WO2023000487A1 - 一种具有镭雕导电线路的自动对焦防抖潜望马达 - Google Patents

一种具有镭雕导电线路的自动对焦防抖潜望马达 Download PDF

Info

Publication number
WO2023000487A1
WO2023000487A1 PCT/CN2021/120185 CN2021120185W WO2023000487A1 WO 2023000487 A1 WO2023000487 A1 WO 2023000487A1 CN 2021120185 W CN2021120185 W CN 2021120185W WO 2023000487 A1 WO2023000487 A1 WO 2023000487A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
fixed
frame
motor
carrier
Prior art date
Application number
PCT/CN2021/120185
Other languages
English (en)
French (fr)
Inventor
龚高峰
王建华
王林
Original Assignee
上海比路电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海比路电子股份有限公司 filed Critical 上海比路电子股份有限公司
Publication of WO2023000487A1 publication Critical patent/WO2023000487A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors

Definitions

  • the invention relates to the technical field of lens motors, in particular to an auto-focus anti-shake periscope motor with radium-carved conductive lines.
  • a voice coil motor is a device that uses the interaction between the magnetic field from the permanent magnet steel and the magnetic poles in the magnetic field generated by the energized coil conductor to generate regular motion. It is widely used in electronic devices such as mobile phone cameras. With the development of technology, many electronic devices (such as tablet computers or smart phones) now have the function of taking photos or recording videos. By setting the lens system with a long focal length, users can take photos with different effects, so that electronic devices with a lens system with a long focal length are gradually popular among the public.
  • a lens with a longer focal length needs to be installed in the aforementioned electronic device, it will increase the thickness of the electronic device, which is not conducive to the thinning of the electronic device.
  • the existing base has only a single function, and the alignment accuracy of the housing is poor when installed. Therefore, a reflective component (prism motor) is generally provided in the lens system to guide the incident light to the sensing component in the lens system through reflection. With such a configuration, the thickness of the electronic device can be reduced.
  • the position where the incident light reaches the sensing component may deviate from a predetermined position, resulting in unclear imaging produced by the lens system.
  • the current periscope camera structure uses the rotation of the prism motor and the movement of the periscope motor in two directions to achieve the purpose of three-axis motion control, but the problem is that the rotation of the prism motor will cause imaging vignetting, and the two components are due to The control problem caused by the difference in the movement mode, so the dimensional accuracy of the relative position is more stringent, and the difficulty of processing and assembly increases, which may increase the manufacturing cost and assembly cost.
  • an autofocus anti-shake periscope motor with a radium-engraved conductive circuit so that the overall integration of the motor is high, which is convenient for centralized detection and avoids technical vignetting situation, meet the requirements of high-quality cameras, reduce the difficulty of tooling and processing at the same time, and greatly reduce the cost.
  • an autofocus anti-shake periscope motor with a radium-engraved conductive circuit including:
  • a base a frame set on the base, a carrier set in the base, and a shell fitted with the base;
  • a Y-axis drive assembly is provided on the inner side of the frame, an X-axis drive assembly is provided on the side of the frame away from the Y-axis drive assembly, and a Z-axis drive assembly is provided on an end surface of the frame close to the base;
  • the Y-axis drive assembly includes a first drive coil fixed on one side of the carrier, opposite to the first drive coil, a second drive coil fixed on the other side of the carrier, embedded on the inner side of the frame A Y-axis drive magnet arranged opposite to the first drive coil and the second drive coil, and a Hall chip and capacitor fixed on the carrier on the same side as the second drive coil;
  • the first driving coil communicates with the second driving coil through a radium engraving conductive circuit, and the radium engraving conductive circuit is fixed on the carrier through a radium engraving process.
  • the X-axis drive assembly includes a first X-axis drive member and a second X-axis drive member opposite to the first X-axis drive member, and the first X-axis drive and the second X-axis drive
  • the structure of the driving parts is the same.
  • the first X-axis drive member includes an X-axis drive magnet embedded on the outer surface of the frame and an X drive coil opposite to the X-axis drive magnet, and the X drive coil is attached to the on the inner wall of the base.
  • the Z-axis drive assembly includes a first Z-axis drive member and a second Z-axis drive member opposite to the first Z-axis drive member, and the first Z-axis drive and the second Z-axis drive
  • the structure of the driving parts is the same.
  • the first Z-axis driving member includes a Z-axis driving magnet embedded in the end surface of the frame near the base and a Z-axis driving coil opposite to the Z-axis driving magnet, and the Z-axis driving coil is wound on the on the base.
  • a first spring assembly is fixed on the upper end surface of the frame, and a second spring assembly is fixed on the end surface of the frame close to the base, one end of the first spring assembly is fixed on the frame, and the other end is fixed on the upper end surface of the carrier, One end of the second spring component is fixed on the frame, and the other end is fixed on the lower end surface of the carrier.
  • the first spring assembly includes a plurality of first springs, the first springs are fixed at the corners of the upper end surface of the frame, and each of the first springs is arranged at intervals and has the same structure.
  • the first spring includes a fixed main board fixed on the frame, a first carrier fixed board connected with one end of the fixed main board through the fixed board, and a suspension needle fixing seat connected with the other end of the fixed main board through a spring chain , the first carrier fixing plate is fixed on the carrier.
  • the second spring assembly includes a second spring fixed on the frame and a third spring parallel to the second spring and fixed on the frame between them, the structure of the second spring is the same as that of the third spring.
  • the second spring includes a second carrier fixing plate fixed on the carrier and a second fixing plate respectively fixedly connected to both ends of the second carrier fixing plate, and a frame is fixed on the second fixing plate plate, and the frame fixing plate is fixed on the frame.
  • the housing includes a plane plate and a baffle plate extending vertically along the edge of the plane plate, a baffle plate on the housing is provided with a baffle area, and a baffle plate opposite to the baffle area on the housing There is a camera hole on it.
  • each suspension wire is arranged on the base, one end of the suspension wires passes through the base, and the other end extends vertically to the first spring assembly, and each suspension wire corresponds to the first spring one by one.
  • a Z-axis closed-loop circuit assembly is attached to the Z-axis driving assembly, and a Y-axis closed-loop circuit assembly is attached to the carrier.
  • the Z-axis closed-loop circuit assembly includes a Z-axis circuit board and is arranged on the Z-axis
  • the Y-axis closed-loop circuit assembly includes a Y-axis circuit board and a Y-axis Hall chip arranged on the Y-axis circuit board.
  • each first pad is provided with a dispensing boss, and one side of the dispensing boss is provided with a suspension wire jack, and each suspension wire insertion hole is inserted with a suspension wire.
  • a prism motor mounting plate is fixedly connected to one side of the bottom plate, and a limit block is fixedly connected to an end of the bottom plate close to the prism motor mounting plate.
  • the first drive coil and the second drive coil are energized through the laser engraved conductive circuit and are sequentially connected to the drive circuit board with the first drive coil, the second drive coil, the suspension wire, the first spring assembly and the Z-axis drive assembly.
  • the present invention has the beneficial effect that the radium engraving conductive circuit is fixed on the carrier through the radium engraving process, which replaces the lateral FPC board of the prior art, reduces the number of motor assembly parts, and simplifies the structure of the motor , so it is easy to assemble the motor, which can also improve the assembly stability of the motor; connect the spring, Hall element, and Y-axis coil through LDS wiring, which is convenient to achieve a larger electrical connection area and can reduce poor conduction. Reduce the current failure rate of the motor structure, and then improve the stability of the motor performance.
  • the drive coils in the Y-axis drive assembly and the Z-axis drive assembly are energized through the welding of the first welding pad and the second welding pad on the base, and the guide column on the base It makes the installation of the housing more precise and fast, and through the three-axis drive control of the Y-axis drive component, X-axis drive component and Z-axis drive component, it has the characteristics of focusing accuracy, faster focusing, and lower power consumption.
  • the three-axis drive control is all set on the motor, which simplifies the structure of the prism motor, and simplifies the requirements for product characteristic detection and partial control.
  • the drive magnet in the device also plays the role of Hall induction, which not only overcomes the magnetic interference between the drive magnet and the Hall magnet that is often encountered in the conventional anti-shake motor structure, but also successfully realizes the three-axis anti-shake control.
  • the structure and function while giving the motor a more relaxed size design space. Due to the reduction of the number of parts, the cost is saved to a certain extent, and the assembly is also easier and simpler.
  • Fig. 1 is a three-dimensional structural schematic diagram of an auto-focus anti-shake periscope motor with a radium-engraved conductive circuit according to the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional exploded structure of an autofocus anti-shake periscope motor with a radium-carved conductive circuit according to the present invention
  • Fig. 3 is a three-dimensional structural schematic diagram of the second spring assembly of the auto-focus anti-shake periscope motor with radium-engraved conductive circuit according to the present invention
  • FIG. 4 is a three-dimensional schematic diagram of the Y-axis driving coil of the auto-focus anti-shake periscope motor with radium-carved conductive circuits according to the present invention
  • FIG. 5 is a three-dimensional schematic diagram of the energized Y-axis driving coil of the auto-focus anti-shake periscope motor with radium-carved conductive lines according to the present invention.
  • an auto-focus anti-shake periscope motor with radium-engraved conductive circuits includes: a base 20, a frame 30 disposed on the base 20, a carrier 40 disposed in the base 20, and The base 20 is fitted with the shell 10; the inner surface of the frame 30 is provided with a Y-axis drive assembly 100, and the side of the frame 30 away from the Y-axis drive assembly 100 is provided with an X-axis drive assembly 50, and the frame 30 is close to the base 20 is provided with a Z-axis drive assembly 60 on one end surface; the Y-axis drive assembly 100 includes a first drive coil 51 fixed on one side of the carrier 40, opposite to the first drive coil 51 and fixed on the carrier 40, the second drive coil 53 on the other side is inlaid on the Y-axis drive magnet set opposite to the first drive coil 51 and the second drive coil 53 on the inner side of the frame 30, and is fixed on the carrier Electromagnetic force will be generated between the Hall chip 52 and the capacitor 54 on the same side
  • the Y-axis mover Due to the action of the electromagnetic force, the Y-axis mover is driven to move linearly along the Y-axis direction, even if the carrier 40 finally stays between the first drive coil 51 and the second drive coil 53 and the Y-axis drive magnet, the electromagnetic force and the first spring The position point when the resultant force of the elastic force of the component 90 and the second spring component 70 reaches a phase equilibrium state.
  • the moving amount of the winding carrier can be controlled to adjust and correct the deviation of the lens, so as to achieve the purpose of anti-shake, so the first driving coil 51 And the second drive coil 53 is wound on the outer surface of the carrier 40.
  • the Y-axis drive magnet also plays the role of Hall induction, which not only overcomes the magnetic interaction between the drive magnet and the Hall magnet that is often encountered in the conventional anti-shake motor structure.
  • the problem of magnetic interference has successfully realized the structure and function of the three-axis anti-shake control, and at the same time endowed the motor with a more relaxed size design space.
  • the first drive coil 51 and the second drive coil 53 are connected through the radium engraving conductive circuit 80, and the radium engraving conducts electricity
  • the circuit 80 is fixed on the carrier 40 through the laser engraving process, which reduces the number of parts of the motor and simplifies the structure of the motor, thus facilitating the assembly of the motor and thus improving the assembly stability of the motor; connecting the first spring through LDS wiring 90.
  • the Hall chip 52, the first drive coil 51 and the second drive coil 53 facilitate the realization of a large electrical connection area, reduce poor conduction, reduce the current failure rate of the motor structure, and further improve the stability of the motor performance sex.
  • the X-axis driving assembly 50 includes a first X-axis driving member and a second X-axis driving member opposite to the first X-axis driving member, and the first X-axis driving member and the second X-axis driving member
  • the structure of the shaft driving parts is the same.
  • the first X-axis driving part includes an X-axis driving magnet embedded in the outer surface of the frame 30 and an X-axis driving coil opposite to the X-axis driving magnet.
  • the X-axis mover is driven to move linearly along the X-axis direction due to the action of the electromagnetic force, even if The winding carrier finally stays at the point where the resultant force of the electromagnetic force generated between the X-axis driving coil and the X-axis driving magnet and the elastic force of the four-corner suspension wire reaches a state of equilibrium.
  • the movement of the winding carrier can be controlled to adjust and correct the deviation of the lens, so as to achieve the purpose of anti-shake.
  • the X driving coil is attached to the base 20
  • the X-axis drive magnet also plays the role of Hall induction, which not only overcomes the problem of magnetic interference between the drive magnet and the Hall magnet that is often encountered in the conventional anti-shake motor structure, but also successfully realizes the three-axis
  • the structure and functions of the anti-shake control also give the motor a more relaxed size design space. Due to the reduction of the number of parts, the cost is saved to a certain extent, and the assembly is also easier and simpler.
  • the Z-axis drive assembly 60 includes a first Z-axis drive member and a second Z-axis drive member opposite to the first Z-axis drive member, and the first Z-axis drive and the second Z-axis drive
  • the structure of the shaft driving parts is the same.
  • the first Z-axis driving part includes a Z-axis driving magnet embedded in the end surface of the frame 30 near the base 20 and a Z-axis driving coil opposite to the Z-axis driving magnet. When the Z-axis After the drive coil is fed with current, an electromagnetic force will be generated between the Z-axis drive coil and the Z-axis drive magnet.
  • the Z-axis mover is driven along the optical axis of the lens (ie, the Z-axis ) to move in a straight line, even if the winding carrier finally stays on the Z-axis at the point where the resultant force of the electromagnetic force generated between the drive coil and the Z-axis drive magnet and the elastic force of the four-corner suspension wire reaches a phase equilibrium state.
  • the winding carrier By passing a predetermined current to the Z-axis drive coil, the winding carrier can be controlled to move to the target position, so as to achieve the purpose of automatic focusing.
  • the Z-axis drive coil is wound on the coil fixing column of the base 20 and fixed on the bottom PCB board.
  • the Z-axis drive magnet also plays the role of Hall induction, which not only overcomes the problems often encountered in conventional anti-shake motor structures.
  • the problem of magnetic interference between the driving magnet and the hall magnet has been solved, and the structure and function of the three-axis anti-shake control have been successfully realized, and at the same time, the overall size of the motor has been given a more relaxed design space. Due to the reduction of the number of parts, the cost is saved to a certain extent, and the assembly is also easier and simpler.
  • a first spring assembly 90 is fixed on the upper end surface of the frame 30, and a second spring assembly 70 is fixed on the end surface of the frame 30 close to the base 20, one end of the first spring assembly 90 is fixed on the frame 30, and the other end Fixed on the upper surface of the carrier 40 , one end of the second spring assembly 70 is fixed on the frame 30 , and the other end is fixed on the lower surface of the carrier 40 .
  • the first spring assembly 90 includes a plurality of first springs 91, the first springs 91 are fixed at the corners of the upper end surface of the frame 30, each of the first springs 91 is arranged at intervals and has the same structure
  • the first spring 91 includes a fixed main plate 911 fixed on the frame 30, a first carrier fixed plate 913 connected to one end of the fixed main plate 911 through a fixed plate, and a first carrier fixed plate 913 connected to the other end of the fixed main plate 911 through a spring chain.
  • the hanging needle fixing seat 912 and the first carrier fixing plate 913 are fixed on the carrier 40 .
  • the second spring assembly 70 includes a second spring 71 fixed on the frame 30 and a third spring parallel to the second spring 71 and fixed on the frame 30 between them, the second spring 71 and the first
  • the second spring 71 includes a second carrier fixing plate 711 fixed on the carrier 40 and a second fixing plate fixedly connected to two ends of the second carrier fixing plate 711 respectively.
  • a frame fixing plate 712 is fixed on the plate, and the frame fixing plate 712 is fixed on the frame 30 .
  • the housing 10 includes a plane plate 11 and a baffle 12 extending vertically along the edge of the plane plate 11.
  • a baffle 12 of the housing 10 is provided with a space for abdication, and the housing 10 is connected to the baffle 12.
  • a camera hole is opened on a baffle plate 12 opposite to the position section.
  • the base 20 is provided with four suspension wires 21, one end of the suspension wires 21 runs through the base 20, the other end extends vertically and extends to the first spring assembly 90, and each suspension wire 21 is respectively a One corresponds to the first spring 91 , the current of the four suspension wires 21 is divided into two inflows and two outflows, and the direction of the current in and out of the suspension wires 21 is determined by the wiring on the Z-axis circuit board.
  • first drive coil 51 and the second drive coil 53 are energized through the laser engraved conductive circuit 80 to communicate with the first drive coil 51, the second drive coil 53, the suspension wire 21, the first spring assembly 90 and the Z-axis The driving circuit board of the driving assembly 60.

Abstract

一种具有镭雕导电线路的自动对焦防抖潜望马达,包括:底座(20)、设置于底座(20)上的框架(30)、设置于底座(20)内的载体(40)及与底座(20)相嵌合的外壳(10);框架(30)内侧面上设置有Y轴驱动组件(100),Y轴驱动组件(100)包括固定于载体(40)一侧面上的第一驱动线圈(51),与第一驱动线圈(51)相对设置于固定于载体(40)另一侧面上的第二驱动线圈(53),以及固定于载体(40)上位于第二驱动线圈(53)同一侧的霍尔芯片(52)与电容(54);第一驱动线圈(51)与第二驱动线圈(53)通过镭雕导电线路(80)连通,且镭雕导电线路(80)通过镭雕工艺固定于载体(40)上,使马达整体集成度高,便于集中检测,避免出现技术暗角情况,满足高质量摄像头的要求,同时降低工装和加工的难度。

Description

一种具有镭雕导电线路的自动对焦防抖潜望马达 技术领域
本发明涉及镜头马达的技术领域,特别涉及一种具有镭雕导电线路的自动对焦防抖潜望马达。
背景技术
音圈马达是一种利用来自永久磁钢的磁场与通电线圈导体产生的磁场中磁极间的相互作用产生有规律的运动的装置,广泛用于手机摄像头等电子装置中。随着科技的发展,现今许多电子装置(例如平板计算机或智能型手机)皆具有照相或录像的功能。通过长焦距镜头系统的设置,用户可以拍出不同效果的照片,使得具有长焦距的镜头系统的电子装置也逐渐受到大众的喜爱。
当需要将焦距较长的镜头设置于前述电子装置中时,会造成电子装置厚度的增加,不利于电子装置的轻薄化,而且现有底座上功能性单一,在于外壳安装时对准精度差。因此一般是在镜头系统中设置反射组件(棱镜马达),通过反射方式将入射光导向镜头系统中的感测组件上。通过这样的配置,可以减少电子装置的厚度。然而,当电子装置受到晃动时,入射光抵达感测组件上的位置可能会偏移到一预定位置外,导致镜头系统所产生的成像不清楚。另外目前潜望式相机结构利用棱镜马达的旋转加上潜望式马达的两个方向移动来实现三轴运动控制的目的,但问题在于棱镜马达的旋转会造成成像暗角,以及两个部件因为运动方式差异造成的控制问题,因此相对位置的尺寸精度要求更加苛刻,加工和组装难度增加,或会造成制造成本和组装成本的增加。
发明内容
针对现有技术中存在的不足之处,本发明的目的是提供一种具有镭雕导电线路的自动对焦防抖潜望马达,使得该马达整体集成度高,便于集中检测,避免出现技术暗角情况,满足高质量摄像头的要求,同时降低工装和加工的难度,大大降低成本。为了实现根据本发明的上述目的和其他优点,提供了一种具有镭雕导电线路的自动对焦防抖潜望马达,包括:
底座、设置于所述底座上的框架、设置于所述底座内的载体及与所述底座相嵌合的外壳;
所述框架内侧面上设置有Y轴驱动组件,框架上远离Y轴驱动组件的侧面上设置有X轴驱动组件,框架靠近底座的一端面上设置有Z轴驱动组件;
所述Y轴驱动组件包括固定于载体一侧面上的第一驱动线圈,与所述第一驱动线圈相对设置于固定于载体另一侧面上的第二驱动线圈,镶嵌于所述框架内侧面上与所述第一驱动线圈、第二驱动线圈分别对向设置的Y轴驱动磁石,以及固定于载体上位于第二驱动线圈同一侧的霍尔芯片与电容;
所述第一驱动线圈与第二驱动线圈通过镭雕导电线路连通,且所述镭雕导电线路通过镭雕工艺固定于载体上。
优选的,所述X轴驱动组件包括第一X轴驱动件及与所述第一X轴驱动件对向设置的第二X轴驱动件,且所述第一X轴驱动与第二X轴驱动件的结构相同。
优选的,所述第一X轴驱动件包括镶嵌于所述框架外侧面上的X轴驱动磁石及与所述X轴驱动磁石对向设置的X驱动线圈,所述X驱动线圈贴附设置于底座的内壁上。
优选的,所述Z轴驱动组件包括第一Z轴驱动件及与所述第一Z轴驱动件对向设置的第二Z轴驱动件,且所述第一Z轴驱动与第二Z轴驱动件的结构相同。
优选的,所述第一Z轴驱动件包括镶嵌于框架靠近底座端面上的Z轴驱动磁石及与所述Z轴驱动磁石对向设置的Z轴驱动线圈,所述Z轴驱动线圈 缠绕于所述底座上。
优选的,所述框架上端面上固定有第一弹簧组件,且框架靠近底座端面上固定有第二弹簧组件,所述第一弹簧组件一端固定于框架上,另一端固定于载体上端面上,所述第二弹簧组件一端固定于框架上,另一端固定于载体下端面上。
优选的,所述第一弹簧组件包括多个第一弹簧,所述第一弹簧固定于框架上端面的边角处,每个所述第一弹簧之间间隔设置且结构相同。
优选的,所述第一弹簧包括固定于框架上的固定主板、与所述固定主板一端通过固定板连接的第一载体固定板及与所述固定主板另一端通过弹簧链连接的悬针固定座,所述第一载体固定板固定于载体上。
优选的,所述第二弹簧组件包括固定于框架上的第二弹簧及与所述第二弹簧平行且间固定于框架上的第三弹簧,所述第二弹簧与第三弹簧的结构相同。
优选的,所述第二弹簧包括固定于载体上的第二载体固定板及分别固定连接于第二载体固定板两端上的第二固定板,所述第二固定板上固接有框架固定板,所述框架固定板固定于框架上。
优选的,所述外壳包括一平面板及沿所述平面板边沿向竖直方向延伸的挡板,外壳一挡板上开设有让位区间,且外壳上与所述让位区间相对的一挡板上开设有摄像孔。
优选的,所述底座上设置有四个悬丝,所述悬丝一端贯穿底座,另一端沿竖直方向延伸且延伸至第一弹簧组件上,每个悬丝分别一一对应第一弹簧。
优选的,所述Z轴驱动组件相贴设置有Z轴闭环电路组件,所述载体上贴附有Y轴闭环电路组件,所述Z轴闭环电路组件包括Z轴电路板及设置于所述Z轴电路板上的Z轴霍尔芯片与X轴霍尔芯片,所述Y轴闭环电路组件包括Y轴电路板及设置于所述Y轴电路板上的Y轴霍尔芯片。
优选的,每个第一焊盘一侧设置有点胶凸台,所述点胶凸台的一侧开设 有悬丝插孔,每个悬丝插孔中插入有悬丝。
优选的,所述底板一侧边固定连接有棱镜马达安装板,且底板靠近棱镜马达安装板一端上固接有限位块。
优选的,所述第一驱动线圈与第二驱动线圈通电通过镭雕导电线路依次连通有第一驱动线圈、第二驱动线圈、悬丝、第一弹簧组件及Z轴驱动组件的驱动电路板。
本发明与现有技术相比,其有益效果是:通过镭雕工艺将镭雕导电线路固定于载体上,代替现有技术的侧向FPC板,减少了马达组装部品数量,简化了马达的结构,因而易于马达的组装,从而也能提高马达的组装稳定性;通过LDS走线连接上弹簧、霍尔元件、Y轴线圈,便于实现较大的电接面积,能减少导通不良的情况,降低马达结构的电流故障率,进而提高马达性能的稳定性,Y轴驱动组件与Z轴驱动组件中驱动线圈通过底座上的第一焊接盘与第二焊接盘焊接通电,而且底座上的导向立柱使得外壳在安装时更加精准快速,而且通过Y轴驱动组件、X轴驱动组件及Z轴驱动组件的三轴驱动控制,具有对焦精准度及有对焦更快、功耗更低等特点,而且该三轴驱动控制均设置于马达上,简化了棱镜马达的结构,对于产品特性检测以及部分控制都可简化其要求,因此,使装置整体的集成度得以提高,便于特性和故障的集中检测、验证;取消棱镜马达的运动,避免现有技术暗角情况的出现;整体装置加工和组装难度降低,也降低了开模等制造成本,位于Y轴驱动组件、X轴驱动组件及Z轴驱动组件驱动中的驱动磁石同时起到霍尔感应的作用,不仅克服了常规防抖马达结构中常常遇到的驱动磁石与霍尔磁石磁性相互间磁气干扰的问题,成功实现了三轴防抖控制的构架和功能,同时赋予了马达整体更为宽松的尺寸设计空间。由于降低了部品点数,在一定程度上节约了成本,在组装上也更为容易简单。
附图说明
图1为根据本发明的具有镭雕导电线路的自动对焦防抖潜望马达的三维结构示意图;
图2为根据本发明的具有镭雕导电线路的自动对焦防抖潜望马达的三维爆炸结构示意图;
图3为根据本发明的具有镭雕导电线路的自动对焦防抖潜望马达的第二弹簧组件的三维结构示意图;
图4为根据本发明的具有镭雕导电线路的自动对焦防抖潜望马达的Y轴驱动线圈通电的三维结构示意图;
图5为根据本发明的具有镭雕导电线路的自动对焦防抖潜望马达的Y轴驱动线圈通电的三维结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1-5,一种具有镭雕导电线路的自动对焦防抖潜望马达,包括:底座20、设置于所述底座20上的框架30、设置于所述底座20内的载体40及与所述底座20相嵌合的外壳10;所述框架30内侧面上设置有Y轴驱动组件100,框架30上远离Y轴驱动组件100的侧面上设置有X轴驱动组件50,框架30靠近底座20的一端面上设置有Z轴驱动组件60;所述Y轴驱动组件100包括固定于载体40一侧面上的第一驱动线圈51、,与所述第一驱动线圈51相对设置于固定于载体40另一侧面上的第二驱动线圈53,镶嵌于所述框架30内侧面上与所述第一驱动线圈51、第二驱动线圈53分别对向设置的Y轴驱动磁石、,以及固定于载体40上位于第二驱动线圈53同一侧的霍尔芯片52与电容54,第一驱动线圈51及第二驱动线圈53与Y轴驱动磁石之间 就会产生电磁力,根据弗莱明左手法则,由于电磁力的作用驱使Y轴动子沿Y轴方向作直线移动,即使载体40最终停留于第一驱动线圈51及第二驱动线圈53与Y轴驱动磁石之间产生的电磁力与第一弹簧组件90、第二弹簧组件70的弹性力的合力达到相均衡状态时的位置点。通过向第一驱动线圈51及第二驱动线圈53通入既定的电流,可控制绕线载体移动量,达到调整和纠正镜头的偏位,以此达到防抖的目的,所第一驱动线圈51及第二驱动线圈53缠绕于载体40外侧面上,该Y轴驱动磁石同时起到霍尔感应的作用,不仅克服了常规防抖马达结构中常常遇到的驱动磁石与霍尔磁石磁性相互间磁气干扰的问题,成功实现了三轴防抖控制的构架和功能,同时赋予了马达整体更为宽松的尺寸设计空间。由于降低了部品点数,在一定程度上节约了成本,在组装上也更为容易简单;所述第一驱动线圈51与第二驱动线圈53通过镭雕导电线路80连通,且所述镭雕导电线路80通过镭雕工艺固定于载体40上,减少了马达的零件的数量,简化了马达的结构,因而易于马达的组装,从而也能提高马达的组装稳定性;通过LDS走线连接第一弹簧90、霍尔芯片52、第一驱动线圈51与第二驱动线圈53,便于实现较大的电接面积,能减少导通不良的情况,降低马达结构的电流故障率,进而提高马达性能的稳定性。
进一步的,所述X轴驱动组件50包括第一X轴驱动件及与所述第一X轴驱动件对向设置的第二X轴驱动件,且所述第一X轴驱动与第二X轴驱动件的结构相同,所述第一X轴驱动件包括镶嵌于所述框架30外侧面上的X轴驱动磁石及与所述X轴驱动磁石对向设置的X轴驱动线圈,当X轴驱动线圈通入电流后,X轴驱动线圈与X轴驱动磁石之间就会产生电磁力,根据弗莱明左手法则,由于电磁力的作用驱使X轴动子沿X轴方向作直线移动,即使绕线载体最终停留于X轴驱动线圈与X轴驱动磁石之间产生的电磁力与四角悬丝的弹性力的合力达到相均衡状态时的位置点。通过向X轴环状线圈通入既定的电流,可控制绕线载体移动量,达到调整和纠正镜头的偏位,以此 达到防抖的目的,所述X驱动线圈贴附设置于底座20的内壁上,该X轴驱动磁石同时起到霍尔感应的作用,不仅克服了常规防抖马达结构中常常遇到的驱动磁石与霍尔磁石磁性相互间磁气干扰的问题,成功实现了三轴防抖控制的构架和功能,同时赋予了马达整体更为宽松的尺寸设计空间。由于降低了部品点数,在一定程度上节约了成本,在组装上也更为容易简单。
进一步的,所述Z轴驱动组件60包括第一Z轴驱动件及与所述第一Z轴驱动件对向设置的第二Z轴驱动件,且所述第一Z轴驱动与第二Z轴驱动件的结构相同,所述第一Z轴驱动件包括镶嵌于框架30靠近底座20端面上的Z轴驱动磁石及与所述Z轴驱动磁石对向设置的Z轴驱动线圈,当Z轴驱动线圈通入电流后,Z轴驱动线圈与Z轴驱动磁石之间就会产生电磁力,根据弗莱明左手法则,由于电磁力的作用驱使Z轴动子沿镜头光轴方向(即Z轴)作直线移动,即使绕线载体最终停留Z轴于驱动线圈与Z轴驱动磁石之间产生的电磁力与四角悬丝的弹性力的合力达到相均衡状态时的位置点。通过向Z轴驱动线圈通入既定的电流,可控制使绕线载体移动至目标位置,从而达到自动调焦的目的。所述Z轴驱动线圈缠绕于所述底座20的线圈固定柱上且固定于底面PCB板上,该Z轴驱动磁石同时起到霍尔感应的作用,不仅克服了常规防抖马达结构中常常遇到的驱动磁石与霍尔磁石磁性相互间磁气干扰的问题,成功实现了三轴防抖控制的构架和功能,同时赋予了马达整体更为宽松的尺寸设计空间。由于降低了部品点数,在一定程度上节约了成本,在组装上也更为容易简单。
进一步的,所述框架30上端面上固定有第一弹簧组件90,且框架30靠近底座20端面上固定有第二弹簧组件70,所述第一弹簧组件90一端固定于框架30上,另一端固定于载体40上端面上,所述第二弹簧组件70一端固定于框架30上,另一端固定于载体40下端面上。
进一步的,所述第一弹簧组件90包括多个第一弹簧91,所述第一弹簧91固定于框架30上端面的边角处,每个所述第一弹簧91之间间隔设置且结 构相同,所述第一弹簧91包括固定于框架30上的固定主板911、与所述固定主板911一端通过固定板连接的第一载体固定板913及与所述固定主板911另一端通过弹簧链连接的悬针固定座912,所述第一载体固定板913固定于载体40上。
进一步的,所述第二弹簧组件70包括固定于框架30上的第二弹簧71及与所述第二弹簧71平行且间固定于框架30上的第三弹簧,所述第二弹簧71与第三弹簧的结构相同,所述第二弹簧71包括固定于载体40上的第二载体固定板711及分别固定连接于第二载体固定板711两端上的第二固定板,所述第二固定板上固接有框架固定板712,所述框架固定板712固定于框架30上。
进一步的,所述外壳10包括一平面板11及沿所述平面板11边沿向竖直方向延伸的挡板12,外壳10一挡板12上开设有让位区间,且外壳10上与所述让位区间相对的一挡板12上开设有摄像孔。
进一步的,所述底座20上设置有四个悬丝21,所述悬丝21一端贯穿底座20,另一端沿竖直方向延伸且延伸至第一弹簧组件90上,每个悬丝21分别一一对应第一弹簧91,所述四个悬丝21的电流分为两进两出,且所述悬丝21电流进出方向通过Z轴电路板上走线决定。
进一步的,所述第一驱动线圈51与第二驱动线圈53通电通过镭雕导电线路80依次连通有第一驱动线圈51、第二驱动线圈53、悬丝21、第一弹簧组件90及Z轴驱动组件60的驱动电路板。
这里说明的设备数量和处理规模是用来简化本发明的说明的,对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。
尽管本发明的实施方案已公开如上,但其并不仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (13)

  1. 一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,包括:
    底座(20)、设置于所述底座(20)上的框架(30)、设置于所述底座(20)内的载体(40)及与所述底座(20)相嵌合的外壳(10);
    所述框架(30)内侧面上设置有Y轴驱动组件(100),框架(30)上远离Y轴驱动组件(100)的侧面上设置有X轴驱动组件(50),框架(30)靠近底座(20)的一端面上设置有Z轴驱动组件(60);
    所述Y轴驱动组件(100)包括固定于载体(40)一侧面上的第一驱动线圈(51),与所述第一驱动线圈(51)相对设置于固定于载体(40)另一侧面上的第二驱动线圈(53),镶嵌于所述框架(30)内侧面上与所述第一驱动线圈(51)、第二驱动线圈(53)分别对向设置的Y轴驱动磁石,以及固定于载体(40)上位于第二驱动线圈(53)同一侧的霍尔芯片(52)与电容(54);
    所述第一驱动线圈(51)与第二驱动线圈(53)通过镭雕导电线路(80)连通,且所述镭雕导电线路(80)通过镭雕工艺固定于载体(40)上。
  2. 如权利要求1所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述X轴驱动组件(50)包括第一X轴驱动件及与所述第一X轴驱动件对向设置的第二X轴驱动件,且所述第一X轴驱动与第二X轴驱动件的结构相同。
  3. 如权利要求2所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述第一X轴驱动件包括镶嵌于所述框架(30)外侧面上的X轴驱动磁石及与所述X轴驱动磁石对向设置的X驱动线圈,所述X驱动线圈贴附设置于底座(20)的内壁上。
  4. 如权利要求1所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述Z轴驱动组件(60)包括第一Z轴驱动件及与所述第一Z轴驱动件对向设置的第二Z轴驱动件,且所述第一Z轴驱动与第二Z轴驱动 件的结构相同。
  5. 如权利要求4所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述第一Z轴驱动件包括镶嵌于框架(30)靠近底座(20)端面上的Z轴驱动磁石及与所述Z轴驱动磁石对向设置的Z轴驱动线圈,所述Z轴驱动线圈缠绕于所述底座(20)上。
  6. 如权利要求1所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述框架(30)上端面上固定有第一弹簧组件(90),且框架(30)靠近底座(20)端面上固定有第二弹簧组件(70),所述第一弹簧组件(90)一端固定于框架(30)上,另一端固定于载体(40)上端面上,所述第二弹簧组件(70)一端固定于框架(30)上,另一端固定于载体(40)下端面上。
  7. 如权利要求6所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述第一弹簧组件(90)包括多个第一弹簧(91),所述第一弹簧(91)固定于框架(30)上端面的边角处,每个所述第一弹簧(91)之间间隔设置且结构相同。
  8. 如权利要求7所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述第一弹簧(91)包括固定于框架(30)上的固定主板(911)、与所述固定主板(911)一端通过固定板连接的第一载体固定板及与所述固定主板(911)另一端弹簧链连接的悬针固定座,所述第一载体固定板固定于载体(40)上。
  9. 如权利要求6所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述第二弹簧组件(70)包括固定于框架(30)上的第二弹簧(71)及与所述第二弹簧(71)平行且间固定于框架(30)上的第三弹簧,所述第二弹簧(71)与第三弹簧的结构相同。
  10. 如权利要求9所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述第二弹簧(71)包括固定于载体(40)上的第二载体 固定板(711)及分别固定连接于第二载体固定板(711)两端上的第二固定板,所述第二固定板上固接有框架固定板,所述框架固定板固定于框架(30)上。
  11. 如权利要求1所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述外壳(10)包括一平面板(11)及沿所述平面板(11)边沿向竖直方向延伸的挡板(12),外壳(10)一挡板(12)上开设有让位区间,且外壳(10)上与所述让位区间相对的一挡板(12)上开设有摄像孔。
  12. 如权利要求1所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述底座(20)上设置有四个悬丝(21),所述悬丝(21)一端贯穿底座(20),另一端沿竖直方向延伸且延伸至第一弹簧组件(90)上,每个悬丝(21)分别一一对应第一弹簧(91)。
  13. 如权利要求1-12任一所述的一种具有镭雕导电线路的自动对焦防抖潜望马达,其特征在于,所述第一驱动线圈(51)与第二驱动线圈(53)通电通过镭雕导电线路(80)依次连通有第一驱动线圈(51)、第二驱动线圈(53)、悬丝(21)、第一弹簧组件(90)及Z轴驱动组件(60)的驱动电路板。
PCT/CN2021/120185 2021-07-21 2021-09-24 一种具有镭雕导电线路的自动对焦防抖潜望马达 WO2023000487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110824728.6A CN113514930B (zh) 2021-07-21 2021-07-21 一种具有镭雕导电线路的自动对焦防抖潜望马达
CN202110824728.6 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023000487A1 true WO2023000487A1 (zh) 2023-01-26

Family

ID=78068529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120185 WO2023000487A1 (zh) 2021-07-21 2021-09-24 一种具有镭雕导电线路的自动对焦防抖潜望马达

Country Status (2)

Country Link
CN (1) CN113514930B (zh)
WO (1) WO2023000487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244064B (zh) * 2021-11-30 2023-06-16 新思考电机有限公司 悬吊线导电结构、音圈马达、照相装置及电子产品

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168668A1 (en) * 2013-12-11 2015-06-18 Tdk Taiwan Corp. Apparatus Having a Spring Plate Connecting with 3D Circuit Terminals
US20160054578A1 (en) * 2014-08-25 2016-02-25 AAC Technologies Pte. Ltd. Lens actuator
CN106133594A (zh) * 2014-03-27 2016-11-16 地圆株式会社 具有抖动校正功能的相机模块
WO2016206077A1 (zh) * 2015-06-26 2016-12-29 爱佩仪光电技术(深圳)有限公司 一种抗磁干扰光学防抖音圈马达
CN107193106A (zh) * 2017-04-12 2017-09-22 瑞声科技(新加坡)有限公司 镜头驱动装置
CN107229169A (zh) * 2017-04-12 2017-10-03 瑞声科技(新加坡)有限公司 镜头驱动装置
CN208924341U (zh) * 2018-10-25 2019-05-31 信利光电股份有限公司 一种平板弹片及转动防抖反射模块
CN110361908A (zh) * 2018-03-26 2019-10-22 日本电产三协株式会社 带抖动修正功能的光学单元
CN110646915A (zh) * 2019-11-07 2020-01-03 河南皓泽电子股份有限公司 潜望式镜头驱动装置
CN210016389U (zh) * 2019-05-13 2020-02-04 河南皓泽电子股份有限公司 一种三轴防抖潜望马达
CN112068382A (zh) * 2020-10-20 2020-12-11 上海比路电子股份有限公司 一种防抖马达
US20210208475A1 (en) * 2018-05-23 2021-07-08 Lg Innotek Co., Ltd. Lens driving apparatus, and camera module and optical device comprising same
US20210208363A1 (en) * 2018-12-26 2021-07-08 Huawei Technologies Co., Ltd. Lens Actuating Apparatus, Periscope Photographing Module, And Photographing Device
CN113126233A (zh) * 2021-04-26 2021-07-16 上海比路电子股份有限公司 一种具有大推力的小型透镜驱动装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207117456U (zh) * 2017-06-16 2018-03-16 东莞佩斯讯光电技术有限公司 一种三轴光学防抖音圈马达
CN207337031U (zh) * 2017-06-16 2018-05-08 东莞佩斯讯光电技术有限公司 一种三轴平移光学防抖音圈马达以及双摄双光学防抖模组
CN207908846U (zh) * 2018-03-01 2018-09-25 天津迪思科博科技发展有限公司 光学防抖音圈马达

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168668A1 (en) * 2013-12-11 2015-06-18 Tdk Taiwan Corp. Apparatus Having a Spring Plate Connecting with 3D Circuit Terminals
CN106133594A (zh) * 2014-03-27 2016-11-16 地圆株式会社 具有抖动校正功能的相机模块
US20160054578A1 (en) * 2014-08-25 2016-02-25 AAC Technologies Pte. Ltd. Lens actuator
WO2016206077A1 (zh) * 2015-06-26 2016-12-29 爱佩仪光电技术(深圳)有限公司 一种抗磁干扰光学防抖音圈马达
CN107193106A (zh) * 2017-04-12 2017-09-22 瑞声科技(新加坡)有限公司 镜头驱动装置
CN107229169A (zh) * 2017-04-12 2017-10-03 瑞声科技(新加坡)有限公司 镜头驱动装置
CN110361908A (zh) * 2018-03-26 2019-10-22 日本电产三协株式会社 带抖动修正功能的光学单元
US20210208475A1 (en) * 2018-05-23 2021-07-08 Lg Innotek Co., Ltd. Lens driving apparatus, and camera module and optical device comprising same
CN208924341U (zh) * 2018-10-25 2019-05-31 信利光电股份有限公司 一种平板弹片及转动防抖反射模块
US20210208363A1 (en) * 2018-12-26 2021-07-08 Huawei Technologies Co., Ltd. Lens Actuating Apparatus, Periscope Photographing Module, And Photographing Device
CN210016389U (zh) * 2019-05-13 2020-02-04 河南皓泽电子股份有限公司 一种三轴防抖潜望马达
CN110646915A (zh) * 2019-11-07 2020-01-03 河南皓泽电子股份有限公司 潜望式镜头驱动装置
CN112068382A (zh) * 2020-10-20 2020-12-11 上海比路电子股份有限公司 一种防抖马达
CN113126233A (zh) * 2021-04-26 2021-07-16 上海比路电子股份有限公司 一种具有大推力的小型透镜驱动装置

Also Published As

Publication number Publication date
CN113514930A (zh) 2021-10-19
CN113514930B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP2022167979A (ja) レンズ駆動モジュール
CN107608052B (zh) 镜头驱动模块
TWI698693B (zh) 鏡頭驅動模組及電子裝置
US20220206308A1 (en) Lens driving device, and camera module and optical device comprising same
US11894728B2 (en) Multi-lens camera system and driving mechanism thereof
US11175475B2 (en) Multiple-lens camera system
TWI606727B (zh) 攝影模組
US20200209521A1 (en) Reflective element driving module
CN111683197A (zh) 摄像头模组以及摄像装置
CN113163100A (zh) 一种Sensor-Shift摄像模组
CN212785548U (zh) 防抖摄像模组、摄像头防抖系统及移动终端
WO2023216475A1 (zh) 防抖马达、摄像模组及电子设备
WO2023000487A1 (zh) 一种具有镭雕导电线路的自动对焦防抖潜望马达
WO2021232948A1 (zh) 具有防抖功能的感光组件、摄像模组及其组装方法
WO2018180682A1 (ja) レンズ駆動装置
WO2023000486A1 (zh) 一种三轴自动对焦的防抖潜望马达
CN113452233B (zh) 一种大推力中置自动对焦马达
CN215340502U (zh) 镜头驱动装置
WO2021258540A1 (zh) 一种af马达结构、照相装置、电子产品
CN216748244U (zh) 一种三轴自动对焦的防抖潜望马达
CN215181152U (zh) 一种提高动子位移量的中置自动对焦马达
CN215867298U (zh) 一种具有防撞载体的防抖潜望马达
CN215181150U (zh) 一种具有方便安装的防抖潜望马达
CN214591665U (zh) 一种Sensor-Shift摄像模组
CN215181153U (zh) 一种稳定性强的中置自动对焦马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE