WO2023004776A1 - 一种麦克风阵列的信号处理方法、麦克风阵列以及系统 - Google Patents

一种麦克风阵列的信号处理方法、麦克风阵列以及系统 Download PDF

Info

Publication number
WO2023004776A1
WO2023004776A1 PCT/CN2021/109697 CN2021109697W WO2023004776A1 WO 2023004776 A1 WO2023004776 A1 WO 2023004776A1 CN 2021109697 W CN2021109697 W CN 2021109697W WO 2023004776 A1 WO2023004776 A1 WO 2023004776A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
array
signal
sound
wireless
Prior art date
Application number
PCT/CN2021/109697
Other languages
English (en)
French (fr)
Inventor
高建正
莫品西
边云锋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/109697 priority Critical patent/WO2023004776A1/zh
Publication of WO2023004776A1 publication Critical patent/WO2023004776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise

Definitions

  • the present application relates to the technical field of microphones, and in particular to a signal processing method of a microphone array, a microphone array and a system.
  • Microphone array technology has been widely used in computer, audio and video conferencing, speech recognition and other scenarios. Compared with a single microphone, a microphone array can collect sound signals in a specific direction, and use the spatial information of the sound signals to enhance signals in specific directions and suppress signals in other directions, thereby effectively suppressing environmental noise. In related technologies, the flexibility of the microphone array is low, and it cannot meet different requirements in different scenarios.
  • one of the objectives of the present application is to provide a signal processing method for a microphone array, a microphone array and a system, so as to improve the flexibility of the microphone array.
  • a signal processing method of a microphone array is provided, the microphone array is a combination of at least two wireless microphones, and one of the wireless microphones is designated as a reference microphone, the method comprising:
  • the acquired sound signal is processed into a differential array signal having a sound pickup enhancement direction, and the sound pickup enhancement direction is a direction pointing to the reference microphone in the pickup direction of the reference microphone and any other microphone.
  • a signal processing method of a microphone array is provided, the microphone array is a combination of at least two wireless microphones, the microphone array is configured with a sound collection mode corresponding to at least one scene, and the scene at least includes An interview scene or a meeting scene, the method includes:
  • the target radio mode selected by the user determine the target wireless microphone and the array type working in the target radio mode;
  • the array type includes at least a broadside array and an end-fire array;
  • the sound signal collected by the microphone array is processed according to the array type to obtain an array signal in a sound pickup enhancement direction, and the sound pickup enhancement direction is determined according to the type of the microphone array.
  • a microphone array is provided, the microphone array is a combination of at least two wireless microphones, wherein one wireless microphone is designated as a reference microphone, and the wireless microphone includes:
  • a sound collection device for collecting sound signals
  • memory for storing processor-executable instructions
  • the processor is configured to:
  • the acquired sound signal is processed into a differential array signal having a sound pickup enhancement direction, and the sound pickup enhancement direction is a direction pointing to the reference microphone in the pickup direction of the reference microphone and any other microphone.
  • a microphone array is provided, the microphone array is a combination of at least two wireless microphones, and the wireless microphones include:
  • Sound collection device for collecting sound signals
  • memory for storing processor-executable instructions
  • the memory is configured with a radio mode corresponding to at least one scene, the scene at least includes an interview scene or a meeting scene, and the processor is configured to:
  • the target radio mode selected by the user determine the target wireless microphone and the array type working in the target radio mode;
  • the array type includes at least a broadside array and an end-fire array;
  • the sound signal collected by the sound collection device is processed according to the array type to obtain an array signal in a sound pickup enhancement direction, and the sound pickup enhancement direction is determined according to the type of the microphone array.
  • a wireless system in a fifth aspect, includes a movable platform and a microphone array; the microphone array is a combination of at least two wireless microphones, wherein one wireless microphone is designated as a reference microphone; the movable platform wirelessly connecting with the microphone array;
  • the microphone array is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the obtained sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement direction Pointing to the direction of the reference microphone in the pickup direction of the reference microphone and any other microphone; sending the voice control signal output based on the differential array signal to the movable platform, the voice control signal carrying the flight instruction;
  • the movable platform is used for receiving voice control signals sent by the microphone array; and executing corresponding flight tasks according to the flight instructions.
  • a shooting system in a sixth aspect, includes a movable platform equipped with a shooting device and a microphone array; the microphone array is a combination of at least two wireless microphones, one of which is designated as a reference microphone; the mobile platform is wirelessly connected to the microphone array;
  • the microphone array is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the obtained sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement direction Pointing to the direction of the reference microphone in the pickup direction of the reference microphone and any other microphone; sending the voice control signal output based on the differential array signal to the movable platform, the voice control signal carrying voice shooting instructions;
  • the movable platform is configured to receive a voice control signal sent by the microphone array; and control the shooting device to shoot according to the voice shooting instruction.
  • the seventh aspect provides a kind of cloud platform system, described system comprises cloud platform and microphone array; Described microphone array is the combination of at least two wireless microphones, wherein a wireless microphone is designated as reference microphone; Described cloud platform and The microphone array is wirelessly connected;
  • the microphone array is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the obtained sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement direction Pointing to the direction of the reference microphone in the pickup direction of the reference microphone and any other microphone; sending the voice control signal output based on the differential array signal to the movable platform, the voice control signal carrying voice Control instruction;
  • the pan-tilt is used to receive the voice control signal sent by the microphone array; and move according to the voice control instruction.
  • a shooting system in an eighth aspect, includes a shooting device and a microphone array; the microphone array is a combination of at least two wireless microphones, one of which is designated as a reference microphone; the shooting device and the Wireless connection of the microphone array;
  • the microphone array is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the obtained sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement direction Pointing to the direction of the reference microphone in the pickup direction of the reference microphone and any other microphone; sending the voice control signal output based on the differential array signal to the movable platform, the voice control signal carrying voice shooting instructions;
  • the photographing device is configured to receive a voice control signal sent by the microphone array; and photograph according to the voice photographing instruction.
  • a shooting system in a ninth aspect, includes an electronic device and a microphone array, the microphone array is a combination of at least two wireless microphones, one of which is designated as a reference microphone; the electronic device and the Wireless connection of the microphone array;
  • the microphone array is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the obtained sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement direction Pointing to the direction of the reference microphone in the pickup direction of the reference microphone and any other microphone; sending the voice signal output based on the differential array signal to the electronic device, the voice signal carrying voice data ;
  • the electronic device is configured to receive the voice signal and save the voice data.
  • the present application provides a microphone array signal processing method, a microphone array, and a system.
  • the microphone array is composed of at least two wireless microphones, and one of the wireless microphones is designated as a reference microphone, and then the sound signal acquired by the wireless microphone is processed into a pickup Differential array signal in tone enhancement direction.
  • this application combines wireless microphones into a microphone array to obtain differential array signals in the direction of sound pickup enhancement, which improves the flexibility of the microphone array, thus meeting different usage requirements in different scenarios.
  • Fig. 1 shows a signal processing method of a microphone array according to an embodiment of the present application.
  • Fig. 2 is a frequency response curve of a differential array according to an embodiment of the present application.
  • FIG. 3 is a frequency response curve of a differential array after applying a low-pass filter according to an embodiment of the present application.
  • FIG. 4 is a frequency response curve of a differential array after low-frequency correction according to an embodiment of the present application.
  • Fig. 5 shows a signal processing method of a microphone array according to another embodiment of the present application.
  • Fig. 6 shows a signal processing method of a microphone array according to another embodiment of the present application.
  • Fig. 7(a) shows a microphone array according to an embodiment of the present application.
  • Fig. 7(b) shows a microphone array according to another embodiment of the present application.
  • Fig. 7(c) shows a microphone array according to another embodiment of the present application.
  • Fig. 7(d) shows a microphone array according to another embodiment of the present application.
  • Fig. 7(e) shows a microphone array according to another embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a wireless microphone according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a wireless microphone according to another embodiment of the present application.
  • Fig. 10 is a block diagram of a wireless system according to an embodiment of the present application.
  • Fig. 11 is a block diagram of a shooting system according to an embodiment of the present application.
  • Fig. 12 is a block diagram of a pan/tilt system according to an embodiment of the present application.
  • Fig. 13 is a block diagram of a shooting system according to an embodiment of the present application.
  • Fig. 14 is a block diagram of a shooting system according to an embodiment of the present application.
  • Microphone array technology has been widely used in computer, audio and video conferencing, speech recognition and other scenarios. Compared with a single microphone, a microphone array can collect sound signals in a specific direction, and use the spatial information of the sound signals to enhance signals in specific directions and suppress signals in other directions, thereby effectively suppressing environmental noise. In related technologies, the microphone array needs to be used in conjunction with other electronic devices through a wired connection. The wired connection between the microphone array and the electronic device cannot be adapted to many application scenarios, and the flexibility of the microphone array is low. There is no idea of how to design a wireless microphone as a microphone array in the related art.
  • the present application proposes a signal processing method for a microphone array, wherein the microphone array is a combination of at least two wireless microphones, and one of the wireless microphones is designated as a reference microphone, and the method includes the steps as shown in Figure 1:
  • Step 110 Obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone;
  • Step 120 Process the acquired sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement direction is a direction pointing to the reference microphone in the pickup direction of the reference microphone and any other microphone.
  • the microphone array is composed of at least two wireless microphones, and one of the wireless microphones is designated as a reference microphone, and then the sound signals acquired by the wireless microphones are processed into a differential array in the direction of sound pickup enhancement Signal.
  • this application combines wireless microphones into a microphone array to obtain differential array signals in the direction of sound pickup enhancement, which improves the flexibility of the microphone array, thus meeting different usage requirements in different scenarios.
  • the differential array signal is obtained through a Differential Microphone Array (DMA) algorithm, that is, weighted subtraction is performed on the sound signals collected by the wireless microphones.
  • DMA Differential Microphone Array
  • the amplitude of the original output of the array enhancement is significantly greater than the amplitude of the output of the array suppression, thereby realizing the enhancement of the signal in the pickup enhancement direction and the suppression of signals in other directions .
  • the DMA algorithm has a high-pass characteristic, that is, the amplitude of its array enhanced original output has low-frequency suppression.
  • the DMA algorithm has high requirements for microphone consistency.
  • the so-called microphone consistency refers to whether the frequency response curves of different wireless microphones are consistent.
  • the frequency response curves of different wireless microphones are usually inconsistent. In this way, due to the consistency of the wireless microphone, even if a small disturbance is generated, there will be a large low-frequency amplification after the DMA algorithm, and in some cases, even a low-frequency amplification of 20dB can occur.
  • the enhancement effect of the differential array signal in the sound pickup enhancement direction in the low frequency part can be weakened by adjusting the parameters of the low-pass filter.
  • the adjusted frequency response curve is still quite different from the output signal of the reference microphone in the low frequency part, and the sound quality cannot be accurately restored.
  • the signal processing method of the microphone array provided by this application on the basis of the steps shown in Figure 1, further includes: according to the setting range of the frequency response curve of the differential array signal, the frequency domain The differential array signal whose value is outside the set range is replaced by the frequency domain signal corresponding to the reference sound signal at the same frequency domain value.
  • the differential array signal is used within the set range, and the reference sound signal under the same frequency domain value is used outside the set range.
  • the setting range is the low frequency part, the sound signal distortion phenomenon caused by the amplification of the differential array signal at low frequency can be avoided.
  • the aforementioned setting range may be a range in which the difference between a point on the frequency response curve of the differential array signal and a corresponding point on the frequency response curve of the reference sound signal is not greater than a preset threshold.
  • the preset threshold can be set by those skilled in the art according to actual needs, which is not limited in this application. In this way, at a certain frequency, when the amplitude difference between the reference sound signal and the differential array signal is large, the differential array signal at the frequency is replaced with the corresponding reference sound signal.
  • the array output in the pickup enhancement direction is basically consistent with the output of the reference microphone, which effectively corrects the low-frequency amplification problem caused by the consistency of the wireless microphone and the low-pass filter. , so as to realize the accurate restoration of sound quality in the whole frequency band.
  • the differential array signal is a frequency domain signal.
  • the differential array signal can be converted into a target sound signal and then output.
  • the target sound signal may be a time domain signal.
  • the signal is output in time domain, which is convenient for subsequent signal processing.
  • the algorithm flow of the above method may include steps as shown in FIG. 5:
  • Step 510 Convert the time-domain signal P 1 (t) collected by the reference microphone into a frequency-domain signal P 1 (f);
  • Step 520 Convert the time-domain signal P 2 (t) collected by other microphones into a frequency-domain signal P 2 (f);
  • step 510 and step 520 are not performed sequentially, and may be performed at the same time.
  • time domain-frequency domain conversion reference may be made to conversion methods in related technologies, such as fast Fourier transform. The application is not limited here.
  • Step 530 Process the frequency-domain signals P 1 (f) and P 2 (f) using a differential array algorithm to obtain a differential array signal P(f) in the direction of sound pickup enhancement;
  • Step 550 Determine whether the frequency f belongs to a set range f T , wherein the set range f T satisfies max ⁇ P(f) ⁇ T, where T is a preset threshold;
  • step 570 If yes, execute step 570, otherwise execute step 560.
  • Step 570 Convert the differential array signal P(f) into a time domain signal P(t) and output it.
  • the above embodiment takes two wireless microphones as an example to form a microphone array.
  • a microphone array composed of more than two wireless microphones for the differential array algorithm processing of time domain signals collected by more than two wireless microphones, refer to related technologies. I won't go into details here.
  • the differential array signal in the direction of sound pickup enhancement can be as close as possible to the reference microphone signal, so that the output sound signal has higher sound quality restoration.
  • the microphone array may be configured with at least one sound collection mode, and the number of wireless microphones working in each sound collection mode.
  • the number of wireless microphones working in different sound collection modes is different, so, in some embodiments, before acquiring the sound signals collected by the reference microphone and at least one other microphone in step 110, it can also be determined according to the target sound collection mode selected by the user.
  • Target wireless microphones working in target radio mode and determine one of the target wireless microphones as a reference microphone.
  • the microphone array is composed of wireless microphones A-D, and the microphone array is configured with three sound receiving modes.
  • the number of wireless microphones working in radio mode 1 is 2, and the number of wireless microphones working in radio mode 2 and radio mode 3 is 3.
  • different radio modes can also specify different wireless microphones as working target wireless microphones.
  • the target wireless microphones of radio mode 1 are wireless microphones A and B;
  • the target wireless microphones of radio mode 2 are wireless microphones A, B, and C ;
  • the target wireless microphones of radio mode 3 are wireless microphones A, B, and D.
  • different sound collection modes may also correspond to different sound signal collection angles, and the number of working wireless microphones is negatively correlated with the collection angle.
  • the collection angle can be 10°, 20°, 50°, etc.
  • Different collection angles correspond to different numbers of working wireless microphones. The smaller the collection angle is, the more the number of working wireless microphones is, and the signal-to-noise ratio of the sound signal will also increase. big.
  • This application provides a signal processing method for microphone arrays. By selecting different combinations and different numbers of wireless microphones to work, different radio modes can be realized. Different radio modes can realize Different radio effects meet the requirements of different scenarios.
  • the microphone array can communicate with an electronic device, such as a wireless connection, then after obtaining the differential array signal, the voice control signal based on the differential array signal output can also be sent to the electronic device to control the electronic device Perform the corresponding operation.
  • an electronic device such as a wireless connection
  • the above-mentioned electronic device may be a mobile platform
  • the above-mentioned voice control signal carries flight instructions for controlling the mobile platform to perform corresponding flight tasks.
  • users can voice control the mobile platform to perform different flight tasks, including take-off, hovering, landing, speed regulation and other flight tasks.
  • the above-mentioned electronic equipment can be equipped with a camera, and the electronic equipment can be all electronic equipment that can be equipped with a camera, such as drones, unmanned ships, and unmanned vehicles.
  • the above-mentioned voice control signal may carry a voice shooting instruction for controlling the shooting device to take pictures. Specifically, after the microphone array sends the voice control signal carrying the voice shooting instruction to the electronic device, the electronic device can call the shooting device to take pictures according to the voice shooting instruction.
  • the above-mentioned electronic device may be a pan-tilt
  • the above-mentioned voice control signal carries a voice control instruction for controlling the movement of the pan-tilt.
  • the user can voice control the gimbal to perform movements, including pitch rotation, roll rotation and yaw rotation.
  • the above-mentioned electronic device may be a camera
  • the above-mentioned voice control signal carries a voice shooting instruction for controlling the camera to take pictures.
  • the photographing device can be mounted on a device such as a handheld gimbal, a selfie stick, or a tripod. Since the shooting device is far away from the user, the user can remotely control the shooting device to take pictures through the microphone array.
  • the voice signal output by the differential array signal can also be sent to the electronic device through the microphone array, so that the electronic device saves the voice data carried in the voice signal.
  • the electronic device can be one or more combinations of a movable platform and a shooting device. When the electronic device is in the shooting mode, the voice data of the user can be collected and saved through the microphone array.
  • drones are usually not equipped with recording devices. When the UAV is recording in the aerial photography mode, it can only record images but cannot receive audio. Usually dubbing is required in post-production.
  • the microphone array can communicate wirelessly with the drone, and the microphone array can be mounted on a remote control terminal or other devices that communicate with the drone, or can be held by the user.
  • the voice data of the user is recorded through the microphone array, and the voice data can be sent to the drone for storage through the wireless network.
  • the microphone array has better sound pickup enhancement, which can suppress environmental noise in other directions; on the other hand, it eliminates post-production dubbing and other processing procedures, and the video can be used immediately.
  • the present application also provides a signal processing method for a microphone array, wherein the microphone array is a combination of at least two wireless microphones, and the microphone array is configured with a sound collection mode corresponding to at least one scenario.
  • the above-mentioned scenes at least include interview scenes or meeting scenes.
  • the above method comprises the steps as shown in Figure 6:
  • Step 610 According to the target radio mode selected by the user, determine the target wireless microphone working in the target radio mode and the array type; the array type includes at least a broadside array and an end-fire array;
  • Step 620 Process the sound signal collected by the microphone array according to the array type to obtain an array signal of a sound pickup enhancement direction, and the sound pickup enhancement direction is determined according to the type of the microphone array.
  • Microphone arrays include at least two types: broadside arrays and end-fire arrays. As shown in FIG. 7( a ), it is a microphone array 700 composed of two wireless microphones 710 . In the microphone array 700, the arrangement direction of the wireless microphones 710 is the direction a. According to the processing algorithm for the sound signals collected by the two wireless microphones 710, the microphone array 700 may be a broadside array or an end-fire array.
  • the broadside array adds and processes the sound signals collected by the wireless microphone 710, and its sound pickup enhancement direction is perpendicular to the arrangement direction of the wireless microphones (that is, direction a), that is, the sound pickup enhancement direction of the broadside array is direction b. In other words, the broadside array can enhance the sound signal from direction b.
  • the end-fire array performs differential array algorithm processing on the sound signal collected by the wireless microphone 710, and the arrangement direction of the microphones (that is, direction a) is the same in the sound pickup enhancement direction, that is, the sound pickup enhancement direction of the end-fire array is direction a.
  • the broadside array can enhance the sound signal from direction a.
  • microphone arrays can be configured with sound collection modes corresponding to different scenarios. According to the radio mode selected by the user, the working target wireless microphone and array type can be determined, and the sound signal collected by the wireless microphone can be processed according to the array type.
  • the present application further provides a microphone array, where the microphone array is a combination of at least two wireless microphones.
  • the microphone array 700 is composed of at least two wireless microphones 710, and different numbers of wireless microphones may have different combinations.
  • the microphone array 700 may be a linear array, at least including the combined forms as shown in Fig. 7(a)-(b).
  • the microphone array 700 may be a linear array similar to Fig. 7(a)-(b), or a two-dimensional array.
  • the distance between adjacent wireless microphones 710 in the microphone array 700 is less than a preset wavelength.
  • the preset wavelength may be set according to ideal wavelengths in different working modes.
  • one of the wireless microphones 710 is designated as a reference microphone.
  • the reference microphone may be the wireless microphone 710 closest to the sound source. As in FIG. 7( a ), if the sound source is on the left side of the microphone array 700 , the wireless microphone 710 on the left among the two wireless microphones 710 is designated as the reference microphone.
  • the number of wireless microphones 710 in the microphone array 700 is not more than four, considering that the differential microphone array has high requirements on consistency, and each wireless microphone has a consistency problem.
  • the shape of the wireless microphone 710 is not limited to the shapes shown in FIG. 7(a)-(b), and the shape of the wireless microphone 710 includes at least a cube, a cuboid, or a sphere. This application does not limit the shape of the microphone.
  • the multiple wireless microphones 710 may be connected to each other on the surface with the smallest area through connecting pieces or fasteners.
  • the wireless microphones 710 may be detachably connected to each other. That is to say, when the wireless microphone 710 is not assembled together, it can be used as an omnidirectional microphone independently. When it is necessary to enhance sound pickup of sound signals in a certain direction, several wireless microphones 710 can be assembled into a microphone array 700 through connectors or fasteners.
  • the wireless microphone 80 includes a battery 811, a wireless communication device 812, a sound collection device 813, a processor 814, an internal bus 816, a memory and a non-volatile memory 815 at the hardware level, and may also include other business facilities. required hardware.
  • the processor 814 reads the corresponding computer program from the non-volatile memory 815 into the memory and then runs it.
  • the processor 814 is configured to:
  • the acquired sound signal is processed into a differential array signal having a sound pickup enhancement direction, and the sound pickup enhancement direction is a direction pointing to the reference microphone in the pickup direction of the reference microphone and any other microphone.
  • the above-mentioned wireless microphone 80 further includes a synchronization device, configured to send a synchronization signal to the wireless microphone, so that different wireless microphones collect sound signals synchronously.
  • the present application also provides a microphone array, which is a combination of at least two wireless microphones. No longer.
  • the wireless microphone 90 includes a battery 911, a wireless communication device 912, a sound collection device 913, a processor 914, an internal bus 916, a memory and a non-volatile memory 915 at the hardware level, and may also include other business devices of course. required hardware.
  • the memory 915 is configured with a sound collection mode corresponding to at least one scene, the scene at least includes an interview scene or a meeting scene, and the processor 914 reads the corresponding computer program from the non-volatile memory 915 into the memory and then runs it, processing tor 914 is configured to:
  • the target radio mode selected by the user determine the target wireless microphone and the array type working in the target radio mode;
  • the array type includes at least a broadside array and an end-fire array;
  • the sound signal collected by the sound collection device is processed according to the array type to obtain an array signal in a sound pickup enhancement direction, and the sound pickup enhancement direction is determined according to the type of the microphone array.
  • the present application also provides a wireless system.
  • the wireless system 100 includes a movable platform 101 and a microphone array 102 .
  • the microphone array 102 is a combination of at least two wireless microphones, one of which is designated as a reference microphone; the mobile platform 101 is wirelessly connected to the microphone array 102;
  • the microphone array 102 is configured to acquire the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the acquired sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement
  • the direction is the direction of the reference microphone and any other microphone pickup direction pointing to the reference microphone; the voice control signal output based on the differential array signal is sent to the movable platform 101, and the voice control signal carries There are flight instructions;
  • the movable platform 101 is used for receiving the voice control signal sent by the microphone array 102; and executing corresponding flight tasks according to the flight instructions.
  • the present application also provides a shooting system.
  • the shooting system 110 includes a movable platform 111 equipped with a shooting device 1111 and a microphone array 112.
  • the microphone array 112 is a combination of at least two wireless microphones, wherein One wireless microphone is designated as the reference microphone; the movable platform 111 is wirelessly connected to the microphone array 112;
  • the microphone array 112 is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the obtained sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement
  • the direction is the direction pointing to the reference microphone in the sound pickup direction of the reference microphone and any other microphone; the voice control signal output based on the differential array signal is sent to the movable platform 111, and the voice control signal carries There are voice shooting instructions;
  • the movable platform 111 is used for receiving the voice control signal sent by the microphone array 112; and controlling the shooting device to shoot according to the voice shooting instruction.
  • the present application also provides a pan-tilt system, as shown in Figure 12, the pan-tilt system 120 includes a pan-tilt 121 and a microphone array 122, the microphone array 122 is a combination of at least two wireless microphones, one of which is designated For reference microphone; Cloud Terrace 121 is wirelessly connected with microphone array 122;
  • the microphone array 122 is configured to acquire the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the acquired sound signal into a differential array signal having a sound pickup enhancement direction, and the sound pickup enhancement
  • the direction is the direction of the reference microphone and any other microphone pickup direction pointing to the reference microphone; the voice control signal output based on the differential array signal is sent to the pan/tilt 121, and the voice control signal carries voice control commands;
  • the pan-tilt 121 is used to receive the voice control signal sent by the microphone array 122; and move according to the voice control instruction.
  • the present application also provides a shooting system.
  • the shooting system 130 includes a shooting device 131 and a microphone array 132.
  • the microphone array 132 is a combination of at least two wireless microphones, one of which is designated as a reference Microphone; the photographing device 131 is wirelessly connected to the microphone array 132;
  • the microphone array 132 is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; process the obtained sound signal into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement
  • the direction is the direction of the reference microphone and any other microphone pickup direction pointing to the reference microphone; the voice control signal output based on the differential array signal is sent to the shooting device 131, and the voice control signal carries Voice shooting instructions;
  • the photographing device 131 is configured to receive the voice control signal sent by the microphone array 132; and photograph according to the voice photographing instruction.
  • the present application also provides a shooting system.
  • the shooting system 140 includes an electronic device 141 and a microphone array 142.
  • the microphone array 142 is a combination of at least two wireless microphones, one of which is designated as a reference Microphone; the electronic device 141 is wirelessly connected to the microphone array 142;
  • the microphone array 142 is used to obtain the sound signal collected by the reference microphone and the sound signal collected by at least one other microphone; the obtained sound signal is processed into a differential array signal with a sound pickup enhancement direction, and the sound pickup enhancement
  • the direction is the direction of the reference microphone and any other microphone pickup direction pointing to the reference microphone; the voice signal output based on the differential array signal is sent to the electronic device 141, and the voice signal carries voice data;
  • the electronic device 141 is configured to receive the voice signal and save the voice data.
  • the electronic device 141 includes at least one or more combinations of a movable platform and a camera.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the part description of the method embodiment for related parts.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种麦克风阵列的信号处理方法、麦克风阵列以及系统,麦克风阵列(700,102,112,122,132,142)为至少两个无线麦克风(710,80,90)的组合,其中一个无线麦克风被指定为参考麦克风。该方法包括:获取参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号(110);将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,拾音增强方向为参考麦克风与其他任一麦克风拾音方向上指向参考麦克风的方向(120)。与传统的麦克风阵列相比,将无线麦克风组合成麦克风阵列,以获取拾音增强方向的差分阵列信号,提高了麦克风阵列的灵活性,从而满足了不同场景的不同使用要求。

Description

一种麦克风阵列的信号处理方法、麦克风阵列以及系统 技术领域
本申请涉及麦克风技术领域,尤其涉及一种麦克风阵列的信号处理方法、麦克风阵列以及系统。
背景技术
麦克风阵列技术已广泛应用于计算机、音视频会议、语音识别等场景中。与单个麦克风相比,麦克风阵列可以在特定方向上采集声音信号,并利用声音信号的空间信息来实现特定方向信号的增强和其他方向信号的抑制,从而有效抑制环境噪声。在相关技术中,麦克风阵列灵活性较低,无法满足不同场景下不同要求的使用。
发明内容
有鉴于此,本申请的目的之一是提供一种麦克风阵列的信号处理方法、麦克风阵列以及系统,以提高麦克风阵列的灵活性。
为了达到上述技术效果,本发明实施例公开了如下技术方案:
第一方面,提供了一种麦克风阵列的信号处理方法,所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风,所述方法包括:
获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;
将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述 参考麦克风的方向。
第二方面,提供了一种麦克风阵列的信号处理方法,所述麦克风阵列为至少两个无线麦克风的组合,所述麦克风阵列配置有对应于至少一种场景下的收音模式,所述场景至少包括采访场景或会议场景,所述方法包括:
根据用户选择的目标收音模式,确定所述目标收音模式下工作的目标无线麦克风以及阵列类型;所述阵列类型至少包括宽边阵列和端射阵列;
根据所述阵列类型处理所述麦克风阵列采集的声音信号,得到拾音增强方向的阵列信号,所述拾音增强方向根据所述麦克风阵列的类型确定。
第三方面,提供了一种麦克风阵列,所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风,所述无线麦克风包括:
电池;
无线通信装置;
声音采集装置,用于采集声音信号;
处理器;
用于存储处理器可执行指令的存储器;
所述处理器被配置为:
获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;
将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向。
第四方面,提供了一种麦克风阵列,所述麦克风阵列为至少两个无 线麦克风的组合,所述无线麦克风包括:
电池;
无线通信装置;
声音采集装置;用于采集声音信号;
处理器;
用于存储处理器可执行指令的存储器;
所述存储器配置有对应于至少一种场景下的收音模式,所述场景至少包括采访场景或会议场景,所述处理器被配置为:
根据用户选择的目标收音模式,确定所述目标收音模式下工作的目标无线麦克风以及阵列类型;所述阵列类型至少包括宽边阵列和端射阵列;
根据所述阵列类型处理所述声音采集装置采集的声音信号,得到拾音增强方向的阵列信号,所述拾音增强方向根据所述麦克风阵列的类型确定。
第五方面,提供了一种无线系统,所述系统包括可移动平台和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述可移动平台与所述麦克风阵列无线连接;
所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台,所述语音控制信号携带有飞行指令;
所述可移动平台,用于接收所述麦克风阵列发送的语音控制信号;根据所述飞行指令执行相应的飞行任务。
第六方面,提供了一种拍摄系统,所述系统包括搭载有拍摄装置的可移动平台和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述可移动平台与所述麦克风阵列无线连接;
所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台,所述语音控制信号携带有语音拍摄指令;
所述可移动平台,用于接收所述麦克风阵列发送的语音控制信号;根据所述语音拍摄指令控制所述拍摄装置进行拍摄。
第七方面,提供了一种云台系统,所述系统包括云台和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述云台与所述麦克风阵列无线连接;
所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台,所述语音控制信号携带有语音控制指令;
所述云台,用于接收所述麦克风阵列发送的语音控制信号;根据所述语音控制指令进行运动。
第八方面,提供了一种拍摄系统,所述系统包括拍摄装置和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克 风被指定为参考麦克风;所述拍摄装置与所述麦克风阵列无线连接;
所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台,所述语音控制信号携带有语音拍摄指令;
所述拍摄装置,用于接收所述麦克风阵列发送的语音控制信号;根据所述语音拍摄指令进行拍摄。
第九方面,提供了一种拍摄系统,所述系统包括电子设备和麦克风阵列,所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述电子设备与所述麦克风阵列无线连接;
所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将所述基于所述差分阵列信号输出的语音信号送至所述电子设备,所述语音信号携带有语音数据;
所述电子设备,用于接收所述语音信号,并保存所述语音数据。
本申请提供的一种麦克风阵列的信号处理方法、麦克风阵列以及系统,麦克风阵列至少由两个无线麦克风组合,并且指定其中一个无线麦克风为参考麦克风,然后将无线麦克风所获取的声音信号处理为拾音增强方向上的差分阵列信号。与传统的麦克风阵列相比,本申请将无线麦克风组合成麦克风阵列,以获取拾音增强方向的差分阵列信号,提高了麦克风阵列的灵活性,从而满足了不同场景的不同使用要求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请根据一实施例示出的一种麦克风阵列的信号处理方法。
图2是本申请根据一实施例示出的差分阵列的频响曲线。
图3是本申请根据一实施例示出的差分阵列应用低通滤波器后的频响曲线。
图4是本申请根据一实施例示出的差分阵列低频修正后的频响曲线。
图5是本申请根据另一实施例示出的一种麦克风阵列的信号处理方法。
图6是本申请根据另一实施例示出的一种麦克风阵列的信号处理方法。
图7(a)是本申请根据一实施例示出的一种麦克风阵列。
图7(b)是本申请根据另一实施例示出的一种麦克风阵列。
图7(c)是本申请根据另一实施例示出的一种麦克风阵列。
图7(d)是本申请根据另一实施例示出的一种麦克风阵列。
图7(e)是本申请根据另一实施例示出的一种麦克风阵列。
图8是本申请根据一实施例示出的无线麦克风结构示意图。
图9是本申请根据另一实施例示出的无线麦克风结构示意图。
图10是本申请根据一实施例示出的一种无线系统的框图。
图11是本申请根据一实施例示出的一种拍摄系统的框图。
图12是本申请根据一实施例示出的一种云台系统的框图。
图13是本申请根据一实施例示出的一种拍摄系统的框图。
图14是本申请根据一实施例示出的一种拍摄系统的框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
麦克风阵列技术已广泛应用于计算机、音视频会议、语音识别等场景中。与单个麦克风相比,麦克风阵列可以在特定方向上采集声音信号,并利用声音信号的空间信息来实现特定方向信号的增强和其他方向信号的抑制,从而有效抑制环境噪声。在相关技术中,麦克风阵列需要通过有线连接与其他电子设备搭配使用,麦克风阵列与电子设备的有线连接无法适应很多应用场景,麦克风阵列灵活性较低。相关技术中并不存在如何将无线麦克风设计成麦克风阵列的思路。为此,本申请提出了一种麦克风阵列的信号处理方法,其中,麦克阵列为至少两个无线麦克风的组合,而其中一个无线麦克风被指定为参考麦克风,方法包括如图1所述的步骤:
步骤110:获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;
步骤120:将所获取的声音信号处理成具有拾音增强方向的差分阵 列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向。
本申请提供的麦克风阵列的信号处理方法,麦克风阵列至少由两个无线麦克风组合,并且指定其中一个无线麦克风为参考麦克风,然后将无线麦克风所获取的声音信号处理为拾音增强方向上的差分阵列信号。与传统的麦克风阵列相比,本申请将无线麦克风组合成麦克风阵列,以获取拾音增强方向的差分阵列信号,提高了麦克风阵列的灵活性,从而满足了不同场景的不同使用要求。
差分阵列信号通过差分阵列(Differential Microphone Array,DMA)算法获得,即对无线麦克风所采集的声音信号做加权相减。如图2的频响曲线图所示,通过DMA算法处理后,阵列增强原始输出的幅值明显大于阵列抑制输出的幅值,从而实现了拾音增强方向上信号的增强和其他方向信号的抑制。DMA算法具有高通的特性,即其阵列增强原始输出的幅值存在低频抑制的情况。通常地,需要在DMA算法的输出端应用一个形式为
Figure PCTCN2021109697-appb-000001
的低通滤波器来补偿低频的幅值,以使阵列增强的输出更接近于参考麦克风输出信号的频响曲线。应用低通滤波器后的输出如图3所示,与图2相比,图3中阵列幅值补偿输出在低频的幅值明显提高。
对于形式为
Figure PCTCN2021109697-appb-000002
的低通滤波器,在频率趋近于0时幅值会趋近于无限大。而DMA算法对于麦克风一致性的要求很高。所谓麦克风一致性是指不同无线麦克风的频响曲线是否一致。但是由于不同无线麦克风的自噪声不同,使得不同无线麦克风的频响曲线通常都是不一致的。如此,由于无线麦克风一致性的问题,即使是产生较小的扰动,但在经过DMA算法后会出现较大的低频放大,某些情况下甚至可以出现20dB的低频放大。如图3所示,由于麦克风一致性问题导致低频放大,以及低通滤波器在低频范围内幅值接近无限大,导致进行幅值补偿后的阵列输出在低频范围内, 其幅值高于参考麦克风的幅值,这会导致声音信号失真,无法将全频段内的音质准确还原。
相关技术中,可以通过调整低通滤波器的参数来减弱拾音增强方向上的差分阵列信号在低频部分的增强效果。然而调整后的频响曲线在低频部分依然与参考麦克风的输出信号相差较大,依然无法准确还原音质。为了实现全频段内的音质准确还原,本申请提供的麦克风阵列的信号处理方法,在图1所示的步骤基础上,还包括:根据差分阵列信号的频响曲线的设定范围,将频域值在设定范围之外的差分阵列信号替换为同一频域值下参考声音信号对应的频域信号。即在设定范围之内使用差分阵列信号,而在设定范围之外则使用同一频域值下的参考声音信号。当该设定范围为低频部分时,可以避免差分阵列信号在低频放大导致的声音信号失真现象。
在一些实施例中,上述设定范围可以是差分阵列信号的频响曲线上的点与参考声音信号的频响曲线上的对应点的差值不大于预设阈值的范围。预设阈值可以由本领域技术人员根据实际需要设置,本申请在此不做限制。如此,在某一频率下,当参考声音信号与差分阵列信号的幅值相差较大时,则将该频率下的差分阵列信号替换为对应的参考声音信号。如图4所示,在经过上述信号处理方法处理后,拾音增强方向上的阵列输出与参考麦克风的输出基本一致,有效地修正了由于无线麦克风一致性以及低通滤波器导致的低频放大问题,从而实现了全频段内的音质准确还原。
差分阵列信号为频域信号,在一些实施例中,在获得差分阵列信号后,可以将差分阵列信号转换成目标声音信号后输出。例如目标声音信号可以是时域信号。以时域信号输出,方便后续的信号处理。
在一些实施例中,以两个无线麦克风组成麦克风阵列为例,上述方法的算法流程可以包括如图5所示的步骤:
步骤510:将参考麦克风采集的时域信号P 1(t)转换成频域信号P 1(f);
步骤520:将其他麦克风采集的时域信号P 2(t)转换成频域信号P 2(f);
其中,步骤510和步骤520没有先后执行顺序,可以同时执行。时域-频域转换可以参考相关技术中的转换方法,如快速傅里叶转换等。本申请在此不做限制。
步骤530:利用差分阵列算法处理频域信号P 1(f)与P 2(f),得到拾音增强方向的差分阵列信号P(f);
步骤540:计算ΔP(f)=|P(f)-P 1(f)|;
步骤550:判断频率f是否属于设定范围f T,其中所述设定范围f T满足max{ΔP(f)}≤T,T为预设阈值;
若是则执行步骤570,若否则执行步骤560。
步骤560:将在所述设定范围f T之外的所述差分阵列信号P(f)替换为同一频率f下的P 1(f),即当f∈f T时,P(f)=P(f);当
Figure PCTCN2021109697-appb-000003
时,P(f)=P 1(f);
步骤570:将差分阵列信号P(f)转换成时域信号P(t)并输出。
其中,频域-时域转换可以参考相关技术中的转换方法,如逆快速傅里叶转换等,本申请在此不做限制。
上述实施例以两个无线麦克风组成麦克风阵列为例,对于两个以上的无线麦克风组成的麦克风阵列,对两个以上的无线麦克风采集到的时域信号的差分阵列算法处理参见相关技术,本申请在此不做赘述。
通过上述处理流程,拾音增强方向上的差分阵列信号可以最大化地接近参考麦克风信号,使得输出的声音信号有较高的音质还原。
为了满足不同场景的不同使用要求,在一些实施例中,麦克风阵列可以配置有至少一种收音模式,以及在每种收音模式下工作的无线麦克风的数量。不同的收音模式下工作的无线麦克风的数量不同,如此,在一些实施例中,在步骤110获取参考麦克风和其他至少一个麦克风采集的声音 信号之前,还可以先根据用户选择的目标收音模式,确定目标收音模式下工作的目标无线麦克风,并确定其中一个目标无线麦克风为参考麦克风。
例如,麦克风阵列由无线麦克风A-D组成,麦克风阵列配置有三种收音模式。其中收音模式1下工作的无线麦克风数量为2,收音模式2和收音模式3下工作的无线麦克风数量均为3。又例如,不同收音模式还可以指定不同的无线麦克风作为工作的目标无线麦克风,如收音模式1的目标无线麦克风为无线麦克风A、B;收音模式2的目标无线麦克风为无线麦克风A、B、C;收音模式3的目标无线麦克风为无线麦克风A、B、D。
在一些实施例中,不同收音模式还可以对应不同声音信号的采集角度,工作的无线麦克风数量与采集角度为负相关关系。例如采集角度可以是10°、20°、50°等,不同采集角度对应不同数量的工作的无线麦克风,采集角度越小,工作的无线麦克风的数量越多,声音信号的信噪比也会增大。
不同场景下对收音效果的要求不相同,本申请提供了一种麦克风阵列的信号处理方法,通过选择不同组合方式以及不同数量的无线麦克风进行工作,来实现不同的收音模式,不同收音模式可以实现不同的收音效果,从而满足了不同场景下的使用要求。
在一些应用场景中,麦克风阵列可以与一电子设备通信连接,如无线连接,那么在获取差分阵列信号后,还可以将基于差分阵列信号输出的语音控制信号发送到电子设备上,以控制电子设备执行对应的操作。
在一些应用场景中,上述电子设备可以是可移动平台,上述语音控制信号携带有飞行指令,用于控制可移动平台执行相应的飞行任务。如此,用户可以语音控制可移动平台执行不同的飞行任务,包括起飞、悬停、降落、调速等飞行任务。
在一些应用场景中,上述电子设备可以搭载有拍摄装置,电子设备 可以是无人机、无人船、无人车等可以搭载有拍摄装置的一切电子设备。上述语音控制信号可以携带有语音拍摄指令,用于控制拍摄装置进行拍摄。具体地,麦克风阵列将携带有语音拍摄指令的语音控制信号发送到电子设备后,可以由电子设备根据该语音拍摄指令调用拍摄装置进行拍摄。
在一些应用场景中,上述电子设备可以是云台,上述语音控制信号携带有语音控制指令,用于控制云台运动。如此,用户可以语音控制云台进行运动,包括俯仰转动、滚动转动和偏航转动。
在一些应用场景中,上述电子设备可以是拍摄装置,上述语音控制信号携带有语音拍摄指令,用于控制拍摄装置进行拍照。在一些实施例中,拍摄装置可以搭载在如手持云台、自拍杆、三脚架等装置上。由于拍摄装置距离用户较远,通过麦克风阵列用户可以远程控制拍摄装置进行拍摄。
除了通过麦克风阵列控制电子设备执行对应的操作以外,在一些应用场景中,还可以通过麦克风阵列向电子设备发送差分阵列信号输出的语音信号,使得电子设备保存语音信号中所携带的语音数据。电子设备可以是可移动平台、拍摄拍摄装置中的一种或多种组合,当电子设备在拍摄模式下,可通过麦克风阵列采集用户的语音数据并保存。以无人机为例,在相关技术中,由于无人机的螺旋桨噪音较大,无人机通常不会搭载录音装置。使得无人机在航拍模式下进行录像时只能录制图像而无法收音。通常地需要在后期制作配音。而本申请中,麦克风阵列可以与无人机无线通信,麦克风阵列可以搭载在遥控终端或者其他与无人机通信的设备上,也可以由用户手持。如此,通过麦克风阵列录制用户的语音数据,语音数据可以通过无线网络发送到无人机保存。一方面麦克风阵列有较好的拾音增强,可以抑制其他方向上的环境噪音;另一方面免去了后期制作配音等加工工序,视频可以即拍即用。
此外,本申请提供还提供了一种麦克风阵列的信号处理方法,其中,麦克风阵列为至少两个无线麦克风的组合,且麦克风阵列中配置有对应于 至少一种场景下的收音模式。其中,上述场景至少包括采访场景或会议场景。上述方法包括如图6所示的步骤:
步骤610:根据用户选择的目标收音模式,确定所述目标收音模式下工作的目标无线麦克风以及阵列类型;所述阵列类型至少包括宽边阵列和端射阵列;
步骤620:根据所述阵列类型处理所述麦克风阵列采集的声音信号,得到拾音增强方向的阵列信号,所述拾音增强方向根据所述麦克风阵列的类型确定。
麦克风阵列至少包括宽边阵列与端射阵列两种类型。如图7(a)所示,为两个无线麦克风710组成的麦克风阵列700。在麦克风阵列700中,无线麦克风710的排列方向为方向a。根据对两个无线麦克风710所采集的声音信号的处理算法,麦克风阵列700可以是宽边阵列或端射阵列。宽边阵列对无线麦克风710所采集的声音信号做相加处理,其拾音增强方向与无线麦克风的排列方向(即方向a)垂直,即宽边阵列的拾音增强方向为方向b。换句话说,宽边阵列可以将来自方向b的声音信号做增强处理。而端射阵列对无线麦克风710所采集的声音信号做差分阵列算法处理,其拾音增强方向麦克风的排列方向(即方向a)相同,即端射阵列的拾音增强方向为方向a。换句话说,宽边阵列可以将来自方向a的声音信号做增强处理。
不同场景下对麦克风阵列有不同的使用需求,例如在采访场景中,需要获取来自采访者和/或被采访者方向的声音信号,端射阵列较宽边阵列更适用于采访场景。而在会议场景中,参会人员的声音信号可能来自于多个方向,宽边阵列较端射阵列更适用于采访场景。如此,麦克风阵列可以配置有对应于不同场景下的收音模式。根据用户选择的收音模式,可以确定工作的目标无线麦克风以及阵列类型,并根据阵列类型来处理无线麦克风所采集的声音信号。
基于上述任一实施例,本申请还提供了一种麦克风阵列,该麦克风阵列为至少两个无线麦克风的组合。如图7(a)-(e)所示,麦克风阵列700由至少两个无线麦克风710组成,且不同数量的无线麦克风可以有不同的组合形式。如当无线麦克风710数量为2时,麦克风阵列700可以是线性阵列,至少包括如图7(a)-(b)的组合形式。当无线麦克风710数量大于2时,麦克风阵列700可以是类似于图7(a)-(b)的线性阵列,还可以是二维阵列。如图7(c)-(e)所示,当无线麦克风710数量为3时,可以组成三角形阵列;当无线麦克风710数量为4时,可以组成矩形阵列;当无线麦克风710数量为6时,可以组成多边形阵列或圆形阵列。无线麦克风710的数量越多,麦克风阵列的组合形式越丰富。图7(a)-(e)列举的仅仅是部分组合形式,本领域技术人员可以根据实际需要选择其他组合形式,本申请在此不做限定。
在一些实施例中,麦克风阵列700中相邻的无线麦克风710的距离小于预设波长。其中,预设波长可以是根据不同工作模式下的理想波长设置的。
在上述麦克风阵列700中,其中一个无线麦克风710被指定为参考麦克风。在一些实施例中,参考麦克风可以是距离声源最近的无线麦克风710。如在图7(a)中,若声源在麦克风阵列的700的左边,则指定两个无线麦克风710中的靠左边的无线麦克风710为参考麦克风。
在一些实施例中,考虑到差分麦克风阵列对一致性要求较高,而每个无线麦克风之间都存在一致性问题,因此麦克风阵列700中,无线麦克风710的数量不多于4。
在一些实施例中,无线麦克风710的形状不限于图7(a)-(b)所示的形状,无线麦克风710的形状至少包括正方体、长方体、或球体。本申请对麦克风形状不做限制。
在一些实施例中,多个无线麦克风710之间可以在面积最小的面上,通过连接件或紧固件相互连接。其中,在一些实施例中,无线麦克风710可以是可拆卸地相互连接。也就是说,当无线麦克风710没有组装在一起的时候,可以单独地作为全向型麦克风使用。当需要对某一方向的声音信号进行拾音增强时,则若干个无线麦克风710可以通过连接件或紧固件组装为麦克风阵列700来使用。
如图8所示,无线麦克风80在硬件层面包括电池811、无线通信装置812、声音采集装置813、处理器814、内部总线816、内存以及非易失性存储器815,当然还可能包括其他业务所需要的硬件。处理器814从非易失性存储器815中读取对应的计算机程序到内存中然后运行,处理器814被配置为:
获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;
将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向。
在一些实施例中,上述无线麦克风80还包括同步装置,用于向无线麦克风发送同步信号,以使不同无线麦克风同步采集声音信号。
基于上述任一实施例,本申请还提供了一种麦克风阵列,该麦克风阵列为至少两个无线麦克风的组合,组合形式如上文以及图7(a)-(b)所示,本申请在此不再赘述。如图9所示,无线麦克风90在硬件层面包括电池911、无线通信装置912、声音采集装置913、处理器914、内部总线916、内存以及非易失性存储器915,当然还可能包括其他业务所需要的硬件。存储器915配置有对应于至少一种场景下的收音模式,所述场景至少 包括采访场景或会议场景,处理器914从非易失性存储器915中读取对应的计算机程序到内存中然后运行,处理器914被配置为:
根据用户选择的目标收音模式,确定所述目标收音模式下工作的目标无线麦克风以及阵列类型;所述阵列类型至少包括宽边阵列和端射阵列;
根据所述阵列类型处理所述声音采集装置采集的声音信号,得到拾音增强方向的阵列信号,所述拾音增强方向根据所述麦克风阵列的类型确定。
此外,本申请还提供了一种无线系统,如图10所示,无线系统100包括可移动平台101和麦克风阵列102。麦克风阵列102为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;可移动平台101与麦克风阵列102无线连接;
所述麦克风阵列102,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台101,所述语音控制信号携带有飞行指令;
所述可移动平台101,用于接收所述麦克风阵列102发送的语音控制信号;根据所述飞行指令执行相应的飞行任务。
此外,本申请还提供了一种拍摄系统,如图11所示,拍摄系统110包括搭载有拍摄装置1111的可移动平台111和麦克风阵列112,麦克风阵列112为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;可移动平台111与麦克风阵列112无线连接;
所述麦克风阵列112,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台111,所述语音控制信号携带有语音拍摄指令;
所述可移动平台111,用于接收所述麦克风阵列112发送的语音控制信号;根据所述语音拍摄指令控制所述拍摄装置进行拍摄。
此外,本申请还提供了一种云台系统,如图12所示,云台系统120包括云台121和麦克风阵列122,麦克风阵列122为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;云台121与麦克风阵列122无线连接;
所述麦克风阵列122,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述云台121,所述语音控制信号携带有语音控制指令;
所述云台121,用于接收所述麦克风阵列122发送的语音控制信号;根据所述语音控制指令进行运动。
此外,本申请还提供了一种拍摄系统,如图13所示,拍摄系统130包括拍摄装置131和麦克风阵列132,麦克风阵列132为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;拍摄装置131与 麦克风阵列132无线连接;
所述麦克风阵列132,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述拍摄装置131,所述语音控制信号携带有语音拍摄指令;
所述拍摄装置131,用于接收所述麦克风阵列132发送的语音控制信号;根据所述语音拍摄指令进行拍摄。
此外,本申请还提供了一种拍摄系统,如图14所示,拍摄系统140包括电子设备141和麦克风阵列142,麦克风阵列142为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;电子设备141与麦克风阵列142无线连接;
所述麦克风阵列142,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将所述基于所述差分阵列信号输出的语音信号送至所述电子设备141,所述语音信号携带有语音数据;
所述电子设备141,用于接收所述语音信号,并保存所述语音数据。
在一些实施例中,上述电子设备141至少包括可移动平台、拍摄装置中的一种或多种组合。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之 处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (32)

  1. 一种麦克风阵列的信号处理方法,其特征在于,所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风,所述方法包括:
    获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;
    将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述差分阵列信号的频响曲线的设定范围,将频域值在所述设定范围之外的所述差分阵列信号替换为同一频域值下所述参考声音信号对应的频域信号。
  3. 根据权利要求2所述的方法,其特征在于,所述设定范围为所述差分阵列信号的频响曲线上的点与所述参考声音信号的频响曲线上的对应点的差值不大于预设阈值的范围。
  4. 根据权利要求1所述的方法,其特征在于,所述麦克风阵列配置有至少一种收音模式,以及在每种收音模式下工作的无线麦克风的数量。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括,在获取所述声音信号之前,先根据用户选择的目标收音模式,确定所述目标收音模式下工作的目标无线麦克风;并确定其中一个目标无线麦克风为参考麦克风。
  6. 根据权利要求4所述的方法,其特征在于,不同收音模式对应不同声音信号的采集角度,工作的无线麦克风数量与所述采集角度为负相关关系。
  7. 根据权利要求1所述的方法,其特征在于,所述麦克风阵列与一电子设备通信连接,所述方法还包括:
    将基于所述差分阵列信号输出的语音控制信号发送至所述电子设备,以控制所述电子设备执行对应的操作。
  8. 根据权利要求7所述的方法,其特征在于,所述电子设备为可移动平台,所述语音控制信号携带有飞行指令,用于控制所述可移动平台执行相应的飞行任务。
  9. 根据权利要求7所述的方法,其特征在于,所述电子设备搭载有拍摄装置,所述语音控制信号携带有语音拍摄指令,用于控制所述拍摄装置进行拍摄。
  10. 根据权利要求7所述的方法,其特征在于,所述电子设备为云台,所述语音控制信号携带有语音控制指令,用于控制所述云台运动。
  11. 根据权利要求7所述的方法,其特征在于,所述电子设备为拍摄装置,所述语音控制信号携带有语音拍摄指令,用于控制所述拍摄装置进行拍摄。
  12. 根据权利要求1所述的方法,其特征在于,所述麦克风阵列与一电子设备通信连接,所述方法还包括:
    将所述基于所述差分阵列信号输出的语音信号送至所述电子设备,以使所述电子设备保存所述语音信号携带的语音数据。
  13. 根据权利要求12所述的方法,其特征在于,所述电子设备至少包括可移动平台、拍摄装置中的一种或多种组合。
  14. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述差分阵列信号转换成目标声音信号后输出。
  15. 一种麦克风阵列的信号处理方法,其特征在于,所述麦克风阵列为至少两个无线麦克风的组合,所述麦克风阵列配置有对应于至少一种场景下的收音模式,所述场景至少包括采访场景或会议场景,所述方法包括:
    根据用户选择的目标收音模式,确定所述目标收音模式下工作的目标无线麦克风以及阵列类型;所述阵列类型至少包括宽边阵列和端射阵列;
    根据所述阵列类型处理所述麦克风阵列采集的声音信号,得到拾音增 强方向的阵列信号,所述拾音增强方向根据所述麦克风阵列的类型确定。
  16. 一种麦克风阵列,其特征在于,所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风,所述无线麦克风包括:
    电池;
    无线通信装置;
    声音采集装置,用于采集声音信号;
    处理器;
    用于存储处理器可执行指令的存储器;
    所述处理器被配置为:
    获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;
    将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向。
  17. 根据权利要求16所述的麦克风阵列,其特征在于,所述无线麦克风还包括同步装置,用于向所述无线麦克风发送同步信号,以使不同无线麦克风同步采集声音信号。
  18. 根据权利要求16所述的麦克风阵列,其特征在于,所述麦克风阵列中相邻的无线麦克风的距离小于预设波长。
  19. 根据权利要求18所述的麦克风阵列,其特征在于,所述预设波长根据不同工作模式下的理想波长设置。
  20. 根据权利要求16所述的麦克风阵列,其特征在于,所述参考麦克风为距离声源最近的无线麦克风。
  21. 根据权利要求16所述的麦克风阵列,其特征在于,所述无线麦克风的数量不多于4。
  22. 根据权利要求16所述的麦克风阵列,其特征在于,所述无线麦克 风的形状至少包括:正方体、长方体、或球形。
  23. 根据权利要求22所述的麦克风阵列,其特征在于,所述无线麦克风之间在面积最小的面上,通过连接件或紧固件相互连接。
  24. 根据权利要求23所述的麦克风阵列,其特征在于,各所述无线麦克风可拆卸地相互连接。
  25. 根据权利要求16所述的麦克风阵列,其特征在于,无线麦克风组合为线性阵列或二维阵列。
  26. 一种麦克风阵列,其特征在于,所述麦克风阵列为至少两个无线麦克风的组合,所述无线麦克风包括:
    电池;
    无线通信装置;
    声音采集装置,用于采集声音信号;
    处理器;
    用于存储处理器可执行指令的存储器;
    所述存储器配置有对应于至少一种场景下的收音模式,所述场景至少包括采访场景或会议场景,
    所述处理器被配置为:
    根据用户选择的目标收音模式,确定所述目标收音模式下工作的目标无线麦克风以及阵列类型;所述阵列类型至少包括宽边阵列和端射阵列;
    根据所述阵列类型处理所述声音采集装置采集的声音信号,得到拾音增强方向的阵列信号,所述拾音增强方向根据所述麦克风阵列的类型确定。
  27. 一种无线系统,其特征在于,所述系统包括可移动平台和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述可移动平台与所述麦克风阵列无线连接;
    所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至 少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台,所述语音控制信号携带有飞行指令;
    所述可移动平台,用于接收所述麦克风阵列发送的语音控制信号;根据所述飞行指令执行相应的飞行任务。
  28. 一种拍摄系统,其特征在于,所述系统包括搭载有拍摄装置的可移动平台和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述可移动平台与所述麦克风阵列无线连接;
    所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述可移动平台,所述语音控制信号携带有语音拍摄指令;
    所述可移动平台,用于接收所述麦克风阵列发送的语音控制信号;根据所述语音拍摄指令控制所述拍摄装置进行拍摄。
  29. 一种云台系统,其特征在于,所述系统包括云台和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述云台与所述麦克风阵列无线连接;
    所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦 克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述云台,所述语音控制信号携带有语音控制指令;
    所述云台,用于接收所述麦克风阵列发送的语音控制信号;根据所述语音控制指令进行运动。
  30. 一种拍摄系统,其特征在于,所述系统包括拍摄装置和麦克风阵列;所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述拍摄装置与所述麦克风阵列无线连接;
    所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将基于所述差分阵列信号输出的语音控制信号发送至所述拍摄装置,所述语音控制信号携带有语音拍摄指令;
    所述拍摄装置,用于接收所述麦克风阵列发送的语音控制信号;根据所述语音拍摄指令进行拍摄。
  31. 一种拍摄系统,其特征在于,所述系统包括电子设备和麦克风阵列,所述麦克风阵列为至少两个无线麦克风的组合,其中一个无线麦克风被指定为参考麦克风;所述电子设备与所述麦克风阵列无线连接;
    所述麦克风阵列,用于获取所述参考麦克风采集的声音信号和其他至少一个麦克风采集的声音信号;将所获取的声音信号处理成具有拾音增强方向的差分阵列信号,所述拾音增强方向为所述参考麦克风与其他任一麦克风拾音方向上指向所述参考麦克风的方向;将所述基于所述差分阵列信号输出的语音信号送至所述电子设备,所述语音信号携带有语音数据;
    所述电子设备,用于接收所述语音信号,并保存所述语音数据。
  32. 根据权利要求31所述的拍摄系统,其特征在于,所述电子设备至少包括可移动平台、拍摄装置中的一种或多种组合。
PCT/CN2021/109697 2021-07-30 2021-07-30 一种麦克风阵列的信号处理方法、麦克风阵列以及系统 WO2023004776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109697 WO2023004776A1 (zh) 2021-07-30 2021-07-30 一种麦克风阵列的信号处理方法、麦克风阵列以及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109697 WO2023004776A1 (zh) 2021-07-30 2021-07-30 一种麦克风阵列的信号处理方法、麦克风阵列以及系统

Publications (1)

Publication Number Publication Date
WO2023004776A1 true WO2023004776A1 (zh) 2023-02-02

Family

ID=85087434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109697 WO2023004776A1 (zh) 2021-07-30 2021-07-30 一种麦克风阵列的信号处理方法、麦克风阵列以及系统

Country Status (1)

Country Link
WO (1) WO2023004776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116249044A (zh) * 2023-03-06 2023-06-09 深圳市长丰影像器材有限公司 一种拾音装置、拾音系统及拾音方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269080A1 (en) * 2004-10-15 2006-11-30 Lifesize Communications, Inc. Hybrid beamforming
CN106775572A (zh) * 2017-03-30 2017-05-31 联想(北京)有限公司 具有麦克风阵列的电子设备及其控制方法
US10332538B1 (en) * 2018-08-17 2019-06-25 Apple Inc. Method and system for speech enhancement using a remote microphone
CN110797043A (zh) * 2019-11-13 2020-02-14 苏州思必驰信息科技有限公司 会议语音实时转写方法及系统
CN110913325A (zh) * 2019-11-26 2020-03-24 科大讯飞股份有限公司 自动调音方法、相关设备及可读存储介质
CN111312274A (zh) * 2020-02-21 2020-06-19 苏州思必驰信息科技有限公司 语音信号处理方法、装置、系统、电子设备、及存储介质
CN112151058A (zh) * 2019-06-28 2020-12-29 大众问问(北京)信息科技有限公司 一种声音信号的处理方法、装置及设备
CN112639963A (zh) * 2020-03-19 2021-04-09 深圳市大疆创新科技有限公司 音频采集装置、音频接收装置及音频处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269080A1 (en) * 2004-10-15 2006-11-30 Lifesize Communications, Inc. Hybrid beamforming
CN106775572A (zh) * 2017-03-30 2017-05-31 联想(北京)有限公司 具有麦克风阵列的电子设备及其控制方法
US10332538B1 (en) * 2018-08-17 2019-06-25 Apple Inc. Method and system for speech enhancement using a remote microphone
CN112151058A (zh) * 2019-06-28 2020-12-29 大众问问(北京)信息科技有限公司 一种声音信号的处理方法、装置及设备
CN110797043A (zh) * 2019-11-13 2020-02-14 苏州思必驰信息科技有限公司 会议语音实时转写方法及系统
CN110913325A (zh) * 2019-11-26 2020-03-24 科大讯飞股份有限公司 自动调音方法、相关设备及可读存储介质
CN111312274A (zh) * 2020-02-21 2020-06-19 苏州思必驰信息科技有限公司 语音信号处理方法、装置、系统、电子设备、及存储介质
CN112639963A (zh) * 2020-03-19 2021-04-09 深圳市大疆创新科技有限公司 音频采集装置、音频接收装置及音频处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116249044A (zh) * 2023-03-06 2023-06-09 深圳市长丰影像器材有限公司 一种拾音装置、拾音系统及拾音方法

Similar Documents

Publication Publication Date Title
JP6023779B2 (ja) オーディオ情報処理の方法及び装置
CN107534725B (zh) 一种语音信号处理方法及装置
JP6291055B2 (ja) 適応的サラウンドサウンドを実現する方法及びシステム
KR101409169B1 (ko) 억제 폭 조절을 통한 사운드 줌 방법 및 장치
JP4252377B2 (ja) 全方位カメラ及びマイクロフォンアレイのためのシステム
CN105187723B (zh) 一种无人飞行器的摄像处理方法
US20150022636A1 (en) Method and system for voice capture using face detection in noisy environments
WO2023004776A1 (zh) 一种麦克风阵列的信号处理方法、麦克风阵列以及系统
CN104378635B (zh) 基于麦克风阵列辅助的视频感兴趣区域的编码方法
CN111916094B (zh) 音频信号处理方法、装置、设备及可读介质
DE102015204118A1 (de) Verfahren, elektronische vorrichtung und server für die erzeugung von digital verarbeiteten bildern
CN111081285B (zh) 一种调整特效的方法、电子设备及存储介质
CN114697812A (zh) 声音采集方法、电子设备及系统
US10447969B2 (en) Image processing device, image processing method, and picture transmission and reception system
CN205912235U (zh) 一种智能音箱
WO2016197444A1 (zh) 一种实现拍摄的方法及终端
CN111246345B (zh) 一种远程声场实时虚拟重现的方法与装置
WO2016197788A1 (zh) 拍照方法及装置
CN112204999A (zh) 音频处理方法、设备、可移动平台和计算机可读存储介质
CN117098032A (zh) 音频处理方法、电子设备及计算机可读存储介质
WO2021028716A1 (en) Selective sound modification for video communication
CN115134499B (zh) 一种音视频监控方法及系统
US20230105785A1 (en) Video content providing method and video content providing device
US20230254593A1 (en) Image capture flows
GB2594942A (en) Capturing and enabling rendering of spatial audio signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE