WO2023004697A1 - User plane forwarding between user plane function and application function - Google Patents

User plane forwarding between user plane function and application function Download PDF

Info

Publication number
WO2023004697A1
WO2023004697A1 PCT/CN2021/109330 CN2021109330W WO2023004697A1 WO 2023004697 A1 WO2023004697 A1 WO 2023004697A1 CN 2021109330 W CN2021109330 W CN 2021109330W WO 2023004697 A1 WO2023004697 A1 WO 2023004697A1
Authority
WO
WIPO (PCT)
Prior art keywords
ieee
signaling
request
exchange
exchange path
Prior art date
Application number
PCT/CN2021/109330
Other languages
French (fr)
Inventor
Rakash SIVASIVA GANESAN
Hua Chao
Pilar ANDRÉS MALDONADO
Borislava GAJIC
Markus Sakari ISOMÄKI
Laurent Thiebaut
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN202180100919.6A priority Critical patent/CN117796132A/en
Priority to PCT/CN2021/109330 priority patent/WO2023004697A1/en
Publication of WO2023004697A1 publication Critical patent/WO2023004697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular to devices, methods, apparatuses and computer readable storage media of user plane forwarding between User Plane Function (UPF) and Application Function (AF) .
  • UPF User Plane Function
  • AF Application Function
  • the 3GPP envisions that wireless 5GS connectivity can be used with fixed-line IEEE Ethernet based networks in industrial environments to provide flexibility, scalability and lower total cost of ownership (TCO) .
  • TCO total cost of ownership
  • example embodiments of the present disclosure provide a solution of user plane forwarding between UPF and AF.
  • the method comprises receiving, at a first apparatus, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus and transmitting the configuration information to the third apparatus.
  • a method comprises transmitting, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
  • a method comprises receiving, at a third apparatus and from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus; and causing the exchange path to be established based on the configuration information.
  • a first apparatus comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first apparatus at least to receive, at a first apparatus, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; generate, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus; and transmit the configuration information to the third apparatus.
  • the first apparatus is caused to receive the request by receiving a policy control request from a fourth apparatus; and obtaining the request from the policy control request.
  • the request associated with the IEEE signaling exchange indicates property information of IEEE signaling to be exchanged.
  • the property information of IEEE signaling to be exchanged comprises at least one of an Ethernet Type within the IEEE signaling, address information within the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
  • the request comprises at least one of a request for transmitting IEEE signaling from the second apparatus to the third apparatus, a request for transmitting IEEE signaling from the third apparatus to the second apparatus, or address information associated with the second apparatus.
  • the first apparatus is caused to generate the configuration information by generating the configuration information based on at least one of the address information associated with the second apparatus, or property information of IEEE signaling is to be transmitted.
  • the first apparatus is caused to generate the configuration information by receiving, from the third apparatus, further address information associated with the third apparatus; and forwarding the further address information associated with the third apparatus towards the second apparatus.
  • the further address information associated with the third apparatus is forwarded towards the second apparatus via at least one of a fourth apparatus and a fifth apparatus.
  • the first apparatus is caused to generate the configuration information by determining one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules; and generating the configuration information based on the request and one or more parameters.
  • the first apparatus is caused to generate the configuration information by determining, based on the request, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and generating the configuration information based on the identification of the exchange path.
  • the first apparatus is further caused to map the exchange path between the first apparatus and the third apparatus with the address information associated with the second apparatus; and perform the IEEE signaling exchange via the exchange path based on the mapping between the exchange path and the port.
  • the first apparatus comprises a session management function entity
  • the second apparatus comprises an application function entity
  • the third apparatus comprises a user plane function entity
  • the fourth apparatus comprises a policy control function entity.
  • the fifth apparatus comprises a network exposure function entity.
  • a second apparatus comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second apparatus at least to transmit, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and perform an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
  • the second apparatus is caused to transmit the request by transmitting at least one of the a request for transmitting the IEEE signaling from the second apparatus to the third apparatus, a request for transmitting the IEEE signaling from the third apparatus to the second apparatus, or address information associated with the second apparatus.
  • the request for transmitting IEEE signaling indicates property information of IEEE signaling to be transmitted.
  • the property information of IEEE signaling to be exchanged comprises at least one of an Ethernet Type within the IEEE signaling, address information within the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
  • the second apparatus is caused to transmit the request by transmitting the request to the first apparatus via a fourth apparatus by a policy control request transmitted from the fourth apparatus to the first apparatus.
  • the second apparatus is further caused to transmit the request to a fifth apparatus, to cause the fifth apparatus to authorize a request for the IEEE signaling exchange between the second apparatus and the third apparatus obtained by interacting with the fourth apparatus.
  • the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by receiving further address information associated with the third apparatus from the first apparatus; and performing the IEEE signaling exchange via the exchange path between the second apparatus and the third apparatus established based on the address information associated with the second apparatus and the further address information associated with the third apparatus.
  • the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by in accordance with a determination that receiving an indication associated with an event of the IEEE signaling exchange is received from the third apparatus via a fifth apparatus, which has subscribed to the third apparatus for an IEEE signaling event, performing the IEEE signaling exchange.
  • the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by receiving an indication that the second apparatus is allowed to subscribe to the third apparatus for an IEEE signaling event, transmit a request for the second apparatus to subscribe to the third apparatus; and in accordance with a determination that the second apparatus has subscribed to the third apparatus and an indication associated with an event of the IEEE signaling exchange is received from the third apparatus, performing the IEEE signaling exchange.
  • the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by in accordance with a determination that the IEEE signaling is to be transmitted from the second apparatus to the third apparatus, performing the IEEE signaling exchange based on an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus.
  • the second apparatus is further caused to obtain IEEE capabilities of ports associated with the third apparatus.
  • the first apparatus comprises a session management function entity
  • the second apparatus comprises an application function entity
  • the third apparatus comprises a user plane function entity
  • the fourth apparatus comprises a policy control function entity.
  • the fifth apparatus comprises a network exposure function entity.
  • a third apparatus comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third apparatus at least to receive, at a third apparatus and from a first apparatus, configuration information for establishing an exchange path for IEEE signaling between a second apparatus and the third apparatus; and cause the exchange path to be established based on the configuration information.
  • the third apparatus is caused to cause the exchange path to be established by in accordance with a determination that address information associated with the second apparatus is obtained from the configuration information, transmitting further address information associated with the third apparatus to the first apparatus for establishing the exchange path.
  • the third apparatus is caused to cause the exchange path to be established by receiving, from the first apparatus, an indication of one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules; and causing the exchange path to be established based on the one or more parameters.
  • the third apparatus is further caused to in accordance with a determination that information is received from the second apparatus or a fifth apparatus, transmit, at least one portion of the information on a port of the third apparatus.
  • the information consists in a core network service based signaling.
  • the third apparatus is further caused to send information to the second apparatus or a fifth apparatus including IEEE signaling received on a port of the third apparatus.
  • the information is sent via a core network service based signaling.
  • the third apparatus is caused to cause the exchange path to be established by obtaining, from the configuration information, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and causing the exchange path to be established based on the identification of the exchange path.
  • the third apparatus is further caused to in accordance with a determination that the IEEE signaling is received from the port of the third apparatus, performing the IEEE signaling exchange via the exchange path.
  • the first apparatus comprises a session management function entity
  • the second apparatus comprises an application function entity
  • the third apparatus comprises a user plane function entity
  • the fifth apparatus comprises a network exposure function entity.
  • an apparatus comprising means for receiving, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; means for generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus and means for transmitting the configuration information to the third apparatus.
  • an apparatus comprising means for transmitting, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and means for performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
  • an apparatus comprising means for receiving, from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus; and means for causing the exchange path to be established based on the configuration information.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the first aspect.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the second aspect.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the third aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 3A shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 3B shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 4 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 5 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 6 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 7 shows a flowchart of an example method of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 8 shows a flowchart of an example method of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 9 shows a flowchart of an example method of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure
  • FIG. 10 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • FIG. 11 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems also not involving 3GPP defined radio such as communication systems serving Wireline access or WLAN /WiFi access (as defined in IEEE 802.11 specifications) .
  • 3GPP defined radio such as communication systems serving Wireline access or WLAN /WiFi access (as defined in IEEE 802.11 specifications) .
  • WLAN /WiFi access as defined in IEEE 802.11 specifications
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB Next Generation NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a
  • a RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • a relay node may correspond to DU part of the IAB node.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) .
  • UE user equipment
  • SS subscriber station
  • MS mobile station
  • AT access terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) .
  • MT Mobile Termination
  • IAB integrated access and backhaul
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • FIG. 1 illustrates example communication architecture 100 in which a wireless communication network 102 is integrated with TSN systems 101-1 and 101-2 (hereinafter may also be referred to as TSN system 101 collectively) .
  • the wireless communication network 103 may be a 5G system (5GS) .
  • the wireless communication network 102 may also be referred to as a 5GS TSN bridge. It is to be understood that the wireless communication network 102 may also be any other type of wireless communication systems or networks, such as the 4G system, the 3G system, or the like.
  • the wireless communication network 102 includes a RAN 104, which may be deployed to provide communications based on any radio access technologies.
  • the RAN 104 may be considered as a part of the logical wireless TSN bridge.
  • the wireless communication network 102 may also include a core network, where network function (NF) elements contained therein can also be considered logically as working in the wireless TSN bridge.
  • the CN may further include one or more NF elements to support a user plane (UP) function, including a User Plane Function (UPF) 120 (hereinafter may also be referred to as a “third apparatus” 120 sometimes) .
  • the UPF 120 may be configured for forwarding of traffic communicated between the RAN 104 and the TSN 101.
  • the UPF 120 may include a network TSN translator 124 (NW-TT) to perform the forwarding, which generally performs address mapping between wireless communication network 102 and TSN system 101.
  • the UPF 120 may also be capable of buffering traffic received from one of the wireless communication network 102 and TSN 106 before forwarding the traffic into the other network.
  • the CN may also include a Session Management Element (SMF) 110 (hereinafter may also be referred to as a “first apparatus” 110 sometimes) to implement a session management function in the CN.
  • SMF Session Management Element
  • the SMF is primarily responsible for interacting with the decoupled data plane, creating updating and removing Protocol Data Unit (PDU) sessions and managing session context with the UPF 120.
  • PDU Protocol Data Unit
  • the SMF 110 and the UPF 120 may also be referred to as core network devices 110 and 120, respectively.
  • Each of the SMF 110 and the UPF 120 can be implemented by one or more physical devices or servers.
  • the CN may also include other NFs, such as an Access and Mobility Management function (AMF) 160, which may be used for providing various functions relating to security and access management and authorization; Network Exposure Function (NEF) 150 (hereinafter may also be referred to as a “fifth apparatus” 150 sometimes) , which may expose the capabilities of NFs; Policy Control function (PCF) 140 (hereinafter may also be referred to as a “fourth apparatus” 140 sometimes) , which may provide the policy rule for the control plane function and AF 130 (hereinafter may also be referred to as a “second apparatus” 130 sometimes) , which may be responsible for control plane interaction with an IEEE Centralized Network Configuration (CNC) 170 in the scenario shown in FIG. 1.
  • AMF Access and Mobility Management function
  • NEF Network Exposure Function
  • PCF Policy Control function
  • AF 130 hereinafter may also be referred to as a “second apparatus” 130 sometimes) , which may be responsible for control plane interaction with an IEEE Centralized Network Configuration (CNC)
  • the granularity of the logical wireless TSN bridge is per UPF. That is, each combination of the UE 130, the RAN 104, the CN and a different UPF 120 can be logically considered as a different wireless TSN bridge.
  • FIG. 1 only shows one UPF 120 and accordingly one wireless TSN bridge. If there is another UPF deployed therein, the UE 130 the RAN 104, the CN and the other UPF can form another logical wireless TSN bridge.
  • the number of logical wireless TSN bridges thus depends on the number of UPFs, which is not limited here.
  • one UPF may be connected to one or more network devices (not shown in FIG. 1) in the RAN 104.
  • the 5GS TSN bridge may be typically provided as the first hop of bridge or the last hop of bridge in a communication path from two TSN nodes, such that the wireless TSN bridge is directly connected to one or more TSN nodes.
  • the 5GS TSN bridge 102 may comprise a device side of bridge 103, which may consist of the Device Side TSN Translator (DS-TT) 121 and UE 123.
  • DS-TT Device Side TSN Translator
  • the UE 123 may be capable of accessing the RAN 104 and may be referred to as a wireless communication terminal. To enable communication, the UE 123 may establish a connection with one or more of the network devices in the RAN 104. The UE 123 can also link to a TSN node, such as the TSN system 101-1, and receive data to be transmitted from the TSN system 101-1 via an ethernet port 122 of the Device Side TSN Translator (DS-TT) 121, which may be co-located with the UE 123. In the case that the UE 123 has established a connection with a network device in the RAN 104, the network device can operate to communicate traffic from the UE 123 to another TSN node, such as TSN system 101-2. As such, traffic of the TSN system 101-1 is passed to the TSN system 101-2 through the wireless network 102. The communication can be achieved likewise in a reverse direction from the TSN system 101-1 to the TSN system 101-2.
  • TSN node such as the TSN
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used for
  • the 3GPP envisions that wireless 5GS connectivity can be used with fixed-line IEEE Ethernet based networks in industrial environments to provide flexibility, scalability and lower TCO.
  • the 3GPP finalized the Study on 5GS Enhanced support of Vertical and LAN Services and the option to transparently integrate the 5GS as a TSN bridge into an Ethernet network was adopted for 3GPP normative work and in Release 16 largely completed the normative work regarding the 5GS support of this approach for integration with TSN.
  • This integration approach requires that the 5GS appears as an IEEE TSN bridge with full protocol compatibility between 3GPP and IEEE TSN bridged Ethernet networks. This adds significant complexity to the 5GS and imposes constraints on the 5GS and the data network to which it connects.
  • the integration scenario considered by 3GPP 5GS Release 16 splits control plane and user plane such that an AF is responsible for control plane interaction with an IEEE CNC, and the NW-TT (integrated with UPF) /DS-TT (co-located with UE) handle user plane processing.
  • the NW-TT and DS-TT are aware of the integration with IEEE 802.1Q and the corresponding TSN extensions.
  • the result is a coupling between IEEE TSN and 3GPP standards in that specific IEEE 802.1Q and IEEE 802.1AB managed objects are specified in 3GPP standards for transport between the AF and the NW-TT or DS-TT.
  • the integration scenario considered by 3GPP 5GS Release 16 focused on the TSN Fully Centralized Configuration model.
  • TSN Fully Centralized Configuration model As alternative to the TSN Fully Centralized Configuration model, IEEE standardized the TSN Fully Distributed Configuration model, which was originally targeting Audio/Video use cases and is applicable also for industrial use cases due to its potential for enabling more configuration flexibility and efficiency in resource usage.
  • the 5G system is to be used as “network as a service”
  • 5GS support more and more protocols depending on the system it is deployed in. Therefore, it is necessary to avoid the dependency of 3GPP standards upon the parameters of the external protocols.
  • a mechanism has been proposed to decouple the 5G system from the IEEE message processing and hence, the dependency on the IEEE parameters has been proposed.
  • the key idea is that the 5GS detects and forwards the message to/from AF and the processing of the message is performed at the AF.
  • the conventional mechanism proposes to use either existing CP mechanism or extensions of it to forward the messages between UPF/NW-TT and AF.
  • the details of the forwarding mechanism, what extensions are necessary and what new parameters need to be added to the existing 5GS procedures to enable this generic (protocol independent) forwarding mechanism are still open.
  • the present disclosure proposes a mechanism for a more direct forwarding of the IEEE messages between the UPF and the AF.
  • the SMF may receive a request associated with an IEEE signaling exchange between the UPF and the AF and generate configuration information for establishing an exchange path for an IEEE signaling between the UPF and the AF based on the configuration information. Then the SMF may transmit the configuration information to the UPF.
  • FIGs. 2-6 show schematic processes of user plane forwarding between UPF and AF, respectively.
  • FIG. 2 shows a signaling chart illustrating a process 200 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the process 200 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
  • the process 200 may relate to a full-fledged variant for message exchange between NW-TT/UPF and AF using user plane exchange in which the user plane path may extend directly between the UPF and the AF. That is, using the SMF to assist the configuration at the UPF, the UPF and the AF establish a direct user plane tunnel.
  • the user plane path may use between the UPF and the AF any protocols such as hypertext transport protocol (HTTP) , internet protocol (IP) tunneling protocols like Generic Routing Encapsulation (GRE) or GTP-u.
  • HTTP hypertext transport protocol
  • IP internet protocol
  • GRE Generic Routing Encapsulation
  • GRE Generic Routing Encapsulation
  • the AF 130 may generate a request associated with IEEE signaling exchange between the AF 130 and the UPF 120.
  • the request may indicate a transmission direction of the IEEE signalling.
  • the request may indicate transmitting IEEE signaling from the AF 130 to the UPF 120 or transmitting IEEE signaling from the UPF 120 to the AF 130 or both.
  • the request may also indicate property information of IEEE signaling is to be transmitted.
  • the property information may relate to what kind of IEEE signaling is to be transmitted, such as an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling or an Ethernet port associated with the IEEE signaling.
  • the request may also comprise the address information of the AF 130, which may indicate how to address the AF for sending IEEE signaling to be transmitted towards the AF.
  • the address information shall be port specific e.g., packets from or to be transmitted through a specific port at the NW-TT /DS-TT shall be associated to a specific UP tunnel or Tunnel Endpoint Identifier (TEID) .
  • TEID Tunnel Endpoint Identifier
  • the AF 130 may send 202 the request to the NEF 150.
  • the NEF 150 may forward 204 the request to PCF 140, to authorize the request via Policy Authorization service.
  • the NEF 150 may send 206 a response to NEF 150.
  • the NEF may forward 208 the response to the AF 130 to indicate that the request has been authorized.
  • the PCF 140 may forward 210 the request to the SMF 110 by Npcf_SM PolicyControl_Update request.
  • the SMF may generate configuration information for establishing an exchange path for an IEEE signaling exchange between the AF 130 and the UPF 120.
  • the SMF may generate configuration information at least based on the AF address information and possibly on property information of the IEEE signaling to be transmitted.
  • the SMF 130 may send 212 the configuration information to the UPF 120 via N4 Session Modification, to configure 214 the UPF with AF address information to directly forward IEEE signaling using a user plane tunnel.
  • the UPF 120 may report 216 to the SMF 110 how to be addressed by the AF for IEEE signaling is to be transmitted by the UPF 120 on behalf of the AF 130. Then the SMF 110 may forward 218 the address configuration of the UPF 120 to the PCF 140 by Npcf_SM PolicyControl_Update response.
  • the packet classification and processing at the UPF 120 may rely on packet detection rule (PDR) /forwarding action rule (FAR) rules configured by the SMF 110 or traffic routing rules received from the AF 130 via User plane node Management Information Container (UMIC) or a combination of both.
  • PDR packet detection rule
  • FAR forwarding action rule
  • UMIC User plane node Management Information Container
  • the UPF/NW-TT can use a combination or both to detect and forward IEEE signaling.
  • the PCF 140 may receive UPF address information from the SMF 110 and forward 220 the UPF address information to the NEF 150 via Npcf_PolicyAuthorization_Notify.
  • the NEF 150 may notify 222 the AF 130 this address information to finalize the signaling exchange path establishment between the UPF 120 and the AF 130.
  • the UPF 120/NW-TT 124 may detect IEEE signaling subject to forwarding to the AF (e.g. matching the property information of the IEEE signaling as indicated by the SMF 110 over N4 in 212) and send 228 the IEEE payload via the direct tunnel with the AF 130 previously established.
  • the UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) .
  • the IEEE signaling may be processed 230 by the AF 130 based on the received Ethernet type.
  • a further variant for message exchange between NW-TT/UPF and AF using user plane exchange where the UPF is able to expose user plane events towards the NEF may also be considered. Now the reference is made to FIGs. 3A and 3B.
  • FIG. 3A shows a signaling chart illustrating a process 300 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the process 300 will be described with reference to FIG. 1.
  • the process 300 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
  • the actions 302-308 may be same or similar with the actions 202-208 as shown in FIG. 2.
  • the AF 130 may generate a request associated with IEEE signaling exchange between the AF 130 and the UPF 120.
  • the request may indicate a transmission direction of the IEEE signalling.
  • the request may indicate transmitting IEEE signaling from the UPF 120 to the AF 130.
  • the request may also indicate property information of IEEE signaling that is to be transmitted.
  • the property information may relate to what kind of IEEE signaling is to be transmitted, such as an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling or an Ethernet port associated with the IEEE signaling.
  • the AF 130 may send 302 the request to the NEF 150.
  • the NEF 150 may forward 304 the request to PCF 140, to authorize the request via Policy Authorization service.
  • the PCF 140 may send 306 a response to NEF 150.
  • the NEF may forward 308 the response to the AF 130 to indicate that the request has been authorized.
  • the PCF 140 may forward 310 the request to the SMF 110 by Npcf_SM PolicyControl_Update request.
  • the SMF 110 may send 312 a Npcf_SM PolicyControl_Update response to the PCF 140.
  • the SMF 110 may report the corresponding local UPF ID or address to local NEF 150 through Nsmf_EventExposure_Notify.
  • the SMF 110 may further generate configuration information for the user plane management of the UPF 120 and configure 314 the user plane of the UPF 120 with the configuration information via N4 Session Modification. Furthermore, the SMF 110 may also configure the exposure of events towards the NEF 150.
  • the packet classification and processing at the UPF 120 may rely on packet detection rule (PDR) /forwarding action rule (FAR) rules configured by the SMF 110 or traffic routing rules received from the AF 130 via UMIC or a combination of both.
  • PDR packet detection rule
  • FAR forwarding action rule
  • the UPF/NW-TT can use a combination or both to detect and forward IEEE signaling.
  • the SMF 110 may report 316 the corresponding local UPF ID or address to the NEF 150 through Nsmf_EventExposure_Notify.
  • the NEF 150 may expose 318 the event to the AF 130.
  • the event may comprise the successful IEEE signaling subscription configuration and any additional metadata to assist the AF processing the IEEE message.
  • At least part of the above-mentioned actions 302 to 318 may need to be repeated 328 again to configure the other direction of signaling forwarding.
  • the IEEE signaling may be received 322 or 324 from DS-TT 121 or NW-TT 124 side.
  • the UPF 120/NW-TT 124 may detect IEEE signaling and expose 326 the IEEE event to the NEF 150.
  • the UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) .
  • the NEF 150 may report 328 the event to the AF 130.
  • the IEEE signaling may be processed 330 by the AF 130 based on the received Ethernet type.
  • FIG. 3B shows a signaling chart illustrating a process 300’ of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the process 300’ will be described with reference to FIG. 1.
  • the process 300’ may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
  • the actions 332-338 may be same or similar with the actions 202-208 as shown in FIG. 2.
  • the AF 130 may generate a request associated with IEEE signaling exchange between the AF 130 and the UPF 120.
  • the request may indicate a transmission direction of the IEEE signalling.
  • the request may indicate transmitting IEEE signaling from the UPF 120 to the AF 130.
  • the request may also indicate property information of IEEE signaling that is to be transmitted.
  • the property information may relate to what kind of IEEE signaling is to be transmitted, such as an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling or an Ethernet port associated with the IEEE signaling.
  • the AF 130 may send 332 the request to the NEF 150.
  • the NEF 150 may forward 334 the request to PCF 140, to authorize the request via Policy Authorization service.
  • the PCF 140 may send 306 a response to NEF 150.
  • the NEF may forward 308 the response to the AF 130 to indicate that the request has been authorized.
  • the PCF 140 may forward 340 the request to the SMF 110 by Npcf_SM PolicyControl_Update request.
  • the SMF 110 may send 342 a Npcf_SM PolicyControl_Update response to the PCF 140.
  • the SMF 110 may report the corresponding local UPF ID or address to local NEF 150 through Nsmf_EventExposure_Notify.
  • the SMF 110 may report 344 the corresponding local UPF ID or address to the NEF 150 through Nsmf_EventExposure_Notify.
  • the NEF 150 may further invoke 346 Nupf_Event Exposure_Subscribe service operation to subscribe real-time information in UPF.
  • the UPF may use subscription event information to determine 348 the N4 session the subscription maps to and to build internal filters to match PDR/FARs already configured by the SMF 110.
  • the UPF 120 may reply 350 to the NEF 150 with the corresponding information according to the network information exposure indication.
  • the NEF 150 may expose 352 the event to the AF 130.
  • the event may comprise the successful IEEE signaling subscription configuration and any additional metadata to assist the AF processing the IEEE message.
  • At least part of the above-mentioned actions 332 to 352 may need to be repeated 354 again to configure the other direction of signaling forwarding.
  • the IEEE signaling may be received 356 or 358 from DS-TT 121 or NW-TT 124 side.
  • the UPF 120/NW-TT 124 may detect IEEE signaling and expose 360 the IEEE event to the NEF 150.
  • the UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) .
  • the NEF 150 may report 362 the event to the AF 130.
  • the IEEE signaling may be processed 364 by the AF 130 based on the received Ethernet type.
  • FIG. 4 shows a signaling chart illustrating a process 400 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the process 400 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
  • the actions 402-412 may be same or similar with the actions 302-312 as shown in FIG. 3A, the corresponding description may be omitted here.
  • the SMF 110 may further generate configuration information for the user plane management of the UPF 120 and configure 416 the user plane of the UPF 120 with the configuration information via N4 Session Modification.
  • the packet classification and processing at the UPF 120 may rely on PDR/FAR rules configured by the SMF 110 or traffic routing rules received from the AF 130 via UMIC or a combination of both.
  • the UPF/NW-TT can use a combination or both to detect and forward IEEE signaling.
  • the UPF 120 may provide 418 the AF 130 with UPF addressing information where the AF 130 may send IEEE signaling from the AF that the UPF 120 is to forward on behalf of the AF 130.
  • the AF 130 may request 420 a subscription to events of the UPF 120.
  • the actions 418 and 420 between the UPF 120 and the AF 130 may not be needed if the subscription can be configured using service configuration in actions 402-412. Therefore, the PolicyAuthorization response can include service subscription information.
  • the signaling flow example of the actions 418 and 420 shown in FIG. 4 may be used to clarify how the UPF and AF can directly exchange subscription or notification information for exposure.
  • the UPF may obtain 422 the corresponding QoS flow by querying the UE IP address and application flow information and respond 424 the AF 130 the corresponding information according to the network information exposure indication.
  • At least part of the above-mentioned actions 402 to 426 may need to be repeat 428 again to configure the other direction of signaling forwarding.
  • the IEEE signaling may be received 430 or 432 from DS-TT 121 or NW-TT 124 side.
  • the UPF 120/NW-TT 124 may detect IEEE signaling and expose 434 the IEEE event to the AF 130.
  • the UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) .
  • the IEEE signaling may be processed 438 by the AF 130 based on the received Ethernet type.
  • a message exchange between NW-TT/UPF and AF user plane exchange may be achieved.
  • the NW-TT/UPF can report to the AF IEEE signaling received from one of its N6 interfaces or received from a DS-TT.
  • the AF can also ask the NW-TT/UPF to send IEEE signaling towards one of its N6 interfaces or towards a DS-TT.
  • the AF request may include traffic filters telling which IEEE signaling that the AF wishes to receive.
  • the IEEE protocol may be identified by an IEEE EtherType or destination MAC address in the Ethernet frame header or by some IP addressing information.
  • the request may also include the indications on where and possible how the AF wishes to receive such signaling. That is, the request may include indications of address information like an HTTP URI, a GRE tunnel Id, a GTP-u F-TEID and corresponding protocols.
  • new capability for the DS-TT/UE and NW-TT/UPF to indicate how (address information) it wishes to send and/or receive specific IEEE signaling that the AF requests to send on an external 5GS bridge port may also be introduced.
  • This may correspond to Address information like a HTTP URI, a GRE tunnel Id, a GTP-u F-TEID and may possibly also contain a (protocol) the UPF wishes to use to receive such signaling.
  • the UPF or AF may agree on additional metadata to forward together with the IEEE signaling payload to assist IEEE processing.
  • the negotiation described above may be transparent to PCF and SMF by using a transparent container, for example, over N4, N5, N7 or involve SMF and PCF knowledge of this mechanism.
  • a transparent container for example, over N4, N5, N7 or involve SMF and PCF knowledge of this mechanism.
  • N4, N5, N7 or involve SMF and PCF knowledge of this mechanism.
  • this negotiation is transparent to SMF and PCF, the definition of new IEEE protocols related with mechanism does not impact the PCF/SMF.
  • FIG. 5 proposes a further solution to support the IEEE signaling exchange between the AF and UPF.
  • FIG. 5 shows a signaling chart illustrating a process 500 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the process 500 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
  • the actions 502-508 may be same or similar with the actions 202-206 as shown in FIG. 2, the corresponding description may be omitted here.
  • the PCF 140 may configure the SMF 110 to report IEEE signaling events via SMPolicyControl service.
  • the SMF 110 may need to have Policy Control Request Triggers (PCRTs) in place that are related to IEEE message reporting towards PCF 140. For this reason, the PCF 140 may send 510 a Npcf_SMPolicyControl_Update request to the SMF 110.
  • the SMF 110 may send 512 a Npcf_SMPolicyControl_Update response to the PCF 140.
  • the SMF 110 may determine 516 how to configure the impacted N4 Session and packet classification at the UPF 120 to allow the UPF 120 to forward IEEE signaling.
  • the SMF 110 may also configure 520 additional GTP-u tunnels between the UPF 120 and itself to enable identification of the IEEE signaling ingress port using the TEID of the GTP-u tunnel.
  • the UPF 120 may update 524 its configuration for forwarding IEEE signaling. At this point the IEEE signaling from TTs towards the AF is enabled.
  • the above-mentioned actions may be repeated 526 to configure the AF sending IEEE signaling to specific ports of the 5GS bridge.
  • the GTP-u tunnels may be configured in the other direction.
  • the IEEE signaling may be received 528 or 530 from DS-TT 121 or NW-TT 124 side.
  • the UPF 120 may detect IEEE signaling and send 532 the IEEE signaling message via the GPT-u tunnel with the SMF 130 previously configured for the ingress port detected.
  • the SMF 130 may receive IEEE signaling together with the TEID and determine 534 the ingress port.
  • the SMF 130 may switch from user plane (GTP-u tunnel where the packet was received) to control plane to notify 536 the PCF 140 the reception of IEEE signaling.
  • the PCF 140 may further forward the IEEE signal to the AF 150. Then the IEEE signaling may be processed 536 by the AF 130 based on the received Ethernet type.
  • the SMF may associate the AF requirements with rules sent to UPF over N4 for traffic received by the UPF or to be sent by the UPF.
  • the SMF may also identify ingress port from received IEEE signaling via port specific path and forward the IEEE signaling to AF together with ingress port information.
  • the AF Before the AF requesting the IEEE signalling, the AF may need to gather information regarding 5GS bridge ports like DS-TTs and NW-TTs IEEE capabilities. For this reason, the DS-TT can forward its container via Port Management Information Container (PMIC) to the AF when the UE triggers NAS signalling with the 5G network, and the NW-TT can forward its container via UMIC using any of the N4 sessions established already with the 5GS bridge.
  • PMIC Port Management Information Container
  • FIG. 6 shows a signaling chart illustrating a process 600 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the process 600 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
  • the UE 123 may initiate 602 a PDU session establishment request to the AMF, which may indicate the DS-TT port and the PMIC with the IEEE DS-TT capabilities. Then the PDU session establishment procedure can be performed 604. A N4 session modification may be performed 606 between the UPF 120 and the SMF 110. Then the SMF 110 may report 608 the corresponding information to the AF 130 via PCF 140. The corresponding information may include DS-TT port number, DS TT MAC address, the bridge ID and the PMIC with the IEEE DS-TT capabilities. The NW-TT may also report 610 the Bridge address, the Bridge ID, the NW-TT port number and IEEE NW-TT capabilities to the AF 130 via UMIC.
  • FIG. 7 shows a flowchart of an example method 700 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the method 700 can be implemented at the first apparatus 110 as shown in FIG. 1. For the purpose of discussion, the method 700 will be described with reference to FIG. 1.
  • the first apparatus receives a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus.
  • the first apparatus may receive a policy control request from a fourth apparatus and obtain the request from the policy control request.
  • the request for transmitting IEEE signaling indicates property information of IEEE signaling is to be transmitted.
  • the property information of IEEE signaling to be transmitted may comprise an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
  • the request may comprise at least one of a request for transmitting IEEE signaling from the second apparatus to the third apparatus or a request for transmitting IEEE signaling from the third apparatus to the second apparatus or address information associated with the second apparatus.
  • the first apparatus generates, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus.
  • the first apparatus may generate the configuration information based on at least one of the address information associated with the second apparatus, or property information of IEEE signaling is to be transmitted.
  • the first apparatus may receive, from the third apparatus, further address information associated with the third apparatus; and forward the further address information associated with the third apparatus towards the second apparatus.
  • the further address information associated with the third apparatus is forwarded towards the second apparatus via a fourth apparatus and/or a fifth apparatus.
  • the first apparatus may determine one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules and generate the configuration information based on the request and one or more parameters.
  • the first apparatus may determine, based on the request, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and and generate the configuration information based on the identification of the exchange path.
  • the first apparatus may map the exchange path between the first apparatus and the third apparatus with the address information associated with the second apparatus; and perform the IEEE signaling exchange via the exchange path based on the mapping between the exchange path and the port.
  • the first apparatus comprises a session management function entity
  • the second apparatus comprises an application function entity
  • the third apparatus comprises a user plane function entity
  • the fourth apparatus comprises a policy control function entity
  • FIG. 8 shows a flowchart of an example method 800 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the method 800 can be implemented at the second apparatus 130 as shown in FIG. 1.
  • the method 800 will be described with reference to FIG. 1.
  • the second apparatus transmits a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus.
  • the request may comprise at least one of a request for transmitting IEEE signaling from the second apparatus to the third apparatus or a request for transmitting IEEE signaling from the third apparatus to the second apparatus or address information associated with the second apparatus.
  • the request for transmitting IEEE signaling indicates property information of IEEE signaling is to be transmitted.
  • the property information of IEEE signaling to be transmitted may comprise an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
  • the second apparatus may transmit the request to the first apparatus via a fourth apparatus by a policy control request transmitted from the fourth apparatus to the first apparatus.
  • the second apparatus may transmit the request to a fifth apparatus, to cause the fifth apparatus to authorize a request for the IEEE signaling exchange between the second apparatus and the third apparatus obtained from the indication by interacting with the fourth apparatus.
  • the second apparatus performs an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
  • the second apparatus may receive further address information associated with the third apparatus from the first apparatus and perform the IEEE signaling exchange via the exchange path between the second apparatus and the third apparatus established based on the address information associated with the second apparatus and the further address information associated with the third apparatus.
  • the second apparatus may perform the IEEE signaling exchange if the second apparatus determines that an indication associated with an event of the IEEE signaling exchange is received from the third apparatus via a fifth apparatus, which has subscribed to the third apparatus for an IEEE signaling event.
  • the second apparatus may receive an indication that the second apparatus is allowed to subscribe to the third apparatus for an IEEE signaling event, transmit a request for the second apparatus to subscribe to the third apparatus. If the second apparatus determines that the second apparatus has subscribed to the third apparatus and an indication associated with an event of the IEEE signaling exchange is received from the third apparatus, the second apparatus may the IEEE signaling exchange.
  • the second apparatus may perform the IEEE signaling exchange based on an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus.
  • the second apparatus may obtain IEEE capabilities of ports associated with the third apparatus.
  • the first apparatus comprises a session management function entity
  • the second apparatus comprises an application function entity
  • the third apparatus comprises a user plane function entity
  • the fourth apparatus comprises a policy control function entity
  • FIG. 9 shows a flowchart of an example method 900 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.
  • the method 900 can be implemented at the third apparatus 120 as shown in FIG. 1.
  • the method 900 will be described with reference to FIG. 1.
  • the third apparatus receives, from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus.
  • the third apparatus causes the exchange path to be established based on the configuration information.
  • the third apparatus may transmit further address information associated with the third apparatus to the first apparatus for establishing the exchange path.
  • the third apparatus may receive, from the first apparatus, an indication of one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules and cause the exchange path to be established based on the one or more parameters.
  • the third apparatus may send at least one portion of the information on a port of the third apparatus.
  • the information consists in a core network service based signaling.
  • the third apparatus may send information to the second apparatus or a fifth apparatus including IEEE signaling received on a port of the third apparatus.
  • the information is sent via a core network service based signaling.
  • the third apparatus may obtain, from the configuration information, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and cause the exchange path to be established based on the identification of the exchange path.
  • the third apparatus may perform the IEEE signaling exchange via the exchange path.
  • the first apparatus comprises a session management function entity
  • the second apparatus comprises an application function entity
  • the third apparatus comprises a user plane function entity
  • the fourth apparatus comprises a policy control function entity
  • an apparatus capable of performing the method 700 may comprise means for performing the respective steps of the method 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for receiving, at a first apparatus, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; means for generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus and means for transmitting the configuration information to the third apparatus.
  • an apparatus capable of performing the method 800 may comprise means for performing the respective steps of the method 800.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for transmitting, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and means for performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
  • an apparatus capable of performing the method 900 may comprise means for performing the respective steps of the method 900.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for receiving, at a third apparatus and from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus; and means for causing the exchange path to be established based on the configuration information.
  • FIG. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure.
  • the device 1000 may be provided to implement the communication device, for example the SMF 110, the AF 130 and the UPF 120 as shown in FIG. 1.
  • the device 1000 includes one or more processors 1010, one or more memories 1040 coupled to the processor 1010, and one or more communication modules 1040 coupled to the processor 1010.
  • the communication module 1040 is for bidirectional communications.
  • the communication module 1040 has one or more communication interfaces to facilitate communication with one or more other modules or devices.
  • the communication interfaces may represent any interface that is necessary for communication with other network elements.
  • the communication module 940 may include at least one antenna.
  • the processor 1010 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 1020 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1024, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • ROM Read Only Memory
  • EPROM electrically programmable read only memory
  • flash memory a hard disk
  • CD compact disc
  • DVD digital video disk
  • RAM random access memory
  • a computer program 1030 includes computer executable instructions that are executed by the associated processor 1010.
  • the program 1030 may be stored in the ROM 1020.
  • the processor 1010 may perform any suitable actions and processing by loading the program 1030 into the RAM 1020.
  • the embodiments of the present disclosure may be implemented by means of the program 1030 so that the device 1000 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 6.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 1030 may be tangibly contained in a computer readable medium which may be included in the device 1000 (such as in the memory 1020) or other storage devices that are accessible by the device 1000.
  • the device 1000 may load the program 1030 from the computer readable medium to the RAM 1022 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • FIG. 11 shows an example of the computer readable medium 1100 in form of CD or DVD.
  • the computer readable medium has the program 1030 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 700-900 as described above with reference to FIGs. 7-9.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media of user plane forwarding between UPF and AF. The method comprises receiving, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus and transmitting the configuration information to the third apparatus. In this way, forwarding of the IEEE messages between the UPF and the AF is realized and new capabilities for corresponding function entity can be introduced.

Description

USER PLANE FORWARDING BETWEEN USER PLANE FUNCTION AND APPLICATION FUNCTION FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular to devices, methods, apparatuses and computer readable storage media of user plane forwarding between User Plane Function (UPF) and Application Function (AF) .
BACKGROUND
It has been considered that the industrial networks using Institute of Electrical and Electronics Engineers (IEEE) 802.1Q standard protocols may need to be integrated with 3rd Generation Partnership Project (3GPP) 5G System (5GS) .
The 3GPP envisions that wireless 5GS connectivity can be used with fixed-line IEEE Ethernet based networks in industrial environments to provide flexibility, scalability and lower total cost of ownership (TCO) .
SUMMARY
In general, example embodiments of the present disclosure provide a solution of user plane forwarding between UPF and AF.
In a first aspect, there is a method. The method comprises receiving, at a first apparatus, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus and transmitting the configuration information to the third apparatus.
In a second aspect, there is provided a method. The method comprises transmitting, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
In a third aspect, there is provided a method. The method comprises receiving, at a third apparatus and from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus; and causing the exchange path to be established based on the configuration information.
In a fourth aspect, there is provided a first apparatus. The first apparatus comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first apparatus at least to receive, at a first apparatus, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; generate, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus; and transmit the configuration information to the third apparatus.
In some example embodiments, the first apparatus is caused to receive the request by receiving a policy control request from a fourth apparatus; and obtaining the request from the policy control request.
In some example embodiments, the request associated with the IEEE signaling exchange indicates property information of IEEE signaling to be exchanged.
In some example embodiments, the property information of IEEE signaling to be exchanged comprises at least one of an Ethernet Type within the IEEE signaling, address information within the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
In some example embodiments, the request comprises at least one of a request for transmitting IEEE signaling from the second apparatus to the third apparatus, a request for transmitting IEEE signaling from the third apparatus to the second apparatus, or address information associated with the second apparatus.
In some example embodiments, the first apparatus is caused to generate the configuration information by generating the configuration information based on at least one of the address information associated with the second apparatus, or property information of IEEE signaling is to be transmitted.
In some example embodiments, the first apparatus is caused to generate the configuration information by receiving, from the third apparatus, further address information associated with the third apparatus; and forwarding the further address  information associated with the third apparatus towards the second apparatus.
In some example embodiments, the further address information associated with the third apparatus is forwarded towards the second apparatus via at least one of a fourth apparatus and a fifth apparatus.
In some example embodiments, the first apparatus is caused to generate the configuration information by determining one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules; and generating the configuration information based on the request and one or more parameters.
In some example embodiments, the first apparatus is caused to generate the configuration information by determining, based on the request, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and generating the configuration information based on the identification of the exchange path.
In some example embodiments, the first apparatus is further caused to map the exchange path between the first apparatus and the third apparatus with the address information associated with the second apparatus; and perform the IEEE signaling exchange via the exchange path based on the mapping between the exchange path and the port.
In some example embodiments, the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity, and the third apparatus comprises a user plane function entity.
In some example embodiments, the fourth apparatus comprises a policy control function entity.
In some example embodiments, the fifth apparatus comprises a network exposure function entity.
In a fifth aspect, there is provided a second apparatus. The second apparatus comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second apparatus at least to transmit, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and perform an IEEE signaling exchange between the  second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
In some example embodiments, the second apparatus is caused to transmit the request by transmitting at least one of the a request for transmitting the IEEE signaling from the second apparatus to the third apparatus, a request for transmitting the IEEE signaling from the third apparatus to the second apparatus, or address information associated with the second apparatus.
In some example embodiments, the request for transmitting IEEE signaling indicates property information of IEEE signaling to be transmitted.
In some example embodiments, the property information of IEEE signaling to be exchanged comprises at least one of an Ethernet Type within the IEEE signaling, address information within the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
In some example embodiments, the second apparatus is caused to transmit the request by transmitting the request to the first apparatus via a fourth apparatus by a policy control request transmitted from the fourth apparatus to the first apparatus.
In some example embodiments, the second apparatus is further caused to transmit the request to a fifth apparatus, to cause the fifth apparatus to authorize a request for the IEEE signaling exchange between the second apparatus and the third apparatus obtained by interacting with the fourth apparatus.
In some example embodiments, the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by receiving further address information associated with the third apparatus from the first apparatus; and performing the IEEE signaling exchange via the exchange path between the second apparatus and the third apparatus established based on the address information associated with the second apparatus and the further address information associated with the third apparatus.
In some example embodiments, the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by in accordance with a determination that receiving an indication associated with an event of the IEEE signaling exchange is received from the third apparatus via a fifth apparatus, which has subscribed to the third apparatus for an IEEE signaling event, performing the IEEE  signaling exchange.
In some example embodiments, the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by receiving an indication that the second apparatus is allowed to subscribe to the third apparatus for an IEEE signaling event, transmit a request for the second apparatus to subscribe to the third apparatus; and in accordance with a determination that the second apparatus has subscribed to the third apparatus and an indication associated with an event of the IEEE signaling exchange is received from the third apparatus, performing the IEEE signaling exchange.
In some example embodiments, the second apparatus is caused to perform the IEEE signaling exchange between the second apparatus and the third apparatus by in accordance with a determination that the IEEE signaling is to be transmitted from the second apparatus to the third apparatus, performing the IEEE signaling exchange based on an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus.
In some example embodiments, the second apparatus is further caused to obtain IEEE capabilities of ports associated with the third apparatus.
In some example embodiments, the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity and the third apparatus comprises a user plane function entity.
In some example embodiments, the fourth apparatus comprises a policy control function entity.
In some example embodiments, the fifth apparatus comprises a network exposure function entity.
In a sixth aspect, there is provided a third apparatus. The third apparatus comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third apparatus at least to receive, at a third apparatus and from a first apparatus, configuration information for establishing an exchange path for IEEE signaling between a second apparatus and the third apparatus; and cause the exchange path to be established based on the configuration information.
In some example embodiments, the third apparatus is caused to cause the exchange path to be established by in accordance with a determination that address information associated with the second apparatus is obtained from the configuration information, transmitting further address information associated with the third apparatus to the first apparatus for establishing the exchange path.
In some example embodiments, the third apparatus is caused to cause the exchange path to be established by receiving, from the first apparatus, an indication of one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules; and causing the exchange path to be established based on the one or more parameters.
In some example embodiments, the third apparatus is further caused to in accordance with a determination that information is received from the second apparatus or a fifth apparatus, transmit, at least one portion of the information on a port of the third apparatus.
In some example embodiments, the information consists in a core network service based signaling.
In some example embodiments, the third apparatus is further caused to send information to the second apparatus or a fifth apparatus including IEEE signaling received on a port of the third apparatus.
In some example embodiments, the information is sent via a core network service based signaling.
In some example embodiments, the third apparatus is caused to cause the exchange path to be established by obtaining, from the configuration information, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and causing the exchange path to be established based on the identification of the exchange path.
In some example embodiments, the third apparatus is further caused to in accordance with a determination that the IEEE signaling is received from the port of the third apparatus, performing the IEEE signaling exchange via the exchange path.
In some example embodiments, the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity  and the third apparatus comprises a user plane function entity.
In some example embodiments, the fifth apparatus comprises a network exposure function entity.
In a seventh aspect, there is provided an apparatus comprising means for receiving, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; means for generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus and means for transmitting the configuration information to the third apparatus.
In an eighth aspect, there is provided an apparatus comprising means for transmitting, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and means for performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
In a ninth aspect, there is provided an apparatus comprising means for receiving, from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus; and means for causing the exchange path to be established based on the configuration information.
In a tenth aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the first aspect.
In an eleventh aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the second aspect.
In a twelfth aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the third aspect.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the  principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 3A shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 3B shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 4 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 5 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 6 shows a signaling chart illustrating a process of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 7 shows a flowchart of an example method of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 8 shows a flowchart of an example method of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 9 shows a flowchart of an example method of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure;
FIG. 10 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure; and
FIG. 11 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish functionalities of various elements. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when  used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) ,  the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems also not involving 3GPP defined radio such as communication systems serving Wireline access or WLAN /WiFi access (as defined in IEEE 802.11 specifications) . Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. A RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) . A relay node may correspond to DU part of the IAB node.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial  device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
It has been proposed that the whole wireless communication network would logically work as a network node in the Time Sensitive network (TSN) to communicate with other network nodes in the TSN. Such network node is also referred to as a bridge or a router in the TSN. FIG. 1 illustrates example communication architecture 100 in which a wireless communication network 102 is integrated with TSN systems 101-1 and 101-2 (hereinafter may also be referred to as TSN system 101 collectively) .
In some example embodiments, the wireless communication network 103 may be a 5G system (5GS) . The wireless communication network 102 may also be referred to as a 5GS TSN bridge. It is to be understood that the wireless communication network 102 may also be any other type of wireless communication systems or networks, such as the 4G system, the 3G system, or the like.
The wireless communication network 102 includes a RAN 104, which may be  deployed to provide communications based on any radio access technologies. In the network integration, the RAN 104 may be considered as a part of the logical wireless TSN bridge.
In addition to the RAN 104, the wireless communication network 102 may also include a core network, where network function (NF) elements contained therein can also be considered logically as working in the wireless TSN bridge. The CN may further include one or more NF elements to support a user plane (UP) function, including a User Plane Function (UPF) 120 (hereinafter may also be referred to as a “third apparatus” 120 sometimes) . The UPF 120 may be configured for forwarding of traffic communicated between the RAN 104 and the TSN 101. The UPF 120 may include a network TSN translator 124 (NW-TT) to perform the forwarding, which generally performs address mapping between wireless communication network 102 and TSN system 101. The UPF 120 may also be capable of buffering traffic received from one of the wireless communication network 102 and TSN 106 before forwarding the traffic into the other network.
The CN may also include a Session Management Element (SMF) 110 (hereinafter may also be referred to as a “first apparatus” 110 sometimes) to implement a session management function in the CN. The SMF is primarily responsible for interacting with the decoupled data plane, creating updating and removing Protocol Data Unit (PDU) sessions and managing session context with the UPF 120. The SMF 110 and the UPF 120 may also be referred to as  core network devices  110 and 120, respectively. Each of the SMF 110 and the UPF 120 can be implemented by one or more physical devices or servers.
Furthermore, the CN may also include other NFs, such as an Access and Mobility Management function (AMF) 160, which may be used for providing various functions relating to security and access management and authorization; Network Exposure Function (NEF) 150 (hereinafter may also be referred to as a “fifth apparatus” 150 sometimes) , which may expose the capabilities of NFs; Policy Control function (PCF) 140 (hereinafter may also be referred to as a “fourth apparatus” 140 sometimes) , which may provide the policy rule for the control plane function and AF 130 (hereinafter may also be referred to as a “second apparatus” 130 sometimes) , which may be responsible for control plane interaction with an IEEE Centralized Network Configuration (CNC) 170 in the scenario shown in FIG. 1.
The granularity of the logical wireless TSN bridge is per UPF. That is, each combination of the UE 130, the RAN 104, the CN and a different UPF 120 can be logically considered as a different wireless TSN bridge. FIG. 1 only shows one UPF 120 and accordingly one wireless TSN bridge. If there is another UPF deployed therein, the UE 130 the RAN 104, the CN and the other UPF can form another logical wireless TSN bridge. The number of logical wireless TSN bridges thus depends on the number of UPFs, which is not limited here. In some implementations, one UPF may be connected to one or more network devices (not shown in FIG. 1) in the RAN 104.
In the integrated deployment shown in FIG. 1, the 5GS TSN bridge may be typically provided as the first hop of bridge or the last hop of bridge in a communication path from two TSN nodes, such that the wireless TSN bridge is directly connected to one or more TSN nodes. The 5GS TSN bridge 102 may comprise a device side of bridge 103, which may consist of the Device Side TSN Translator (DS-TT) 121 and UE 123.
The UE 123 may be capable of accessing the RAN 104 and may be referred to as a wireless communication terminal. To enable communication, the UE 123 may establish a connection with one or more of the network devices in the RAN 104. The UE 123 can also link to a TSN node, such as the TSN system 101-1, and receive data to be transmitted from the TSN system 101-1 via an ethernet port 122 of the Device Side TSN Translator (DS-TT) 121, which may be co-located with the UE 123. In the case that the UE 123 has established a connection with a network device in the RAN 104, the network device can operate to communicate traffic from the UE 123 to another TSN node, such as TSN system 101-2. As such, traffic of the TSN system 101-1 is passed to the TSN system 101-2 through the wireless network 102. The communication can be achieved likewise in a reverse direction from the TSN system 101-1 to the TSN system 101-2.
Depending on the communication technologies, the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others. Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and  the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
As described above, an integration scenario of end-to-end (e2e) IEEE networks with 3GPP 5GS has been considered, in which the industrial networks using IEEE 802.1Q standard protocols may need to be integrated with 3GPP 5GS.
The 3GPP envisions that wireless 5GS connectivity can be used with fixed-line IEEE Ethernet based networks in industrial environments to provide flexibility, scalability and lower TCO. The 3GPP finalized the Study on 5GS Enhanced support of Vertical and LAN Services and the option to transparently integrate the 5GS as a TSN bridge into an Ethernet network was adopted for 3GPP normative work and in Release 16 largely completed the normative work regarding the 5GS support of this approach for integration with TSN. This integration approach requires that the 5GS appears as an IEEE TSN bridge with full protocol compatibility between 3GPP and IEEE TSN bridged Ethernet networks. This adds significant complexity to the 5GS and imposes constraints on the 5GS and the data network to which it connects.
The integration scenario considered by 3GPP 5GS Release 16 splits control plane and user plane such that an AF is responsible for control plane interaction with an IEEE CNC, and the NW-TT (integrated with UPF) /DS-TT (co-located with UE) handle user plane processing. The NW-TT and DS-TT are aware of the integration with IEEE 802.1Q and the corresponding TSN extensions. The result is a coupling between IEEE TSN and 3GPP standards in that specific IEEE 802.1Q and IEEE 802.1AB managed objects are specified in 3GPP standards for transport between the AF and the NW-TT or DS-TT. Furthermore, the integration scenario considered by 3GPP 5GS Release 16 focused on the TSN Fully Centralized Configuration model.
As alternative to the TSN Fully Centralized Configuration model, IEEE  standardized the TSN Fully Distributed Configuration model, which was originally targeting Audio/Video use cases and is applicable also for industrial use cases due to its potential for enabling more configuration flexibility and efficiency in resource usage.
One of the challenges to support the IEEE protocol and configuration model is the dependency of 3GPP Technical Specification on IEEE Standards, i.e., a 3GPP TS may only be initiated when the corresponding IEEE Standard has been finalized, and whenever an IEEE Standard evolves, this potentially requires updates of a 3GPP TS. In addition, while IEEE specifications enables different configuration models with numerous network setup and parametrization options, those options are limited when interworking with the 5GS. This is mainly due to the selection by 3GPP of specific 802.1Q managed objects for inclusion in 3GPP standards. This dependency is particularly evident in the case of TSN which currently works on extensions for the TSN Fully Distributed Configuration towards industrial IoT use cases.
Furthermore, in future where the 5G system is to be used as “network as a service” , it is expected that 5GS support more and more protocols depending on the system it is deployed in. Therefore, it is necessary to avoid the dependency of 3GPP standards upon the parameters of the external protocols. A mechanism has been proposed to decouple the 5G system from the IEEE message processing and hence, the dependency on the IEEE parameters has been proposed. Here, the key idea is that the 5GS detects and forwards the message to/from AF and the processing of the message is performed at the AF.
The conventional mechanism proposes to use either existing CP mechanism or extensions of it to forward the messages between UPF/NW-TT and AF. The details of the forwarding mechanism, what extensions are necessary and what new parameters need to be added to the existing 5GS procedures to enable this generic (protocol independent) forwarding mechanism are still open.
Forwarding of messages received by the TT (s) (DS-TT and NW-TT) to the AF via 5GS CP (Control Plane signaling via SMF, PCF and the associated N4, N7 and N5 interfaces of 3GPP 5GC) has been specified in R16. When taking into account that when going to further cases of integration of 5GS within networks based on IEEE technology, the amount of signaling exchanges between the TT (s) and the AF as well as the delay induced by the usage of 5GS CP signaling make such usage of 5GS CP signaling not an optimal solution.
Therefore, the present disclosure proposes a mechanism for a more direct forwarding of the IEEE messages between the UPF and the AF. In this solution, the SMF may receive a request associated with an IEEE signaling exchange between the UPF and the AF and generate configuration information for establishing an exchange path for an IEEE signaling between the UPF and the AF based on the configuration information. Then the SMF may transmit the configuration information to the UPF.
Principle and implementations of the present disclosure will be described in detail below with reference to FIGs. 2-6, which show schematic processes of user plane forwarding between UPF and AF, respectively.
FIG. 2 shows a signaling chart illustrating a process 200 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to FIG. 1. The process 200 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
The process 200 may relate to a full-fledged variant for message exchange between NW-TT/UPF and AF using user plane exchange in which the user plane path may extend directly between the UPF and the AF. That is, using the SMF to assist the configuration at the UPF, the UPF and the AF establish a direct user plane tunnel. The user plane path may use between the UPF and the AF any protocols such as hypertext transport protocol (HTTP) , internet protocol (IP) tunneling protocols like Generic Routing Encapsulation (GRE) or GTP-u.
As shown in FIG. 2, the AF 130 may generate a request associated with IEEE signaling exchange between the AF 130 and the UPF 120. The request may indicate a transmission direction of the IEEE signalling. For example, the request may indicate transmitting IEEE signaling from the AF 130 to the UPF 120 or transmitting IEEE signaling from the UPF 120 to the AF 130 or both.
In some example embodiments, the request may also indicate property information of IEEE signaling is to be transmitted. The property information may relate to what kind of IEEE signaling is to be transmitted, such as an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling or an Ethernet port associated with the IEEE signaling.
In the embodiment shown in FIG. 2, the request may also comprise the address information of the AF 130, which may indicate how to address the AF for sending IEEE signaling to be transmitted towards the AF. For example, the address information shall be port specific e.g., packets from or to be transmitted through a specific port at the NW-TT /DS-TT shall be associated to a specific UP tunnel or Tunnel Endpoint Identifier (TEID) .
The AF 130 may send 202 the request to the NEF 150. The NEF 150 may forward 204 the request to PCF 140, to authorize the request via Policy Authorization service. After authorizing the request, the NEF 150 may send 206 a response to NEF 150. The NEF may forward 208 the response to the AF 130 to indicate that the request has been authorized.
Then the PCF 140 may forward 210 the request to the SMF 110 by Npcf_SM PolicyControl_Update request. The SMF may generate configuration information for establishing an exchange path for an IEEE signaling exchange between the AF 130 and the UPF 120. In this scenario, the SMF may generate configuration information at least based on the AF address information and possibly on property information of the IEEE signaling to be transmitted. Then the SMF 130 may send 212 the configuration information to the UPF 120 via N4 Session Modification, to configure 214 the UPF with AF address information to directly forward IEEE signaling using a user plane tunnel.
The UPF 120 may report 216 to the SMF 110 how to be addressed by the AF for IEEE signaling is to be transmitted by the UPF 120 on behalf of the AF 130. Then the SMF 110 may forward 218 the address configuration of the UPF 120 to the PCF 140 by Npcf_SM PolicyControl_Update response.
In some example embodiments, the packet classification and processing at the UPF 120 may rely on packet detection rule (PDR) /forwarding action rule (FAR) rules configured by the SMF 110 or traffic routing rules received from the AF 130 via User plane node Management Information Container (UMIC) or a combination of both. The UPF/NW-TT can use a combination or both to detect and forward IEEE signaling.
The PCF 140 may receive UPF address information from the SMF 110 and forward 220 the UPF address information to the NEF 150 via Npcf_PolicyAuthorization_Notify. The NEF 150 may notify 222 the AF 130 this address information to finalize the signaling exchange path establishment between the UPF 120 and the AF 130.
After the exchange path between the UPF 120 and the AF 130 has been established, when IEEE signaling is received 224 or 226 from DS-TT 121 or NW-TT 124 side, the UPF 120/NW-TT 124 may detect IEEE signaling subject to forwarding to the AF (e.g. matching the property information of the IEEE signaling as indicated by the SMF 110 over N4 in 212) and send 228 the IEEE payload via the direct tunnel with the AF 130 previously established. The UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) . Then the IEEE signaling may be processed 230 by the AF 130 based on the received Ethernet type.
A further variant for message exchange between NW-TT/UPF and AF using user plane exchange where the UPF is able to expose user plane events towards the NEF may also be considered. Now the reference is made to FIGs. 3A and 3B.
FIG. 3A shows a signaling chart illustrating a process 300 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. For the purpose of discussion, the process 300 will be described with reference to FIG. 1. The process 300 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
As shown in FIG. 3A, the actions 302-308 may be same or similar with the actions 202-208 as shown in FIG. 2. The AF 130 may generate a request associated with IEEE signaling exchange between the AF 130 and the UPF 120. The request may indicate a transmission direction of the IEEE signalling. For example, the request may indicate transmitting IEEE signaling from the UPF 120 to the AF 130.
In some example embodiments, the request may also indicate property information of IEEE signaling that is to be transmitted. The property information may relate to what kind of IEEE signaling is to be transmitted, such as an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling or an Ethernet port associated with the IEEE signaling.
The AF 130 may send 302 the request to the NEF 150. The NEF 150 may forward 304 the request to PCF 140, to authorize the request via Policy Authorization service. After authorizing the request, the PCF 140 may send 306 a response to NEF 150. The NEF may forward 308 the response to the AF 130 to indicate that the request has been authorized.
Then the PCF 140 may forward 310 the request to the SMF 110 by Npcf_SM PolicyControl_Update request. The SMF 110 may send 312 a Npcf_SM PolicyControl_Update response to the PCF 140. After that, the SMF 110 may report the corresponding local UPF ID or address to local NEF 150 through Nsmf_EventExposure_Notify.
The SMF 110 may further generate configuration information for the user plane management of the UPF 120 and configure 314 the user plane of the UPF 120 with the configuration information via N4 Session Modification. Furthermore, the SMF 110 may also configure the exposure of events towards the NEF 150. In some example embodiments, the packet classification and processing at the UPF 120 may rely on packet detection rule (PDR) /forwarding action rule (FAR) rules configured by the SMF 110 or traffic routing rules received from the AF 130 via UMIC or a combination of both. The UPF/NW-TT can use a combination or both to detect and forward IEEE signaling.
Then the SMF 110 may report 316 the corresponding local UPF ID or address to the NEF 150 through Nsmf_EventExposure_Notify. The NEF 150 may expose 318 the event to the AF 130. For example, the event may comprise the successful IEEE signaling subscription configuration and any additional metadata to assist the AF processing the IEEE message.
In some example embodiments, if the AF intends to request forwarding an IEEE signaling from the AF to the TTs, at least part of the above-mentioned actions 302 to 318 may need to be repeated 328 again to configure the other direction of signaling forwarding.
The IEEE signaling may be received 322 or 324 from DS-TT 121 or NW-TT 124 side. The UPF 120/NW-TT 124 may detect IEEE signaling and expose 326 the IEEE event to the NEF 150. The UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) . The NEF 150 may report 328 the event to the AF 130. Then the IEEE signaling may be processed 330 by the AF 130 based on the received Ethernet type.
FIG. 3B shows a signaling chart illustrating a process 300’ of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. For the purpose of discussion, the process 300’ will be described with reference to FIG. 1. The process 300’ may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121  as illustrated in FIG. 1.
As shown in FIG. 3B, the actions 332-338 may be same or similar with the actions 202-208 as shown in FIG. 2. The AF 130 may generate a request associated with IEEE signaling exchange between the AF 130 and the UPF 120. The request may indicate a transmission direction of the IEEE signalling. For example, the request may indicate transmitting IEEE signaling from the UPF 120 to the AF 130.
In some example embodiments, the request may also indicate property information of IEEE signaling that is to be transmitted. The property information may relate to what kind of IEEE signaling is to be transmitted, such as an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling or an Ethernet port associated with the IEEE signaling.
The AF 130 may send 332 the request to the NEF 150. The NEF 150 may forward 334 the request to PCF 140, to authorize the request via Policy Authorization service. After authorizing the request, the PCF 140 may send 306 a response to NEF 150. The NEF may forward 308 the response to the AF 130 to indicate that the request has been authorized.
Then the PCF 140 may forward 340 the request to the SMF 110 by Npcf_SM PolicyControl_Update request. The SMF 110 may send 342 a Npcf_SM PolicyControl_Update response to the PCF 140. After that, the SMF 110 may report the corresponding local UPF ID or address to local NEF 150 through Nsmf_EventExposure_Notify.
Then the SMF 110 may report 344 the corresponding local UPF ID or address to the NEF 150 through Nsmf_EventExposure_Notify. The NEF 150 may further invoke 346 Nupf_Event Exposure_Subscribe service operation to subscribe real-time information in UPF. Then the UPF may use subscription event information to determine 348 the N4 session the subscription maps to and to build internal filters to match PDR/FARs already configured by the SMF 110. The UPF 120 may reply 350 to the NEF 150 with the corresponding information according to the network information exposure indication.
The NEF 150 may expose 352 the event to the AF 130. For example, the event may comprise the successful IEEE signaling subscription configuration and any additional metadata to assist the AF processing the IEEE message.
In some example embodiments, if the AF intends to request forwarding an IEEE  signaling from the AF to the TTs, at least part of the above-mentioned actions 332 to 352 may need to be repeated 354 again to configure the other direction of signaling forwarding.
The IEEE signaling may be received 356 or 358 from DS-TT 121 or NW-TT 124 side. The UPF 120/NW-TT 124 may detect IEEE signaling and expose 360 the IEEE event to the NEF 150. The UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) . The NEF 150 may report 362 the event to the AF 130. Then the IEEE signaling may be processed 364 by the AF 130 based on the received Ethernet type.
In an additional variant for message exchange between NW-TT/UPF and AF using user plane exchange, the use of the NEF to report the UPF events to the AF may be avoided and a direct exposure interface between the UPF 120 and AF 130 may be enabled. Now the reference is made to FIG. 4.
FIG. 4 shows a signaling chart illustrating a process 400 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. For the purpose of discussion, the process 400 will be described with reference to FIG. 1. The process 400 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
As shown in FIG. 4, The actions 402-412 may be same or similar with the actions 302-312 as shown in FIG. 3A, the corresponding description may be omitted here.
After the SMF 110 sends a Npcf_SMPolicyControl_Update response to the PCF 140, the SMF 110 may further generate configuration information for the user plane management of the UPF 120 and configure 416 the user plane of the UPF 120 with the configuration information via N4 Session Modification.
In some example embodiments, the packet classification and processing at the UPF 120 may rely on PDR/FAR rules configured by the SMF 110 or traffic routing rules received from the AF 130 via UMIC or a combination of both. The UPF/NW-TT can use a combination or both to detect and forward IEEE signaling.
The UPF 120 may provide 418 the AF 130 with UPF addressing information where the AF 130 may send IEEE signaling from the AF that the UPF 120 is to forward on behalf of the AF 130.
The AF 130 may request 420 a subscription to events of the UPF 120. In some example embodiments, the  actions  418 and 420 between the UPF 120 and the AF 130 may not be needed if the subscription can be configured using service configuration in actions 402-412. Therefore, the PolicyAuthorization response can include service subscription information. The signaling flow example of the  actions  418 and 420 shown in FIG. 4 may be used to clarify how the UPF and AF can directly exchange subscription or notification information for exposure.
The UPF may obtain 422 the corresponding QoS flow by querying the UE IP address and application flow information and respond 424 the AF 130 the corresponding information according to the network information exposure indication.
In some example embodiments, if the AF intends to request forwarding an IEEE signaling from the AF to the TTs, at least part of the above-mentioned actions 402 to 426 may need to be repeat 428 again to configure the other direction of signaling forwarding.
The IEEE signaling may be received 430 or 432 from DS-TT 121 or NW-TT 124 side. The UPF 120/NW-TT 124 may detect IEEE signaling and expose 434 the IEEE event to the AF 130. The UPF 120 may add metadata to assist the processing of the IEEE message at the AF 130 (e.g., ingress port information) . Then the IEEE signaling may be processed 438 by the AF 130 based on the received Ethernet type.
With the solutions described with reference to FIGs 2-4, a message exchange between NW-TT/UPF and AF user plane exchange may be achieved. The NW-TT/UPF can report to the AF IEEE signaling received from one of its N6 interfaces or received from a DS-TT. The AF can also ask the NW-TT/UPF to send IEEE signaling towards one of its N6 interfaces or towards a DS-TT.
In the proposed solution of the present disclosure described with reference to FIGs 2-4, new capability for the AF to subscribe reception of specific IEEE signaling via a port specific tunnel may be introduced. The capability may imply the transfer of this AF requirements via the PCF and SMF (N5, N7 and N4 interfaces) . The AF request may include traffic filters telling which IEEE signaling that the AF wishes to receive. In some example embodiments, the IEEE protocol may be identified by an IEEE EtherType or destination MAC address in the Ethernet frame header or by some IP addressing information. The request may also include the indications on where and possible how the AF wishes to receive such signaling. That is, the request may include indications of  address information like an HTTP URI, a GRE tunnel Id, a GTP-u F-TEID and corresponding protocols.
Furthermore, new capability for the DS-TT/UE and NW-TT/UPF to indicate how (address information) it wishes to send and/or receive specific IEEE signaling that the AF requests to send on an external 5GS bridge port may also be introduced. This may correspond to Address information like a HTTP URI, a GRE tunnel Id, a GTP-u F-TEID and may possibly also contain a (protocol) the UPF wishes to use to receive such signaling. The UPF or AF may agree on additional metadata to forward together with the IEEE signaling payload to assist IEEE processing.
The negotiation described above may be transparent to PCF and SMF by using a transparent container, for example, over N4, N5, N7 or involve SMF and PCF knowledge of this mechanism. For the case when this negotiation is transparent to SMF and PCF, the definition of new IEEE protocols related with mechanism does not impact the PCF/SMF.
Moreover, new capability of UPF to select proper established port specific path for received IEEE signaling may also be introduced by the proposed solution of the present disclosure described with reference to FIGs 2-4.
Now the reference is made to FIG. 5, which proposes a further solution to support the IEEE signaling exchange between the AF and UPF.
FIG. 5 shows a signaling chart illustrating a process 500 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. For the purpose of discussion, the process 500 will be described with reference to FIG. 1. The process 500 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
As shown in FIG. 5, The actions 502-508 may be same or similar with the actions 202-206 as shown in FIG. 2, the corresponding description may be omitted here.
The PCF 140 may configure the SMF 110 to report IEEE signaling events via SMPolicyControl service. The SMF 110 may need to have Policy Control Request Triggers (PCRTs) in place that are related to IEEE message reporting towards PCF 140. For this reason, the PCF 140 may send 510 a Npcf_SMPolicyControl_Update request to the SMF 110. The SMF 110 may send 512 a Npcf_SMPolicyControl_Update response to the PCF 140.
Then the SMF 110 may determine 516 how to configure the impacted N4 Session and packet classification at the UPF 120 to allow the UPF 120 to forward IEEE signaling. The SMF 110 may also configure 520 additional GTP-u tunnels between the UPF 120 and itself to enable identification of the IEEE signaling ingress port using the TEID of the GTP-u tunnel. Then the UPF 120 may update 524 its configuration for forwarding IEEE signaling. At this point the IEEE signaling from TTs towards the AF is enabled.
The above-mentioned actions may be repeated 526 to configure the AF sending IEEE signaling to specific ports of the 5GS bridge. In this case the GTP-u tunnels may be configured in the other direction.
The IEEE signaling may be received 528 or 530 from DS-TT 121 or NW-TT 124 side. The UPF 120 may detect IEEE signaling and send 532 the IEEE signaling message via the GPT-u tunnel with the SMF 130 previously configured for the ingress port detected.
The SMF 130 may receive IEEE signaling together with the TEID and determine 534 the ingress port. The SMF 130 may switch from user plane (GTP-u tunnel where the packet was received) to control plane to notify 536 the PCF 140 the reception of IEEE signaling. The PCF 140 may further forward the IEEE signal to the AF 150. Then the IEEE signaling may be processed 536 by the AF 130 based on the received Ethernet type.
In the solution proposed with reference to FIG. 5, the SMF may associate the AF requirements with rules sent to UPF over N4 for traffic received by the UPF or to be sent by the UPF. The SMF may also identify ingress port from received IEEE signaling via port specific path and forward the IEEE signaling to AF together with ingress port information.
Before the AF requesting the IEEE signalling, the AF may need to gather information regarding 5GS bridge ports like DS-TTs and NW-TTs IEEE capabilities. For this reason, the DS-TT can forward its container via Port Management Information Container (PMIC) to the AF when the UE triggers NAS signalling with the 5G network, and the NW-TT can forward its container via UMIC using any of the N4 sessions established already with the 5GS bridge.
FIG. 6 shows a signaling chart illustrating a process 600 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. For the purpose of discussion, the process 600 will be described with reference to FIG. 1. The process 600 may involve the SMF 110, the UPF 120, the AF 130, the PCF 140, the  NEF 150, the AMF 160, the NW-TT 124, the UE 123, and the DS-TT 121 as illustrated in FIG. 1.
The UE 123 may initiate 602 a PDU session establishment request to the AMF, which may indicate the DS-TT port and the PMIC with the IEEE DS-TT capabilities. Then the PDU session establishment procedure can be performed 604. A N4 session modification may be performed 606 between the UPF 120 and the SMF 110. Then the SMF 110 may report 608 the corresponding information to the AF 130 via PCF 140. The corresponding information may include DS-TT port number, DS TT MAC address, the bridge ID and the PMIC with the IEEE DS-TT capabilities. The NW-TT may also report 610 the Bridge address, the Bridge ID, the NW-TT port number and IEEE NW-TT capabilities to the AF 130 via UMIC.
In this way, forwarding of the IEEE messages between the UPF and the AF is realized and new capabilities for corresponding function entity can be introduced.
FIG. 7 shows a flowchart of an example method 700 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. The method 700 can be implemented at the first apparatus 110 as shown in FIG. 1. For the purpose of discussion, the method 700 will be described with reference to FIG. 1.
At 710, the first apparatus receives a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus.
In some example embodiments, the first apparatus may receive a policy control request from a fourth apparatus and obtain the request from the policy control request.
In some example embodiments, the request for transmitting IEEE signaling indicates property information of IEEE signaling is to be transmitted.
In some example embodiments, the property information of IEEE signaling to be transmitted may comprise an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
In some example embodiments, the request may comprise at least one of a request for transmitting IEEE signaling from the second apparatus to the third apparatus or a request for transmitting IEEE signaling from the third apparatus to the second apparatus or address information associated with the second apparatus.
At 720, the first apparatus generates, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus.
In some example embodiments, the first apparatus may generate the configuration information based on at least one of the address information associated with the second apparatus, or property information of IEEE signaling is to be transmitted.
In some example embodiments, the first apparatus may receive, from the third apparatus, further address information associated with the third apparatus; and forward the further address information associated with the third apparatus towards the second apparatus.
In some example embodiments, the further address information associated with the third apparatus is forwarded towards the second apparatus via a fourth apparatus and/or a fifth apparatus.
In some example embodiments, the first apparatus may determine one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules and generate the configuration information based on the request and one or more parameters.
In some example embodiments, the first apparatus may determine, based on the request, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and and generate the configuration information based on the identification of the exchange path.
In some example embodiments, the first apparatus may map the exchange path between the first apparatus and the third apparatus with the address information associated with the second apparatus; and perform the IEEE signaling exchange via the exchange path based on the mapping between the exchange path and the port.
In some example embodiments, the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity and the third apparatus comprises a user plane function entity and the fourth apparatus comprises a policy control function entity.
FIG. 8 shows a flowchart of an example method 800 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure.  The method 800 can be implemented at the second apparatus 130 as shown in FIG. 1. For the purpose of discussion, the method 800 will be described with reference to FIG. 1.
At 810, the second apparatus transmits a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus.
the request may comprise at least one of a request for transmitting IEEE signaling from the second apparatus to the third apparatus or a request for transmitting IEEE signaling from the third apparatus to the second apparatus or address information associated with the second apparatus.
In some example embodiments, the request for transmitting IEEE signaling indicates property information of IEEE signaling is to be transmitted.
In some example embodiments, the property information of IEEE signaling to be transmitted may comprise an Ethernet Type associated with the IEEE signaling, an address information associated with the IEEE signaling, or an Ethernet port associated with the IEEE signaling.
In some example embodiments, the second apparatus may transmit the request to the first apparatus via a fourth apparatus by a policy control request transmitted from the fourth apparatus to the first apparatus.
In some example embodiments, the second apparatus may transmit the request to a fifth apparatus, to cause the fifth apparatus to authorize a request for the IEEE signaling exchange between the second apparatus and the third apparatus obtained from the indication by interacting with the fourth apparatus.
At 820, the second apparatus performs an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
In some example embodiments, the second apparatus may receive further address information associated with the third apparatus from the first apparatus and perform the IEEE signaling exchange via the exchange path between the second apparatus and the third apparatus established based on the address information associated with the second apparatus and the further address information associated with the third apparatus.
In some example embodiments, if the second apparatus determines that an indication associated with an event of the IEEE signaling exchange is received from the  third apparatus via a fifth apparatus, which has subscribed to the third apparatus for an IEEE signaling event, the second apparatus may perform the IEEE signaling exchange.
In some example embodiments, the second apparatus may receive an indication that the second apparatus is allowed to subscribe to the third apparatus for an IEEE signaling event, transmit a request for the second apparatus to subscribe to the third apparatus. If the second apparatus determines that the second apparatus has subscribed to the third apparatus and an indication associated with an event of the IEEE signaling exchange is received from the third apparatus, the second apparatus may the IEEE signaling exchange.
In some example embodiments, if the second apparatus determines that the IEEE signaling is to be transmitted from the secnd device to the third apparatus, the second apparatus may perform the IEEE signaling exchange based on an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus.
In some example embodiments, the second apparatus may obtain IEEE capabilities of ports associated with the third apparatus.
In some example embodiments, the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity and the third apparatus comprises a user plane function entity and the fourth apparatus comprises a policy control function entity.
FIG. 9 shows a flowchart of an example method 900 of user plane forwarding between UPF and AF according to some example embodiments of the present disclosure. The method 900 can be implemented at the third apparatus 120 as shown in FIG. 1. For the purpose of discussion, the method 900 will be described with reference to FIG. 1.
At 910, the third apparatus receives, from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus.
At 920, the third apparatus causes the exchange path to be established based on the configuration information.
In some example embodiments, if the third apparatus determines that address information associated with the second apparatus is obtained from the configuration  information, the third apparatus may transmit further address information associated with the third apparatus to the first apparatus for establishing the exchange path.
In some example embodiments, the third apparatus may receive, from the first apparatus, an indication of one or more parameters associated with at least one of packet detection rule, forwarding action rule, or traffic routing rules and cause the exchange path to be established based on the one or more parameters.
In some example embodiments, if the third apparatus determines that information is received from the second apparatus or a fifth apparatus, the third apparatus may send at least one portion of the information on a port of the third apparatus.
In some example embodiments, wherein the information consists in a core network service based signaling.
In some example embodiments, the third apparatus may send information to the second apparatus or a fifth apparatus including IEEE signaling received on a port of the third apparatus.
In some example embodiments, wherein the information is sent via a core network service based signaling.
In some example embodiments, the third apparatus may obtain, from the configuration information, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and cause the exchange path to be established based on the identification of the exchange path.
In some example embodiments, if the third apparatus determines that the IEEE signaling is received from the port of the third apparatus, the third apparatus may perform the IEEE signaling exchange via the exchange path.
In some example embodiments, the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity and the third apparatus comprises a user plane function entity and the fourth apparatus comprises a policy control function entity.
In some example embodiments, an apparatus capable of performing the method 700 (for example, implemented at the SMF 110) may comprise means for performing the respective steps of the method 700. The means may be implemented in any suitable form.  For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for receiving, at a first apparatus, a request associated with an IEEE signaling exchange between a second apparatus and a third apparatus; means for generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus and means for transmitting the configuration information to the third apparatus.
In some example embodiments, an apparatus capable of performing the method 800 (for example, implemented at the AF 130) may comprise means for performing the respective steps of the method 800. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for transmitting, from a second apparatus, a request associated with an IEEE signaling exchange between the second apparatus and the third apparatus; and means for performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
In some example embodiments, an apparatus capable of performing the method 900 (for example, implemented at the UPF 120) may comprise means for performing the respective steps of the method 900. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for receiving, at a third apparatus and from a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus; and means for causing the exchange path to be established based on the configuration information.
FIG. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure. The device 1000 may be provided to implement the communication device, for example the SMF 110, the AF 130 and the UPF 120 as shown in FIG. 1. As shown, the device 1000 includes one or more processors 1010, one or more memories 1040 coupled to the processor 1010, and one or more communication modules 1040 coupled to the processor 1010.
The communication module 1040 is for bidirectional communications. The communication module 1040 has one or more communication interfaces to facilitate communication with one or more other modules or devices. The communication interfaces may represent any interface that is necessary for communication with other network elements. In some example embodiments, the communication module 940 may include at least one antenna.
The processor 1010 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 1020 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1024, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 1022 and other volatile memories that will not last in the power-down duration.
computer program 1030 includes computer executable instructions that are executed by the associated processor 1010. The program 1030 may be stored in the ROM 1020. The processor 1010 may perform any suitable actions and processing by loading the program 1030 into the RAM 1020.
The embodiments of the present disclosure may be implemented by means of the program 1030 so that the device 1000 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 6. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 1030 may be tangibly contained in a computer readable medium which may be included in the device 1000 (such as in the memory 1020) or other storage devices that are accessible by the device 1000. The device 1000 may load the program 1030 from the computer readable medium to the RAM 1022 for execution. The computer readable medium may include any types of tangible non-volatile storage,  such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. FIG. 11 shows an example of the computer readable medium 1100 in form of CD or DVD. The computer readable medium has the program 1030 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 700-900 as described above with reference to FIGs. 7-9. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (46)

  1. A method, comprising:
    receiving, at a first apparatus, a request associated with an Institute of Electrical and Electronics Engineers, IEEE signaling exchange between a second apparatus and a third apparatus;
    generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus; and
    transmitting the configuration information to the third apparatus.
  2. The method of Claim 1, wherein receiving the request comprises:
    receiving a policy control request from a fourth apparatus; and
    obtaining the request from the policy control request.
  3. The method of any of Claims 1-2, wherein the request associated with the IEEE signaling exchange indicates property information of IEEE signaling to be exchanged.
  4. The method of Claim 3, wherein the property information of IEEE signaling to be exchanged comprises at least one of the following:
    an Ethernet Type within the IEEE signaling,
    address information within the IEEE signaling, or
    an Ethernet port associated with the IEEE signaling.
  5. The method of any of Claim 1-4, wherein the request comprises at least one of the following:
    a request for transmitting IEEE signaling from the second apparatus to the third apparatus,
    a request for transmitting IEEE signaling from the third apparatus to the second apparatus, or
    address information associated with the second apparatus.
  6. The method of Claim 1, wherein generating the configuration information  comprises:
    generating the configuration information based on at least one of the following:
    the address information associated with the second apparatus, or
    property information of IEEE signaling is to be transmitted.
  7. The method of Claim 6, further comprising:
    receiving, from the third apparatus, further address information associated with the third apparatus; and
    forwarding the further address information associated with the third apparatus towards the second apparatus.
  8. The method of Claim 7, wherein the further address information associated with the third apparatus is forwarded towards the second apparatus via at least one of a fourth apparatus and a fifth apparatus.
  9. The method of Claim 1, wherein generating the configuration information comprises:
    determining one or more parameters associated with at least one of the following:
    packet detection rule,
    forwarding action rule, or
    traffic routing rules; and
    generating the configuration information based on the request and one or more parameters.
  10. The method of any of Claim 1-4, wherein generating the configuration information comprises:
    determining, based on the request, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and
    generating the configuration information based on the identification of the exchange path.
  11. The method of Claim 10, further comprises:
    mapping the exchange path between the first apparatus and the third apparatus  with the address information associated with the second apparatus; and
    performing the IEEE signaling exchange via the exchange path based on the mapping between the exchange path and the port.
  12. The method of any of Claims 1-10, wherein the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity, and the third apparatus comprises a user plane function entity.
  13. The method of Claim 2 or 8, wherein the fourth apparatus comprises a policy control function entity.
  14. The method of Claim 8, wherein the fifth apparatus comprises a network exposure function entity.
  15. A method comprising:
    transmitting, from a second apparatus, a request associated with an Institute of Electrical and Electronics Engineers, IEEE signaling exchange between the second apparatus and the third apparatus; and
    performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
  16. The method of Claim 15, wherein transmitting the request comprises transmitting at least one of the following:
    a request for transmitting the IEEE signaling from the second apparatus to the third apparatus,
    a request for transmitting the IEEE signaling from the third apparatus to the second apparatus, or
    address information associated with the second apparatus.
  17. The method of Claim 15 or 16, wherein the request for transmitting IEEE signaling indicates property information of IEEE signaling to be transmitted.
  18. The method of Claim 17, wherein the property information of IEEE signaling  to be transmitted comprises at least one of the following:
    an Ethernet Type associated with the IEEE signaling,
    address information associated with the IEEE signaling, or
    an Ethernet port associated with the IEEE signaling.
  19. The method of Claim 15, wherein transmitting the request comprises:
    transmitting the request to the first apparatus via a fourth apparatus by a policy control request transmitted from the fourth apparatus to the first apparatus.
  20. The method of Claim 19, further comprising:
    transmitting the request to a fifth apparatus, to cause the fifth apparatus to authorize a request for the IEEE signaling exchange between the second apparatus and the third apparatus obtained by interacting with the fourth apparatus.
  21. The method of Claim 15, wherein performing the IEEE signaling exchange between the second apparatus and the third apparatus comprises:
    receiving further address information associated with the third apparatus from the first apparatus; and
    performing the IEEE signaling exchange via the exchange path between the second apparatus and the third apparatus established based on the address information associated with the second apparatus and the further address information associated with the third apparatus.
  22. The method of Claim 15, wherein performing the IEEE signaling exchange between the second apparatus and the third apparatus comprises:
    in accordance with a determination that receiving an indication associated with an event of the IEEE signaling exchange is received from the third apparatus via a fifth apparatus, which has subscribed to the third apparatus for an IEEE signaling event, performing the IEEE signaling exchange.
  23. The method of Claim 15, wherein performing the IEEE signaling exchange between the second apparatus and the third apparatus comprises:
    receiving an indication that the second apparatus is allowed to subscribe to the third apparatus for an IEEE signaling event, transmit a request for the second apparatus to  subscribe to the third apparatus; and
    in accordance with a determination that the second apparatus has subscribed to the third apparatus and an indication associated with an event of the IEEE signaling exchange is received from the third apparatus, performing the IEEE signaling exchange.
  24. The method of Claim 15, wherein performing the IEEE signaling exchange between the second apparatus and the third apparatus comprises:
    in accordance with a determination that the IEEE signaling is to be transmitted from the second apparatus to the third apparatus, performing the IEEE signaling exchange based on an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus.
  25. The method of Claim 15, further comprising:
    obtaining IEEE capabilities of ports associated with the third apparatus.
  26. The method of any of Claims 15-25, wherein the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity and the third apparatus comprises a user plane function entity.
  27. The method of Claim 19 or 20, wherein the fourth apparatus comprises a policy control function entity.
  28. The method of Claim 20 or 22, wherein the fifth apparatus comprises a network exposure function entity.
  29. A method comprising:
    receiving, at a third apparatus and from a first apparatus, configuration information for establishing an exchange path for IEEE signaling between a second apparatus and the third apparatus; and
    causing the exchange path to be established based on the configuration information.
  30. The method of Claim 29, wherein causing the exchange path to be established comprises:
    in accordance with a determination that address information associated with the second apparatus is obtained from the configuration information, transmitting further address information associated with the third apparatus to the first apparatus for establishing the exchange path.
  31. The method of Claim 29, wherein causing the exchange path to be established comprises:
    receiving, from the first apparatus, an indication of one or more parameters associated with at least one of the following:
    packet detection rule,
    forwarding action rule, or
    traffic routing rules; and
    causing the exchange path to be established based on the one or more parameters.
  32. The method of Claim 31, further comprising:
    in accordance with a determination that information is received from the second apparatus or a fifth apparatus, transmitting, at least one portion of the information on a port of the third apparatus.
  33. The method of Claim 32, wherein the information consists in a core network service based signaling.
  34. The method of Claim 32, further comprising:
    sending information to the second apparatus or a fifth apparatus including IEEE signaling received on a port of the third apparatus.
  35. The method of Claim 34, wherein the information is sent via a core network service based signaling.
  36. The method of Claim 29, wherein causing the exchange path to be established comprises:
    obtaining, from the configuration information, an identification of the exchange path between the first apparatus and the third apparatus for the IEEE signaling associated with a port of the third apparatus; and
    causing the exchange path to be established based on the identification of the exchange path.
  37. The method of Claim 35, further comprising:
    in accordance with a determination that the IEEE signaling is received from the port of the third apparatus, performing the IEEE signaling exchange via the exchange path.
  38. The method of any of Claims 29-37, wherein the first apparatus comprises a session management function entity, the second apparatus comprises an application function entity and the third apparatus comprises a user plane function entity.
  39. The method of Claim 32 or 34, wherein the fifth apparatus comprises a network exposure function entity.
  40. A first apparatus comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first apparatus at least to perform any of the method of Claims 1-14.
  41. A second apparatus comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second apparatus at least to perform any of the method of Claims 15-27.
  42. A third apparatus comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third apparatus at least to perform any of the method of Claims 29-39.
  43. An apparatus comprising:
    means for receiving a request associated with an Institute of Electrical and Electronics Engineers, IEEE signaling exchange between a second apparatus and a third apparatus;
    means for generating, based on the request, configuration information for establishing an exchange path for an IEEE signaling between the second apparatus and the third apparatus; and
    means for transmitting the configuration information to the third apparatus.
  44. An apparatus comprising:
    means for transmitting, from a second apparatus, a request associated with an Institute of Electrical and Electronics Engineers, IEEE signaling exchange between the second apparatus and the third apparatus; and
    means for performing an IEEE signaling exchange between the second apparatus and the third apparatus via an exchange path between the second apparatus and the third apparatus established at least based on the request.
  45. An apparatus comprising:
    means for receiving, a first apparatus, configuration information for establishing an exchange path for an IEEE signaling between a second apparatus and the third apparatus; and
    means for causing the exchange path to be established based on the configuration information.
  46. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 1-14 or at least the method of claims 15-28 or at least the method of any of claims 29-39.
PCT/CN2021/109330 2021-07-29 2021-07-29 User plane forwarding between user plane function and application function WO2023004697A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100919.6A CN117796132A (en) 2021-07-29 2021-07-29 User plane forwarding between user plane functions and application functions
PCT/CN2021/109330 WO2023004697A1 (en) 2021-07-29 2021-07-29 User plane forwarding between user plane function and application function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109330 WO2023004697A1 (en) 2021-07-29 2021-07-29 User plane forwarding between user plane function and application function

Publications (1)

Publication Number Publication Date
WO2023004697A1 true WO2023004697A1 (en) 2023-02-02

Family

ID=85085999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109330 WO2023004697A1 (en) 2021-07-29 2021-07-29 User plane forwarding between user plane function and application function

Country Status (2)

Country Link
CN (1) CN117796132A (en)
WO (1) WO2023004697A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200846A (en) * 2018-11-19 2020-05-26 华为技术有限公司 Time delay sensitive network communication method and device thereof
CN111200878A (en) * 2018-11-19 2020-05-26 华为技术有限公司 Information transmission method and device
WO2020222197A1 (en) * 2019-05-02 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) 5g system signaling methods to convey tsn synchronization information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200846A (en) * 2018-11-19 2020-05-26 华为技术有限公司 Time delay sensitive network communication method and device thereof
CN111200878A (en) * 2018-11-19 2020-05-26 华为技术有限公司 Information transmission method and device
WO2020222197A1 (en) * 2019-05-02 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) 5g system signaling methods to convey tsn synchronization information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT, CHINA MOBILE: "Solution for infrequent small data transfer through NAS and a direct interface between AMF and UPF", 3GPP DRAFT; S2-182391 WAS S2-182319 WAS S2-181591_SOLUTION FOR INFREQUENT SMALL DATA TRANSFER THROUGH NAS AND A DIRECT INTERFACE BETWEEN AMF AND UPF, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06, vol. SA WG2, no. Montreal, Canada; 20180226 - 20180302, 2 March 2018 (2018-03-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051395435 *
CHINA MOBILE,AT&T: "KI#3, New Solution: Local NEF Deployment for network information exposure to Local AF with Low Latency", 3GPP DRAFT; S2-2003771, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Electronic, Elbonia; 20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051889796 *
VIVO ?, ZTE?, NOKIA ?, NOKIA SHANGHAI BELL ?, SAMSUNG ?, ERICSSON: "Item#4: Apply StaticFilteringEntry information in 5GS", 3GPP DRAFT; S2-2002053, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Electronic meeting; 20200224 - 20200227, 18 February 2020 (2020-02-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051855443 *

Also Published As

Publication number Publication date
CN117796132A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
US11297557B2 (en) Communication method and communications device
CN110366271B (en) Communication method and communication device
WO2022257549A1 (en) Network slicing method and device, and storage medium
US11968565B2 (en) User plane information reporting method and apparatus
KR102469973B1 (en) Communication method and device
US10986000B2 (en) Enabling new radio cellular quality of service for non-internet protocol data sessions
JP7286785B2 (en) Establishing a protocol data unit session
NL2033607B1 (en) Traffic steering and cross-layered and cross-link mobility management techniques for multi-access management services
US20230254922A1 (en) Multipath transmission method and communication apparatus
US20230180157A1 (en) Apparatus, Method and Computer Program
WO2019238050A1 (en) Communication method and apparatus
EP4037368A1 (en) Communication method and communication device
US20230018378A1 (en) Parameter configuration method, apparatus and system, device and storage medium
WO2022252867A1 (en) Communication method and communication apparatus
JP2020061732A (en) Uplink bearer binding in handover
WO2023004697A1 (en) User plane forwarding between user plane function and application function
US10506474B2 (en) Method and device for establishing transmission channel in fusion networking system
CN112789896B (en) Method and device for switching transmission path
WO2023236065A1 (en) Configuration of time sensitive networking
WO2023061207A1 (en) Communication method, communication apparatus, and communication system
EP4362537A1 (en) Method and apparatus for detecting data stream
WO2024067194A1 (en) Communication method, communication apparatus and communication system
WO2023160390A1 (en) Communication method and apparatus
US11943741B2 (en) Apparatuses, systems, methods, and non-transitory computer readable media for reducing signaling messages between a RAN node and a core network
WO2023212872A1 (en) External ip interface management in 5gs ip router node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE