WO2023001639A1 - Method for preparing a catalyst from molten salts and a particular support - Google Patents

Method for preparing a catalyst from molten salts and a particular support Download PDF

Info

Publication number
WO2023001639A1
WO2023001639A1 PCT/EP2022/069488 EP2022069488W WO2023001639A1 WO 2023001639 A1 WO2023001639 A1 WO 2023001639A1 EP 2022069488 W EP2022069488 W EP 2022069488W WO 2023001639 A1 WO2023001639 A1 WO 2023001639A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
acid
nickel
alumina
carried out
Prior art date
Application number
PCT/EP2022/069488
Other languages
French (fr)
Inventor
Malika Boualleg
Laetitia Jothie
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2023001639A1 publication Critical patent/WO2023001639A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state

Definitions

  • the present invention relates to a process for the preparation of a catalyst intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, for the selective hydrogenation of polyunsaturated compounds or in the hydrogenation of aromatic compounds.
  • document US 5,036,032 discloses a method for preparing a supported catalyst based on cobalt by bringing a support into contact (of the order of a few tens of seconds) in a bath of molten salt of cobalt nitrate, followed by a step of drying and reduction without intermediate calcination.
  • This method allows the preferential localization of the cobalt phase at the periphery of the support. Nevertheless, the method does not allow precise control of the amount of active phase (here cobalt) deposited due to the very short contact time and on the other hand the type of catalyst obtained is not suitable for implementation.
  • the reaction mixture contains a metal precursor salt (in particular Ni(NC> 3 )2 or CO(N ⁇ 3)2), a source of phosphorus (NH4HPO4), and an alkali metal nitrate (Na or K). These preparations are carried out at high temperatures of the order of 400°C to 450°C.
  • a metal precursor salt in particular Ni(NC> 3 )2 or CO(N ⁇ 3)2
  • NH4HPO4 a source of phosphorus
  • Na or K alkali metal nitrate
  • Mixed phosphate solids are obtained, for example Na3NI2(P2O7)PC>4, K2NL(PO4)2P2C>7 OR NagCo3(PC>4)5. These solids can find applications in ion exchange, high temperature ionic conduction or in catalysis.
  • the document GB191308864 discloses a process for the synthesis of bulk catalysts based on nickel or cobalt for the production of hydrogen by steam reforming (“steam-reforming” according to the Anglo-Saxon terminology). These catalysts can be obtained by liquefaction of metal salts at moderate temperatures, then poured into a mold before heat treatment for calcination.
  • Patent EP2921227 discloses a Fischer-Tropsch catalyst based on a group VIIIB metal deposited on an oxide support comprising alumina, silica, spinel and phosphorus as well as its method of manufacture. This process includes the preparation of the oxide support as well as the impregnation of this support with an aqueous solution of a metal precursor followed by drying and calcination. In the case of high metal contents, the impregnation/drying/calcination of the active phase in several stages is preferred.
  • document FR3104461 discloses a method for preparing a selective hydrogenation catalyst comprising an active phase of nickel and an alumina support, said support being brought into contact with at least one organic additive comprising oxygen and/ or nitrogen and with at least one nickel metal salt at a temperature below the melting point of said nickel metal salt.
  • this document does not disclose the process for preparing the alumina or discuss a potential impact of the properties of the alumina used.
  • the present invention relates to a new method for preparing a catalyst exhibiting performance at least as good, or even better than the catalysts obtained according to preparation methods according to the prior art, while using a quantity of active phase based on nickel equal to or even less than that typically used in the state of the art.
  • the present invention relates to a process for the preparation of a catalyst comprising an active phase based on nickel and an alumina support, said active phase not comprising any metal from group VI B, said catalyst comprising a higher nickel element content or equal to 1% by weight and less than or equal to 50% by weight relative to the total weight of the catalyst, the size of the nickel particles in the catalyst, measured in oxide form, is less than 8 nm, said method comprising the following steps a) supplying an alumina gel; b) the alumina gel of step a) is shaped; c) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature between between 100°C and 800°C for a time of between 45 minutes and 150 minutes, and at least one calcining step, at a temperature of between 400°C and 1500°C, carried out after the hydrothermal treatment step, for obtaining an a
  • the Applicant has discovered, surprisingly, that it is possible to obtain a catalyst exhibiting performance at least as good, or even better, in terms of activity in the context of the reactions of selective hydrogenation of polyunsaturated compounds or of hydrogenation of aromatic compounds, as catalysts obtained according to processes known from the prior art, by applying a particular heat treatment (hydrothermal treatment) during the synthesis of the catalyst support from an alumina gel, said catalyst being obtained by introducing an organic additive and a nickel metal salt onto the particular alumina support to form a solid mixture, said solid mixture being heated with stirring, then dried and heat-treated without resorting to a final hydrothermal treatment.
  • a particular heat treatment hydroothermal treatment
  • the preparation process comprising the addition of a specific organic additive and a nickel precursor (in the form of molten salts) on a particular alumina support having a surface reactivity very particular, and having undergone a hydrothermal treatment in the presence of an acid solution, allows an improved accessibility of nickel (less strong interaction with the support).
  • the method for preparing the catalyst according to the invention leads to a catalyst having a nickel particle size of less than 8 nm, conferring a significant intrinsic activity of the nickel active phase. Furthermore, the method for preparing the catalyst used in the context of the present invention allows, without addition of solvent and therefore in a very limited number of steps and above all less than the conventional preparation method (i.e. by impregnation), the Obtaining a catalyst whose catalytic performances are at least as good or even superior to conventional catalysts.
  • the melting point of said metal salt is between 20°C and 150°C.
  • the molar ratio between said organic additive introduced in step d) and the nickel element introduced in step e) is between 0.1 and 5.0 mol/mol.
  • steps d) and e) are carried out simultaneously.
  • the organic additive is chosen from aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, or a combination of the different functional groups above
  • said organic additive is chosen from formic acid, formaldehyde, acetic acid, citric acid, oxalic acid, glycolic acid, malonic acid, levulinic acid, ethanol, methanol, ethyl formate, methyl formate, paraldehyde, acetaldehyde, gamma-valerolactone acid, glucose and sorbitol.
  • the organic additive is chosen from citric acid, formic acid, glycolic acid, levulinic acid and oxalic acid.
  • step f) is carried out by means of a drum operating at a speed of between 4 and 70 revolutions per minute.
  • step e) the mass ratio between said metal salt and the alumina support is between 0.2 and 2.
  • step c) the duration of the hydrothermal treatment is carried out between 1 hour and 2 hours.
  • the alumina obtained at the end of step c) comprises a specific surface of between 10 m 2 /g and 250 m 2 /g.
  • the size of the nickel particles in the catalyst, measured in oxide form, is between 2 nm and 4 nm.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the specific surface B.E.T. determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 based on the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society", 60, 309, (1938).
  • total pore volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the volume measured by intrusion with a mercury porosimeter according to the ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the wetting angle was taken as equal to 140° by following the recommendations of the work “Engineering techniques, treatise on analysis and characterization”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
  • size of the nickel particles means the diameter of the crystallites of nickel in oxide form.
  • the nickel content is measured by X-ray fluorescence.
  • the catalyst according to the invention comprises an alumina support which is obtained from an alumina gel (or alumina gel) which essentially comprises a precursor of the aluminum oxy(hydroxide) type (AIO(OH)) - also called Boehmite.
  • the alumina gel (or otherwise called boehmite gel) is synthesized by precipitation of basic and/or acidic solutions of aluminum salts induced by a change in pH or any other method known to those skilled in the art.
  • the precipitation reaction is carried out at a temperature between 5°C and 80°C and at a pH between 6 and 10.
  • the temperature is between 35°C and 70°C and the pH is between 6 and 10.
  • the alumina gel is obtained by bringing an aqueous solution of an acid aluminum salt into contact with a basic solution.
  • the acid aluminum salt is chosen from the group consisting of aluminum sulphate, aluminum nitrate and aluminum chloride, and preferably, said acid salt is aluminum sulphate.
  • the basic solution is preferably chosen from sodium hydroxide or potassium hydroxide.
  • an alkaline solution of aluminum salts which may be chosen from the group consisting of sodium aluminate and potassium aluminate can be brought into contact with an acid solution.
  • the gel is obtained by bringing a solution of sodium aluminate into contact with nitric acid.
  • the sodium aluminate solution advantageously has a concentration of between 10 5 and 1CH mol.L ⁇ 1 and preferably this concentration is between 10 4 and 10 2 mol.L 1 .
  • the alumina gel is obtained by bringing an aqueous solution of acid aluminum salts into contact with an alkaline solution of aluminum salts.
  • Step b) Shaping the alumina gel
  • the alumina gel can advantageously be shaped by any technique known to those skilled in the art.
  • the shaping can be carried out, for example, by kneading-extrusion, by pelleting, by the drop coagulation method (“oil-drop” according to Anglo-Saxon terminology), by granulation on a turntable or by any other well-suited method. known to those skilled in the art.
  • the catalysts according to the invention can optionally be manufactured and used in the form of extrudates, tablets, beads.
  • the advantageous shaping method according to the invention is extrusion and the preferred extrudate shapes are cylindrical, twisted cylindrical or multilobed (2, 3, 4 or 5 lobes for example).
  • the alumina gel obtained at the end of step a) is subjected to a kneading step, preferably in an acid medium.
  • the acid used may for example be nitric acid.
  • This step is carried out by means of known tools such as Z-arm mixers, wheel mixers, single or twin continuous screws allowing the transformation of the gel into a product having the consistency of a paste.
  • one or more compounds called "pore-forming agents" are added to the mixing medium. These compounds have the property of being degraded by heating and thus creating porosity in the support. For example, it is possible to use as pore-forming compounds wood flour, charcoal, tars, materials plastics.
  • the paste thus obtained after mixing is passed through an extrusion die.
  • the extrudates have a diameter of between 0.5 mm and 10 mm, preferably between 0.8 mm and 3.2 mm and very preferably between 1.0 mm and 2.5 mm and a length of between 0.5 mm and 20mm.
  • These extrudates can be cylindrical, multi-lobed (for example tri-lobed or quadri-lobed).
  • the support is optionally dried before undergoing the hydrothermal treatment according to step c) of the process.
  • the drying is carried out at a temperature between 50°C and 200°C.
  • the dried support is optionally calcined before undergoing the hydrothermal treatment according to step c) of the process.
  • calcination is carried out at a temperature between 200°C and 1000°C, in the presence or not of an air flow containing up to 150 of water per kilogram of dry air.
  • step b) The support obtained at the end of step b) then undergoes a heat treatment step which makes it possible to give it physical properties corresponding to the application envisaged.
  • hydrophilmal treatment designates a treatment by passing through an autoclave in the presence of water at a temperature above ambient temperature.
  • the shaped alumina can be treated in different ways.
  • the alumina can be impregnated with an acid solution, prior to its passage through the autoclave, the hydrothermal treatment of the alumina being able to be carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave may or may not be acidic.
  • This impregnation, before the hydrothermal treatment can be carried out dry or by immersing the alumina in an acidic aqueous solution.
  • dry impregnation is meant bringing the alumina into contact with a volume of solution less than or equal to the total pore volume of the treated alumina.
  • the impregnation is carried out dry.
  • the acid aqueous solution comprises at least one acid compound making it possible to dissolve at least part of the alumina of the shaped support.
  • the term "acid compound allowing to dissolve at least a part of the alumina of the support” means any acid compound which, brought into contact with the alumina support, carries out the dissolving of at least a part of the aluminum ions .
  • the acid should preferably dissolve at least 0.5% by weight alumina from the alumina carrier.
  • this acid is chosen from strong acids such as nitric acid, hydrochloric acid, perchloric acid, sulfuric acid or a weak acid used at a concentration such that its aqueous solution has a pH lower than 4, such as acetic acid, or a mixture of these acids.
  • strong acids such as nitric acid, hydrochloric acid, perchloric acid, sulfuric acid or a weak acid used at a concentration such that its aqueous solution has a pH lower than 4, such as acetic acid, or a mixture of these acids.
  • the hydrothermal treatment is carried out in the presence of nitric acid and acetic acid taken alone or in a mixture.
  • the autoclave is preferably a rotating basket autoclave such as that defined in patent application EP-A-0387 109.
  • the hydrothermal treatment can also be carried out under saturated vapor pressure or under a partial water vapor pressure at least equal to 70% of the saturated vapor pressure corresponding to the treatment temperature.
  • the hydrothermal treatment is carried out at a temperature between 100°C and 800°C, preferably between 200°C and 700°C.
  • the hydrothermal treatment is carried out for a period of between 45 minutes and 150 minutes, preferably between 1 hour and 2 hours.
  • a duration of less than 45 minutes does not enable the "Oswald ripening phenomenon" to be implemented (phenomenon of re-dissolution of small alumina particles and increase of larger ones) and therefore renders hydrothermal treatment ineffective.
  • the support thus obtained does not have adequate physico-chemical properties (Lewis and Bronsted acidity of surface -OH).
  • a treatment time of more than 150 minutes leads to excessive Oswald ripening, and therefore to excessive aggregation of elementary alumina crystallites.
  • the calcination step which takes place after the hydrothermal treatment by passage in an autoclave takes place at a temperature generally between 400° C. and 1500° C., preferably between 800° C. and 1300° C., generally for 1 hour. and 5 hours, in air, the water content of which is generally between 0 and 700 g of water per kilogram of dry air.
  • the alumina obtained has the specific textural properties as described below.
  • the support is brought into contact with at least at least one organic additive comprising oxygen and/or nitrogen, preferably chosen from aldehydes containing from 1 to 14 carbon atoms per molecule (preferably from 2 to 12), ketones or polyketones containing from 3 to 18 (preferably from 3 to 12) carbon atoms per molecule, ethers or esters containing from 2 to 14 (from preferably from 3 to 12) carbon atoms per molecule, the alcohols or polyalcohols containing from 1 to 14 (preferably from 2 to 12) carbon atoms per molecule and the carboxylic acids or polycarboxylic acids containing from 1 to 14 (preferably from 1 to 12) carbon atoms per molecule.
  • the organic additive can be composed of a combination of the various functional groups mentioned above.
  • the organic additive is chosen from formic acid HCOOH, formaldehyde CH 2 0, acetic acid CH 3 COOH, citric acid, oxalic acid, glycolic acid (HOOC-CH 2 - OH), malonic acid (HOOC-CH 2 -COOH), levulinic acid (CH 3 CCH 2 CH 2 CO 2 H), ethanol, methanol, ethyl formate HCOOC 2 H 5 , HCOOCH 3 methyl formate, paraldehyde (CH 3 -CHO) 3 , acetaldehyde C 2 H 4 O, gamma-valerolactone acid (C 5 H 8 O 2 ), glucose and sorbitol.
  • formic acid HCOOH formaldehyde CH 2 0, acetic acid CH 3 COOH, citric acid, oxalic acid, glycolic acid (HOOC-CH 2 - OH), malonic acid (HOOC-CH 2 -COOH), levulinic acid (CH 3 CCH 2 CH 2 CO 2
  • the organic additive is chosen from citric acid, formic acid, glycolic acid, levulinic acid and oxalic acid.
  • said step d) is carried out by bringing the support into contact with at least one organic additive in the form of a powder.
  • said step d) is carried out by bringing the support into contact with at least one organic additive in the form of a powder dissolved in a minimum amount of water.
  • minimum quantity of water means the quantity of water allowing the at least partial dissolution of said organic additive in water. This minimum quantity of water cannot be assimilated to a solvent.
  • steps d) and e) are carried out separately) each step of setting contact of the support with the organic additive is advantageously followed by drying at a temperature below 250°C, preferably between 15°C and 240°C, more preferably between 30°C and 220°C.
  • the bringing into contact according to step d) is generally carried out at a temperature between 0° C. and 70° C., preferably between 10° C. and 60° C., and in a particularly preferred manner at ambient temperature.
  • step d) the bringing into contact of said porous support and of the organic additive can be done by any method known to those skilled in the art.
  • convective mixers, drum mixers or static mixers can be used.
  • Step d) is advantageously carried out for a period of between 5 minutes to 5 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours.
  • the molar ratio between the organic additive and the nickel is greater than 0.05 mol/mol, preferably between 0.1 and 5 mol/mol, more preferably between 0.12 and 3 mol/ mol, and even more preferably between 0.15 and 2.5 mol/mol.
  • the alumina support is brought into contact with at least one nickel metal salt, at a temperature below the melting point of the metal salt, for a period advantageously between 5 minutes to 5 hours, to form a solid mixture, the mass ratio between said metal salt and the alumina support being between 0.1 and 2.3, preferably between 0.2 and 2.
  • the melting point of said metal salt is between 20°C and 150°C.
  • the metal salt is hydrated.
  • step e) the contacting of said porous oxide support and the nickel metal salt can be done by any method known to those skilled in the art.
  • convective mixers, drum mixers or static mixers can be used.
  • Step e) is advantageously carried out for a period of between 5 minutes to 5 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours.
  • step d) is carried out before step e) is carried out.
  • step f) the mixture obtained at the end of steps d) and e) is heated with stirring to a temperature between the melting point of the metal salt and 200° C., and advantageously under atmospheric pressure.
  • the temperature is between 50°C and 100°C.
  • step f) is carried out for a period of between 5 minutes and 12 hours, preferably between 5 minutes and 4 hours.
  • the mechanical homogenization of the mixture can be done by any method known to those skilled in the art.
  • convective mixers, drum mixers or static mixers can be used.
  • step f) is carried out by means of a drum mixer whose speed of rotation is between 4 and 70 revolutions/minute, preferably between 10 and 60 revolutions/minute. Indeed, if the rotation of the drum is too high, the active phase of the catalyst will not be distributed in a crust around the periphery of the support, but will be distributed homogeneously throughout the support, which is not desirable.
  • Stage g) of drying the catalyst precursor obtained at the end of stage f) is carried out at a temperature below 250° C., preferably between 15° C. and 180° C., more preferably between 30° C. C and 160° C., even more preferably between 50° C. and 150° C., and even more preferably between 70° C. and 140° C., typically for a period of between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying temperature in step g) is generally higher than the heating temperature in step f).
  • the drying temperature of step g) is at least 10°C higher than the heating temperature of step f).
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • the dried catalyst precursor undergoes an additional heat treatment step, before step i) optional reduction, at a temperature between 250 ° C and 1000 ° C and preferably between 250 ° C and 750 ° C, typically for a duration between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer treatment times are not excluded, but do not bring necessary improvement.
  • the term “heat treatment” is understood to mean the temperature treatment respectively without the presence or in the presence of water. In the latter case, contact with water vapor can take place at atmospheric pressure or at autogenous pressure. Several cycles combined without presence or with the presence of water can be made. After this or these treatment(s), the catalyst precursor comprises nickel in the oxide form, that is to say in the NiO form.
  • the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably between 250 and 650 grams per kilogram of dry air.
  • At least one stage of reducing treatment is advantageously carried out i) in the presence of a reducing gas after stage e) of so as to obtain a catalyst comprising nickel at least partially in metallic form.
  • This treatment makes it possible to activate said catalyst and to form metallic particles, in particular nickel in the zero valent state.
  • Said reducing treatment can be carried out in-situ or ex-situ, that is to say after or before loading the catalyst into the hydrogenation reactor.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or in a mixture (for example a hydrogen/nitrogen, or hydrogen/argon, or hydrogen/methane mixture). In the case where the hydrogen is used as a mixture, all the proportions are possible.
  • Said reducing treatment is carried out at a temperature comprised between 120°C and 500°C, preferably between 150°C and 450°C.
  • the reducing treatment is carried out at a temperature between 180° C. and 500° C., preferably between 200° C. and 450° C., and even more preferably between 350°C and 450°C.
  • the reducing treatment is generally carried out at a temperature of between 120°C and 350°C, preferably between 150°C and 350°C.
  • the duration of the reducing treatment is generally between 2 hours and 40 hours, preferably between 3 hours and 30 hours.
  • the rise in temperature up to the desired reduction temperature is generally slow, for example fixed between 0.1° C./min and 10° C./min, preferably between 0.3° C./min and 7° C./min .
  • the hydrogen flow rate is between 0.01 and 100 L/hour/gram of catalyst, preferably between 0.05 and 10 L/hour/gram of catalyst, even more preferably between 0.1 and 5 L/hour/gram of catalyst.
  • the catalyst obtained by the preparation process according to the invention comprises an active phase based on nickel, and an alumina support.
  • the nickel content in said catalyst is advantageously between 1 and 50% by weight relative to the total weight of the catalyst, more preferably between 2 and 40% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% weight relative to the total weight of the catalyst. “% wt” values are based on the elemental form of nickel.
  • the specific surface of the catalyst is generally between 10 m 2 /g and 200 m 2 /g, preferably between 25 m 2 /g and 110 m 2 /g, more preferably between 40 m 2 /g and 100 m 2 /g.
  • the total pore volume of the catalyst is generally between 0.1 ml/g and 1 ml/g, preferably between 0.2 ml/g and 0.8 ml/g, and particularly preferably between 0.3 ml/g and 0.7 ml/g.
  • the size of the nickel particles, measured in oxide form, in the catalyst is less than 8 nm, preferably less than 7 nm, more preferably less than 6 nm, preferably less than 5 nm, and even more preferably between 2 and 4 nm.
  • the active phase of the catalyst does not comprise any metal from group VI B. In particular, it does not comprise molybdenum or tungsten.
  • Said catalyst is in the form of grains advantageously having a diameter of between 0.5 and 10 mm.
  • the grains can have any shape known to those skilled in the art, for example the shape of beads (preferably having a diameter of between 1 and 8 mm), extrudates, tablets, hollow cylinders.
  • the catalyst (and the support used for the preparation of the catalyst) are in the form of extrudates with a diameter of between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and length between 0.5 and 20 mm.
  • the term “diameter” of the extrudates is understood to mean the diameter of the circle circumscribed to the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multi-lobed, tri-lobed or quadri-lobed extrudates. Preferably, its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
  • the characteristics of the alumina correspond to the characteristics of the alumina before the addition of the organic additive (step d) and/or addition of the active phase of nickel (step e), ie the alumina support obtained at the end of step c) of the process for preparing the catalyst according to the invention.
  • the support is an alumina, that is to say that the support comprises at least 95%, preferably at least 98%, and in a particularly preferred manner at least 99% by weight of alumina relative to the weight of the medium.
  • Alumina generally has a crystallographic structure of the delta, gamma or theta alumina type, alone or in a mixture.
  • the alumina support may comprise impurities such as metal oxides of groups MA, INB, IVB, NB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or alternatively alkali metals, preferably lithium, sodium or potassium, and/or alkaline earth metals, preferably magnesium, calcium, strontium or barium or sulfur.
  • impurities such as metal oxides of groups MA, INB, IVB, NB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or alternatively alkali metals, preferably lithium, sodium or potassium, and/or alkaline earth metals, preferably magnesium, calcium, strontium or barium or sulfur.
  • the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support, and the sodium content of said alumina support is between 0.001% and 2% by weight. relative to the total weight of said alumina gel.
  • the specific surface of the alumina is generally between 10 m 2 /g and 250 m 2 /g, preferably between 30 m 2 /g and 200 m 2 /g, more preferably between 50 m 2 /g and 150 m 2 /g.
  • the pore volume of the alumina is generally between 0.1 ml/g and 1.2 ml/g, preferably between 0.3 ml/g and 0.9 ml/g, and very preferably between 0.5ml/g and 0.9ml/g.
  • the present invention also relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and/or acetylenics and/or alkenylaromatics, also called styrenics, contained in a charge of hydrocarbons having a final boiling point less than or equal to 300°C, which process is carried out at a temperature between 0 and 300°C, at a pressure between 0.1 MPa and 10 MPa, at a hydrogen molar ratio /(polyunsaturated compounds to be hydrogenated) of between 0.1 and 10 and at an hourly volume rate of between 0.1 and 200 lr 1 when the process is carried out in the liquid phase, or at a molar ratio hydrogen/(polyunsaturated compounds to be hydrogenated ) between 0.5 and 1000 and at an hourly volume rate between 100 h -1 and 40000 h -1 when the process is carried out in the gas phase, in the presence of a catalyst obtained
  • Monounsaturated organic compounds such as ethylene and propylene, for example, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feedstocks. It allows the conversion of polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracked gasolines used as feed, selective hydrogenation also makes it possible to selectively hydrogenate alkenylaromatics into aromatics by avoiding the hydrogenation of aromatic rings.
  • the hydrocarbon feed treated in the selective hydrogenation process has a final boiling point less than or equal to 300°C and contains at least 2 carbon atoms per molecule and includes at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and/or at least one diene function and/or at least one alkenylaromatic function.
  • the feedstock is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5+ cut.
  • the C2 cut from steam cracking advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain C2 cuts from steam cracking, between 0.1 and 1% by weight of C3 compounds may also be present.
  • the C3 steam cracking cut advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C2 compounds and C4 compounds may also be present.
  • a C2-C3 cut can also be advantageously used for implementing the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight of ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
  • This filler may also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 cut from steam cracking advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
  • the C5 cut from steam cracking advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
  • the steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300° C., from preferably between 10°C and 250°C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracked gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.). ).
  • Steam cracked gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulphur, preferably from 0 to 500 ppm by weight of sulphur.
  • the charge of polyunsaturated hydrocarbons treated in accordance with the selective hydrogenation process according to the invention is a C2 cut from steam cracking, or a C2-C3 cut from steam cracking, or a gasoline from steam cracking.
  • the selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said charge to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the aim is to eliminate the butadiene, vinylacetylene (VAC) and the butyne
  • the aim is to eliminate the pentadienes.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated into mono-olefins and the styrenic and indenic compounds are partially hydrogenated to the corresponding aromatic compounds avoiding the hydrogenation of the aromatic rings.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in ascending or descending current, of the charge of polyunsaturated hydrocarbons and hydrogen into at least one fixed-bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the charge of polyunsaturated hydrocarbons can advantageously be diluted by one or more re-injections) of the effluent, from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors-exchangers or in a reactor of the slurry type. .
  • the hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
  • the selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5+ cuts from steam cracking can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5+ cuts and in the carbonated for C2 and C2-C3 cuts.
  • a reaction in the liquid phase makes it possible to lower the energy cost and to increase the cycle time of the catalyst.
  • the selective hydrogenation of a hydrocarbon charge containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300°C is carried out at a temperature between 0°C and 300°C, at a pressure between 0.1 MPa and 10 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume rate (defined as the ratio of the volume flow rate of charge to the volume of the catalyst) of between 0.1 h 1 and 200 h -1 for a process carried out in the liquid phase, or at a molar hydrogen/(polyunsaturated compounds to be hydrogenated) ratio comprised between 0.5 and 1000 and at an hourly volume rate of between 100 and 40,000 h -1 for a process carried out in the gas phase.
  • the molar ratio (hydrogen)/(polyunsaturated compounds to be hydrogenated) is generally comprised between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0
  • the temperature is between 0°C and 200°C, preferably between 20°C C and 200°C and even more preferably between 30°C and 180°C
  • the hourly volume velocity (VVH) is generally between 0.5 h 1 and 100 h 1 , preferably between 1 and 50 h -1
  • the pressure is generally between 0.3 MPa and 8.0 MPa, preferably between 1.0 MPa and 7.0 MPa and even more preferably between 1.5 MPa and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the feedstock is a steam cracked gasoline comprising polyunsaturated compounds, the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20° C. and 200° C., the hourly volume velocity (VVH) is generally between 1 h 1 and 50 h -1 and the pressure is between 1.0 MPa and 7.0 MPa.
  • the feedstock is a steam cracked gasoline comprising polyunsaturated compounds
  • the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0
  • the temperature is between 20° C. and 200° C.
  • the hourly volume velocity (VVH) is generally between 1 h 1 and 50 h -1
  • the pressure is between 1.0 MPa and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the feedstock is a steam cracked gasoline comprising polyunsaturated compounds, the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30° C. and 180° C., the hourly volume velocity (VVH) is generally between 1 h -1 and 50 h -1 and the pressure is between 1.5 MPa and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to have a sufficient quantity of it to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the molar ratio ( hydrogen)/(polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800
  • the temperature is between 0°C and 300°C, preferably between 15°C and 280° C
  • the hourly volume velocity (VVH) is generally between 100 h 1 and 40,000 h 1 , preferably between 500 h -1 and 30,000 h -1
  • the pressure is generally between 0.1 MPa and 6.0 MPa, preferably between 0.2 MPa and 5.0 MPa.
  • the present invention also relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a charge of hydrocarbons having a final boiling point less than or equal to 650° C., generally between 20° C. and 650° C. °C, and preferably between 20°C and 450°C.
  • Said hydrocarbon charge containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical fractions: reformate from catalytic reforming, kerosene, light gas oil, heavy gas oil, cracking distillates, such as FCC recycle oil, coker diesel, hydrocracking distillates.
  • the content of aromatic or polyaromatic compounds contained in the hydrocarbon charge treated in the hydrogenation process according to the invention is generally between 0.1% and 80% by weight, preferably between 1% and 50% by weight, and most preferably between 2% and 35% by weight, the percentage being based on the total weight of the hydrocarbon charge.
  • the aromatic compounds present in said hydrocarbon charge are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, ⁇ -xylene, m-xylene, or p-xylene, or alternatively aromatics having several aromatic rings (polyaromatics) such as naphthalene.
  • the sulfur or chlorine content of the charge is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and in a particularly preferred manner less than 10 ppm by weight.
  • the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in ascending or descending current, of the hydrocarbon charge and hydrogen into at least one fixed-bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred.
  • the hydrocarbon charge can advantageously be diluted by one or more re-injection(s) of the effluent, from said reactor where the hydrogenation reaction of the aromatics takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the process for the hydrogenation of aromatics according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors-exchangers or in a reactor of the slurries.
  • the hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
  • the hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature of between 30° C. and 350° C., preferably between 50° C.
  • the hydrogen flow is adjusted in order to have a sufficient quantity of it to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the conversion of the aromatic or polyaromatic compounds is generally greater than 20% by mole, preferably greater than 40% by mole, more preferably greater than 80% by mole, and in a particularly preferred manner greater than 90% by mole of the aromatic compounds or polyaromatics contained in the hydrocarbon charge.
  • the conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed and in the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed.
  • a process is carried out for the hydrogenation of benzene from a hydrocarbon charge, such as the reformate from a unit catalytic reforming.
  • the benzene content in said hydrocarbon charge is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon charge.
  • the sulfur or chlorine content of the charge is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
  • the hydrogenation of the benzene contained in the hydrocarbon charge can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase.
  • a solvent may be present, such as cyclohexane, heptane, octane.
  • the hydrogenation of benzene is carried out at a temperature between 30° C. and 250° C., preferably between 50° C. and 200° C., and more preferably between 80° C. and 180° C.
  • the conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
  • An alumina gel is synthesized via a mixture of sodium aluminate and aluminum sulphate. The precipitation reaction takes place at a temperature of 60° C., at a pH of 9, for 60 min and with stirring at 200 rpm.
  • the gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste.
  • Extrusion is carried out by passing the paste through a die fitted with 1.6 mm diameter orifices in the shape of trilobes.
  • the extrudates thus obtained are dried at 150° C. and then calcined at 450° C. in dry air.
  • An alumina gel is synthesized via a mixture of sodium aluminate and aluminum sulphate. The precipitation reaction takes place at a temperature of 60° C., at a pH of 9, for 60 min and with stirring at 200 rpm.
  • the gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste.
  • Extrusion is carried out by passing the paste through a die fitted with 1.6 mm diameter orifices in the shape of trilobes.
  • the extrudates thus obtained are dried at 150° C. and then calcined at 450° C. in dry air.
  • the extrudate then undergoes a calcining step in dry air at 650°C for 2 hours in a tubular reactor.
  • Alumina AL-2 is obtained.
  • An alumina gel is synthesized via a mixture of sodium aluminate and aluminum sulphate. The precipitation reaction takes place at a temperature of 60° C., at a pH of 9, for 60 min and with stirring at 200 rpm.
  • the gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste.
  • Extrusion is carried out by passing the paste through a die fitted with 1.6 mm diameter orifices in the shape of trilobes.
  • the extrudates thus obtained are dried at 150° C. and then calcined at 450° C. in dry air.
  • the extrudate undergoes a hydrothermal treatment at 200°C in the presence of an aqueous solution of acetic and nitric acid at 6.5% by weight for 180 minutes (3 hours) in an autoclave, then is calcined in dry air at 1000°C for 2 hours in a tubular reactor.
  • Alumina AL-3 is obtained.
  • the aqueous solution of Ni precursors (solution S) used for the preparation of catalyst E is prepared by dissolving 43.5 grams (g) of nickel nitrate (N1NO 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. The solution S is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
  • Example 3 (compliant) alumina AL-1 + citric acid + Ni molten salt
  • the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes.
  • the molar ratio by weight between citric acid and nickel is 0.2.
  • the nickel content aimed at in this stage is 22% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120° C., then calcined under an air flow of 1 L/h/g of catalyst at 450° C. for 2 hours.
  • Catalyst A containing 22% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • the characteristics of catalyst A thus obtained are reported in Table 1 below.
  • Example 4 (non-compliant): alumina AL-2 + citric acid + molten salt Ni
  • the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes.
  • the molar ratio by weight between citric acid and nickel is 0.2.
  • the nickel content targeted in this step is 22% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst B containing 15% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • the characteristics of catalyst B thus obtained are reported in Table 1 below.
  • Example 5 (non-compliant): alumina AL-3 + citric acid + molten salt Ni
  • the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes.
  • the molar ratio by weight between citric acid and nickel is 0.2.
  • the nickel content targeted in this step is 22% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst C containing 15% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • the characteristics of catalyst C thus obtained are reported in Table 1 below.
  • Example 6 non-compliant: alumina AL-1 + citric acid + Ni molten salt + final hydrothermal treatment
  • the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes.
  • the molar ratio by weight between citric acid and nickel is 0.2.
  • the nickel content targeted in this step is 22% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst D containing 22% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • the catalyst precursor undergoes a heat treatment at 150° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of air. dry with a flow rate of 1 L/h/g of catalyst, then for 1 hour at 120° C. under a flow of dry air.
  • Example 7 (non-compliant): alumina AL-1 + citric acid + Ni solution (example 2)
  • the solid obtained is then dry impregnated with the solution S described in Example 2 in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes.
  • the citric acid to Ni molar ratio is 0.2.
  • the Ni content aimed at in this step is 15% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst E containing 15% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • the characteristics of catalyst E thus obtained are reported in Table 1 below. In a dry impregnation it is not possible to obtain 22% weight of Ni (limited nickel nitrate solubility).
  • Example 8 (non-compliant): alumina AL-1+ molten salt
  • Catalyst F containing 22% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • the characteristics of catalyst F thus obtained are reported in Table 1 below.
  • Example 9 Catalytic tests: performances in selective hydrogenation of a mixture containing styrene and isoprene (AHYDI)
  • Catalysts A to F described in the examples above are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
  • composition of the charge to be selectively hydrogenated is as follows: 8% by weight styrene (Sigma Aldrich® supplier, purity 99%), 8% by weight isoprene (Sigma Aldrich® supplier, purity 99%), 84% by weight n-heptane (solvent ) (VWR® supplier, purity > 99% chromanorm HPLC).
  • This feed also contains very low sulfur compounds: 10 ppm wt of sulfur introduced in the form of pentanethiol (Fluka® supplier, purity > 97%) and 100 ppm wt of sulfur introduced in the form of thiophene (Merck® supplier, purity 99 %).
  • This composition corresponds to the initial composition of the reaction mixture.
  • This mixture of model molecules is representative of a pyrolysis gasoline.
  • the selective hydrogenation reaction is carried out in a 500 mL stainless steel autoclave, fitted with a mechanical stirrer with magnetic drive and capable of operate under a maximum pressure of 100 bar (10 MPa) and temperatures between 5°C and 200°C.
  • a quantity of 3 ml_ of catalyst Prior to its introduction into the autoclave, a quantity of 3 ml_ of catalyst is reduced ex situ under a flow of hydrogen of 1 L/h/g of catalyst, at 400°C for 16 hours (temperature rise ramp of 1° C./min), then it is transferred to the autoclave, in the absence of air. After adding 214 ml_ of n-heptane (VWR® supplier, purity > 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to the temperature of the test equal to 30°C.
  • VWR® supplier purity > 99% chromanorm HPLC
  • the progress of the reaction is monitored by taking samples from the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and the isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane. Hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
  • the catalytic activities measured for catalysts A to F are reported in Table 2 below. They are related to the catalytic activity (AHYDI) measured for catalyst F.
  • Catalyst A obtained by the process according to the invention has both a high Ni content and is of small size, which leads to a very high selective hydrogenation activity.
  • the use of an alumina different from that according to the invention does not make it possible to obtain high Ni content on the final catalyst (catalyst B) which therefore leads to lower catalytic performance.
  • a dry impregnation on the support (catalyst E) also does not make it possible to obtain a catalyst with better performance in selective hydrogenation than that of catalyst A.
  • too long a hydrothermal treatment of the alumina (3 hours) does not make it possible to obtain the adequate physico-chemical and textural properties.
  • catalyst C does not have an optimum Ni content for the same quantity of molten salts used at the start.
  • Catalyst D has a larger particle size than desired due to the heat treatment after impregnation.
  • the performance of this catalyst is therefore very much behind compared to catalyst A prepared by the process according to the invention. Dry impregnation does not make it possible to obtain a Ni content above 15% by weight, which explains the shrinking performance of catalyst E.
  • citric acid was not added, which which leads to a very low activity due to the size of the nickel particles of 14 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for preparing a catalyst comprising a nickel-based active phase and an alumina support, comprising the following steps: - shaping and performing a particular heat treatment of an alumina gel; - addition of an organic additive and a nickel metal salt at a temperature lower than the melting point of nickel in order to form a solid mixture; - heating of the solid mixture under stirring in order to obtain a catalyst precursor; - drying of the catalyst precursor at a temperature lower than 250°C; and - heat treatment of the catalyst precursor.

Description

PROCEDE DE PREPARATION D’UN CATALYSEUR A PARTIR DE SELS FONDUS ET METHOD FOR PREPARING A CATALYST FROM MOLTEN SALTS AND
D’UN SUPPORT PARTICULIER OF A PARTICULAR SUPPORT
Domaine technique Technical area
La présente invention concerne un procédé de préparation d’un catalyseur destiné particulièrement à l’hydrogénation des hydrocarbures insaturés, et plus particulièrement, d’hydrogénation sélective de composés polyinsaturés ou en hydrogénation de composés aromatiques. The present invention relates to a process for the preparation of a catalyst intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, for the selective hydrogenation of polyunsaturated compounds or in the hydrogenation of aromatic compounds.
Etat de la technique State of the art
De nombreux procédés de synthèse sont connus de l’art antérieur pour optimiser la teneur et l’accessibilité des métaux dans les catalyseurs. Parmi ces méthodes, l’utilisation de sels fondus en tant que précurseurs de la phase active d’un catalyseur ou d’une masse de captation est connue de la littérature. Many synthesis processes are known from the prior art to optimize the content and accessibility of metals in catalysts. Among these methods, the use of molten salts as precursors of the active phase of a catalyst or of a capture mass is known from the literature.
Par exemple, le document US 5,036,032 divulgue une méthode de préparation de catalyseur supporté à base de cobalt par la mise en contact (de l’ordre de quelques dizaines de secondes) d’un support dans un bain de sel fondu de nitrate de cobalt, suivi d’une étape de séchage et de réduction sans calcination intermédiaire. Cette méthode permet la localisation préférentielle de la phase cobalt en périphérie du support. Néanmoins, la méthode ne permet pas un contrôle précis de la quantité de phase active (ici le cobalt) déposée en raison du temps de contact très court et d’autre part le type de catalyseur obtenu n’est pas adapté à une mise en œuvre dans un réacteur opérant en phase liquide avec un catalyseur en suspension (appelé "slurry reactor" ou "slurry" selon la terminologie anglo-saxonne) en raison de la perte de métal par attrition trop importante. Par ailleurs, l’absence d’étape de calcination est risquée puisque la réaction entre l’élément réduction et les nitrates dans le solide est très exothermique. Enfin, cette méthode nécessite de manipuler de grandes quantités de nitrate de cobalt (toxique) sous forme liquide et en température, avec des ratios d’environ 4 grammes de précurseurs de phase active pour 1 gramme de support. Les catalyseurs obtenus par cette voie de préparation sont utilisés pour la synthèse d’hydrocarbures Fischer-Tropsch. For example, document US 5,036,032 discloses a method for preparing a supported catalyst based on cobalt by bringing a support into contact (of the order of a few tens of seconds) in a bath of molten salt of cobalt nitrate, followed by a step of drying and reduction without intermediate calcination. This method allows the preferential localization of the cobalt phase at the periphery of the support. Nevertheless, the method does not allow precise control of the amount of active phase (here cobalt) deposited due to the very short contact time and on the other hand the type of catalyst obtained is not suitable for implementation. in a reactor operating in the liquid phase with a catalyst in suspension (called a "slurry reactor" or "slurry" according to English terminology) due to the excessive loss of metal by attrition. Moreover, the absence of a calcination step is risky since the reaction between the reduction element and the nitrates in the solid is very exothermic. Finally, this method requires the manipulation of large quantities of cobalt nitrate (toxic) in liquid form and at temperature, with ratios of approximately 4 grams of active phase precursors for 1 gram of support. The catalysts obtained by this preparation route are used for the synthesis of Fischer-Tropsch hydrocarbons.
Il est connu de Chem. Mater., 1999, 11, p.1999-2007 de préparer des phosphates mixtes par une voie de type sels fondus. Le mélange réactionnel contient un sel de précurseur métallique (notamment Ni(NC>3)2 ou CO(NÛ3)2), une source de phosphore (NH4HPO4), et un nitrate de métal alcalin (Na ou K). Ces préparations sont réalisées à des températures élevées de l’ordre de 400°C à 450°C. Des solides de type phosphates mixtes sont obtenus, par exemple Na3NÎ2(P207)PC>4, K2NL(P04)2P2C>7 OU NagCo3(PC>4)5. Ces solides peuvent trouver des applications en échange d’ions, conduction ionique à haute température ou en catalyse. Le document GB191308864 divulgue un procédé de synthèse de catalyseurs massiques à base de nickel ou de cobalt pour la production d’hydrogène par reformage à la vapeur (« steam-reforming » selon la terminologie anglo-saxonne). Ces catalyseurs peuvent être obtenus par liquéfaction de sels métalliques à température modérées, puis coulés dans un moule avant traitement thermique de calcination. It is known to Chem. Mater., 1999, 11, p.1999-2007 to prepare mixed phosphates by a molten salt type route. The reaction mixture contains a metal precursor salt (in particular Ni(NC> 3 )2 or CO(NÛ3)2), a source of phosphorus (NH4HPO4), and an alkali metal nitrate (Na or K). These preparations are carried out at high temperatures of the order of 400°C to 450°C. Mixed phosphate solids are obtained, for example Na3NI2(P2O7)PC>4, K2NL(PO4)2P2C>7 OR NagCo3(PC>4)5. These solids can find applications in ion exchange, high temperature ionic conduction or in catalysis. The document GB191308864 discloses a process for the synthesis of bulk catalysts based on nickel or cobalt for the production of hydrogen by steam reforming (“steam-reforming” according to the Anglo-Saxon terminology). These catalysts can be obtained by liquefaction of metal salts at moderate temperatures, then poured into a mold before heat treatment for calcination.
La publication de J. -Y. Tilquin intitulée « Intercalation ofCoC into graphite: Mixing method vs molten sait method » publiée dans Carbon, 35(2), p. 299-306, 1997, propose l’utilisation sous forme de sel fondu d’un mélange CoCh-NaCI à haute température (450-580°C) pour l’intercalation entre des feuillets de graphite. Ces composés d’intercalation de graphite trouvent des applications en catalyse pour la réduction de l’oxygène dans les piles à combustibles à électrolyte polymère. The publication by J. -Y. Tilquin entitled “Intercalation of CoC into graphite: Mixing method vs molten sait method” published in Carbon, 35(2), p. 299-306, 1997, proposes the use in the form of molten salt of a CoCh-NaCl mixture at high temperature (450-580°C) for the intercalation between sheets of graphite. These graphite intercalation compounds find applications in catalysis for oxygen reduction in polymer electrolyte fuel cells.
Le document EP2921227 divulgue un catalyseur Fischer-Tropsch à base d’un métal du groupe VIIIB déposé sur un support d’oxydes comprenant de l’alumine, de la silice, un spinelle et du phosphore ainsi que son procédé de fabrication. Ce procédé comprend la préparation du support oxyde ainsi que l’imprégnation de ce support avec une solution aqueuse d’un précurseur de métal suivi d’un séchage et d’une calcination. Dans le cas de teneurs en métaux élevées, l’imprégnation/séchage/calcination de la phase active en plusieurs étapes est préférée. Document EP2921227 discloses a Fischer-Tropsch catalyst based on a group VIIIB metal deposited on an oxide support comprising alumina, silica, spinel and phosphorus as well as its method of manufacture. This process includes the preparation of the oxide support as well as the impregnation of this support with an aqueous solution of a metal precursor followed by drying and calcination. In the case of high metal contents, the impregnation/drying/calcination of the active phase in several stages is preferred.
Enfin, le document FR3104461 divulgue un procédé de préparation d’un catalyseur d’hydrogénation sélective comprenant une phase active de nickel et un support d’alumine, ledit support étant mis en contact avec au moins un additif organique comprenant de l’oxygène et/ou de l’azote et avec au moins un sel métallique de nickel à une température inférieure à la température de fusion dudit sel métallique de nickel. Cependant, ce document ne divulgue pas le procédé de préparation de l’alumine ni évoque un impact potentiel des propriétés de l’alumine utilisée. Finally, document FR3104461 discloses a method for preparing a selective hydrogenation catalyst comprising an active phase of nickel and an alumina support, said support being brought into contact with at least one organic additive comprising oxygen and/ or nitrogen and with at least one nickel metal salt at a temperature below the melting point of said nickel metal salt. However, this document does not disclose the process for preparing the alumina or discuss a potential impact of the properties of the alumina used.
Objets de l’invention Objects of the invention
La présente invention concerne un nouveau procédé de préparation d’un catalyseur présentant des performances au moins aussi bonnes, voire meilleures que les catalyseurs obtenus selon des procédés de préparation selon l’art antérieur, tout en utilisant une quantité de phase active à base de nickel égale, voire inférieure à celle utilisée typiquement dans l’état de la technique. The present invention relates to a new method for preparing a catalyst exhibiting performance at least as good, or even better than the catalysts obtained according to preparation methods according to the prior art, while using a quantity of active phase based on nickel equal to or even less than that typically used in the state of the art.
La présente invention concerne un procédé de préparation d’un catalyseur comprenant une phase active à base de nickel et un support d’alumine, ladite phase active ne comprenant pas de métal du groupe VI B, ledit catalyseur comprenant une teneur en élément nickel supérieure ou égale à 1 % en poids et inférieure ou égale à 50 % poids par rapport au poids total du catalyseur, la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, est inférieure à 8 nm, ledit procédé comprenant les étapes suivantes : a) on approvisionne un gel d’alumine ; b) on met en forme le gel d’alumine de l’étape a) ; c) on soumet le gel d’alumine mis en forme obtenu à l’issue de l’étape b) à un traitement thermique comprenant au moins une étape de traitement hydrothermal dans un autoclave en présence d’une solution acide, à une température comprise entre 100°C et 800°C pendant une durée comprise entre 45 minutes et 150 minutes, et au moins une étape de calcination, à une température comprise entre 400°C et 1500°C, réalisée après l'étape de traitement hydrothermal, pour obtenir un support d’alumine ; d) on met en contact le support d’alumine avec au moins un additif organique comprenant de l’oxygène et/ou de l’azote, le ratio molaire entre l’additif organique et le nickel étant supérieur à 0,05 mol/mol ; e) on met en contact le support d’alumine avec au moins un sel métallique de nickel, à une température inférieure à la température de fusion dudit sel métallique de nickel, pour former un mélange solide, le rapport massique entre ledit sel métallique et le support d’alumine étant compris entre 0,1 et 2,3, les étapes d) et e) étant réalisées soit successivement dans cet ordre, soit simultanément ; f) on chauffe sous agitation le mélange solide obtenu à l’issue des étapes d) et e) à une température comprise entre la température de fusion dudit sel métallique et 200°C, pour obtenir un précurseur de catalyseur ; g) on sèche le précurseur de catalyseur à l’issue de l’étape f) à une température inférieure à 250°C pour obtenir un précurseur de catalyseur séché ; h) on réalise une étape de traitement thermique du précurseur de catalyseur séché obtenu à l’issue de l’étape g) à une température comprise entre 250°C et 1000°C. The present invention relates to a process for the preparation of a catalyst comprising an active phase based on nickel and an alumina support, said active phase not comprising any metal from group VI B, said catalyst comprising a higher nickel element content or equal to 1% by weight and less than or equal to 50% by weight relative to the total weight of the catalyst, the size of the nickel particles in the catalyst, measured in oxide form, is less than 8 nm, said method comprising the following steps a) supplying an alumina gel; b) the alumina gel of step a) is shaped; c) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature between between 100°C and 800°C for a time of between 45 minutes and 150 minutes, and at least one calcining step, at a temperature of between 400°C and 1500°C, carried out after the hydrothermal treatment step, for obtaining an alumina support; d) the alumina support is brought into contact with at least one organic additive comprising oxygen and/or nitrogen, the molar ratio between the organic additive and the nickel being greater than 0.05 mol/mol ; e) the alumina support is brought into contact with at least one nickel metal salt, at a temperature below the melting point of said nickel metal salt, to form a solid mixture, the mass ratio between said metal salt and the alumina support being between 0.1 and 2.3, steps d) and e) being carried out either successively in this order, or simultaneously; f) the solid mixture obtained at the end of steps d) and e) is heated with stirring to a temperature between the melting point of said metal salt and 200° C., to obtain a catalyst precursor; g) the catalyst precursor is dried at the end of step f) at a temperature below 250° C. to obtain a dried catalyst precursor; h) a stage of heat treatment of the dried catalyst precursor obtained at the end of stage g) is carried out at a temperature of between 250° C. and 1000° C.
La Demanderesse a découvert de manière surprenante qu’il est possible d’obtenir un catalyseur présentant des performances au moins aussi bonnes, voire meilleures, en matière d’activité dans le cadre des réactions d’hydrogénation sélective de composés polyinsaturés ou d’hydrogénation de composés aromatiques, que des catalyseurs obtenus selon des procédés connus de l’art antérieur, en appliquant un traitement thermique particulier (traitement hydrothermal) lors de la synthèse du support du catalyseur à partir d’un gel d’alumine, ledit catalyseur étant obtenu par introduction d’un additif organique et d’un sel métallique de nickel sur le support d’alumine particulier pour former un mélange solide, ledit mélange solide étant chauffé sous agitation, puis séché et traité thermique sans avoir recours à un traitement hydrothermal final. Sans vouloir être lié par une quelconque théorie, le procédé de préparation comprenant l’ajout d’un additif organique spécifique et d’un précurseur de nickel (sous la forme de sels fondus) sur un support d’alumine particulier présentant une réactivité de surface bien particulière, et ayant subi un traitement hydrothermal en présence d’une solution acide, permet une accessibilité du nickel améliorée (interaction avec le support moins forte). The Applicant has discovered, surprisingly, that it is possible to obtain a catalyst exhibiting performance at least as good, or even better, in terms of activity in the context of the reactions of selective hydrogenation of polyunsaturated compounds or of hydrogenation of aromatic compounds, as catalysts obtained according to processes known from the prior art, by applying a particular heat treatment (hydrothermal treatment) during the synthesis of the catalyst support from an alumina gel, said catalyst being obtained by introducing an organic additive and a nickel metal salt onto the particular alumina support to form a solid mixture, said solid mixture being heated with stirring, then dried and heat-treated without resorting to a final hydrothermal treatment. Without wishing to be bound by any theory, the preparation process comprising the addition of a specific organic additive and a nickel precursor (in the form of molten salts) on a particular alumina support having a surface reactivity very particular, and having undergone a hydrothermal treatment in the presence of an acid solution, allows an improved accessibility of nickel (less strong interaction with the support).
Le procédé de préparation du catalyseur selon l’invention conduit à un catalyseur présentant une taille de particule du nickel inférieure à 8 nm, conférant une activité intrinsèque de la phase active de nickel importante. Par ailleurs, le procédé de préparation du catalyseur mis en œuvre dans le cadre de la présente invention permet, sans ajout de solvant et donc en un nombre d’étapes très limité et surtout inférieur au procédé de préparation classique (i.e. par imprégnation), l’obtention d’un catalyseur dont les performances catalytiques sont au moins aussi bonnes voir supérieures aux catalyseurs classiques. The method for preparing the catalyst according to the invention leads to a catalyst having a nickel particle size of less than 8 nm, conferring a significant intrinsic activity of the nickel active phase. Furthermore, the method for preparing the catalyst used in the context of the present invention allows, without addition of solvent and therefore in a very limited number of steps and above all less than the conventional preparation method (i.e. by impregnation), the Obtaining a catalyst whose catalytic performances are at least as good or even superior to conventional catalysts.
Selon un ou plusieurs modes de réalisation, la température de fusion dudit sel métallique est comprise entre 20°C et 150°C. According to one or more embodiments, the melting point of said metal salt is between 20°C and 150°C.
Selon un ou plusieurs modes de réalisation, le rapport molaire entre ledit additif organique introduit à l’étape d) et l’élément nickel introduit à l’étape e) est compris entre 0,1 et 5,0 mol/mol. According to one or more embodiments, the molar ratio between said organic additive introduced in step d) and the nickel element introduced in step e) is between 0.1 and 5.0 mol/mol.
Selon un ou plusieurs modes de réalisation, les étapes d) et e) sont réalisées simultanément. According to one or more embodiments, steps d) and e) are carried out simultaneously.
Selon un ou plusieurs modes de réalisation, l’additif organique est choisi parmi les aldéhydes renfermant 1 à 14 atomes de carbone par molécule, les cétones ou polycétones renfermant 3 à 18 atomes de carbone par molécule, les éthers et les esters renfermant 2 à 14 atomes de carbone par molécule, les alcools ou polyalcools renfermant 1 à 14 atomes de carbone par molécule et les acides carboxyliques ou polyacides carboxyliques renfermant 1 à 14 atomes de carbone par molécule, ou une combinaison des différents groupes fonctionnels ci-dessus According to one or more embodiments, the organic additive is chosen from aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, or a combination of the different functional groups above
Selon un ou plusieurs modes de réalisation, ledit additif organique est choisi parmi l'acide formique, le formaldéhyde, l'acide acétique, l’acide citrique, l’acide oxalique, l’acide glycolique, l’acide malonique, l’acide lévulinique, l'éthanol, le méthanol, le formiate d'éthyle, le formiate de méthyle, le paraldéhyde, l'acétaldéhyde, l’acide gamma-valérolactone, le glucose et le sorbitol. Selon un ou plusieurs modes de réalisation, l’additif organique est choisi parmi l’acide citrique, l’acide formique, l’acide glycolique, l’acide lévulinique et l’acide oxalique. According to one or more embodiments, said organic additive is chosen from formic acid, formaldehyde, acetic acid, citric acid, oxalic acid, glycolic acid, malonic acid, levulinic acid, ethanol, methanol, ethyl formate, methyl formate, paraldehyde, acetaldehyde, gamma-valerolactone acid, glucose and sorbitol. According to one or more embodiments, the organic additive is chosen from citric acid, formic acid, glycolic acid, levulinic acid and oxalic acid.
Selon un ou plusieurs modes de réalisation, l’étape f) est réalisée au moyen d’un tambour fonctionnant à une vitesse comprise entre 4 et 70 tours par minute. According to one or more embodiments, step f) is carried out by means of a drum operating at a speed of between 4 and 70 revolutions per minute.
Selon un ou plusieurs modes de réalisation, à l’étape e) le rapport massique entre ledit sel métallique et le support d’alumine est compris entre 0,2 et 2. According to one or more embodiments, in step e) the mass ratio between said metal salt and the alumina support is between 0.2 and 2.
Selon un ou plusieurs modes de réalisation, à l’étape c) la durée du traitement hydrothermal est réalisée entre 1 heure et 2 heures. According to one or more embodiments, in step c) the duration of the hydrothermal treatment is carried out between 1 hour and 2 hours.
Selon un ou plusieurs modes de réalisation, l’alumine obtenue à l’issue de l’étape c) comprend une surface spécifique comprise entre 10 m2/g et 250 m2/g. According to one or more embodiments, the alumina obtained at the end of step c) comprises a specific surface of between 10 m 2 /g and 250 m 2 /g.
Selon un ou plusieurs modes de réalisation, la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, est comprise entre 2 nm et 4 nm. According to one or more embodiments, the size of the nickel particles in the catalyst, measured in oxide form, is between 2 nm and 4 nm.
Description détaillée de l’invention Définitions Detailed description of the invention Definitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. In the following, the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief D.R. Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
On entend par la surface spécifique du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention, la surface spécifique B.E.T. déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER- EMMETT-TELLER décrite dans le périodique « The Journal of American Society », 60, 309, (1938). By the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the specific surface B.E.T. determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 based on the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society", 60, 309, (1938).
Dans la présente demande, le terme « comprendre » est synonyme de (signifie la même chose que) « inclure » et « contenir », et est inclusif ou ouvert et n’exclut pas d’autres éléments non récités. Il est entendu que le terme « comprendre » inclut le terme exclusif et fermé « consister ». In this application, the term "include" is synonymous with (means the same as) "include" and "contain", and is inclusive or open ended and does not exclude other unrecited material. It is understood that the term “include” includes the exclusive and closed term “consist”.
On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur.By total pore volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the volume measured by intrusion with a mercury porosimeter according to the ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°. The wetting angle was taken as equal to 140° by following the recommendations of the work “Engineering techniques, treatise on analysis and characterization”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa). In order to obtain better precision, the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
On entend par « taille des particules de nickel » le diamètre des cristallites de nickel sous forme oxyde. Le diamètre des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43° (c’est-à-dire selon la direction cristallographique [200]) à l’aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 11, 102-113 « Scherrer after sixty years: A survey and some new results in the détermination of crystallite size», J. I. Langford and A. J. C. Wilson. The term “size of the nickel particles” means the diameter of the crystallites of nickel in oxide form. The diameter of nickel crystallites in oxide form is determined by X-ray diffraction, from the width of the diffraction line located at the angle 2theta=43° (i.e. along the crystallographic direction [200 ]) using the Scherrer relation. This method, used in X-ray diffraction on powders or polycrystalline samples which links the width at mid-height of the diffraction peaks to the size of the particles, is described in detail in the reference: Appl. Crystal. (1978), 11, 102-113 "Scherrer after sixty years: A survey and some new results in the determination of crystallite size", J. I. Langford and A. J. C. Wilson.
La teneur en nickel est mesurée par fluorescence X. The nickel content is measured by X-ray fluorescence.
Procédé de préparation Preparation process
Les étapes du procédé de préparation du catalyseur sont décrites en détail ci-après. The steps of the catalyst preparation process are described in detail below.
Etape a) Step a)
Le catalyseur selon l'invention comprend un support alumine qui est obtenu à partir d'une alumine gel (ou gel d'alumine) qui comprend essentiellement un précurseur du type oxy(hydroxyde) d'aluminium (AIO(OH)) - également dénommé boehmite. The catalyst according to the invention comprises an alumina support which is obtained from an alumina gel (or alumina gel) which essentially comprises a precursor of the aluminum oxy(hydroxide) type (AIO(OH)) - also called Boehmite.
Selon l'invention, le gel d'alumine (ou autrement dénommé gel de boehmite) est synthétisé par précipitation de solutions basiques et/ou acides de sels d'aluminium induite par changement de pH ou tout autre méthode connue de l'Homme de métier (P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J.L. Le Loarer, J. P. Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, K.S.W. Sing, J. Weitkamp, Wley-VCH, Weinheim, Germany, 2002, pp. 1591-1677). Généralement la réaction de précipitation est effectuée à une température comprise entre 5°C et 80°C et à un pH compris entre 6 et 10. De manière préférée la température est comprise entre 35°C et 70°C et le pH est compris entre 6 et 10. According to the invention, the alumina gel (or otherwise called boehmite gel) is synthesized by precipitation of basic and/or acidic solutions of aluminum salts induced by a change in pH or any other method known to those skilled in the art. (P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, JL Le Loarer, JP Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, KSW Sing, J. Weitkamp, Wley- VCH, Weinheim, Germany, 2002, pp. 1591-1677). Generally the precipitation reaction is carried out at a temperature between 5°C and 80°C and at a pH between 6 and 10. Preferably the temperature is between 35°C and 70°C and the pH is between 6 and 10.
Selon un mode de réalisation, l'alumine gel est obtenue par mise en contact d'une solution aqueuse d'un sel acide d'aluminium avec une solution basique. Par exemple le sel acide d'aluminium est choisi dans le groupe constitué par le sulfate d'aluminium, le nitrate d'aluminium et le chlorure d'aluminium, et de manière préférée, ledit sel acide est le sulfate d'aluminium. La solution basique est préférentiellement choisie parmi la soude ou la potasse. Alternativement, on peut mettre en contact une solution alcaline de sels d'aluminium qui peuvent être choisis dans le groupe constitué par l'aluminate de sodium et l'aluminate de potassium avec une solution acide. Dans une variante très préférée, le gel est obtenu par mise en contact d'une solution d'aluminate de sodium avec de l'acide nitrique. La solution d'aluminate de sodium présente avantageusement une concentration comprise entre 105 et 1CH mol.L·1 et de manière préférée cette concentration est comprise entre 104 et 102 mol.L1. Selon un autre mode de réalisation, l'alumine gel est obtenue par mise en contact d'une solution aqueuse de sels acides d'aluminium avec une solution alcaline de sels d'aluminium. According to one embodiment, the alumina gel is obtained by bringing an aqueous solution of an acid aluminum salt into contact with a basic solution. For example, the acid aluminum salt is chosen from the group consisting of aluminum sulphate, aluminum nitrate and aluminum chloride, and preferably, said acid salt is aluminum sulphate. The basic solution is preferably chosen from sodium hydroxide or potassium hydroxide. Alternatively, an alkaline solution of aluminum salts which may be chosen from the group consisting of sodium aluminate and potassium aluminate can be brought into contact with an acid solution. In a highly preferred variant, the gel is obtained by bringing a solution of sodium aluminate into contact with nitric acid. The sodium aluminate solution advantageously has a concentration of between 10 5 and 1CH mol.L · 1 and preferably this concentration is between 10 4 and 10 2 mol.L 1 . According to another embodiment, the alumina gel is obtained by bringing an aqueous solution of acid aluminum salts into contact with an alkaline solution of aluminum salts.
Etape b) Mise en forme du gel d’alumine Step b) Shaping the alumina gel
Le gel d’alumine peut avantageusement être mis en forme par toute technique connue de l'Homme du métier. La mise en forme peut être réalisée par exemple par malaxage-extrusion, par pastillage, par la méthode de la coagulation en goutte (« oil-drop » selon la terminologie anglo-saxonne), par granulation au plateau tournant ou par toute autre méthode bien connue de l'Homme du métier. Les catalyseurs selon l'invention peuvent éventuellement être fabriqués et employés sous la forme d'extrudés, de tablettes, de billes. La méthode de mise en forme avantageuse selon l'invention est l'extrusion et les formes d'extrudés préférées sont cylindriques, cylindriques torsadées ou multilobées (2, 3, 4 ou 5 lobes par exemple). The alumina gel can advantageously be shaped by any technique known to those skilled in the art. The shaping can be carried out, for example, by kneading-extrusion, by pelleting, by the drop coagulation method (“oil-drop” according to Anglo-Saxon terminology), by granulation on a turntable or by any other well-suited method. known to those skilled in the art. The catalysts according to the invention can optionally be manufactured and used in the form of extrudates, tablets, beads. The advantageous shaping method according to the invention is extrusion and the preferred extrudate shapes are cylindrical, twisted cylindrical or multilobed (2, 3, 4 or 5 lobes for example).
Dans un mode de réalisation particulier, le gel d'alumine obtenu à l’issue de l’étape a) est soumis à une étape de malaxage de préférence dans un milieu acide. L'acide mis en œuvre peut être par exemple de l'acide nitrique. Cette étape est réalisée au moyen d'outils connus tels que des malaxeurs bras en Z, des malaxeurs à meules, des mono ou bi-vis continues permettant la transformation du gel en un produit ayant la consistance d'une pâte. Selon un mode de réalisation avantageux, on apporte un ou plusieurs composés dits "agents porogènes" dans le milieu de malaxage. Ces composés présentent la propriété de se dégrader par chauffage et créer ainsi une porosité dans le support. Par exemple on peut utiliser comme composés porogènes la farine de bois, le charbon de bois, des goudrons, des matières plastiques. La pâte ainsi obtenue après malaxage est passée au travers d’une filière d'extrusion. Généralement les extrudés ont un diamètre compris 0,5 mm et 10 mm, de préférence entre 0,8 mm et 3,2 mm et de manière très préférée entre 1 ,0 mm et 2,5 mm et de longueur comprise entre 0,5 mm et 20 mm. Ces extrudés peuvent être de forme cylindrique, multilobée (par exemple trilobée ou quadrilobée). In a particular embodiment, the alumina gel obtained at the end of step a) is subjected to a kneading step, preferably in an acid medium. The acid used may for example be nitric acid. This step is carried out by means of known tools such as Z-arm mixers, wheel mixers, single or twin continuous screws allowing the transformation of the gel into a product having the consistency of a paste. According to an advantageous embodiment, one or more compounds called "pore-forming agents" are added to the mixing medium. These compounds have the property of being degraded by heating and thus creating porosity in the support. For example, it is possible to use as pore-forming compounds wood flour, charcoal, tars, materials plastics. The paste thus obtained after mixing is passed through an extrusion die. Generally, the extrudates have a diameter of between 0.5 mm and 10 mm, preferably between 0.8 mm and 3.2 mm and very preferably between 1.0 mm and 2.5 mm and a length of between 0.5 mm and 20mm. These extrudates can be cylindrical, multi-lobed (for example tri-lobed or quadri-lobed).
Après sa mise en forme, le support est éventuellement séché avant de subir le traitement hydrothermal selon l'étape c) du procédé. Par exemple le séchage est effectué à une température comprise entre 50°C et 200°C. Le support séché est éventuellement calciné avant de subir le traitement hydrothermal selon l'étape c) du procédé. Par exemple, la calcination est effectuée à une température comprise entre 200°C et 1000°C, en présence ou non d'un flux d'air contenant jusqu’à 150 d’eau par kilogramme d’air sec. After it has been shaped, the support is optionally dried before undergoing the hydrothermal treatment according to step c) of the process. For example, the drying is carried out at a temperature between 50°C and 200°C. The dried support is optionally calcined before undergoing the hydrothermal treatment according to step c) of the process. For example, calcination is carried out at a temperature between 200°C and 1000°C, in the presence or not of an air flow containing up to 150 of water per kilogram of dry air.
Etape c) Traitement hydrothermal du gel d’alumine Step c) Hydrothermal treatment of the alumina gel
Le support obtenu à l’issue de l’étape b) subit ensuite une étape de traitement thermique qui permet de lui conférer des propriétés physiques répondant à l'application envisagée. The support obtained at the end of step b) then undergoes a heat treatment step which makes it possible to give it physical properties corresponding to the application envisaged.
On désigne par le terme "traitement hydrothermal", un traitement par passage en autoclave en présence d'eau à une température supérieure à la température ambiante. The term “hydrothermal treatment” designates a treatment by passing through an autoclave in the presence of water at a temperature above ambient temperature.
Au cours de ce traitement hydrothermal, on peut traiter de différentes manières l'alumine mise en forme. Ainsi, on peut imprégner l'alumine d'une solution acide, préalablement à son passage à l'autoclave, le traitement hydrothermal de l'alumine pouvant être fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non. Cette imprégnation, avant le traitement hydrothermal, peut être effectuée à sec ou par immersion de l'alumine dans une solution aqueuse acide. Par imprégnation à sec, on entend une mise en contact de l'alumine avec un volume de solution inférieur ou égal au volume poreux total de l'alumine traitée. De préférence, l'imprégnation est réalisée à sec. During this hydrothermal treatment, the shaped alumina can be treated in different ways. Thus, the alumina can be impregnated with an acid solution, prior to its passage through the autoclave, the hydrothermal treatment of the alumina being able to be carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave may or may not be acidic. This impregnation, before the hydrothermal treatment, can be carried out dry or by immersing the alumina in an acidic aqueous solution. By dry impregnation is meant bringing the alumina into contact with a volume of solution less than or equal to the total pore volume of the treated alumina. Preferably, the impregnation is carried out dry.
On peut également traiter le support mis en forme sans imprégnation préalable par une solution acide, l'acidité étant dans ce cas apportée par le liquide aqueux de l'autoclave. It is also possible to treat the shaped support without prior impregnation with an acid solution, the acidity being in this case provided by the aqueous liquid of the autoclave.
La solution aqueuse acide comprend au moins un composé acide permettant de dissoudre au moins une partie de l'alumine du support mis en forme. On entend par "composé acide permettant de dissoudre au moins une partie de l'alumine du support", tout composé acide qui, mis en contact avec le support d'alumine, réalise la mise en solution d'au moins une partie des ions aluminium. L'acide doit, de préférence, dissoudre au moins 0,5 % en poids d'alumine du support d'alumine. The acid aqueous solution comprises at least one acid compound making it possible to dissolve at least part of the alumina of the shaped support. The term "acid compound allowing to dissolve at least a part of the alumina of the support" means any acid compound which, brought into contact with the alumina support, carries out the dissolving of at least a part of the aluminum ions . The acid should preferably dissolve at least 0.5% by weight alumina from the alumina carrier.
De préférence, cet acide est choisi parmi les acides forts tels que l'acide nitrique, l'acide chlorhydrique, l'acide perchlorique, l'acide sulfurique ou un acide faible mis en œuvre à une concentration telle que sa solution aqueuse présente un pH inférieur à 4, tel que l'acide acétique, ou un mélange de ces acides. Preferably, this acid is chosen from strong acids such as nitric acid, hydrochloric acid, perchloric acid, sulfuric acid or a weak acid used at a concentration such that its aqueous solution has a pH lower than 4, such as acetic acid, or a mixture of these acids.
Selon un mode préféré, on réalise le traitement hydrothermal en présence d'acide nitrique et d'acide acétique pris seul ou en mélange. L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande de brevet EP-A-0387 109. According to a preferred mode, the hydrothermal treatment is carried out in the presence of nitric acid and acetic acid taken alone or in a mixture. The autoclave is preferably a rotating basket autoclave such as that defined in patent application EP-A-0387 109.
Le traitement hydrothermal peut également être réalisé sous pression de vapeur saturante ou sous une pression partielle de vapeur d'eau au moins égale à 70 % de la pression de vapeur saturante correspondant à la température de traitement. The hydrothermal treatment can also be carried out under saturated vapor pressure or under a partial water vapor pressure at least equal to 70% of the saturated vapor pressure corresponding to the treatment temperature.
De préférence le traitement hydrothermal est conduit à une température comprise entre 100°C et 800°C, de préférence entre 200°C et 700°C. Preferably the hydrothermal treatment is carried out at a temperature between 100°C and 800°C, preferably between 200°C and 700°C.
Selon un aspect essentiel du procédé de préparation selon l’invention, le traitement hydrothermal est effectué pendant une durée comprise entre 45 minutes et 150 minutes, de préférence entre 1 heure et 2 heures. According to an essential aspect of the preparation process according to the invention, the hydrothermal treatment is carried out for a period of between 45 minutes and 150 minutes, preferably between 1 hour and 2 hours.
Une durée inférieure à 45 minutes ne permet pas de mettre en œuvre le « phénomène de mûrissement d’Oswald » (phénomène de re-dissolution des petites particules d’alumine et accroissement des plus grosses) et rend donc inefficace le traitement hydrothermal. Le support ainsi obtenu n’a pas les propriétés physico-chimiques adéquates (acidité de Lewis et de Bronsted des -OH de surfaces). A duration of less than 45 minutes does not enable the "Oswald ripening phenomenon" to be implemented (phenomenon of re-dissolution of small alumina particles and increase of larger ones) and therefore renders hydrothermal treatment ineffective. The support thus obtained does not have adequate physico-chemical properties (Lewis and Bronsted acidity of surface -OH).
Une durée de traitement au-dessus de 150 minutes conduit cependant à un mûrissement d’Oswald trop poussé, et donc à une agrégation trop importante des cristallites élémentaires d’alumine. A treatment time of more than 150 minutes, however, leads to excessive Oswald ripening, and therefore to excessive aggregation of elementary alumina crystallites.
De préférence, l'étape de calcination qui a lieu après le traitement hydrothermal par passage en autoclave se déroule à une température généralement comprise entre 400°C et 1500°C, de préférence entre 800°C et 1300°C, généralement pendant 1 heure et 5 heures, sous air dont la teneur en eau est généralement comprise entre 0 et 700 g d’eau par kilogramme d’air sec. Preferably, the calcination step which takes place after the hydrothermal treatment by passage in an autoclave takes place at a temperature generally between 400° C. and 1500° C., preferably between 800° C. and 1300° C., generally for 1 hour. and 5 hours, in air, the water content of which is generally between 0 and 700 g of water per kilogram of dry air.
A l’issue de l’étape c), l’alumine obtenue présente les propriétés texturales spécifiques telles que décrites plus loin. At the end of step c), the alumina obtained has the specific textural properties as described below.
Etape d) Ajout de l’additif organique Step d) Addition of the organic additive
Selon l’étape d) du procédé de préparation du catalyseur, on met en contact le support avec au moins au moins un additif organique comprenant de l’oxygène et/ou de l’azote, de préférence choisi parmi les aldéhydes renfermant de 1 à 14 atomes de carbone par molécule (de préférence de 2 à 12), les cétones ou polycétones renfermant de 3 à 18 (de préférence de 3 à 12) atomes de carbone par molécule, les éthers ou les esters renfermant de 2 à 14 (de préférence de 3 à 12) atomes de carbone par molécule, les alcools ou polyalcools renfermant de 1 à 14 ( de préférence de 2 à 12) atomes de carbone par molécule et les acides carboxyliques ou polyacides carboxyliques renfermant de 1 à 14 (de préférence de 1 à 12) atomes de carbone par molécule. L’additif organique peut être composé d’une combinaison des différents groupes fonctionnels cités ci-dessus. According to step d) of the process for preparing the catalyst, the support is brought into contact with at least at least one organic additive comprising oxygen and/or nitrogen, preferably chosen from aldehydes containing from 1 to 14 carbon atoms per molecule (preferably from 2 to 12), ketones or polyketones containing from 3 to 18 (preferably from 3 to 12) carbon atoms per molecule, ethers or esters containing from 2 to 14 (from preferably from 3 to 12) carbon atoms per molecule, the alcohols or polyalcohols containing from 1 to 14 (preferably from 2 to 12) carbon atoms per molecule and the carboxylic acids or polycarboxylic acids containing from 1 to 14 (preferably from 1 to 12) carbon atoms per molecule. The organic additive can be composed of a combination of the various functional groups mentioned above.
De préférence, l’additif organique est choisi parmi l'acide formique HCOOH, le formaldéhyde CH20, l'acide acétique CH3COOH, l’acide citrique, l’acide oxalique, l’acide glycolique (HOOC- CH2-OH), l’acide malonique (HOOC-CH2-COOH), l’acide lévulinique (CH3CCH2CH2CO2H), l'éthanol, le méthanol, le formiate d'éthyle HCOOC2H5, le formiate de méthyle HCOOCH3, le paraldéhyde (CH3-CHO)3, l'acétaldéhyde C2H4O, l’acide gamma-valérolactone (C5H8O2), le glucose et le sorbitol. Preferably, the organic additive is chosen from formic acid HCOOH, formaldehyde CH 2 0, acetic acid CH 3 COOH, citric acid, oxalic acid, glycolic acid (HOOC-CH 2 - OH), malonic acid (HOOC-CH 2 -COOH), levulinic acid (CH 3 CCH 2 CH 2 CO 2 H), ethanol, methanol, ethyl formate HCOOC 2 H 5 , HCOOCH 3 methyl formate, paraldehyde (CH 3 -CHO) 3 , acetaldehyde C 2 H 4 O, gamma-valerolactone acid (C 5 H 8 O 2 ), glucose and sorbitol.
De manière particulièrement préférée, l’additif organique est choisi parmi l’acide citrique, l’acide formique, l’acide glycolique, l’acide lévulinique et l’acide oxalique. Particularly preferably, the organic additive is chosen from citric acid, formic acid, glycolic acid, levulinic acid and oxalic acid.
Dans un mode de réalisation selon l’invention, ladite étape d) est réalisée par mise en contact du support avec au moins un additif organique se présentant sous la forme d’une poudre. In one embodiment according to the invention, said step d) is carried out by bringing the support into contact with at least one organic additive in the form of a powder.
Dans un autre mode de réalisation selon l’invention, ladite étape d) est réalisée par mise en contact du support avec au moins un additif organique se présentant sous la forme d’une poudre dissous dans une quantité minimale d’eau. On entend par quantité minimale d’eau la quantité d’eau permettant la dissolution au moins partielle dudit additif organique dans l’eau. Cette quantité minimale d’eau ne peut pas être assimilable à un solvant. Dans ce cas, et, lorsque l’étape d’introduction de l’additif est réalisée séparément de l’introduction du précurseur de la phase active du catalyseur (i.e. les étapes d) et e) sont réalisées séparément) chaque étape de mise en contact du support avec l’additif organique est avantageusement suivie d’un séchage à une température inférieure à 250°C, de préférence comprise entre 15°C et 240°C, plus préférentiellement entre 30°C et 220°C. In another embodiment according to the invention, said step d) is carried out by bringing the support into contact with at least one organic additive in the form of a powder dissolved in a minimum amount of water. The term “minimum quantity of water” means the quantity of water allowing the at least partial dissolution of said organic additive in water. This minimum quantity of water cannot be assimilated to a solvent. In this case, and, when the step of introducing the additive is carried out separately from the introduction of the precursor of the active phase of the catalyst (i.e. steps d) and e) are carried out separately) each step of setting contact of the support with the organic additive is advantageously followed by drying at a temperature below 250°C, preferably between 15°C and 240°C, more preferably between 30°C and 220°C.
La mise en contact selon l’étape d) est généralement réalisée à une température entre 0°C et 70°C, de préférence entre 10°C et 60°C, et de manière particulièrement préférée à température ambiante. The bringing into contact according to step d) is generally carried out at a temperature between 0° C. and 70° C., preferably between 10° C. and 60° C., and in a particularly preferred manner at ambient temperature.
Selon l’étape d), la mise en contact dudit support poreux et de l’additif organique peut se faire par toute méthode connue de l’Homme du métier. De manière préférée, on peut employer des mélangeurs convectifs, des mélangeurs à tambour ou des mélangeurs statiques. L’étape d) est réalisée avantageusement pendant une durée comprise entre 5 minutes à 5 heures selon le type de mélangeur utilisé, de préférence entre 10 minutes et 4 heures. Selon l’invention, le ratio molaire entre l’additif organique et le nickel est supérieur à 0,05 mol/mol, de préférence compris entre 0,1 et 5 mol/mol, plus préférentiellement compris entre 0,12 et 3 mol/mol, et de façon encore plus préférée compris entre 0,15 et 2,5 mol/mol. According to step d), the bringing into contact of said porous support and of the organic additive can be done by any method known to those skilled in the art. Preferably, convective mixers, drum mixers or static mixers can be used. Step d) is advantageously carried out for a period of between 5 minutes to 5 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours. According to the invention, the molar ratio between the organic additive and the nickel is greater than 0.05 mol/mol, preferably between 0.1 and 5 mol/mol, more preferably between 0.12 and 3 mol/ mol, and even more preferably between 0.15 and 2.5 mol/mol.
Etape e) Ajout de la phase active à base de nickel Step e) Addition of the nickel-based active phase
Selon l’étape e), on met en contact le support d’alumine avec au moins un sel métallique de nickel, à une température inférieure à la température de fusion du sel métallique, pendant une durée comprise avantageusement entre 5 minutes à 5 heures, pour former un mélange solide, le rapport massique entre ledit sel métallique et le support d’alumine étant compris entre 0,1 et 2,3, de préférence entre 0,2 et 2. According to step e), the alumina support is brought into contact with at least one nickel metal salt, at a temperature below the melting point of the metal salt, for a period advantageously between 5 minutes to 5 hours, to form a solid mixture, the mass ratio between said metal salt and the alumina support being between 0.1 and 2.3, preferably between 0.2 and 2.
De préférence, la température de fusion dudit sel métallique est comprise entre 20°C et 150°C. De manière préférée le sel métallique est hydraté. De manière préférée, le sel métallique est le nitrate de nickel hexahydraté (Ni(NC>3)2, 6H2O, TfUSion= 56,7°C). Preferably, the melting point of said metal salt is between 20°C and 150°C. Preferably the metal salt is hydrated. Preferably, the metal salt is hexahydrated nickel nitrate (Ni(NC>3) 2.6H 2 O, T fusion=56.7° C.).
Selon l’étape e), la mise en contact dudit support poreux oxyde et du sel métallique de nickel peut se faire par toute méthode connue de l’Homme du métier. De manière préférée, on peut employer des mélangeurs convectifs, des mélangeurs à tambour ou des mélangeurs statiques. L’étape e) est réalisée avantageusement pendant une durée comprise entre 5 minutes à 5 heures selon le type de mélangeur utilisé, de préférence entre 10 minutes et 4 heures. According to step e), the contacting of said porous oxide support and the nickel metal salt can be done by any method known to those skilled in the art. Preferably, convective mixers, drum mixers or static mixers can be used. Step e) is advantageously carried out for a period of between 5 minutes to 5 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours.
Mise en œuvre des étapes d) et e) Implementation of steps d) and e)
Selon l’invention : According to the invention:
- les étapes d) et e) sont réalisées successivement dans cet ordre, ou - steps d) and e) are carried out successively in this order, or
- les étapes d) et e) sont réalisées simultanément. - Steps d) and e) are carried out simultaneously.
Dans un mode de réalisation préférentiel, on réalise l’étape d) avant de réaliser l’étape e). In a preferred embodiment, step d) is carried out before step e) is carried out.
Etape f) Chauffage sous agitation du mélange solide Step f) Heating the solid mixture with stirring
Selon l’étape f), le mélange obtenu à l’issue des étapes d) et e) est chauffé sous agitation à une température comprise entre la température de fusion du sel métallique et 200°C, et avantageusement sous pression atmosphérique. De préférence, la température est comprise entre 50°C et 100°C. According to step f), the mixture obtained at the end of steps d) and e) is heated with stirring to a temperature between the melting point of the metal salt and 200° C., and advantageously under atmospheric pressure. Preferably, the temperature is between 50°C and 100°C.
Avantageusement, l’étape f) est réalisée pendant une durée comprise entre 5 minutes et 12 heures, de manière préférée entre 5 minutes et 4 heures. Selon l’étape f), l’homogénéisation mécanique du mélange peut se faire par toute méthode connue de l’Homme du métier. De manière préférée, on peut employer des mélangeurs convectifs, des mélangeurs à tambour ou des mélangeurs statiques. Encore plus préférentiellement, l’étape f) est réalisée au moyen d’un mélangeur à tambour dont la vitesse de rotation comprise entre 4 et 70 tours/minute, de préférence entre 10 et 60 tours/minute. En effet, si la rotation du tambour est trop élevée, la phase active du catalyseur ne sera pas répartie en croûte en périphérie du support, mais sera répartie de manière homogène dans tout le support, ce qui n’est pas souhaitable. Advantageously, step f) is carried out for a period of between 5 minutes and 12 hours, preferably between 5 minutes and 4 hours. According to step f), the mechanical homogenization of the mixture can be done by any method known to those skilled in the art. Preferably, convective mixers, drum mixers or static mixers can be used. Even more preferentially, step f) is carried out by means of a drum mixer whose speed of rotation is between 4 and 70 revolutions/minute, preferably between 10 and 60 revolutions/minute. Indeed, if the rotation of the drum is too high, the active phase of the catalyst will not be distributed in a crust around the periphery of the support, but will be distributed homogeneously throughout the support, which is not desirable.
Etape g) Séchage du précurseur de catalyseur Step g) Drying of the catalyst precursor
L’étape g) de séchage du précurseur de catalyseur obtenu à l’issue de l’étape f) est effectuée à une température inférieure à 250°C, de préférence comprise entre 15°C et 180°C, plus préférentiellement entre 30°C et 160°C, encore plus préférentiellement entre 50°C et 150°C, et de manière encore plus préférentielle entre 70°C et 140°C, typiquement pendant une durée comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration. La température de séchage de l’étape g) est en règle générale plus élevée que la température de chauffage de l’étape f). De préférence, la température de séchage de l’étape g) est au moins de 10°C plus élevée que la température de chauffage de l’étape f). Stage g) of drying the catalyst precursor obtained at the end of stage f) is carried out at a temperature below 250° C., preferably between 15° C. and 180° C., more preferably between 30° C. C and 160° C., even more preferably between 50° C. and 150° C., and even more preferably between 70° C. and 140° C., typically for a period of between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement. The drying temperature in step g) is generally higher than the heating temperature in step f). Preferably, the drying temperature of step g) is at least 10°C higher than the heating temperature of step f).
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote. The drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
Etape h) Traitement thermique du catalyseur séché Step h) Heat treatment of the dried catalyst
Le précurseur de catalyseur séché subit une étape complémentaire de traitement thermique, avant l’étape i) optionnelle de réduction, à une température comprise entre 250°C et 1000°C et de préférence entre 250°C et 750°C, typiquement pendant une durée comprise entre 15 minutes et 10 heures, sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non. Des durées de traitement plus longues ne sont pas exclues, mais n’apportent pas nécessaire d’amélioration. The dried catalyst precursor undergoes an additional heat treatment step, before step i) optional reduction, at a temperature between 250 ° C and 1000 ° C and preferably between 250 ° C and 750 ° C, typically for a duration between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer treatment times are not excluded, but do not bring necessary improvement.
On entend par « traitement thermique » le traitement en température respectivement sans présence ou en présence d'eau. Dans ce dernier cas, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique ou en pression autogène. Plusieurs cycles combinés sans présence ou avec présence d'eau peuvent être réalisés. Après ce ou ces traitement(s), le précurseur de catalyseur comprend du nickel sous forme oxyde, c’est-à-dire sous forme NiO. The term “heat treatment” is understood to mean the temperature treatment respectively without the presence or in the presence of water. In the latter case, contact with water vapor can take place at atmospheric pressure or at autogenous pressure. Several cycles combined without presence or with the presence of water can be made. After this or these treatment(s), the catalyst precursor comprises nickel in the oxide form, that is to say in the NiO form.
En cas de présence d’eau, la teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec. In the event of the presence of water, the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably between 250 and 650 grams per kilogram of dry air.
Etape i) Réduction par un gaz réducteur (étape optionnelle) Step i) Reduction with a reducing gas (optional step)
Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue avantageusement au moins une étape de traitement réducteur i) en présence d’un gaz réducteur après l’étape e) de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique. Prior to the use of the catalyst in the catalytic reactor and the implementation of a hydrogenation process, at least one stage of reducing treatment is advantageously carried out i) in the presence of a reducing gas after stage e) of so as to obtain a catalyst comprising nickel at least partially in metallic form.
Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. Ledit traitement réducteur peut être réalisé in-situ ou ex-situ c'est-à-dire après ou avant le chargement du catalyseur dans le réacteur d'hydrogénation. This treatment makes it possible to activate said catalyst and to form metallic particles, in particular nickel in the zero valent state. Said reducing treatment can be carried out in-situ or ex-situ, that is to say after or before loading the catalyst into the hydrogenation reactor.
Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène / azote, ou hydrogène / argon, ou hydrogène / méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables. The reducing gas is preferably hydrogen. The hydrogen can be used pure or in a mixture (for example a hydrogen/nitrogen, or hydrogen/argon, or hydrogen/methane mixture). In the case where the hydrogen is used as a mixture, all the proportions are possible.
Ledit traitement réducteur est réalisé à une température comprise entre 120°C et 500°C, de préférence entre 150°C et 450°C. Lorsque le catalyseur ne subit pas de passivation, ou subit un traitement réducteur avant passivation, le traitement réducteur est effectué à une température comprise entre 180°C et 500°C, de préférence entre 200°C et 450°C, et encore plus préférentiellement entre 350°C et 450°C. Lorsque le catalyseur a subi au préalable une passivation, le traitement réducteur est généralement effectué à une température comprise entre 120°C et 350°C, de préférence entre 150°C et 350°C. Said reducing treatment is carried out at a temperature comprised between 120°C and 500°C, preferably between 150°C and 450°C. When the catalyst does not undergo passivation, or undergoes a reducing treatment before passivation, the reducing treatment is carried out at a temperature between 180° C. and 500° C., preferably between 200° C. and 450° C., and even more preferably between 350°C and 450°C. When the catalyst has previously undergone passivation, the reducing treatment is generally carried out at a temperature of between 120°C and 350°C, preferably between 150°C and 350°C.
La durée du traitement réducteur est généralement comprise entre 2 heures et 40 heures, de préférence entre 3 heures et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1°C/min et 10°C/min, de préférence entre 0,3°C/min et 7°C/min. The duration of the reducing treatment is generally between 2 hours and 40 hours, preferably between 3 hours and 30 hours. The rise in temperature up to the desired reduction temperature is generally slow, for example fixed between 0.1° C./min and 10° C./min, preferably between 0.3° C./min and 7° C./min .
Le débit d'hydrogène, exprimé en L/heure/gramme de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de catalyseur. Catalyseur The hydrogen flow rate, expressed in L/hour/gram of catalyst, is between 0.01 and 100 L/hour/gram of catalyst, preferably between 0.05 and 10 L/hour/gram of catalyst, even more preferably between 0.1 and 5 L/hour/gram of catalyst. Catalyst
Le catalyseur obtenu par le procédé de préparation selon l’invention comprend une phase active à base de nickel, et un support d’alumine. The catalyst obtained by the preparation process according to the invention comprises an active phase based on nickel, and an alumina support.
La teneur en nickel dans ledit catalyseur est avantageusement comprise entre 1 et 50 % poids par rapport au poids total du catalyseur, plus préférentiellement entre 2 et 40 % poids et encore plus préférentiellement entre 3 et 35 % poids et encore plus préférentiellement 5 et 25% poids par rapport au poids total du catalyseur. Les valeurs « % poids » se basent sur la forme élémentaire du nickel. The nickel content in said catalyst is advantageously between 1 and 50% by weight relative to the total weight of the catalyst, more preferably between 2 and 40% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% weight relative to the total weight of the catalyst. “% wt” values are based on the elemental form of nickel.
La surface spécifique du catalyseur est généralement comprise entre 10 m2/g et 200 m2/g, de préférence entre 25 m2/g et 110 m2/g, de façon plus préférée entre 40 m2/g et 100 m2/g.The specific surface of the catalyst is generally between 10 m 2 /g and 200 m 2 /g, preferably between 25 m 2 /g and 110 m 2 /g, more preferably between 40 m 2 /g and 100 m 2 /g.
Le volume poreux total du catalyseur est généralement compris entre 0,1 ml/g et 1 ml/g, de préférence compris entre 0,2 ml/g et 0,8 ml/g, et de manière particulièrement préférée compris entre 0,3 ml/g et 0,7 ml/g. The total pore volume of the catalyst is generally between 0.1 ml/g and 1 ml/g, preferably between 0.2 ml/g and 0.8 ml/g, and particularly preferably between 0.3 ml/g and 0.7 ml/g.
La taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est inférieure à 8 nm, de préférence inférieure à 7 nm, plus préférentiellement inférieure à 6 nm, de manière préférentielle inférieure à 5 nm, et encore plus préférentiellement comprise entre 2 et 4 nm. La phase active du catalyseur ne comprend pas de métal du groupe VI B. Elle ne comprend notamment pas de molybdène ou de tungstène. The size of the nickel particles, measured in oxide form, in the catalyst is less than 8 nm, preferably less than 7 nm, more preferably less than 6 nm, preferably less than 5 nm, and even more preferably between 2 and 4 nm. The active phase of the catalyst does not comprise any metal from group VI B. In particular, it does not comprise molybdenum or tungsten.
Ledit catalyseur (et le support utilisé pour la préparation du catalyseur) est sous forme de grains ayant avantageusement un diamètre compris entre 0,5 et 10 mm. Les grains peuvent avoir toutes les formes connues de l'Homme du métier, par exemple la forme de billes (ayant de préférence un diamètre compris entre 1 et 8 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, le catalyseur (et le support utilisé pour la préparation du catalyseur) sont sous forme d'extrudés de diamètre compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1,0 et 2,5 mm et de longueur comprise entre 0,5 et 20 mm. On entend par « diamètre » des extrudés le diamètre du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur. Said catalyst (and the support used for the preparation of the catalyst) is in the form of grains advantageously having a diameter of between 0.5 and 10 mm. The grains can have any shape known to those skilled in the art, for example the shape of beads (preferably having a diameter of between 1 and 8 mm), extrudates, tablets, hollow cylinders. Preferably, the catalyst (and the support used for the preparation of the catalyst) are in the form of extrudates with a diameter of between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and length between 0.5 and 20 mm. The term “diameter” of the extrudates is understood to mean the diameter of the circle circumscribed to the cross section of these extrudates. The catalyst can advantageously be presented in the form of cylindrical, multi-lobed, tri-lobed or quadri-lobed extrudates. Preferably, its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
Support Support
Les caractéristiques de l’alumine, mentionnées dans cette section, correspondent aux caractéristiques de l’alumine avant l’ajout de l’additif organique (étape d) et/ou d’ajout de la phase active de nickel (étape e), i.e. le support d’alumine obtenu à l’issue de l’étape c) du procédé de préparation du catalyseur selon l’invention. The characteristics of the alumina, mentioned in this section, correspond to the characteristics of the alumina before the addition of the organic additive (step d) and/or addition of the active phase of nickel (step e), ie the alumina support obtained at the end of step c) of the process for preparing the catalyst according to the invention.
Selon l’invention, le support est une alumine c'est-à-dire que le support comporte au moins 95%, de préférence au moins 98%, et de manière particulièrement préférée au moins 99% poids d'alumine par rapport au poids du support. L’alumine présente généralement une structure cristallographique du type alumine delta, gamma ou thêta, seule ou en mélange.According to the invention, the support is an alumina, that is to say that the support comprises at least 95%, preferably at least 98%, and in a particularly preferred manner at least 99% by weight of alumina relative to the weight of the medium. Alumina generally has a crystallographic structure of the delta, gamma or theta alumina type, alone or in a mixture.
Selon l'invention, le support d’alumine, peut comprendre des impuretés telles que les oxydes de métaux des groupes MA, INB, IVB, NB, NIA, IVA selon la classification CAS, de préférence la silice, le dioxyde de titane, le dioxyde de zirconium, l'oxyde de zinc, l'oxyde de magnésium et l'oxyde de calcium, ou encore des métaux alcalins, de préférence le lithium, le sodium ou le potassium, et/ou les alcalino-terreux, de préférence le magnésium, le calcium, le strontium ou le baryum ou encore du soufre. According to the invention, the alumina support may comprise impurities such as metal oxides of groups MA, INB, IVB, NB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or alternatively alkali metals, preferably lithium, sodium or potassium, and/or alkaline earth metals, preferably magnesium, calcium, strontium or barium or sulfur.
Avantageusement, la teneur en soufre du support d’alumine est comprise entre 0,001 % et 2% poids par rapport au poids total du support d’alumine, et la teneur en sodium dudit support d’alumine est comprise entre 0,001 % et 2% poids par rapport au poids total dudit gel d'alumine.Advantageously, the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support, and the sodium content of said alumina support is between 0.001% and 2% by weight. relative to the total weight of said alumina gel.
La surface spécifique de l’alumine est généralement comprise entre 10 m2/g et 250 m2/g, de préférence entre 30 m2/g et 200 m2/g, de façon plus préférée entre 50 m2/g et 150m2/g. The specific surface of the alumina is generally between 10 m 2 /g and 250 m 2 /g, preferably between 30 m 2 /g and 200 m 2 /g, more preferably between 50 m 2 /g and 150 m 2 /g.
Le volume poreux de l’alumine est généralement compris entre 0,1 ml/g et 1,2 ml/g, de préférence compris entre 0,3 ml/g et 0,9 ml/g, et de manière très préférée compris entre 0,5 ml/g et 0,9 ml/g. The pore volume of the alumina is generally between 0.1 ml/g and 1.2 ml/g, preferably between 0.3 ml/g and 0.9 ml/g, and very preferably between 0.5ml/g and 0.9ml/g.
Procédé d’hydrogénation sélective Selective hydrogenation process
La présente invention a également pour objet un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 MPa et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 lr1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 h-1 et 40000 h-1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation tel que décrit ci- avant dans la description. Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono- insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3-butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. The present invention also relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and/or acetylenics and/or alkenylaromatics, also called styrenics, contained in a charge of hydrocarbons having a final boiling point less than or equal to 300°C, which process is carried out at a temperature between 0 and 300°C, at a pressure between 0.1 MPa and 10 MPa, at a hydrogen molar ratio /(polyunsaturated compounds to be hydrogenated) of between 0.1 and 10 and at an hourly volume rate of between 0.1 and 200 lr 1 when the process is carried out in the liquid phase, or at a molar ratio hydrogen/(polyunsaturated compounds to be hydrogenated ) between 0.5 and 1000 and at an hourly volume rate between 100 h -1 and 40000 h -1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by the preparation process as described below before in the description. Monounsaturated organic compounds such as ethylene and propylene, for example, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes. These processes are operated at high temperature and produce, in addition to the desired monounsaturated compounds, polyunsaturated organic compounds such as acetylene, propadiene and methylacetylene (or propyne), 1-2-butadiene and 1-3 -butadiene, vinylacetylene and ethylacetylene, and other polyunsaturated compounds whose boiling point corresponds to the C5+ cut (hydrocarbon compounds having at least 5 carbon atoms), in particular diolefinic or styrenic or indenic compounds. These polyunsaturated compounds are very reactive and lead to side reactions in the polymerization units. It is therefore necessary to eliminate them before recovering these cuts.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques. Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feedstocks. It allows the conversion of polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracked gasolines used as feed, selective hydrogenation also makes it possible to selectively hydrogenate alkenylaromatics into aromatics by avoiding the hydrogenation of aromatic rings.
La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique. The hydrocarbon feed treated in the selective hydrogenation process has a final boiling point less than or equal to 300°C and contains at least 2 carbon atoms per molecule and includes at least one polyunsaturated compound. The term “polyunsaturated compounds” means compounds comprising at least one acetylenic function and/or at least one diene function and/or at least one alkenylaromatic function.
Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+. More particularly, the feedstock is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5+ cut.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent. La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent. The C2 cut from steam cracking, advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain C2 cuts from steam cracking, between 0.1 and 1% by weight of C3 compounds may also be present. The C3 steam cracking cut, advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C2 compounds and C4 compounds may also be present.
Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4. A C2-C3 cut can also be advantageously used for implementing the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight of ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane. This filler may also contain between 0.1 and 2% by weight of C4 compounds.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent. The C4 cut from steam cracking, advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes. The C5 cut from steam cracking, advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10°C et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante : 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre. De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage. The steam cracking gasoline or pyrolysis gasoline, advantageously used for the implementation of the selective hydrogenation process according to the invention, corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300° C., from preferably between 10°C and 250°C. The polyunsaturated hydrocarbons to be hydrogenated present in said steam cracked gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.). ). Steam cracked gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts). For example, a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulphur, preferably from 0 to 500 ppm by weight of sulphur. Preferably, the charge of polyunsaturated hydrocarbons treated in accordance with the selective hydrogenation process according to the invention is a C2 cut from steam cracking, or a C2-C3 cut from steam cracking, or a gasoline from steam cracking.
Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques. The selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said charge to be hydrogenated without hydrogenating the monounsaturated hydrocarbons. For example, when said feed is a C2 cut, the selective hydrogenation process aims to selectively hydrogenate acetylene. When said feed is a C3 cut, the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene. In the case of a C4 cut, the aim is to eliminate the butadiene, vinylacetylene (VAC) and the butyne, in the case of a C5 cut, the aim is to eliminate the pentadienes. When said feed is a steam cracked gasoline, the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated into mono-olefins and the styrenic and indenic compounds are partially hydrogenated to the corresponding aromatic compounds avoiding the hydrogenation of the aromatic rings.
La mise en œuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré injections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. The technological implementation of the selective hydrogenation process is for example carried out by injection, in ascending or descending current, of the charge of polyunsaturated hydrocarbons and hydrogen into at least one fixed-bed reactor. Said reactor can be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred. The charge of polyunsaturated hydrocarbons can advantageously be diluted by one or more re-injections) of the effluent, from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor. The technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors-exchangers or in a reactor of the slurry type. . The hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur. D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0°C et 300°C, à une pression comprise entre 0,1 MPa et 10 MPa, à un ratio molaire hydrogène/(com posés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 h 1 et 200 h-1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire comprise entre 100 et 40000 h-1 pour un procédé réalisé en phase gazeuse. The selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5+ cuts from steam cracking can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5+ cuts and in the carbonated for C2 and C2-C3 cuts. A reaction in the liquid phase makes it possible to lower the energy cost and to increase the cycle time of the catalyst. In general, the selective hydrogenation of a hydrocarbon charge containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300°C is carried out at a temperature between 0°C and 300°C, at a pressure between 0.1 MPa and 10 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume rate (defined as the ratio of the volume flow rate of charge to the volume of the catalyst) of between 0.1 h 1 and 200 h -1 for a process carried out in the liquid phase, or at a molar hydrogen/(polyunsaturated compounds to be hydrogenated) ratio comprised between 0.5 and 1000 and at an hourly volume rate of between 100 and 40,000 h -1 for a process carried out in the gas phase.
Dans un mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1,0 et 2,0, la température est comprise entre 0°C et 200°C, de préférence entre 20°C et 200 °C et de manière encore plus préférée entre 30°C et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 h 1 et 100 h 1, de préférence entre 1 et 50 h-1 et la pression est généralement comprise entre 0,3 MPa et 8,0 MPa, de préférence entre 1 ,0 MPa et 7,0 MPa et de manière encore plus préférée entre 1 ,5 MPa et 4,0 MPa. In one embodiment according to the invention, when a selective hydrogenation process is carried out in which the feedstock is a steam cracked gasoline comprising polyunsaturated compounds, the molar ratio (hydrogen)/(polyunsaturated compounds to be hydrogenated) is generally comprised between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0, the temperature is between 0°C and 200°C, preferably between 20°C C and 200°C and even more preferably between 30°C and 180°C, the hourly volume velocity (VVH) is generally between 0.5 h 1 and 100 h 1 , preferably between 1 and 50 h -1 and the pressure is generally between 0.3 MPa and 8.0 MPa, preferably between 1.0 MPa and 7.0 MPa and even more preferably between 1.5 MPa and 4.0 MPa.
Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20°C et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 h 1 et 50 h-1 et la pression est comprise entre 1,0 MPa et 7,0 MPa. More preferably, a selective hydrogenation process is carried out in which the feedstock is a steam cracked gasoline comprising polyunsaturated compounds, the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20° C. and 200° C., the hourly volume velocity (VVH) is generally between 1 h 1 and 50 h -1 and the pressure is between 1.0 MPa and 7.0 MPa.
Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1,0 et 2,0, la température est comprise entre 30°C et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 h-1 et 50 h-1 et la pression est comprise entre 1,5 MPa et 4,0 MPa. Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur. Even more preferably, a selective hydrogenation process is carried out in which the feedstock is a steam cracked gasoline comprising polyunsaturated compounds, the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30° C. and 180° C., the hourly volume velocity (VVH) is generally between 1 h -1 and 50 h -1 and the pressure is between 1.5 MPa and 4.0 MPa. The hydrogen flow rate is adjusted in order to have a sufficient quantity of it to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
Dans un autre mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0°C et 300°C, de préférence entre 15°C et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 h 1 et 40000 h 1, de préférence entre 500 h-1 et 30000 h-1 et la pression est généralement comprise entre 0,1 MPa et 6,0 MPa, de préférence entre 0,2 MPa et 5,0 MPa. In another embodiment according to the invention, when a selective hydrogenation process is carried out in which the feed is a C2 cut from steam cracking and/or a C2-C3 cut from steam cracking comprising polyunsaturated compounds, the molar ratio ( hydrogen)/(polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0°C and 300°C, preferably between 15°C and 280° C, the hourly volume velocity (VVH) is generally between 100 h 1 and 40,000 h 1 , preferably between 500 h -1 and 30,000 h -1 and the pressure is generally between 0.1 MPa and 6.0 MPa, preferably between 0.2 MPa and 5.0 MPa.
Procédé d’hydrogénation des aromatiques Aromatics hydrogenation process
La présente invention a également pour objet un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, généralement entre 20°C et 650°C, et de préférence entre 20°C et 450°C. Ladite charge d’hydrocarbures contenant au moins un composé aromatique ou polyaromatique peut être choisi parmi les coupes pétrolières ou pétrochimiques suivantes : le reformat du reformage catalytique, le kérosène, le gazole léger, le gazole lourd, les distillais de craquage, tels que l’huile de recyclage de FCC, le gazole d’unité de cokéfaction, les distillais d’hydrocraquage. The present invention also relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a charge of hydrocarbons having a final boiling point less than or equal to 650° C., generally between 20° C. and 650° C. °C, and preferably between 20°C and 450°C. Said hydrocarbon charge containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical fractions: reformate from catalytic reforming, kerosene, light gas oil, heavy gas oil, cracking distillates, such as FCC recycle oil, coker diesel, hydrocracking distillates.
La teneur en composés aromatiques ou polyaromatiques contenus dans la charge d’hydrocarbures traitée dans le procédé d’hydrogénation selon l’invention est généralement compris entre 0,1% et 80% en poids, de préférence entre 1% et 50% en poids, et de manière particulièrement préférée entre 2% et 35% en poids, le pourcentage étant basé sur le poids total de la charge d’hydrocarbures. Les composés aromatiques présents dans ladite charge d’hydrocarbures sont par exemple le benzène ou des alkylaromatiques tels que le toluène, l'éthylbenzène, Go-xylène, le m-xylène, ou le p-xylène, ou encore des aromatiques ayant plusieurs noyaux aromatiques (polyaromatiques) tels que le naphtalène. The content of aromatic or polyaromatic compounds contained in the hydrocarbon charge treated in the hydrogenation process according to the invention is generally between 0.1% and 80% by weight, preferably between 1% and 50% by weight, and most preferably between 2% and 35% by weight, the percentage being based on the total weight of the hydrocarbon charge. The aromatic compounds present in said hydrocarbon charge are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, γ-xylene, m-xylene, or p-xylene, or alternatively aromatics having several aromatic rings (polyaromatics) such as naphthalene.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 5000 ppm poids de soufre ou de chlore, de préférence inférieure à 100 ppm poids, et de manière particulièrement préférée inférieure à 10 ppm poids. La mise en œuvre technologique du procédé d’hydrogénation des composés aromatiques ou polyaromatiques est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation des aromatiques, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation des aromatiques selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. The sulfur or chlorine content of the charge is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and in a particularly preferred manner less than 10 ppm by weight. The technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in ascending or descending current, of the hydrocarbon charge and hydrogen into at least one fixed-bed reactor. Said reactor can be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred. The hydrocarbon charge can advantageously be diluted by one or more re-injection(s) of the effluent, from said reactor where the hydrogenation reaction of the aromatics takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor. The technological implementation of the process for the hydrogenation of aromatics according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors-exchangers or in a reactor of the slurries. The hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
L'hydrogénation des composés aromatiques ou polyaromatiques peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. D'une manière générale, l'hydrogénation des composés aromatiques ou polyaromatiques s'effectue à une température comprise entre 30°C et 350°C, de préférence entre 50°C et 325°C, à une pression comprise entre 0,1 MPa et 20 MPa, de préférence entre 0,5 MPa et 10 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,05 h 1 et 50 h 1, de préférence entre 0,1 h-1 et 10 h-1 d’une charge d'hydrocarbures contenant des composés aromatiques ou polyaromatiques et ayant un point d'ébullition final inférieur ou égal à 650°C, généralement entre 20°C et 650°C, et de préférence entre 20°C et 450°C. The hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase. In general, the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature of between 30° C. and 350° C., preferably between 50° C. and 325° C., at a pressure of between 0.1 MPa and 20 MPa, preferably between 0.5 MPa and 10 MPa, at a hydrogen/(aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume rate of between 0.05 h 1 and 50 h 1 , preferably between 0.1 h -1 and 10 h -1 of a hydrocarbon charge containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650°C, generally between 20°C and 650°C, and preferably between 20°C and 450°C.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés aromatiques et de maintenir un excès d’hydrogène en sortie de réacteur. The hydrogen flow is adjusted in order to have a sufficient quantity of it to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the reactor outlet.
La conversion des composés aromatiques ou polyaromatiques est généralement supérieure à 20% en mole, de préférence supérieure à 40% en mole, de manière plus préférée supérieure à 80% en mole, et de manière particulièrement préférée supérieure à 90 % en mole des composés aromatiques ou polyaromatiques contenus dans la charge hydrocarbonée. La conversion se calcule en divisant la différence entre les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures et dans le produit par les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures. The conversion of the aromatic or polyaromatic compounds is generally greater than 20% by mole, preferably greater than 40% by mole, more preferably greater than 80% by mole, and in a particularly preferred manner greater than 90% by mole of the aromatic compounds or polyaromatics contained in the hydrocarbon charge. The conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed and in the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed.
Selon une variante particulière du procédé selon l’invention, on réalise un procédé d’hydrogénation du benzène d’une charge d’hydrocarbures, tel que le reformat issu d’une unité de reformage catalytique. La teneur en benzène dans ladite charge d’hydrocarbures est généralement comprise entre 0,1 et 40% poids, de préférence entre 0,5 et 35% poids, et de manière particulièrement préférée entre 2 et 30% poids, le pourcentage en poids étant basé sur le poids total de la charge d’hydrocarbures. According to a particular variant of the process according to the invention, a process is carried out for the hydrogenation of benzene from a hydrocarbon charge, such as the reformate from a unit catalytic reforming. The benzene content in said hydrocarbon charge is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon charge.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 10 ppm poids de soufre ou chlore respectivement, et de préférence inférieure à 2 ppm poids. The sulfur or chlorine content of the charge is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
L'hydrogénation du benzène contenu dans la charge d’hydrocarbures peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. Lorsqu’elle est réalisée en phase liquide, un solvant peut être présent, tel que le cyclohexane, l’heptane, l’octane. D'une manière générale, l'hydrogénation du benzène s'effectue à une température comprise entre 30°C et 250°C, de préférence entre 50°C et 200°C, et de manière plus préférée entre 80°C et 180°C, à une pression comprise entre 0,1 MPa et 10 MPa, de préférence entre 0,5 MPa et 4 MPa, à un ratio molaire hydrogène/(benzène) entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,05 h 1 et 50 h 1, de préférence entre 0,5 h-1 et 10 h 1.The hydrogenation of the benzene contained in the hydrocarbon charge can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase. When it is carried out in the liquid phase, a solvent may be present, such as cyclohexane, heptane, octane. In general, the hydrogenation of benzene is carried out at a temperature between 30° C. and 250° C., preferably between 50° C. and 200° C., and more preferably between 80° C. and 180° C. C, at a pressure between 0.1 MPa and 10 MPa, preferably between 0.5 MPa and 4 MPa, at a hydrogen/(benzene) molar ratio between 0.1 and 10 and at an hourly volume rate between 0 .05 h 1 and 50 h 1 , preferably between 0.5 h -1 and 10 h 1 .
La conversion du benzène est généralement supérieure à 50% en mole, de préférence supérieure à 80% en mole, de manière plus préférée supérieure à 90% en mole et de manière particulièrement préférée supérieure à 98 % en mole. The conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
L’invention va maintenant être illustrée via les exemples ci-après qui ne sont nullement limitatifs. The invention will now be illustrated via the examples below which are in no way limiting.
Exemples Examples
Exemple 1 : Préparation de l’alumine AL-1 Example 1: Preparation of alumina AL-1
Un gel d’alumine est synthétisé via un mélange d’aluminate de soude et de sulfate d’aluminium. La réaction de précipitation se fait à une température de 60°C, à un pH de 9, durant 60 min et sous une agitation de 200 tr/min. An alumina gel is synthesized via a mixture of sodium aluminate and aluminum sulphate. The precipitation reaction takes place at a temperature of 60° C., at a pH of 9, for 60 min and with stirring at 200 rpm.
Le gel ainsi obtenu subit un malaxage sur un malaxeur bras en Z pour fournir la pâte. L’extrusion est réalisée par passage de la pâte à travers une filière munie d’orifices de diamètre 1,6 mm en forme de trilobés. Les extrudés ainsi obtenus sont séchés à 150°C puis calciné à 450°C sous air sec. The gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste. Extrusion is carried out by passing the paste through a die fitted with 1.6 mm diameter orifices in the shape of trilobes. The extrudates thus obtained are dried at 150° C. and then calcined at 450° C. in dry air.
L’extrudé subit un traitement hydrothermal à 200°C en présence d'une solution aqueuse d'acide acétique et nitrique à 6,5% poids pendant 90 minutes en autoclave, puis est calciné sous air sec à 1000°C pendant 2 heures en réacteur tubulaire. On obtient l’alumine AL-1. Exemple 1bis : Préparation de l’alumine AL-2 The extrudate undergoes a hydrothermal treatment at 200°C in the presence of an aqueous solution of acetic and nitric acid at 6.5% by weight for 90 minutes in an autoclave, then is calcined in dry air at 1000°C for 2 hours in tubular reactor. Alumina AL-1 is obtained. Example 1bis: Preparation of alumina AL-2
Un gel d’alumine est synthétisé via un mélange d’aluminate de soude et de sulfate d’aluminium. La réaction de précipitation se fait à une température de 60°C, à un pH de 9, durant 60 min et sous une agitation de 200 tr/min. An alumina gel is synthesized via a mixture of sodium aluminate and aluminum sulphate. The precipitation reaction takes place at a temperature of 60° C., at a pH of 9, for 60 min and with stirring at 200 rpm.
Le gel ainsi obtenu subit un malaxage sur un malaxeur bras en Z pour fournir la pâte. L’extrusion est réalisée par passage de la pâte à travers une filière munie d’orifices de diamètre 1,6 mm en forme de trilobés. Les extrudés ainsi obtenus sont séchés à 150°C puis calciné à 450°C sous air sec. The gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste. Extrusion is carried out by passing the paste through a die fitted with 1.6 mm diameter orifices in the shape of trilobes. The extrudates thus obtained are dried at 150° C. and then calcined at 450° C. in dry air.
L’extrudé subit ensuite une étape de calcination sous air sec à 650°C pendant 2 heures en réacteur tubulaire. On obtient l’alumine AL-2. The extrudate then undergoes a calcining step in dry air at 650°C for 2 hours in a tubular reactor. Alumina AL-2 is obtained.
Exemple 1ter : Préparation de l’alumine AL-3 Example 1ter: Preparation of alumina AL-3
Un gel d’alumine est synthétisé via un mélange d’aluminate de soude et de sulfate d’aluminium. La réaction de précipitation se fait à une température de 60°C, à un pH de 9, durant 60 min et sous une agitation de 200 tr/min. An alumina gel is synthesized via a mixture of sodium aluminate and aluminum sulphate. The precipitation reaction takes place at a temperature of 60° C., at a pH of 9, for 60 min and with stirring at 200 rpm.
Le gel ainsi obtenu subit un malaxage sur un malaxeur bras en Z pour fournir la pâte. L’extrusion est réalisée par passage de la pâte à travers une filière munie d’orifices de diamètre 1,6 mm en forme de trilobés. Les extrudés ainsi obtenus sont séchés à 150°C puis calciné à 450°C sous air sec. The gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste. Extrusion is carried out by passing the paste through a die fitted with 1.6 mm diameter orifices in the shape of trilobes. The extrudates thus obtained are dried at 150° C. and then calcined at 450° C. in dry air.
L’extrudé subit un traitement hydrothermal à 200°C en présence d'une solution aqueuse d'acide acétique et nitrique à 6,5% poids pendant 180 minutes (3 heures) en autoclave, puis est calciné sous air sec à 1000°C pendant 2 heures en réacteur tubulaire. On obtient l’alumine AL-3. The extrudate undergoes a hydrothermal treatment at 200°C in the presence of an aqueous solution of acetic and nitric acid at 6.5% by weight for 180 minutes (3 hours) in an autoclave, then is calcined in dry air at 1000°C for 2 hours in a tubular reactor. Alumina AL-3 is obtained.
Exemple 2 : Préparation d’une solution aqueuse de précurseurs de Ni Example 2: Preparation of an aqueous solution of Ni precursors
La solution aqueuse de précurseurs de Ni (solution S) utilisée pour la préparation du catalyseur E est préparée en dissolvant 43,5 grammes (g) de nitrate de nickel (N1NO3, fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient la solution S dont la concentration en Ni est de 350 g de Ni par litre de solution. The aqueous solution of Ni precursors (solution S) used for the preparation of catalyst E is prepared by dissolving 43.5 grams (g) of nickel nitrate (N1NO 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. The solution S is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
Exemple 3 (conforme) alumine AL-1 + acide citrique + Ni sel fondu Example 3 (compliant) alumina AL-1 + citric acid + Ni molten salt
10 g de support d’alumine AL-1 sont mis en contact avec 1,18 g d’acide citrique dissous dans 5,4 g d’eau. Le solide ainsi obtenu est ensuite séché en étuve pendant 2 heures à 60°C puis 12 heures à 120°C. 10 g of AL-1 alumina support are brought into contact with 1.18 g of citric acid dissolved in 5.4 g of water. The solid thus obtained is then dried in an oven for 2 hours at 60°C then 12 hours at 120°C.
Ensuite, le support est mis en contact avec 9,47 g de nitrate de nickel hexa hydratée dans un tambour tournant à une vitesse de 40 à 50 tours par minutes et à une température de 62°C pendant 15 minutes. Le ratio molaire en poids entre l’acide citrique et le nickel est de 0,2. La teneur en nickel visée sur cette étape est de 22 % en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Then, the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes. The molar ratio by weight between citric acid and nickel is 0.2. The nickel content aimed at in this stage is 22% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120° C., then calcined under an air flow of 1 L/h/g of catalyst at 450° C. for 2 hours.
On obtient le catalyseur A contenant 22 % en poids de l'élément nickel par rapport au poids total du catalyseur. Les caractéristiques du catalyseur A ainsi obtenu sont reportées dans le tableau 1 ci-après. Catalyst A containing 22% by weight of the element nickel relative to the total weight of the catalyst is obtained. The characteristics of catalyst A thus obtained are reported in Table 1 below.
Exemple 4 (non conforme) : alumine AL-2 + acide citrique + Ni sel fondu Example 4 (non-compliant): alumina AL-2 + citric acid + molten salt Ni
10 g de support d’alumine AL-2 sont mis en contact avec 1,18 g d’acide citrique dissous dans 5,4 g d’eau. Le solide ainsi obtenu est ensuite séché en étuve pendant 2 heures à 60°C puis 12 heures à 120°C. 10 g of AL-2 alumina support are brought into contact with 1.18 g of citric acid dissolved in 5.4 g of water. The solid thus obtained is then dried in an oven for 2 hours at 60°C then 12 hours at 120°C.
Ensuite, le support est mis en contact avec 9,47 g de nitrate de nickel hexa hydratée dans un tambour tournant à une vitesse de 40 à 50 tours par minutes et à une température de 62°C pendant 15 minutes. Le ratio molaire en poids entre l’acide citrique et le nickel est de 0,2.Then, the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes. The molar ratio by weight between citric acid and nickel is 0.2.
La teneur en nickel visée sur cette étape est de 22% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. The nickel content targeted in this step is 22% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
On obtient le catalyseur B contenant 15 % en poids de l'élément nickel par rapport au poids total du catalyseur. Les caractéristiques du catalyseur B ainsi obtenu sont reportées dans le tableau 1 ci-après. Catalyst B containing 15% by weight of the element nickel relative to the total weight of the catalyst is obtained. The characteristics of catalyst B thus obtained are reported in Table 1 below.
Exemple 5 (non conforme) : alumine AL-3 + acide citrique + Ni sel fondu Example 5 (non-compliant): alumina AL-3 + citric acid + molten salt Ni
10 g de support d’alumine AL-3 sont mis en contact avec 1,18 g d’acide citrique dissous dans 5,4 g d’eau. Le solide ainsi obtenu est ensuite séché en étuve pendant 2 heures à 60°C puis 12 heures à 120°C. 10 g of AL-3 alumina support are brought into contact with 1.18 g of citric acid dissolved in 5.4 g of water. The solid thus obtained is then dried in an oven for 2 hours at 60°C then 12 hours at 120°C.
Ensuite, le support est mis en contact avec 9,47 g de nitrate de nickel hexa hydratée dans un tambour tournant à une vitesse de 40 à 50 tours par minutes et à une température de 62°C pendant 15 minutes. Le ratio molaire en poids entre l’acide citrique et le nickel est de 0,2.Then, the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes. The molar ratio by weight between citric acid and nickel is 0.2.
La teneur en nickel visée sur cette étape est de 22% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. The nickel content targeted in this step is 22% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
On obtient le catalyseur C contenant 15 % en poids de l'élément nickel par rapport au poids total du catalyseur. Les caractéristiques du catalyseur C ainsi obtenu sont reportées dans le tableau 1 ci-après. Exemple 6 (non conforme) : alumine AL-1 + acide citrique + Ni sel fondu + traitement hydrothermal final Catalyst C containing 15% by weight of the element nickel relative to the total weight of the catalyst is obtained. The characteristics of catalyst C thus obtained are reported in Table 1 below. Example 6 (non-compliant): alumina AL-1 + citric acid + Ni molten salt + final hydrothermal treatment
10 g de support d’alumine AL-1 sont mis en contact avec 1,18 g d’acide citrique dissous dans 5,4 g d’eau. Le solide ainsi obtenu est ensuite séché en étuve pendant 2 heures à 60°C puis 12 heures à 120°C. 10 g of AL-1 alumina support are brought into contact with 1.18 g of citric acid dissolved in 5.4 g of water. The solid thus obtained is then dried in an oven for 2 hours at 60°C then 12 hours at 120°C.
Ensuite, le support est mis en contact avec 9,47 g de nitrate de nickel hexa hydratée dans un tambour tournant à une vitesse de 40 à 50 tours par minutes et à une température de 62°C pendant 15 minutes. Le ratio molaire en poids entre l’acide citrique et le nickel est de 0,2.Then, the support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes. The molar ratio by weight between citric acid and nickel is 0.2.
La teneur en nickel visée sur cette étape est de 22% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. The nickel content targeted in this step is 22% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
On obtient le catalyseur D contenant 22 % en poids de l'élément nickel par rapport au poids total du catalyseur. Catalyst D containing 22% by weight of the element nickel relative to the total weight of the catalyst is obtained.
A l'issue de l'imprégnation de la solution aqueuse contenant l’acide formique, le précurseur de catalyseur subit un traitement thermique à 150°C pendant 2 heures sous un flux d’air contenant 50 grammes d’eau par kilogramme d’air sec avec un débit de 1 L/h/g de catalyseur, puis pendant 1 heure à 120°C sous flux d’air sec. At the end of the impregnation of the aqueous solution containing formic acid, the catalyst precursor undergoes a heat treatment at 150° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of air. dry with a flow rate of 1 L/h/g of catalyst, then for 1 hour at 120° C. under a flow of dry air.
Les caractéristiques du catalyseur D ainsi obtenu sont reportées dans le tableau 1 ci-après. The characteristics of catalyst D thus obtained are reported in Table 1 below.
Exemple 7 (non conforme) : alumine AL-1 + acide citrique + Ni solution (exemple 2)Example 7 (non-compliant): alumina AL-1 + citric acid + Ni solution (example 2)
10 g de support d’alumine AL-1 sont mis en contact avec 1,18 g d’acide citrique dissous dans 5,4 g d’eau. Le solide ainsi obtenu est ensuite séché en étuve pendant 2 heures à 60°C puis 12 heures à 120°C. 10 g of AL-1 alumina support are brought into contact with 1.18 g of citric acid dissolved in 5.4 g of water. The solid thus obtained is then dried in an oven for 2 hours at 60°C then 12 hours at 120°C.
Le solide obtenu est ensuite imprégné à sec la solution S décrite dans l’exemple 2 dans un tambour tournant à une vitesse de 40 à 50 tours par minutes et à une température de 62°C pendant 15 minutes. Le ratio molaire acide citrique sur Ni est de 0,2. The solid obtained is then dry impregnated with the solution S described in Example 2 in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes. The citric acid to Ni molar ratio is 0.2.
La teneur en Ni visée sur cette étape est de 15% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. The Ni content aimed at in this step is 15% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
On obtient le catalyseur E contenant 15 % en poids de l'élément nickel par rapport au poids total du catalyseur. Les caractéristiques du catalyseur E ainsi obtenu sont reportées dans le tableau 1 ci-après. En une imprégnation à sec il n’est pas possible d’obtenir 22% poids de Ni (solubilité du nitrate de Nickel limitée). Exemple 8 (non conforme) : alumine AL-1+ sel fondu Catalyst E containing 15% by weight of the element nickel relative to the total weight of the catalyst is obtained. The characteristics of catalyst E thus obtained are reported in Table 1 below. In a dry impregnation it is not possible to obtain 22% weight of Ni (limited nickel nitrate solubility). Example 8 (non-compliant): alumina AL-1+ molten salt
10 g de support d’alumine AL-1 est mis en contact avec 9,47 g de nitrate de nickel hexa hydratée dans un tambour tournant à une vitesse de 40 à 50 tours par minutes et à une température de 62°C pendant 15 minutes. La teneur en nickel visée sur cette étape est de 22% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. 10 g of AL-1 alumina support is brought into contact with 9.47 g of hexahydrated nickel nitrate in a drum rotating at a speed of 40 to 50 revolutions per minute and at a temperature of 62° C. for 15 minutes . The nickel content targeted in this step is 22% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120°C, then calcined under an air flow of 1 L/h/g of catalyst at 450°C for 2 hours.
On obtient le catalyseur F contenant 22 % en poids de l'élément nickel par rapport au poids total du catalyseur. Les caractéristiques du catalyseur F ainsi obtenu sont reportées dans le tableau 1 ci-après. Catalyst F containing 22% by weight of the element nickel relative to the total weight of the catalyst is obtained. The characteristics of catalyst F thus obtained are reported in Table 1 below.
Tableau 1
Figure imgf000027_0001
Table 1
Figure imgf000027_0001
Exemple 9 : Test catalytiques : performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (AHYDI) Example 9: Catalytic tests: performances in selective hydrogenation of a mixture containing styrene and isoprene (AHYDI)
Les catalyseurs A à F décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l’isoprène. Catalysts A to F described in the examples above are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
La composition de la charge à hydrogéner sélectivement est la suivante : 8 % pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 % pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 % pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette charge contient également des composés soufrés en très faible teneur : 10 ppm pds de soufre introduits sous forme de pentanethiol (fournisseur Fluka®, pureté > 97%) et 100 ppm pds de soufre introduits sous forme de thiophène (fournisseur Merck®, pureté 99%). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d’une essence de pyrolyse. The composition of the charge to be selectively hydrogenated is as follows: 8% by weight styrene (Sigma Aldrich® supplier, purity 99%), 8% by weight isoprene (Sigma Aldrich® supplier, purity 99%), 84% by weight n-heptane (solvent ) (VWR® supplier, purity > 99% chromanorm HPLC). This feed also contains very low sulfur compounds: 10 ppm wt of sulfur introduced in the form of pentanethiol (Fluka® supplier, purity > 97%) and 100 ppm wt of sulfur introduced in the form of thiophene (Merck® supplier, purity 99 %). This composition corresponds to the initial composition of the reaction mixture. This mixture of model molecules is representative of a pyrolysis gasoline.
La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C. The selective hydrogenation reaction is carried out in a 500 mL stainless steel autoclave, fitted with a mechanical stirrer with magnetic drive and capable of operate under a maximum pressure of 100 bar (10 MPa) and temperatures between 5°C and 200°C.
Préalablement à son introduction dans l’autoclave, une quantité de 3 ml_ de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400 °C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l’autoclave, à l'abri de l'air. Après ajout de 214 ml_ de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l’isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l’autoclave. Le mélange réactionnel a alors la composition décrite ci- dessus et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. Prior to its introduction into the autoclave, a quantity of 3 ml_ of catalyst is reduced ex situ under a flow of hydrogen of 1 L/h/g of catalyst, at 400°C for 16 hours (temperature rise ramp of 1° C./min), then it is transferred to the autoclave, in the absence of air. After adding 214 ml_ of n-heptane (VWR® supplier, purity > 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to the temperature of the test equal to 30°C. At time t=0, approximately 30 g of a mixture containing styrene, isoprene, n-heptane, pentanethiol and thiophene are introduced into the autoclave. The reaction mixture then has the composition described above and stirring is started at 1600 rpm. The pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l’isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni. The progress of the reaction is monitored by taking samples from the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and the isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane. Hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
Les activités catalytiques mesurées pour les catalyseurs A à F sont reportées dans le tableau 2 ci-après. Elles sont rapportées à l’activité catalytique (AHYDI) mesurée pour le catalyseur F. The catalytic activities measured for catalysts A to F are reported in Table 2 below. They are related to the catalytic activity (AHYDI) measured for catalyst F.
Tableau 2
Figure imgf000028_0001
Table 2
Figure imgf000028_0001
Le catalyseur A obtenu par le procédé selon l’invention présente à la fois une haute teneur en Ni et est de petite taille ce qui conduit à une activité en hydrogénation sélectives très importantes. L’utilisation d’une alumine différente de celle selon l’invention ne permet d’obtenir de haute teneur en Ni sur le catalyseur final (catalyseur B) ce qui conduit donc à des performances catalytiques en retrait. Une imprégnation à sec sur le support (catalyseur E) ne permet pas non plus d’obtenir un catalyseur avec de meilleures performances en hydrogénation sélective que celles du catalyseur A. Par ailleurs, un traitement hydrothermal trop long de l’alumine (3 heures) ne permet pas d’obtenir les propriétés physico-chimiques et texturales adéquates. Ainsi, le catalyseur C ne présente pas une teneur en Ni optimale pour la même quantité de sels fondus mise en œuvre au départ. Le catalyseur D présente une taille de particules supérieure à celle désirée du fait du traitement thermal après imprégnation. Les performances de ce catalyseur sont dès lors très en retrait par rapport au catalyseur A préparé par le procédé selon l’invention. Une imprégnation à sec ne permet pas d’obtenir une teneur en Ni au-dessus de 15% poids, ce qui explique les performances en retrait du catalyseur E. Pour le catalyseur F, l’acide citrique n’a pas été ajouté, ce qui conduit à une activité très en retrait du fait de la taille des particules de nickel de 14 nm. Catalyst A obtained by the process according to the invention has both a high Ni content and is of small size, which leads to a very high selective hydrogenation activity. The use of an alumina different from that according to the invention does not make it possible to obtain high Ni content on the final catalyst (catalyst B) which therefore leads to lower catalytic performance. A dry impregnation on the support (catalyst E) also does not make it possible to obtain a catalyst with better performance in selective hydrogenation than that of catalyst A. In addition, too long a hydrothermal treatment of the alumina (3 hours) does not make it possible to obtain the adequate physico-chemical and textural properties. Thus, catalyst C does not have an optimum Ni content for the same quantity of molten salts used at the start. Catalyst D has a larger particle size than desired due to the heat treatment after impregnation. The performance of this catalyst is therefore very much behind compared to catalyst A prepared by the process according to the invention. Dry impregnation does not make it possible to obtain a Ni content above 15% by weight, which explains the shrinking performance of catalyst E. For catalyst F, citric acid was not added, which which leads to a very low activity due to the size of the nickel particles of 14 nm.

Claims

REVENDICATIONS
1. Procédé de préparation d’un catalyseur comprenant une phase active à base de nickel et un support d’alumine, ladite phase active ne comprenant pas de métal du groupe VI B, ledit catalyseur comprenant une teneur en élément nickel supérieure ou égale à 1 % en poids et inférieure ou égale à 50 % poids par rapport au poids total du catalyseur, la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, est inférieure à 8 nm, ledit procédé comprenant les étapes suivantes : a) on approvisionne un gel d’alumine ; b) on met en forme le gel d’alumine de l’étape a) ; c) on soumet le gel d’alumine mis en forme obtenu à l’issue de l’étape b) à un traitement thermique comprenant au moins une étape de traitement hydrothermal dans un autoclave en présence d’une solution acide, à une température comprise entre 100°C et 800°C pendant une durée comprise entre 45 minutes et 150 minutes, et au moins une étape de calcination, à une température comprise entre 400°C et 1500°C, réalisée après l'étape de traitement hydrothermal, pour obtenir un support d’alumine ; d) on met en contact le support d’alumine avec au moins un additif organique comprenant de l’oxygène et/ou de l’azote, le ratio molaire entre l’additif organique et le nickel étant supérieur à 0,05 mol/mol ; e) on met en contact le support d’alumine avec au moins un sel métallique de nickel, à une température inférieure à la température de fusion dudit sel métallique de nickel, pour former un mélange solide, le rapport massique entre ledit sel métallique et le support d’alumine étant compris entre 0,1 et 2,3, les étapes d) et e) étant réalisées soit successivement dans cet ordre, soit simultanément ; f) on chauffe sous agitation le mélange solide obtenu à l’issue des étapes d) et e) à une température comprise entre la température de fusion dudit sel métallique et 200°C, pour obtenir un précurseur de catalyseur ; g) on sèche le précurseur de catalyseur à l’issue de l’étape f) à une température inférieure à 250°C pour obtenir un précurseur de catalyseur séché ; h) on réalise une étape de traitement thermique du précurseur de catalyseur séché obtenu à l’issue de l’étape g) à une température comprise entre 250°C et 1000°C. 1. Process for the preparation of a catalyst comprising an active phase based on nickel and an alumina support, said active phase not comprising any group VI B metal, said catalyst comprising a nickel element content greater than or equal to 1 % by weight and less than or equal to 50% by weight relative to the total weight of the catalyst, the size of the nickel particles in the catalyst, measured in oxide form, is less than 8 nm, said method comprising the following steps: a) supplies an alumina gel; b) the alumina gel of step a) is shaped; c) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature between between 100°C and 800°C for a time of between 45 minutes and 150 minutes, and at least one calcining step, at a temperature of between 400°C and 1500°C, carried out after the hydrothermal treatment step, for obtaining an alumina support; d) the alumina support is brought into contact with at least one organic additive comprising oxygen and/or nitrogen, the molar ratio between the organic additive and the nickel being greater than 0.05 mol/mol ; e) the alumina support is brought into contact with at least one nickel metal salt, at a temperature below the melting point of said nickel metal salt, to form a solid mixture, the mass ratio between said metal salt and the alumina support being between 0.1 and 2.3, steps d) and e) being carried out either successively in this order, or simultaneously; f) the solid mixture obtained at the end of steps d) and e) is heated with stirring to a temperature between the melting point of said metal salt and 200° C., to obtain a catalyst precursor; g) the catalyst precursor is dried at the end of step f) at a temperature below 250° C. to obtain a dried catalyst precursor; h) a step of heat treatment of the dried catalyst precursor obtained at the end of step g) is carried out at a temperature of between 250°C and 1000°C.
2. Procédé selon la revendication 1, dans lequel la température de fusion dudit sel métallique est comprise entre 20°C et 150°C. 2. Process according to claim 1, in which the melting temperature of said metal salt is between 20°C and 150°C.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel le rapport molaire entre ledit additif organique introduit à l’étape d) et l’élément nickel introduit à l’étape e) est compris entre 0,1 et 5,0 mol/mol. 3. Method according to one of claims 1 or 2, wherein the molar ratio between said organic additive introduced in step d) and the nickel element introduced in step e) is between 0.1 and 5, 0 mol/mol.
4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel les étapes d) et e) sont réalisées simultanément. 4. Method according to any one of claims 1 to 3, in which steps d) and e) are carried out simultaneously.
5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel l’additif organique est choisi parmi les aldéhydes renfermant 1 à 14 atomes de carbone par molécule, les cétones ou polycétones renfermant 3 à 18 atomes de carbone par molécule, les éthers et les esters renfermant 2 à 14 atomes de carbone par molécule, les alcools ou polyalcools renfermant 1 à 14 atomes de carbone par molécule et les acides carboxyliques ou polyacides carboxyliques renfermant 1 à 14 atomes de carbone par molécule, ou une combinaison des différents groupes fonctionnels ci-dessus 5. Process according to any one of claims 1 to 4, in which the organic additive is chosen from aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, or a combination of the different groups functional above
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel ledit additif organique est choisi parmi l'acide formique, le formaldéhyde, l'acide acétique, l’acide citrique, l’acide oxalique, l’acide glycolique, l’acide malonique, l’acide lévulinique, l'éthanol, le méthanol, le formiate d'éthyle, le formiate de méthyle, le paraldéhyde, l'acétaldéhyde, l’acide gamma- valérolactone, le glucose et le sorbitol. 6. Method according to any one of claims 1 to 5, wherein said organic additive is chosen from formic acid, formaldehyde, acetic acid, citric acid, oxalic acid, glycolic acid, malonic acid, levulinic acid, ethanol, methanol, ethyl formate, methyl formate, paraldehyde, acetaldehyde, gamma-valerolactone acid, glucose and sorbitol.
7. Procédé selon la revendication 6, dans lequel l’additif organique est choisi parmi l’acide citrique, l’acide formique, l’acide glycolique, l’acide lévulinique et l’acide oxalique. 7. Process according to claim 6, in which the organic additive is chosen from citric acid, formic acid, glycolic acid, levulinic acid and oxalic acid.
8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel l’étape f) est réalisée au moyen d’un tambour fonctionnant à une vitesse comprise entre 4 et 70 tours par minute. 8. Method according to any one of claims 1 to 7, in which step f) is carried out by means of a drum operating at a speed of between 4 and 70 revolutions per minute.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel à l’étape e) le rapport massique entre ledit sel métallique et le support d’alumine est compris entre 0,2 et 2. 9. Method according to any one of claims 1 to 8, wherein in step e) the mass ratio between said metal salt and the alumina support is between 0.2 and 2.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel à l’étape c) la durée du traitement hydrothermal est réalisée entre 1 heure et 2 heures. 10. Method according to any one of claims 1 to 9, wherein in step c) the duration of the hydrothermal treatment is carried out between 1 hour and 2 hours.
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel l’alumine obtenue à l’issue de l’étape c) comprend une surface spécifique comprise entre 10 m2/g et 250 m2/g. 11. Process according to any one of claims 1 to 10, in which the alumina obtained at the end of step c) comprises a specific surface of between 10 m 2 /g and 250 m 2 /g.
12. Procédé selon l’une quelconque des revendications 1 à 11, dans lequel la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, est comprise entre 2 nm et 4 nm. 12. Process according to any one of claims 1 to 11, in which the size of the nickel particles in the catalyst, measured in oxide form, is between 2 nm and 4 nm.
PCT/EP2022/069488 2021-07-22 2022-07-12 Method for preparing a catalyst from molten salts and a particular support WO2023001639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2107961 2021-07-22
FR2107961A FR3125438A1 (en) 2021-07-22 2021-07-22 METHOD FOR PREPARING A CATALYST FROM MOLTEN SALTS AND A PARTICULAR SUPPORT

Publications (1)

Publication Number Publication Date
WO2023001639A1 true WO2023001639A1 (en) 2023-01-26

Family

ID=77711125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/069488 WO2023001639A1 (en) 2021-07-22 2022-07-12 Method for preparing a catalyst from molten salts and a particular support

Country Status (2)

Country Link
FR (1) FR3125438A1 (en)
WO (1) WO2023001639A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191308864A (en) 1912-12-04 1914-04-15 James Yate Johnson Improvements in or connected with Catalysts and in the Manufacture of Hydrogen.
EP0387109A1 (en) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Process for the preparation of activated alumina agglomerates, as-produced agglomerates and apparatus for their preparation
US5036032A (en) 1988-03-25 1991-07-30 Exxon Research And Engineering Company Selective catalysts and their preparation for catalytic hydrocarbon synthesis
EP2921227A1 (en) 2014-03-20 2015-09-23 IFP Energies nouvelles Fischer-tropsch catalyst based on a group viiib metal and a carrier of oxides including alumina, silica, a spinel and phosphorus
WO2021018602A1 (en) * 2019-07-31 2021-02-04 IFP Energies Nouvelles Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
FR3104461A1 (en) 2019-12-17 2021-06-18 IFP Energies Nouvelles SELECTIVE HYDROGENATION CATALYST OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191308864A (en) 1912-12-04 1914-04-15 James Yate Johnson Improvements in or connected with Catalysts and in the Manufacture of Hydrogen.
US5036032A (en) 1988-03-25 1991-07-30 Exxon Research And Engineering Company Selective catalysts and their preparation for catalytic hydrocarbon synthesis
EP0387109A1 (en) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Process for the preparation of activated alumina agglomerates, as-produced agglomerates and apparatus for their preparation
EP2921227A1 (en) 2014-03-20 2015-09-23 IFP Energies nouvelles Fischer-tropsch catalyst based on a group viiib metal and a carrier of oxides including alumina, silica, a spinel and phosphorus
WO2021018602A1 (en) * 2019-07-31 2021-02-04 IFP Energies Nouvelles Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
FR3104461A1 (en) 2019-12-17 2021-06-18 IFP Energies Nouvelles SELECTIVE HYDROGENATION CATALYST OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE
WO2021122061A1 (en) * 2019-12-17 2021-06-24 IFP Energies Nouvelles Selective hydrogenation catalyst obtained from molten salts and an organic additive

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Handbook of Chemistry and Physics", 2000, CRC PRESS
APPL. CRYST., vol. 11, 1978, pages 102 - 113
CHEM. MATER., vol. 11, 1999, pages 1999 - 2007
J. I. LANGFORDA. J. C. WILSON, SCHERRER AFTER SIXTY YEARS: A SURVEY AND SOME NEW RESULTS IN THE DÉTERMINATION OF CRYSTALLITE SIZE
J.-Y. TILQUIN: "Intercalation of CoC/2 into graphite: Mixing method vs molten sait method", vol. 35, 1997, CARBON, pages: 299 - 306
P. EUZENP. RAYBAUDX. KROKIDISH. TOULHOATJ.L. LE LOARERJ.P. JOLIVETC. FROIDEFOND: "Handbook of Porous Solids", 2002, WILEY-VCH, article "Alumina", pages: 1591 - 1677
TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 1055
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309

Also Published As

Publication number Publication date
FR3125438A1 (en) 2023-01-27

Similar Documents

Publication Publication Date Title
EP3740309B1 (en) Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading
WO2015189190A1 (en) Mesoporous and macroporous catalyst made from nickel having a macroporous median diameter of between 50 nm and 200 nm and use of same in hydrocarbon hydrogenation
EP4003587B1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell and a nickel-copper alloy
EP4003588B1 (en) Preparation process of a catalyst comprising an active nickel phase distributed in a shell
WO2020148132A1 (en) Method for preparing a selective hydrogenation catalyst comprising a step of forming a ni-cu alloy in post-impregnation
WO2021018601A1 (en) Catalyst comprising an active nickel phase distributed in a shell as well as a nickel-copper alloy
EP3911439A1 (en) Process for preparing a selective hydrogenation catalyst, comprising a step of forming a ni-cu alloy in pre-impregnation
WO2021018602A1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
FR3099390A1 (en) CATALYST COMPRISING AN ACTIVE PHASE OF NICKEL IN THE FORM OF SMALL PARTICLES AND A NICKEL COPPER ALLOY
FR3080300A1 (en) PROCESS FOR THE PREPARATION OF A BIMETALLIC CATALYST BASED ON NICKEL AND PLATINUM OR PALLADIUM
FR3112087A1 (en) PROCESS FOR PREPARING A CATALYST FOR HYDROGENATION OF AROMATIC COMPOUNDS OBTAINED FROM MELTED SALTS AND A NICKEL COPPER ALLOY
WO2021122061A1 (en) Selective hydrogenation catalyst obtained from molten salts and an organic additive
WO2023001639A1 (en) Method for preparing a catalyst from molten salts and a particular support
WO2021018603A1 (en) Catalyst comprising an active nickel sulfur phase distributed in a shell
WO2022002675A1 (en) Method for preparing a selective hydrogenation catalyst obtained from molten salts and a nickel-copper alloy
EP4077596A1 (en) Catalyst for the hydrogenation of aromatic compounds obtained from melted salts and an organic additive
WO2021239491A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a crust obtained from molten salts
FR3110863A1 (en) PROCESS FOR PREPARATION OF A CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST OBTAINED FROM MELTED SALTS AND A NICKEL COPPER ALLOY
WO2021239496A1 (en) Method for preparing a catalyst containing an active nickel phase distributed in a shell and a nickel-copper alloy
EP4157521A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a shell
EP4373611A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a shell via hexanol impregnation
WO2024017703A1 (en) Method for preparing a catalyst containing an active nickel phase and a nickel-copper alloy
EP4373612A1 (en) Method for preparing a catalyst comprising a nickel active phase distributed in a crust via impregnation of heptanol
FR3110865A1 (en) PROCESS FOR PREPARING A CATALYST COMPRISING AN ACTIVE PHASE OF NICKEL IN THE FORM OF SMALL PARTICLES DISTRIBUTED INTO A CRUST AND A NICKEL COPPER ALLOY
WO2019011566A1 (en) Selective hydrogenation method using a catalyst obtained by comulling comprising a specific support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE