WO2023004794A1 - Imaging optics and imaging device - Google Patents

Imaging optics and imaging device Download PDF

Info

Publication number
WO2023004794A1
WO2023004794A1 PCT/CN2021/109809 CN2021109809W WO2023004794A1 WO 2023004794 A1 WO2023004794 A1 WO 2023004794A1 CN 2021109809 W CN2021109809 W CN 2021109809W WO 2023004794 A1 WO2023004794 A1 WO 2023004794A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
optical
optical element
lenses
reflective
Prior art date
Application number
PCT/CN2021/109809
Other languages
French (fr)
Inventor
Sota Miyatani
Ryotaro Izumi
Yingqing LIU
Takuya Anzawa
Qing TONG
Original Assignee
Huawei Technologies Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co.,Ltd. filed Critical Huawei Technologies Co.,Ltd.
Priority to CN202180100571.0A priority Critical patent/CN117677882A/en
Priority to PCT/CN2021/109809 priority patent/WO2023004794A1/en
Publication of WO2023004794A1 publication Critical patent/WO2023004794A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/08Periscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera

Definitions

  • the present invention relates to imaging optics, and more particularly to imaging optics and imaging devices having reflective optical elements.
  • the present invention relates to imaging lenses to focus an image of an object on an individual imaging device, such as a CCD, a CMOS sensor, etc.
  • the present invention specifically relates to photographing lenses mounted on portable devices, such as smartphones, game machines, PCs, IP cameras, home appliances, automobiles, unmanned aerial vehicles, and photographing devices, etc.
  • the needs for imaging lenses are diversifying. Since the size of the imaging lens module is directly related to the product size to be mounted, it is desirable for the imaging lens to enhance the lens performance while maintaining the small module thickness. Specifically, this includes the enlargement of the imaging lens, telescoping, enlargement of the diameter, and improvement of optical performance, etc.
  • periscope-type imaging optics utilizing a right-angle prism is used as the imaging optics, which is used in the imaging lens module having such a telephoto lens function, for the purpose of reducing the height of the lens unit.
  • a right-angle prism having no refractive power by itself is used in the periscope-type imaging optics. Because this configuration adds the right-angle prism into the conventional telescopic optics, it is possible to reduce the module size in its thickness direction by bending the optical path. However, the total length of the optics is increased due to the addition of the prism.
  • an anti-vibration mechanism is used for the product.
  • This is known as an Optical Image Stabilizer (OIS) , which can sense the vibration during shooting by using a sensor and correct the optical axis.
  • OIS Optical Image Stabilizer
  • the OIS is performed by physically tilting or shifting the periscope prism or the imaging lens relative to the optical axis using a piezoelectric element or the like.
  • an imaging lens module having a telephoto lens function it is possible to shorten the overall length of the optical system. Additionally, an imaging lens module can be provided which is able to offer sufficient anti-vibration performance without adopting an additional configuration as an anti-vibration mechanism.
  • a right-angle prism having a refractive power by itself is employed in the periscope-type imaging optics.
  • the refractive power refers to a degree of refraction caused by an optical system, such as a lens, and it is also referred to simply as a power.
  • the power prism effect it is possible to reduce the overall length of the optical system and achieve a low profile as an imaging lens module while maintaining the anti-vibration configuration.
  • an embodiment of the present invention provides an optical system of periscope-type.
  • the optical system comprises: a reflective optical element (P) for bending an optical path by 90 degrees from an object side toward an image side; and a rear group of lenses on the optical path following the reflective optical element.
  • the rear group of lenses has a positive refractive power as a whole
  • the reflective optical element has a convex curvature on a first surface (S1) of the object side and a concave curvature on a third surface (S3) of the image side.
  • conditional expressions (1) , (2) , and (3) are satisfied:
  • FOV field angle of the optical system (unit: degrees)
  • f a focal length of the optical system (unit: mm) ,
  • P_S1 proximal axis radius of curvature on the object side of the reflective optical element (in mm) , and
  • Pf a focal length of the reflective optical element (unit: mm) .
  • a first lens (L1) included in the rear group of lenses and arranged closest to the object side has a positive refractive power, and wherein the following conditional expression (4) is satisfied:
  • L1f a focal length of the optical system of the rear group of lenses (unit: mm) .
  • conditional expressions (1) ’, (2) ’, and (3) ’ are further satisfied:
  • the reflective optical element is tilted to provide an optical vibration isolation.
  • the reflective optical element is moved in an optical axis direction and/or in a direction perpendicular to the optical axis to provide an optical vibration isolation.
  • the rear group of lenses consists of a plurality of lens elements including at least four lens elements
  • an embodiment of the present invention provides a smartphone comprising the optical system according to any one of the possible implementations of the first aspect described above.
  • an embodiment of the present invention provides a digital camera comprising the optical system according to any one of the possible implementations of the first aspect described above.
  • Fig. 1 is a schematic diagram of an imaging lens according to an embodiment of the present invention.
  • Fig. 2 is a diagram illustrating parameters of lenses in the imaging lens according to the present invention.
  • Fig. 3 is a graph illustrating spherical aberration, astigmatism, and distortion of an imaging lens according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of an imaging lens according to another embodiment of the present invention.
  • Fig. 5 is a graph illustrating spherical aberration, astigmatism, and distortion of an imaging lens according to another embodiment of the present invention.
  • the imaging lens according to the present invention is composed of a reflective optical element (P) for bending an optical path by 90 degrees from an object side toward an image side, followed by a rear group of lenses (G_rear) .
  • the reflective optical element (P) is a non-planar prism composed of a first surface (S1) with a convex face toward the object side, a second surface (S2) with a reflective face, and a third surface (S3) with a concave curvature toward the object side.
  • Fig. 1 is a schematic view illustrating the structure of an imaging lens according to a first embodiment of the present invention.
  • a reflective optical element P for bending the optical path from the object side to the image side by 90 degrees, followed by a rear group lens (G_rear) .
  • P is a nonplanar prism composed of a first surface (S1) with convex curvature toward the object side, a second surface (S2) with reflective surface, and a third surface (S3) with curvature of the same sign (in the same direction) as the first surface, i.e., concave curvature.
  • the rear group lens (G_rear) is composed of six lenses, which are a first lens (L1) , a second lens (L2) , a third lens (L3) , a fourth lens (L4) , a fifth lens (L5) , and a sixth lens (L6) from the side of P toward the imaging surface (IMG) .
  • G_rear has a positive refractive power as a whole.
  • a filter (IR) such as an infrared-cut filter or a cover glass, is arranged immediately before the image surface (IMG) .
  • the filter (IR) may be omitted.
  • the reflected optical element (P) is a right-angled prism.
  • a prism generally consists of flat surfaces comprising a first surface (S1) , a second surface (S2) and a third surface (S3) , and the prism does not have refractive power as a whole.
  • the first surface (S1) of the prism P used in the optical system of the present invention is a curved surface having a predetermined curvature with a convex direction toward the object side, and P as a whole has a positive refractive power. This allows the overall length of the optical system to be shortened while continuing to use the conventional rear group lens (G_rear) .
  • the convex curvature of S1 is increased, the effect of shortening the overall length of the optical system is also increased. For example, by increasing the curvature, the total length of the optical system can be reduced by about 13%.
  • the curvature increases too much, the aberration generated in S1 also increases, making it difficult to obtain good imaging performance at the IMG. Therefore, in the third surface (S3) of the prism P, it is necessary to adjust the refractive power of the prism P to an appropriate range by providing a curvature that is concave (i.e. a concave curvature towards the object side) , which is in contrast to S1.
  • OIS Optical Image Stabilizer
  • the prism P of the present invention has a positive refractive power by itself, by tilting, namely inclining the entire prism P relative to the optical path (or the optical axis) the OIS can be implemented more efficiently compared to vertical and/or horizontal moving.
  • the optical system performs the OIS by tilting P on the optical path and/or by shifting L5 and L6 of G_rear in the optical axis direction.
  • the optical system satisfies the following conditional expressions (1) , (2) , and (3) :
  • each parameter indicated by the above-described conditional expression is as follows.
  • FOV is a viewing angle of the optical system (in degrees)
  • f is a focal length of the optical system (in mm)
  • P_S1 is a proximal axis radius of curvature on the object side of the reflective optical element (in mm)
  • Pf is a focal length of the reflective optical element (in mm) .
  • the conditional expression (1) appropriately sets an imaging field angle of the optical system. When exceeding this range, the field angle becomes too large to maintain the periscope-type structure, thus making it difficult to reduce the height of the image lens module. Specifically, a “vignetting” of peripheral field angle occurs in the reflection optical element P.
  • the conditional expression (2) appropriately sets a proximal axis radius of curvature of the first surface (S1) of the reflected optical element P.
  • S1 first surface
  • S1 the aberration generated in S1 becomes too large and it becomes difficult to obtain good imaging performance.
  • the effect of shortening the overall length of the optical system becomes insufficient.
  • the conditional expression (3) appropriately sets the refractive power (i.e., 1/focal length f) of the reflected optical element P.
  • the refractive power of the reflected optical element P increases, and the performance degradation during optical vibration isolation using the reflected optical element P becomes a problem.
  • conditional expression (3) when outside the ranges of the above-described conditional expressions (in particular, for the conditional expression (3) ) , the problem of performance deterioration during the optical vibration isolation becomes obvious, and in order to avoid this, effects of the optical vibration isolation by shifting or tilting the optical element P in the optical path may become insufficient. In this case, another configuration is required to be adopted, resulting in a larger size of the imaging lens module.
  • the first lens (L1) included in the G_rear and arranged closest to the object side has a positive refractive power, and selectively satisfies the following conditional expression (4) :
  • L1f is a focal length of the optical system of the rear group lens (in mm) .
  • the conditional expression (4) sets the appropriate range for the focal length of L1.
  • the refractive power of L1 becomes stronger, and it becomes difficult to maintain good resolution performance during the vibration isolation.
  • the total length of the optical system of the imaging lens module becomes longer, resulting in a problem in that it is impossible to fully utilize the effect of shortening of the total length of the optical system obtained by using the reflective optical element P.
  • optical system further satisfies the following conditional expressions (1) ’, (2) ’, and (3) ’:
  • G_rear comprises a plurality of lenses including at least four lens elements.
  • the focusing is achieved by shifting, namely moving, some parts of the lens elements in the direction of the optical axis.
  • G_rear needs to be configured properly.
  • the small number of G_rear lens elements makes it difficult to maintain good resolution performance.
  • using a nonplanar prism facilitates the expansion of Fno (F-number, or F-value) , which has been difficult to do in the past.
  • Fno F-number, or F-value
  • the need for the aberration correction required of the optical system increases, so that it is difficult to achieve sufficient resolution performance in a configuration using a small number of lens elements.
  • Fig. 3 shows a spherical aberration plot, an astigmatism plot, and a distortion plot for the imaging lens according to the aforementioned first embodiment.
  • the spherical aberration plot shows the amount of aberration for the F-line (486.1 nm) , d-line (587.6 nm) , and C-line (656.3 nm) wavelengths, respectively, as solid lines.
  • the astigmatism plot shows the amount of aberration of the d-line in the sagittal image plane S as a solid line and the amount of aberration of the d-line in the tangential image plane T as a dashed line.
  • F refers to F value
  • IH refers to the image height.
  • the distortion plot shows the aberration of the d-line as a solid line. Accordingly, it is clear that the imaging lens has sufficient desired optical performance.
  • Table 1 and Table 2 below show lens data for an imaging lens according to the aforementioned first embodiment.
  • i is the surface number counted from the object side to the image side
  • Radius is the radius of curvature
  • Thickness is the thickness of the center of the lens or the air gap
  • Refractive Index (Nd) is the refractive index of d-line
  • Abbe Number (vd) is Abbe’s number to d-line
  • Stop is the aperture.
  • Aspherical surfaces are indicated by adding the sign of * (asterisk) after surface number i.
  • Equation 1 the aspherical shape adopted on the aspherical surface of the lens surface is defined by Equation 1 listed below, where z is the distance from the apex of the lens surface in the optical axis direction (sag amount) , H is the height in the direction perpendicular to the optical axis direction, c is the near axis curvature at the apex of the lens (inverse of the radius of curvature) , k is the cone constant (Conic constant) , and A4, A6, A8, A10, A12, A14, A16, A18, and A20 are the fourth, sixth, eighth, tenth, twelfth, twelfth, fourteenth, fourteenth, eighteenth, and twentieth aspheric coefficients, respectively.
  • Fig. 4 is a schematic view illustrating the structure of an imaging lens according to a second embodiment of the present invention. Compared to the aforementioned first embodiment, the overall configuration of the imaging lens is the same, but the parameters of the prism and each lens element are different.
  • Fig. 5 shows a spherical aberration plot, an astigmatism plot, and a distortion plot for the imaging lens according to the aforementioned second embodiment.
  • the imaging lens also has sufficiently desirable optical performance.
  • Table 3 and Table 4 below show lens data for the imaging lens according to the aforementioned second embodiment.
  • Table 5 shows the parameters for the imaging lens according to the first and second embodiments described above.
  • the imaging lens according to the aforementioned first and second embodiments satisfies the conditional expressions (1) - (4) as shown in Table 5.
  • Example 1 (1) FOV 30.3 27.0 (2) P_S1/f 2.492 0.762 (3) f/Pf -0.030 0.046 (4) L1/f 0.579 0.546

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)

Abstract

A periscope-type optical system with a shortened total length of optics is disclosed. The optical system includes a reflective optical element (P) for bending an optical path by 90 degrees from an object side toward an image side and a rear group of lenses (G_rear) on the optical path following the reflective optical element (P), wherein the rear group of lenses (G_rear) has a positive refractive power as a whole. The reflective optical element (P) has a convex curvature on a first surface (S1) of the object side and a concave curvature on a third surface (S3) of the image side.

Description

IMAGING OPTICS AND IMAGING DEVICE TECHNICAL FIELD
The present invention relates to imaging optics, and more particularly to imaging optics and imaging devices having reflective optical elements.
The present invention relates to imaging lenses to focus an image of an object on an individual imaging device, such as a CCD, a CMOS sensor, etc. The present invention specifically relates to photographing lenses mounted on portable devices, such as smartphones, game machines, PCs, IP cameras, home appliances, automobiles, unmanned aerial vehicles, and photographing devices, etc.
BACKGROUND
With the spread of smartphones in recent years, the needs for imaging lenses are diversifying. Since the size of the imaging lens module is directly related to the product size to be mounted, it is desirable for the imaging lens to enhance the lens performance while maintaining the small module thickness. Specifically, this includes the enlargement of the imaging lens, telescoping, enlargement of the diameter, and improvement of optical performance, etc.
In recent years, multi-camera systems have become mainstream, and telephoto lenses play an important role in differentiating smartphone products.
For example, there are numerous opportunities that users can enjoy, such as viewing and shooting distant objects at athletic meets and the like, and taking pictures of scenery and celestial bodies.
Currently, for smartphone products, periscope-type imaging optics utilizing a right-angle prism is used as the imaging optics, which is used in the imaging lens module having such a telephoto lens function, for the purpose of reducing the height of the lens unit.
In the prior art, a right-angle prism having no refractive power by itself is used  in the periscope-type imaging optics. Because this configuration adds the right-angle prism into the conventional telescopic optics, it is possible to reduce the module size in its thickness direction by bending the optical path. However, the total length of the optics is increased due to the addition of the prism.
Further, in general, an anti-vibration mechanism is used for the product. This is known as an Optical Image Stabilizer (OIS) , which can sense the vibration during shooting by using a sensor and correct the optical axis. Specifically, the OIS is performed by physically tilting or shifting the periscope prism or the imaging lens relative to the optical axis using a piezoelectric element or the like.
SUMMARY
For an imaging lens module having a telephoto lens function, it is possible to shorten the overall length of the optical system. Additionally, an imaging lens module can be provided which is able to offer sufficient anti-vibration performance without adopting an additional configuration as an anti-vibration mechanism.
In the periscope-type imaging optics, a right-angle prism having a refractive power by itself is employed. By adding the refractive power to the prism, the overall length of the optical system can be shortened. Here, the refractive power refers to a degree of refraction caused by an optical system, such as a lens, and it is also referred to simply as a power. With the power prism effect, it is possible to reduce the overall length of the optical system and achieve a low profile as an imaging lens module while maintaining the anti-vibration configuration.
According to a first aspect, an embodiment of the present invention provides an optical system of periscope-type. The optical system comprises: a reflective optical element (P) for bending an optical path by 90 degrees from an object side toward an image side; and a rear group of lenses on the optical path following the reflective optical element. Here, the rear group of lenses has a positive refractive power as a whole, and the reflective optical element has a convex curvature on a first surface (S1) of the object side and a concave curvature on a third surface (S3) of the image side.
With reference to the first aspect, in one possible implementation, the following conditional expressions (1) , (2) , and (3) are satisfied:
FOV≤38°  (1)
0.25≤P_S1/f≤5.0  (2)
-0.3≤f/Pf≤0.3  (3)
where
FOV: field angle of the optical system (unit: degrees) ,
f: a focal length of the optical system (unit: mm) ,
P_S1: proximal axis radius of curvature on the object side of the reflective optical element (in mm) , and
Pf: a focal length of the reflective optical element (unit: mm) .
With reference to the first aspect, in one possible implementation, a first lens (L1) included in the rear group of lenses and arranged closest to the object side has a positive refractive power, and wherein the following conditional expression (4) is satisfied:
0.18≤L1f/f≤1.0  (4)
where
L1f: a focal length of the optical system of the rear group of lenses (unit: mm) .
With reference to the first aspect, in one possible implementation, the following conditional expressions (1) ’, (2) ’, and (3) ’ are further satisfied:
FOV≤34°  (1) ’
0.4≤P_S1/f≤3.5  (2) ’
-0.15≤f/Pf≤0.15  (3) ’.
With reference to the first aspect, in one possible implementation, the reflective optical element is tilted to provide an optical vibration isolation.
With reference to the first aspect, in one possible implementation, the reflective optical element is moved in an optical axis direction and/or in a direction perpendicular to the optical axis to provide an optical vibration isolation.
With reference to the first aspect, in one possible implementation, the rear group of lenses consists of a plurality of lens elements including at least four lens elements, and
wherein a part of the plurality of lens elements is moved in an optical axis direction to provide a focusing.
According to a second aspect, an embodiment of the present invention provides a smartphone comprising the optical system according to any one of the possible implementations of the first aspect described above.
According to a third aspect, an embodiment of the present invention provides a digital camera comprising the optical system according to any one of the possible implementations of the first aspect described above.
BREIF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
In order to more clearly describe embodiments of the present invention, the accompanying drawings as required will be briefly described below. Obviously, in the following description, the accompanying drawings show only some embodiments of the present invention, and other drawings from these accompanying drawings can be drawn by a skilled person in the art without creative effort.
Fig. 1 is a schematic diagram of an imaging lens according to an embodiment of the present invention.
Fig. 2 is a diagram illustrating parameters of lenses in the imaging lens according to the present invention.
Fig. 3 is a graph illustrating spherical aberration, astigmatism, and distortion of an imaging lens according to an embodiment of the present invention.
Fig. 4 is a schematic diagram of an imaging lens according to another embodiment of the present invention.
Fig. 5 is a graph illustrating spherical aberration, astigmatism, and distortion of an imaging lens according to another embodiment of the present invention.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
The imaging lens according to the present invention is composed of a reflective optical element (P) for bending an optical path by 90 degrees from an object side toward an image side, followed by a rear group of lenses (G_rear) . The reflective optical element (P) is a non-planar prism composed of a first surface (S1) with a convex face toward the object side, a second surface (S2) with a reflective face, and a third surface (S3) with a concave curvature toward the object side.
By using such a non-planar reflective optical element as a periscope-type optical system, it is possible to obtain the effect of sufficiently shortening the overall length of the optical system for the imaging lens while maintaining the anti-vibration performance and the reduction of the height which are equivalent to conventional ones. This can solve the aforementioned technical problems.
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
Fig. 1 is a schematic view illustrating the structure of an imaging lens according to a first embodiment of the present invention. In the imaging lens according to this embodiment, there is a reflective optical element (P) for bending the optical path from the object side to the image side by 90 degrees, followed by a rear group lens (G_rear) . P is a nonplanar prism composed of a first surface (S1) with convex curvature toward the object side, a second surface (S2) with reflective surface, and a third surface (S3) with curvature of the same sign (in the same direction) as the first surface, i.e., concave curvature. The rear group lens (G_rear) is composed of six lenses, which are a first lens (L1) , a second lens (L2) , a third lens (L3) , a fourth lens (L4) , a fifth lens (L5) , and a sixth lens (L6) from the side of P toward the imaging surface (IMG) . G_rear has a positive refractive power as a whole. Further, immediately before the image surface (IMG) , a filter (IR) , such as an infrared-cut filter or a cover glass, is arranged. The filter (IR) may be omitted.
A shortening of the overall optical system length will be described below. Here, it is assumed that the reflected optical element (P) is a right-angled prism. A prism generally consists of flat surfaces comprising a first surface (S1) , a second surface (S2) and a third surface (S3) , and the prism does not have refractive power as a whole. On the other hand, the first surface (S1) of the prism P used in the optical system of the present invention is a curved surface having a predetermined curvature with a convex direction toward the object side, and P as a whole has a positive refractive power. This allows the overall length of the optical system to be shortened while continuing to use the conventional rear group lens (G_rear) .
Here, if the convex curvature of S1 is increased, the effect of shortening the  overall length of the optical system is also increased. For example, by increasing the curvature, the total length of the optical system can be reduced by about 13%. However, if the curvature increases too much, the aberration generated in S1 also increases, making it difficult to obtain good imaging performance at the IMG. Therefore, in the third surface (S3) of the prism P, it is necessary to adjust the refractive power of the prism P to an appropriate range by providing a curvature that is concave (i.e. a concave curvature towards the object side) , which is in contrast to S1.
In addition, when the overall length of the optical system is shortened by the positive refractive power of P as a whole, deflection of the image due to camera shake cause by a user becomes relatively large, and it is necessary to increase the efficiency of the Optical Image Stabilizer (OIS) . Generally, OIS is performed by shifting, namely moving, a portion or all of the imaging lens vertically and/or horizontally relative to the optical path (or optical axis) .
Since the prism P of the present invention has a positive refractive power by itself, by tilting, namely inclining the entire prism P relative to the optical path (or the optical axis) the OIS can be implemented more efficiently compared to vertical and/or horizontal moving.
In the first embodiment as described above, the optical system performs the OIS by tilting P on the optical path and/or by shifting L5 and L6 of G_rear in the optical axis direction.
In the first embodiment described above, it is desirable that the optical system satisfies the following conditional expressions (1) , (2) , and (3) :
(1) FOV≤38°
(2) 0.25≤P_S1/f≤5.0
(3) -0.3≤f/Pf≤0.3.
Here, as shown in Fig. 2, each parameter indicated by the above-described conditional expression is as follows. FOV is a viewing angle of the optical system (in degrees) , f is a focal length of the optical system (in mm) , P_S1 is a proximal axis radius of curvature on the object side of the reflective optical element (in mm) , and Pf is a focal length of the reflective optical element (in mm) .
The conditional expression (1) appropriately sets an imaging field angle of the  optical system. When exceeding this range, the field angle becomes too large to maintain the periscope-type structure, thus making it difficult to reduce the height of the image lens module. Specifically, a “vignetting” of peripheral field angle occurs in the reflection optical element P.
The conditional expression (2) appropriately sets a proximal axis radius of curvature of the first surface (S1) of the reflected optical element P. When below this range, the aberration generated in S1 becomes too large and it becomes difficult to obtain good imaging performance. On the other hand, when exceeding this range, the effect of shortening the overall length of the optical system becomes insufficient.
The conditional expression (3) appropriately sets the refractive power (i.e., 1/focal length f) of the reflected optical element P. When outside this range, the refractive power of the reflected optical element P increases, and the performance degradation during optical vibration isolation using the reflected optical element P becomes a problem.
In addition, when outside the ranges of the above-described conditional expressions (in particular, for the conditional expression (3) ) , the problem of performance deterioration during the optical vibration isolation becomes obvious, and in order to avoid this, effects of the optical vibration isolation by shifting or tilting the optical element P in the optical path may become insufficient. In this case, another configuration is required to be adopted, resulting in a larger size of the imaging lens module.
On the other hand, in the aforementioned first embodiment, the first lens (L1) included in the G_rear and arranged closest to the object side has a positive refractive power, and selectively satisfies the following conditional expression (4) :
(4) 0.18≤L1f/f≤1.0.
Here, as shown in Fig. 2, L1f is a focal length of the optical system of the rear group lens (in mm) .
The conditional expression (4) sets the appropriate range for the focal length of L1. When below this range, the refractive power of L1 becomes stronger, and it becomes difficult to maintain good resolution performance during the vibration isolation. Further, when below this range, the total length of the optical system of the  imaging lens module becomes longer, resulting in a problem in that it is impossible to fully utilize the effect of shortening of the total length of the optical system obtained by using the reflective optical element P.
In addition, in the aforementioned first embodiment, it is desirable that the optical system further satisfies the following conditional expressions (1) ’, (2) ’, and (3) ’:
(1)’ FOV≤34°
(2) ’0.3≤P_S1/f≤3.5
(3) ’-0.15≤f/Pf≤0.15.
In the optical system of the aforementioned first embodiment, it is desirable that G_rear comprises a plurality of lenses including at least four lens elements. The focusing is achieved by shifting, namely moving, some parts of the lens elements in the direction of the optical axis.
Thus, G_rear needs to be configured properly. The small number of G_rear lens elements makes it difficult to maintain good resolution performance. In the present invention, compared with a conventional planar right-angle prism, using a nonplanar prism facilitates the expansion of Fno (F-number, or F-value) , which has been difficult to do in the past. However, as the Fno expands, the need for the aberration correction required of the optical system increases, so that it is difficult to achieve sufficient resolution performance in a configuration using a small number of lens elements.
In addition, in the conventional planar right-angle prism, parallel light is incident from the object side to G_rear. Therefore, a method of focusing by shifting the entire G_rear in the direction of the optical axis is more efficient for macro performance. On the other hand, in the present invention, since convergent light is incident to the G_rear, it is difficult to ensure the macro performance by shifting the entire G_rear. This can be a side effect in achieving a shortening of the total length of the optical system. However, to accommodate this, the desired macro performance can be readily secured by employing an inner focus type configuration, in which some parts of the lens elements comprising the G_rear are used for focusing.
Fig. 3 shows a spherical aberration plot, an astigmatism plot, and a distortion plot for the imaging lens according to the aforementioned first embodiment. Here, the  spherical aberration plot shows the amount of aberration for the F-line (486.1 nm) , d-line (587.6 nm) , and C-line (656.3 nm) wavelengths, respectively, as solid lines. The astigmatism plot shows the amount of aberration of the d-line in the sagittal image plane S as a solid line and the amount of aberration of the d-line in the tangential image plane T as a dashed line. Where, F refers to F value and IH refers to the image height. The distortion plot shows the aberration of the d-line as a solid line. Accordingly, it is clear that the imaging lens has sufficient desired optical performance.
Table 1 and Table 2 below show lens data for an imaging lens according to the aforementioned first embodiment. Where, i is the surface number counted from the object side to the image side, Radius is the radius of curvature, Thickness is the thickness of the center of the lens or the air gap, Refractive Index (Nd) is the refractive index of d-line, Abbe Number (vd) is Abbe’s number to d-line, and Stop is the aperture. Aspherical surfaces are indicated by adding the sign of * (asterisk) after surface number i. Further, the aspherical shape adopted on the aspherical surface of the lens surface is defined by Equation 1 listed below, where z is the distance from the apex of the lens surface in the optical axis direction (sag amount) , H is the height in the direction perpendicular to the optical axis direction, c is the near axis curvature at the apex of the lens (inverse of the radius of curvature) , k is the cone constant (Conic constant) , and A4, A6, A8, A10, A12, A14, A16, A18, and A20 are the fourth, sixth, eighth, tenth, twelfth, twelfth, fourteenth, fourteenth, eighteenth, and twentieth aspheric coefficients, respectively.
[Equation 1]
Figure PCTCN2021109809-appb-000001
[Table 1]
surface   Radius (mm) Thickness (mm) Refractive Index (Nd) Abbe Number (vd)
P S1* 35.933 7.743 1.545 56.019
  S2* 29.203 0.455    
Stop - Infinity 0.100    
L1 S1* 7.206 1.665 1.545 56.019
  S2* -11.426 0.040    
L2 S1* -21.985 0.483 1.614 25.692
  S2* 16.083 0.040    
L3 S1* 17.151 1.854 1.535 55.686
  S2* -21.692 1.045    
L4 S1* -36.483 1.134 1.671 19.226
  S2* -22.794 1.011    
L5 S1* -15.477 1.100 1.671 19.226
  S2* -19.747 1.010    
L6 S1* -14.649 1.714 1.535 55.686
  S2* 7.720 2.696    
Optical Glass S1 Infinity 0.210 1.517 64.174
  S2 Infinity 0.300    
[Table 2]
Figure PCTCN2021109809-appb-000002
Fig. 4 is a schematic view illustrating the structure of an imaging lens according to a second embodiment of the present invention. Compared to the aforementioned first embodiment, the overall configuration of the imaging lens is the same, but the parameters of the prism and each lens element are different.
Fig. 5 shows a spherical aberration plot, an astigmatism plot, and a distortion plot for the imaging lens according to the aforementioned second embodiment. Thus, it can be seen that the imaging lens also has sufficiently desirable optical performance.
Table 3 and Table 4 below show lens data for the imaging lens according to the aforementioned second embodiment.
[Table 3]
surface   Radius (mm) Thickness (mm) Refractive Index (Nd) Abbe Number (vd)
P S1* 12.685 8.177 1.545 56.019
  S2* 10.464 0.791    
Stop - Infinity 0.100    
L1 S1* 9.609 1.108 1.535 55.686
  S2* -9.522 0.040    
L2 S1* -15.822 0.442 1.671 19.226
  S2* 22.904 0.041    
L3 S1* 27.136 1.049 1.535 55.686
  S2* -24.658 0.547    
L4 S1* -24.500 1.190 1.614 25.692
  S2* -7.238 1.192    
L5 S1* -10.194 1.011 1.650 21.534
  S2* -10.122 0.769    
L6 S1* -26.796 1.701 1.525 56.253
  S2* 4.929 4.201    
Optical Glass S1 Infinity 0.210 1.517 64.174
  S2 Infinity 0.300    
[Table 4]
  ASP Conic Constant 4th 6th 8th 10th 12th 14th 16th 18th 20th
P S1* 2.022E-01 -8.700E-05 -2.115E-07 6.421E-10 2.950E-10 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  S2* 1.092E+01 -1.224E-03 -4.000E-05 -1.000E-06 -1.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
L1 S1* -7.019E+00 -2.095E-03 -3.074E-04 -5.000E-06 -5.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  S2* 7.709E+00 -1.665E-03 -7.000E-06 2.000E-06 -2.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
L2 S1* 6.606E+00 -3.495E-03 -1.800E-05 7.000E-06 2.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  S2* -2.436E+01 -4.839E-03 1.600E-05 3.700E-05 -1.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
L3 S1* -4.868E+01 -2.482E-03 5.316E-04 4.800E-05 -4.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  S2* 5.000E+01 -6.535E-03 3.623E-04 2.400E-05 -2.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
L4 S1* 4.455E+01 -7.809E-03 -2.048E-04 2.400E-05 2.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  S2* 4.958E-01 -1.844E-03 -1.452E-04 1.400E-05 2.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
L5 S1* -2.692E+01 4.035E-03 3.401E-04 -2.100E-05 2.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  S2* -2.674E+01 -1.289E-03 1.222E-03 -1.145E-04 8.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
L6 S1* -3.149E+01 -2.289E-02 2.365E-03 -1.907E-04 3.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
  S2* -1.149E+01 -7.696E-03 8.359E-04 -5.900E-05 2.000E-06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
Table 5 shows the parameters for the imaging lens according to the first and second embodiments described above. Thus, it can be seen that the imaging lens according to the aforementioned first and second embodiments satisfies the conditional expressions (1) - (4) as shown in Table 5.
[Table 5]
  Example 1 Example 2
(1) FOV 30.3 27.0
(2) P_S1/f 2.492 0.762
(3) f/Pf -0.030 0.046
(4) L1/f 0.579 0.546
The above description shows embodiments provided by this application, however, it is not intended to limit the present invention. Any modification, equivalent substitution, or improvement made without departing from the spirit and principle of the present invention is to be included within the scope of protection of this application.
Description of Symbols
P: Reflective optical element
L1: first lens
S1: first surface of the reflective optical element in the object side
IR: filter
IMG: imaging surface

Claims (10)

  1. An optical system of periscope-type, comprising:
    a reflective optical element (P) configured to bend an optical path by 90 degrees from an object side toward an image side; and
    a rear group of lenses on the optical path following the reflective optical element, the rear group of lenses having a positive refractive power as a whole;
    wherein the reflective optical element has a convex curvature on a first surface (S1) of the object side and a concave curvature on a third surface (S3) of the image side.
  2. The optical system according to claim 1, wherein the following conditional expressions (1) , (2) , and (3) are satisfied:
    FOV≤38° (1)
    0.25≤P_S1/f≤5.0 (2)
    -0.3≤f/Pf≤0.3 (3)
    where
    FOV: field angle of the optical system (unit: degrees) ,
    f: a focal length of the optical system (unit: mm) ,
    P_S1: proximal axis radius of curvature on the object side of the reflective optical element (unit: mm) , and
    Pf: a focal length of the reflective optical element (unit: mm) .
  3. The optical system according to claim 2, wherein a first lens (L1) included in the rear group of lenses and arranged closest to the object side has a positive refractive power, and wherein the following conditional expression (4) is satisfied:
    0.18≤L1f/f≤1.0 (4)
    where
    L1f: a focal length of the optical system of the rear group of lenses (unit: mm) .
  4. The optical system according to claim 2 or 3, wherein the following conditional expressions (1) ’ , (2) ’ , and (3) ’ are further satisfied:
    FOV≤34° (1) ’
    0.4≤P_S1/f≤3.5 (2) ’
    -0.15≤f/Pf≤0.15 (3) ’ .
  5. The optical system according to claim 2 or 3, wherein the following conditional expression (4) ’ is further satisfied:
    0.25≤L1f/f≤0.72 (4) ’ .
  6. The optical system according to any one of claims 1-5, wherein the reflective optical element is tilted to provide an optical vibration isolation.
  7. The optical system according to any one of claims 1-5, wherein the reflective optical element is moved in an optical axis direction and/or in a direction perpendicular to the optical axis to provide an optical vibration isolation.
  8. The optical system according to any one of claims 1-7, wherein the rear group of lenses consists of a plurality of lens elements including at least four lens elements, and
    wherein a part of the plurality of lens elements is moved in an optical axis direction to provide a focusing.
  9. A smartphone comprising the optical system according to any one of claims 1-8.
  10. A digital camera comprising the optical system according to any one of claims 1-8.
PCT/CN2021/109809 2021-07-30 2021-07-30 Imaging optics and imaging device WO2023004794A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100571.0A CN117677882A (en) 2021-07-30 2021-07-30 Imaging optical device and imaging apparatus
PCT/CN2021/109809 WO2023004794A1 (en) 2021-07-30 2021-07-30 Imaging optics and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109809 WO2023004794A1 (en) 2021-07-30 2021-07-30 Imaging optics and imaging device

Publications (1)

Publication Number Publication Date
WO2023004794A1 true WO2023004794A1 (en) 2023-02-02

Family

ID=85087371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109809 WO2023004794A1 (en) 2021-07-30 2021-07-30 Imaging optics and imaging device

Country Status (2)

Country Link
CN (1) CN117677882A (en)
WO (1) WO2023004794A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212737A (en) * 2003-01-06 2004-07-29 Nidec Copal Corp Zoom lens
US20040179273A1 (en) * 2003-03-10 2004-09-16 Nidec Copal Corporation Zoom lens
CN1763580A (en) * 2004-10-21 2006-04-26 三菱电机株式会社 Focus multiple changing lens
JP2012198568A (en) * 2012-06-19 2012-10-18 Olympus Corp Folding image formation optical system
CN207623608U (en) * 2017-09-30 2018-07-17 北京小米移动软件有限公司 Camera module and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212737A (en) * 2003-01-06 2004-07-29 Nidec Copal Corp Zoom lens
US20040179273A1 (en) * 2003-03-10 2004-09-16 Nidec Copal Corporation Zoom lens
CN1763580A (en) * 2004-10-21 2006-04-26 三菱电机株式会社 Focus multiple changing lens
JP2012198568A (en) * 2012-06-19 2012-10-18 Olympus Corp Folding image formation optical system
CN207623608U (en) * 2017-09-30 2018-07-17 北京小米移动软件有限公司 Camera module and electronic equipment

Also Published As

Publication number Publication date
CN117677882A (en) 2024-03-08

Similar Documents

Publication Publication Date Title
US11988817B2 (en) Optical imaging system, imaging apparatus and electronic device
US11740439B2 (en) Photographing lens assembly, image capturing unit and electronic device
US10746966B2 (en) Imaging optical system
US11156803B2 (en) Imaging optical system, image capturing unit and electronic device
US11125978B2 (en) Optical lens assembly comprising seventh lenses of −++−−+− or +++−−+− refractive powers, image capturing unit and electronic device
US10698178B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
US10890738B2 (en) Optical imaging lens assembly, image capturing unit and electronic device
US11391919B2 (en) Imaging lens assembly, image capturing unit and electronic device
US11686922B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
US11719911B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
US10852514B2 (en) Photographing optical system, image capturing unit and electronic device
US11372204B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
JP6711361B2 (en) Imaging lens
CN110554479A (en) Optical imaging lens
US11668907B2 (en) Photographing optical lens assembly and electronic device
WO2023004794A1 (en) Imaging optics and imaging device
US11668898B2 (en) Image lens assembly, image capturing unit and electronic device
KR102448469B1 (en) Mobile small telephoto optical system for high density pixel
TW202407410A (en) Optical lens assembly and photographing module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100571.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE