WO2023000599A1 - 基于骨传导的进食监测方法、装置、终端设备及介质 - Google Patents

基于骨传导的进食监测方法、装置、终端设备及介质 Download PDF

Info

Publication number
WO2023000599A1
WO2023000599A1 PCT/CN2021/138685 CN2021138685W WO2023000599A1 WO 2023000599 A1 WO2023000599 A1 WO 2023000599A1 CN 2021138685 W CN2021138685 W CN 2021138685W WO 2023000599 A1 WO2023000599 A1 WO 2023000599A1
Authority
WO
WIPO (PCT)
Prior art keywords
chewing
monitoring
eating
user
bone conduction
Prior art date
Application number
PCT/CN2021/138685
Other languages
English (en)
French (fr)
Inventor
王晓晨
葛晓宇
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023000599A1 publication Critical patent/WO2023000599A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms

Definitions

  • the present application relates to the technical field of intelligent monitoring, and in particular to a bone conduction-based feeding monitoring method, device, terminal equipment and storage medium.
  • the method of monitoring chewing behavior by monitoring chewing sound has the problem that environmental sound interferes with the monitoring process, thereby reducing the accuracy of the monitoring result;
  • monitoring chewing behavior through smart glasses includes: using piezoelectric film sensors to monitor the activity of the temporalis muscle and Using electromyography to record the temporalis muscle, the former is limited to the experimental stage, and involves signal segmentation, which will lead to insufficient accuracy; the latter, due to too many noise signals, requires operations such as filtering and removing motion artifacts, will also affect Accuracy of monitoring results.
  • the main purpose of this application is to provide a bone conduction-based eating monitoring method, device, terminal equipment, and storage medium, aiming to automatically monitor the number of chewing times with more reliable accuracy, and to send prompt information to the user in time according to the user's chewing behavior , thereby improving the user's eating habits.
  • the present application provides a bone conduction-based eating monitoring method, the bone conduction-based eating monitoring method is applied to wearable devices, and the bone conduction-based eating monitoring method includes:
  • step of counting the number of chewing times according to the vibration signal to obtain the number of continuous chewing times it includes:
  • the target number of times of chewing is acquired.
  • step of judging whether the number of times of continuous chewing reaches a preset monitoring value it also includes:
  • the eating monitoring function of the wearable device is turned on and a prompt message is sent to the user.
  • the step of obtaining the target number of times of chewing it also includes:
  • the target number of times of chewing is determined according to the preset instruction.
  • the step of obtaining the target number of times of chewing it also includes:
  • the target number of times of chewing is determined according to the food type.
  • the step of obtaining the vibration signal of the skull related to the chewing behavior includes:
  • the number of times of chewing is counted according to the real-time vibration signal, and the number of times of continuous chewing is updated.
  • the step of monitoring the chewing behavior of the eaten food and obtaining the vibration signal of the skull related to the chewing behavior it also includes:
  • the eating monitoring function is started according to the monitoring instruction.
  • the present application also provides a bone conduction-based eating monitoring device, the bone conduction-based eating monitoring device is applied to wearable devices, and the bone conduction-based eating monitoring device includes:
  • the monitoring module is used to monitor the chewing behavior of the food eaten, and obtain the vibration signal of the skull related to the chewing behavior;
  • a statistics module used to count the number of times of chewing according to the vibration signal to obtain the number of times of continuous chewing
  • a prompting module configured to send out a first prompt if the number of consecutive chews does not reach the target number of chews and the user's chewing behavior is terminated; if the number of consecutive chews reaches the target number of chews, send out a second prompt.
  • Each functional module of the bone conduction-based eating monitoring device of the present application implements the steps of the above-mentioned bone conduction-based eating monitoring method during operation.
  • the present application also provides a terminal device, which includes: a memory, a processor, and a bone conduction-based eating monitoring program that is stored on the memory and can run on the processor , when the bone conduction-based eating monitoring program is executed by the processor, the steps of the above-mentioned bone conduction-based eating monitoring method are realized.
  • the present application also provides a storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the bone conduction-based eating monitoring method described above are implemented.
  • the embodiment of the present application also proposes a computer program product, the computer program product includes a bone conduction-based eating monitoring program, and when the bone conduction-based eating monitoring program is executed by a processor, the bone conduction-based The steps of the feeding monitoring method.
  • the steps implemented when the bone conduction-based eating monitoring program running on the processor is executed can refer to various embodiments of the bone conduction-based eating monitoring method of the present application, and will not be repeated here.
  • the bone conduction-based eating monitoring method, device, terminal device, and storage medium proposed by the present application monitor the chewing behavior of the eaten food through a wearable device, and obtain the vibration signal of the skull related to the chewing behavior; according to the vibration The signal counts the number of chewing times to obtain the number of consecutive chewing times; if the number of consecutive chewing times does not reach the target number of chewing times and the user's chewing behavior is terminated, a first prompt message is issued; if the number of continuous chewing times reaches the target number of chewing times, a second prompt message is issued information.
  • This application monitors the chewing behavior of the food eaten by the user through the wearable device when the user is eating, obtains the vibration signal of the skull related to the chewing behavior, and counts the vibration times of the skull according to the vibration signal.
  • the number of vibrations determines the number of chewing times of the user, and the number of consecutive chewing times is obtained according to the number of chewing times.
  • the number of consecutive chewing times is equal to the number of continuous chewing times of the user's chewing behavior.
  • the wearable device compares the number of consecutive chewing times with the target number of chewing times Yes, if the number of consecutive chewing times does not reach the target number of chewing times and the user stops chewing, a first prompt message will be sent; if the number of continuous chewing times reaches the target number of chewing times, the wearable device will send a second prompt message to the user.
  • This application monitors the vibration frequency of the skull related to the user's chewing behavior through a wearable device, thereby realizing the monitoring of the user's eating habits, and collects the vibration signal of the skull related to the chewing behavior according to bone conduction technology, and the signal is simple and reliable.
  • the monitoring process since the acquisition of the vibration signal of the skull does not involve oral recording, the monitoring process is not sensitive to the noise of the surrounding environment, has strong anti-interference ability, and the accuracy of the monitoring results is higher.
  • the wearable device when the wearable device judges that the number of consecutive chewing times of the user in this chewing behavior has reached the target number of chewing times, or the number of consecutive chewing times has not reached the target number of chewing times and the user stops chewing behavior, the wearable device will send a prompt message to the user, To remind the user, so as to achieve the purpose of improving the user's eating habits.
  • the bone conduction-based eating monitoring method provided by the present application can automatically monitor the number of chewing times with more reliable accuracy, and send prompt information to the user in time according to the user's chewing behavior, thereby improving the user's eating habits.
  • FIG. 1 is a schematic structural diagram of the hardware operating environment of the terminal device involved in the solution of the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of an embodiment of a bone conduction-based feeding monitoring method of the present application
  • Fig. 3 is a schematic flow chart of an embodiment of a bone conduction-based eating monitoring method of the present application
  • Figure 4 is a schematic diagram of the skull involved in human occlusal behavior
  • Fig. 5 is a schematic diagram of a user wearing smart glasses to monitor chewing times in an embodiment of a bone conduction-based eating monitoring method of the present application
  • FIG. 6 is a schematic diagram of a module structure of a bone conduction-based feeding monitoring device of the present application.
  • FIG. 1 is a schematic structural diagram of a hardware operating environment related to a terminal device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a hardware operating environment of a terminal device.
  • the terminal device in this embodiment of the present application may be smart glasses.
  • the terminal device may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 .
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 can be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the structure of the terminal device shown in FIG. 1 does not constitute a limitation on the terminal device, and may include more or less components than those shown in the figure, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a processing program for distributed tasks.
  • the operating system is the program that manages and controls the hardware and software resources of the sample terminal device, the processing program that supports distributed tasks, and the operation of other software or programs.
  • the user interface 1003 is mainly used for data communication with each terminal;
  • the network interface 1004 is mainly used for connecting to the background server and performing data communication with the background server;
  • the processor 1001 can be used to call the memory 1005 bone conduction-based feeding monitoring program stored in the program, and do the following:
  • a first prompt message is sent; if the number of consecutive chewing times reaches the target number of chewing times, a second prompt message is sent out.
  • the processor 1001 can call the bone conduction-based eating monitoring program stored in the memory 1005, and after the step of counting the number of chewing times according to the vibration signal to obtain the number of continuous chewing times, the following operations are also performed:
  • the target number of times of chewing is acquired.
  • the processor 1001 may call the bone conduction-based eating monitoring program stored in the memory 1005, and after the step of judging whether the number of times of continuous chewing reaches the preset monitoring value, further perform the following operations:
  • the eating monitoring function of the wearable device is turned on and a prompt message is sent to the user.
  • the processor 1001 may call the bone conduction-based eating monitoring program stored in the memory 1005, and before the step of acquiring the target number of times of chewing, the following operations are also performed:
  • the target number of times of chewing is determined according to the preset instruction.
  • the processor 1001 may call the bone conduction-based eating monitoring program stored in the memory 1005, and before the step of acquiring the target number of times of chewing, the following operations are also performed:
  • the target number of times of chewing is determined according to the food type.
  • the processor 1001 may call the bone conduction-based eating monitoring program stored in the memory 1005, and after the step of obtaining the vibration signal of the skull related to the chewing behavior, further perform the following operations:
  • the processor 1001 can call the bone conduction-based eating monitoring program stored in the memory 1005, and after the step of counting the number of chewing times according to the vibration signal to obtain the number of continuous chewing times, the following operations are also performed:
  • the number of times of chewing is counted according to the real-time vibration signal, and the number of times of continuous chewing is updated.
  • the processor 1001 may call the bone conduction-based eating monitoring program stored in the memory 1005, and before the step of monitoring the chewing behavior of the eaten food and obtaining the vibration signal of the skull related to the chewing behavior, further Do the following:
  • the eating monitoring function is started according to the monitoring instruction.
  • monitoring chewing behavior through smart glasses includes: using piezoelectric film sensors to monitor the activity of the temporalis muscle and Using electromyography to record the temporalis muscle, the former is limited to the experimental stage, and involves signal segmentation, which will lead to insufficient accuracy; the latter, due to too many noise signals, requires operations such as filtering and removing motion artifacts, will also affect Accuracy of monitoring results.
  • FIG. 2 is a schematic flowchart of the first embodiment of the bone conduction-based feeding monitoring method of the present application.
  • the bone conduction-based eating monitoring method provided by this application is applied to wearable devices.
  • the bone conduction-based eating monitoring method of this application includes:
  • Step S100 monitor the chewing behavior of the eaten food, and obtain the vibration signal of the skull related to the chewing behavior.
  • the eating monitoring method based on bone conduction is applied to smart glasses, so the monitoring process of chewing frequency is mainly completed through smart glasses.
  • the smart glasses monitor the chewing behavior of the food eaten by the user during the eating phase, and obtain the vibration signal of the skull related to the chewing behavior.
  • the human chewing system consists of teeth, temporomandibular joints, and jaws.
  • the chewing movement is mainly caused by the contraction and relaxation of the masticatory muscles, thereby driving the mandible to achieve jaw closure and jaw opening.
  • sports When a person is chewing, the occlusal action will drive the vibration of the temporal bone of the head.
  • the temples of the smart glasses are directly attached to the person's head.
  • the bone conduction microphone installed on the temples can be very convenient. Get every biting action of a person. Therefore, when the user eats and chews, the occlusal action of the mandible will drive the vibration of the temporal bone of the head.
  • the bone conduction microphone installed in the smart glasses acquires the vibration signal of the temporal bone, and monitors the chewing behavior by obtaining the vibration signal.
  • Step S200 count the number of times of chewing according to the vibration signal, and obtain the number of times of continuous chewing.
  • the smart glasses After the smart glasses obtain the vibration signal of the skull related to the user's eating and chewing behavior, count the number of vibrations of the skull according to the vibration signal, and count the number of chewing times of the user according to the number of vibrations of the skull, so as to obtain the user's chewing frequency within a period of time. consecutive chewing times.
  • the vibration signal is transmitted to the vibration sensor installed on the smart glasses, and the temporal bone is counted according to the vibration signal.
  • the number of vibrations and then count the number of chews of the user according to the number of vibrations of the skull, so as to obtain the number of consecutive chews of the user within a period of time, which is equal to the continuous number of chews of the user's chewing behavior. Therefore, each time the user chews, the vibration sensor acquires a vibration signal and accumulates the number of times of chewing, thereby realizing the monitoring of the number of times of continuous chewing during the eating phase of the user.
  • Step S300 if the number of consecutive chewing times does not reach the target number of chewing times and the chewing behavior of the user is terminated, send out a first prompt message; if the number of consecutive chewing times reaches the target number of chewing times, send out a second prompt message.
  • the target number of chewing times is a measure used to measure whether the number of chewing times during the user's eating reaches the target value;
  • a reminder message judging that the user's chewing behavior has terminated after the last chewing behavior within a preset time interval, it can be understood that the user has finished chewing and swallowed, and the first reminder message can be issued to remind the user this time
  • the chewing behavior does not reach the target number of times of chewing; when the number of consecutive chewing times reaches the target number of times of chewing, a second prompt message is sent, and the second prompt message is used to remind the user that the chewing behavior has reached the target value of the number of chewing times.
  • the presentation forms of the first prompt information and the second prompt information include image form, sound form or vibration form, which are not specifically limited here.
  • the smart glasses After the smart glasses have obtained the number of consecutive chewing times, they compare the number of consecutive chewing times with the target number of chewing times. If the number of consecutive chewing times does not reach the target number of chewing times and the user's chewing behavior is terminated, the smart glasses will send information to the user in the form of images, sounds or vibrations.
  • the smart glasses send out the first prompt information in the form of chewing, and if the number of consecutive chewing times reaches the target number of chewing times, the smart glasses send the second prompt information to the user in the form of images, sounds or vibrations.
  • the smart glasses send out the second prompt information, for example, the smart glasses display the second specific image through the display device, or make a sound of "Didi——” through the sound output device, or generate two continuous prompts through a specific part of the smart glasses. Vibration, thereby reminding the user that the chewing frequency of this chewing behavior has reached the target value.
  • the smart glasses will send out the first prompt information, for example, the smart glasses will display the first specific image through the display device, or make a sound of "di——” through the sound output device, or generate a continuous sound through a specific part of the smart glasses. Vibrate, and reset the number of consecutive chews to 0.
  • the chewing behavior of the food eaten by the user during the eating phase is monitored by smart glasses, and the vibration signal of the skull related to the chewing behavior is obtained; after the vibration signal of the skull related to the chewing behavior of the user is obtained , count the number of vibrations of the skull according to the vibration signal, and then count the number of chews of the user according to the number of vibrations of the skull, so as to obtain the number of consecutive chews used to count the number of chews of the user; after obtaining the number of consecutive chews, compare the number of consecutive chews with The target number of chewing times is compared, and when the number of consecutive chewing times does not reach the target number of chewing times and the chewing behavior of the user is terminated, a first prompt message is sent out, and when the number of continuous chewing times reaches the target number of chewing times, a second prompt message is sent out.
  • This application monitors the vibration frequency of the skull related to the user's chewing behavior through a wearable device, thereby realizing the monitoring of the user's eating habits, and collects the vibration signal of the skull related to the chewing behavior according to bone conduction technology, and the signal is simple and reliable.
  • the monitoring process is not sensitive to the noise of the surrounding environment, has strong anti-interference ability, and the accuracy of the monitoring results is higher.
  • the wearable device judges that the number of consecutive chewing times of the user in this chewing behavior has not reached the target number of chewing times and the user's chewing behavior is terminated, the first prompt message will be sent out. When the number of times is higher, a second reminder message is sent to the user, so as to achieve the purpose of improving the user's eating habits.
  • bone conduction technology is used to monitor the number of chewing times.
  • the data obtained during the monitoring process is a vibration signal, and there is no need to use recording methods, so the user's privacy will not be involved.
  • the bone conduction-based eating monitoring method provided by the present application can automatically monitor the number of chewing times with more reliable accuracy, and send prompt information to the user in time according to the user's chewing behavior, thereby improving the user's eating habits.
  • step S200 may include:
  • Step S400 judging whether the number of times of continuous chewing reaches a preset monitoring value.
  • the preset monitoring value is a user-defined value preset by the user or the manufacturer, which is used to avoid false triggering of the monitoring function of the smart glasses by the user's chewing behavior during the non-eating phase.
  • the preset monitoring value may be 3 times, 4 times or 5 times, etc., which is not specifically limited here.
  • the smart glasses compare the number of consecutive chewing times with the custom value preset by the user or the manufacturer.
  • Step S500 if the number of consecutive chewing times reaches the preset monitoring value, then acquire the target number of chewing times.
  • the eating monitoring function of the smart glasses will enter the monitoring cycle and obtain the target chewing times for the user's chewing behavior .
  • the smart glasses determine that the user is in the eating stage, and the eating monitoring function of the smart glasses enters the monitoring cycle, and generates a target chewing behavior for the user's chewing behavior.
  • the number of times similarly, assuming that the user sets the preset monitoring value to 3 times, when the smart glasses detect the vibration signal of the user's temporal bone, that is, the user has chewing behavior at this time, if the user's temporal bone vibration frequency only reaches 2 times Stop, That is, if the number of consecutive chewing times is 2 and the preset monitoring value is not reached, the smart glasses will determine that the user is not eating, the monitoring function of the smart glasses will not enter the monitoring cycle, and the number of continuous chewing times will be reset to 0.
  • the monitoring function of the smart glasses enters the monitoring cycle only when the continuous chewing times of the user's chewing behavior reaches the preset monitoring value, and obtains the target chewing times of the user's chewing behavior, It avoids false triggering of the monitoring function of the smart glasses caused by the chewing behavior of the user during the non-eating phase such as chewing gum, which causes unnecessary interference to the user, and also reduces the power consumption of the smart glasses.
  • step S500 after the step of judging whether the number of times of continuous chewing reaches a preset monitoring value, further includes:
  • Step S501 if the number of times of continuous chewing reaches the preset monitoring value, enable the eating monitoring function of the wearable device and send a prompt message to the user.
  • the smart glasses After the smart glasses compare the number of consecutive chewing times with the preset monitoring value, if the number of consecutive chewing times reaches the preset monitoring value, the monitoring function of the wearable device is turned on and a prompt message is sent to the user. At this time, the monitoring function of the smart glasses Enter the monitoring cycle, and send prompt information to the user at the same time.
  • the form of the prompt information can be sound, vibration feedback or image. show.
  • the smart glasses determine that the user is in the eating stage, the monitoring function of the smart glasses enters the monitoring cycle, and sends prompt information to the user, such as generating image information reflecting the number of consecutive chewing times,
  • the display device installed on the lens of the smart glasses displays the image information to remind the user that the current number of chewing times is 3 times. As the user's chewing behavior continues, the image information is continuously updated to reflect the user's continuous chewing times in real time.
  • this embodiment realizes that while the smart glasses monitor the user's chewing behavior, they simultaneously give the user feedback, remind the user to pay attention to the gap between the number of consecutive chewing times and the target number of chewing times, and improve the probability that the user reaches the target number of chewing times during the eating phase, and Send a reminder message to the user when chewing and swallowing is completed without reaching the target number of chewing.
  • step S500 before the step of obtaining the target number of times of chewing, it also includes:
  • Step S502 acquiring a preset instruction.
  • the preset instruction is an instruction actively triggered by the user on the smart glasses, and the instruction is used to determine the target chewing times.
  • the smart glasses acquire the instructions actively triggered by the user to determine the target chewing times.
  • Step S503 determining the target number of chewing times according to the preset instruction.
  • the smart glasses determine the measurement standard used to measure whether the number of times the user chews during eating reaches the target value.
  • the user enters an instruction through the shortcut key of the smart glasses to actively set the target number of chewing times to 30 times, or the user triggers the step of obtaining the target number of chewing times through a preset instruction.
  • the smart glasses receive the preset instruction, according to the user For the type of food currently being chewed, obtain the corresponding target number of times of chewing in the pre-stored corresponding table.
  • the monitoring function enters the monitoring cycle, according to the instruction, 30 times are determined as a measurement standard for measuring whether the accumulated chewing times during the user's eating period reach the target value.
  • the user can issue a preset command to actively acquire the target number of chewing times, so that the smart glasses can monitor the user's eating function to meet the user's individual needs and improve the user's experience.
  • step S500 before the step of acquiring the target number of times of chewing, it also includes:
  • Step S504 acquiring the type of food eaten.
  • the food eaten by the user is photographed to obtain a food image, and the food image is analyzed to obtain the type of food eaten by the user.
  • the smart glasses will take a picture of the food eaten by the user through the camera after the food monitoring function enters the monitoring cycle, and then analyze the food image to determine that the food belongs to "beef— Meat - high calorie" food type.
  • Step S505 determining the target number of chewing times according to the food type.
  • the smart glasses After determining the type of food, the smart glasses determine, according to the type of food, a measurement standard for measuring whether the cumulative number of chewing times of the user's chewing behavior reaches a target value.
  • the smart glasses capture the image of the food that the user is eating through the camera, and after analyzing the food image, it is determined that the food belongs to the food type of "beef-meat-high calorie", then the smart glasses will be based on the "beef ——meat—high calorie”
  • This type of food automatically determines the target number of chewing times as 30 times, that is, the number of chewing times of 30 times is the target value that the user should achieve in this chewing behavior;
  • the image of the food that the user is eating is detected, and after analyzing the food image, it is determined that the food belongs to the food type of "cabbage-vegetable-low calorie”.
  • the type automatically determines the target number of chewing times as 10 times, that is, the cumulative number of chewing times of 10 times is the target value that the user should achieve in this chewing behavior.
  • the smart glasses determine the food type through the food image, and then determine the corresponding target chewing times according to the food type, so that the smart glasses can automatically and intelligently determine the corresponding target chewing times for different foods eaten by the user, avoiding the The user needs to perform cumbersome operations of manually setting the target number of chewing times, which improves the user experience.
  • step S100 it may include:
  • Step S600 counting vibration intervals according to the vibration signal.
  • the vibration interval of the skull is counted according to the vibration signal.
  • step S200 may include:
  • Step S700 if the vibration interval reaches a preset duration, reset the number of times of continuous chewing.
  • the preset duration is the length of time custom-set by the user or the manufacturer, and is used to measure whether the user's chewing behavior is terminated, wherein the preset duration can be 2 seconds, 3 seconds or 4 seconds. seconds, etc., which are not specifically limited here.
  • a first prompt message is sent to the user to remind the user that swallowing has occurred before the number of consecutive chewing times reaches the target number of chewing times.
  • the smart glasses determine that the user's chewing behavior has terminated, and reset the number of consecutive chewing times.
  • the smart glasses determine that the chewing behavior of the user has terminated, and reset the number of consecutive chewing times to 0.
  • Step S800 count the number of times of chewing according to the real-time vibration signal, and update the number of times of continuous chewing.
  • the smart glasses determine that the user's chewing behavior has terminated, and reset the number of consecutive chewing behaviors, and then monitor the vibration signal of the skull related to the user's chewing behavior again, the number of vibrations of the skull is counted according to the real-time vibration signal, and according to the vibration The number of chewing times is acquired, and the number of consecutive chewing times is updated.
  • the smart glasses determine that the chewing behavior of the user has terminated, and count the number of consecutive chewing times Reset from 15 times to 0 times. If the smart glasses detect the vibration signal of the temporal bone again, the number of vibrations of the temporal bone will be counted again according to the vibration signal. At this time, the monitored continuous chewing count will change from 0 to 1. to add up.
  • the vibration interval of the skull is counted according to the vibration signal;
  • the smart glasses determine that the chewing behavior of the user has terminated, and reset the number of consecutive chews;
  • the vibration signal of the skull related to the user's chewing behavior is received, the number of vibrations of the skull is counted according to the real-time vibration signal, the number of chewing times is obtained according to the number of vibrations, and the number of consecutive chewing times is updated.
  • step S100 before the above step S100, it also includes:
  • Step S900 acquiring a monitoring instruction.
  • the monitoring instruction is used to trigger the smart glasses to start the eating monitoring function.
  • the triggering method of the monitoring instruction includes automatic triggering of the smart glasses and active triggering by the user; Including automatic triggering of monitoring instructions at regular intervals.
  • the way for users to actively trigger monitoring instructions includes the user inputting monitoring instructions through voice, or the user inputting monitoring instructions by touching the shortcut keys on the surface of the smart glasses, which are not specifically limited here.
  • the smart glasses obtain monitoring instructions for triggering the eating monitoring function through automatic triggering or user active triggering.
  • Step S910 start the eating monitoring function according to the monitoring instruction.
  • the eating monitoring function is triggered according to the monitoring instruction, and the vibration signal of the skull related to the user's chewing behavior is monitored.
  • the user has a fixed eating period for three meals a day, wherein the breakfast period is from 7:00 to 7:15, the lunch period is from 12:00 to 12:30, and the dinner period is from 18:00 to 18 :30, the user can pre-set the smart glasses to start the monitoring function from 7:00 to 7:15, 12:00 to 12:30, and 6:00 to 6:30; when the time reaches 7:00, it belongs to the breakfast time , the smart glasses automatically trigger a monitoring instruction for triggering the eating monitoring function.
  • the smart glasses enter the monitoring mode, start the eating monitoring function, and monitor the vibration signal of the user's temporal bone; or, when the time reaches 12:00, it is lunch During the time period, the smart glasses automatically trigger the monitoring command for triggering the eating monitoring function.
  • the smart glasses enter the monitoring mode, start the eating monitoring function, and monitor the vibration signal of the user's temporal bone; when the time reaches 18:00, it belongs to the dinner time , the smart glasses automatically trigger a monitoring instruction for triggering the eating monitoring function. At this time, the smart glasses enter the monitoring mode, start the eating monitoring function, and monitor the vibration signal of the user's temporal bone.
  • the user actively touches the shortcut key on the surface of the smart glasses during the eating phase, or triggers a monitoring instruction for triggering the eating monitoring function through voice input "starting the eating monitoring function", and the smart glasses enter the monitoring mode at this time. Mode, start the eating monitoring function, and monitor the vibration signal of the user's temporal bone.
  • the monitoring instruction for triggering the monitoring function is obtained through the smart glasses through automatic triggering or user active triggering; after the monitoring instruction is obtained, the eating monitoring function is triggered according to the monitoring instruction, and the user's Vibration signals of the skull associated with chewing behavior were monitored.
  • the bone conduction-based eating monitoring device of this application includes:
  • the monitoring module is used to monitor the chewing behavior of the food eaten, and obtain the vibration signal of the skull related to the chewing behavior;
  • a statistics module used to count the number of times of chewing according to the vibration signal to obtain the number of times of continuous chewing
  • a prompting module configured to send out a first prompt if the number of consecutive chews does not reach the target number of chews and the user's chewing behavior is terminated; if the number of consecutive chews reaches the target number of chews, send out a second prompt.
  • the eating monitoring device based on bone conduction further includes:
  • a judging module configured to judge whether the number of times of continuous chewing reaches a preset monitoring value, and judge whether the vibration interval reaches a preset duration
  • An acquisition module configured to acquire the target number of times of chewing if the number of times of continuous chewing reaches the preset monitoring value.
  • the eating monitoring device based on bone conduction further includes:
  • a reminder module configured to enable the eating monitoring function of the wearable device and send a reminder message to the user if the number of times of continuous chewing reaches the preset monitoring value.
  • the eating monitoring device based on bone conduction further includes:
  • the determination module is used to obtain preset instructions, determine the target number of chewing times according to the preset instructions; and obtain the type of food eaten, and determine the target number of chewing times according to the food type.
  • the statistics module includes:
  • a statistical unit configured to count vibration intervals according to the vibration signal
  • a reset unit is configured to reset the number of consecutive chewing times if the vibration interval reaches a preset duration; and, count the number of chewing times according to real-time vibration signals, and update the number of consecutive chewing times.
  • the monitoring module also includes:
  • the monitoring unit is used to obtain monitoring instructions, and start the eating monitoring function according to the monitoring instructions.
  • an embodiment of the present application also proposes a terminal device, which includes: a memory, a processor, and a bone conduction-based eating monitoring program that is stored on the memory and can run on the processor.
  • a terminal device which includes: a memory, a processor, and a bone conduction-based eating monitoring program that is stored on the memory and can run on the processor.
  • the conduction eating monitoring program is executed by the processor, the steps of the bone conduction-based eating monitoring method described above are realized.
  • the embodiment of the present application also proposes a storage medium, which is applied to a computer.
  • the storage medium may be a non-volatile computer-readable storage medium, and a bone conduction-based feeding monitoring program is stored on the storage medium.
  • the conduction eating monitoring program is executed by the processor, the above-mentioned steps of the bone conduction-based eating monitoring method are realized.
  • the embodiment of the present application also proposes a computer program product, the computer program product includes a bone conduction-based eating monitoring program, and when the bone conduction-based eating monitoring program is executed by a processor, the bone conduction-based The steps of the feeding monitoring method.
  • the term “comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or system comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or system. Without further limitations, an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, article, or system comprising that element.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种基于骨传导的进食监测方法、装置、终端设备以及存储介质,通过智能眼镜监测对进食的食物的咀嚼行为,获得与咀嚼行为相关的头骨的振动信号(S100);根据振动信号统计咀嚼次数,得到连续咀嚼次数(S200);若连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息(S300)。基于骨传导的进食监测方法能够以更可靠的精度自动监测累计咀嚼次数,并根据用户的咀嚼行为及时向用户发出提示信息,从而改善用户的进食习惯。

Description

基于骨传导的进食监测方法、装置、终端设备及介质
本申请要求于2021年7月22日提交中国专利局、申请号为202110833917.X、发明名称为“基于骨传导的进食监测方法、装置、终端设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能监测技术领域,尤其涉及一种基于骨传导的进食监测方法、装置、终端设备以及存储介质。
背景技术
随着生活水平的不断提高,人们对健康饮食的需求也不断增加。其中,进食时的咀嚼习惯与健康饮食密切相关,因此得到了人们的重点关注。已有科学研究表明,咀嚼的次数越多,消耗的热量越多,由于饱腹感具有延迟性,因此在进食同样多的食物等情况下,咀嚼次数更多时会更有效瘦身。
如果通过主观人为的方式去统计咀嚼次数,会造成人们在饮食时产生负担,同时也不利于改善以改变咀嚼率为目标的干预措施。而关于咀嚼过程的监测方法目前已经存在相关研究,但是均存在缺陷。例如,通过监测咀嚼声音实现咀嚼行为监测的方法,存在环境音干扰监测过程,从而降低监测结果精确度的问题;通过智能眼镜监测咀嚼行为,则包括:利用压电薄膜传感器监测颞肌的活动和利用肌电图记录颞肌,前者仅限于实验阶段,且涉及到信号的分割会导致精准度不够高;后者则由于噪音信号太多、需要涉及滤波和去除运动伪影等操作,同样会影响监测结果的精确度。
因此,目前尚未存在一种用于量化咀嚼行为的客观及自动化的方法,能够以更可靠的精度自动监测咀嚼次数,从而改善人们的进食习惯。
发明内容
本申请的主要目的在于提供一种基于骨传导的进食监测方法、装置、终 端设备以及存储介质,旨在能够以更可靠的精度自动监测咀嚼次数,并根据用户的咀嚼行为及时向用户发出提示信息,从而改善用户的进食习惯。
为实现上述目的,本申请提供一种基于骨传导的进食监测方法,所述基于骨传导的进食监测方法应用于可穿戴设备,所述基于骨传导的进食监测方法包括:
监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号;
根据所述振动信号统计咀嚼次数,得到连续咀嚼次数;
若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;
若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
进一步地,在所述根据所述振动信号统计咀嚼次数,得到连续咀嚼次数的步骤之后,包括:
判断所述连续咀嚼次数是否达到预设监测值;
若所述连续咀嚼次数达到所述预设监测值,则获取所述目标咀嚼次数。
进一步地,在所述判断所述连续咀嚼次数是否达到预设监测值的步骤之后,还包括:
若所述连续咀嚼次数达到所述预设监测值,则开启所述可穿戴设备的进食监测功能并向用户发出提示信息。
进一步地,在所述获取所述目标咀嚼次数的步骤之前,还包括:
获取预设指令;
根据所述预设指令确定所述目标咀嚼次数。
进一步地,在所述获取所述目标咀嚼次数的步骤之前,还包括:
获取进食的食物类型;
根据所述食物类型确定所述目标咀嚼次数。
进一步地,在所述获得与所述咀嚼行为相关的头骨的振动信号的步骤之后,包括:
根据所述振动信号统计振动间隔;
在所述根据所述振动信号统计咀嚼次数,得到连续咀嚼次数的步骤之后,包括:
若所述振动间隔达到预设时长,则重置所述连续咀嚼次数;
根据实时的振动信号统计咀嚼次数,更新所述连续咀嚼次数。
进一步地,在所述监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号的步骤之前,还包括:
获取监测指令;
根据所述监测指令启动进食监测功能。
此外,为实现上述目的,本申请还提供一种基于骨传导的进食监测装置,所述基于骨传导的进食监测装置应用于可穿戴设备,所述基于骨传导的进食监测装置包括:
监测模块,用于监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号;
统计模块,用于根据所述振动信号统计咀嚼次数,得到连续咀嚼次数;
提示模块,用于若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
本申请基于骨传导的进食监测装置的各功能模块在运行时实现如上述中的基于骨传导的进食监测方法的步骤。
此外,为实现上述目的,本申请还提供一种终端设备,所述终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的基于骨传导的进食监测程序,所述基于骨传导的进食监测程序被所述处理器执行时实现如上述中的基于骨传导的进食监测方法的步骤。
此外,为实现上述目的,本申请还提供一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述的基于骨传导的进食监测方法的步骤。
此外,本申请实施例还提出一种计算机程序产品,该计算机程序产品上包括基于骨传导的进食监测程序,所述基于骨传导的进食监测程序被处理器执行时实现如上所述的基于骨传导的进食监测方法的步骤。
其中,在所述处理器上运行的基于骨传导的进食监测程序被执行时所实 现的步骤可参照本申请基于骨传导的进食监测方法的各个实施例,此处不再赘述。
本申请提出的基于骨传导的进食监测方法、装置、终端设备以及存储介质,通过可穿戴设备监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号;根据所述振动信号统计咀嚼次数,得到连续咀嚼次数;若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
本申请通过可穿戴设备在用户进食时,监测用户对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号,并根据该振动信号统计该头骨的振动次数,根据该头骨的振动次数确定用户的咀嚼次数,以及根据该咀嚼次数得到连续咀嚼次数,该连续咀嚼次数等同于用户该次咀嚼行为的持续的咀嚼次数,最后可穿戴设备将该连续咀嚼次数与目标咀嚼次数进行比对,若该连续咀嚼次数未达到目标咀嚼次数且用户停止咀嚼行为,则发出第一提示信息;若该连续咀嚼次数达到目标咀嚼次数,则可穿戴设备向用户发出第二提示信息。
本申请通过可穿戴设备监测与用户咀嚼行为相关的头骨的振动次数,从而实现对用户进食习惯的监测,根据骨传导技术采集与咀嚼行为相关的头骨的振动信号,其信号简单且可靠性高,同时由于采集头骨的振动信号不涉及口腔录音,因此监测过程对周围环境的噪音不敏感,抗干扰能力强,监测结果的精确度更高。此外,当可穿戴设备判断用户在该次咀嚼行为中连续咀嚼次数达到目标咀嚼次数,或该连续咀嚼次数未达到目标咀嚼次数且用户停止咀嚼行为时,可穿戴设备均会向用户发出提示信息,以对用户起到提醒作用,从而达到改善用户进食习惯的目的。
如此,本申请提供的基于骨传导的进食监测方法能够以更可靠的精度自动监测咀嚼次数,并根据用户的咀嚼行为及时向用户发出提示信息,从而改善用户的进食习惯。
附图说明
图1是本申请实施例方案涉及的终端设备的硬件运行环境的结构示意图;
图2是本申请一种基于骨传导的进食监测方法一实施例的流程示意图;
图3是本申请一种基于骨传导的进食监测方法一实施例的细化流程示意图;
图4是人类咬合行为涉及的头骨示意图;
图5是本申请一种基于骨传导的进食监测方法一实施例中,用户佩戴智能眼镜进行咀嚼次数监测的示意图;
图6是本申请一种基于骨传导的进食监测装置的模块结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及终端设备的硬件运行环境的结构示意图。
需要说明的是,图1即可为终端设备的硬件运行环境的结构示意图。本申请实施例终端设备可以是智能眼镜。
如图1所示,该终端设备可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的终端设备结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及分布式任务的处理程序。其中,操作系统是管理和控制样本终端设备硬件和软件资源的程序,支持分布式任务的 处理程序以及其它软件或程序的运行。
在图1所示的终端设备中,用户接口1003主要用于与各个终端进行数据通信;网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;而处理器1001可以用于调用存储器1005中存储的基于骨传导的进食监测程序,并执行以下操作:
监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号;
根据所述振动信号统计咀嚼次数,得到连续咀嚼次数;
若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;
若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
进一步地,处理器1001可以调用存储器1005中存储的基于骨传导的进食监测程序,在所述根据所述振动信号统计咀嚼次数,得到连续咀嚼次数的步骤之后,还执行以下操作:
判断所述连续咀嚼次数是否达到预设监测值;
若所述连续咀嚼次数达到所述预设监测值,则获取所述目标咀嚼次数。
进一步地,处理器1001可以调用存储器1005中存储的基于骨传导的进食监测程序,在所述判断所述连续咀嚼次数是否达到预设监测值的步骤之后,还执行以下操作:
若所述连续咀嚼次数达到所述预设监测值,则开启所述可穿戴设备的进食监测功能并向用户发出提示信息。
进一步地,处理器1001可以调用存储器1005中存储的基于骨传导的进食监测程序,在所述获取所述目标咀嚼次数的步骤之前,还执行以下操作:
获取预设指令;
根据所述预设指令确定所述目标咀嚼次数。
进一步地,处理器1001可以调用存储器1005中存储的基于骨传导的进食监测程序,在所述获取所述目标咀嚼次数的步骤之前,还执行以下操作:
获取进食的食物类型;
根据所述食物类型确定所述目标咀嚼次数。
进一步地,处理器1001可以调用存储器1005中存储的基于骨传导的进食监测程序,在所述获得与所述咀嚼行为相关的头骨的振动信号的步骤之后,还执行以下操作:
根据所述振动信号统计振动间隔;
处理器1001可以调用存储器1005中存储的基于骨传导的进食监测程序,在所述根据所述振动信号统计咀嚼次数,得到连续咀嚼次数的步骤之后,还执行以下操作:
若所述振动间隔达到预设时长,则重置所述连续咀嚼次数;
根据实时的振动信号统计咀嚼次数,更新所述连续咀嚼次数。
进一步地,处理器1001可以调用存储器1005中存储的基于骨传导的进食监测程序,在所述监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号的步骤之前,还执行以下操作:
获取监测指令;
根据所述监测指令启动进食监测功能。
基于上述的结构,提出本申请基于骨传导的进食监测方法的各个实施例。
需要说明的是,关于咀嚼过程的监测方法目前已经存在相关研究,但是均存在缺陷。例如,通过监测咀嚼声音实现咀嚼行为监测的方法,存在环境音干扰监测过程,从而降低监测结果精确度的问题;通过智能眼镜监测咀嚼行为,则包括:利用压电薄膜传感器监测颞肌的活动和利用肌电图记录颞肌,前者仅限于实验阶段,且涉及到信号的分割会导致精准度不够高;后者则由于噪音信号太多、需要涉及滤波和去除运动伪影等操作,同样会影响监测结果的精确度。
因此,目前尚未存在一种用于量化咀嚼行为的客观及自动化的方法,能够以更可靠的精度自动监测咀嚼次数,从而改善人们的进食习惯。
基于上述现象,提出本申请基于骨传导的进食监测方法的各实施例。需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
第一实施例:请参照图2,图2为本申请基于骨传导的进食监测方法第一实施例的流程示意图。本申请提供的基于骨传导的进食监测方法,应用于可穿戴设备,本申请基于骨传导的进食监测方法包括:
步骤S100,监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号。
需要说明的是,在本实施例中,基于骨传导的进食监测方法应用于智能眼镜,因此对咀嚼次数的监测过程主要是通过智能眼镜进行监测完成。
智能眼镜监测用户在进食阶段对进食的食物的咀嚼行为,获得与该咀嚼行为相关的头骨的振动信号。
具体地,例如,如图4和图5所示,人类的咀嚼系统由牙齿、颞下颌关节和颌骨组成,咀嚼运动主要是由咀嚼肌肉收缩和舒张,从而驱动下颌骨实现闭颌和开颌运动。人在咀嚼时,咬合动作会带动头部颞骨的振动,而人在佩戴智能眼镜时,智能眼镜的镜腿和人的头部直接贴合,通过安装于镜腿的骨传导麦克风可以很方便的获取到人的每一次咬合的动作。因此,用户在进食咀嚼时,下颌骨的咬合动作会带动头部颞骨的振动,安装于智能眼镜的骨传导麦克风获取到颞骨的振动信号,通过获取该振动信号实现对咀嚼行为的监测。
步骤S200,根据所述振动信号统计咀嚼次数,得到连续咀嚼次数。
智能眼镜在获得与用户的进食的咀嚼行为相关的头骨的振动信号后,根据该振动信号统计该头骨的振动次数,并且根据该头骨的振动次数统计用户的咀嚼次数,从而得到一段时间内的用户的连续咀嚼次数。
具体地,例如,智能眼镜通过安装于镜腿的骨传导麦克风获取用户在进食阶段的颞骨的振动信号后,将该振动信号传输至安装于智能眼镜的振动传感器,并根据该振动信号统计颞骨的振动次数,然后根据该头骨的振动次数统计用户的咀嚼次数,从而得到一段时间内用户的连续咀嚼次数,该连续咀嚼次数等同于用户该次咀嚼行为的持续的咀嚼次数。因此,用户每咀嚼一次,则振动传感器获取到一次振动信号并进行咀嚼次数的累计,从而实现对用户进食阶段的连续咀嚼次数的监测。
步骤S300,若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
需要说明的是,在本实施例中,目标咀嚼次数为用于衡量用户进食期间的咀嚼次数是否达到目标值的衡量标准;当连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息,通过最后一次咀嚼行为之后预设时间间隔内未再次进行咀嚼行为判断用户咀嚼行为终止,此时可理解为用户结束咀嚼行为并完成下咽,可发出第一提示信息提示用户此次咀嚼行为未达到目标咀嚼次数;当所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息,第二提示信息用于提醒用户的该次咀嚼行为已经达到咀嚼次数的目标值,其中,第一提示信息和第二提示信息的表现形式包括图像形式、声音形式或者振动形式,在此不作具体限制。
智能眼镜在得到连续咀嚼次数后,将连续咀嚼次数与目标咀嚼次数进行比对,若该连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则智能眼镜向用户通过图像形式、声音形式或者振动形式发出第一提示信息,若该连续咀嚼次数达到目标咀嚼次数,则智能眼镜向用户通过图像形式、声音形式或者振动形式发出第二提示信息。
具体地,例如,如图3所示,假定目标咀嚼次数为30次,智能眼镜监测到颞骨的振动次数已经达到30次,则连续咀嚼次数为30次,即此时连续咀嚼次数已经达到目标咀嚼次数,此时智能眼镜发出第二提示信息,例如智能眼镜通过显示装置显示第二特定图像,或者通过声音输出装置发出“滴滴——”的响声,或者通过智能眼镜的特定部位产生两次持续振动,从而提醒用户该次咀嚼行为的咀嚼次数已经达到目标值。反之,假定目标咀嚼次数为30次,智能眼镜监测到颞骨的振动次数在仅达到25次时终止,则连续咀嚼次数为25次,即此时连续咀嚼次数未能达到目标咀嚼次数就终止咀嚼行为完成下咽,此时智能眼镜发出第一提示信息,例如智能眼镜通过显示装置显示第一特定图像,或者通过声音输出装置发出“滴——”的响声,或者通过智能眼镜的特定部位产生一次持续振动,并重置连续咀嚼次数为0。
在本实施例中,通过智能眼镜监测用户在进食阶段对进食的食物的咀嚼行为,获得与该咀嚼行为相关的头骨的振动信号;在获得与用户的进食的咀 嚼行为相关的头骨的振动信号后,根据该振动信号统计该头骨的振动次数,然后根据该头骨的振动次数统计用户的咀嚼次数,从而得到用于统计用户咀嚼次数的连续咀嚼次数;在得到连续咀嚼次数后,将连续咀嚼次数与目标咀嚼次数进行比对,当连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息,当所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
本申请通过可穿戴设备监测与用户咀嚼行为相关的头骨的振动次数,从而实现对用户进食习惯的监测,根据骨传导技术采集与咀嚼行为相关的头骨的振动信号,其信号简单且可靠性高,同时由于采集头骨的振动信号不涉及口腔录音,因此监测过程对周围环境的噪音不敏感,抗干扰能力强,监测结果的精确度更高。此外,当可穿戴设备判断用户在该次咀嚼行为中的连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息,当用户在该次咀嚼行为中连续咀嚼次数达到目标咀嚼次数时,则向用户发出第二提示信息,从而达到改善用户进食习惯的目的。
同时,利用骨传导技术对咀嚼次数进行监测,在监测过程中获取到的数据为振动的信号,无需采用录音方式,因此不会涉及用户的隐私问题。
如此,本申请提供的基于骨传导的进食监测方法能够以更可靠的精度自动监测咀嚼次数,并根据用户的咀嚼行为及时向用户发出提示信息,从而改善用户的进食习惯。
进一步地,在一种实施例中,在上述步骤S200之后,可以包括:
步骤S400,判断所述连续咀嚼次数是否达到预设监测值。
需要说明的是,在本实施例中,预设监测值为用户或生产厂家预先设置的自定义数值,用于避免用户在非进食阶段的咀嚼行为对智能眼镜的监测功能产生误触发的情况,其中,该预设监测值可以为3次、4次或5次等,在此不作具体限制。
智能眼镜将连续咀嚼次数与用户或生产厂家预先设置的自定义数值进行比对。
步骤S500,若所述连续咀嚼次数达到所述预设监测值,则获取所述目标咀嚼次数。
智能眼镜将连续咀嚼次数与预设监测值进行比对后,如果连续咀嚼次数 达到预设监测值,此时智能眼镜的进食监测功能进入监测周期,并获取针对用户该次咀嚼行为的目标咀嚼次数。
具体地,例如,如图3所示,假定用户将预设监测值设置为3次,当智能眼镜监测到用户颞骨的振动信号,即此时用户发生咀嚼行为,若用户的颞骨振动次数在达到3次,即此时连续咀嚼次数为3次,达到了预设监测值,则智能眼镜判定用户处于进食阶段,智能眼镜的进食监测功能进入监测周期,并针对用户的该次咀嚼行为生成目标咀嚼次数;同理,假定用户将预设监测值设置为3次,当智能眼镜监测到用户颞骨的振动信号,即此时用户发生咀嚼行为,若用户的颞骨振动次数在仅达到2次时停止,即此时连续咀嚼次数为2次,未达到预设监测值,则智能眼镜判定用户处于非进食阶段,智能眼镜的监测功能不进入监测周期,并重置连续咀嚼次数为0。
如此,本实施例通过设置预设监测值,在用户的咀嚼行为的连续咀嚼次数达到预设监测值时,智能眼镜的监测功能才进入监测周期,并获取用户该次咀嚼行为的目标咀嚼次数,避免了用户在咀嚼口香糖等非进食阶段的咀嚼行为对智能眼镜的监测功能产生误触发,对用户产生多余的干扰,同时也降低了智能眼镜的功耗。
进一步地,在一种实施例中,在上述步骤S500中,在所述判断所述连续咀嚼次数是否达到预设监测值的步骤之后,还包括:
步骤S501,若所述连续咀嚼次数达到所述预设监测值,则开启所述可穿戴设备的进食监测功能并向用户发出提示信息。
智能眼镜将连续咀嚼次数与预设监测值进行比对后,如果连续咀嚼次数达到预设监测值,则开启所述可穿戴设备的监测功能并向用户发出提示信息,此时智能眼镜的监测功能进入监测周期,同时向用户发出提示信息,提示信息的形式可以为声音,振动反馈或图像等形式,在本实施例中,可以为生成反映该连续咀嚼次数的图像信息并通过显示装置向用户进行显示。
具体地,例如,假定用户将预设监测值设置为3次,当智能眼镜监测到用户颞骨的振动信号,即此时用户发生咀嚼行为,若用户的颞骨振动次数在达到3次,即此时连续咀嚼次数为3次,达到了预设监测值,则智能眼镜判定用户处于进食阶段,智能眼镜的监测功能进入监测周期,并向用户发送提示信息,例如生成反映该连续咀嚼次数的图像信息,通过安装于智能眼镜的镜片的显示装置,显示该图像信息,提醒用户当前的咀嚼次数为3次,随着 用户的咀嚼行为持续进行,该图像信息则持续更新以实时反映用户的连续咀嚼次数。
如此,本实施例实现了智能眼镜在监测用户的咀嚼行为的同时,同步给予用户反馈,提醒用户注意连续咀嚼次数与目标咀嚼次数的差距,提高了用户在进食阶段达到目标咀嚼次数的几率,并且在未达到目标咀嚼次数就完成咀嚼咽下时向用户发送提醒信息。
进一步地,在一种实施例中,在上述步骤S500中,在所述获取所述目标咀嚼次数的步骤之前,还包括:
步骤S502,获取预设指令。
需要说明的是,在本实施例中,预设指令为用户对智能眼镜主动触发的指令,该指令用于确定目标咀嚼次数。
智能眼镜获取用户主动触发的用于确定目标咀嚼次数的指令。
步骤S503,根据所述预设指令确定所述目标咀嚼次数。
智能眼镜根据用户主动触发的指令,确定用于衡量用户进食期间的咀嚼次数是否达到目标值的衡量标准。
具体地,例如,用户通过智能眼镜的快捷键输入指令,将目标咀嚼次数主动设置为30次,或者用户通过预设指令触发获取目标咀嚼次数的步骤,当智能眼镜接收到预设指令,根据用户当前咀嚼的食物种类,在预存的对应表格中获取对应的目标咀嚼次数,该预存的对应表格可以预存储在智能眼镜的内存中,也可以为智能眼镜通过联网从云空间中获取,智能眼镜的监测功能在进入监测周期时,根据该指令确定30次作为用于衡量用户进食期间的累计咀嚼次数是否达到目标值的衡量标准。
如此,本实施例通过用户可以发出预设指令主动获取目标咀嚼次数,实现了智能眼镜对用户的进食监测功能可以满足用户的个性化需求,提高用户的使用体验。
进一步地,在另一种实施例中,在上述步骤S500中,在所述获取所述目标咀嚼次数的步骤之前,还包括:
步骤S504,获取进食的食物类型。
智能眼镜在监测功能进入进食监测周期后,对用户进食的食物进行拍摄以得到食物图像,并针对该食物图像进行分析得到用户进食的食物类型。
具体地,例如,假定用户进食的食物为牛肉,则智能眼镜在进食监测功 能进入监测周期后,通过摄像头拍摄用户进食的食物图像,然后针对该食物图像进行分析,确定该食物属于“牛肉——肉类——高热量”的食物类型。
步骤S505,根据所述食物类型确定所述目标咀嚼次数。
智能眼镜在确定食物类型后,根据该食物类型确定用于衡量用户的该次咀嚼行为的累计咀嚼次数是否达到目标值的衡量标准。
具体地,例如,假定智能眼镜通过摄像头拍摄到用户正在进食的食物图像,对该食物图像分析后确定该食物属于“牛肉——肉类——高热量”的食物类型,则智能眼镜根据“牛肉——肉类——高热量”的这一食物类型自动确定目标咀嚼次数为30次,即30次的咀嚼次数为用户该次咀嚼行为应当达到的目标值;又如,假定智能眼镜通过摄像头拍摄到用户正在进食的食物图像,对该食物图像分析后确定该食物属于“白菜——蔬菜——低热量”的食物类型,则智能眼镜根据“白菜——蔬菜——低热量”的这一食物类型自动确定目标咀嚼次数为10次,即10次的累计咀嚼次数为用户该次咀嚼行为应当达到的目标值。
如此,本实施例中智能眼镜通过食物图像确定食物种类,再根据食物种类确定对应的目标咀嚼次数,以使智能眼镜可以自动对用户进食的不同食物智能化地确定对应的目标咀嚼次数,避免了用户需要对该目标咀嚼次数进行手动设置的繁琐操作,提高了用户的使用体验。
进一步地,基于上述基于骨传导的进食监测方法第一实施例,提出本申请基于骨传导的进食监测方法的第二实施例。
在本申请基于骨传导的进食监测方法的第二实施例中,在上述步骤S100之后,可以包括:
步骤S600,根据所述振动信号统计振动间隔。
智能眼镜在获得与用户的进食的咀嚼行为相关的头骨的振动信号后,根据该振动信号统计该头骨的振动间隔。
在上述步骤S200之后,可以包括:
步骤S700,若所述振动间隔达到预设时长,则重置所述连续咀嚼次数。
需要说明的是,在本实施例中,预设时长为用户或厂家自定义设置的时间长度,用于衡量用户的咀嚼行为是否终止,其中,该预设时长可以为2秒、3秒或4秒等,在此不作具体限制。当用户该次咀嚼行为的连续咀嚼次数未 达到目标咀嚼次数,且该次咀嚼行为终止时,向用户发出第一提示信息,以提醒用户的连续咀嚼次数未达到目标咀嚼次数就发生了下咽。
若智能眼镜监测到与用户咀嚼行为相关的头骨的振动间隔达到预设时长,则智能眼镜判定用户的该次咀嚼行为已经终止,并重置连续咀嚼次数。
具体地,例如,如图3所示,假定用户设置预设时长为2秒,当智能眼镜监测到用户某次颞骨的振动信号后,在2秒内未能监测到下一次颞骨的振动信号,则智能眼镜判定用户的该次咀嚼行为已经终止,并重置连续咀嚼次数为0。
步骤S800,根据实时的振动信号统计咀嚼次数,更新所述连续咀嚼次数。
当智能眼镜判定用户的该次咀嚼行为已经终止,并重置连续咀嚼次数后,再次监测到与用户咀嚼行为相关的头骨的振动信号时,根据实时的振动信号统计该头骨的振动次数,根据振动次数获取咀嚼次数,并更新所述连续咀嚼次数。
具体地,例如,假定连续咀嚼次数达到15次时,智能眼镜在2秒内未能监测到第16次颞骨的振动信号,则智能眼镜判定用户的该次咀嚼行为已经终止,并将连续咀嚼次数由15次重置为0次,若智能眼镜再次监测到颞骨的振动信号,则根据该振动信号重新统计颞骨的振动次数,此时监测的连续咀嚼计数由0变为1,并根据该振动信号进行累加。
在本实施例中,通过智能眼镜在获得与用户的进食的咀嚼行为相关的头骨的振动信号后,根据该振动信号统计该头骨的振动间隔;若智能眼镜监测到与用户咀嚼行为相关的头骨的振动间隔达到预设时长,则智能眼镜判定用户的该次咀嚼行为已经终止,并重置连续咀嚼次数;当智能眼镜判定用户的该次咀嚼行为已经终止,并重置连续咀嚼次数后,再次监测到与用户咀嚼行为相关的头骨的振动信号时,根据实时的振动信号统计该头骨的振动次数,根据振动次数获取咀嚼次数,并更新所述连续咀嚼次数。
实现了,避免用户在不同监测周期、进食不同种类的食物时,智能眼镜对连续咀嚼次数进行了错误的累计,导致影响监测结果的准确性的情况发生;同时,由于预设时长可由用户自定义设置,因此可以满足用户的个性化需求,提高用户的使用体验。
进一步地,基于上述基于骨传导的进食监测方法第一实施例,提出本申请基于骨传导的进食监测方法的第三实施例。
在本申请基于骨传导的进食监测方法的第三实施例中,在上述步骤S100之前,还包括:
步骤S900,获取监测指令。
需要说明的是,在本实施例中,监测指令用于触发智能眼镜启动进食监测功能,该监测指令的触发方式包括智能眼镜自动触发,以及用户主动触发;其中,智能眼镜自动触发监测指令的方式包括定时自动触发监测指令,用户主动触发监测指令的方式包括用户通过语音输入监测指令,或者用户通过触碰智能眼镜表面的快捷键输入监测指令,在此不作具体限制。
智能眼镜通过自动触发的方式或者用户主动触发的方式,获取用于触发进食监测功能的监测指令。
步骤S910,根据所述监测指令启动进食监测功能。
智能眼镜在获取到监测指令后,根据该监测指令触发进食监测功能,对用户的咀嚼行为相关的头骨的振动信号进行监测。
具体地,例如,用户在一日三餐中具有固定的进食时段,其中,早餐时段为7:00至7:15,午餐时段为12:00至12:30,晚餐时段为18:00至18:30,则用户可预先设置智能眼镜在7:00至7:15,12:00至12:30,以及6:00至6:30启动监测功能;当时间到达7:00时,属于早餐时段,智能眼镜自动触发用于触发进食监测功能的监测指令,此时智能眼镜进入监测模式,启动进食监测功能,对用户的颞骨的振动信号进行监测;或者,当时间到达12:00时,属于午餐时段,智能眼镜自动触发用于触发进食监测功能的监测指令,此时智能眼镜进入监测模式,启动进食监测功能,对用户的颞骨的振动信号进行监测;当时间到达18:00时,属于晚餐时段,智能眼镜自动触发用于触发进食监测功能的监测指令,此时智能眼镜进入监测模式,启动进食监测功能,对用户的颞骨的振动信号进行监测。
具体地,又如,用户在进食阶段主动触碰智能眼镜表面的快捷键,或者通过语音输入“进食监测功能启动”等方式,触发用于触发进食监测功能的监测指令,此时智能眼镜进入监测模式,启动进食监测功能,对用户的颞骨的振动信号进行监测。
在本实施例中,通过智能眼镜通过自动触发的方式或者用户主动触发的方式,获取用于触发监测功能的监测指令;在获取到监测指令后,根据该监测指令触发进食监测功能,对用户的咀嚼行为相关的头骨的振动信号进行监测。
实现了,避免用户在咀嚼口香糖时等非进食阶段,对智能眼镜的进食监测功能产生误触发的情况发生,从而对用户产生不必要的干扰,同时也降低了智能眼镜的功耗。
此外,请参照图6,本申请实施例还提出一种基于骨传导的进食监测装置,本申请基于骨传导的进食监测装置包括:
监测模块,用于监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号;
统计模块,用于根据所述振动信号统计咀嚼次数,得到连续咀嚼次数;
提示模块,用于若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
优选地,基于骨传导的进食监测装置,还包括:
判断模块,用于判断所述连续咀嚼次数是否达到预设监测值,以及判断所述振动间隔是否达到预设时长;
获取模块,用于若所述连续咀嚼次数达到所述预设监测值,则获取所述目标咀嚼次数。
优选地,基于骨传导的进食监测装置,还包括:
提醒模块,用于若所述连续咀嚼次数达到所述预设监测值,则开启所述可穿戴设备的进食监测功能并向用户发出提示信息。
优选地,基于骨传导的进食监测装置,还包括:
确定模块,用于获取预设指令,根据所述预设指令确定所述目标咀嚼次数;以及获取进食的食物类型,根据所述食物类型确定所述目标咀嚼次数。
优选地,统计模块,包括:
统计单元,用于根据所述振动信号统计振动间隔;
重置单元,用于若所述振动间隔达到预设时长,则重置所述连续咀嚼次数;以及,根据实时的振动信号统计咀嚼次数,更新所述连续咀嚼次数。
优选地,监测模块,还包括:
监测单元,用于获取监测指令,以及根据所述监测指令启动进食监测功能。
此外,本申请实施例还提出一种终端设备,该终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的基于骨传导的进食监测程序,该基于骨传导的进食监测程序被所述处理器执行时实现如上述中的基于骨传导的进食监测方法的步骤。
其中,在所述处理器上运行的基于骨传导的进食监测程序被执行时所实现的步骤可参照本申请基于骨传导的进食监测方法的各个实施例,此处不再赘述。
此外,本申请实施例还提出一种存储介质,应用于计算机,该存储介质可以为非易失性计算机可读存储介质,该存储介质上存储有基于骨传导的进食监测程序,所述基于骨传导的进食监测程序被处理器执行时实现如上所述的基于骨传导的进食监测方法的步骤。
其中,在所述处理器上运行的基于骨传导的进食监测程序被执行时所实现的步骤可参照本申请基于骨传导的进食监测方法的各个实施例,此处不再赘述。
此外,本申请实施例还提出一种计算机程序产品,该计算机程序产品上包括基于骨传导的进食监测程序,所述基于骨传导的进食监测程序被处理器执行时实现如上所述的基于骨传导的进食监测方法的步骤。
其中,在所述处理器上运行的基于骨传导的进食监测程序被执行时所实现的步骤可参照本申请基于骨传导的进食监测方法的各个实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况 下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台智能快递柜执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种基于骨传导的进食监测方法,其特征在于,所述基于骨传导的进食监测方法应用于可穿戴设备,所述基于骨传导的进食监测方法包括:
    监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号;
    根据所述振动信号统计咀嚼次数,得到连续咀嚼次数;
    若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
  2. 如权利要求1所述的基于骨传导的进食监测方法,其特征在于,在所述根据所述振动信号统计咀嚼次数,得到连续咀嚼次数的步骤之后,包括:
    判断所述连续咀嚼次数是否达到预设监测值;
    若所述连续咀嚼次数达到所述预设监测值,则获取所述目标咀嚼次数。
  3. 如权利要求2所述的基于骨传导的进食监测方法,其特征在于,在所述判断所述连续咀嚼次数是否达到预设监测值的步骤之后,还包括:
    若所述连续咀嚼次数达到所述预设监测值,则开启所述可穿戴设备的进食监测功能并向用户发出提示信息。
  4. 如权利要求2所述的基于骨传导的进食监测方法,其特征在于,在所述获取所述目标咀嚼次数的步骤之前,还包括:
    获取预设指令;
    根据所述预设指令确定所述目标咀嚼次数。
  5. 如权利要求2所述的基于骨传导的进食监测方法,其特征在于,在所述获取所述目标咀嚼次数的步骤之前,还包括:
    获取进食的食物类型;
    根据所述食物类型确定所述目标咀嚼次数。
  6. 如权利要求1所述的基于骨传导的进食监测方法,其特征在于,在所述获得与所述咀嚼行为相关的头骨的振动信号的步骤之后,包括:
    根据所述振动信号统计振动间隔;
    在所述根据所述振动信号统计咀嚼次数,得到连续咀嚼次数的步骤之后,包括:
    若所述振动间隔达到预设时长,则重置所述连续咀嚼次数;
    根据实时的振动信号统计咀嚼次数,更新所述连续咀嚼次数。
  7. 如权利要求1所述的基于骨传导的进食监测方法,其特征在于,在所述监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号的步骤之前,还包括:
    获取监测指令;
    根据所述监测指令启动进食监测功能。
  8. 一种基于骨传导的进食监测装置,其特征在于,所述基于骨传导的进食监测装置应用于可穿戴设备,所述基于骨传导的进食监测装置包括:
    监测模块,用于监测对进食的食物的咀嚼行为,获得与所述咀嚼行为相关的头骨的振动信号;
    统计模块,用于根据所述振动信号统计咀嚼次数,得到连续咀嚼次数;
    提示模块,用于若所述连续咀嚼次数未达到目标咀嚼次数且用户咀嚼行为终止,则发出第一提示信息;若所述连续咀嚼次数达到目标咀嚼次数,则发出第二提示信息。
  9. 一种终端设备,其特征在于,所述终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的基于骨传导的进食监测程序,所述基于骨传导的进食监测程序被所述处理器执行时实现如权利要求1至7中任一项所述的基于骨传导的进食监测方法的步骤。
  10. 一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的基于骨传导的进食监测方法的步骤。
PCT/CN2021/138685 2021-07-22 2021-12-16 基于骨传导的进食监测方法、装置、终端设备及介质 WO2023000599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110833917.XA CN113456028A (zh) 2021-07-22 2021-07-22 基于骨传导的进食监测方法、装置、终端设备及介质
CN202110833917.X 2021-07-22

Publications (1)

Publication Number Publication Date
WO2023000599A1 true WO2023000599A1 (zh) 2023-01-26

Family

ID=77881947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138685 WO2023000599A1 (zh) 2021-07-22 2021-12-16 基于骨传导的进食监测方法、装置、终端设备及介质

Country Status (2)

Country Link
CN (1) CN113456028A (zh)
WO (1) WO2023000599A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113456028A (zh) * 2021-07-22 2021-10-01 歌尔光学科技有限公司 基于骨传导的进食监测方法、装置、终端设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102920461A (zh) * 2012-09-13 2013-02-13 中国计量学院 一种进食习惯监测装置
US20140251023A1 (en) * 2011-03-24 2014-09-11 Magomed Habibovich Magomedov Chewing monitoring device
CN104814743A (zh) * 2015-05-12 2015-08-05 上海市同仁医院 一种减肥咀嚼控制器及其使用方法
CN105528525A (zh) * 2016-01-07 2016-04-27 中国农业大学 一种饮食习惯监测系统与监测方法
CN106859653A (zh) * 2015-09-24 2017-06-20 富士通株式会社 饮食行为检测装置及饮食行为检测方法
US20170270820A1 (en) * 2016-03-18 2017-09-21 Icon Health & Fitness, Inc. Eating Feedback System
US20180242908A1 (en) * 2017-02-13 2018-08-30 The Board Of Trustees Of The University Of Alabama Food intake monitor
CN113456028A (zh) * 2021-07-22 2021-10-01 歌尔光学科技有限公司 基于骨传导的进食监测方法、装置、终端设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317144A (ja) * 2006-05-26 2007-12-06 Resuko Kk 咀嚼カウンタ
KR20170006584A (ko) * 2015-07-08 2017-01-18 주식회사 삼육오엠씨네트웍스 저작정보를 이용한 다이어트 시스템 및 방법
CN108542387A (zh) * 2018-04-23 2018-09-18 佛山科学技术学院 一种人体咀嚼信号检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251023A1 (en) * 2011-03-24 2014-09-11 Magomed Habibovich Magomedov Chewing monitoring device
CN102920461A (zh) * 2012-09-13 2013-02-13 中国计量学院 一种进食习惯监测装置
CN104814743A (zh) * 2015-05-12 2015-08-05 上海市同仁医院 一种减肥咀嚼控制器及其使用方法
CN106859653A (zh) * 2015-09-24 2017-06-20 富士通株式会社 饮食行为检测装置及饮食行为检测方法
CN105528525A (zh) * 2016-01-07 2016-04-27 中国农业大学 一种饮食习惯监测系统与监测方法
US20170270820A1 (en) * 2016-03-18 2017-09-21 Icon Health & Fitness, Inc. Eating Feedback System
US20180242908A1 (en) * 2017-02-13 2018-08-30 The Board Of Trustees Of The University Of Alabama Food intake monitor
CN113456028A (zh) * 2021-07-22 2021-10-01 歌尔光学科技有限公司 基于骨传导的进食监测方法、装置、终端设备及介质

Also Published As

Publication number Publication date
CN113456028A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
US20180204638A1 (en) Dynamic scale and accurate food measuring
US20170270820A1 (en) Eating Feedback System
US20080183049A1 (en) Remote management of captured image sequence
JP7090653B2 (ja) ユーザのための睡眠改善を促進するシステム及び方法
JP2003173375A (ja) 生活管理端末装置、生活管理方法並びに生活管理システム
JP2016532481A5 (zh)
US20180255167A1 (en) Stress evaluation program for mobile terminal and mobile terminal provided with program
WO2018099114A1 (zh) 睡眠辅助方法及终端
US10123394B2 (en) Control method of information terminal apparatus provided with vibration sensor
WO2023000599A1 (zh) 基于骨传导的进食监测方法、装置、终端设备及介质
US20220183811A1 (en) Estrus determination device for sow, method for determining estrus of sow, and program for determining estrus of sow
JP5233666B2 (ja) 余命算出装置、携帯端末装置、余命算出方法及び余命算出プログラム
CN111562747A (zh) 监护控制方法及系统
GB2593931A (en) Person monitoring system and method
JP3822796B2 (ja) 情報処理装置、情報処理プログラムおよび記録媒体
TWI698224B (zh) 咀嚼側監測方法、監測裝置及可穿戴設備
CN114190074A (zh) 监管饮食行为的方法和装置
CN207125724U (zh) 可穿戴式监护设备系统
TWI664953B (zh) 單邊咀嚼監測設備及監測方法
CN111368676A (zh) 一种数据采集方法、设备及计算机可读存储介质
US11583209B2 (en) System and method for a personalized reminder with intelligent self-monitoring
US11589833B2 (en) Imaging system and control method for imaging system
CN112656401B (zh) 一种智能监护方法、装置及设备
JP7243439B2 (ja) 食事リスク判定方法、食事リスク判定プログラムおよび情報処理装置
JP2023029147A (ja) アクセス情報供給システム、方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE