WO2023004606A1 - 网络切片接纳控制功能的选择方法及装置 - Google Patents

网络切片接纳控制功能的选择方法及装置 Download PDF

Info

Publication number
WO2023004606A1
WO2023004606A1 PCT/CN2021/108773 CN2021108773W WO2023004606A1 WO 2023004606 A1 WO2023004606 A1 WO 2023004606A1 CN 2021108773 W CN2021108773 W CN 2021108773W WO 2023004606 A1 WO2023004606 A1 WO 2023004606A1
Authority
WO
WIPO (PCT)
Prior art keywords
nsacf
service capability
amf
network slice
validity check
Prior art date
Application number
PCT/CN2021/108773
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002124.1A priority Critical patent/CN115868242A/zh
Priority to EP21951221.7A priority patent/EP4380261A4/en
Priority to US18/291,518 priority patent/US20240340977A1/en
Priority to PCT/CN2021/108773 priority patent/WO2023004606A1/zh
Publication of WO2023004606A1 publication Critical patent/WO2023004606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/06De-registration or detaching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management

Definitions

  • the present disclosure relates to the technical field of mobile communication, and in particular to a method and device for selecting a Network Slice Admission Control Function (NSACF, Network Slice Admission Control Function).
  • NSACF Network Slice Admission Control Function
  • Network slicing technology allows operators to provide various customized networks, for example, networks with different functional requirements, or networks with different performance requirements, such as different latency, mobility, availability, reliability, and data rate bandwidth requirements, or Network functionality is only available to specific users, such as multi-projection system users, public safety users, corporate customers, roamers, or mobile virtual network operator hosting.
  • NF Network Function
  • NRF Network Repository Function
  • the present disclosure proposes a method and device for selecting an NSACF, which can select an appropriate NSACF more accurately and with less signaling and functional interaction.
  • the embodiment of the first aspect of the present disclosure provides a method for selecting an NSACF, the method is performed by an access and mobility management function (AMF, Access and Mobility Function), and the method includes: based on the service capability of the NSACF, selecting NSACF; wherein the service capability includes at least one of the following: a first service capability that supports monitoring the number of registered user equipment UEs in the network slice, and a second service that supports monitoring the number of network slice creation protocol data unit PDU sessions ability.
  • AMF Access and Mobility Function
  • the selecting an NSACF includes: selecting an NSACF with the first service capability and the second service capability.
  • the selecting an NSACF further includes: when multiple NSACFs have the first service capability and the second service capability, selecting a high-priority NSACF from the multiple NSACFs.
  • the selecting the NSACF includes: selecting the NSACF according to the operator service capability policy; wherein the operator service capability policy includes at least one of the following: indicating selection of the required service An NSACF of capabilities, wherein the required service capability includes only the first service capability or both the first service capability and the second service capability; and indicates selection of a high-priority NSACF.
  • the selecting the NSACF includes: selecting the NSACF from the registered NSACF of the network storage function NRF, wherein the NRF stores configuration information of the registered NSACF, and the configuration information includes network slice selection auxiliary information S- NSSAIs and information indicating the service capabilities of the registered NSACF.
  • the selecting the NSACF includes: selecting the NSACF from the pre-configured NSACF of the AMF, where the AMF stores configuration information of the pre-configured NSACF, and the configuration information includes network slice selection auxiliary information S-NSSAIs and Information indicating the service capability of the registered NSACF.
  • the operator service capability policy is pre-configured in at least one of the AMF and the NRF.
  • the method further includes: receiving a registration request from the UE, wherein the registration request carries S-NSSAIs; wherein, selecting the NSACF based on the service capability of the NSACF includes: if the registration request includes The carried S-NSSAIs are included in the Allowed NSSAI of the AMF, and the NSACF is selected based on the service capability of the NSACF.
  • the method further includes: sending a validity check and update request message to the selected NSACF, the validity check and update request message including S-NSSAIs, UE identification and an update flag, the update flag indicating an increase The number of registered UEs; and receiving a validity check and update response message from the selected NSACF, and performing UE registration according to the validity check and update response message.
  • the performing UE registration according to the validity check and update response message includes: if the validity check and update response message indicates that the validity check is successful, performing a UE registration process and submitting the UE registration process to the UE after the UE registration process is completed.
  • the UE returns a registration acceptance message, and returns a registration rejection message to the UE if the validity check and update response message indicate that the validity check fails.
  • the method further includes: receiving an Allowed NSSAI from another AMF; and if at least one S-NSSAI in the Allowed NSSAI of the another AMF is not included in the Allowed NSSAI of the AMF, sending to the Another AMF sends a status update request message, where the status update request message includes the at least one S-NSSAI.
  • the embodiment of the second aspect of the present disclosure provides an NSACF selection device, the device is applied to the access and mobility management function AMF, and the device includes: a processing module configured to select the NSACF based on the service capability of the NSACF;
  • the service capabilities include at least one of the following: a first service capability that supports monitoring the number of registered user equipment UEs in the network slice, and a second service capability that supports monitoring the number of protocol data unit PDU sessions created in the network slice.
  • the processing module is configured to: select an NSACF with the first service capability and the second service capability.
  • the processing module is further configured to: select a high-priority NSACF from the multiple NSACFs.
  • the processing module is configured to: select an NSACF according to the operator service capability policy; wherein the operator service capability policy includes at least one of the following: Instruct to select the An NSACF requiring a service capability, wherein the required service capability includes only the first service capability or includes the first service capability and the second service capability; and indicates to select a high-priority NSACF.
  • the processing module is configured to: select the NSACF from the registered NSACF of the network storage function NRF, wherein the NRF stores configuration information of the registered NSACF, and the configuration information includes network slice selection auxiliary information S-NSSAIs and information indicating the service capabilities of the registered NSACF.
  • the processing module is configured to: select the NSACF from the pre-configured NSACF of the AMF, where the AMF stores configuration information of the pre-configured NSACF, and the configuration information includes network slice selection auxiliary information S- NSSAIs and information indicating the service capabilities of the registered NSACF.
  • the operator service capability policy is pre-configured in at least one of the AMF and the NRF.
  • the apparatus further includes: a transceiver module configured to receive a registration request from the UE, wherein the registration request carries S-NSSAIs; wherein the processing module is configured to: if the registration The S-NSSAIs carried in the request are included in the Allowed NSSAI of the AMF, and the NSACF is selected based on the service capability of the NSACF.
  • a transceiver module configured to receive a registration request from the UE, wherein the registration request carries S-NSSAIs
  • the processing module is configured to: if the registration The S-NSSAIs carried in the request are included in the Allowed NSSAI of the AMF, and the NSACF is selected based on the service capability of the NSACF.
  • the transceiver module is further configured to: send a validity check and update request message to the selected NSACF, the validity check and update request message includes S-NSSAIs, UE identification and update flag, the update The flag indicates increasing the number of registered UEs; and receiving a validity check and update response message from the selected NSACF; and the processing module is further configured to perform UE registration according to the validity check and update response message.
  • the processing module is configured to: if the validity check and update response message indicates that the validity check is successful, perform a UE registration process and instruct the transceiver module to return the registration to the UE after the UE registration process is completed. Accepting the message, instructing the transceiver module to return a registration rejection message to the UE if the validity check and the update response message indicate that the validity check fails.
  • the apparatus further includes: a transceiver module configured to receive an Allowed NSSAI from another AMF; and if at least one S-NSSAI in the Allowed NSSAI of the other AMF is not included in the Allowed NSSAI of the AMF In the NSSAI, sending a status update request message to the other AMF, where the status update request message includes the at least one S-NSSAI.
  • a transceiver module configured to receive an Allowed NSSAI from another AMF; and if at least one S-NSSAI in the Allowed NSSAI of the other AMF is not included in the Allowed NSSAI of the AMF In the NSSAI, sending a status update request message to the other AMF, where the status update request message includes the at least one S-NSSAI.
  • the embodiment of the third aspect of the present disclosure provides a communication device, including: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, configured to execute computer-executable instructions on the memory , controlling the wireless signal sending and receiving of the transceiver, and realizing the selection method of the NSACF in the embodiment of the first aspect above.
  • the embodiment of the fourth aspect of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the above-mentioned embodiment of the first aspect can be implemented.
  • NSACF's selection method
  • Embodiments of the present disclosure provide a method and device for selecting an NSACF.
  • the AMF selects an NSACF for a network slice based on the service capability of the NSACF, where the service capability includes the first service capability and/or The second service capability of monitoring the number of protocol data unit PDU sessions of the network slice is supported, so that a suitable NSACF can be selected more accurately and with less signaling and functional interaction.
  • FIG. 1 is a schematic flow diagram of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure
  • FIG. 9 is an interactive process for checking and updating the validity of the number of registered UEs according to an embodiment of the present disclosure.
  • FIG. 10 is an interactive process of checking and updating the validity of the number of registered UEs in the case of UE registration according to an embodiment of the present disclosure
  • FIG. 11 is an interactive process of checking and updating the validity of the number of registered UEs in the case of UE deregistration according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of an NSACF selection device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of an NSACF selection device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • Network slicing technology allows operators to provide various customized networks, for example, if there are differences between functional requirements (e.g., priority, charging, policy control, security, and mobility), if performance requirements (e.g., latency, mobility , availability, reliability, and data speeds), or only for specific users (for example, multi-projection system users, public safety users, corporate customers, roamers, or mobile virtual network operator hosting), the service may be provided.
  • functional requirements e.g., priority, charging, policy control, security, and mobility
  • performance requirements e.g., latency, mobility , availability, reliability, and data speeds
  • specific users for example, multi-projection system users, public safety users, corporate customers, roamers, or mobile virtual network operator hosting
  • Network slicing can provide complete network functions, including wireless access network functions, core network functions, and IP Multimedia System (IMS, IP Multimedia Subsystem) functions.
  • a network can support one or more network slices. There are differences between network slices due to supported network features and performance differences.
  • a network slice instance means an instantiation of a network slice, ie, a set of deployed network functions delivering the intended network slice service according to a network slice template.
  • each network slice can have different single-network slice selection assistance information (S-NSSAI, Single-Network Slice Selection Assistance Information) to identify different slices or service types, which have Different slice/serve types.
  • S-NSSAI Single-Network Slice Selection Assistance Information
  • Operators can deploy multiple network slices for different groups or categories of UEs that provide the same function, for example, with different transmission service characteristics, or provide user-specific networks. Slices in such scenarios may have the same type, but are identified by different S-NSSAIs.
  • the selection of a group of network slice instances of the UE is usually triggered by the first access and mobility management function (AMF, Access and Mobility Management Function) in the registration process.
  • AMF Access and Mobility Management Function
  • Slice selection may cause AMF re-election.
  • a PDU session belongs to and only belongs to a specific network slice instance in the PLMN. Although different network slice instances may have slice-specific PDU sessions using the same DNN, different network slice instances do not share the same PDU session.
  • the source AMF selects the target AMF by interacting with the network registration function (NRF, NF Repository Function).
  • NRF Network Registration Function
  • the network slice type (NEST, Network Slice Type) is applied to network slices, and one network slice can deploy multiple network slice instances.
  • Generic Network Slice Template (GST, Generic Network Slice Template) defines the attributes supported by network slices. For example, 1) the number of terminals, this attribute describes the maximum number of terminals that can use the network slice at the same time; 2) the number of connections, this attribute describes the maximum number of concurrent sessions supported by the network slice. This is an important input for determining the size of the network slice and providing sufficient resources for the network slice.
  • a network slice can support a limited number of user equipments (UEs) to simultaneously use the network slice and support a limited number of concurrent sessions.
  • UEs user equipments
  • PDU Protocol Data Unit
  • NSACF Network Slice Admission Control Function
  • NSACF monitors the number of registered UEs in each network slice and the number of PDU sessions in each network slice.
  • NSACFs or multiple NSACF instances can be deployed on the network.
  • different NSACF deployment schemes may be included as follows.
  • a network slice deploys multiple NSACFs.
  • multiple NSACFs serving multiple network slices of a large network for resiliency.
  • Single or multiple NSACFs are dedicated to a specific network slice to provide customized services, such as isolated slices.
  • the above solutions are also possible to implement.
  • the network function (NF, Network Function) is usually performed using the network storage function (NRF, Network Repository Function).
  • NRF Network Repository Function
  • the network function of the discovery end can be performed through NRF, or through operator policies such as local configuration. This scheme is applicable to the discovery and selection of NSACF functions or NSACF instances. But how to select the appropriate NSACF more accurately and with less signaling, making it more conducive to the realization of the monitoring and statistics execution function of the number of UEs in network slices and the monitoring and statistics execution function of the number of slice sessions, such as less signaling interaction or function interaction , supporting and optimizing function execution are still key issues to be solved urgently.
  • NSACFs Since not all NSACFs support the same capabilities. For example, some NSACFs only support admission control on the maximum number of UEs, or some NSACFs only support admission control on the maximum number of PDU sessions, or some NSACFs may support both admission control on the maximum number of UEs and admission on the maximum number of PDU sessions control.
  • the purpose of this disclosure is to: select an appropriate NSACF taking into account factors such as not all NSACFs support the same capabilities; select an appropriate NSACF with less signaling, such as less transmission of network slice status notifications and reports or NF device reconfiguration Positioning, etc.; select the appropriate NSACF with higher accuracy.
  • the present disclosure proposes a method and device for selecting an NSACF.
  • AMF selects an NSACF for a network slice based on the service capability of the NSACF, wherein the service capability includes the first service capability that supports monitoring the number of registered user equipment UEs in the network slice and/or supports monitoring
  • the second service capability of the network slicing is to create the number of protocol data unit PDU sessions, so as to select an appropriate NSACF more accurately and with less signaling.
  • Fig. 1 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure. As shown in Fig. 1, the method can be executed by AMF, and includes the following steps.
  • S101 Select an NSACF based on the service capability of the NSACF.
  • the service capability includes at least one of the following: a first service capability that supports monitoring the number of registered user equipment (UE) of the network slice, and a second service that supports monitoring the number of network slice created protocol data unit (PDU) sessions ability.
  • UE registered user equipment
  • PDU protocol data unit
  • NSACF can have a variety of different service capabilities, for example, NSACF can only support the service capability of monitoring the number of registered UEs of network slices, or NSACF can only support the service capability of monitoring the number of created PDU sessions of network slices, or NSACF can have It supports the service capability of monitoring the number of registered UEs in the network slice and the number of created PDU sessions in the network slice. If the NSACF is directly selected without considering the service capability of the NSACF, it is possible to select an NSACF that does not meet the requirements.
  • the AMF directly selects the NSACF for the network slice without considering the service capability of the NSACF , it is possible to select an NSACF that does not have the service capability to monitor the number of registered UEs in the network slice, that is, select an NSACF that does not meet the requirements.
  • the AMF may be required to re-select the NSACF, which will lead to a complicated NSACF selection process and more signaling transmission.
  • the AMF may select the NSACF for the network slice based on the service capability of the NSACF, thereby considering the service capability of the NSACF to realize the selection of the NSACF.
  • the NSACF selection method in this embodiment is also applicable, that is, the NSACF instance can be selected based on the service capability of the NSACF instance, and the specific details will not be repeated here.
  • the AMF selects the NSACF for the network slice based on the service capability of the NSACF, where the service capability includes the first service capability that supports monitoring the number of registered user equipment UEs in the network slice and/or supports monitoring the creation of the network slice
  • the second service capability is the number of protocol data unit PDU sessions, so that a suitable NSACF can be selected more accurately and with less signaling.
  • Fig. 2 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure.
  • the method may be executed by an AMF.
  • the method may include the following steps.
  • step S201 For the details of S201, reference may be made to the description of step S101 in FIG. 1 , which will not be repeated here.
  • step S201 may include the following steps.
  • the AMF preferentially selects an NSACF for the network slice that has the service capability of not only monitoring the number of registered UEs in the network slice, but also supporting monitoring the number of created PDU sessions in the network slice.
  • the NSACF selected by the AMF for the network slice has the service capability of only supporting the number of registered UEs for monitoring the network slice, but when subsequently creating a PDU session for the network slice, the selected NSACF cannot meet the requirements for creating a PDU session for monitoring the network slice
  • the number of requirements in this case, AMF needs to select an NSACF with the service capability to support monitoring the number of created PDU sessions of the network slice for the network slice, which leads to a complicated selection process of the NSACF and more signaling transmission.
  • the selected NSACF since the NSACF selected by the AMF for the network slice first supports the service capability of monitoring the number of registered UEs of the network slice and the number of created PDU sessions of the network slice, even if the network slice is subsequently created For a PDU session, the selected NSACF can also meet the requirements, thereby avoiding a complicated NSACF selection process and reducing signaling transmission.
  • the AMF preferentially selects an NSACF that has the service capability of not only monitoring the number of registered UEs in the network slice, but also supporting the monitoring of the number of created PDU sessions in the network slice, thereby avoiding the complicated NSACF selection process and reducing signaling transmission.
  • Fig. 3 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure.
  • the method may be executed by an AMF.
  • the method may include the following steps.
  • step S301 For details of S301, reference may be made to the description of step S101 in FIG. 1 , which will not be repeated here.
  • step S301 may include the following steps.
  • step S3011 For the details of S3011, reference may be made to the description of step S2011 in FIG. 2 , which will not be repeated here.
  • NSACF In the deployed NSACF, there may be multiple NSACFs with both the first service capability and the second service capability, and multiple NSACFs with both the first service capability and the second service capability may have different priorities, such as NSACF-based Priorities vary depending on factors such as deployment location.
  • the AMF when the AMF selects multiple NSACFs with the first service capability and the second service capability, it may select an NSACF with a high priority from the multiple NSACFs.
  • the AMF preferentially selects a high-priority NSACF that has the service capability of not only monitoring the number of registered UEs in the network slice, but also supporting the monitoring of the number of created PDU sessions in the network slice, thereby avoiding complicated NSACF
  • the selection process reduces signaling transmission and selects a more suitable NSACF.
  • Fig. 4 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure.
  • the method may be executed by an AMF.
  • the method may include the following steps.
  • step S401 For details of S401, reference may be made to the description of step S101 in FIG. 1 , which will not be repeated here.
  • step S401 may include the following steps.
  • the operator service capability policy includes at least one of: an NSACF indicating the selection of a required service capability, where the required service capability includes only the first service capability or includes the first service capability and the second service capability; and indicates the selection of a high priority Grade NSACF.
  • the AMF when there is an operator's service capability policy, preferentially selects an NSACF for the network slice based on the operator's service capability policy, so that the selected NSACF can meet the operator's service capability policy.
  • the operator's service capability policy When the operator's service capability policy includes an NSACF indicating the selection of the first service capability, it indicates that the operator's service capability policy expects to select an NSACF with a service capability that only supports the number of registered UEs that monitor network slices. In the capability policy, the AMF selects an NSACF for the network slice that has the service capability of monitoring the number of registered UEs in the network slice.
  • the operator's service capability policy includes an NSACF indicating to select the first service capability and indicates to select a high-priority NSACF, it indicates that the operator's service capability policy expects to select an NSACF with a high service capability that only supports the number of registered UEs that monitor network slices.
  • Prioritized NSACF whereby, based on the operator service capability policy, the AMF selects for the network slice an NSACF with the service capability of monitoring the number of registered UEs of the network slice, and selects the NSACF with high priority from the selected NSACF.
  • the operator service capability policy When the operator service capability policy includes NSACF indicating the selection of the first service capability and the second service capability, it indicates that the operator service capability policy expects to select a create PDU session with both support for monitoring the number of registered UEs of the network slice Therefore, based on the operator's service capability policy, the AMF selects an NSACF for the network slice that has the service capability of monitoring the number of registered UEs in the network slice and the number of created PDU sessions in the network slice.
  • the operator's service capability policy includes an NSACF that indicates the selection of the first service capability and the second service capability and indicates that a high-priority NSACF is selected, it indicates that the operator's service capability policy expects to select the number of registered UEs that support monitoring network slices and the number of registered UEs.
  • a high-priority NSACF that supports the service capability of monitoring the number of created PDU sessions of the network slice, thus, based on the service capability policy of the operator, the AMF selects the number of registered UEs with the monitoring network slice and the number of monitoring network slices for the network slice Create NSACFs capable of serving the number of PDU sessions, and select an NSACF with high priority from among the selected NSACFs.
  • the operator service capability policy is pre-configured in at least one of the AMF and the NRF.
  • the operator's service capability policy is pre-configured in the AMF, and can also be pre-configured in the NRF.
  • the AMF can obtain the operator's service capability policy by accessing the NRF.
  • the AMF preferentially selects an NSACF element according to the operator's service capability policy, so that the selected NSACF can meet the operator's service capability policy.
  • FIG. 5 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure.
  • the method may be executed by an AMF.
  • the method may include the following steps.
  • step S501 For the details of S501, refer to the description of step S101 in FIG. 1, steps S201 and S2011 in FIG. 2, steps S301 and S3011-S3012 in FIG. 3, and steps S401 and S4011 in FIG. v.
  • step S501 may include any of the following steps.
  • S5011 Select an NSACF from registered NSACFs of the network storage function NRF.
  • the configuration information of the registered NSACF is stored in the NRF, and the configuration information includes network slice selection auxiliary information (S-NSSAIs) and information indicating the service capability of the registered NSACF.
  • S-NSSAIs network slice selection auxiliary information
  • the NSACF can be registered in the NRF, the NSACF provides its configuration information to the NRF, and the NRF marks the NSACF as available.
  • the NSACF provides S-NSSAIs and service capabilities of the NSACF, that is, the configuration information of the NSACF registered in the NRF may include S-NSSAIs and capability information indicating its service capabilities.
  • AMF can use NRF to discover and select NSACF.
  • the S-NSSAI identifies a network slice, which is auxiliary information used by the network to select a specific network slice instance.
  • S-NSSAI can include the following information: slice/service type (SST, Slice Service Type), indicating the operation of the network slice expected from the perspective of function and service; Multiple Potential Network Slice Instances of SST Optional information supplementing SST for selection of network slice instances.
  • slice/service type SST, Slice Service Type
  • the AMF preferentially selects an NSACF with the first service capability and the second service capability from the registered NSACFs in the NRF.
  • step S2011 in FIG. 2 For the specific details of how the AMF selects the NSACF with the first service capability and the second service capability, reference may be made to the relevant descriptions of step S2011 in FIG. 2 and steps S3011-S3012 in FIG. 3 , and details will not be repeated here.
  • the AMF when there is an operator service capability policy, preferentially selects an NSACF from registered NSACFs in the NRF based on the operator service capability policy.
  • step S4011 For the specific details of how the AMF selects the NSACF based on the operator's service capability policy, reference may be made to the relevant description of step S4011 in FIG. 4 , and details will not be repeated here.
  • S5012 Select an NSACF from the pre-configured NSACF of the AMF, where the AMF stores configuration information of the pre-configured NSACF, and the configuration information includes S-NSSAIs and information indicating service capabilities of the registered NSACF.
  • the NSACF can be configured locally in the AMF, and the configuration information of the NSACF can indicate the service capabilities of the NSACF and S-NSSAIs.
  • AMF can use configuration information to discover and select NSACF.
  • the AMF preferentially selects the NSACF with the first service capability and the second service capability from the pre-configured NSACFs of the AMF.
  • step S2011 in FIG. 2 For the specific details of how the AMF selects the NSACF with the first service capability and the second service capability, reference may be made to the relevant descriptions of step S2011 in FIG. 2 and steps S3011-S3012 in FIG. 3 , and details will not be repeated here.
  • the AMF when there is an operator service capability policy, preferentially selects an NSACF from pre-configured NSACFs of the AMF based on the operator service capability policy.
  • step S4011 For the specific details of how the AMF selects the NSACF based on the operator's service capability policy, reference may be made to the relevant description of step S4011 in FIG. 4 , and details will not be repeated here.
  • the AMF can preferably select the NSACF with the service capability of monitoring the number of registered UEs of the network slice and the number of created PDU sessions of the network slice from the NRF or locally, or preferably based on the service capability of the operator
  • the strategy selects NSACF from NRF or from local preference, so as to meet the operator's service capability strategy, avoid complicated NSACF selection process and reduce signaling transmission.
  • Fig. 6 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure.
  • the method may be executed by an AMF.
  • the method may include the following steps.
  • Allowable network slicing assistance information (Allowed NSSAI) of the AMF
  • the UE When the UE registers with the network, the UE sends a registration request to the AMF, and the registration request will carry S-NSSAIs. If the Allowed NSSAI of the AMF includes the S-NSSAI carried in the registration request, the AMF will select the NSACF based on the service capability of the NSACF.
  • AMF selecting NSACF based on the service capability of NSACF refer to step S101 in Figure 1, steps S201 and S2011 in Figure 2, steps S301 and S3011-S3012 in Figure 3, steps S401 and S4011 in Figure 4 The description of steps S501 and S5011-S5012 in FIG. 5 will not be repeated here.
  • the AMF may perform NSACF selection in response to the UE's registration request.
  • Fig. 7 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure.
  • the method may be executed by an AMF.
  • the method may include the following steps.
  • S702 If the S-NSSAIs carried in the registration request are included in the allowable network slicing assistance information (Allowed NSSAI) of the AMF, select the NSACF based on the service capability of the NSACF.
  • Allowable network slicing assistance information Allowed NSSAI
  • step S702 For details of step S702, refer to step S101 in FIG. 1, steps S201 and S2011 in FIG. 2, steps S301 and S3011-S3012 in FIG. 3, steps S401 and S4011 in FIG. 4, and step S501 in FIG. and the description of S5011-S5012 will not be repeated here.
  • the validity check and update request message includes S-NSSAIs, UE IDs and update flags, and the update flags indicate to increase the number of registered UEs.
  • the AMF may send a validity check and update request message to the selected NSACF, so that the NSACF can check the number of registered UEs according to the validity check and update request message.
  • the NSACF After receiving the validity check and update request message, the NSACF checks the number of registered UEs in response to the request message, and updates the number of registered UEs and/or feeds back a validity check and update response message according to the check result. After receiving the validity check and update response message, the AMF can perform UE registration according to the response message.
  • the above step S704 may include the following steps.
  • the validity check and update response message indicates that the validity check is successful, it indicates that the UE can register to the corresponding network slice, and the AMF performs the UE registration process based on the validity check and update response message and returns the registration to the UE after completing the UE registration process. Accept message.
  • the validity check and update response message indicates that the validity check fails, it indicates that the UE cannot be registered to the corresponding network slice, for example, because the number of UE registrations of the network slice has reached the maximum number, etc., then AMF based on the validity check and update The response message returns a registration rejection message to the UE.
  • the NSACF may monitor the number of registered UEs of the corresponding network slice through the NSACF.
  • Fig. 8 shows a schematic flowchart of a method for selecting an NSACF according to an embodiment of the present disclosure.
  • the method may be executed by an AMF.
  • the method may include the following steps.
  • step S801 For details of step S801, refer to step S101 in FIG. 1, steps S201 and S2011 in FIG. 2, steps S301 and S3011-S3012 in FIG. 3, steps S401 and S4011 in FIG. 4, and step S501 in FIG. and the description of S5011-S5012 will not be repeated here.
  • the new AMF can receive the Allowed NSSAI of the old AMF from the old AMF. If one or more S-NSSAIs in the Allowed NSSAI of the old AMF are not supported by the new AMF, that is, not included in the Allowed NSSAI of the new AMF, the new AMF will send a status update request message to the old AMF so that the old AMF performs a status update .
  • the status update message includes the one or more S-NSSAIs not supported by the new AMF.
  • the AMF can notify the other AMF to execute status update.
  • FIG. 9 shows an interactive process of selection of NSACF, validity checking and updating of the number of slice registered UEs according to an embodiment of the present disclosure.
  • the AMF selects the NSACF, and interacts with the NSACF to implement the validity check and update of the number of registered UEs. Specifically, the following processes are included.
  • the validity checking and updating of the number of registered UEs may be triggered in response to a message received by the AMF from other devices, or may be triggered by the AMF based on some preset triggering mechanism.
  • a validity check and update on the number of registered UEs may be triggered in response to a registration request from the UE.
  • the AMF selects the NSACF based on the service capability of the NSACF or the NSACF service capability policy of the operator for the S-NSSAI carried in the registration request.
  • AMF will first select the NSACF according to the operator's service capability policy.
  • the NSACF monitors the service capability of the network slice to create the number of PDU sessions.
  • the NSACF can be registered in the NRF, the NSACF provides its configuration information to the NRF, and the NRF marks the NSACF as available. During the registration process of NSACF, NSACF provides S-NSSAIs and service capabilities of NSACF as input. If the NSACF is registered in the NRF, the AMF can use the NRF to select the NSACF.
  • the NSACF can be configured in the AMF, and the configuration information of the NSACF can indicate the service capabilities of the NSACF and S-NSSAIs. If the NSACF is configured in the AMF, the AMF can use the configuration information of the NSACF in the AMF to select the NSACF.
  • the operator's service capability policy may be, for example, indicating to select an NSACF with the service capability of the number of registered UEs that support monitoring network slices, indicating to select the number of registered UEs that support monitoring network slices to create PDU sessions and support monitoring network slices
  • the operator's service capability policy may also include instructions to select a high-priority NSACF.
  • Operator service capability policy can be pre-configured in SMF and/or NRF.
  • the validity check and update on the number of registered UEs may be triggered in response to the AMF completing the UE's de-registration procedure.
  • the AMF sends a validity check and update request message to the selected NSACF.
  • (Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Request) message includes UE identity, S-NSSAIs and update flag.
  • the update flag may indicate to increase the number of registered UEs when the UE will register with the corresponding network slice or indicate to decrease the number of registered UEs when the UE will de-register from the corresponding network slice or the UE will resume registration with the corresponding network slice.
  • the NSACF checks and updates the number of registered UEs based on the validity check and update request message provided by the AMF.
  • the NSACF will not Increase the number of registered UEs, because UEs have been counted as registered to the corresponding network slice.
  • the NSACF will add the UE identifier to the list of registered UEs and increase the number of registered UEs.
  • the NSACF finds that the UE identity in the validity check and update request message does not exist in the registered UE list of the corresponding network slice and the corresponding network slice If the number of registered UEs has reached the maximum number, the NSACF will not increase the number of registered UEs and will return a result parameter indicating that the number of registered UEs of the corresponding network slice has reached the maximum number.
  • the NSACF will remove the UE identity in the validity check and update request message from the list of registered UEs in the corresponding network slice and decrease Number of registered UEs.
  • the NSACF feeds back a validity check and update response message to the AMF.
  • the NSACF finds that the number of registered UEs in the corresponding network slice has reached the maximum number, the validity check and update response fed back by the NSACF to the AMF
  • the (Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Response) message may include result parameters as described above.
  • the AMF will reject the UE’s registration request and return the registration to the UE.
  • Rejection message if for a certain S-NSSAI in the registration request, NSACF does not feed back the result parameter indicating that the number of registered UEs in the network slice has reached the maximum number, the AMF will execute the UE registration process and send the UE registration process to The UE returns a Registration Accept message.
  • the registration rejection message or registration acceptance message includes, for example, rejected S-NSSAIs, reasons for rejection (such as "the number of registered UEs of the corresponding network slice has reached the maximum number"), and an optional backoff time.
  • FIG. 10 shows an interactive process of validity checking and updating of the number of registered UEs in a UE registration situation according to an embodiment of the present disclosure.
  • the AMF and the NSACF interact to implement the validity check and update of the number of registered UEs. Specifically, the following processes are included.
  • the UE sends a registration request (Registration Request) to the AMF, and the registration request includes S-NSSAIs.
  • the AMF considers the S-NSSAI carried in the registration request, and selects an NSACF based on the service capability of the NSACF.
  • step S1002 For details of step S1002, reference may be made to the description of S901 in FIG. 9 , which will not be repeated here.
  • the AMF sends a validity check and update request to the selected NSACF
  • the NSACF checks and updates the number of registered UEs based on the validity check and update request message provided by the AMF.
  • S1006 The AMF performs UE registration according to the validity check and the update response message. Specifically, S1006 may include step S1006a or include steps S1006b-S1006c.
  • the AMF rejects the registration request of the UE and returns a registration rejection (Registration Reject) message to the UE.
  • the AMF executes a UE registration process.
  • the AMF returns a Registration Accept (Registration Accept) message to the UE after completing the UE registration process.
  • FIG. 11 shows an interactive process of checking the validity and updating of the number of registered UEs in the case of UE deregistration according to an embodiment of the present disclosure.
  • the interactive process is based on that the UE has registered to the network slice, and the UE or The network triggers the deregistration process.
  • AMF and NSACF interact to implement validity check and update on the number of registered UEs. Specifically, the following processes are included.
  • the UE sends a deregistration request (Deregistration Request) to the AMF, and the deregistration request includes S-NSSAIs.
  • the AMF executes the UE deregistration process.
  • the AMF returns a Deregistration Accept (Deregistration Accept) message to the UE after completing the UE deregistration process.
  • Deregistration Accept Deregistration Accept
  • the AMF sends a validity check and update request to the selected NSACF
  • the NSACF checks and updates the number of registered UEs based on the validity check and update request message provided by the AMF.
  • the network device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above functions can be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module
  • the present disclosure also provides an NSACF selection device, since the NSACF selection device provided by the embodiments of the present disclosure is similar to the NSACF selection method provided by the above several embodiments Correspondingly, therefore, the implementation manner of the NSACF selection method is also applicable to the NSACF selection device provided in this embodiment, and will not be described in detail in this embodiment.
  • FIG. 12 is a schematic structural diagram of an NSACF selection device 1200 provided by an embodiment of the present disclosure.
  • the apparatus 1200 may include a processing module 1201, and the processing module 1201 may select an NSACF based on the service capability of the NSACF; wherein the service capability includes at least one of the following: a registered user equipment UE that supports monitoring network slices The first service capability of the quantity, and the second service capability of supporting the monitoring of the quantity of creating protocol data unit PDU sessions of the network slice.
  • the AMF selects an NSACF for a network slice based on the service capability of the NSACF, wherein the service capability includes a first service capability that supports monitoring the number of registered user equipment UEs in the network slice and/or supports monitoring the network slice
  • the second service capability of creating the number of protocol data unit PDU sessions so that it is possible to select an appropriate NSACF more accurately and with less signaling.
  • the processing module 1201 is configured to: select an NSACF with the first service capability and the second service capability.
  • the processing module 1201 is further configured to: select a high-priority NSACF from the multiple NSACFs.
  • the processing module 1201 is configured to: select an NSACF according to the operator service capability policy; wherein the operator service capability policy includes at least one of the following: Instructing to select the NSACF of the required service capability, wherein the required service capability includes only the first service capability or both the first service capability and the second service capability; and instructs to select the NSACF of high priority.
  • the processing module 1201 is configured to: select the NSACF from the registered NSACF of the network storage function NRF, where the configuration information of the registered NSACF is stored in the NRF, and the configuration information includes network slicing Selection assistance information S-NSSAIs and information indicating the service capabilities of said registered NSACF.
  • the processing module 1201 is configured to: select the NSACF from the pre-configured NSACF of the AMF, wherein the AMF stores configuration information of the pre-configured NSACF, and the configuration information includes network slice selection assistance Information S-NSSAIs and information indicating the service capabilities of said registered NSACF.
  • the operator service capability policy is preconfigured in at least one of the AMF and the NRF.
  • the apparatus 1200 further includes: a transceiver module 1202 configured to receive a registration request from the UE, wherein the registration request carries S-NSSAIs; wherein the The processing module 1201 is configured to: if the S-NSSAIs carried in the registration request are included in the Allowed NSSAI of the AMF, select an NSACF based on the service capability of the NSACF.
  • the transceiving module 1202 is further configured to: send a validity check and update request message to the selected NSACF, where the validity check and update request message includes S-NSSAIs, UE identifiers and update flags, The update flag indicates to increase the number of registered UEs; and receiving a validity check and update response message from the selected NSACF; and the processing module 1201 is further configured to perform UE registration according to the validity check and update response message.
  • the processing module 1201 is configured to: if the validity check and update response message indicates that the validity check is successful, execute the UE registration process and instruct the transceiving module 1202 to send the UE registration process to the The UE returns a registration acceptance message, and if the validity check and update response message indicate that the validity check fails, instruct the transceiver module 1202 to return a registration rejection message to the UE.
  • the transceiving module 1202 is configured to receive the Allowed NSSAI from another AMF; and if at least one S-NSSAI in the Allowed NSSAI of the other AMF is not included in the Allowed NSSAI of the AMF , sending a status update request message to the other AMF, where the status update request message includes the at least one S-NSSAI.
  • FIG. 14 is a schematic structural diagram of a communication device 1400 provided in an embodiment of the present application.
  • the communication device 1400 may be a network device, or a user device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 1400 may include one or more processors 1401 .
  • the processor 1401 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1400 may further include one or more memories 1402, on which a computer program 1404 may be stored, and the processor 1401 executes the computer program 1404, so that the communication device 1400 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1402 .
  • the communication device 1400 and the memory 1402 can be set separately or integrated together.
  • the communication device 1400 may further include a transceiver 1405 and an antenna 1406 .
  • the transceiver 1405 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1405 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1400 may further include one or more interface circuits 1407 .
  • the interface circuit 1407 is used to receive code instructions and transmit them to the processor 1401 .
  • the processor 1401 runs the code instructions to enable the communication device 1400 to execute the methods described in the foregoing method embodiments.
  • the communication device 1400 is a network device: the processor 1401 is used to execute step S101 in FIG. 1, steps S201 and S2011 in FIG. 2, steps S301 and S3011-S3012 in FIG. 3, steps S401 and S4011 in FIG. Steps S501 and S5011-S5012 in 5, step S602 in FIG. 6, steps S701 and S703 in FIG. 7, and step S801 in FIG. 8; the transceiver 1405 is used to execute step S601 in FIG. S702, steps S802-S803 in FIG. 8 .
  • the processor 1401 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1401 may store a computer program 1403 , and the computer program 1403 runs on the processor 1401 to enable the communication device 1400 to execute the methods described in the foregoing method embodiments.
  • the computer program 1403 may be solidified in the processor 1401, and in this case, the processor 1401 may be implemented by hardware.
  • the communication device 1400 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device can be Not limited by Fig. 14 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 15 includes a processor 1501 and an interface 1502 .
  • the number of processors 1501 may be one or more, and the number of interfaces 1502 may be more than one.
  • the processor 1501 is used to execute step S101 in FIG. 1, steps S201 and S2011 in FIG. 2, and steps S301 and S3011 in FIG. 3- S3012, steps S401 and S4011 in FIG. 4, steps S501 and S5011-S5012 in FIG. 5, step S602 in FIG. 6, steps S701 and S703 in FIG. 7, and step S801 in FIG. 8;
  • the interface 1502 is used to execute Step S601 in FIG. 6 , step S702 in FIG. 7 , and steps S802-S803 in FIG. 8 .
  • the chip further includes a memory 1503 for storing necessary computer programs and data.
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (for example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • steps may be reordered, added or deleted using the various forms of flow shown above.
  • each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提出了一种NSACF选择方法及装置,涉及通信领域,本申请的技术方案主要是AMF基于NSACF的服务能力为网络切片选择NSACF,其中服务能力包括支持监控网络切片的注册用户设备UE的数量的第一服务能力和/或支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力,从而能够更准确且以更少信令选择到合适的NSACF。

Description

网络切片接纳控制功能的选择方法及装置 技术领域
本公开涉及移动通信技术领域,特别涉及一种网络切片接纳控制功能(NSACF,Network Slice Admission Control Function)的选择方法及装置。
背景技术
网络切片技术允许运营商提供各种定制网络,例如,提供不同功能要求的网络,或不同性能需求的网络,例如,不同的时延、移动性、可用性、可靠性和数据率带宽等需求,或者仅针对特定用户提供网络功能,例如,多投影系统用户、公共安全用户、公司客户、漫游者或移动虚拟网络运营商托管。
目前,网络功能(NF,Network Function)通常利用网络存储功能(NRF,Network Repository Function)来执行发现和选择。但是,如何选择合适的NSACF,使得更利于网络切片UE数的监控统计执行功能以及切片会话数的监控统计执行功能的实现,例如更少的信令交互或功能交互,支持和优化功能执行,仍是亟待解决的关键问题。
发明内容
本公开提出了一种NSACF的选择方法及装置,能够更准确且以更少信令和功能交互选择到合适的NSACF。
本公开的第一方面实施例提供了一种NSACF的选择方法,所述方法由接入和移动性管理功能(AMF,Access and Mobility Function)执行,所述方法包括:基于NSACF的服务能力,选择NSACF;其中所述服务能力包括以下中的至少一种:支持监控网络切片的注册用户设备UE的数量的第一服务能力,以及支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力。
可选地,所述选择NSACF包括:选择具有第一服务能力和第二服务能力的NSACF。
可选地,所述选择NSACF还包括:当多个NSACF具有第一服务能力和第二服务能力时,从所述多个NSACF中选择高优先级的NSACF。
可选地,如果有运营商服务能力策略,所述选择NSACF包括:依据所述运营商服务能力策略选择NSACF;其中所述运营商服务能力策略包括以下中的至少一种:指示选择所需服务能力的NSACF,其中所需服务能力包括仅第一服务能力或包括第一服务能力和第二服务能力;以及指示选择高优先级的NSACF。
可选地,所述选择NSACF包括:从网络存储功能NRF的已注册NSACF中选择所述NSACF,其中所述NRF中存储已注册NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
可选地,所述选择NSACF包括:从所述AMF的预配置NSACF中选择所述NSACF,其中所述AMF存储预配置NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
可选地,所述运营商服务能力策略预配置在所述AMF和所述NRF中的至少一个中。
可选地,所述方法还包括:接收来自UE的注册请求,其中,所述注册请求中携带有S-NSSAIs;其中,所述基于NSACF的服务能力,选择NSACF包括:如果所述注册请求 中携带的S-NSSAIs包括在所述AMF的可允许网络切片辅助信息Allowed NSSAI中,基于NSACF的服务能力,选择NSACF。
可选地,所述方法还包括:向所选NSACF发送有效性检查和更新请求消息,所述有效性检查和更新请求消息中包括S-NSSAIs、UE标识和更新标志,所述更新标志指示增加注册UE的数量;以及从所选NSACF接收有效性检查和更新响应消息,并根据所述有效性检查和更新响应消息进行UE注册。
可选地,所述根据所述有效性检查和更新响应消息进行UE注册包括:如果所述有效性检查和更新响应消息指示有效性检查成功,执行UE注册流程并在完成UE注册流程之后向所述UE返回注册接受消息,如果所述有效性检查和更新响应消息指示有效性检查失败,向所述UE返回注册拒绝消息。
可选地,所述方法还包括:接收来自另一AMF的Allowed NSSAI;以及如果所述另一AMF的Allowed NSSAI中的至少一个S-NSSAI不包括在所述AMF的Allowed NSSAI中,向所述另一AMF发送状态更新请求消息,所述状态更新请求消息包括所述至少一个S-NSSAI。
本公开第二方面实施例提供了一种NSACF的选择装置,所述装置应用于接入和移动性管理功能AMF,所述装置包括:处理模块,被配置为基于NSACF的服务能力,选择NSACF;其中所述服务能力包括以下中的至少一种:支持监控网络切片的注册用户设备UE的数量的第一服务能力,以及支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力。
可选地,所述处理模块被配置为:选择具有第一服务能力和第二服务能力的NSACF。
可选地,当多个NSACF具有第一服务能力和第二服务能力时,所述处理模块被进一步配置为:从所述多个NSACF中选择高优先级的NSACF。
可选地,如果有运营商服务能力策略,所述处理模块被配置为:依据所述运营商服务能力策略选择NSACF;其中所述运营商服务能力策略包括以下中的至少一种:指示选择所需服务能力的NSACF,其中所需服务能力包括仅第一服务能力或包括第一服务能力和第二服务能力;以及指示选择高优先级的NSACF。
可选地,所述处理模块被配置为:从网络存储功能NRF的已注册NSACF中选择所述NSACF,其中所述NRF中存储已注册NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
可选地,所述处理模块被配置为:从所述AMF的预配置NSACF中选择所述NSACF,其中所述AMF存储预配置NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
可选地,所述运营商服务能力策略预配置在所述AMF和所述NRF中的至少一个中。
可选地,所述装置还包括:收发模块,被配置为接收来自UE的注册请求,其中,所述注册请求中携带有S-NSSAIs;其中,所述处理模块被配置为:如果所述注册请求中携带的S-NSSAIs包括在所述AMF的可允许网络切片辅助信息Allowed NSSAI中,基于NSACF的服务能力,选择NSACF。
可选地,所述收发模块还被配置为:向所选NSACF发送有效性检查和更新请求消息,所述有效性检查和更新请求消息中包括S-NSSAIs、UE标识和更新标志,所述更新标志指示增加注册UE的数量;以及从所选NSACF接收有效性检查和更新响应消息;以及所述处理模块还被配置为根据所述有效性检查和更新响应消息进行UE注册。
可选地,所述处理模块被配置为:如果所述有效性检查和更新响应消息指示有效性检查成功,执行UE注册流程并在完成UE注册流程之后指示所述收发模块向所述UE返回注册接受消息,如果所述有效性检查和更新响应消息指示有效性检查失败,指示所述收发模块向所述UE返回注册拒绝消息。
可选地,所述装置还包括:收发模块,被配置为接收来自另一AMF的Allowed NSSAI;以及如果所述另一AMF的Allowed NSSAI中的至少一个S-NSSAI不包括在所述AMF的Allowed NSSAI中,向所述另一AMF发送状态更新请求消息,所述状态更新请求消息包括所述至少一个S-NSSAI。
本公开的第三方面实施例提供了一种通信设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现上述第一方面实施例的NSACF的选择方法。
本公开第四方面实施例提出了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现上述第一方面实施例的NSACF的选择方法。
本公开实施例提供了一种NSACF的选择方法及装置,AMF基于NSACF的服务能力为网络切片选择NSACF,其中服务能力包括支持监控网络切片的注册用户设备UE的数量的第一服务能力和/或支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力,从而能够更准确且以更少信令和功能交互选择到合适的NSACF。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图2为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图3为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图4为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图5为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图6为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图7为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图8为根据本公开实施例的一种NSACF的选择方法的流程示意图;
图9为根据本公开实施例的关于注册UE的数量的有效性检查和更新的交互过程;
图10为根据本公开实施例的在UE注册情形下的关于注册UE的数量的有效性检查和更新的交互过程;
图11为根据本公开实施例的在UE取消注册情形下的关于注册UE的数量的有效性检查和更新的交互过程;
图12为本公开实施例提供的一种NSACF选择装置的结构示意图;
图13为本公开实施例提供的一种NSACF选择装置的结构示意图;
图14为本公开实施例提供的一种通信装置的结构示意图;
图15为本公开实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
网络切片技术允许运营商提供各种定制网络,例如,如果功能要求(例如,优先级、计费、策略控制、安全和移动性)之间存在差异,如果性能要求(例如,延迟时间、移动性、可用性、可靠性和数据速度)之间存在差异,或者仅针对特定用户(例如,多投影系统用户、公共安全用户、公司客户、漫游者或移动虚拟网络运营商托管),可提供服务。
网络切片可以提供完整的网络功能,包括无线接入网络功能,核心网络功能和IP多媒体系统(IMS,IP Multimedia Subsystem)功能等。一个网络可以支持一个或多个网络切片。由于支持的网络功能和性能差异,网络切片之间存在差异。网络切片实例意指网络切片的实例化,即,根据网络切片模板传递预期网络切片服务的部署网络功能集合。
各个网络切片支持的特征和网络功能优化可不同,各个网络切片可以具有不同的单一网络切片选择辅助信息(S-NSSAI,Single-Network Slice Selection Assistance Information)来标识不同的切片或服务类型,其具有不同切片/服务类型。
运营商可以为提供相同功能的不同组或类别的UE,部署多个网络切片,例如传送业务特性不同,或者提供用户专用网络。这类场景下的各切片可能具有相同类型,但采用不同S-NSSAIs分别标识。
UE的一组网络切片实例的选择,通常是通过注册流程中的第一个接入和移动性管理功能(AMF,Access and Mobility Management Function)触发,该AMF与网络切片选择功能(NSSF,Network SliceSelection Function)交互。切片选择可能会导致AMF的重选。一个PDU会话,归属于且只归属于,PLMN内一个特定的网络切片实例。尽管不同的网络切片实例可能具有使用相同DNN的特定切片的PDU会话,但不同的网络切片实例不共享同一个PDU会话。在切换过程中,源AMF通过与网络注册功能(NRF,NF Repository Function)交互,来选择目标AMF。
网络切片类型(NEST,Network Slice Type)应用于网络切片,一个网络切片可以部署多个网络切片实例。通用网络切片模板(GST,Generic Network Slice Template)限定网络切片所支持的属性。例如,1)终端数,该属性描述可同时使用网络切片的终端的最大数;2)连接数,该属性描述网络切片所支持的并发会话的最大数。这对于确定网络切片的规模并为网络切片提供足够资源来说是重要的输入。
网络切片可以支持有限数量的用户设备(UE)同时使用该网络切片以及支持有限数量的并发会话数。为了支持关于网络切片的终端数和协议数据单元(PDU,Protocol Data Unit)会话数的控制,在5G通信系统中,引入网络切片接纳控制功能(NSACF,Network Slice Admission Control Function)。对于受到网络切片接纳和控制(NSAC,Network Slice Admission Control)的网络切片,NSACF监控各个网络切片的已注册UE数以及各个网络切片的PDU会话数。
网络中可以部署多个NSACF,或部署多个NSACF实例。运营商网络中,可能包括如下不同的NSACF部署方案。一个网络切片部署多个NSACF。或者多个NSACF服务于一个大网络的多个网络切片便于弹性。单个或多个NSACFs专用与某个特定网络切片提供定制业务,例如隔离切片。此外,当一个网络切片中采用多个网络切片实例部署时,以上这些方案也都有可能实施。
关于NSACF发现和选择,网络功能(NF,Network Function)通常利用网络存储功能(NRF,Network Repository Function)来执行。关于NSACF的发现和选择,发现端网络功能可通过NRF来执行,也可通过本地配置等运营商策略来执行。该方案适用于NSACF功能或NSACF实例的发现和选择。但是如何更准确且以更少信令选择到合适的NSACF,使得更利于网络切片UE数的监控统计执行功能以及切片会话数的监控统计执行功能的实现,例如更少的信令交互或功能交互,支持和优化功能执行,仍是亟待解决的关键问题。
由于并非所有NSACF支持相同能力。例如,一些NSACF仅支持关于最大UE数的接纳控制,或一些NSACF仅支持关于最大PDU会话数的接纳控制,或者一些NSACF可以既支持关于最大UE数的接纳控制又支持关于最大PDU会话数的接纳控制。
然而,在目前NSACF选择和发现机制中,并没有考虑NSACF的不同能力以及不同的NSACF部署选项。
由此,本公开的目的在于:在考虑例如并非所有NSACF支持相同能力的因素下选择合适的NSACF;以更少信令选择合适的NSACF,例如更少传输网络切片状态通知和报告或NF设备重定位等;以更高准确性选择合适的NSACF。
本公开提出了一种NSACF的选择方法及装置,AMF基于NSACF的服务能力为网络切片选择NSACF,其中服务能力包括支持监控网络切片的注册用户设备UE的数量的第一服务能力和/或支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力,从而能够更准确且以更少信令选择到合适的NSACF。
下面结合附图对本申请所提供的NSACF的选择方法及装置进行详细地介绍。
图1示出了根据本公开实施例的一种NSACF的选择方法的流程示意图。如图1所示,该方法可由AMF执行,且包括以下步骤。
S101,基于NSACF的服务能力,选择NSACF。
其中服务能力包括以下中的至少一种:支持监控网络切片的注册用户设备(UE)的数量的第一服务能力,以及支持监控网络切片的创建协议数据单元(PDU)会话的数量的第二服务能力。
NSACF可以具有多种不同服务能力,例如NSACF可以具有仅支持监控网络切片的注册UE的数量的服务能力、或NSACF可以具有仅支持监控网络切片的创建PDU会话的数量的服务能力、或NSACF可以具有既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力。如果不考虑NSACF的服务能力而直接进行NSACF的选择,有可能选择到不满足需求的NSACF,例如,在UE注册场景下,如果AMF在不考虑NSACF的服务能力的情况下直接为网络切片选择NSACF,有可能选择到不具有支持监控网络切片的注册UE的数量的服务能力的NSACF,即选择到不满足需求的NSACF。在这种情况下,可能需要AMF重新进行NSACF的选择,这将导致复杂的NSACF选择过程且导致更多信令传输。
在本实施例中,AMF可以基于NSACF的服务能力来为网络切片选择NSACF,从而考虑了NSACF所具有的服务能力来实现NSACF的选择。
应当注意的是,在所部署的NSACF具有多个NSACF实例时,本实施例的NSACF的选择方法也适用,即可以基于NSACF实例的服务能力选择NSACF实例,具体细节在此不再赘诉。
根据本实施的NSACF的选择方法,AMF基于NSACF的服务能力为网络切片选择NSACF,其中服务能力包括支持监控网络切片的注册用户设备UE的数量的第一服务能力 和/或支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力,从而能够更准确且以更少信令选择到合适的NSACF。
图2示出了根据本公开实施例的一种NSACF的选择方法的流程示意图,该方法可由AMF执行,如图2所示,该方法可包括以下步骤。
S201,基于NSACF的服务能力,选择NSACF。
关于S201的细节,可以参考图1中的步骤S101的描述,在此不再赘诉。
在本实施例中,上述步骤S201可以包括以下步骤。
S2011,选择具有第一服务能力和第二服务能力的NSACF。
在本实施例中,AMF优先为网络切片选择具有既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力的NSACF。
如果AMF为网络切片所选NSACF具有仅支持监控网络切片的注册UE的数量的服务能力,然而在后续针对该网络切片创建PDU会话时,则所选NSACF不能够满足监控网络切片的创建PDU会话的数量的需要,在这种情况下,AMF需再为网络切片再选择具有支持监控网络切片的创建PDU会话的数量的服务能力的NSACF,从而导致了复杂的NSACF的选择过程且导致更多信令传输。
然而,在本实施例中,由于AMF优先为网络切片选择的NSACF既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力,则即便后续针对该网络切片创建PDU会话,该所选NSACF也能够满足需要,从而避免了复杂的NSACF选择过程且减少信令传输。
根据本实施的NSACF的选择方法,AMF优先选择具有既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力的NSACF,从而能够避免复杂的NSACF选择过程以及减少信令传输。
图3示出了根据本公开实施例的一种NSACF的选择方法的流程示意图,该方法可由AMF执行,如图3所示,该方法可包括以下步骤。
S301,基于NSACF的服务能力,选择NSACF。
关于S301的细节,可以参考图1中的步骤S101的描述,在此不再赘诉。
在本实施例中,上述步骤S301可以包括以下步骤。
S3011,选择具有第一服务能力和第二服务能力的NSACF。
关于S3011的细节,可以参考图2中的步骤S2011的描述,在此不再赘诉。
S3012,当多个NSACF具有第一服务能力和第二服务能力时,从多个NSACF中选择高优先级的NSACF。
所部署的NSACF中可能有多个NSACF既具有第一服务能力又具有第二服务能力,而多个既具有第一服务能力又具有第二服务能力的NSACF可以具有不同优先级,例如基于NSACF的部署位置等因素而具有不同优先级。
在本实施例中,AMF选择到多个具有第一服务能力和第二服务能力的NSACF时,可以从多个NSACF中选择具有高优先级的NSACF。
根据本实施的NSACF的选择方法,AMF优先选择具有既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力的高优先级的NSACF,从而能够避免复杂的NSACF选择过程以及减少信令传输并选择到更合适的NSACF。
图4示出了根据本公开实施例的一种NSACF的选择方法的流程示意图,该方法可由AMF执行,如图4所示,该方法可包括以下步骤。
S401,基于NSACF的服务能力,选择NSACF。
关于S401的细节,可以参考图1中的步骤S101的描述,在此不再赘诉。
在本实施例中,当具有运营商服务能力策略时,上述步骤S401可以包括以下步骤。
S4011,依据运营商服务能力策略选择NSACF。
运营商服务能力策略包括以下中的至少一种:指示选择所需服务能力的NSACF,其中所需服务能力包括仅第一服务能力或包括第一服务能力和第二服务能力;以及指示选择高优先级的NSACF。
在本实施例中,当具有运营商服务能力策略时,AMF优先基于运营商服务能力策略来为网络切片选择NSACF,从而所选NSACF能够满足运营商服务能力策略。
当运营商服务能力策略包括指示选择第一服务能力的NSACF时,表明运营商服务能力策略期望选择具有仅支持监控网络切片的注册UE的数量的服务能力的NSACF,由此,基于该运营商服务能力策略,AMF为网络切片选择具有监控网络切片的注册UE的数量的服务能力的NSACF。
当运营商服务能力策略包括指示选择第一服务能力的NSACF且指示选择高优先级的NSACF时,表明运营商服务能力策略期望选择具有仅支持监控网络切片的注册UE的数量的服务能力的具有高优先级的NSACF,由此,基于该运营商服务能力策略,AMF为网络切片选择具有监控网络切片的注册UE的数量的服务能力的NSACF,并从所选NSACF中选择具有高优先级的NSACF。
当运营商服务能力策略包括指示选择第一服务能力和第二服务能力的NSACF时,表明运营商服务能力策略期望选择具有既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力的NSACF,由此,基于该运营商服务能力策略,AMF为网络切片选择具有监控网络切片的注册UE的数量和监控网络切片的创建PDU会话的数量的服务能力的NSACF。
当运营商服务能力策略包括指示选择第一服务能力和第二服务能力的NSACF且指示选择高优先级的NSACF时,表明运营商服务能力策略期望选择具有既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力的高优先级的NSACF,由此,基于该运营商服务能力策略,AMF为网络切片选择具有监控网络切片的注册UE的数量和监控网络切片的创建PDU会话的数量的服务能力的NSACF,并从所选NSACF中选择具有高优先级的NSACF。
在一些实施例中,运营商服务能力策略预配置在AMF和NRF中的至少一个中。
运营商服务能力策略预配置在AMF中,也可以预配置在NRF中。当运营商服务能力策略预配置在NRF中时,AMF可以通过访问NRF来获取运营商服务能力策略。
根据本实施的NSACF的选择方法,如果有运营商服务能力策略,AMF优先依据运营商服务能力策略选择NSACF元,从而使得所选NSACF能够满足运营商服务能力策略。
图5示出了根据本公开实施例的一种NSACF的选择方法的流程示意图,该方法可由AMF执行,如图5所示,该方法可包括以下步骤。
S501,基于NSACF的服务能力,选择NSACF。
关于S501的细节,可以参考图1中的步骤S101、图2中的步骤S201及S2011、图3中的步骤S301及S3011-S3012、图4中的步骤S401及S4011的描述,在此不再赘诉。
在本实施例中,上述步骤S501可以包括以下任一步骤。
S5011,从网络存储功能NRF的已注册NSACF中选择NSACF。其中NRF中存储已注册NSACF的配置信息,配置信息包括网络切片选择辅助信息(S-NSSAIs)以及指示已注册NSACF的服务能力的信息。
NSACF可以注册在NRF中,NSACF向NRF提供其配置信息,NRF标记该NSACF可用。在NSACF的注册过程中,NSACF提供S-NSSAIs以及NSACF的服务能力,即在NRF中注册的NSACF的配置信息可以包括S-NSSAIs以及指示其服务能力的能力信息。AMF可以利用NRF来发现和选择NSACF。
其中,S-NSSAI标识网络切片,其是网络用来选择特定网络切片实例的辅助信息。S-NSSAI可用包括以下信息:切片/服务类型(SST,Slice Service Type),指示从功能和服务的角度预期的网络切片的操作;切片区分器(Slience Differentiator),用于从全部符合所指示的SST的多个潜在网络切片实例选择网络切片实例的补充SST的可选信息。
在一些实施例中,AMF优先从NRF中的已注册NSACF中选择具有第一服务能力和第二服务能力的NSACF。
关于AMF如何选择具有第一服务能力和第二服务能力的NSACF的具体细节,可以参考图2中的步骤S2011以及图3中的步骤S3011-S3012的相关描述,在此不再赘诉。
在一些实施例中,当具有运营商服务能力策略时,AMF优先基于运营商服务能力策略从NRF中的已注册NSACF中选择NSACF。
关于AMF如何基于运营商服务能力策略选择的NSACF的具体细节,可以参考图4中的步骤S4011的相关描述,在此不再赘诉。
S5012,从AMF的预配置NSACF中选择NSACF,其中AMF存储预配置NSACF的配置信息,配置信息包括S-NSSAIs以及指示已注册NSACF的服务能力的信息。
NSACF可被本地配置于AMF中,NSACF的配置信息可以指示NSACF的服务能力以及S-NSSAIs。AMF可以利用配置信息来发现和选择NSACF。
在一些实施例中,AMF优先从AMF的预配置NSACF中选择具有第一服务能力和第二服务能力的NSACF。
关于AMF如何选择具有第一服务能力和第二服务能力的NSACF的具体细节,可以参考图2中的步骤S2011以及图3中的步骤S3011-S3012的相关描述,在此不再赘诉。
在一些实施例中,当具有运营商服务能力策略时,AMF优先基于运营商服务能力策略从AMF的预配置NSACF中选择NSACF。
关于AMF如何基于运营商服务能力策略选择的NSACF的具体细节,可以参考图4中的步骤S4011的相关描述,在此不再赘诉。
根据本实施的NSACF的选择方法,AMF可以从NRF或从本地优选选择具有监控网络切片的注册UE的数量以及监控网络切片的创建PDU会话的数量的服务能力的NSACF,或优选基于运营商服务能力策略从NRF或从本地优选选NSACF,从而能够满足运营商服务能力策略,避免复杂的NSACF选择过程以及减少信令传输。
图6示出了根据本公开实施例的一种NSACF的选择方法的流程示意图,该方法可由AMF执行,如图6所示,该方法可包括以下步骤。
S601,接收来自UE的注册请求,其中,注册请求中携带有S-NSSAIs。
S602,如果注册请求中携带的S-NSSAI包括在AMF的可允许网络切片辅助信息(Allowed NSSAI)中,基于NSACF的服务能力,选择NSACF。
在UE注册到网络时,UE向AMF发送注册请求,该注册请求中将携带S-NSSAIs。如果AMF的可允许网络切片辅助信息Allowed NSSAI中包括注册请求中携带的S-NSSAI,则AMF将基于NSACF的服务能力选择NSACF。关于AMF基于NSACF的服务能力选择NSACF的细节,可参考图1中的步骤S101、图2中的步骤S201及S2011、图3中的步骤S301及S3011-S3012、图4中的步骤S401及S4011、图5中的步骤S501及S5011-S5012的描述,在此不再赘诉。
根据本实施例的NSACF的选择方法,AMF可以响应于UE的注册请求执行NSACF的选择。
图7示出了根据本公开实施例的一种NSACF的选择方法的流程示意图,该方法可由AMF执行,如图7所示,该方法可包括以下步骤。
S701,接收来自UE的注册请求,其中,注册请求中携带有S-NSSAIs。
S702,如果注册请求中携带的S-NSSAIs包括在AMF的可允许网络切片辅助信息(Allowed NSSAI)中,基于NSACF的服务能力,选择NSACF。
关于步骤S702的细节,可参考图1中的步骤S101、图2中的步骤S201及S2011、图3中的步骤S301及S3011-S3012、图4中的步骤S401及S4011、图5中的步骤S501及S5011-S5012的描述,在此不再赘诉。
S703,向所选NSACF发送有效性检查和更新请求消息,有效性检查和更新请求消息中包括S-NSSAIs、UE标识和更新标志,更新标志指示增加注册UE的数量。
AMF在选择NSACF之后,可以向所选NSACF发送有效性检查和更新请求消息,以便NSACF能够根据该有效性检查和更新请求消息执行注册UE的数量的检查。
S704,从所选NSACF接收有效性检查和更新响应消息,并根据有效性检查和更新响应消息进行UE注册。
NSACF接收到有效性检查和更新请求消息后,响应于该请求消息执行注册UE的数量的检查,并根据检查结果进行注册UE的数量的更新和/或反馈有效性检查和更新响应消息。AMF接收到该有效性检查和更新响应消息之后,可以根据该响应消息进行UE注册。
在一些实施例中,上述步骤S704可以包括以下步骤。
S7041,如果有效性检查和更新响应消息指示有效性检查成功,执行UE注册流程并在完成UE注册流程之后向UE返回注册接受消息。
如果有效性检查和更新响应消息指示有效性检查成功,则表明UE可以注册到相应网络切片,则AMF基于该有效性检查和更新响应消息执行UE注册流程并在完成UE注册流程之后向UE返回注册接受消息。
S7042,如果有效性检查和更新响应消息指示有效性检查失败,向UE返回注册拒绝消息。
如果有效性检查和更新响应消息指示有效性检查失败,则表明UE不能注册到相应网络切片,例如由于该网络切片的UE注册的数量已经达到最大数等原因,则AMF基于该有效性检查和更新响应消息向UE返回注册拒绝消息。
根据本实施例的NSACF的选择方法,AMF可以在选择NSACF之后,通过该NSACF来执行相应网络切片的注册UE的数量的监控。
图8示出了根据本公开实施例的一种NSACF的选择方法的流程示意图,该方法可由AMF执行,如图8所示,该方法可包括以下步骤。
S801,基于NSACF的服务能力,选择NSACF。
关于步骤S801的细节,可参考图1中的步骤S101、图2中的步骤S201及S2011、图3中的步骤S301及S3011-S3012、图4中的步骤S401及S4011、图5中的步骤S501及S5011-S5012的描述,在此不再赘诉。
S802,接收来自另一AMF的Allowed NSSAI。
S803,如果另一AMF的Allowed NSSAI中的至少一个S-NSSAI不包括在AMF的Allowed NSSAI中,向另一AMF发送状态更新请求消息,状态更新请求消息包括至少一个S-NSSAI。
当发生从旧AMF到新AMF的切换的情形下,新AMF可以从旧AMF接收到旧AMF的Allowed NSSAI。如果旧AMF的Allowed NSSAI中的一个或多个S-NSSAI不被新AMF支持,即不包括在新AMF的Allowed NSSAI中,则新AMF将向旧AMF发送状态更新请求消息以便旧AMF执行状态更新。该状态更新消息中包括该一个或多个不被新AMF支持的S-NSSAI。
根据本实施例的NSACF的选择方法,AMF可以在选择NSACF之后,在发生从另一AMF到该AMF的切换的情形下,如果两个AMF具有不同的Allowed NSSAI,则AMF可以通知另一AMF执行状态更新。
图9示出根据本公开实施例的关于NSACF的选择,和切片注册UE的数量的有效性检查和更新的交互过程。如图9所示,AMF选择NSACF,以及和NSACF通过交互来实现关于注册UE的数量的有效性检查和更新。具体地,包括如下过程。
S901,触发关于注册UE的数量的有效性检查和更新。
关于注册UE的数量的有效性检查和更新可以响应于AMF从其他设备接收到的消息触发也可以由AMF基于某种预设触发机制触发。
例如,关于注册UE的数量的有效性检查和更新可以响应于来自UE的注册请求而被触发。在UE注册情形下,AMF为注册请求中携带的S-NSSAI,基于NSACF的服务能力或运营商的NSACF服务能力策略执行NSACF的选择。在执行NSACF的选择中,如果有运营商服务能力策略,AMF优先依据运营商服务能力策略选择NSACF,如果没有运营商服务能力策略,AMF优先选择具有既支持监控网络切片的注册UE的数量又支持监控网络切片的创建PDU会话的数量的服务能力的NSACF。
NSACF可以注册在NRF中,NSACF向NRF提供其配置信息,NRF标记该NSACF可用。在NSACF的注册过程中,NSACF提供S-NSSAIs以及NSACF的服务能力作为输入。如果NSACF注册在NRF中,则AMF可利用NRF来选择NSACF。
NSACF可以配置在AMF中,NSACF的配置信息可以指示NSACF的服务能力以及S-NSSAIs。如果NSACF配置在AMF中,则AMF可以利用NSACF在AMF中的配置信息来选择NSACF。
运营商服务能力策略可以为,例如,指示选择具有支持监控网络切片的注册UE的数量的服务能力的NSACF、指示选择具有支持监控网络切片的创建PDU会话的数量以及支持监控网络切片的注册UE的数量的服务能力的NSACF,此外,运营商服务能力策略还可以包括指示选择高优先级的NSACF。
运营商服务能力策略可以预配置在SMF和/或NRF中。
在另一示例中,关于注册UE的数量的有效性检查和更新可以响应于AMF完成UE的取消注册流程而被触发。
S902,如果S-NSSAI被确认为包括在AMF的Allowed NSSAI中,AMF向所选NSACF发送有效性检查和更新请求消息。
该有效性检查和更新请求
(Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Request)消息中包括UE标识、S-NSSAIs以及更新标志。该更新标志可以在UE将向相应网络切片注册时指示增加注册UE的数量或在UE将从相应网络切片取消注册或UE重新开始向相应网络切片注册时指示减少注册UE的数量。
S903,NSACF基于AMF提供的有效性检查和更新请求消息执行注册UE的数量的检查和更新。
如果有效性检查和更新请求消息中的更新标志指示增加注册UE的数量且NSACF发现该有效性检查和更新请求消息中的UE标识已经存在于相应网络切片的注册UE列表中,则NSACF将不会增加注册UE的数量,因为UE已经被统计为注册到相应网络切片。
如果有效性检查和更新请求消息中的更新标志指示增加注册UE的数量且NSACF发现该有效性检查和更新请求消息中的UE标识并未存在于相应网络切片的注册UE列表中以及相应网络切片的注册UE的数量尚未达到最大数,则NSACF将会将该UE标识增加至注册UE列表中且增加注册UE的数量。
如果有效性检查和更新请求消息中的更新标志指示增加注册UE的数量且NSACF发现该有效性检查和更新请求消息中的UE标识并未存在于相应网络切片的注册UE列表中以及相应网络切片的注册UE的数量已经达到最大数,则NSACF将不会增加注册UE的数量且将返回指示相应网络切片的注册UE的数量已经达到最大数的结果参数。
如果有效性检查和更新请求消息中的更新标志指示减小注册UE的数量,NSACF将会将该有效性检查和更新请求消息中的UE标识从相应网络切片的注册UE列表中移除且减小注册UE的数量。
S904,NSACF向AMF反馈有效性检查和更新响应消息。
当NSACF发现相应网络切片的注册UE的数量已经达到最大数时,NSACF向AMF中反馈的有效性检查和更新响应
(Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Response)消息可以包括如上所述的结果参数。
在UE注册情形下,如果对于该注册请求中的所有S-NSSAIs,NSACF均反馈指示网络切片的注册UE的数量已经达到最大数的结果参数,则AMF将拒绝UE的注册请求并向UE返回注册拒绝消息,如果对于该注册请求中的某个S-NSSAI,NSACF未反馈指示网络切片的注册UE的数量已经达到最大数的结果参数,则AMF将执行UE注册流程并在完成UE注册流程后向UE返回注册接受消息。其中在注册拒绝消息或注册接受消息中,包括例如,被拒绝S-NSSAIs、拒绝理由(诸如“相应网络切片的注册UE的数量已经达到最大数”)以及可选的退避时间。
例如,图10示出了根据本公开实施例的在UE注册情形下的关于注册UE的数量的有效性检查和更新的交互过程。如图10所示,AMF和NSACF通过交互来实现关于注册UE的数量的有效性检查和更新。具体地,包括如下过程。
S1001,UE向AMF发送注册请求(Registration Request),该注册请求中包括S-NSSAIs。
S1002,AMF考虑注册请求中携带的S-NSSAI,基于NSACF的服务能力选择NSACF。
关于步骤S1002的细节,可参考图9的S901的描述,在此不再赘诉。
S1003,如果S-NSSAI被确认为包括在AMF的Allowed NSSAI中,AMF向所选NSACF发送有效性检查和更新请求
(Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Request)消息。
S1004,NSACF基于AMF提供的有效性检查和更新请求消息执行注册UE的数量的检查和更新。
S1005,NSACF向AMF反馈有效性检查和更新响应
(Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Response)消息。
S1006,AMF根据有效性检查和更新响应消息进行UE注册,具体地,S1006可以包括步骤S1006a或包括步骤S1006b-S1006c。
S1006a,AMF拒绝UE的注册请求并向UE返回注册拒绝(Registration Reject)消息。
S1006b,AMF执行UE注册流程。
S1006c,AMF在完成UE注册流程后向UE返回注册接受(Registration Accept)消息。
又如,图11示出了根据本公开实施例的在UE取消注册情形下的关于注册UE的数量的有效性检查和更新的交互过程,该交互过程基于UE已经注册到网络切片,且UE或网络触发取消注册过程。如图11所示,AMF和NSACF通过交互来实现关于注册UE的数量的有效性检查和更新。具体地,包括如下过程。
S1101a,UE向AMF发送取消注册请求(Deregistration Request),该取消注册请求中包括S-NSSAIs。
S1101b,AMF执行UE取消注册流程。
S1101c,AMF在完成UE取消注册流程后向UE返回取消注册接受(Deregistration Accept)消息。
S1102,如果取消注册请求中携带的S-NSSAI被确认为包括在AMF的Allowed NSSAI中,AMF向所选NSACF发送有效性检查和更新请求
(Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Request)消息。
S1103,NSACF基于AMF提供的有效性检查和更新请求消息执行注册UE的数量的检查和更新。
S1104,NSACF向AMF反馈有效性检查和更新响应
(Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Response)消息。
上述本申请提供的实施例中,从网络设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行
与上述几种实施例提供的NSACF的选择方法相对应,本公开还提供一种NSACF的选择装置,由于本公开实施例提供的NSACF的选择装置与上述几种实施例提供的NSACF的选择方法相对应,因此NSACF的选择方法的实施方式也适用于本实施例提供的NSACF的选择装置,在本实施例中不再详细描述。
图12为本公开实施例提供的一种NSACF的选择装置1200的结构示意图。
如图12所示,该装置1200可以包括处理模块1201,处理模块1201可以基于NSACF的服务能力,选择NSACF;其中所述服务能力包括以下中的至少一种:支持监控网络切片的注册用户设备UE的数量的第一服务能力,以及支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力。
根据本公开实施例的NSACF的选择装置,AMF基于NSACF的服务能力为网络切片选择NSACF,其中服务能力包括支持监控网络切片的注册用户设备UE的数量的第一服务能力和/或支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力,从而能够更准确且以更少信令选择到合适的NSACF。
在一些实施例中,所述处理模块1201被配置为:选择具有第一服务能力和第二服务能力的NSACF。
在一些实施例中,当多个NSACF具有第一服务能力和第二服务能力时,所述处理模块1201被进一步配置为:从所述多个NSACF中选择高优先级的NSACF。
在一些实施例中,如果有运营商服务能力策略,所述处理模块1201被配置为:依据所述运营商服务能力策略选择NSACF;其中所述运营商服务能力策略包括以下中的至少一种:指示选择所需服务能力的NSACF,其中所需服务能力包括仅第一服务能力或包括第一服务能力和第二服务能力;以及指示选择高优先级的NSACF。
在一些实施例中,所述处理模块1201被配置为:从网络存储功能NRF的已注册NSACF中选择所述NSACF,其中所述NRF中存储已注册NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
在一些实施例中,所述处理模块1201被配置为:从所述AMF的预配置NSACF中选择所述NSACF,其中所述AMF存储预配置NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
在一些实施例中,所述运营商服务能力策略预配置在所述AMF和所述NRF中的至少一个中。
在一些实施例中,如图13所示,所述装置1200还包括:收发模块1202,被配置为接收来自UE的注册请求,其中,所述注册请求中携带有S-NSSAIs;其中,所述处理模块1201被配置为:如果所述注册请求中携带的S-NSSAIs包括在所述AMF的可允许网络切片辅助信息Allowed NSSAI中,基于NSACF的服务能力,选择NSACF。
在一些实施例中,所述收发模块1202还被配置为:向所选NSACF发送有效性检查和更新请求消息,所述有效性检查和更新请求消息中包括S-NSSAIs、UE标识和更新标志,所述更新标志指示增加注册UE的数量;以及从所选NSACF接收有效性检查和更新响应消息;以及所述处理模块1201还被配置为根据所述有效性检查和更新响应消息进行UE注册。
在一些实施例中,所述处理模块1201被配置为:如果所述有效性检查和更新响应消息指示有效性检查成功,执行UE注册流程并在完成UE注册流程之后指示所述收发模块1202向所述UE返回注册接受消息,如果所述有效性检查和更新响应消息指示有效性检查失败,指示所述收发模块1202向所述UE返回注册拒绝消息。
在一些实施例中,所述收发模块1202,被配置为接收来自另一AMF的Allowed NSSAI;以及如果所述另一AMF的Allowed NSSAI中的至少一个S-NSSAI不包括在所述AMF的Allowed NSSAI中,向所述另一AMF发送状态更新请求消息,所述状态更新请求消息包括所述至少一个S-NSSAI。
请参见图14,图14是本申请实施例提供的一种通信装置1400的结构示意图。通信装置1400可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或 处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1400可以包括一个或多个处理器1401。处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1400中还可以包括一个或多个存储器1402,其上可以存有计算机程序1404,处理器1401执行所述计算机程序1404,以使得通信装置1400执行上述方法实施例中描述的方法。可选的,所述存储器1402中还可以存储有数据。通信装置1400和存储器1402可以单独设置,也可以集成在一起。
可选的,通信装置1400还可以包括收发器1405、天线1406。收发器1405可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1405可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1400中还可以包括一个或多个接口电路1407。接口电路1407用于接收代码指令并传输至处理器1401。处理器1401运行所述代码指令以使通信装置1400执行上述方法实施例中描述的方法。
通信装置1400为网络设备:处理器1401用于执行图1中的步骤S101、图2中的步骤S201及S2011、图3中的步骤S301及S3011-S3012、图4中的步骤S401及S4011、图5中的步骤S501及S5011-S5012、图6中的步骤S602、图7中的步骤S701、S703、图8中的步骤S801;收发器1405用于执行图6中步骤S601、图7中的步骤S702、图8中的步骤S802-S803。
在一种实现方式中,处理器1401中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1401可以存有计算机程序1403,计算机程序1403在处理器1401上运行,可使得通信装置1400执行上述方法实施例中描述的方法。计算机程序1403可能固化在处理器1401中,该种情况下,处理器1401可能由硬件实现。
在一种实现方式中,通信装置1400可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可 以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图15所示的芯片的结构示意图。图15所示的芯片包括处理器1501和接口1502。其中,处理器1501的数量可以是一个或多个,接口1502的数量可以是多个。
对于芯片用于实现本申请实施例中网络设备的功能的情况:处理器1501用于用于执行图1中的步骤S101、图2中的步骤S201及S2011、图3中的步骤S301及S3011-S3012、图4中的步骤S401及S4011、图5中的步骤S501及S5011-S5012、图6中的步骤S602、图7中的步骤S701、S703、图8中的步骤S801;接口1502用于执行图6中步骤S601、图7中的步骤S702、图8中的步骤S802-S803。
可选的,芯片还包括存储器1503,存储器1503用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请所述的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种网络切片接纳控制功能NSACF的选择方法,其特征在于,所述方法由接入和移动性管理功能AMF执行,所述方法包括:
    基于NSACF的服务能力,选择NSACF;
    其中所述服务能力包括以下中的至少一种:
    支持监控网络切片的注册用户设备UE的数量的第一服务能力,以及
    支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力。
  2. 如权利要求1所述的方法,其特征在于,所述选择NSACF包括:
    选择具有第一服务能力和第二服务能力的NSACF。
  3. 如权利要求2所述的方法,其特征在于,所述选择NSACF还包括:
    当多个NSACF具有第一服务能力和第二服务能力时,从所述多个NSACF中选择高优先级的NSACF。
  4. 如权利要求1所述的方法,其特征在于,如果有运营商服务能力策略,所述选择NSACF包括:
    依据所述运营商服务能力策略选择NSACF;
    其中所述运营商服务能力策略包括以下中的至少一种:
    指示选择所需服务能力的NSACF,其中所需服务能力包括仅第一服务能力或包括第一服务能力和第二服务能力;以及
    指示选择高优先级的NSACF。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述选择NSACF包括:
    从网络存储功能NRF的已注册NSACF中选择所述NSACF,其中所述NRF中存储已注册NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
  6. 如权利要求1-4中任一项所述的方法,其特征在于,所述选择NSACF包括:
    从所述AMF的预配置NSACF中选择所述NSACF,其中所述AMF存储预配置NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册
    NSACF的服务能力的信息。
  7. 如权利要求4所述的方法,其特征在于,所述运营商服务能力策略预配置在所述AMF和所述NRF中的至少一个中。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,还包括:
    接收来自UE的注册请求,其中,所述注册请求中携带有S-NSSAIs;
    其中,所述基于NSACF的服务能力,选择NSACF包括:
    如果所述注册请求中携带的S-NSSAIs包括在所述AMF的可允许网络切片辅助信息Allowed NSSAI中,基于NSACF的服务能力,选择NSACF。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    向所选NSACF发送有效性检查和更新请求消息,所述有效性检查和更新请求消息中包括S-NSSAIs、UE标识和更新标志,所述更新标志指示增加注册UE的数量;以及
    从所选NSACF接收有效性检查和更新响应消息,并根据所述有效性检查和更新响应消息进行UE注册。
  10. 如权利要求9所述的方法,其特征在于,所述根据所述有效性检查和更新响应消息进行UE注册包括:
    如果所述有效性检查和更新响应消息指示有效性检查成功,执行UE注册流程并在完成UE注册流程之后向所述UE返回注册接受消息,
    如果所述有效性检查和更新响应消息指示有效性检查失败,向所述UE返回注册拒绝消息。
  11. 如权利要求1-7中任一项所述的方法,其特征在于,还包括:
    接收来自另一AMF的Allowed NSSAI;以及
    如果所述另一AMF的Allowed NSSAI中的至少一个S-NSSAI不包括在所述AMF的Allowed NSSAI中,向所述另一AMF发送状态更新请求消息,所述状态更新请求消息包括所述至少一个S-NSSAI。
  12. 一种网络切片接纳控制功能NSACF的选择装置,其特征在于,所述装置应用于接入和移动性管理功能AMF,所述装置包括:
    处理模块,被配置为基于NSACF的服务能力,选择NSACF;
    其中所述服务能力包括以下中的至少一种:
    支持监控网络切片的注册用户设备UE的数量的第一服务能力,以及
    支持监控网络切片的创建协议数据单元PDU会话的数量的第二服务能力。
  13. 如权利要求12所述的装置,其特征在于,所述处理模块被配置为:
    选择具有第一服务能力和第二服务能力的NSACF。
  14. 如权利要求13所述的装置,其特征在于,当多个NSACF具有第一服务能力和第二服务能力时,所述处理模块被进一步配置为:
    从所述多个NSACF中选择高优先级的NSACF。
  15. 如权利要求12所述的装置,其特征在于,如果有运营商服务能力策略,所述处理模块被配置为:
    依据所述运营商服务能力策略选择NSACF;
    其中所述运营商服务能力策略包括以下中的至少一种:
    指示选择所需服务能力的NSACF,其中所需服务能力包括仅第一服务能力或包括第一服务能力和第二服务能力;
    指示选择高优先级的NSACF。
  16. 如权利要求12-15所述的装置,其特征在于,所述处理模块被配置为:
    从网络存储功能NRF的已注册NSACF中选择所述NSACF,其中所述NRF中存储已注册NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
  17. 如权利要求12-15所述的装置,其特征在于,所述处理模块被配置为:
    从所述AMF的预配置NSACF中选择所述NSACF,其中所述AMF存储预配置NSACF的配置信息,所述配置信息包括网络切片选择辅助信息S-NSSAIs以及指示所述已注册NSACF的服务能力的信息。
  18. 如权利要求15所述的装置,其特征在于,所述运营商服务能力策略预配置在所述AMF和所述NRF中的至少一个中。
  19. 如权利要求12-18所述的装置,其特征在于,还包括:
    收发模块,被配置为接收来自UE的注册请求,其中,所述注册请求中携带有S-NSSAIs;
    其中,所述处理模块被配置为:
    如果所述注册请求中携带的S-NSSAIs包括在所述AMF的可允许网络切片辅助信息Allowed NSSAI中,基于NSACF的服务能力,选择NSACF。
  20. 如权利要求19所述的装置,其特征在于,
    所述收发模块还被配置为:向所选NSACF发送有效性检查和更新请求消息,所述有效性检查和更新请求消息中包括S-NSSAIs、UE标识和更新标志,所述更新标志指示增加注册UE的数量;以及从所选NSACF接收有效性检查和更新响应消息;以及
    所述处理模块还被配置为根据所述有效性检查和更新响应消息进行UE注册。
  21. 如权利要求20中所述的装置,其特征在于,所述处理模块被配置为:
    如果所述有效性检查和更新响应消息指示有效性检查成功,执行UE注册流程并在完成UE注册流程之后指示所述收发模块向所述UE返回注册接受消息,
    如果所述有效性检查和更新响应消息指示有效性检查失败,指示所述收发模块向所述UE返回注册拒绝消息。
  22. 如权利要求12-18所述的装置,其特征在于,还包括:
    收发模块,被配置为接收来自另一AMF的Allowed NSSAI;以及如果所述另一AMF的Allowed NSSAI中的至少一个S-NSSAI不包括在所述AMF的Allowed NSSAI中,向所述另一AMF发送状态更新请求消息,所述状态更新请求消息包括所述至少一个S-NSSAI。
  23. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-11任一项所述的方法。
  24. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-11任一项所述的方法。
PCT/CN2021/108773 2021-07-27 2021-07-27 网络切片接纳控制功能的选择方法及装置 WO2023004606A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180002124.1A CN115868242A (zh) 2021-07-27 2021-07-27 网络切片接纳控制功能的选择方法及装置
EP21951221.7A EP4380261A4 (en) 2021-07-27 2021-07-27 METHOD AND APPARATUS FOR SELECTING A NETWORK LAYER ACCESS CONTROL FUNCTION
US18/291,518 US20240340977A1 (en) 2021-07-27 2021-07-27 Method and apparatus for selecting network slice admission control function
PCT/CN2021/108773 WO2023004606A1 (zh) 2021-07-27 2021-07-27 网络切片接纳控制功能的选择方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108773 WO2023004606A1 (zh) 2021-07-27 2021-07-27 网络切片接纳控制功能的选择方法及装置

Publications (1)

Publication Number Publication Date
WO2023004606A1 true WO2023004606A1 (zh) 2023-02-02

Family

ID=85086187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108773 WO2023004606A1 (zh) 2021-07-27 2021-07-27 网络切片接纳控制功能的选择方法及装置

Country Status (4)

Country Link
US (1) US20240340977A1 (zh)
EP (1) EP4380261A4 (zh)
CN (1) CN115868242A (zh)
WO (1) WO2023004606A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025010688A1 (zh) * 2023-07-12 2025-01-16 北京小米移动软件有限公司 信息传输方法及装置、通信设备、通信系统及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025010695A1 (zh) * 2023-07-12 2025-01-16 北京小米移动软件有限公司 Ue注册方法及设备、通信设备、通信系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291837A (zh) * 2017-02-06 2019-09-27 华为技术有限公司 网络注册和网络切片选择系统和方法
WO2021125265A1 (en) * 2019-12-20 2021-06-24 Nec Corporation Network slice quota management during roaming
CN113079564A (zh) * 2020-01-03 2021-07-06 苹果公司 网络切片配额管理

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291837A (zh) * 2017-02-06 2019-09-27 华为技术有限公司 网络注册和网络切片选择系统和方法
WO2021125265A1 (en) * 2019-12-20 2021-06-24 Nec Corporation Network slice quota management during roaming
CN113079564A (zh) * 2020-01-03 2021-07-06 苹果公司 网络切片配额管理

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on enhancement of network slicing; Phase 2 (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.700-40, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V0.4.0, 19 June 2020 (2020-06-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 143, XP051924078 *
SAMSUNG: "KI#1 Update to Solution & Removal of Editor-Note", 3GPP DRAFT; S2-2103827, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Elbonia; 20210517 - 20210528, 7 May 2021 (2021-05-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052003215 *
See also references of EP4380261A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025010688A1 (zh) * 2023-07-12 2025-01-16 北京小米移动软件有限公司 信息传输方法及装置、通信设备、通信系统及存储介质

Also Published As

Publication number Publication date
CN115868242A (zh) 2023-03-28
US20240340977A1 (en) 2024-10-10
EP4380261A4 (en) 2024-09-18
EP4380261A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
CN109151871B (zh) 集中式单元-分布式单元架构下的通信方法、通信设备
US20230093339A1 (en) Session Management Method, Apparatus, and System
CN110474840B (zh) 数据传输方法、装置和可读存储介质
WO2022083867A1 (en) Method, apparatus and computer program
WO2023004606A1 (zh) 网络切片接纳控制功能的选择方法及装置
WO2021136611A1 (en) Scope parameter for binding indication
WO2023004605A1 (zh) 网络切片接纳控制功能的选择方法及装置
KR20190108371A (ko) 네트워크 슬라이스/서비스를 선택하는 통신 방법 및 이를 수행하는 통신 장치
WO2023010566A1 (zh) 网络切片接纳控制功能的选择方法及装置
EP4508907A1 (en) Method and apparatus for multi-modality service in wireless communication system
US12137409B2 (en) Registration procedure for ensuring service based on a selection of the best available network slice of the same slice type
WO2024050778A1 (zh) 一种人工智能服务策略的更新方法及装置
WO2023010567A1 (zh) 网络切片接纳控制功能的选择方法及装置
WO2022167374A1 (en) Managing content provider multi-path policies
EP4359931A1 (en) Reliability in a communication system
WO2024138581A1 (zh) 一种网络切片的授权方法、装置、设备及存储介质
WO2022267872A1 (zh) 一种网络切片选择方法及相关装置
WO2022205231A1 (zh) 一种策略控制功能网元选择方法及装置
US20250024235A1 (en) Communication method, apparatus, and device
WO2024212870A1 (zh) 用于发现边缘应用服务器的方法以及相关设备
CN118140542A (zh) 网络切片确定方法、装置及存储介质
WO2023220998A1 (zh) 无线通信的方法、用户设备及网络设备
CN117956458A (zh) 一种通信方法以及装置
WO2022022837A1 (en) Method, apparatus and computer program for enabling a communication session

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447012378

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021951221

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021951221

Country of ref document: EP

Effective date: 20240227