要求1中所述的神经套管的制备方法,其特征在于,所述调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化之后还包括:
    判断所述驻极体薄膜的所有区域是否都被极化,若否,则筛选出未被极化的区域进行极化。
  4. 根据权利要求1中所述的神经套管的制备方法,其特征在于,所述调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化之后还包括:
    将所述极化后的驻极体薄放置多个小时。
  5. 根据权利要求1中所述的神经套管的制备方法,其特征在于,所述将所述极化后的驻极体薄膜进行适当裁剪制成神经套管之后还包括:
    对所述神经套管使用紫外线进行消毒处理。
  6. 根据权利要求1中所述的神经套管的制备方法,其特征在于,所述驻极体薄膜的多个区域内电压为递增或者递减。
  7. 根据权利要求1中所述的神经套管的制备方法,其特征在于,所述神经套管的材料为生物相容性良好并且可降解的驻极体。
  8. 一种神经套管的制备装置,其特征在于,包括:
    获取模块,用于获取干燥的驻极体薄膜并放置在多电压极化台上,所述多电压极化台用于生成极化电压;
    第一调整模块,用于调整所述极化电压为第一电压,对所述驻极体薄膜的第一区域进行极化;
    第二调整模块,用于调整所述极化电压为第二电压,对所述驻极体薄膜的第二区域进行极化;
    裁剪模块,用于将所述极化后的驻极体薄膜进行适当裁剪制成神经套管。
  9. 一种电子设备,其特征在于,所述电子设备包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的神经套管的制备方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序包括程序指令,其特征在于,该程序指令被处理器执行时实现如权利要求1-7中任一所述的神经套管的制备方法。
PCT/CN2021/137765 2021-07-28 2021-12-14 一种神经套管的制备方法、装置、电子设备及存储介质 WO2023005105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110854900.2A CN113576574A (zh) 2021-07-28 2021-07-28 一种神经套管的制备方法、装置、电子设备及存储介质
CN202110854900.2 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023005105A1 true WO2023005105A1 (zh) 2023-02-02

Family

ID=78250963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137765 WO2023005105A1 (zh) 2021-07-28 2021-12-14 一种神经套管的制备方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113576574A (zh)
WO (1) WO2023005105A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113576574A (zh) * 2021-07-28 2021-11-02 中国科学院深圳先进技术研究院 一种神经套管的制备方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005490A1 (en) * 1988-11-17 1990-05-31 Brown University Research Foundation Electrically-charged nerve guidance channels
US20110163615A1 (en) * 2008-09-12 2011-07-07 Imec Patterned Electret Structures and Methods for Manufacturing Patterned Electret Structures
JP2012085515A (ja) * 2010-09-16 2012-04-26 Murata Mfg Co Ltd エレクトレットの帯電装置及びエレクトレットの帯電方法、振動発電装置
CN103347244A (zh) * 2013-06-25 2013-10-09 中山市天键电声有限公司 一种驻极体材料自动瞬间极化机
CN104058364A (zh) * 2014-06-13 2014-09-24 杭州电子科技大学 一种图形化薄膜驻极体的制备方法
CN104347793A (zh) * 2014-08-06 2015-02-11 贝骨新材料科技(上海)有限公司 微孔压电驻极体薄膜组件卷对卷连续极化装置及其方法
CN113576574A (zh) * 2021-07-28 2021-11-02 中国科学院深圳先进技术研究院 一种神经套管的制备方法、装置、电子设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030225A (en) * 1987-03-13 1991-07-09 Brown University Research Foundation Electrically-charged nerve guidance channels
CN102325293B (zh) * 2011-05-09 2014-01-22 东莞勤增实业有限公司 一种驻极体的极化装置及采用该极化装置进行极化的方法
EP2838607A4 (en) * 2012-04-12 2015-12-30 Univ Wake Forest Health Sciences DESIGN OF A PIPE FOR A PERIPHERAL NERVOUS REPLACEMENT
JP6293447B2 (ja) * 2013-10-03 2018-03-14 株式会社オーディオテクニカ 音響用静電型変換器、その固定極の製造方法およびコンデンサマイクロホン、コンデンサヘッドホン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005490A1 (en) * 1988-11-17 1990-05-31 Brown University Research Foundation Electrically-charged nerve guidance channels
US20110163615A1 (en) * 2008-09-12 2011-07-07 Imec Patterned Electret Structures and Methods for Manufacturing Patterned Electret Structures
JP2012085515A (ja) * 2010-09-16 2012-04-26 Murata Mfg Co Ltd エレクトレットの帯電装置及びエレクトレットの帯電方法、振動発電装置
CN103347244A (zh) * 2013-06-25 2013-10-09 中山市天键电声有限公司 一种驻极体材料自动瞬间极化机
CN104058364A (zh) * 2014-06-13 2014-09-24 杭州电子科技大学 一种图形化薄膜驻极体的制备方法
CN104347793A (zh) * 2014-08-06 2015-02-11 贝骨新材料科技(上海)有限公司 微孔压电驻极体薄膜组件卷对卷连续极化装置及其方法
CN113576574A (zh) * 2021-07-28 2021-11-02 中国科学院深圳先进技术研究院 一种神经套管的制备方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113576574A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
Yao et al. A programmable and skin temperature–activated electromechanical synergistic dressing for effective wound healing
WO2023005105A1 (zh) 一种神经套管的制备方法、装置、电子设备及存储介质
Xie et al. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications
Nowotny et al. Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells
Gedikli et al. Histopathological changes of chorda tympani in chronic otitis media
Fridberger et al. Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia
Nier et al. Tissue fusion over nonadhering surfaces
Mohd Zainuri et al. Photovoltaic integrated shunt active power filter with simpler ADALINE algorithm for current harmonic extraction
Kumara et al. Electrical characterization of a new crosslinked copolymer blend for DC cable insulation
US10245426B2 (en) Medical patch
Lai et al. Consequences of ultra-violet irradiation on the mechanical properties of spider silk
Rittié et al. Fibrosis
WO2022048041A1 (zh) 一种人工耳蜗语音处理方法及系统
Ulfendahl et al. Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry
CN105944150B (zh) 一种水凝胶和应用该水凝胶的人工皮肤及其制备方法
CN113476746A (zh) 抑制病变细胞分裂的设备、控制方法及控制装置
Zwislocki Phase opposition between inner and outer hair cells and auditory sound analysis
CN108721777B (zh) 人工电子耳装置及其刺激方法
Fu et al. Effect of carrier bandwidth on integration of simulations of acoustic and electric hearing within or across ears
Feiner et al. A ray of light for treating cardiac conduction disorders
Uehara et al. Barrier effect of treeing in composite insulating materials with heat-adhesive interfaces of different polymers
Foster et al. The Fixomull skin support method for wound closure in patients with fragile skin
Shao et al. Capture Phosphates via Peptide Self‐assembly to Construct Templates Assisting Mineralization
Donnelly et al. Surface-modified piezoelectric copolymer poly (vinylidene fluoride–trifluoroethylene) supporting physiological extracellular matrixes to enhance mesenchymal stem cell adhesion for nanoscale mechanical stimulation
Yan et al. Impact of sterilization on a conjugated polymer-based bioelectronic patch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE