WO2023002537A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2023002537A1
WO2023002537A1 PCT/JP2021/027010 JP2021027010W WO2023002537A1 WO 2023002537 A1 WO2023002537 A1 WO 2023002537A1 JP 2021027010 W JP2021027010 W JP 2021027010W WO 2023002537 A1 WO2023002537 A1 WO 2023002537A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
separator
secondary battery
lithium secondary
less
Prior art date
Application number
PCT/JP2021/027010
Other languages
French (fr)
Japanese (ja)
Inventor
浩 井本
健 緒方
Original Assignee
TeraWatt Technology株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TeraWatt Technology株式会社 filed Critical TeraWatt Technology株式会社
Priority to PCT/JP2021/027010 priority Critical patent/WO2023002537A1/en
Publication of WO2023002537A1 publication Critical patent/WO2023002537A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium secondary batteries.
  • lithium secondary batteries that charge and discharge by moving lithium ions between positive and negative electrodes are known to exhibit high voltage and high energy density.
  • a positive electrode and a negative electrode have an active material capable of holding lithium elements, and lithium ions are charged and discharged by exchanging lithium ions between the positive electrode active material and the negative electrode active material.
  • Secondary batteries are known.
  • lithium secondary batteries lithium metal batteries, LMB
  • LMB lithium metal batteries
  • US Pat. No. 6,200,000 discloses a rechargeable battery that uses a lithium metal-based electrode as the negative electrode.
  • Patent Document 2 discloses a lithium secondary battery including a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween. A lithium secondary battery is disclosed that migrates from the positive electrode to form lithium metal on a negative current collector within the negative electrode. Patent Document 2 discloses that such a lithium secondary battery solves the problems caused by the reactivity of lithium metal and the problems occurring during the assembly process, and provides a lithium secondary battery with improved performance and life. We disclose what we can do.
  • a lithium secondary battery including a negative electrode having a negative electrode active material due to the volume and mass occupied by the negative electrode active material.
  • dendrite-like lithium metal is likely to be formed on the surface of the negative electrode due to repeated charging and discharging, resulting in a short circuit and a decrease in capacity. Cycle characteristics are not sufficient because deterioration tends to occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery with high energy density and excellent cycle characteristics.
  • a lithium secondary battery includes a positive electrode, a negative electrode including a negative electrode current collector having no negative electrode active material before initial charge, and a separator disposed between the positive electrode and the negative electrode.
  • the peel strength between the negative electrode current collector and the separator is 0.1 N or more.
  • the cycle characteristics of lithium secondary batteries can be improved by increasing the peel strength between the negative electrode current collector and the separator to a predetermined level or higher.
  • the peel strength between the negative electrode current collector and the separator is set to 0.1 N or more, thereby improving cycle characteristics.
  • the separator preferably has a separator coating layer at least on the negative electrode side.
  • the thickness of the separator coating layer is preferably 0.7 ⁇ m or more.
  • the separator preferably has a Gurley air permeability of 180 sec/100 cc or more.
  • the separator preferably has a Gurley air permeability of 600 seconds/100 cc or less.
  • a lithium secondary battery includes a positive electrode, a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charge, and a separator disposed between the positive electrode and the negative electrode.
  • the separator has a separator coating layer at least on the negative electrode side, the separator coating layer has a thickness of 0.7 ⁇ m or more, and the separator has a Gurley air permeability of 180 sec/100 cc or more and 600 sec/100 cc or less.
  • a lithium secondary battery having a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charging has a configuration that satisfies a predetermined thickness of the separator coating layer and the Gurley air permeability of the separator.
  • the inventors have found that by doing so, the cycle characteristics of the lithium secondary battery can be improved.
  • the thickness of the separator coating layer is 0.7 ⁇ m or more
  • the Gurley air permeability of the separator is 180 sec/100 cc or more and 600 sec/100 cc or less. Cycle characteristics can be improved by this.
  • FIG. 1 is a schematic cross-sectional view of a charged lithium secondary battery according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery before charging or after discharging according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view showing how a lithium secondary battery according to an embodiment of the present invention is used;
  • FIG. 1 is a schematic cross-sectional view showing how a lithium secondary battery according to an embodiment of the present invention is used;
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery 100 according to an embodiment of the invention.
  • the lithium secondary battery 100 includes a positive current collector 110, a positive electrode 120, a negative electrode 130, and a separator 140.
  • the negative electrode 130 includes a negative electrode current collector 131 and a lithium metal layer 132 .
  • FIG. 1 in which the negative electrode 130 includes the negative electrode current collector 131 and the lithium metal layer 132, shows the configuration in which the lithium secondary battery 100 is charged. , the structure does not have the lithium metal layer 132 .
  • Separator 140 includes separator base material 141 and separator coating layer 142 .
  • the negative electrode 130 does not have a negative electrode active material.
  • the term “negative electrode active material” refers to a material that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction, at the negative electrode.
  • the negative electrode active material of the present embodiment in the present specification includes lithium metal and a host material of lithium element (lithium ion or lithium metal).
  • a host material for elemental lithium means a material provided to hold lithium ions or lithium metal to the negative electrode. Mechanisms for such retention include, but are not limited to, intercalation, alloying, and occlusion of metal clusters, typically intercalation.
  • the negative electrode does not have a negative electrode active material before the battery is initially charged. Discharge occurs. Therefore, in the lithium secondary battery 100 of the present embodiment, the volume occupied by the negative electrode active material and the mass of the negative electrode active material are reduced compared to a lithium secondary battery having a negative electrode active material, and the volume and mass of the entire battery are reduced. In principle, the energy density is high because it is small.
  • the negative electrode does not have a negative electrode active material before the battery is initially charged, lithium metal is deposited on the negative electrode by charging the battery, and the deposited lithium metal is removed by discharging the battery. electrolytically eluted. Therefore, in the lithium secondary battery of this embodiment, the negative electrode does not substantially contain the negative electrode active material even when the battery is discharged. Therefore, in the lithium secondary battery 100 of this embodiment, the negative electrode functions as a negative electrode current collector.
  • lithium metal is deposited on the negative electrode means not only the deposition of lithium metal on the surface of the negative electrode, but also the surface of the solid electrolyte interface (SEI) layer formed on the surface of the negative electrode and described later. It also includes the deposition of lithium metal on the For example, when the lithium secondary battery 100 of the present embodiment is charged, lithium metal deposits as a lithium metal layer 132 on the interface between the negative electrode current collector 131 and the separator 140 as shown in FIG.
  • SEI solid electrolyte interface
  • the negative electrode has a host material of elemental lithium (lithium ion or lithium metal), and upon charging of the battery, such material is charged with elemental lithium, and the host material releases elemental lithium, thereby forming a battery. is discharged.
  • the LIB is different from the lithium secondary battery 100 of the present embodiment in that the negative electrode has a lithium element host material.
  • a lithium metal battery is manufactured using an electrode with lithium metal on its surface, or using lithium metal alone as a negative electrode. That is, the LMB differs from the lithium secondary battery of the present embodiment in that the negative electrode has lithium metal as the negative electrode active material immediately after the battery is assembled, that is, before the battery is initially charged.
  • the LMB uses an electrode containing lithium metal, which is highly combustible and reactive, in its manufacture, but the lithium secondary battery 100 of the present embodiment uses a negative electrode that does not contain lithium metal, so it is safer and more productive. It is excellent for
  • the phrase "the negative electrode does not have a negative electrode active material” means that the negative electrode does not have or substantially does not have a negative electrode active material.
  • the fact that the negative electrode does not substantially contain a negative electrode active material means that the amount of the negative electrode active material contained in the negative electrode is sufficiently smaller than that of the positive electrode active material in terms of capacity ratio.
  • the content of the negative electrode active material in the negative electrode is, for example, 10% by mass or less with respect to the entire negative electrode.
  • the content of the negative electrode active material in the negative electrode is preferably 5.0% by mass or less, may be 1.0% by mass or less, or may be 0.1% by mass or less with respect to the entire negative electrode. , 0.0% by mass or less.
  • the term “lithium secondary battery including a negative electrode that does not have a negative electrode active material” means that the negative electrode does not have a negative electrode active material before the initial charge of the battery or at the end of discharge (state shown in FIG. 2). ). Therefore, the phrase “negative electrode without negative electrode active material” includes “negative electrode without negative electrode active material before the initial charge of the battery or at the end of discharge", “negative electrode active material other than lithium metal regardless of the state of charge of the battery”. and does not have lithium metal before initial charge or at the end of discharge", or “negative electrode current collector that does not have lithium metal before initial charge or at the end of discharge”. . Alternatively, in the above phrase, "before initial charging or at the end of discharging” may be replaced with the phrase “before initial charging”. In addition, the “lithium secondary battery having a negative electrode without negative electrode active material” may also be referred to as an anode-free lithium battery, a zero-anode lithium battery, or an anode-less lithium battery.
  • the battery “before the initial charge” means the state from the time the battery is assembled to the time it is charged for the first time.
  • the battery when the battery is "at the end of discharging", it means that no discharge occurs even if the voltage of the battery is further lowered. , preferably 1.0 V or more and 3.0 V or less.
  • the content of the negative electrode active material other than lithium metal is 10% by mass or less, preferably 5.0% by mass or less, relative to the entire negative electrode, regardless of the state of charge of the battery. It may be 1.0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less.
  • the negative electrode of the present embodiment has a lithium metal content of 10% by mass or less, preferably 5.0% by mass or less, relative to the entire negative electrode before initial charge or at the end of discharge. It may be 0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less.
  • the negative electrode preferably has a lithium metal content of 10% by mass or less with respect to the entire negative electrode before initial charge and at the end of discharge (among these, the lithium metal content is preferably 5.0% by mass or less, may be 1.0% by mass or less, may be 0.1% by mass or less, or may be 0.0% by mass or less.)
  • the content of lithium metal when the voltage of the battery is 1.0 V or more and 3.5 V or less, the content of lithium metal may be 10% by mass or less with respect to the entire negative electrode ( It is preferably 5.0% by mass or less, may be 1.0% by mass or less, may be 0.1% by mass or less, or may be 0.0% by mass or less.); Battery is 1.0 V or more and 3.0 V or less, the lithium metal content may be 10% by mass or less (preferably 5.0% by mass or less, and 1 .0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less); or the voltage of the battery is 1.0 V or more and 2.5 V In the case below, the lithium metal content may be 10% by mass or less with respect to the entire negative electrode (preferably 5.0% by mass or less, and may be 1.0% by mass or less. , 0.1% by mass or less, or 0.0% by mass or less.).
  • the mass M of lithium metal deposited on the negative electrode is 4.2
  • the ratio M 3.0 /M 4.2 of the mass M 3.0 of the lithium metal deposited on the negative electrode is preferably 20% or less, more preferably 15% or less, and still more preferably 10%. It is below.
  • the ratio M3.0/M4.2 may be 8.0% or less, 5.0 % or less, 3.0 % or less, or 1.0% or less. may be
  • Examples of negative electrode active materials include lithium metal and alloys containing lithium metal, carbon-based materials, metal oxides, metals that are alloyed with lithium, and alloys containing such metals.
  • Examples of the carbon-based substance include, but are not limited to, graphene, graphite, hard carbon, mesoporous carbon, carbon nanotube, and carbon nanohorn.
  • Examples of the metal oxide include, but are not particularly limited to, titanium oxide-based compounds, tin oxide-based compounds, and cobalt oxide-based compounds.
  • Examples of metals alloyed with lithium include silicon, germanium, tin, lead, aluminum, and gallium.
  • the negative electrode of the present embodiment is not particularly limited as long as it does not have a negative electrode active material and can be used as a current collector. At least one selected from the group consisting of metals, alloys thereof, and stainless steel (SUS). In addition, when using SUS for a negative electrode, as a kind of SUS, conventionally well-known various things can be used.
  • the above negative electrode materials are used individually by 1 type or in combination of 2 or more types.
  • the term "metal that does not react with Li” means a metal that does not react with lithium ions or lithium metal to form an alloy under the operating conditions of the lithium secondary battery.
  • the negative electrode of the present embodiment is preferably made of at least one selected from the group consisting of Cu, Ni, Ti, Fe, alloys thereof, and stainless steel (SUS), and more preferably, It consists of at least one selected from the group consisting of Cu, Ni, alloys thereof, and stainless steel (SUS).
  • the negative electrode is more preferably Cu, Ni, alloys thereof, or stainless steel (SUS). The use of such a negative electrode tends to improve the energy density and productivity of the battery.
  • the average thickness of the negative electrode of the present embodiment is preferably 4 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 18 ⁇ m or less, and still more preferably 6 ⁇ m or more and 15 ⁇ m or less. According to such an aspect, the volume occupied by the negative electrode in the battery is reduced, so that the energy density of the battery is further improved.
  • the positive electrode 120 is not particularly limited as long as it is generally used in lithium secondary batteries, and a known material can be appropriately selected depending on the application of the lithium secondary battery. From the viewpoint of improving battery stability and output voltage, the positive electrode preferably contains a positive electrode active material.
  • the positive electrode 120 is not particularly limited as long as it is generally used for lithium secondary batteries, and known materials can be appropriately selected depending on the application of the lithium secondary battery. Since the positive electrode 120 includes a positive electrode active material, it has high stability and high output voltage.
  • a "positive electrode active material” is a substance that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction, at the positive electrode.
  • the positive electrode active material of the present embodiment includes a host material of lithium element (typically lithium ion).
  • positive electrode active materials include, but are not particularly limited to, metal oxides and metal phosphates.
  • the metal oxide include, but are not limited to, cobalt oxide-based compounds, manganese oxide-based compounds, and nickel oxide-based compounds.
  • the metal phosphate include, but are not particularly limited to, iron phosphate-based compounds and cobalt phosphate-based compounds.
  • the above positive electrode active materials are used singly or in combination of two or more.
  • the positive electrode 120 may contain components other than the positive electrode active material described above. Examples of such components include, but are not particularly limited to, known conductive aids, binders, polymer electrolytes, and inorganic solid electrolytes.
  • the conductive aid in the positive electrode 120 is not particularly limited, but examples include carbon black, single-wall carbon nanotubes (SWCNT), multi-wall carbon nanotubes (MWCNT), carbon nanofibers (CF), and acetylene black.
  • the binder is not particularly limited, but examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, acrylic resin, and polyimide resin.
  • the content of the positive electrode active material in the positive electrode 120 may be, for example, 50% by mass or more and 100% by mass or less with respect to the entire positive electrode 120 .
  • the content of the conductive aid may be, for example, 0.5% by mass or 30% by mass or less with respect to the entire positive electrode 120 .
  • the content of the binder may be, for example, 0.5% by mass or 30% by mass or less with respect to the entire positive electrode 120 .
  • the total content of the solid polymer electrolyte and the inorganic solid electrolyte may be, for example, 0.5 mass % or less than 30 mass % with respect to the entire positive electrode 120 .
  • a positive electrode current collector 110 is arranged on one side of the positive electrode 120 .
  • the positive electrode current collector 110 is not particularly limited as long as it is a conductor that does not react with lithium ions in the battery. Examples of such a positive electrode current collector include aluminum.
  • the average thickness of the positive electrode current collector 110 is preferably 4 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 18 ⁇ m or less, and still more preferably 6 ⁇ m or more and 15 ⁇ m or less. According to this aspect, the volume occupied by the positive electrode current collector 110 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
  • the separator 140 is a member for separating the positive electrode 120 and the negative electrode 130 to prevent the battery from short-circuiting and ensuring ionic conductivity of lithium ions serving as charge carriers between the positive electrode 120 and the negative electrode 130 . It is composed of a material that does not have electronic conductivity and does not react with lithium ions. Moreover, the separator 140 also plays a role of retaining the electrolytic solution. Although the material constituting the separator itself does not have ionic conductivity, lithium ions are conducted through the electrolyte by holding the electrolyte in the separator.
  • the separator 140 is not limited as long as it fulfills the above role, but is composed of, for example, a porous polyethylene (PE) film, a polypropylene (PP) film, or a laminate structure thereof.
  • the separator 140 may be covered with a separator covering layer 142 .
  • the separator coating layer 142 may cover both sides of the separator 140, or may cover only one side.
  • the separator coating layer 142 is not particularly limited as long as it is a member that does not react with lithium ions.
  • Examples of such a separator coating layer include, but are not limited to, polyvinylidene fluoride (PVDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), and lithium polyacrylate. (Li-PAA), polyimide (PI), polyamideimide (PAI), and binders such as aramid.
  • inorganic particles such as silica, alumina, titania, zirconia, magnesium oxide, magnesium hydroxide, and lithium nitrate may be added to the binder.
  • the separator 140 may be a separator without the separator coating layer 142 or may be a separator with the separator coating layer 142 .
  • the average thickness of the separator 140 is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less. According to this aspect, the volume occupied by the separator 140 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved. Also, the average thickness of the separator 140 is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and even more preferably 10 ⁇ m or more. According to such an aspect, the positive electrode 120 and the negative electrode 130 can be separated more reliably, and the short circuit of the battery can be further suppressed.
  • the lithium secondary battery 100 preferably has an electrolyte.
  • the electrolyte may be infiltrated into the separator 140, or may be enclosed in a sealed container together with the laminate of the positive electrode current collector 110, the positive electrode 120, the separator 140, and the negative electrode 130.
  • the electrolytic solution is a solution that contains an electrolyte and a solvent, has ionic conductivity, and acts as a conductive path for lithium ions. Therefore, according to the embodiment containing the electrolytic solution, the internal resistance of the battery is further reduced, and the energy density, capacity and cycle characteristics are further improved.
  • the electrolytic solution preferably contains, as a solvent, an alkyl fluoride compound having at least one of a monovalent group represented by the following formula (A) and a monovalent group represented by the following formula (B).
  • A a monovalent group represented by the following formula
  • B a monovalent group represented by the following formula
  • the wavy line represents the bonding site in the monovalent group.
  • a solid electrolyte interface layer (SEI layer) is formed on the surface of the negative electrode, etc. by decomposing the solvent, etc. in the electrolyte.
  • the SEI layer suppresses further decomposition of the components in the electrolytic solution, resulting irreversible reduction of lithium ions, generation of gas, and the like.
  • the SEI layer has ionic conductivity, the reactivity of the lithium metal deposition reaction becomes uniform in the plane direction of the negative electrode surface on which the SEI layer is formed.
  • the above alkyl fluoride compound when used as a solvent, an SEI layer is likely to be formed on the negative electrode surface, and the growth of dendritic lithium metal on the negative electrode is further suppressed. Characteristics tend to be further improved.
  • the compound "contained as a solvent” means that the compound alone or a mixture with other compounds is liquid in the usage environment of the lithium secondary battery. Any material can be used as long as it can produce an electrolytic solution in a solution phase.
  • fluorinated alkyl compounds examples include compounds having an ether bond (hereinafter referred to as "ether compounds"), compounds having an ester bond, and compounds having a carbonate bond.
  • ether compounds compounds having an ether bond
  • the alkyl fluoride compound is preferably an ether compound.
  • an ether compound having both a monovalent group represented by the formula (A) and a monovalent group represented by the formula (B) hereinafter referred to as "primary fluorine solvent "Also called.)
  • an ether compound having a monovalent group represented by the formula (A) and not having a monovalent group represented by the formula (B) hereinafter referred to as a "secondary fluorine solvent” Also referred to as.
  • an ether compound having no monovalent group represented by formula (A) and having a monovalent group represented by formula (B) hereinafter, "third fluorine solvent” Also called.) and the like.
  • the first fluorine solvent examples include 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, 1,1,2,2-tetrafluoroethyl-2,2, 3,3-tetrafluoropropyldiethoxymethane, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyldiethoxypropane, and the like.
  • 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether is preferable as the first fluorine solvent from the viewpoint of effectively and reliably exhibiting the effects of the above-mentioned fluorinated alkyl compound. .
  • Examples of the second fluorine solvent include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methyl-1,1,2,2-tetrafluoroethyl ether, ethyl-1 , 1,2,2-tetrafluoroethyl ether, propyl-1,1,2,2-tetrafluoroethyl ether, 1H,1H,5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, and 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether.
  • the secondary fluorine solvent includes 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methyl-1 ,1,2,2-tetrafluoroethyl ether, ethyl-1,1,2,2-tetrafluoroethyl ether, and 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether is preferred.
  • Examples of the third fluorine solvent include difluoromethyl-2,2,3,3-tetrafluoropropyl ether, trifluoromethyl-2,2,3,3-tetrafluoropropyl ether, fluoromethyl-2,2,3 ,3-tetrafluoropropyl ether, and methyl-2,2,3,3-tetrafluoropropyl ether.
  • Difluoromethyl-2,2,3,3-tetrafluoropropyl ether is preferable as the tertiary fluorine solvent from the viewpoint of effectively and reliably exhibiting the effects of the above alkyl fluoride compounds.
  • the electrolytic solution may contain a solvent that does not have both the monovalent group represented by formula (A) and the monovalent group represented by formula (B).
  • solvents include, but are not limited to, triethylene glycol dimethyl ether, dimethoxyethane (DME), diethylene glycol dimethyl ether, acetonitrile, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, chloroethylene carbonate, Fluorine-free solvents such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, trimethyl phosphate, and triethyl phosphate, and methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1 , 1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-trifluoromethylpentane, methyl-2,2,
  • the above solvents including the above fluorinated alkyl compound, can be used singly or in combination of two or more.
  • the content of the fluorinated alkyl compound in the electrolytic solution is not particularly limited, but is preferably 40% by volume or more, more preferably 50% by volume or more, and still more preferably It is 60% by volume or more, and more preferably 70% by volume or more.
  • the upper limit of the content of the alkyl fluoride compound is not particularly limited. It may be present, may be 90% by volume or less, or may be 80% by volume or less.
  • the electrolyte contained in the electrolytic solution is not particularly limited as long as it is a salt, and examples thereof include salts of Li, Na, K, Ca, and Mg.
  • a lithium salt is preferably used as the electrolyte.
  • the lithium salt is not particularly limited, but LiI, LiCl, LiBr, LiF, LiBF4 , LiPF6 , LiAsF6 , LiSO3CF3 , LiN( SO2F ) 2 , LiN (SO2CF3)2 , LiN ( SO2CF2CF3 ) 2 , LiB ( C2O4 ) 2 , LiBF2 ( C2O4 ), LiB ( O2C2H4 ) 2 , LiB ( O2C2H4 ) F2 , LiB(OCOCF 3 ) 4 , LiNO 3 , Li 2 SO 4 and the like.
  • the above lithium salts are used singly or in combination of two or more.
  • the concentration of the electrolyte in the electrolytic solution is not particularly limited, but is preferably 0.5 M or higher, more preferably 0.7 M or higher, still more preferably 0.9 M or higher, and even more preferably 1.0 M or higher. be. When the electrolyte concentration is within the above range, the SEI layer is formed more easily and the internal resistance tends to be lower.
  • the upper limit of the electrolyte concentration is not particularly limited, and the electrolyte concentration may be 10.0M or less, 5.0M or less, or 2.0M or less.
  • FIG. 3 shows one mode of use of the lithium secondary battery of this embodiment.
  • a lithium secondary battery 200 has a positive electrode current collector 110 and a negative electrode 130 in the lithium secondary battery 100, and a positive electrode terminal 220 and a negative electrode terminal 210 for connecting the lithium secondary battery to an external circuit are respectively joined.
  • the lithium secondary battery 200 is charged and discharged by connecting the negative terminal 210 to one end of an external circuit and the positive terminal 220 to the other end of the external circuit.
  • External circuits are, for example, resistors, power supplies, devices, or potentiostats.
  • the lithium secondary battery 200 is charged by applying a voltage between the positive electrode terminal 220 and the negative electrode terminal 210 such that a current flows from the negative electrode terminal 210 through the external circuit to the positive electrode terminal 220 . By charging the lithium secondary battery 200, deposition of lithium metal occurs on the negative electrode.
  • a solid electrolyte interface layer (SEI layer) is formed on the surface of the negative electrode 130 (interface between the negative electrode 130 and the separator 140) by the first charge (initial charge) after assembly of the battery.
  • SEI layer may be formed is not particularly limited, but may contain, for example, an inorganic compound containing lithium and/or an organic compound containing lithium.
  • a typical average thickness of the SEI layer is 1 nm or more and 10 ⁇ m or less.
  • the lithium secondary battery 200 When the positive electrode terminal 220 and the negative electrode terminal 210 of the charged lithium secondary battery 200 are connected via an external circuit as necessary, the lithium secondary battery 200 is discharged. As a result, lithium metal deposited on the negative electrode is electrolytically eluted.
  • the method for manufacturing the lithium secondary battery 100 as shown in FIGS. 1 and 2 is not particularly limited as long as it is a method capable of manufacturing a lithium secondary battery having the above configuration. is mentioned.
  • the positive electrode 120 is prepared by a known manufacturing method or by purchasing a commercially available one.
  • the positive electrode 120 is manufactured, for example, as follows.
  • a positive electrode mixture is obtained by mixing the above-described positive electrode active material, a known conductive aid, and a known binder.
  • the compounding ratio is, for example, 50% by mass or more and 99% by mass or less of the positive electrode active material, 0.5% by mass or less 30% by mass of the conductive aid, and 0.5% by mass or less of the binder with respect to the entire positive electrode mixture. % by mass or less.
  • the obtained positive electrode mixture is applied to one side of a metal foil (for example, Al foil) having a predetermined thickness (for example, 5 ⁇ m or more and 1 mm or less) as a positive electrode current collector, and press-molded.
  • the molded body thus obtained is punched into a predetermined size to obtain the positive electrode 120 formed on the positive electrode current collector 110 .
  • the negative electrode 130 can be prepared by washing the above negative electrode material, for example, a metal foil (eg, electrolytic Cu foil) with a thickness of 1 ⁇ m or more and 1 mm or less with a solvent containing sulfamic acid.
  • a metal foil eg, electrolytic Cu foil
  • the separator 140 having the configuration described above is prepared.
  • the separator 140 may be manufactured by a conventionally known method, or a commercially available product may be used.
  • the electrolytic solution may be prepared by dissolving the above electrolyte (typically lithium salt) in the above solvent.
  • the lithium secondary battery 100 can be obtained by enclosing the laminated body obtained as described above in a sealed container together with an electrolytic solution.
  • the closed container include, but are not particularly limited to, a laminate film.
  • the inventors have found that the cycle characteristics can be improved by satisfying a predetermined condition in the lithium secondary battery 100 having a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charging.
  • the predetermined conditions are that the thickness of the separator coating layer is set to a predetermined value or more, the Gurley air permeability of the separator is set to a predetermined range, and the peel strength between the negative electrode current collector and the separator is set to a predetermined value or more. be.
  • the thickness of the separator coating layer and the Gurley air permeability of the separator are changed, and the peel strength between the negative electrode current collector and the separator is measured while maintaining the capacity. An experiment was conducted to determine the number of cycles to reach a rate of 80%.
  • peel strength between the negative electrode current collector 131 and the separator 140 was measured as follows.
  • test cells each having a 45 mm x 45 mm negative electrode 130, a 50 mm x 50 mm separator 140, and a 40 mm x 40 mm positive electrode 120 and sealed with a laminate film were used.
  • the negative electrode 130 and the positive electrode 120 were each arranged centrally with respect to the separator 140 .
  • the test cell was charged at a constant current with a current of 0.05 C until the output voltage reached 4.2 V. After resting for 10 minutes, the output voltage reached 3.0 V with a current of 0.05 C. Constant current discharge was performed until After that, the laminate was opened, and a laminate including the negative electrode 130, the separator 140, and the positive electrode 120 was taken out. Next, the positive electrode 120 was peeled off from the laminate and removed. Next, after cutting the negative electrode terminal, the laminate including the negative electrode 130 and the separator 140 was cut in half. As a result, a laminate including the negative electrode 130 of 45 mm ⁇ 22.5 mm and the separator 140 of 50 mm ⁇ 25 mm was obtained. All the experiments from opening the laminate to measuring the peel strength below were conducted in an Ar glove box.
  • the peel strength test was conducted in accordance with "Adhesive - Peel strength test method - Part 2: 180 degree peel" specified in Japanese Industrial Standards (JIS) K 6852-2: 1999.
  • a digital force gauge FGP-5 manufactured by Nidec-Shimpo Corporation was used as a measuring device.
  • the longitudinal end face of the separator 140 was slightly peeled off from the negative electrode current collector 131 to separate the negative electrode current collector 131 side and the separator 140 side.
  • the amount of peeling was set to less than 15 mm so that an adhesive portion of 30 mm or more remained between the negative electrode current collector 131 and the separator 140 .
  • the end of the negative electrode current collector 131 of the laminate was attached to the fixed measuring device, the end of the separator 140 of the laminate was attached to the other movable side, and the separator 140 side was manually moved horizontally. The maximum value measured by the above measuring device was read.
  • the side of the separator 140 that was manually moved was moved at a moving speed of 1 ⁇ 0.2 mm/sec until the negative electrode current collector 131 and the separator 140 were completely separated.
  • Examples 1-4 and Comparative Examples 1-2 the thickness of the separator coating layer 142 coated on the separator base material 141 was changed, and the number of cycles at which the volume retention ratio was 80% or less was measured. As described below, by changing the thickness of the separator coating layer 142 coated on the separator substrate 141, the Gurley air permeability of the separator 140 and the peel strength between the negative electrode current collector 131 and the separator 140 has changed. Accordingly, the number of cycles at which the volume retention rate of the lithium secondary battery 100 becomes 80% or less has changed.
  • the Gurley air permeability is measured by the method specified in JIS P8117: 2009 "Paper and paperboard - Air permeability and air resistance test method (intermediate area) - Gurley method", using a B-type testing machine.
  • the Gurley value of the separator 140 was measured using
  • the separator 140 was produced as follows. First, as the separator base material 141, PE (polyethylene) porous material having a thickness of 12 ⁇ m and a Gurley air permeability of 208 sec/100 cc was prepared. An 8% NMP (N-methyl-2-pyrrolidone) solution of PVdF#9300 manufactured by Kureha Corporation was prepared and coated on both sides of the separator base material 141 . Immediately after coating, it was immersed in water to extract NMP from the coating layer to obtain a separator 140 having PVdF porous layers as separator coating layers 142 on both sides of the separator substrate 141 . At this time, the thickness of the separator coating layer 142 was adjusted by adjusting the coating thickness of the NMP solution.
  • PE polyethylene porous material having a thickness of 12 ⁇ m and a Gurley air permeability of 208 sec/100 cc was prepared.
  • the thickness of the separator coating layer 142 was calculated by laminating 10 sheets of the separator 140 coated as described above and subtracting the thickness of the PE porous layer from the total thickness. .
  • Comparative Example 1 in which the separator coating layer 142 was not provided, the Gurley air permeability was 0.04 sec/100 cc, the peel strength was 140 N, and the number of cycles at which the volume retention rate was 80% or less was 60 cycles.
  • Comparative Example 2 in which the separator coating layer 142 was 0.5 ⁇ m, the Gurley air permeability was 0.08 sec/100 cc, the peel strength was 145 N, and the number of cycles at which the volume retention rate was 80% or less was 79 cycles. .
  • Example 5-7 and Comparative Examples 3-4 the separator 140 which does not have the separator coating layer 142 and consists only of the separator substrate 141 was used.
  • the peel strength between the negative electrode current collector 131 and the separator 140 changes as the Gurley air permeability changes, and the number of cycles at which the volume retention rate of the lithium secondary battery 100 becomes 80% or less.
  • experiments were conducted using various separator substrates 141 having different Gurley air permeability.
  • the thickness of the separator base material 141 was also changed.
  • Comparative Example 3 in which the separator 140 had a thickness of 9 ⁇ m and a Gurley air permeability of 61 seconds/100 cc, the peel strength was 0.03 N, and the number of cycles at which the volume retention ratio was 80% or less was 52 cycles.
  • Comparative Example 4 in which the thickness of the separator 140 was 20 ⁇ m and the Gurley air permeability was 651 sec/100 cc, the peel strength was 0.08 N, and the number of cycles at which the volume retention rate was 80% or less was 78 cycles. .
  • Example 5 in which the separator 140 had a thickness of 15 ⁇ m and a Gurley air permeability of 474 seconds/100 cc, the peel strength was 0.13 N, and the number of cycles at which the volume retention ratio was 80% or less was 105 cycles. rice field.
  • Example 6 in which the separator 140 had a thickness of 21 ⁇ m and a Gurley air permeability of 87 seconds/100 cc, the peel strength was 0.23 N, and the number of cycles at which the volume retention ratio was 80% or less was 106 cycles.
  • Example 6 in which the separator 140 had a thickness of 12.2 ⁇ m and a Gurley air permeability of 233 seconds/100 cc, the peel strength was 0.36 N, and the number of cycles at which the volume retention rate was 80% or less was 150 cycles. .
  • the lithium secondary battery of the present invention has high energy density and excellent cycle characteristics, so it has industrial applicability as an electricity storage device used for various purposes.

Abstract

The present invention provides a lithium secondary battery which has a high energy density and excellent cycle characteristics. A lithium secondary battery according to one embodiment is provided with a positive electrode, a negative electrode comprising a negative electrode collector that does not include a negative electrode active material before initial charging, and a separator disposed between the positive electrode and the negative electrode. The peeling strength between the negative electrode collector and the separator is 0.1 N or more.

Description

リチウム2次電池Lithium secondary battery
 本発明は、リチウム2次電池に関する。 The present invention relates to lithium secondary batteries.
 近年、太陽光又は風力等の自然エネルギーを電気エネルギーに変換する技術が注目されている。これに伴い、安全性が高く、かつ多くの電気エネルギーを蓄えることができる蓄電デバイスとして、様々な2次電池が開発されている。 In recent years, technology that converts natural energy such as sunlight or wind power into electrical energy has attracted attention. Along with this, various secondary batteries have been developed as power storage devices that are highly safe and capable of storing a large amount of electrical energy.
 その中でも、正極及び負極の間をリチウムイオンが移動することで充放電を行うリチウム2次電池は、高電圧及び高エネルギー密度を示すことが知られている。典型的なリチウム2次電池として、正極及び負極にリチウム元素を保持することのできる活物質を有し、当該正極活物質及び負極活物質の間でのリチウムイオンの授受によって充放電をおこなうリチウムイオン2次電池(LIB)が知られている。 Among them, lithium secondary batteries that charge and discharge by moving lithium ions between positive and negative electrodes are known to exhibit high voltage and high energy density. As a typical lithium secondary battery, a positive electrode and a negative electrode have an active material capable of holding lithium elements, and lithium ions are charged and discharged by exchanging lithium ions between the positive electrode active material and the negative electrode active material. Secondary batteries (LIBs) are known.
 また、高エネルギー密度化の実現を目的として、負極活物質として、炭素材料のようなリチウムイオンを挿入することができる材料に代えて、リチウム金属を用いるリチウム2次電池(リチウム金属電池、LMB)が開発されている。例えば、特許文献1には、負極としてリチウム金属をベースとする電極を用いる充電型電池が開示されている。 In addition, for the purpose of realizing high energy density, lithium secondary batteries (lithium metal batteries, LMB) using lithium metal as the negative electrode active material instead of materials capable of inserting lithium ions such as carbon materials. is being developed. For example, US Pat. No. 6,200,000 discloses a rechargeable battery that uses a lithium metal-based electrode as the negative electrode.
 また、更なる高エネルギー密度化や生産性の向上等を目的として、炭素材料やリチウム金属といった負極活物質を有しない負極を用いるリチウム2次電池が開発されている。例えば、特許文献2には、正極、負極、これらの間に介在された分離膜及び電解質を含むリチウム2次電池において、前記負極は、負極集電体上に金属粒子が形成され、充電によって前記正極から移動され、負極内の負極集電体上にリチウム金属を形成する、リチウム2次電池が開示されている。特許文献2は、そのようなリチウム2次電池は、リチウム金属の反応性による問題と、組み立ての過程で発生する問題点を解決し、性能及び寿命が向上されたリチウム2次電池を提供することができることを開示している。 In addition, lithium secondary batteries using negative electrodes that do not have negative electrode active materials such as carbon materials and lithium metal are being developed for the purpose of further increasing energy density and improving productivity. For example, Patent Document 2 discloses a lithium secondary battery including a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween. A lithium secondary battery is disclosed that migrates from the positive electrode to form lithium metal on a negative current collector within the negative electrode. Patent Document 2 discloses that such a lithium secondary battery solves the problems caused by the reactivity of lithium metal and the problems occurring during the assembly process, and provides a lithium secondary battery with improved performance and life. We disclose what we can do.
特表2006-500755号公報Japanese Patent Publication No. 2006-500755 特表2019-505971号公報Japanese Patent Application Publication No. 2019-505971
 しかしながら、本発明者らが、上記特許文献に記載のものを始めとする従来の電池を詳細に検討したところ、エネルギー密度、及びサイクル特性の少なくともいずれかが十分でないことがわかった。 However, when the present inventors made a detailed study of conventional batteries including those described in the above patent documents, they found that at least one of energy density and cycle characteristics was insufficient.
 例えば、負極活物質を有する負極を備えるリチウム2次電池は、その負極活物質の占める体積や質量に起因して、エネルギー密度及び容量を十分高くすることが困難である。また、負極活物質を有しない負極を備えるアノードフリー型リチウム2次電池についても、従来型のものは、充放電を繰り返すことにより負極表面上にデンドライト状のリチウム金属が形成されやすく、短絡及び容量低下が生じやすいため、サイクル特性が十分でない。 For example, it is difficult to sufficiently increase the energy density and capacity of a lithium secondary battery including a negative electrode having a negative electrode active material due to the volume and mass occupied by the negative electrode active material. In addition, with respect to anode-free lithium secondary batteries having a negative electrode that does not have a negative electrode active material, in conventional batteries, dendrite-like lithium metal is likely to be formed on the surface of the negative electrode due to repeated charging and discharging, resulting in a short circuit and a decrease in capacity. Cycle characteristics are not sufficient because deterioration tends to occur.
 また、アノードフリー型のリチウム2次電池において、リチウム金属析出時の不均一な成長を抑制するために、電池に大きな物理的圧力をかけて負極とセパレータとの界面を高圧に保つ方法も開発されている。しかしながら、そのような高圧の印加には大きな機械的機構が必要であるため、電池全体としては、重量及び体積が大きくなり、エネルギー密度が低下する。 In addition, in anode-free lithium secondary batteries, a method has been developed in which a large physical pressure is applied to the battery to keep the interface between the negative electrode and the separator at a high pressure, in order to suppress uneven growth during deposition of lithium metal. ing. However, since the application of such a high voltage requires a large mechanical mechanism, the weight and volume of the battery as a whole increase, and the energy density decreases.
 本発明は、上記問題点に鑑みてなされたものであり、エネルギー密度が高く、サイクル特性に優れる、リチウム2次電池を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery with high energy density and excellent cycle characteristics.
 本発明の一実施形態に係るリチウム2次電池は、正極と、初期充電前において負極活物質を有しない負極集電体を含む負極と、正極と負極との間に配置されたセパレータと、を備え、負極集電体とセパレータとの間の剥離強度が0.1N以上である。 A lithium secondary battery according to one embodiment of the present invention includes a positive electrode, a negative electrode including a negative electrode current collector having no negative electrode active material before initial charge, and a separator disposed between the positive electrode and the negative electrode. In addition, the peel strength between the negative electrode current collector and the separator is 0.1 N or more.
 本発明者は、負極集電体とセパレータとの間の剥離強度を所定以上の強さに強化することでリチウム2次電池のサイクル特性を向上させることができることを見出した。本発明のリチウム2次電池では、負極集電体とセパレータとの剥離強度を0.1N以上としており、これによってサイクル特性を向上させることができる。 The inventors have found that the cycle characteristics of lithium secondary batteries can be improved by increasing the peel strength between the negative electrode current collector and the separator to a predetermined level or higher. In the lithium secondary battery of the present invention, the peel strength between the negative electrode current collector and the separator is set to 0.1 N or more, thereby improving cycle characteristics.
 上記リチウム2次電池において好ましくは、セパレータが、少なくとも負極側にセパレータ被覆層を有する。 In the above lithium secondary battery, the separator preferably has a separator coating layer at least on the negative electrode side.
 また、上記リチウム2次電池において好ましくは、セパレータ被覆層の厚みを0.7μm以上とする。また、上記リチウム2次電池において好ましくは、セパレータのガーレー透気度を180秒/100cc以上とする。また、上記リチウム2次電池において好ましくは、セパレータのガーレー透気度を600秒/100cc以下とする。 Further, in the above lithium secondary battery, the thickness of the separator coating layer is preferably 0.7 μm or more. In the above lithium secondary battery, the separator preferably has a Gurley air permeability of 180 sec/100 cc or more. In the above lithium secondary battery, the separator preferably has a Gurley air permeability of 600 seconds/100 cc or less.
 上記のように、セパレータ被覆層の厚み、またはセパレータのガーレー透気度が所定の条件を満たす構成にすることで、リチウム2次電池のサイクル特性を向上させることができる。
 また、本発明の一実施形態に係るリチウム2次電池は、正極と、初期充電前において負極活物質を有しない負極集電体を含む負極と、正極と負極との間に配置されたセパレータと、を備え、セパレータが、少なくとも負極側にセパレータ被覆層を有し、セパレータ被覆層の厚みが0.7μm以上であり、セパレータのガーレー透気度が180秒/100cc以上、600秒/100cc以下である。
As described above, the thickness of the separator coating layer or the Gurley air permeability of the separator satisfies predetermined conditions, thereby improving the cycle characteristics of the lithium secondary battery.
Further, a lithium secondary battery according to one embodiment of the present invention includes a positive electrode, a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charge, and a separator disposed between the positive electrode and the negative electrode. , wherein the separator has a separator coating layer at least on the negative electrode side, the separator coating layer has a thickness of 0.7 μm or more, and the separator has a Gurley air permeability of 180 sec/100 cc or more and 600 sec/100 cc or less. be.
 本発明者は、初期充電前において負極活物質を有しない負極集電体を含む負極を備えたリチウム2次電池において、所定のセパレータ被覆層の厚み、及びセパレータのガーレー透気度を満たす構成とすることで、リチウム2次電池のサイクル特性を向上させることができることを見出した。本発明のリチウム2次電池では、上記のように、セパレータ被覆層の厚みが0.7μm以上、セパレータのガーレー透気度が180秒/100cc以上、600秒/100cc以下となる構成にしており、これによってサイクル特性を向上させることができる。 The present inventors have found that a lithium secondary battery having a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charging has a configuration that satisfies a predetermined thickness of the separator coating layer and the Gurley air permeability of the separator. The inventors have found that by doing so, the cycle characteristics of the lithium secondary battery can be improved. In the lithium secondary battery of the present invention, as described above, the thickness of the separator coating layer is 0.7 μm or more, and the Gurley air permeability of the separator is 180 sec/100 cc or more and 600 sec/100 cc or less. Cycle characteristics can be improved by this.
 本発明によれば、サイクル特性を高めたリチウム2次電池を提供することができる。 According to the present invention, it is possible to provide a lithium secondary battery with improved cycle characteristics.
本発明の実施形態に係るリチウム2次電池の充電された状態における概略断面図である。1 is a schematic cross-sectional view of a charged lithium secondary battery according to an embodiment of the present invention; FIG. 本発明の実施形態に係るリチウム2次電池の充電前または放電後の状態における概略断面図である。1 is a schematic cross-sectional view of a lithium secondary battery before charging or after discharging according to an embodiment of the present invention; FIG. 本発明の実施形態に係るリチウム2次電池の使用態様を示す概略断面図である。1 is a schematic cross-sectional view showing how a lithium secondary battery according to an embodiment of the present invention is used; FIG.
 以下、必要に応じて図面を参照しつつ、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present invention (hereinafter referred to as "present embodiments") will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratios of the drawings are not limited to the illustrated ratios.
[リチウム2次電池の構成]
 図1は、本発明の実施形態に係るリチウム2次電池100の概略断面図である。図1に示されるように、リチウム2次電池100は、正極集電体110、正極120、負極130、及びセパレータ140を含む。負極130は、負極集電体131及びリチウム金属層132を含む。ただし、負極130が負極集電体131及びリチウム金属層132を含む図1は、リチウム2次電池100において充電が行われた状態の構成であって、充電前または放電後の状態では、図2に示されるように、リチウム金属層132を有しない構成となる。セパレータ140は、セパレータ基材141及びセパレータ被覆層142を含む。
[Structure of Lithium Secondary Battery]
FIG. 1 is a schematic cross-sectional view of a lithium secondary battery 100 according to an embodiment of the invention. As shown in FIG. 1, the lithium secondary battery 100 includes a positive current collector 110, a positive electrode 120, a negative electrode 130, and a separator 140. As shown in FIG. The negative electrode 130 includes a negative electrode current collector 131 and a lithium metal layer 132 . However, FIG. 1, in which the negative electrode 130 includes the negative electrode current collector 131 and the lithium metal layer 132, shows the configuration in which the lithium secondary battery 100 is charged. , the structure does not have the lithium metal layer 132 . Separator 140 includes separator base material 141 and separator coating layer 142 .
 以下、リチウム2次電池100の各構成について説明する。 Each configuration of the lithium secondary battery 100 will be described below.
(負極)
 負極130は、負極活物質を有しないものである。本明細書において、「負極活物質」とは、負極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、本明細書における本実施形態の負極活物質としては、リチウム金属、及びリチウム元素(リチウムイオン又はリチウム金属)のホスト物質が挙げられる。リチウム元素のホスト物質とは、リチウムイオン又はリチウム金属を負極に保持するために設けられる物質を意味する。そのような保持の機構としては、特に限定されないが、例えば、インターカレーション、合金化、及び金属クラスターの吸蔵等が挙げられ、典型的には、インターカレーションである。
(negative electrode)
The negative electrode 130 does not have a negative electrode active material. As used herein, the term “negative electrode active material” refers to a material that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction, at the negative electrode. Specifically, the negative electrode active material of the present embodiment in the present specification includes lithium metal and a host material of lithium element (lithium ion or lithium metal). A host material for elemental lithium means a material provided to hold lithium ions or lithium metal to the negative electrode. Mechanisms for such retention include, but are not limited to, intercalation, alloying, and occlusion of metal clusters, typically intercalation.
 本実施形態のリチウム2次電池100は、電池の初期充電前に負極が負極活物質を有しないため、負極上にリチウム金属が析出し、及び、その析出したリチウム金属が電解溶出することによって充放電が行われる。したがって、本実施形態のリチウム2次電池100は、負極活物質を有するリチウム2次電池と比較して、負極活物質が占める体積及び負極活物質の質量が削減され、電池全体の体積及び質量が小さくなるため、エネルギー密度が原理的に高い。 In the lithium secondary battery 100 of the present embodiment, the negative electrode does not have a negative electrode active material before the battery is initially charged. Discharge occurs. Therefore, in the lithium secondary battery 100 of the present embodiment, the volume occupied by the negative electrode active material and the mass of the negative electrode active material are reduced compared to a lithium secondary battery having a negative electrode active material, and the volume and mass of the entire battery are reduced. In principle, the energy density is high because it is small.
 本実施形態のリチウム2次電池100は、電池の初期充電前に負極が負極活物質を有せず、電池の充電により負極上にリチウム金属が析出し、電池の放電によりその析出したリチウム金属が電解溶出する。したがって、本実施形態のリチウム2次電池は、電池の放電終了時にも、負極が負極活物質を実質的に有しない。したがって、本実施形態のリチウム2次電池100において、負極は負極集電体として働く。 In the lithium secondary battery 100 of the present embodiment, the negative electrode does not have a negative electrode active material before the battery is initially charged, lithium metal is deposited on the negative electrode by charging the battery, and the deposited lithium metal is removed by discharging the battery. electrolytically eluted. Therefore, in the lithium secondary battery of this embodiment, the negative electrode does not substantially contain the negative electrode active material even when the battery is discharged. Therefore, in the lithium secondary battery 100 of this embodiment, the negative electrode functions as a negative electrode current collector.
 本明細書において、「リチウム金属が負極上に析出する」とは、負極の表面にリチウム金属が析出することだけでなく、負極の表面に形成された後述する固体電解質界面(SEI)層の表面にリチウム金属が析出することも包含する。例えば、本実施形態のリチウム2次電池100が充電されると、図1に示されるように、負極集電体131とセパレータ140との界面にリチウム金属がリチウム金属層132として析出する。 In the present specification, the term "lithium metal is deposited on the negative electrode" means not only the deposition of lithium metal on the surface of the negative electrode, but also the surface of the solid electrolyte interface (SEI) layer formed on the surface of the negative electrode and described later. It also includes the deposition of lithium metal on the For example, when the lithium secondary battery 100 of the present embodiment is charged, lithium metal deposits as a lithium metal layer 132 on the interface between the negative electrode current collector 131 and the separator 140 as shown in FIG.
 本実施形態のリチウム2次電池をリチウムイオン電池(LIB)及びリチウム金属電池(LMB)と比較すると、以下の点で異なるものである。 Comparing the lithium secondary battery of this embodiment with a lithium ion battery (LIB) and a lithium metal battery (LMB), they differ in the following points.
 リチウムイオン電池(LIB)において、負極はリチウム元素(リチウムイオン又はリチウム金属)のホスト物質を有し、電池の充電によりかかる物質にリチウム元素が充填され、ホスト物質がリチウム元素を放出することにより電池の放電が行われる。LIBは、負極がリチウム元素のホスト物質を有する点で、本実施形態のリチウム2次電池100とは異なる。 In a lithium ion battery (LIB), the negative electrode has a host material of elemental lithium (lithium ion or lithium metal), and upon charging of the battery, such material is charged with elemental lithium, and the host material releases elemental lithium, thereby forming a battery. is discharged. The LIB is different from the lithium secondary battery 100 of the present embodiment in that the negative electrode has a lithium element host material.
 リチウム金属電池(LMB)は、その表面にリチウム金属を有する電極か、あるいはリチウム金属単体を負極として用いて製造される。すなわち、LMBは、電池を組み立てた直後、すなわち電池の初期充電前に、負極が負極活物質であるリチウム金属を有する点で、本実施形態のリチウム2次電池とは異なる。LMBは、その製造に、可燃性及び反応性が高いリチウム金属を含む電極を用いるが、本実施形態のリチウム2次電池100は、リチウム金属を有しない負極を用いるため、より安全性及び生産性に優れるものである。 A lithium metal battery (LMB) is manufactured using an electrode with lithium metal on its surface, or using lithium metal alone as a negative electrode. That is, the LMB differs from the lithium secondary battery of the present embodiment in that the negative electrode has lithium metal as the negative electrode active material immediately after the battery is assembled, that is, before the battery is initially charged. The LMB uses an electrode containing lithium metal, which is highly combustible and reactive, in its manufacture, but the lithium secondary battery 100 of the present embodiment uses a negative electrode that does not contain lithium metal, so it is safer and more productive. It is excellent for
 本明細書において、負極が「負極活物質を有しない」とは、負極が負極活物質を有しないか、実質的に有しないことを意味する。負極が負極活物質を実質的に有しないとは、負極が有する負極活物質の量が、正極活物質に比べて容量比で十分少ないことを意味する。負極における負極活物質の含有量は、例えば負極全体に対して10質量%以下である。負極における負極活物質の含有量は、負極全体に対して、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。負極が負極活物質を有せず、又は、負極における負極活物質の含有量が上記の範囲内にあることにより、リチウム2次電池のエネルギー密度が高いものとなる。 In this specification, the phrase "the negative electrode does not have a negative electrode active material" means that the negative electrode does not have or substantially does not have a negative electrode active material. The fact that the negative electrode does not substantially contain a negative electrode active material means that the amount of the negative electrode active material contained in the negative electrode is sufficiently smaller than that of the positive electrode active material in terms of capacity ratio. The content of the negative electrode active material in the negative electrode is, for example, 10% by mass or less with respect to the entire negative electrode. The content of the negative electrode active material in the negative electrode is preferably 5.0% by mass or less, may be 1.0% by mass or less, or may be 0.1% by mass or less with respect to the entire negative electrode. , 0.0% by mass or less. When the negative electrode does not have a negative electrode active material or the content of the negative electrode active material in the negative electrode is within the above range, the lithium secondary battery has a high energy density.
 本明細書において、「負極活物質を有しない負極を備えるリチウム2次電池」とは、電池の初期充電前又は放電終了時に、負極が負極活物質を有しないことを意味する(図2の状態)。したがって、「負極活物質を有しない負極」との句は、「電池の初期充電前又は放電終了時に負極活物質を有しない負極」、「電池の充電状態に依らずリチウム金属以外の負極活物質を有せず、かつ、初期充電前又は放電終了時においてリチウム金属を有しない負極」、又は「初期充電前又は放電終了時においてリチウム金属を有しない負極集電体」等と換言してもよい。あるいは、上記の句において、「初期充電前又は放電終了時」は、「初期充電前」との句に置き換えてもよい。また、「負極活物質を有しない負極を備えるリチウム2次電池」は、アノードフリーリチウム電池、ゼロアノードリチウム電池、又はアノードレスリチウム電池と換言してもよい。 As used herein, the term “lithium secondary battery including a negative electrode that does not have a negative electrode active material” means that the negative electrode does not have a negative electrode active material before the initial charge of the battery or at the end of discharge (state shown in FIG. 2). ). Therefore, the phrase "negative electrode without negative electrode active material" includes "negative electrode without negative electrode active material before the initial charge of the battery or at the end of discharge", "negative electrode active material other than lithium metal regardless of the state of charge of the battery". and does not have lithium metal before initial charge or at the end of discharge", or "negative electrode current collector that does not have lithium metal before initial charge or at the end of discharge". . Alternatively, in the above phrase, "before initial charging or at the end of discharging" may be replaced with the phrase "before initial charging". In addition, the “lithium secondary battery having a negative electrode without negative electrode active material” may also be referred to as an anode-free lithium battery, a zero-anode lithium battery, or an anode-less lithium battery.
 本明細書において、電池が「初期充電前である」とは、電池が組み立てられてから第1回目の充電をするまでの状態を意味する。また、電池が「放電終了時である」とは、それ以上電池の電圧を低下させても放電が生じない状態を意味し、その際の電池の電圧は、例えば1.0V以上3.8V以下、好ましくは1.0V以上3.0V以下である。 In this specification, the battery "before the initial charge" means the state from the time the battery is assembled to the time it is charged for the first time. In addition, when the battery is "at the end of discharging", it means that no discharge occurs even if the voltage of the battery is further lowered. , preferably 1.0 V or more and 3.0 V or less.
 本実施形態の負極は、電池の充電状態によらず、リチウム金属以外の負極活物質の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。
 また、本実施形態の負極は、初期充電前又は放電終了時において、リチウム金属の含有量が、負極全体に対して10質量%以下であり、好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。負極は、初期充電前及び放電終了時において、リチウム金属の含有量が、負極全体に対して10質量%以下であると好ましい(その中でも好ましくは、リチウム金属の含有量が、負極全体に対して5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。)
In the negative electrode of the present embodiment, the content of the negative electrode active material other than lithium metal is 10% by mass or less, preferably 5.0% by mass or less, relative to the entire negative electrode, regardless of the state of charge of the battery. It may be 1.0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less.
In addition, the negative electrode of the present embodiment has a lithium metal content of 10% by mass or less, preferably 5.0% by mass or less, relative to the entire negative electrode before initial charge or at the end of discharge. It may be 0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less. The negative electrode preferably has a lithium metal content of 10% by mass or less with respect to the entire negative electrode before initial charge and at the end of discharge (among these, the lithium metal content is preferably 5.0% by mass or less, may be 1.0% by mass or less, may be 0.1% by mass or less, or may be 0.0% by mass or less.)
 本実施形態のリチウム2次電池100は、電池の電圧が1.0V以上3.5V以下である場合において、リチウム金属の含有量が、負極全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。);電池の電圧が1.0V以上3.0V以下である場合において、リチウム金属の含有量が、負極全体に対して10質量%以下であってもよく(好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。);又は、電池の電圧が1.0V以上2.5V以下である場合において、リチウム金属の含有量が、負極全体に対して10質量%以下であってもよい(好ましくは5.0質量%以下であり、1.0質量%以下であってもよく、0.1質量%以下であってもよく、0.0質量%以下であってもよい。)。 In the lithium secondary battery 100 of the present embodiment, when the voltage of the battery is 1.0 V or more and 3.5 V or less, the content of lithium metal may be 10% by mass or less with respect to the entire negative electrode ( It is preferably 5.0% by mass or less, may be 1.0% by mass or less, may be 0.1% by mass or less, or may be 0.0% by mass or less.); Battery is 1.0 V or more and 3.0 V or less, the lithium metal content may be 10% by mass or less (preferably 5.0% by mass or less, and 1 .0% by mass or less, 0.1% by mass or less, or 0.0% by mass or less); or the voltage of the battery is 1.0 V or more and 2.5 V In the case below, the lithium metal content may be 10% by mass or less with respect to the entire negative electrode (preferably 5.0% by mass or less, and may be 1.0% by mass or less. , 0.1% by mass or less, or 0.0% by mass or less.).
 また、本実施形態のリチウム2次電池100において、電池の電圧が4.2Vの状態において負極上に析出しているリチウム金属の質量M4.2に対する、電池の電圧が3.0Vの状態において負極上に析出しているリチウム金属の質量M3.0の比M3.0/M4.2は、好ましくは20%以下であり、より好ましくは15%以下であり、更に好ましくは10%以下である。比M3.0/M4.2は、8.0%以下であってもよく、5.0%以下であってもよく、3.0%以下であってもよく、1.0%以下であってもよい。 Further, in the lithium secondary battery 100 of the present embodiment, when the battery voltage is 4.2 V, the mass M of lithium metal deposited on the negative electrode is 4.2 , and when the battery voltage is 3.0 V, The ratio M 3.0 /M 4.2 of the mass M 3.0 of the lithium metal deposited on the negative electrode is preferably 20% or less, more preferably 15% or less, and still more preferably 10%. It is below. The ratio M3.0/M4.2 may be 8.0% or less, 5.0 % or less, 3.0 % or less, or 1.0% or less. may be
 負極活物質の例としては、リチウム金属及びリチウム金属を含む合金、炭素系物質、金属酸化物、並びにリチウムと合金化する金属及び該金属を含む合金等が挙げられる。上記炭素系物質としては、特に限定されないが、例えば、グラフェン、グラファイト、ハードカーボン、メソポーラスカーボン、カーボンナノチューブ、及びカーボンナノホーン等が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化チタン系化合物、酸化スズ系化合物、及び酸化コバルト系化合物等が挙げられる。上記リチウムと合金化する金属としては、例えば、ケイ素、ゲルマニウム、スズ、鉛、アルミニウム、及びガリウムが挙げられる。 Examples of negative electrode active materials include lithium metal and alloys containing lithium metal, carbon-based materials, metal oxides, metals that are alloyed with lithium, and alloys containing such metals. Examples of the carbon-based substance include, but are not limited to, graphene, graphite, hard carbon, mesoporous carbon, carbon nanotube, and carbon nanohorn. Examples of the metal oxide include, but are not particularly limited to, titanium oxide-based compounds, tin oxide-based compounds, and cobalt oxide-based compounds. Examples of metals alloyed with lithium include silicon, germanium, tin, lead, aluminum, and gallium.
 本実施形態の負極としては、負極活物質を有せず、集電体として用いることができるものであれば特に限定されないが、例えば、Cu、Ni、Ti、Fe、及び、その他Liと反応しない金属、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものが挙げられる。なお、負極にSUSを用いる場合、SUSの種類としては従来公知の種々のものを用いることができる。上記のような負極材料は、1種を単独で又は2種以上を併用して用いられる。なお、本明細書中、「Liと反応しない金属」とは、リチウム2次電池の動作条件においてリチウムイオン又はリチウム金属と反応して合金化することがない金属を意味する。 The negative electrode of the present embodiment is not particularly limited as long as it does not have a negative electrode active material and can be used as a current collector. At least one selected from the group consisting of metals, alloys thereof, and stainless steel (SUS). In addition, when using SUS for a negative electrode, as a kind of SUS, conventionally well-known various things can be used. The above negative electrode materials are used individually by 1 type or in combination of 2 or more types. In this specification, the term "metal that does not react with Li" means a metal that does not react with lithium ions or lithium metal to form an alloy under the operating conditions of the lithium secondary battery.
 本実施形態の負極は、好ましくはCu、Ni、Ti、Fe、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものであり、より好ましくは、Cu、Ni、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものである。負極は、更に好ましくは、Cu、Ni、これらの合金、又は、ステンレス鋼(SUS)である。このような負極を用いると、電池のエネルギー密度、及び生産性が一層優れたものとなる傾向にある。 The negative electrode of the present embodiment is preferably made of at least one selected from the group consisting of Cu, Ni, Ti, Fe, alloys thereof, and stainless steel (SUS), and more preferably, It consists of at least one selected from the group consisting of Cu, Ni, alloys thereof, and stainless steel (SUS). The negative electrode is more preferably Cu, Ni, alloys thereof, or stainless steel (SUS). The use of such a negative electrode tends to improve the energy density and productivity of the battery.
 本実施形態の負極の平均厚さは、好ましくは4μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、更に、好ましくは6μm以上15μm以下である。そのような態様によれば、電池における負極の占める体積が減少するため、電池のエネルギー密度が一層向上する。 The average thickness of the negative electrode of the present embodiment is preferably 4 µm or more and 20 µm or less, more preferably 5 µm or more and 18 µm or less, and still more preferably 6 µm or more and 15 µm or less. According to such an aspect, the volume occupied by the negative electrode in the battery is reduced, so that the energy density of the battery is further improved.
(正極)
 正極120としては、一般的にリチウム2次電池に用いられるものであれば特に限定されず、リチウム2次電池の用途によって、公知の材料を適宜選択することができる。電池の安定性及び出力電圧を向上させる観点から、正極は、正極活物質を有することが好ましい。
(positive electrode)
The positive electrode 120 is not particularly limited as long as it is generally used in lithium secondary batteries, and a known material can be appropriately selected depending on the application of the lithium secondary battery. From the viewpoint of improving battery stability and output voltage, the positive electrode preferably contains a positive electrode active material.
 正極120としては、正極活物質を有する限り、一般的にリチウム2次電池に用いられるものであれば特に限定されず、リチウム2次電池の用途によって、公知の材料を適宜選択することができる。正極120は、正極活物質を有するため、安定性及び出力電圧が高い。 As long as it has a positive electrode active material, the positive electrode 120 is not particularly limited as long as it is generally used for lithium secondary batteries, and known materials can be appropriately selected depending on the application of the lithium secondary battery. Since the positive electrode 120 includes a positive electrode active material, it has high stability and high output voltage.
 本明細書において、「正極活物質」とは、正極において電極反応、すなわち酸化反応及び還元反応を生じる物質である。具体的には、本実施形態の正極活物質としてはリチウム元素(典型的には、リチウムイオン)のホスト物質が挙げられる。 As used herein, a "positive electrode active material" is a substance that causes an electrode reaction, that is, an oxidation reaction and a reduction reaction, at the positive electrode. Specifically, the positive electrode active material of the present embodiment includes a host material of lithium element (typically lithium ion).
 そのような正極活物質としては、特に限定されないが、例えば、金属酸化物及び金属リン酸塩が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化コバルト系化合物、酸化マンガン系化合物、及び酸化ニッケル系化合物等が挙げられる。上記金属リン酸塩としては、特に限定されないが、例えば、リン酸鉄系化合物、及びリン酸コバルト系化合物が挙げられる。典型的な正極活物質としては、LiCoO、LiNiCoMnO(x+y+z=1)、LiNiMnO(x+y=1)、LiNiO、LiMn、LiFePO、LiCoPO、LiFeOF、LiNiOF、及びTiSが挙げられる。上記のような正極活物質は、1種を単独で又は2種以上を併用して用いられる。 Examples of such positive electrode active materials include, but are not particularly limited to, metal oxides and metal phosphates. Examples of the metal oxide include, but are not limited to, cobalt oxide-based compounds, manganese oxide-based compounds, and nickel oxide-based compounds. Examples of the metal phosphate include, but are not particularly limited to, iron phosphate-based compounds and cobalt phosphate-based compounds. Typical positive electrode active materials include LiCoO2, LiNixCoyMnzO ( x + y + z =1), LiNixMnyO ( x + y = 1 ), LiNiO2 , LiMn2O4, LiFePO, LiCoPO, LiFeOF , LiNiOF, and TiS2 . The above positive electrode active materials are used singly or in combination of two or more.
 正極120は、上記の正極活物質以外の成分を含んでいてもよい。そのような成分としては、特に限定されないが、例えば、公知の導電助剤、バインダー、及びポリマー電解質、及び無機固体電解質が挙げられる。 The positive electrode 120 may contain components other than the positive electrode active material described above. Examples of such components include, but are not particularly limited to, known conductive aids, binders, polymer electrolytes, and inorganic solid electrolytes.
 正極120における導電助剤としては、特に限定されないが、例えば、カーボンブラック、シングルウォールカーボンナノチューブ(SWCNT)、マルチウォールカーボンナノチューブ(MWCNT)、カーボンナノファイバー(CF)、及びアセチレンブラック等が挙げられる。また、バインダーとしては、特に限定されないが、例えば、ポリビニリデンフロライド、ポリテトラフルオロエチレン、スチレンブタジエンゴム、アクリル樹脂、及びポリイミド樹脂等が挙げられる。 The conductive aid in the positive electrode 120 is not particularly limited, but examples include carbon black, single-wall carbon nanotubes (SWCNT), multi-wall carbon nanotubes (MWCNT), carbon nanofibers (CF), and acetylene black. The binder is not particularly limited, but examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, acrylic resin, and polyimide resin.
 正極120における、正極活物質の含有量は、正極120全体に対して、例えば、50質量%以上100質量%以下であってもよい。導電助剤の含有量は、正極120全体に対して、例えば、0.5質量%30質量%以下あってもよい。バインダーの含有量は、正極120全体に対して、例えば、0.5質量%30質量%以下であってもよい。固体ポリマー電解質、及び無機固体電解質の含有量の合計は、正極120全体に対して、例えば、0.5質量%30質量%以下であってもよい。 The content of the positive electrode active material in the positive electrode 120 may be, for example, 50% by mass or more and 100% by mass or less with respect to the entire positive electrode 120 . The content of the conductive aid may be, for example, 0.5% by mass or 30% by mass or less with respect to the entire positive electrode 120 . The content of the binder may be, for example, 0.5% by mass or 30% by mass or less with respect to the entire positive electrode 120 . The total content of the solid polymer electrolyte and the inorganic solid electrolyte may be, for example, 0.5 mass % or less than 30 mass % with respect to the entire positive electrode 120 .
(正極集電体)
 正極120の片側には、正極集電体110が配置されている。正極集電体110は、電池においてリチウムイオンと反応しない導電体であれば特に限定されない。そのような正極集電体としては、例えば、アルミニウムが挙げられる。
(Positive electrode current collector)
A positive electrode current collector 110 is arranged on one side of the positive electrode 120 . The positive electrode current collector 110 is not particularly limited as long as it is a conductor that does not react with lithium ions in the battery. Examples of such a positive electrode current collector include aluminum.
 正極集電体110の平均厚さは、好ましくは4μm以上20μm以下であり、より好ましくは5μm以上18μm以下であり、更に、好ましくは6μm以上15μm以下である。そのような態様によれば、リチウム2次電池100における正極集電体110の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。 The average thickness of the positive electrode current collector 110 is preferably 4 μm or more and 20 μm or less, more preferably 5 μm or more and 18 μm or less, and still more preferably 6 μm or more and 15 μm or less. According to this aspect, the volume occupied by the positive electrode current collector 110 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved.
(セパレータ)
 セパレータ140は、正極120と負極130とを隔離することにより電池が短絡することを防ぎつつ、正極120と負極130との間の電荷キャリアとなるリチウムイオンのイオン伝導性を確保するための部材であり、電子導電性を有せず、リチウムイオンと反応しない材料により構成される。また、セパレータ140は電解液を保持する役割も担う。セパレータを構成する材料自体にイオン伝導性はないが、セパレータが電解液を保持することにより、電解液を通じてリチウムイオンが伝導する。セパレータ140は、上記役割を担う限りにおいて限定はないが、例えば、多孔質のポリエチレン(PE)膜、ポリプロピレン(PP)膜、又はこれらの積層構造により構成される。
(separator)
The separator 140 is a member for separating the positive electrode 120 and the negative electrode 130 to prevent the battery from short-circuiting and ensuring ionic conductivity of lithium ions serving as charge carriers between the positive electrode 120 and the negative electrode 130 . It is composed of a material that does not have electronic conductivity and does not react with lithium ions. Moreover, the separator 140 also plays a role of retaining the electrolytic solution. Although the material constituting the separator itself does not have ionic conductivity, lithium ions are conducted through the electrolyte by holding the electrolyte in the separator. The separator 140 is not limited as long as it fulfills the above role, but is composed of, for example, a porous polyethylene (PE) film, a polypropylene (PP) film, or a laminate structure thereof.
 セパレータ140は、セパレータ被覆層142により被覆されていてもよい。セパレータ被覆層142は、セパレータ140の両面を被覆していてもよく、片面のみを被覆していてもよい。セパレータ被覆層142は、リチウムイオンと反応しない部材であれば特に限定されないが、セパレータ140と、セパレータ140に隣接する層とを強固に接着させることができるものであると好ましい。そのようなセパレータ被覆層としては、特に限定されないが、例えば、ポリビニリデンフロライド(PVDF)、スチレンブタジエンゴムとカルボキシメチルセルロースの合材(SBR-CMC)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(Li-PAA)、ポリイミド(PI)、ポリアミドイミド(PAI)、及びアラミドのようなバインダーを含むものが挙げられる。セパレータ被覆層は、上記バインダーにシリカ、アルミナ、チタニア、ジルコニア、酸化マグネシウム、水酸化マグネシウム、硝酸リチウム等の無機粒子を添加させてもよい。なお、セパレータ140は、セパレータ被覆層142を有しないセパレータであってもよく、セパレータ被覆層142を有するセパレータであってもよい。 The separator 140 may be covered with a separator covering layer 142 . The separator coating layer 142 may cover both sides of the separator 140, or may cover only one side. The separator coating layer 142 is not particularly limited as long as it is a member that does not react with lithium ions. Examples of such a separator coating layer include, but are not limited to, polyvinylidene fluoride (PVDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), and lithium polyacrylate. (Li-PAA), polyimide (PI), polyamideimide (PAI), and binders such as aramid. In the separator coating layer, inorganic particles such as silica, alumina, titania, zirconia, magnesium oxide, magnesium hydroxide, and lithium nitrate may be added to the binder. The separator 140 may be a separator without the separator coating layer 142 or may be a separator with the separator coating layer 142 .
 セパレータ140の平均厚さは、好ましくは30μm以下であり、より好ましくは25μm以下であり、更に好ましくは20μm以下である。そのような態様によれば、リチウム2次電池100におけるセパレータ140の占める体積が減少するため、リチウム2次電池100のエネルギー密度が一層向上する。また、セパレータ140の平均厚さは、好ましくは5μm以上であり、より好ましくは7μm以上であり、更に好ましくは10μm以上である。そのような態様によれば、正極120と負極130とを一層確実に隔離することができ、電池が短絡することを一層抑止することができる。 The average thickness of the separator 140 is preferably 30 µm or less, more preferably 25 µm or less, and even more preferably 20 µm or less. According to this aspect, the volume occupied by the separator 140 in the lithium secondary battery 100 is reduced, so that the energy density of the lithium secondary battery 100 is further improved. Also, the average thickness of the separator 140 is preferably 5 μm or more, more preferably 7 μm or more, and even more preferably 10 μm or more. According to such an aspect, the positive electrode 120 and the negative electrode 130 can be separated more reliably, and the short circuit of the battery can be further suppressed.
(電解液)
 リチウム2次電池100は、電解液を有していることが好ましい。リチウム2次電池100において、電解液は、セパレータ140に浸潤させてもよく、正極集電体110と、正極120と、セパレータ140と、負極130との積層体と共に密閉容器に封入してもよい。電解液は、電解質及び溶媒を含有し、イオン伝導性を有する溶液であり、リチウムイオンの導電経路として作用する。このため、電解液を含む態様によれば、電池の内部抵抗が一層低下し、エネルギー密度、容量、及びサイクル特性が一層向上する。
(Electrolyte)
The lithium secondary battery 100 preferably has an electrolyte. In the lithium secondary battery 100, the electrolyte may be infiltrated into the separator 140, or may be enclosed in a sealed container together with the laminate of the positive electrode current collector 110, the positive electrode 120, the separator 140, and the negative electrode 130. . The electrolytic solution is a solution that contains an electrolyte and a solvent, has ionic conductivity, and acts as a conductive path for lithium ions. Therefore, according to the embodiment containing the electrolytic solution, the internal resistance of the battery is further reduced, and the energy density, capacity and cycle characteristics are further improved.
 電解液は、下記式(A)で表される1価の基及び下記式(B)で表される1価の基のうち少なくとも一方を有するフッ化アルキル化合物を溶媒として含有すると好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002

 ただし、式中、波線は、1価の基における結合部位を表す。
The electrolytic solution preferably contains, as a solvent, an alkyl fluoride compound having at least one of a monovalent group represented by the following formula (A) and a monovalent group represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002

However, in the formula, the wavy line represents the bonding site in the monovalent group.
 一般的に、電解液を有するアノードフリー型のリチウム2次電池において、電解液中の溶媒等が分解されることにより、負極等の表面に固体電解質界面層(SEI層)が形成される。SEI層は、リチウム2次電池において、電解液中の成分が更に分解されること、並びにそれに起因する非可逆的なリチウムイオンの還元、及び気体の発生等を抑制する。また、SEI層はイオン伝導性を有するため、SEI層が形成された負極表面において、リチウム金属析出反応の反応性が負極表面の面方向について均一なものとなる。リチウム2次電池100において、上記のフッ化アルキル化合物を溶媒として用いると、負極表面にSEI層が形成されやすく、負極上にデンドライト状のリチウム金属が成長することが一層抑制され、その結果、サイクル特性が一層向上する傾向にある。 In general, in an anode-free lithium secondary battery having an electrolyte, a solid electrolyte interface layer (SEI layer) is formed on the surface of the negative electrode, etc. by decomposing the solvent, etc. in the electrolyte. In the lithium secondary battery, the SEI layer suppresses further decomposition of the components in the electrolytic solution, resulting irreversible reduction of lithium ions, generation of gas, and the like. In addition, since the SEI layer has ionic conductivity, the reactivity of the lithium metal deposition reaction becomes uniform in the plane direction of the negative electrode surface on which the SEI layer is formed. In the lithium secondary battery 100, when the above alkyl fluoride compound is used as a solvent, an SEI layer is likely to be formed on the negative electrode surface, and the growth of dendritic lithium metal on the negative electrode is further suppressed. Characteristics tend to be further improved.
 なお、本明細書において、化合物が「溶媒として含まれる」とは、リチウム2次電池の使用環境において、当該化合物単体又は他の化合物との混合物が液体であればよく、さらには、電解質を溶解させて溶液相にある電解液を作製できるものであればよい。 In this specification, the compound "contained as a solvent" means that the compound alone or a mixture with other compounds is liquid in the usage environment of the lithium secondary battery. Any material can be used as long as it can produce an electrolytic solution in a solution phase.
 そのようなフッ化アルキル化合物としては、エーテル結合を有する化合物(以下、「エーテル化合物」という。)、エステル結合を有する化合物、及びカーボネート結合を有する化合物等が挙げられる。電解液における電解質の溶解度を一層向上させる観点、及びSEI層が一層形成されやすくなる観点から、フッ化アルキル化合物は、エーテル化合物であると好ましい。 Examples of such fluorinated alkyl compounds include compounds having an ether bond (hereinafter referred to as "ether compounds"), compounds having an ester bond, and compounds having a carbonate bond. From the viewpoint of further improving the solubility of the electrolyte in the electrolytic solution and from the viewpoint of facilitating the formation of the SEI layer, the alkyl fluoride compound is preferably an ether compound.
 フッ化アルキル化合物であるエーテル化合物としては、式(A)で表される1価の基及び式(B)で表される1価の基の双方を有するエーテル化合物(以下、「第一フッ素溶媒」ともいう。)、式(A)で表される1価の基を有し、かつ、式(B)で表される1価の基を有しないエーテル化合物(以下、「第二フッ素溶媒」ともいう。)、及び式(A)で表される1価の基を有せず、かつ、式(B)で表される1価の基を有するエーテル化合物(以下、「第三フッ素溶媒」ともいう。)等が挙げられる。 As the ether compound which is a fluorinated alkyl compound, an ether compound having both a monovalent group represented by the formula (A) and a monovalent group represented by the formula (B) (hereinafter referred to as "primary fluorine solvent "Also called.), an ether compound having a monovalent group represented by the formula (A) and not having a monovalent group represented by the formula (B) (hereinafter referred to as a "secondary fluorine solvent" Also referred to as.), and an ether compound having no monovalent group represented by formula (A) and having a monovalent group represented by formula (B) (hereinafter, "third fluorine solvent" Also called.) and the like.
 第一フッ素溶媒としては、例えば、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルジエトキシメタン、及び1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルジエトキシプロパン等が挙げられる。上記のフッ化アルキル化合物の効果を有効かつ確実に奏する観点から、第一フッ素溶媒としては、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテルが好ましい。 Examples of the first fluorine solvent include 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, 1,1,2,2-tetrafluoroethyl-2,2, 3,3-tetrafluoropropyldiethoxymethane, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyldiethoxypropane, and the like. 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether is preferable as the first fluorine solvent from the viewpoint of effectively and reliably exhibiting the effects of the above-mentioned fluorinated alkyl compound. .
 第二フッ素溶媒としては、例えば、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、メチル-1,1,2,2-テトラフルオロエチルエーテル、エチル-1,1,2,2-テトラフルオロエチルエーテル、プロピル-1,1,2,2-テトラフルオロエチルエーテル、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、及び1H,1H,5H-オクタフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル等が挙げられる。上記のフッ化アルキル化合物の効果を有効かつ確実に奏する観点から、第二フッ素溶媒としては、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、メチル-1,1,2,2-テトラフルオロエチルエーテル、エチル-1,1,2,2-テトラフルオロエチルエーテル、及び1H,1H,5H-オクタフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテルが好ましい。 Examples of the second fluorine solvent include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methyl-1,1,2,2-tetrafluoroethyl ether, ethyl-1 , 1,2,2-tetrafluoroethyl ether, propyl-1,1,2,2-tetrafluoroethyl ether, 1H,1H,5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, and 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether. From the viewpoint of effectively and reliably exhibiting the effects of the above-mentioned fluorinated alkyl compounds, the secondary fluorine solvent includes 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methyl-1 ,1,2,2-tetrafluoroethyl ether, ethyl-1,1,2,2-tetrafluoroethyl ether, and 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether is preferred.
 第三フッ素溶媒としては、例えば、ジフルオロメチル-2,2,3,3-テトラフルオロプロピルエーテル、トリフルオロメチル-2,2,3,3-テトラフルオロプロピルエーテル、フルオロメチル-2,2,3,3-テトラフルオロプロピルエーテル、及びメチル-2,2,3,3-テトラフルオロプロピルエーテル等が挙げられる。上記のフッ化アルキル化合物の効果を有効かつ確実に奏する観点から、第三フッ素溶媒としては、ジフルオロメチル-2,2,3,3-テトラフルオロプロピルエーテルが好ましい。 Examples of the third fluorine solvent include difluoromethyl-2,2,3,3-tetrafluoropropyl ether, trifluoromethyl-2,2,3,3-tetrafluoropropyl ether, fluoromethyl-2,2,3 ,3-tetrafluoropropyl ether, and methyl-2,2,3,3-tetrafluoropropyl ether. Difluoromethyl-2,2,3,3-tetrafluoropropyl ether is preferable as the tertiary fluorine solvent from the viewpoint of effectively and reliably exhibiting the effects of the above alkyl fluoride compounds.
 電解液は、式(A)で表される1価の基及び式(B)で表される1価の基の双方を有しない溶媒を含んでいてもよい。そのような溶媒としては、特に限定されないが、例えば、トリエチレングリコールジメチルエーテル、ジメトキシエタン(DME)、ジエチレングリコールジメチルエーテル、アセトニトリル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、エチレンカーボネート、プロピレンカーボネート、クロロエチレンカーボネート、メチルアセテート、エチルアセテート、プロピルアセテート、メチルプロピオネート、エチルプロピオネート、リン酸トリメチル、及びリン酸トリエチル等のフッ素を含有しない溶媒、並びに、メチルノナフルオロブチルエーテル、エチルノナフルオロブチルエーテル、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-トリフルオロメチルペンタン、メチル-2,2,3,3,3-ペンタフルオロプロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルメチルエーテル、エチル-1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、及びテトラフロロエチルテトラフロロプロピルエーテル等のフッ素を含有する溶媒が挙げられる。 The electrolytic solution may contain a solvent that does not have both the monovalent group represented by formula (A) and the monovalent group represented by formula (B). Examples of such solvents include, but are not limited to, triethylene glycol dimethyl ether, dimethoxyethane (DME), diethylene glycol dimethyl ether, acetonitrile, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, chloroethylene carbonate, Fluorine-free solvents such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, trimethyl phosphate, and triethyl phosphate, and methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1 , 1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-trifluoromethylpentane, methyl-2,2,3,3,3-pentafluoropropyl ether, 1, Fluorine-containing solvents such as 1,2,3,3,3-hexafluoropropyl methyl ether, ethyl-1,1,2,3,3,3-hexafluoropropyl ether, and tetrafluoroethyltetrafluoropropyl ether is mentioned.
 上記フッ化アルキル化合物を含め、上述した溶媒は、1種を単独で又は2種以上を併用して用いることができる。 The above solvents, including the above fluorinated alkyl compound, can be used singly or in combination of two or more.
 電解液におけるフッ化アルキル化合物の含有量は、特に限定されないが、電解液の溶媒成分の総量に対して、好ましくは40体積%以上であり、より好ましくは50体積%以上であり、更に好ましくは60体積%以上であり、更により好ましくは70体積%以上である。フッ化アルキル化合物の含有量が上記の範囲内にあると、SEI層が一層形成されやすくなるため、電池のサイクル特性が一層向上する傾向にある。フッ化アルキル化合物の含有量の上限は特に限定されず、フッ化アルキル化合物の含有量は、電解液の溶媒成分の総量に対して、100体積%以下であってもよく、95体積%以下であってもよく、90体積%以下であってもよく、80体積%以下であってもよい。 The content of the fluorinated alkyl compound in the electrolytic solution is not particularly limited, but is preferably 40% by volume or more, more preferably 50% by volume or more, and still more preferably It is 60% by volume or more, and more preferably 70% by volume or more. When the content of the fluorinated alkyl compound is within the above range, the SEI layer is more likely to be formed, which tends to further improve the cycle characteristics of the battery. The upper limit of the content of the alkyl fluoride compound is not particularly limited. It may be present, may be 90% by volume or less, or may be 80% by volume or less.
 電解液に含まれる電解質としては、塩であれば特に限定されないが、例えば、Li、Na、K、Ca、及びMgの塩等が挙げられる。電解質としては、好ましくはリチウム塩が用いられる。リチウム塩としては、特に限定されないが、LiI、LiCl、LiBr、LiF、LiBF、LiPF、LiAsF、LiSOCF、LiN(SOF)、LiN(SOCF、LiN(SOCFCF、LiB(C、LiBF(C)、LiB(O、LiB(O)F、LiB(OCOCF、LiNO、及びLiSO等が挙げられる。上記のリチウム塩は、1種を単独で又は2種以上を併用して用いられる。 The electrolyte contained in the electrolytic solution is not particularly limited as long as it is a salt, and examples thereof include salts of Li, Na, K, Ca, and Mg. A lithium salt is preferably used as the electrolyte. The lithium salt is not particularly limited, but LiI, LiCl, LiBr, LiF, LiBF4 , LiPF6 , LiAsF6 , LiSO3CF3 , LiN( SO2F ) 2 , LiN (SO2CF3)2 , LiN ( SO2CF2CF3 ) 2 , LiB ( C2O4 ) 2 , LiBF2 ( C2O4 ), LiB ( O2C2H4 ) 2 , LiB ( O2C2H4 ) F2 , LiB(OCOCF 3 ) 4 , LiNO 3 , Li 2 SO 4 and the like. The above lithium salts are used singly or in combination of two or more.
 電解液における電解質の濃度は特に限定されないが、好ましくは0.5M以上であり、より好ましくは0.7M以上であり、更に好ましくは0.9M以上であり、更により好ましくは1.0M以上である。電解質の濃度が上記の範囲内にあることにより、SEI層が一層形成されやすくなり、また、内部抵抗が一層低くなる傾向にある。電解質の濃度の上限は特に限定されず、電解質の濃度は10.0M以下であってもよく、5.0M以下であってもよく、2.0M以下であってもよい。 The concentration of the electrolyte in the electrolytic solution is not particularly limited, but is preferably 0.5 M or higher, more preferably 0.7 M or higher, still more preferably 0.9 M or higher, and even more preferably 1.0 M or higher. be. When the electrolyte concentration is within the above range, the SEI layer is formed more easily and the internal resistance tends to be lower. The upper limit of the electrolyte concentration is not particularly limited, and the electrolyte concentration may be 10.0M or less, 5.0M or less, or 2.0M or less.
(リチウム2次電池の使用)
 図3に本実施形態のリチウム2次電池の1つの使用態様を示す。リチウム2次電池200は、リチウム2次電池100において、正極集電体110及び負極130に、リチウム2次電池を外部回路に接続するための正極端子220及び負極端子210がそれぞれ接合されている。リチウム2次電池200は、負極端子210を外部回路の一端に、正極端子220を外部回路のもう一端に接続することにより充放電される。外部回路とは、例えば抵抗、電源、装置、又はポテンショスタット等である。
(Use of lithium secondary battery)
FIG. 3 shows one mode of use of the lithium secondary battery of this embodiment. A lithium secondary battery 200 has a positive electrode current collector 110 and a negative electrode 130 in the lithium secondary battery 100, and a positive electrode terminal 220 and a negative electrode terminal 210 for connecting the lithium secondary battery to an external circuit are respectively joined. The lithium secondary battery 200 is charged and discharged by connecting the negative terminal 210 to one end of an external circuit and the positive terminal 220 to the other end of the external circuit. External circuits are, for example, resistors, power supplies, devices, or potentiostats.
 正極端子220及び負極端子210の間に、負極端子210から外部回路を通り正極端子220へと電流が流れるような電圧を印加することでリチウム2次電池200が充電される。リチウム2次電池200を充電することにより、負極上にリチウム金属の析出が生じる。 The lithium secondary battery 200 is charged by applying a voltage between the positive electrode terminal 220 and the negative electrode terminal 210 such that a current flows from the negative electrode terminal 210 through the external circuit to the positive electrode terminal 220 . By charging the lithium secondary battery 200, deposition of lithium metal occurs on the negative electrode.
 リチウム2次電池200は、電池の組み立て後の第1回目の充電(初期充電)により、負極130の表面(負極130とセパレータ140との界面)に固体電解質界面層(SEI層)が形成されていてもよい。形成されるSEI層としては、特に限定されないが、例えば、リチウムを含む無機化合物、及び又はリチウムを含む有機化合物等を含んでいてもよい。SEI層の典型的な平均厚さとしては、1nm以上10μm以下である。 In the lithium secondary battery 200, a solid electrolyte interface layer (SEI layer) is formed on the surface of the negative electrode 130 (interface between the negative electrode 130 and the separator 140) by the first charge (initial charge) after assembly of the battery. may The SEI layer to be formed is not particularly limited, but may contain, for example, an inorganic compound containing lithium and/or an organic compound containing lithium. A typical average thickness of the SEI layer is 1 nm or more and 10 μm or less.
 充電後のリチウム2次電池200について、正極端子220及び負極端子210を、必要に応じて外部回路を介して接続するとリチウム2次電池200が放電される。これにより、負極上に生じたリチウム金属の析出が電解溶出する。 When the positive electrode terminal 220 and the negative electrode terminal 210 of the charged lithium secondary battery 200 are connected via an external circuit as necessary, the lithium secondary battery 200 is discharged. As a result, lithium metal deposited on the negative electrode is electrolytically eluted.
(リチウム2次電池の製造方法)
 図1及び図2に示すようなリチウム2次電池100の製造方法としては、上述の構成を備えるリチウム2次電池を製造することができる方法であれば特に限定されないが、例えば以下のような方法が挙げられる。
(Manufacturing method of lithium secondary battery)
The method for manufacturing the lithium secondary battery 100 as shown in FIGS. 1 and 2 is not particularly limited as long as it is a method capable of manufacturing a lithium secondary battery having the above configuration. is mentioned.
 まず、正極120を公知の製造方法により、又は市販のものを購入することにより準備する。正極120は例えば以下のようにして製造する。上述した正極活物質、公知の導電助剤、及び公知のバインダーを混合し、正極混合物を得る。その配合比は、例えば、上記正極混合物全体に対して、正極活物質が50質量%以上99質量%以下、導電助剤が0.5質量%30質量%以下、バインダーが0.5質量%30質量%以下であってもよい。得られた正極混合物を、所定の厚さ(例えば、5μm以上1mm以下)を有する正極集電体としての金属箔(例えば、Al箔)の片面に塗布し、プレス成型する。得られた成型体を、打ち抜き加工により、所定のサイズに打ち抜き、正極集電体110上に形成された正極120を得る。 First, the positive electrode 120 is prepared by a known manufacturing method or by purchasing a commercially available one. The positive electrode 120 is manufactured, for example, as follows. A positive electrode mixture is obtained by mixing the above-described positive electrode active material, a known conductive aid, and a known binder. The compounding ratio is, for example, 50% by mass or more and 99% by mass or less of the positive electrode active material, 0.5% by mass or less 30% by mass of the conductive aid, and 0.5% by mass or less of the binder with respect to the entire positive electrode mixture. % by mass or less. The obtained positive electrode mixture is applied to one side of a metal foil (for example, Al foil) having a predetermined thickness (for example, 5 μm or more and 1 mm or less) as a positive electrode current collector, and press-molded. The molded body thus obtained is punched into a predetermined size to obtain the positive electrode 120 formed on the positive electrode current collector 110 .
 次に、負極130は、上述した負極材料、例えば1μm以上1mm以下の金属箔(例えば、電解Cu箔)を、スルファミン酸を含む溶剤で洗浄することで準備することができる。 Next, the negative electrode 130 can be prepared by washing the above negative electrode material, for example, a metal foil (eg, electrolytic Cu foil) with a thickness of 1 μm or more and 1 mm or less with a solvent containing sulfamic acid.
 次に、上述した構成を有するセパレータ140を準備する。セパレータ140は従来公知の方法で製造してもよく、市販のものを用いてもよい。電解液は、上記の溶媒に上記の電解質(典型的には、リチウム塩)を溶解させることにより調製すればよい。 Next, the separator 140 having the configuration described above is prepared. The separator 140 may be manufactured by a conventionally known method, or a commercially available product may be used. The electrolytic solution may be prepared by dissolving the above electrolyte (typically lithium salt) in the above solvent.
 次に、以上のようにして得られた、正極120が形成された正極集電体110、セパレータ140、及び負極130を、この順に積層することで図1に示されるような積層体を得る。以上のようにして得られた積層体を、電解液と共に密閉容器に封入することでリチウム2次電池100を得ることができる。密閉容器としては、特に限定されないが、例えば、ラミネートフィルムが挙げられる。 Next, the positive electrode current collector 110 with the positive electrode 120 formed thereon, the separator 140, and the negative electrode 130 obtained as described above are laminated in this order to obtain a laminate as shown in FIG. The lithium secondary battery 100 can be obtained by enclosing the laminated body obtained as described above in a sealed container together with an electrolytic solution. Examples of the closed container include, but are not particularly limited to, a laminate film.
 発明者は、初期充電前において負極活物質を有しない負極集電体を含む負極を備えたリチウム2次電池100において、所定の条件を満たすことで、サイクル特性を向上させることができることを見出した。上記所定の条件とは、セパレータ被覆層の厚みを所定以上とし、セパレータのガーレー透気度を所定の範囲として、負極集電体とセパレータとの間の剥離強度を所定以上の強さとすることである。以下、本実施形態のリチウム2次電池100を用いて、セパレータ被覆層の厚み及びセパレータのガーレー透気度を変化させ、負極集電体とセパレータとの間の剥離強度を測定しつつ、容量維持率80%に達するサイクル数を測定する実験を行った。 The inventors have found that the cycle characteristics can be improved by satisfying a predetermined condition in the lithium secondary battery 100 having a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charging. . The predetermined conditions are that the thickness of the separator coating layer is set to a predetermined value or more, the Gurley air permeability of the separator is set to a predetermined range, and the peel strength between the negative electrode current collector and the separator is set to a predetermined value or more. be. Hereinafter, using the lithium secondary battery 100 of the present embodiment, the thickness of the separator coating layer and the Gurley air permeability of the separator are changed, and the peel strength between the negative electrode current collector and the separator is measured while maintaining the capacity. An experiment was conducted to determine the number of cycles to reach a rate of 80%.
[剥離強度の測定方法]
 本実施形態では、以下のようにして負極集電体131とセパレータ140との間の剥離強度を測定した。
[Method for measuring peel strength]
In this embodiment, the peel strength between the negative electrode current collector 131 and the separator 140 was measured as follows.
 以下の実施例及び比較例では、いずれも45mm×45mmの負極130、50mm×50mmのセパレータ140、及び40mm×40mmの正極120を有し、ラミネートフィルムにより密封されたテストセルを用いた。負極130及び正極120は、それぞれセパレータ140に対して中央に配置される構成とした。 In the following examples and comparative examples, test cells each having a 45 mm x 45 mm negative electrode 130, a 50 mm x 50 mm separator 140, and a 40 mm x 40 mm positive electrode 120 and sealed with a laminate film were used. The negative electrode 130 and the positive electrode 120 were each arranged centrally with respect to the separator 140 .
 まず、上記テストセルに対して、0.05Cの電流で出力電圧が4.2Vとなるまで定電流での充電を行い、10分間の休止後に、0.05Cの電流で出力電圧が3.0Vとなるまで定電流放電を行った。その後、ラミネートを開封し、負極130、及びセパレータ140、及び正極120を含む積層体を取り出した。次に、正極120を積層体から剥がして取り外した。次に、負極端子を切断したうえで、負極130及びセパレータ140を含む積層体を半分に切断した。これによって、45mm×22.5mmの負極130と、50mm×25mmのセパレータ140を含む積層体を得た。なお、上記のラミネートの開封から以下の剥離強度の測定までの実験は、いずれもArグローブボックス内で行った。 First, the test cell was charged at a constant current with a current of 0.05 C until the output voltage reached 4.2 V. After resting for 10 minutes, the output voltage reached 3.0 V with a current of 0.05 C. Constant current discharge was performed until After that, the laminate was opened, and a laminate including the negative electrode 130, the separator 140, and the positive electrode 120 was taken out. Next, the positive electrode 120 was peeled off from the laminate and removed. Next, after cutting the negative electrode terminal, the laminate including the negative electrode 130 and the separator 140 was cut in half. As a result, a laminate including the negative electrode 130 of 45 mm×22.5 mm and the separator 140 of 50 mm×25 mm was obtained. All the experiments from opening the laminate to measuring the peel strength below were conducted in an Ar glove box.
 剥離強度試験は、日本工業規格(JIS)K 6852-2:1999に規定される「接着剤-はく離接着強さ試験方法-第2部:180度はく離」に準拠して行った。測定装置は、日本電産シンポ株式会社製 デジタルフォースゲージ FGP-5を用いた。 The peel strength test was conducted in accordance with "Adhesive - Peel strength test method - Part 2: 180 degree peel" specified in Japanese Industrial Standards (JIS) K 6852-2: 1999. As a measuring device, a digital force gauge FGP-5 manufactured by Nidec-Shimpo Corporation was used.
 まず、上記の積層体において、負極集電体131からセパレータ140の長手方向の端面を僅かに剥がし、負極集電体131側と、セパレータ140側とに分離した。このとき、負極集電体131とセパレータ140との間の接着部分が30mm以上残るよう、15mm未満の剥離量とした。固定された上記測定装置に積層体の負極集電体131の端部を取り付け、移動可能とした他方側に積層体のセパレータ140の端部を取り付け、セパレータ140側を手動で水平に移動させて上記測定装置の測定値の最大値を読み取った。このとき、手動で移動させるセパレータ140側は、移動速度が1±0.2mm/秒となるよう、負極集電体131とセパレータ140とが完全に分離するまで移動させた。 First, in the laminate, the longitudinal end face of the separator 140 was slightly peeled off from the negative electrode current collector 131 to separate the negative electrode current collector 131 side and the separator 140 side. At this time, the amount of peeling was set to less than 15 mm so that an adhesive portion of 30 mm or more remained between the negative electrode current collector 131 and the separator 140 . The end of the negative electrode current collector 131 of the laminate was attached to the fixed measuring device, the end of the separator 140 of the laminate was attached to the other movable side, and the separator 140 side was manually moved horizontally. The maximum value measured by the above measuring device was read. At this time, the side of the separator 140 that was manually moved was moved at a moving speed of 1±0.2 mm/sec until the negative electrode current collector 131 and the separator 140 were completely separated.
[サイクル数の測定方法]
 容積維持率が80%以下となるサイクル数を測定するサイクル試験は、0.1Cの電流で4.2Vまで定電流充電を行い、10分間休止後に、0.1Cの電流で3.0Vまで定電流放電を行うことを充放電の1サイクルとし、充電後の容量が初期容量の80%以下となるサイクル数を測定することで行った。
[Method for measuring the number of cycles]
In the cycle test, which measures the number of cycles at which the volume retention rate is 80% or less, constant current charging is performed at a current of 0.1 C to 4.2 V, and after a rest for 10 minutes, a current of 0.1 C is constant to 3.0 V. One cycle of charging and discharging was defined as current discharging, and the number of cycles at which the capacity after charging became 80% or less of the initial capacity was measured.
[実施例1~4及び比較例1~2]
 実施例1~4及び比較例1~2では、セパレータ基材141上にコーティングするセパレータ被覆層142の厚みを変化させて、容積維持率が80%以下となるサイクル数を測定した。以下で説明するように、セパレータ基材141上にコーティングするセパレータ被覆層142の厚みを変化させることで、セパレータ140のガーレー透気度、及び負極集電体131とセパレータ140との間の剥離強度が変化した。これに伴い、リチウム2次電池100の容積維持率が80%以下となるサイクル数が変化した。
[Examples 1-4 and Comparative Examples 1-2]
In Examples 1 to 4 and Comparative Examples 1 and 2, the thickness of the separator coating layer 142 coated on the separator base material 141 was changed, and the number of cycles at which the volume retention ratio was 80% or less was measured. As described below, by changing the thickness of the separator coating layer 142 coated on the separator substrate 141, the Gurley air permeability of the separator 140 and the peel strength between the negative electrode current collector 131 and the separator 140 has changed. Accordingly, the number of cycles at which the volume retention rate of the lithium secondary battery 100 becomes 80% or less has changed.
 なお、ガーレー透気度の測定は、JIS P8117:2009の「紙及び板紙-透気度及び透気抵抗度試験方法 (中間領域)-ガーレー法」に規定された方法で、B形試験機を用いてセパレータ140のガーレー値を測定することにより行った。 In addition, the Gurley air permeability is measured by the method specified in JIS P8117: 2009 "Paper and paperboard - Air permeability and air resistance test method (intermediate area) - Gurley method", using a B-type testing machine. The Gurley value of the separator 140 was measured using
 セパレータ140は、以下のようにして生成した。まず、セパレータ基材141として、厚み12μm、ガーレー透気度208秒/100ccのPE(ポリエチレン)多孔質を準備した。このセパレータ基材141の両面に、クレハ社製PVdF#9300の8%NMP(N-メチル-2-ピロリドン)溶液を作成して塗工した。塗工後、直ちに水に浸漬し、塗工層からNMPを抽出し、セパレータ基材141の両面にセパレータ被覆層142としてPVdF多孔質層を備えたセパレータ140を得た。このとき、上記NMP溶液の塗工厚さを調整することで、セパレータ被覆層142の厚みを調整した。 The separator 140 was produced as follows. First, as the separator base material 141, PE (polyethylene) porous material having a thickness of 12 μm and a Gurley air permeability of 208 sec/100 cc was prepared. An 8% NMP (N-methyl-2-pyrrolidone) solution of PVdF#9300 manufactured by Kureha Corporation was prepared and coated on both sides of the separator base material 141 . Immediately after coating, it was immersed in water to extract NMP from the coating layer to obtain a separator 140 having PVdF porous layers as separator coating layers 142 on both sides of the separator substrate 141 . At this time, the thickness of the separator coating layer 142 was adjusted by adjusting the coating thickness of the NMP solution.
 なお、上記のセパレータ被覆層142の厚み、すなわちPVdF層の厚みは、上記のようにして塗工したセパレータ140を10枚積層し、その総厚みからPE多孔質層の厚みを差し引くことにより算出した。 The thickness of the separator coating layer 142, that is, the thickness of the PVdF layer, was calculated by laminating 10 sheets of the separator 140 coated as described above and subtracting the thickness of the PE porous layer from the total thickness. .
 上記条件に沿って行った実施例1~4及び比較例1~2の実験結果は以下のとおりである。 The experimental results of Examples 1-4 and Comparative Examples 1-2 conducted under the above conditions are as follows.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表1において、被覆層厚が0となっている比較例1ではセパレータ被覆層142を設けずに実験を行った。 In addition, in Table 1, in Comparative Example 1 in which the coating layer thickness is 0, the experiment was conducted without providing the separator coating layer 142 .
 セパレータ被覆層142を設けなかった比較例1では、ガーレー透気度が0.04秒/100cc、剥離強度が140Nとなり、容積維持率が80%以下となるサイクル数が60サイクルとなった。セパレータ被覆層142を0.5μmとした比較例2では、ガーレー透気度が0.08秒/100cc、剥離強度が145Nとなり、容積維持率が80%以下となるサイクル数が79サイクルとなった。 In Comparative Example 1 in which the separator coating layer 142 was not provided, the Gurley air permeability was 0.04 sec/100 cc, the peel strength was 140 N, and the number of cycles at which the volume retention rate was 80% or less was 60 cycles. In Comparative Example 2 in which the separator coating layer 142 was 0.5 μm, the Gurley air permeability was 0.08 sec/100 cc, the peel strength was 145 N, and the number of cycles at which the volume retention rate was 80% or less was 79 cycles. .
 一方で、セパレータ被覆層142を1μm以上とした実施例1~4では、ガーレー透気度が230秒/100cc以上、剥離強度が0.15N以上となり、容積維持率が80%以下となるサイクル数が102サイクル以上と、比較的良好な結果が得られた。 On the other hand, in Examples 1 to 4 in which the separator coating layer 142 was 1 μm or more, the Gurley air permeability was 230 sec/100 cc or more, the peel strength was 0.15 N or more, and the volume retention rate was 80% or less. was 102 cycles or more, and relatively good results were obtained.
[実施例5~7及び比較例3~4]
 実施例5~7及び比較例3~4では、セパレータ被覆層142を有さず、セパレータ基材141のみからなるセパレータ140を用いた。本実験では、ガーレー透気度が変化することで負極集電体131とセパレータ140との間の剥離強度が変化し、これによってリチウム2次電池100の容積維持率が80%以下となるサイクル数が変化することを確認するため、ガーレー透気度が異なる各種セパレータ基材141を用いて実験した。また、セパレータ基材141の厚みも変化させた。
[Examples 5-7 and Comparative Examples 3-4]
In Examples 5-7 and Comparative Examples 3-4, the separator 140 which does not have the separator coating layer 142 and consists only of the separator substrate 141 was used. In this experiment, the peel strength between the negative electrode current collector 131 and the separator 140 changes as the Gurley air permeability changes, and the number of cycles at which the volume retention rate of the lithium secondary battery 100 becomes 80% or less. In order to confirm that the changes, experiments were conducted using various separator substrates 141 having different Gurley air permeability. Moreover, the thickness of the separator base material 141 was also changed.
 このようにして行った実施例5~7及び比較例3~4の実験結果は以下のとおりである。 The experimental results of Examples 5-7 and Comparative Examples 3-4 conducted in this way are as follows.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 セパレータ140の厚みを9μm、ガーレー透気度を61秒/100ccとした比較例3では、剥離強度が0.03Nとなり、容積維持率が80%以下となるサイクル数が52サイクルとなった。また、セパレータ140の厚みを20μm、ガーレー透気度を651秒/100ccとした比較例4では、剥離強度が0.08Nとなり、容積維持率が80%以下となるサイクル数が78サイクルとなった。 In Comparative Example 3, in which the separator 140 had a thickness of 9 μm and a Gurley air permeability of 61 seconds/100 cc, the peel strength was 0.03 N, and the number of cycles at which the volume retention ratio was 80% or less was 52 cycles. In addition, in Comparative Example 4 in which the thickness of the separator 140 was 20 μm and the Gurley air permeability was 651 sec/100 cc, the peel strength was 0.08 N, and the number of cycles at which the volume retention rate was 80% or less was 78 cycles. .
 一方で、セパレータ140の厚みを15μm、ガーレー透気度を474秒/100ccとした実施例5では、剥離強度が0.13Nとなり、容積維持率が80%以下となるサイクル数が105サイクルとなった。セパレータ140の厚みを21μm、ガーレー透気度を87秒/100ccとした実施例6では、剥離強度が0.23Nとなり、容積維持率が80%以下となるサイクル数が106サイクルとなった。セパレータ140の厚みを12.2μm、ガーレー透気度を233秒/100ccとした実施例6では、剥離強度が0.36Nとなり、容積維持率が80%以下となるサイクル数が150サイクルとなった。 On the other hand, in Example 5 in which the separator 140 had a thickness of 15 μm and a Gurley air permeability of 474 seconds/100 cc, the peel strength was 0.13 N, and the number of cycles at which the volume retention ratio was 80% or less was 105 cycles. rice field. In Example 6 in which the separator 140 had a thickness of 21 μm and a Gurley air permeability of 87 seconds/100 cc, the peel strength was 0.23 N, and the number of cycles at which the volume retention ratio was 80% or less was 106 cycles. In Example 6, in which the separator 140 had a thickness of 12.2 μm and a Gurley air permeability of 233 seconds/100 cc, the peel strength was 0.36 N, and the number of cycles at which the volume retention rate was 80% or less was 150 cycles. .
[実験結果のまとめ]
 上記のとおり、負極集電体131とセパレータ140との間の剥離強度と、容積維持率が80%以下となるサイクル数との間には、一定の相関が見られた。特に、負極集電体131とセパレータ140との間の剥離強度が0.1N以上となるリチウム2次電池100では、容積維持率が80%以下となるサイクル数が100サイクルを超える、比較的良好な結果が得られた。
[Summary of experimental results]
As described above, a certain correlation was observed between the peel strength between the negative electrode current collector 131 and the separator 140 and the number of cycles at which the volume retention rate was 80% or less. In particular, in the lithium secondary battery 100 in which the peel strength between the negative electrode current collector 131 and the separator 140 is 0.1 N or more, the number of cycles at which the volume retention ratio is 80% or less exceeds 100 cycles, which is relatively good. good results were obtained.
 また、負極集電体131とセパレータ140との間の剥離強度を、より好ましくは0.2N以上とし、さらに好ましくは0.3N以上とすることで、良好なサイクル特性が得られた。 Also, good cycle characteristics were obtained by setting the peel strength between the negative electrode current collector 131 and the separator 140 to preferably 0.2 N or more, more preferably 0.3 N or more.
 本発明のリチウム2次電池は、エネルギー密度が高く、サイクル特性に優れるため、様々な用途に用いられる蓄電デバイスとして、産業上の利用可能性を有する。 The lithium secondary battery of the present invention has high energy density and excellent cycle characteristics, so it has industrial applicability as an electricity storage device used for various purposes.
100、200…リチウム2次電池、110…正極集電体、120…正極、130…負極、131…負極集電体、132…リチウム金属層、140…セパレータ、141…セパレータ基材、142…セパレータ被覆層、210…負極端子、220…正極端子 DESCRIPTION OF SYMBOLS 100, 200... Lithium secondary battery, 110... Positive electrode collector, 120... Positive electrode, 130... Negative electrode, 131... Negative electrode collector, 132... Lithium metal layer, 140... Separator, 141... Separator base material, 142... Separator Coating layer 210... Negative electrode terminal 220... Positive electrode terminal

Claims (6)

  1.  正極と、
     初期充電前において負極活物質を有しない負極集電体を含む負極と、
     前記正極と前記負極との間に配置されたセパレータと、を備え、
     前記負極集電体と前記セパレータとの間の剥離強度が0.1N以上である、
     リチウム2次電池。
    a positive electrode;
    a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charging;
    a separator disposed between the positive electrode and the negative electrode;
    The peel strength between the negative electrode current collector and the separator is 0.1 N or more,
    Lithium secondary battery.
  2.  前記セパレータが、少なくとも前記負極側にセパレータ被覆層を有する、
     請求項1に記載のリチウム2次電池。
    The separator has a separator coating layer at least on the negative electrode side,
    The lithium secondary battery according to claim 1.
  3.  前記セパレータ被覆層の厚みが0.7μm以上である、
     請求項2に記載のリチウム2次電池。
    The thickness of the separator coating layer is 0.7 μm or more,
    The lithium secondary battery according to claim 2.
  4.  前記セパレータのガーレー透気度が180秒/100cc以上である、
     請求項2または3に記載のリチウム2次電池。
    Gurley air permeability of the separator is 180 sec/100 cc or more,
    4. The lithium secondary battery according to claim 2 or 3.
  5.  前記ガーレー透気度が600秒/100cc以下である、
     請求項4に記載のリチウム2次電池。
    The Gurley air permeability is 600 sec/100 cc or less,
    The lithium secondary battery according to claim 4.
  6.  正極と、
     初期充電前において負極活物質を有しない負極集電体を含む負極と、
     前記正極と前記負極との間に配置されたセパレータと、を備え、
     前記セパレータが、少なくとも前記負極側にセパレータ被覆層を有し、
     前記セパレータ被覆層の厚みが0.7μm以上であり、
     前記セパレータのガーレー透気度が180秒/100cc以上、600秒/100cc以下である、
     リチウム2次電池。
    a positive electrode;
    a negative electrode including a negative electrode current collector that does not have a negative electrode active material before initial charging;
    a separator disposed between the positive electrode and the negative electrode;
    The separator has a separator coating layer at least on the negative electrode side,
    The thickness of the separator coating layer is 0.7 μm or more,
    The separator has a Gurley air permeability of 180 sec/100 cc or more and 600 sec/100 cc or less.
    Lithium secondary battery.
PCT/JP2021/027010 2021-07-19 2021-07-19 Lithium secondary battery WO2023002537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027010 WO2023002537A1 (en) 2021-07-19 2021-07-19 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027010 WO2023002537A1 (en) 2021-07-19 2021-07-19 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2023002537A1 true WO2023002537A1 (en) 2023-01-26

Family

ID=84979224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027010 WO2023002537A1 (en) 2021-07-19 2021-07-19 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2023002537A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074367A (en) * 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
JP2014012857A (en) * 2013-09-26 2014-01-23 Asahi Kasei E-Materials Corp Microporous film, method for producing the same, and separator for nonaqueous electrolyte secondary battery
WO2017086466A1 (en) * 2015-11-19 2017-05-26 旭化成株式会社 Separator for electricity storage devices, electrode body using same, and electricity storage device
JP2018147578A (en) * 2017-03-01 2018-09-20 旭化成株式会社 Separator for power storage device
WO2019054422A1 (en) * 2017-09-15 2019-03-21 東レ株式会社 Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2020526893A (en) * 2017-08-28 2020-08-31 エルジー・ケム・リミテッド Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074367A (en) * 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
JP2014012857A (en) * 2013-09-26 2014-01-23 Asahi Kasei E-Materials Corp Microporous film, method for producing the same, and separator for nonaqueous electrolyte secondary battery
WO2017086466A1 (en) * 2015-11-19 2017-05-26 旭化成株式会社 Separator for electricity storage devices, electrode body using same, and electricity storage device
JP2018147578A (en) * 2017-03-01 2018-09-20 旭化成株式会社 Separator for power storage device
JP2020526893A (en) * 2017-08-28 2020-08-31 エルジー・ケム・リミテッド Lithium secondary battery
WO2019054422A1 (en) * 2017-09-15 2019-03-21 東レ株式会社 Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
JP4743752B2 (en) Lithium ion secondary battery
JP5348730B2 (en) Lithium ion secondary battery
JP4222519B2 (en) Lithium ion secondary battery and equipment using the same
CN104335395A (en) Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
US20230246240A1 (en) Lithium secondary battery
US20230100167A1 (en) Secondary battery and method for producing same
WO2022038793A1 (en) Lithium secondary battery
US20240120549A1 (en) Lithium secondary battery
JP5793411B2 (en) Lithium secondary battery
WO2023042262A1 (en) Lithium secondary battery
WO2022054279A1 (en) Lithium secondary battery
WO2023002537A1 (en) Lithium secondary battery
WO2022215160A1 (en) Lithium secondary battery
CN108292754B (en) Lithium ion secondary battery
JP7340303B2 (en) Lithium secondary battery and its manufacturing method
WO2022264406A1 (en) Lithium secondary battery
WO2022091407A1 (en) Lithium secondary battery
JP7359491B2 (en) Battery and its manufacturing method
WO2023166663A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery
WO2023053295A1 (en) Lithium secondary battery
WO2022102072A1 (en) Lithium secondary battery
WO2022244110A1 (en) Lithium secondary battery, method for using same, and method for manufacturing lithium secondary battery
WO2021229680A1 (en) Battery and method for producing same
WO2022144947A1 (en) Lithium secondary battery
WO2023032185A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE