WO2023005033A1 - 关节模组及机器人腿部 - Google Patents

关节模组及机器人腿部 Download PDF

Info

Publication number
WO2023005033A1
WO2023005033A1 PCT/CN2021/127154 CN2021127154W WO2023005033A1 WO 2023005033 A1 WO2023005033 A1 WO 2023005033A1 CN 2021127154 W CN2021127154 W CN 2021127154W WO 2023005033 A1 WO2023005033 A1 WO 2023005033A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering gear
knee
hip
thigh
front steering
Prior art date
Application number
PCT/CN2021/127154
Other languages
English (en)
French (fr)
Inventor
丁宏钰
汪文广
黄亮
胡毅森
Original Assignee
深圳市优必选科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优必选科技股份有限公司 filed Critical 深圳市优必选科技股份有限公司
Publication of WO2023005033A1 publication Critical patent/WO2023005033A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present application belongs to the technical field of intelligent machinery, and more specifically relates to a joint module and a robot leg.
  • Robot legs can be used in various application scenarios such as humanoid robots and industrial robots.
  • the legs of traditional robots are mostly connected in series to each servo to form a leg of the robot.
  • the knee servo of the traditional robot leg is set at the knee joint
  • the ankle servo is set at the ankle.
  • the purpose of the embodiments of the present application is to provide a joint module to solve the technical problems in the prior art that the center of mass of the robot is low and the torque of the steering gear is large.
  • the technical solution adopted by the present application is to provide a joint module, including a hip front steering gear, a knee front steering gear, a thigh structure and a thigh connecting rod structure, the hip front steering gear and the knee steering gear
  • the front steering gears are all arranged at the hip joints and fixed to each other, the output shafts of the front steering gears of the hip and the knee steering gears are arranged coaxially, and the thigh structure is fixed on the output shafts of the front steering gears of the hips,
  • the thigh link structure is fixed to the output shaft of the front knee servo, and the thigh link structure is used to drive the lower leg structure to swing back and forth.
  • the output shafts of the front hip steering gear and the knee front steering gear are set facing the same direction.
  • the output shaft of the front hip steering gear is set away from the front knee steering gear, the number of the thigh structural members is two and they move synchronously, and the thigh connecting rod structure is arranged on two Between the thigh structures, the shell of the front steering gear of the hip and one of the thigh structures are supported by a first bearing, and the shell of the front steering gear of the knee is supported by the other thigh structure. Secondary bearing support.
  • the output shaft of the front steering gear of the knee is connected to the shell of the front steering gear of the hip through a supporting bearing.
  • the output shaft of the front hip steering gear is set facing the knee front steering gear
  • the number of the thigh link structures is two and they move synchronously
  • the thigh structure is arranged on the two
  • the outer shell of the front steering gear of the hip and one of the thigh link structures are supported by a third bearing
  • the outer shell of the knee front steering gear and the other thigh link structure is supported by a third bearing.
  • Fourth bearing support is provided.
  • the output shafts of the front hip steering gear and the knee steering gear are set in opposite directions, and the output shaft of the hip front steering gear is set away from the knee front steering gear, and the knee steering gear is set against the knee steering gear.
  • the output shaft of the front steering gear is set away from the front steering gear of the hip; the shell of the front steering gear of the hip and the thigh structure are supported by the fifth bearing, and the shell of the front steering gear of the knee and the thigh
  • the connecting rod structure is supported by the sixth bearing.
  • the joint module further includes a U-shaped fixing frame, and the U-shaped fixing frame has two oppositely arranged fixing parts, and the two fixing parts are respectively connected with the outer shell of the front hip steering gear and the The shell of the steering gear in front of the knee is fixedly connected.
  • the thigh connecting rod structure includes a first crankshaft and a first connecting rod, one end of the first crankshaft is fixed to the output shaft of the knee front steering gear, and the other end of the first crankshaft is connected to the The first connecting rod is rotatably connected, and an end of the first connecting rod far away from the first crankshaft is used for rotatably connecting with the lower leg structure.
  • the present application also provides a robot leg, including the above-mentioned joint module.
  • the output shafts of the front hip steering gear and the knee front steering gear are set in the same direction, the output shaft of the hip front steering gear is set away from the knee front steering gear, and the thigh
  • the number of structural parts is two, the thigh link structure is arranged between the two thigh structural parts, the shell of the front steering gear of the hip and one of the thigh structural parts are supported by a first bearing, The shell of the front steering gear of the knee is supported by a second bearing between the other thigh structure;
  • the output shaft of one of the ankle steering gears faces away from the other ankle steering gear.
  • the lower leg structure is provided with a bearing hole, and two seventh bearings are fixed in the bearing hole, and the inner rings of the two seventh bearings are connected with the two ankle steering gears respectively.
  • the housing is fixed.
  • the joint module of the application includes a front steering gear of the hip, a front steering gear of the knee, a thigh structural part and a thigh connecting rod structure, and the thigh connecting rod structure
  • the rod structure is fixed on the output shaft of the knee front servo, and is used to drive the lower leg structure to swing back and forth
  • the thigh structure is fixed to the output shaft of the knee front servo, so that both the hip front servo and the knee front servo are located at the hip joint
  • There is no need to set the front steering gear at the knee joint which improves the center of mass of the joint module and reduces the torque required by the steering gear.
  • the output shafts of the hip front servo and the knee front servo are coaxial and fixed to each other, so that when the hip front servo and the knee front servo are installed on the hip joint at the same time, the structure is as compact as possible, and the two are fixed to each other so that they can The support can bear larger bending moment accordingly.
  • Fig. 1 is the three-dimensional structure diagram of the joint module provided by the embodiment of the present application.
  • Fig. 2 is a sectional view of the joint module provided by the embodiment of the present application.
  • FIG. 3 is a three-dimensional structure diagram of a robot leg provided by an embodiment of the present application.
  • Fig. 4 is a cross-sectional view of the robot leg at the knee joint provided by the embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the joint module includes a hip front steering gear 11 , a knee front steering gear 12 , a thigh structure 13 and a thigh link structure 14 .
  • the front hip steering gear 11 is used to drive the thigh structure 13 to rotate back and forth with the hip joint as the center of rotation
  • the thigh structure 13 is fixed to the output shaft of the hip front steering gear 11
  • the knee front steering gear 12 is used to drive the thigh link structure 14 to move
  • the thigh link structure 14 is fixed on the output shaft of the steering gear 12 in front of the knee
  • the movement of the thigh link structure 14 drives the calf structure 22 to swing back and forth.
  • Both the hip front steering gear 11 and the knee front steering gear 12 are located at the hip joint, which increases the height of the control calf structure 22, lifts the steering gear to the hip joint, and improves the overall center of mass of the joint module. In this way, When the steering gear drives the bottom joint, the required torque becomes smaller, which can reduce the cost of the steering gear.
  • the output shafts of the front hip steering gear 11 and the knee front steering gear 12 are arranged coaxially, and the hip front steering gear 11 and the knee front steering gear 12 are fixed to each other.
  • the hip front steering gear 11 and the knee steering gear 12 take up less space at the hip joint, and the structure is more compact, and the hip front steering gear 11 and the knee steering gear 12
  • the steering gear 12 in front of the knee is mutually fixed and supported, so that the joint module can bear greater bending moment.
  • the joint module in the above embodiment includes the front steering gear 11 of the hip, the front steering gear 12 of the knee, the thigh structure 13 and the thigh link structure 14, and the thigh link structure 14 is fixed on the output shaft of the knee front steering gear 12, and
  • the thigh structure 13 is fixed to the output shaft of the front knee steering gear 12, so that the hip front steering gear 11 and the knee front steering gear 12 are both arranged at the hip joint, and there is no need to place the knee front steering gear 12 is set at the knee joint, which improves the center of mass of the joint module and reduces the torque required by the steering gear.
  • the output shafts of the front hip steering gear 11 and the knee front steering gear 12 are coaxial and fixed to each other, so that when the hip front steering gear 11 and the knee front steering gear 12 are simultaneously arranged on the hip joint, the structure is as compact as possible, and the two are mutually connected. Fixed, able to support each other, correspondingly able to bear greater bending moment.
  • this joint module can be applied to hip joints, and can also be applied to joint structures such as knee joints, shoulder joints, and elbow joints.
  • the hip front steering gear 11, knee front steering gear 12, thigh structure 13 and thigh Names such as the link structure 14 do not limit the specific application position of the joint module.
  • the joint module also includes a U-shaped fixing frame 15, and the front steering gear 11 and the knee front steering gear 12 are all fixed on the U-shaped fixing bracket 15, so as to realize the hip front The mutual fixing of steering gear 11 and knee front steering gear 12.
  • the specific connection positions of the front steering gear 11 of the hip, the steering gear 12 of the knee front and the U-shaped fixing bracket 15 are not limited here.
  • the U-shaped fixing frame 15 includes two opposite fixing parts 151 , and the outer shell of the front steering gear 11 of the hip and the outer shell of the front steering gear 12 of the knee are respectively fixed on the two fixing parts 151 .
  • the fixed part 151 can be plate-shaped, and is arranged perpendicular to the output shaft of the front steering gear 11 of the hip. In order to avoid interference with the output shaft, the end of the front steering gear 11 facing away from the output shaft is fixed on one of the fixing parts 151. One end of the front steering gear 12 facing away from its output shaft is fixed on another fixing portion 151 .
  • the output shafts of the front steering gear 11 of the hip and the steering gear 12 of the knee are set in the same direction, that is, the output shaft of one of the steering gears is set towards the inside of the joint module, and the output shaft of the other steering gear is set toward the inside of the joint module.
  • the output shaft is arranged towards the outside of the joint module.
  • the thigh structural member 13 and the thigh link structure 14 are separated by a certain distance, and will not be concentrated at the same position of the joint module, which facilitates the structural layout of the thigh structural member 13 and the thigh link structure 14 .
  • the output shaft of the front steering gear 11 of the hip is set against the front steering gear 12 of the knee, that is, the output shaft of the front steering gear 11 of the hip is set towards the outside of the joint module, and the front steering gear of the knee
  • the output shaft of 12 is set towards the inside of the joint module.
  • the thigh structure 13 is connected to the output shaft of the hip front servo 11, so the thigh structure 13 is also arranged on the outside of the joint module, and the thigh link structure 14 is connected to the output shaft of the knee front servo 12, so the thigh link structure 14 is also arranged inside the joint module.
  • the number of thigh structures 13 can be selected as two, and the two thigh structures 13 are fixed to each other.
  • the two thigh structures 13 are respectively arranged on opposite sides of the joint module, and the thigh link structure 14 is arranged on the two thigh structures.
  • One of the thigh structure parts 13 is fixed on the output shaft of the front steering gear 11 of the hip and is supported by the first bearing 16 between the outer shell of the front steering gear 11 of the hip, and the other thigh structure part 13 and the outer shell of the knee front steering gear 12 The space is supported by the second bearing 17.
  • the two thigh structures 13 form support on both sides of the front steering gear 11 and the knee steering gear 12, which increases the bearing capacity of the hip front steering gear 11 and the knee front steering gear 12.
  • the hip front steering gear 11 When the hip front steering gear 11 is working, the thigh structure 13 fixed on its output shaft rotates, and at the same time drives the other thigh structure 13 to rotate, and the two thigh structures 13 are respectively supported by the first bearing 16 and the second bearing 17 .
  • the first bearing 16 can be supported on the side of the front steering gear 11 facing away from the knee steering gear 12
  • the second bearing 17 can be supported on the side of the knee front steering gear 12 facing away from the hip front steering gear 11, so that the first The distance between the first bearing 16 and the second bearing 17 is sufficiently large so that larger bending moments can be accommodated.
  • the output shafts of the hip front steering gear 11 and the knee front steering gear 12 are set in the same direction, and the output shaft of the hip front steering gear 11 is set against the knee front steering gear 12, the output shaft of the knee front steering gear 12 is facing the front of the hip
  • the steering gear 11, the output shaft of the front steering gear 12 of the knee and the shell of the front steering gear 11 of the hip are connected by a support bearing 18.
  • the knee front steering gear 12 works, its output shaft rotates. Under the support of the support bearing 18, the output shaft of the knee front steering gear 12 rotates without affecting the position of the hip front steering gear 11. Therefore, the front steering gear 11 can be supported without affecting the operation of the knee steering gear 12 . In this way, when the hip front steering gear 11 or the knee front steering gear 12 is subjected to a bending moment, the above-mentioned U-shaped fixing frame 15 and the support bearing 18 can share the bending moment.
  • the output shaft of the front steering gear 11 of the hip is set facing the front steering gear 12, that is, the output shaft of the front steering gear 11 of the hip is set towards the inside of the joint module, and the output shaft of the front steering gear 12 of the knee is set towards the joint module.
  • the thigh structure 13 is connected to the output shaft of the hip front servo 11, so the thigh structure 13 is also arranged inside the joint module, and the thigh link structure 14 is connected to the output shaft of the knee front servo 12, so the thigh link structure 14 is also arranged on the outside of the joint module.
  • the number of thigh link structures 14 may be two, and the two thigh link structures 14 move synchronously.
  • the first crankshafts 141 of the two thigh link structures 14 can be fixed to each other, so that the two thigh link structures 14 can move synchronously.
  • the two thigh link structures 14 are respectively arranged on opposite sides of the joint module, and the thigh structure 13 is arranged between the two thigh link structures 14 .
  • One of the thigh connecting rod structures 14 is fixed on the output shaft of the steering gear 12 in front of the knee and is supported by the third bearing between the outer shell of the steering gear 12 in front of the knee, and the other thigh connecting rod structure 14 and the outer shell of the steering gear 11 in front of the hip Supported by the fourth bearing, like this, two thigh connecting rod structures 14 form two sides support to the front steering gear 11 of the hip and the steering gear 12 in front of the knee, which increases the bearing capacity of the front steering gear 11 of the hip and the front steering gear 12 of the knee. the bending moment.
  • the thigh connecting rod structure 14 fixed on its output shaft rotates, and at the same time drives the other thigh connecting rod structure 14 to rotate, and the two thigh connecting rod structures 14 are respectively supported by the third bearing and the fourth bearing. support.
  • the third bearing can be supported on the side of the front steering gear 12 facing away from the hip steering gear 11
  • the fourth bearing can be supported on the side of the front steering gear 11 of the hip facing away from the knee front steering gear 12, so that the third bearing
  • the distance between the bearing and the fourth bearing is large enough to be able to withstand higher bending moments.
  • the output shafts of the hip front steering gear 11 and the knee front steering gear 12 are set toward the same direction, and the output shaft of the hip front steering gear 11 is set facing the knee front steering gear 12, the output shaft of the hip front steering gear 11 faces the knee front steering gear Machine 12, the output shaft of the steering gear 11 in front of the hip and the shell of the steering gear 12 in front of the knee are connected by a support bearing.
  • the front steering gear 11 of the hip is working, its output shaft rotates, and under the supporting effect of the support bearing, the output shaft of the front steering gear 11 of the hip rotates without affecting the position of the front steering gear 12 of the knee. Therefore, the knee front steering gear 12 can be supported without affecting the operation of the hip front steering gear 11 . In this way, when the hip front steering gear 11 or the knee front steering gear 12 is subjected to a bending moment, the above-mentioned U-shaped fixing frame 15 and the support bearing 18 can share the bending moment.
  • the output shafts of the front steering gear 11 of the hip and the steering gear 12 of the knee are set in opposite directions, and the output shaft of the front steering gear 11 of the hip is set away from the front steering gear 12 of the knee.
  • the output shaft of the front steering gear 12 is arranged away from the front steering gear 11 of the hip, that is, the output shafts of the front steering gear 11 of the hip and the output shafts of the front steering gear 12 are both set towards the outside of the joint module.
  • the thigh structure 13 is fixed to the output shaft of the front steering gear 11 of the hip, the thigh structure 13 is arranged on one side of the joint module, and the thigh link structure 14 is fixed to the output shaft of the knee front steering gear 12, so the thigh
  • the connecting rod structure 14 is disposed on the other side of the joint module.
  • the fifth bearing is supported between the shell of the front steering gear 11 of the hip and the thigh structure 13
  • the sixth bearing is supported between the shell of the front steering gear 12 of the knee and the thigh structure 13, so that the front steering gear 11 of the hip and the front steering gear of the knee
  • the machine 12 is supported by the fifth bearing and the sixth bearing at the same time, forming a double-sided support, which can increase the bending moment that the joint module can bear.
  • the fifth bearing and the sixth bearing are also respectively arranged on both sides of the joint module, and the distance is relatively far apart, which can further improve the joint strength of the joint.
  • the thigh link structure 14 includes a first crankshaft 141 and a first link 142 .
  • One end of the first crankshaft 141 is fixed on the output shaft of the front knee steering gear 12, and the first crankshaft 141 can be sleeved and fixed on the output of the knee front steering gear 12, and the specific fixing method is not limited here.
  • the other end of the first crankshaft 141 is rotatably connected with the first connecting rod 142 , and the end of the first connecting rod 142 away from the first crankshaft 141 is used for rotatably connecting with the calf structure 22 .
  • the first crankshaft 141 rotates accordingly, the rotation of the first crankshaft 141 drives the first connecting rod 142 to rotate, and the first connecting rod 142 drives the calf structure 22 to rotate.
  • the rotational joint between the first link 142 and the lower leg structure 22 is the knee joint.
  • the front steering gear 11 of the hip and the steering gear 12 of the knee all include a casing, a motor, a speed reducer and a planet carrier, the motor and the speed reducer are all arranged in the casing, and the speed reducer It is connected to the output end of the motor, and the planet carrier is connected to the output end of the reducer.
  • the motor can be outer rotor motor, inner rotor motor, hollow cup motor, etc.;
  • the reducer can be one-stage or multi-stage planetary reducer, cylindrical gear reducer, harmonic reducer, cycloid reducer.
  • the planet carrier is arranged on the outer side of the shell, the output shaft of the hip front steering gear 11 is fixed to its corresponding planet carrier, the thigh structure 13 is fixed on the planet carrier, and the output shaft of the knee front steering gear 12 is fixed to its corresponding planet carrier, The thigh link structure 14 is then fixed on the planet carrier.
  • the present application also provides a robot leg, please refer to FIG. 3 and FIG. 4 , the robot leg includes the joint module in any one of the above-mentioned embodiments.
  • This joint module can be used at the hip joint or knee joint of the robot leg.
  • the robot leg provided by this application adopts the above-mentioned joint module.
  • the joint module includes a hip front steering gear 11, a knee front steering gear 12, a thigh structure 13 and a thigh link structure 14.
  • the thigh link structure 14 is fixed on The output shaft of the steering gear 12 in front of the knee, and is used to drive the shank structure 22 to swing back and forth, and the thigh structure 13 is fixed on the output shaft of the steering gear 12 in front of the knee, so that the steering gear 11 in front of the hip and the steering gear 12 in front of the knee are all located at At the hip joint, there is no need to arrange the knee front steering gear 12 at the knee joint, which increases the center of mass of the joint module and reduces the torque required by the steering gear.
  • the output shafts of the front hip steering gear 11 and the knee front steering gear 12 are coaxial and fixed to each other, so that when the hip front steering gear 11 and the knee front steering gear 12 are simultaneously arranged on the hip joint, the structure is as compact as possible, and the two are mutually connected. Fixed, able to support each other, correspondingly able to bear greater bending moment.
  • the output shafts of the hip front steering gear 11 and the knee front steering gear 12 are set in the same direction, and the output shaft of the hip front steering gear 11 is set away from the knee front steering gear 12, that is, the hip front
  • the output shaft of the steering gear 11 is set towards the outside of the joint module
  • the output shaft of the front knee servo 12 is set towards the inside of the joint module.
  • the thigh structure 13 is connected to the output shaft of the hip front servo 11, so the thigh structure 13 is also arranged on the outside of the joint module
  • the thigh link structure 14 is connected to the output shaft of the knee front servo 12, so the thigh link structure 14 is also arranged inside the joint module.
  • the number of thigh structures 13 can be selected as two, and the two thigh structures 13 are fixed to each other.
  • the two thigh structures 13 are respectively arranged on opposite sides of the joint module, and the thigh link structure 14 is arranged on the two thigh structures.
  • One of the thigh structure parts 13 is fixed on the output shaft of the front steering gear 11 of the hip and is supported by the first bearing 16 between the outer shell of the front steering gear 11 of the hip, and the other thigh structure part 13 and the outer shell of the knee front steering gear 12 The space is supported by the second bearing 17.
  • the two thigh structures 13 form support on both sides of the front steering gear 11 and the knee steering gear 12, which increases the bearing capacity of the hip front steering gear 11 and the knee front steering gear 12. bending moment.
  • the robot leg also includes two ankle steering gears 21, a calf structure 22 and two calf link structures 23, the output shaft of each ankle steering gear 21 is correspondingly connected with a calf link structure 23, and the calf link structure The other end of 23 is used for being connected with foot plate 25 in rotation, and when ankle steering gear 21 works, calf link structure 23 rotates, and foot plate 25 also rotates back and forth correspondingly.
  • the ankle steering gear 21 can be arranged at the knee joint instead of the ankle joint, which can improve the center of mass of the robot leg.
  • the two ankle steering gears 21 are coaxial and fixedly arranged, so that the two ankle steering gears 21 are mutually fixed and supported, so that the knee joint can bear a larger bending moment. And when the output shafts of the two ankle servos 21 are coaxially arranged, the space occupied by the knee joint is smaller and the structure is more compact.
  • the joint module further includes a steering gear fixing frame 24 , and the two ankle steering gears 21 are fixed on the steering gear fixing frame 24 .
  • the steering gear fixing frame 24 may be selected to have the same structure as the U-shaped fixing frame 15 .
  • the shells of the two ankle steering gears 21 are respectively fixed on both sides of the steering gear fixing frame 24 .
  • a bearing hole is opened on the lower leg structure 22, and the bearing hole is arranged coaxially with the rotation axis of the lower leg structure 22 along the knee joint.
  • the seventh bearing 26 is fixed in the bearing hole, and the inner ring of the seventh bearing 26 is fixed to the shell of the ankle steering gear 21, so that the seventh bearing 26 supports the shells of the two ankle steering gears 21.
  • the calf structure 22 is wrapped around the outer shell of part of the ankle steering gear 21 to facilitate the connection between the calf structure 22 and the thigh link structure 14 .
  • the number of the first bearings 16 can be two, and they are arranged in sequence along the rotation center axis of the knee joint, which can form better support for the ankle steering gear 21 and can withstand a larger bending moment.
  • the structure of the ankle steering gear 21 may be the same as that of the front hip steering gear 11 .
  • the calf linkage structure 23 includes a second crankshaft 231 and a second connecting rod 232, one end of the second crankshaft 231 is connected to the output shaft of the ankle servo 21, and the other end of the second crankshaft 231 is connected to the second connecting rod 232.
  • Rotationally connected the end of the second connecting rod 232 away from the second crankshaft 231 is rotatably connected to the foot plate 25 .
  • the second crankshaft 231 rotates, driving the second connecting rod 232 to rotate, and the rotation of the second connecting rod 232 causes the foot plate 25 to rotate accordingly.
  • the synchronous movement of the two calf link structures 23 can make the movement of the foot plate 25 more stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种关节模组,包括髋前舵机(11)、膝前舵机(12)、大腿结构件(13)以及大腿连杆结构(14),髋前舵机(11)和膝前舵机(12)均设于髋关节处且相互固定,髋前舵机(11)和膝前舵机(12)的输出轴同轴设置,大腿结构件(13)固定于髋前舵机(11)的输出轴,大腿连杆结构(14)固定于膝前舵机(12)的输出轴,且大腿连杆结构(14)用于驱动小腿结构件(22)前后摆动。一种机器人腿部,包含关节模组。该关节模组及机器人腿部,提高了质心,能够承受更大的弯矩。

Description

关节模组及机器人腿部
本申请要求于2021年07月30日在中国专利局提交的、申请号为202110875779.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于智能机械技术领域,更具体地说,是涉及一种关节模组及机器人腿部。
背景技术
机器人腿部可用于人形机器人、工业机器人等各种应用场景中。传统机器人腿部多是通过串联方案把各个舵机顺序连接起来组成机器人的一条腿,导致了传统机器人腿部的膝关节舵机设置在膝关节处,脚踝舵机设置于脚踝处,如此导致机器人的质心低、转动惯量大、舵机力矩大、运动控制困难等问题。
技术问题
本申请实施例的目的在于提供一种关节模组,以解决现有技术中存在的机器人质心低、舵机力矩大的技术问题。
技术解决方案
为实现上述目的,本申请采用的技术方案是:提供一种关节模组,包括髋前舵机、膝前舵机、大腿结构件以及大腿连杆结构,所述髋前舵机和所述膝前舵机均设于髋关节处且相互固定,所述髋前舵机和所述膝前舵机的输出轴同轴设置,所述大腿结构件固定于所述髋前舵机的输出轴,所述大腿连杆结构固定于所述膝前舵机的输出轴,且所述大腿连杆结构用于驱动小腿结构件前后摆动。
在一个实施例中,所述髋前舵机和所述膝前舵机的输出轴朝向同一方向设置。
在一个实施例中,所述髋前舵机的输出轴背向所述膝前舵机设置,所述大腿结构件的数量为两个且同步运动,所述大腿连杆结构设于两个所述大腿结构件之间,所述髋前舵机的外壳和其中一个所述大腿结构件之间通过第一轴承支撑,所述膝前舵机的外壳和另一个所述大腿结构件之间通过第二轴承支撑。
在一个实施例中,所述膝前舵机的输出轴和所述髋前舵机的外壳通过支撑轴承连接。
在一个实施例中,所述髋前舵机的输出轴面向所述膝前舵机设置,所述大腿连杆结构的数量为两个且同步运动,所述大腿结构件设于两个所述大腿连杆结构之间,所述髋前舵机的外壳和其中一个大腿连杆结构之间通过第三轴承支撑,所述膝前舵机的外壳和另一个所述大腿连杆结构之间通过第四轴承支撑。
在一个实施例中,所述髋前舵机和所述膝前舵机的输出轴朝向相反方向设置,且所述髋前舵机的输出轴背向所述膝前舵机设置,所述膝前舵机的输出轴背向所述髋前舵机设置;所述髋前舵机的外壳与所述大腿结构件之间通过第五轴承支撑,所述膝前舵机的外壳和所述大腿连杆结构之间通过第六轴承支撑。
在一个实施例中,所述关节模组还包括U形固定架,所述U形固定架具有两个相对设置的固定部,两个所述固定部分别与所述髋前舵机的外壳和所述膝前舵机的外壳固定连接。
在一个实施例中,所述大腿连杆结构包括第一曲轴和第一连杆,所述第一曲轴的一端固定于所述膝前舵机的输出轴,所述第一曲轴的另一端与所述第一连杆转动连接,所述第一连杆的远离所述第一曲轴的一端用于与所述小腿结构件转动连接。
本申请还提供一种机器人腿部,包括上述的关节模组。
在其中一个实施例中,所述髋前舵机和所述膝前舵机的输出轴朝向同一方向设置,所述髋前舵机的输出轴背向所述膝前舵机设置,所述大腿结构件的数量为两个,所述大腿连杆结构设于两个所述大腿结构件之间,所述髋前舵机的外壳和其中一个所述大腿结构件之 间通过第一轴承支撑,所述膝前舵机的外壳和另一个所述大腿结构件之间通过第二轴承支撑;所述机器人腿部还包括两个均设于膝关节处的脚踝舵机、连接于所述大腿连杆结构的小腿结构件,以及连接于所述脚踝舵机的输出轴的小腿连杆结构,所述小腿连杆结构用于驱动脚板前后转动,两个所述脚踝舵机同轴且固定设置,其中一个所述脚踝舵机的输出轴背向另一个所述脚踝舵机设置。
在其中一个实施例中,所述小腿结构件开设有轴承孔,所述轴承孔内固定有两个第七轴承,两个所述第七轴承的内圈分别与两个所述脚踝舵机的外壳固定。
有益效果
本申请提供的关节模组及机器人腿部的有益效果在于:与现有技术相比,本申请关节模组包括髋前舵机、膝前舵机、大腿结构件以及大腿连杆结构,大腿连杆结构固定于膝前舵机的输出轴,且用于驱动小腿结构件前后摆动,大腿结构件固定于膝前舵机的输出轴,使髋前舵机和膝前舵机均设于髋关节处,无需将膝前舵机设置于膝关节处,提高了关节模组的质心,减小了舵机所需的力矩。髋前舵机和膝前舵机的输出轴同轴且相互固定设置,使得髋前舵机和膝前舵机同时设置于髋关节时,结构尽可能地紧凑,而且两者相互固定,能够相互支撑,相应能够承受更大的弯矩。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的关节模组的立体结构图;
图2为本申请实施例提供的关节模组的剖视图;
图3为本申请实施例提供的机器人腿部的立体结构图;
图4为本申请实施例提供的机器人腿部在膝关节处的剖视图。
其中,图中各附图标记:
11-髋前舵机;12-膝前舵机;13-大腿结构件;14-大腿连杆结构;141-第一曲轴;142-第一连杆;15-U形固定架;151-固定部;16-第一轴承;17-第二轴承;18-支撑轴承;21-脚踝舵机;22-小腿结构件;23-小腿连杆结构;231-第二曲轴;232-第二连杆;24-舵机固定架;25-脚板;26-第七轴承。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
现对本申请实施例提供的关节模组进行说明。
在本申请的其中一个实施例中,请一并参阅图1及图2,关节模组包括髋前舵机11、膝前舵机12、大腿结构件13以及大腿连杆结构14。髋前舵机11用于驱动大腿结构件13以髋关节为转动中心前后转动,大腿结构件13固定于髋前舵机11的输出轴,膝前舵机12用于驱动大腿连杆结构14运动,大腿连杆结构14固定于膝前舵机12的输出轴,大腿连杆结构14的运动带动小腿结构件22前后摆动。髋前舵机11和膝前舵机12均设于髋关节处,提高了控制小腿结构件22的高度,将该舵机提升到髋关节处,提高了该关节模组的整体质心,这样,在舵机驱动底部关节时,所需的力矩变小,可以降低舵机成本。髋前舵机11和膝前舵机12的输出轴同轴设置,且髋前舵机11和膝前舵机12相互固定。当髋前舵机11和膝前舵机12的输出轴同轴设置时,髋前舵机11和膝前舵机12占用髋关节的空间更小,结构更加紧凑,而且髋前舵机11和膝前舵机12相互固定和支撑,使得该关节模组能够承受更大的弯矩。
上述实施例中的关节模组,包括髋前舵机11、膝前舵机12、大腿结构件13以及大腿连杆结构14,大腿连杆结构14固定于膝前舵机12的输出轴,且用于驱动小腿结构件22前后摆动,大腿结构件13固定于膝前舵机12的输出轴,使髋前舵机11和膝前舵机12均设于髋关节处,无需将膝前舵机12设置于膝关节处,提高了关节模组的质心,减小了舵机所需的力矩。髋前舵机11和膝前舵机12的输出轴同轴且相互固定设置,使得髋前舵机11和膝前舵机12同时设置于髋关节时,结构尽可能地紧凑,而且两者相互固定,能够相互支撑,相应能够承受更大的弯矩。
需要说明的是,该关节模组可以应用于髋关节,也可以应用于膝关节、肩关节、肘关节等关节结构中,髋前舵机11、膝前舵机12、大腿结构件13以及大腿连杆结构14等名称并不限制该关节模组的具体应用位置。
在本申请的其中一个实施例中,请参阅图1,关节模组还包括U形固定架15,髋前舵机11和膝前舵机12均固定在U形固定架15上,实现髋前舵机11和膝前舵机12的相互固定。其中,髋前舵机11和膝前舵机12与U形固定架15的具体连接位置此处不作限定。可选地,U形固定架15包括两个相对设置的固定部151,髋前舵机11的外壳和膝前舵机12的外壳分别固定在两个固定部151上。固定部151可呈板状,且垂直于髋前舵机11的输出轴设置,为了避免和输出轴干涉,髋前舵机11的背向其输出轴一端固定在其中一个固定部151上,膝前舵机12的背向其输出轴一端固定在另一个固定部151上。
在本申请的其中一个实施例中,髋前舵机11和膝前舵机12的输出轴朝向同一方向设置,即其中一个舵机的输出轴朝关节模组的内部设置,另一个舵机的输出轴朝关节模组的外部设置。在该实施例中,大腿结构件13和大腿连杆结构14相隔一定距离,不会集中在关节模组的同一个位置,方便大腿结构件13和大腿连杆结构14的结构布局。
可选地,请参阅图1及图2,髋前舵机11的输出轴背向膝前舵机12设置,即髋前舵机11的输出轴朝向关节模组的外部设置,膝前舵机12的输出轴朝向关节模组的内部设置。大腿结构件13连接于髋前舵机11的输出轴,因此大腿结构件13也设置于关节模组的外侧,大腿连杆结构14连接于膝前舵机12的输出轴,因此大腿连杆结构14也设置于关节模组的内部。大腿结构件13的数量可选为两个,且两个大腿结构件13相互固定,两个大腿结构件13分别设置在关节模组的相对两侧,大腿连杆结构14设置在两个大腿结构件13之间。其中一个大腿结构件13固定于髋前舵机11的输出轴且与该髋前舵机11的外壳之间通过第一轴承16支撑,另一个大腿结构件13和膝前舵机12的外壳之间通过第二轴承17支撑,这样,两个大腿结构件13对髋前舵机11和膝前舵机12形成两侧支撑,增大了髋前舵机11和膝前舵机12可承受的弯矩。髋前舵机11在工作时,固定于其输出轴的大腿结构件13转动,同时带动另一个大腿结构件13转动,两个大腿结构件13分别受到第一轴承16和第二轴承17的支撑。其中,第一轴承16可支撑于髋前舵机11的背向膝前舵机12一侧,第二轴承17可支撑于膝前舵机12的背向髋前舵机11一侧,使第一轴承16和第二轴承17之 间的间距足够大,因此能够承受更大的弯矩。
当髋前舵机11和膝前舵机12的输出轴朝向同一方向设置,且髋前舵机11的输出轴背向膝前舵机12设置时,膝前舵机12的输出轴朝向髋前舵机11,膝前舵机12的输出轴和髋前舵机11的外壳之间通过支撑轴承18连接。在膝前舵机12工作时,其输出轴转动,在支撑轴承18的支撑作用下,膝前舵机12的输出轴转动,并不会影响髋前舵机11的位置。因此,在不影响膝前舵机12工作的前提下,能够对髋前舵机11进行支撑。这样,在髋前舵机11或者膝前舵机12受到弯矩作用时,上述的U形固定架15和支撑轴承18可以共同承担弯矩。
可选地,髋前舵机11的输出轴面向膝前舵机12设置,即髋前舵机11的输出轴朝向关节模组的内部设置,膝前舵机12的输出轴朝向关节模组的外部设置。大腿结构件13连接于髋前舵机11的输出轴,因此大腿结构件13也设置于关节模组的内部,大腿连杆结构14连接于膝前舵机12的输出轴,因此大腿连杆结构14也设置于关节模组的外侧。大腿连杆结构14的数量可选为两个,且两个大腿连杆结构14同步运动。具体而言,可将两个大腿连杆结构14的第一曲轴141相互固定,使两个大腿连杆结构14同步运动。两个大腿连杆结构14分别设置在关节模组的相对两侧,大腿结构件13设置在两个大腿连杆结构14之间。其中一个大腿连杆结构14固定于膝前舵机12的输出轴且与该膝前舵机12的外壳之间通过第三轴承支撑,另一个大腿连杆结构14和髋前舵机11的外壳之间通过第四轴承支撑,这样,两个大腿连杆结构14对髋前舵机11和膝前舵机12形成两侧支撑,增大了髋前舵机11和膝前舵机12可承受的弯矩。膝前舵机12在工作时,固定于其输出轴的大腿连杆结构14转动,同时带动另一个大腿连杆结构14转动,两个大腿连杆结构14分别受到第三轴承和第四轴承的支撑。其中,第三轴承可支撑于膝前舵机12的背向髋前舵机11一侧,第四轴承可支撑于髋前舵机11的背向膝前舵机12一侧,使第三轴承和第四轴承之间的间距足够大,因此能够承受更大的弯矩。
当髋前舵机11和膝前舵机12的输出轴朝向同一方向设置,且髋前舵机11的输出轴面向膝前舵机12设置时,髋前舵机11的输出轴朝向膝前舵机12,髋前舵机11的输出轴和膝前舵机12的外壳之间通过支撑轴承连接。在髋前舵机11工作时,其输出轴转动,在支撑轴承的支撑作用下,髋前舵机11的输出轴转动,并不会影响膝前舵机12的位置。因此,在不影响髋前舵机11工作的前提下,能够对膝前舵机12进行支撑。这样,在髋前舵机11或者膝前舵机12受到弯矩作用时,上述的U形固定架15和支撑轴承18可以共同承担弯矩。
在本申请的其中一个实施例中,髋前舵机11和膝前舵机12的输出轴朝向相反方向设置,且所述髋前舵机11的输出轴背向膝前舵机12设置,膝前舵机12的输出轴背向髋前舵机11设置,即髋前舵机11的输出轴和膝前舵机12的输出轴均朝向关节模组的外部设置。由于大腿结构件13固定于髋前舵机11的输出轴,因此大腿结构件13设置于关节模组的其中一侧,由于大腿连杆结构14固定于膝前舵机12的输出轴,因此大腿连杆结构14设置于关节模组的另外一侧。髋前舵机11的外壳和大腿结构件13之间通过第五轴承支撑,膝前舵机12的外壳和大腿结构件13之间通过第六轴承支撑,使得髋前舵机11和膝前舵机12同时有第五轴承和第六轴承支撑,形成双侧支撑,可以提高该关节模组可承受的弯矩。由于大腿结构件13和大腿连杆结构14分别设置于关节模组的两侧,则第五轴承和第六轴承也分别设置于关节模组的两侧,相距距离较远,可进一步提高该关节模组可承受的弯矩。
在本申请的其中一个实施例中,请参阅图2,大腿连杆结构14包括第一曲轴141和第一连杆142。第一曲轴141的一端固定于膝前舵机12的输出轴,第一曲轴141可套设固定在膝前舵机12的输出上,其具体固定方式此处不作限定。第一曲轴141的另一端与第一连杆142转动连接,第一连杆142的远离第一曲轴141的一端则用于与小腿结构件22转动连接。在膝前舵机12工作时,第一曲轴141相应转动,第一曲轴141的旋转带动第一连杆142转动,第一连杆142带动小腿结构件22转动。第一连杆142和小腿结构件22的转动连接处为膝关节。通过第一曲轴141和第一连杆142的转动,可以将膝前舵机12设置于髋 关节处,提高关节模组的质心。
在本申请的其中一个实施例中,请参阅图2,髋前舵机11和膝前舵机12均包括外壳、电机、减速器以及行星架,电机和减速器均设置于外壳内,减速器连接于电机的输出端,行星架连接于减速器的输出端。电机可以是外转子电机、内转子电机、空心杯电机等;减速器可以是一级或者多级行星减速器、圆柱齿轮减速器、谐波减速器、摆线针轮减速器。行星架设置于外壳的外侧,髋前舵机11的输出轴与其对应的行星架固定,大腿结构件13则固定在该行星架上,膝前舵机12的输出轴与其对应的行星架固定,大腿连杆结构14则固定在该行星架上。
本申请还提供一种机器人腿部,请参阅图3及图4,机器人腿部包括上述任一实施例中的关节模组。该关节模组可用于机器人腿部的髋关节处或者膝关节处。
本申请提供的机器人腿部,采用了上述的关节模组,关节模组包括髋前舵机11、膝前舵机12、大腿结构件13以及大腿连杆结构14,大腿连杆结构14固定于膝前舵机12的输出轴,且用于驱动小腿结构件22前后摆动,大腿结构件13固定于膝前舵机12的输出轴,使髋前舵机11和膝前舵机12均设于髋关节处,无需将膝前舵机12设置于膝关节处,提高了关节模组的质心,减小了舵机所需的力矩。髋前舵机11和膝前舵机12的输出轴同轴且相互固定设置,使得髋前舵机11和膝前舵机12同时设置于髋关节时,结构尽可能地紧凑,而且两者相互固定,能够相互支撑,相应能够承受更大的弯矩。
在本申请的其中一个实施例中,髋前舵机11和膝前舵机12的输出轴朝向同一方向设置,且髋前舵机11的输出轴背向膝前舵机12设置,即髋前舵机11的输出轴朝向关节模组的外部设置,膝前舵机12的输出轴朝向关节模组的内部设置。大腿结构件13连接于髋前舵机11的输出轴,因此大腿结构件13也设置于关节模组的外侧,大腿连杆结构14连接于膝前舵机12的输出轴,因此大腿连杆结构14也设置于关节模组的内部。大腿结构件13的数量可选为两个,且两个大腿结构件13相互固定,两个大腿结构件13分别设置在关节模组的相对两侧,大腿连杆结构14设置在两个大腿结构件13之间。其中一个大腿结构件13固定于髋前舵机11的输出轴且与该髋前舵机11的外壳之间通过第一轴承16支撑,另一个大腿结构件13和膝前舵机12的外壳之间通过第二轴承17支撑,这样,两个大腿结构件13对髋前舵机11和膝前舵机12形成两侧支撑,增大了髋前舵机11和膝前舵机12可承受的弯矩。
同时,机器人腿部还包括两个脚踝舵机21、小腿结构件22和两个小腿连杆结构23,每个脚踝舵机21的输出轴对应与一个小腿连杆结构23连接,小腿连杆结构23的另一端用于与脚板25转动连接,在脚踝舵机21工作时,小腿连杆结构23转动,脚板25也相应前后转动。如此,脚踝舵机21可以设置在膝关节处,无需设置在脚踝关节处,可以提高机器人腿部的质心。两个脚踝舵机21同轴且固定设置,使得两个脚踝舵机21相互固定和支撑,从而使得膝关节处能够承受更大的弯矩。而且当两个脚踝舵机21的输出轴同轴设置时,占用膝关节的空间更小,结构更加紧凑。
可选地,请参阅图3及图4,关节模组还包括舵机固定架24,两个脚踝舵机21均固定在舵机固定架24上。其中,舵机固定架24可选为与U形固定架15的结构相同。两个脚踝舵机21的外壳分别固定在舵机固定架24的两侧。
可选地,小腿结构件22上开设有轴承孔,轴承孔与小腿结构件22沿膝关节转动的转动轴线同轴设置。轴承孔内固定有第七轴承26,第七轴承26的内圈和脚踝舵机21的外壳固定,使得第七轴承26对两个脚踝舵机21的外壳形成支撑。在该实施例中,小腿结构件22包裹于部分脚踝舵机21的外壳的外部,便于小腿结构件22和大腿连杆结构14连接。第一轴承16的数量可为两个,沿膝关节的转动中心轴依次排列,可以对脚踝舵机21形成更好的支撑,能够承受的弯矩也更大。
可选地,脚踝舵机21的结构可选为与髋前舵机11的结构相同。
可选地,小腿连杆结构23包括第二曲轴231和第二连杆232,第二曲轴231的一端连 接于脚踝舵机21的输出轴,第二曲轴231的另一端与第二连杆232转动连接,第二连杆232的远离第二曲轴231的一端转动连接于脚板25。在脚踝舵机21工作时,第二曲轴231转动,带动第二连杆232转动,第二连杆232的转动使脚板25相应转动。两个小腿连杆结构23同步运动能够使脚板25的运动更加平稳。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种关节模组,其特征在于:包括髋前舵机、膝前舵机、大腿结构件以及大腿连杆结构,所述髋前舵机和所述膝前舵机均设于髋关节处且相互固定,所述髋前舵机和所述膝前舵机的输出轴同轴设置,所述大腿结构件固定于所述髋前舵机的输出轴,所述大腿连杆结构固定于所述膝前舵机的输出轴,且所述大腿连杆结构用于驱动小腿结构件前后摆动。
  2. 如权利要求1所述的关节模组,其特征在于:所述髋前舵机和所述膝前舵机的输出轴朝向同一方向设置。
  3. 如权利要求2所述的关节模组,其特征在于:所述髋前舵机的输出轴背向所述膝前舵机设置,所述大腿结构件的数量为两个且同步运动,所述大腿连杆结构设于两个所述大腿结构件之间,所述髋前舵机的外壳和其中一个所述大腿结构件之间通过第一轴承支撑,所述膝前舵机的外壳和另一个所述大腿结构件之间通过第二轴承支撑。
  4. 如权利要求3所述的关节模组,其特征在于:所述膝前舵机的输出轴和所述髋前舵机的外壳通过支撑轴承连接。
  5. 如权利要求2所述的关节模组,其特征在于:所述髋前舵机的输出轴面向所述膝前舵机设置,所述大腿连杆结构的数量为两个且同步运动,所述大腿结构件设于两个所述大腿连杆结构之间,所述髋前舵机的外壳和其中一个大腿连杆结构之间通过第三轴承支撑,所述膝前舵机的外壳和另一个所述大腿连杆结构之间通过第四轴承支撑。
  6. 如权利要求1所述的关节模组,其特征在于:所述髋前舵机和所述膝前舵机的输出轴朝向相反方向设置,且所述髋前舵机的输出轴背向所述膝前舵机设置,所述膝前舵机的输出轴背向所述髋前舵机设置;所述髋前舵机的外壳与所述大腿结构件之间通过第五轴承支撑,所述膝前舵机的外壳和所述大腿连杆结构之间通过第六轴承支撑。
  7. 如权利要求1-6任一项所述的关节模组,其特征在于:所述关节模组还包括U形固定架,所述U形固定架具有两个相对设置的固定部,两个所述固定部分别与所述髋前舵机的外壳和所述膝前舵机的外壳固定连接。
  8. 如权利要求1-6任一项所述的关节模组,其特征在于:所述大腿连杆结构包括第一曲轴和第一连杆,所述第一曲轴的一端固定于所述膝前舵机的输出轴,所述第一曲轴的另一端与所述第一连杆转动连接,所述第一连杆的远离所述第一曲轴的一端用于与所述小腿结构件转动连接。
  9. 机器人腿部,其特征在于:包括权利要求1-8任一项所述的关节模组。
  10. 如权利要求9所述的机器人腿部,其特征在于:所述髋前舵机和所述膝前舵机的输出轴朝向同一方向设置,所述髋前舵机的输出轴背向所述膝前舵机设置,所述大腿结构件的数量为两个,所述大腿连杆结构设于两个所述大腿结构件之间,所述髋前舵机的外壳和其中一个所述大腿结构件之间通过第一轴承支撑,所述膝前舵机的外壳和另一个所述大腿结构件之间通过第二轴承支撑;所述机器人腿部还包括两个均设于膝关节处的脚踝舵机、连接于所述大腿连杆结构的小腿结构件,以及连接于所述脚踝舵机的输出轴的小腿连杆结构,所述小腿连杆结构用于驱动脚板前后转动,两个所述脚踝舵机同轴且固定设置,其中一个所述脚踝舵机的输出轴背向另一个所述脚踝舵机设置。
  11. 如权利要求10所述的机器人腿部,其特征在于:所述小腿结构件开设有轴承孔,所述轴承孔内固定有两个第七轴承,两个所述第七轴承的内圈分别与两个所述脚踝舵机的外壳固定。
PCT/CN2021/127154 2021-07-30 2021-10-28 关节模组及机器人腿部 WO2023005033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110875779.1 2021-07-30
CN202110875779.1A CN113548128A (zh) 2021-07-30 2021-07-30 关节模组及机器人腿部

Publications (1)

Publication Number Publication Date
WO2023005033A1 true WO2023005033A1 (zh) 2023-02-02

Family

ID=78133461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127154 WO2023005033A1 (zh) 2021-07-30 2021-10-28 关节模组及机器人腿部

Country Status (2)

Country Link
CN (1) CN113548128A (zh)
WO (1) WO2023005033A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113548128A (zh) * 2021-07-30 2021-10-26 深圳市优必选科技股份有限公司 关节模组及机器人腿部
CN113928442B (zh) * 2021-12-16 2022-04-08 之江实验室 一种仿人机器人减振小腿结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206875A (ja) * 2010-03-29 2011-10-20 Honda Motor Co Ltd 脚式移動ロボット
CN205311732U (zh) * 2016-01-22 2016-06-15 南京农业大学 一种视觉追踪的四足机器人
US20160199978A1 (en) * 2013-09-06 2016-07-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lower limb of an exoskeleton or a bipedal robot
CN106005092A (zh) * 2016-07-14 2016-10-12 浙江大学 串并联混合的仿人足球机器人腿部机构
US20180360685A1 (en) * 2017-05-22 2018-12-20 Huazhong University Of Science & Technology Connecting rod type lower limb exoskeleton rehabilitation robot
CN209274762U (zh) * 2018-11-19 2019-08-20 东莞深圳清华大学研究院创新中心 一种髋关节增强的小型仿人机器人六自由度腿结构
CN213768776U (zh) * 2020-08-25 2021-07-23 深圳市优必选科技股份有限公司 腿部机构及人形机器人
CN113548128A (zh) * 2021-07-30 2021-10-26 深圳市优必选科技股份有限公司 关节模组及机器人腿部

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206875A (ja) * 2010-03-29 2011-10-20 Honda Motor Co Ltd 脚式移動ロボット
US20160199978A1 (en) * 2013-09-06 2016-07-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lower limb of an exoskeleton or a bipedal robot
CN205311732U (zh) * 2016-01-22 2016-06-15 南京农业大学 一种视觉追踪的四足机器人
CN106005092A (zh) * 2016-07-14 2016-10-12 浙江大学 串并联混合的仿人足球机器人腿部机构
US20180360685A1 (en) * 2017-05-22 2018-12-20 Huazhong University Of Science & Technology Connecting rod type lower limb exoskeleton rehabilitation robot
CN209274762U (zh) * 2018-11-19 2019-08-20 东莞深圳清华大学研究院创新中心 一种髋关节增强的小型仿人机器人六自由度腿结构
CN213768776U (zh) * 2020-08-25 2021-07-23 深圳市优必选科技股份有限公司 腿部机构及人形机器人
CN113548128A (zh) * 2021-07-30 2021-10-26 深圳市优必选科技股份有限公司 关节模组及机器人腿部

Also Published As

Publication number Publication date
CN113548128A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2023005033A1 (zh) 关节模组及机器人腿部
CN106182071B (zh) 二自由度旋转柔性差分驱动关节模块
EP3715061B1 (en) Robot wrist structure and robot
CN110588833B (zh) 一种适用于电动足式机器人的高负载三段式腿结构
US20130142608A1 (en) Parallel mechanism
CN113353172B (zh) 低惯量高承载的腿部结构及应用其的足式机器人
WO2021189677A1 (zh) 仿生机器人并联驱动关节的肢体结构和仿生机器人
WO2021189675A1 (zh) 用于超动态仿生机器人的并联驱动关节和机器人
US20140148293A1 (en) Composite drive device and robot
CN102366896B (zh) 具有两条垂直交错转轴的三自由度并联机构
WO2023005032A1 (zh) 关节单元模组及腿部机器人
CN201881384U (zh) 一种平面多关节型机器人手臂机构
CN112208665B (zh) 关节驱动机构及机器人
CN210361383U (zh) 拟人机器人的双自由度髋关节及拟人机器人
CN210819559U (zh) 一种机器人关节结构和一种机器人
CN112092939A (zh) 一种具有多运动模式的仿生机器人
CN215322951U (zh) 关节模组及机器人腿部
CN215322953U (zh) 关节单元模组及腿部机器人
CN114378792A (zh) 一种可实现类scara运动的四自由度并联机器人机构
CN213566217U (zh) 关节驱动机构及机器人
CN215358522U (zh) 下肢外骨骼机器人多自由度踝关节结构
CN105690419B (zh) 髋关节与踝关节通用机构及仿人机器人
CN112092941B (zh) 一种用于仿生机器人的并联腿结构及仿生机器人
CN217728783U (zh) 一种同步带驱动的工业机器人手腕
CN205651370U (zh) 髋关节与踝关节通用机构及仿人机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE