WO2023000330A1 - 服务质量流的调度方法及装置、网络设备及存储介质 - Google Patents

服务质量流的调度方法及装置、网络设备及存储介质 Download PDF

Info

Publication number
WO2023000330A1
WO2023000330A1 PCT/CN2021/108247 CN2021108247W WO2023000330A1 WO 2023000330 A1 WO2023000330 A1 WO 2023000330A1 CN 2021108247 W CN2021108247 W CN 2021108247W WO 2023000330 A1 WO2023000330 A1 WO 2023000330A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
configuration
scheduling
coordinated
parameter
Prior art date
Application number
PCT/CN2021/108247
Other languages
English (en)
French (fr)
Inventor
李艳华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/108247 priority Critical patent/WO2023000330A1/zh
Publication of WO2023000330A1 publication Critical patent/WO2023000330A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to a method and device for scheduling a Quality of Service (Quality of Service, QoS) flow, a network device, and a storage medium.
  • QoS Quality of Service
  • Each QoS (Flow) flow defines a QoS configuration, and the QoS configuration has one or more QoS parameters, and these QoS parameters are restricted to satisfy some characteristics of the QoS flow.
  • the QoS parameters include but are not limited to: 5G service quality indicator (QoS Indicator, QI), priority level, QoS reflection attribute, packet data delay budget (Packet Delay Budget), etc.
  • the QoS flow it can be divided into guaranteed flow bit rate (Guaranteed Bit Rate, GBR) QoS flow and non-GRB QoS flow.
  • GBR Guard Bit Rate
  • the base station acts as an access network device to perform resource scheduling and allocation corresponding to QoS according to the QoS configuration of the QoS flow.
  • the core network only provides a set of parameter configuration of the base station Qos flow.
  • Embodiments of the present disclosure provide a QoS flow scheduling method and device, network equipment, and storage medium network equipment.
  • the first aspect of the embodiments of the present disclosure provides a method for scheduling a QoS flow, which is executed by a first network device.
  • the method includes: determining a candidate configuration set of a QoS flow, wherein the candidate configuration set includes: the QoS Multiple sets of parameter configurations for streams.
  • a second aspect of an embodiment of the present disclosure provides a method for scheduling a QoS flow, wherein, performed by a second network device, the method includes:
  • the candidate configuration set includes: multiple sets of parameter configurations of the QoS flow.
  • a third aspect of an embodiment of the present disclosure provides an apparatus for scheduling a QoS flow, wherein the apparatus includes: a determining module configured to determine a candidate configuration set of a QoS flow, wherein the candidate configuration set includes: the QoS flow Multiple sets of parameter configurations.
  • a fourth aspect of an embodiment of the present disclosure provides an apparatus for scheduling a QoS flow, wherein the apparatus includes:
  • the sending module is configured to send a QoS request message, where the QoS request message indicates a candidate configuration set of the QoS flow; the candidate configuration set includes: multiple sets of parameter configurations of the QoS flow.
  • the fifth aspect of the embodiments of the present disclosure provides a network device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable During the program, execute the QoS flow scheduling method as provided in the first aspect or the second aspect.
  • the sixth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by the processor, it can realize the QoS provided by the aforementioned first aspect or the second aspect The scheduling method for the stream.
  • the first network device will determine a candidate configuration set for QoS flow scheduling, and the candidate configuration set may contain a set of parameter configurations, and these parameter configurations can be used for scheduling QoS flows in different situations, thereby Realize the scheduling of QoS flows in different situations to meet the scheduling requirements of QoS flows in different situations.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2A is a schematic flowchart of a QoS flow scheduling method according to an exemplary embodiment
  • Fig. 2B is a schematic flowchart of a QoS flow scheduling method according to an exemplary embodiment
  • Fig. 3A is a schematic flowchart of a QoS flow scheduling method according to an exemplary embodiment
  • Fig. 3B is a schematic flowchart of a QoS flow scheduling method according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of a method for scheduling a QoS flow according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of a method for scheduling a QoS flow according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of a method for scheduling a QoS flow according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram of a QoS flow scheduling device according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram of an apparatus for scheduling a QoS flow according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a network device according to an exemplary embodiment.
  • first, second, and third may use terms such as first, second, and third to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several access devices 12 .
  • UE11 may be a device that provides voice and/or data connectivity to a user.
  • UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • RAN Radio Access Network
  • UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the UE's computer for example, may be a fixed, portable, pocket, hand-held, built-in or vehicle-mounted device.
  • UE11 may also be a device of an unmanned aerial vehicle.
  • UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the access device 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the access device 12 may be an evolved access device (eNB) adopted in a 4G system.
  • the access device 12 may also be an access device (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the access device 12 .
  • a wireless connection may be established between the access device 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • an embodiment of the present disclosure provides a method for scheduling a QoS flow, which is executed by a first network device.
  • the method may include:
  • S100 Determine a candidate configuration set of a QoS flow, where the candidate configuration set includes: multiple sets of parameter configurations of the QoS flow.
  • the first network device may be an access network device.
  • the access network device includes but not limited to a base station, and the base station may be an eNB or a gNB.
  • the parameter configuration here may include one or more QoS parameters in the QoS configuration.
  • the QoS parameters include, but are not limited to, GBR, reflective QoS attributes, packet data delay budget, priority level, and/or 5QI.
  • QoS parameters can be used for resource scheduling and allocation of QoS flows by the base station.
  • the candidate configuration set includes at least one of the following:
  • Coordinated parameter configuration wherein the coordinated parameter configuration is: parameter configuration for coordinated scheduling of multiple QoS flows;
  • Non-cooperative parameter configuration wherein the non-cooperative parameter configuration is: parameter configuration for separate scheduling of QoS flows.
  • the cooperative parameter configuration is: parameter configuration for cooperative scheduling of multiple QoS flows, for example, two or more QoS flows are associated, and the QoS values of some QoS flows in these QoS flows will affect the QoS values provided by the multiple QoS flows.
  • the parameter configuration used at this time may be different from that in the non-cooperative scenario, for example, if there is a stricter delay requirement, this is the collaborative parameter configuration.
  • two or more QoS flows use respective parameter configurations when there is no coordinated scheduling.
  • the elaboration configuration includes one or more QoS parameters.
  • the QoS elaboration is defined in Table 1 to Table 3 below, such as parameter configuration 1 and parameter configuration 2.
  • the respective collaborative scheduling parameters will be used configuration, parameter configuration 1' and parameter configuration 2'.
  • the candidate configuration set includes multiple sets of parameter configurations, namely parameter configuration 1 and parameter configuration 1'; for QoS flow 2, the candidate configuration set includes multiple sets of parameter configurations, namely parameter configuration 2 and parameter configuration 2'.
  • Non-cooperative parameter configuration is also called individual scheduling parameter configuration, which is used for individual scheduling of each QoS flow.
  • the first network device will perform individual scheduling for the QoS flow, for example, only refer to the QoS flow of the QoS flow itself. value, etc., perform separate scheduling.
  • parameter configuration 1 there may also be multiple sets of candidate configurations for Qos flows in a single scheduling scenario.
  • Parameter configuration 1 and parameter configuration 2; parameter configuration 2 will be used when the network detects an abnormal situation, and parameter configuration 1 will be used in other cases.
  • the candidate configuration set may include multiple sets of non-cooperative parameter configurations, and does not include coordinated parameter configurations.
  • the candidate configuration set may include: multiple sets of coordinated parameter configurations, excluding non-coordinated parameter configurations .
  • the candidate parameter configuration set may include both coordinated parameter configurations and non-coordinated parameter configurations.
  • the set of candidate parameter configurations includes: at least one set of non-cooperative parameter configurations and at least one set of coordinated parameter configurations.
  • the candidate configuration set includes multiple sets of parameter configurations, and these parameter configurations can be any one of the aforementioned cooperative parameter configurations and non-cooperative parameter configurations, and the specific parameter configurations included can be based on the scheduling of the QoS flow. scenarios and/or possible scheduling situations.
  • the non-cooperative parameter configuration includes: multiple sets of parameter configurations for separately scheduling QoS flows in different situations.
  • different individual scheduling situations may include at least one of the following:
  • high-definition video QoS streams can be provided when the remaining network bandwidth is large.
  • parameter configurations with high QoS values can be selected for individual scheduling of QoS streams, thereby improving the effective use of network resources. utilization rate.
  • the QoS value of the QoS stream can be appropriately reduced.
  • a lower QoS value can be selected. Parameter configuration for individual scheduling of QoS flows.
  • the parameter configuration with high QoS value is used for separate scheduling; if the business service with high QoS value is not signed , you can use the parameter configuration with a lower QoS value for separate scheduling.
  • an embodiment of the present disclosure provides a method for scheduling a QoS flow, which is executed by a first network device, and the method includes:
  • S110 Determine cooperative parameter configurations for cooperative scheduling of multiple QoS flows.
  • the coordination parameter configuration is: parameter configuration when a QoS flow is coordinated with other QoS flows, where the parameter configuration may include one or more QoS parameters in the QoS configuration.
  • the QoS parameters include, but are not limited to, GBR, reflective QoS attributes, packet data delay budget, priority level, and/or 5QI.
  • the non-cooperative parameter configuration is: a QoS flow is changed to another set of candidate QoS parameter configurations when the trigger event is satisfied, where the parameter configurations may include one or more QoS parameters in the QoS configuration.
  • the QoS parameters include, but are not limited to, GBR, reflective QoS attributes, packet data delay budget, priority level, and/or 5QI.
  • the foregoing QoS parameters may be any one in Table 1 to Table 3.
  • any one of the QoS parameters shown in Table 1 to Table 3 can be used alone or in combination with other QoS parameters.
  • the coordination parameter configuration is used to implement coordinated scheduling of multiple QoS flows by the device, and a scenario corresponding to the coordinated scheduling of multiple QoS flows is a coordinated scheduling scenario.
  • the multiple QoS flows that are scheduled cooperatively are related, for example, in the scenario of joint learning, the training data exchanged between any two different devices.
  • the non-cooperative parameter configuration is also used to implement separate scheduling of a single QoS flow by the device under trigger conditions corresponding to different trigger events. For example, if a certain index of Qos cannot reach the threshold, it will switch to another set of scheduling QOs parameters.
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and difference configurations; the difference configuration indicates non-reference parameters in the multiple sets of parameter configurations Configure the difference relative to the reference parameter configuration; or, the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and conversion relationship configurations, wherein the conversion relationship configuration, Indicates the conversion relationship between the non-reference parameter configuration and the reference parameter configuration in the multiple sets of parameter configurations.
  • the reference parameter configuration here can be any specified parameter configuration.
  • the reference parameter configuration may be: a parameter configuration of a QoS flow in a preset situation of an individual scheduling scenario, and other non-reference parameter configurations may be any parameter configuration different from the reference parameter configuration.
  • a set of reference parameter configurations is the Qos parameter when multi-modal services are not carried, that is, when there is no need for coordinated scheduling of multiple streams;
  • the candidate configuration set includes: one set of non-cooperative parameter configurations and at least one set of coordinated parameter configurations
  • the set of non-cooperative parameter configurations can be selected as the aforementioned reference parameter configurations, and all other coordinated parameter configurations can be used as differential configurations.
  • the candidate configuration set includes multiple sets of parameter configurations, namely parameter configuration 1 and parameter configuration 1'; at this time, parameter configuration 1 is a reference parameter configuration; parameter configuration 2 can be configured differently and for reference
  • the parameter configuration is jointly determined.
  • the packet data packet delay defined by parameter configuration 1 is estimated to be 100 ms, and the difference configuration indicates -50 ms, then based on the parameter configuration 1 and the difference configuration, the packet data delay of parameter configuration 2 is 50 ms.
  • the candidate configuration set includes multiple sets of parameter configurations, namely parameter configuration 2 and parameter configuration 2'. At this time, the parameter configuration 2 is determined by the comprehensive parameter configuration 2 and the difference configuration.
  • the candidate configuration set includes: multiple sets of non-cooperative parameter configurations
  • one of the non-cooperative parameter configurations may be selected as the aforementioned reference parameter configuration, and the other non-cooperative parameter configurations may be used as differential configurations.
  • parameter configuration 1 is the reference parameter configuration
  • reference parameter configuration 2 is the difference configuration
  • the candidate configuration set includes: a set of non-cooperative parameter configurations and at least one set of coordinated parameter configurations
  • the set of non-cooperative parameter configurations may be selected as the aforementioned reference parameter configurations, and all other coordinated parameter configurations may be used as non-cooperative parameter configurations.
  • the candidate configuration set includes: a set of coordinated parameter configurations and at least one set of non-coordinated parameter configurations
  • this set of coordinated parameter configurations can be selected as a reference parameter configuration, and other parameter configurations are all non-coordinated parameter configurations, or, A set of non-cooperative parameter configurations with the smallest corresponding QoS value is selected as a reference parameter configuration, and other parameter configurations are all non-cooperative parameter configurations.
  • the reference parameter configuration is a set of parameter configurations in the candidate configuration set.
  • a reference parameter configuration is selected from multiple sets of parameter configurations in the candidate configuration set.
  • the reference parameter configuration can configure at least one of the following for multiple sets of parameters;
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and difference configurations; the difference configuration indicates that non-reference parameter configurations in the multiple sets of parameter configurations are relative to the reference Differences in parameter configuration;
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and conversion relationship configurations, wherein the conversion relationship configuration indicates that non-reference parameter configurations in the multiple sets of parameter configurations and The conversion relationship between the reference parameter configurations.
  • the aforementioned difference can be obtained by making a difference between the same QoS parameters configured with different sets of parameters. Compared with using one or more bits to indicate the parameter value of the original QoS parameter, which is only used to indicate the difference value, bit overhead can be reduced.
  • the disparity configuration may include, but is not limited to, directly indicating a disparity value.
  • the parameter values between the same QoS parameters configured by different sets of parameters can be converted using the conversion relationship.
  • one or more bits carry the indicated conversion relationship, compared to completely carrying all the QoS parameters configured by each set of parameters.
  • the parameter value of the parameter has the characteristics of small bit overhead.
  • the conversion relationship configuration may include, but not limited to, a direct conversion relationship identifier.
  • the conversion relationship between the non-cooperative parameter configuration and the coordinated parameter configuration indicates at least one of the following:
  • the packet data delay budget of the QoS flow in the cooperative scheduling scenario is 1/2 or 1/3 of the packet data delay budget in the individual scheduling scenario.
  • the packet data delay budget of the QoS flow in the cooperative scheduling scenario is a value such as 10 ms, 20 ms, or 50 ms as the difference between the packet data delay budgets in the individual scheduling scenario.
  • the conversion function may be a conversion function composed of any four arithmetic operations or other conversion functions.
  • the fitting method is to fit the conversion relationship between the two, and the conversion function can be a function such as a polynomial function.
  • the multiple QoS flows that are coordinated may include at least one of the following:
  • the QoS flows corresponding to different learning devices.
  • the base station will coordinately schedule multiple QoS flows, and then the resource allocation and scheduling of the associated QoS flows by the base station are coordinated, and this coordination is reflected in any of the following aspects:
  • Simultaneously adjust the number of resources allocated for multiple QoS flows where the adjustment of the number of resources includes: an increase in the number of resources and/or a decrease in the number of resources.
  • the first network device will determine the coordinated parameter configuration of multiple QoS flows, so that multiple QoS flows need to be coordinated to be scheduled for coordinated scheduling, reducing the scheduling asynchrony caused by the independent scheduling of multiple QoS flows that require coordinated scheduling Problems, and then resource waste caused by this asynchronous problem or poor service quality caused by resource waste.
  • an embodiment of the present disclosure provides a method for scheduling a QoS flow, which is performed by a first network device, and the method may include:
  • S111 Receive a QoS request message, where the QoS request message includes configuration information of a candidate configuration set for a QoS flow,
  • the candidate configuration set at least includes: at least two sets of parameter configurations of the QoS flow.
  • the candidate configuration set includes multiple sets of the following parameter configurations
  • Non-cooperative parameter configuration used for separate scheduling of this QoS flow.
  • the access network equipment such as the base station will receive the QoS request message from the core network equipment, and the QoS request message includes the configuration information of the candidate configuration set of the QoS flow.
  • QoS flow A and QoS flow B are two QoS flows in the same coordinated scheduling scenario.
  • the candidate configuration indicated by the QoS request message Centrally includes the system parameter configuration when coordinating scheduling with QoS flow B.
  • the first network device can use the coordinated parameter configuration in the candidate configuration set indicated by the QoS request message of QoS flow A to perform QoS flow A's schedule.
  • an embodiment of the present disclosure provides a QoS flow scheduling method, which is executed by a first network device, and the method may include:
  • the protocols here include: industry-recognized and standardized standard protocols, and/or private protocols customized by multiple manufacturers or joint manufacturers.
  • the first network device can know the candidate configuration sets for QoS flows by querying the protocol, and obtain the coordination parameter configuration based on the determined candidate configuration sets.
  • the candidate configuration set may be a set that includes only coordination parameter configurations, and the core network and/or the protocol limit only the coordination parameter configurations of QoS flows.
  • the candidate configuration set may also include non-cooperative parameter configurations other than the coordinated parameter configurations.
  • the non-cooperative parameter configuration can be called an independent parameter configuration, and the non-cooperative parameter configuration can be used for independent scheduling of corresponding QoS flows.
  • the set of candidate configurations also indicates: non-cooperative parameter configurations for separate scheduling of QoS flows.
  • QoS flow A can be independently scheduled using the non-cooperative parameter configuration of QoS flow.
  • the two QoS streams may need to be coordinated scheduling, for example, by coordinating the coordinated transmission of QoS streams to ensure multiple The delay difference of the data stream transmitted by the recording device at the receiving end will not be too large, thereby reducing the lack of a partial phenomenon in the picture received by the receiving end due to the large arrival delay of the data stream of a certain recording device.
  • the data flow of the recording device A does not need to continue to be coordinated with other recording devices.
  • the separate scheduling of the recording device A will be resumed.
  • the resources allocated for route device A can be released, or the resources allocated for video recording device A can be reduced.
  • the above is only an example, and the specific implementation is not limited to this example.
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a non-cooperative parameter configuration and a first difference configuration
  • the first difference configuration indicates : the differential configuration of the coordinated parameter configuration relative to the non-coordinated parameter configuration
  • the candidate configuration set indicates the coordinated parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a coordinated parameter configuration and a second difference parameter configuration
  • the second difference configuration includes: the non-cooperative parameter configuration A differential configuration of the configuration relative to the collaborative parameter configuration.
  • the values of some QoS parameters of the cooperative parameter configuration and the non-cooperative parameter configuration are the same, if only the first difference configuration or the second difference configuration is included, the number of QoS parameters for the cooperative parameter configuration and the non-cooperative parameter configuration can be reduced. Both sets of configurations are configured to complete the QoS configuration, which can reduce bit overhead.
  • the values of all QoS parameters in the cooperative parameter configuration and non-cooperative parameter configuration can be different, but one is used as a reference value to obtain the difference between the two, and the difference is relative to the QoS parameter as the minuend
  • the values of are all small, so fewer bits can be used for indication, thereby reducing bit overhead.
  • adopting this method can reduce bit overhead, and is especially suitable for the method in which the core network delivers the candidate configuration set to the access network.
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the non-cooperative parameter configuration and a first conversion identifier, wherein the first conversion An identifier indicating the conversion relationship between the non-cooperative parameter configuration and the coordinated parameter configuration;
  • the candidate configuration set indicates the coordinated parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the coordinated parameter configuration and a second conversion identifier, wherein the second conversion identifier indicates the non-cooperative parameter configuration A conversion relationship between the parameter configuration and the coordinated parameter configuration.
  • the first conversion indicator and the second conversion indicator indicate a conversion relationship.
  • the bandwidth under the individual scheduling and the bandwidth of the cooperative scheduling can satisfy one or more conversion relationships, and which conversion relationship is currently used can be determined by the first conversion identifier or the second conversion identifier carried in the candidate configuration set .
  • Using this method to indicate the cooperative parameter configuration and the non-cooperative parameter configuration has the characteristics of small bit overhead, and is especially suitable for the scenario where the configuration information of the candidate configuration set needs to be transmitted between different network devices.
  • the conversion relationship between the non-cooperative parameter configuration and the coordinated parameter configuration indicates at least one of the following:
  • the packet data delay budget of the QoS flow in the cooperative scheduling scenario is 1/2 or 1/3 of the packet data delay budget in the individual scheduling scenario.
  • the packet data delay budget of the QoS flow in the cooperative scheduling scenario is a value such as 10 ms, 20 ms, or 50 ms as the difference between the packet data delay budgets in the individual scheduling scenario.
  • the above-mentioned different ratios or different differences may correspond to different first conversion identifiers and/or second conversion identifiers.
  • the first conversion indicator and/or the second conversion indicator indicate a difference, they may not be the difference itself.
  • the first conversion identifier and the second conversion identifier may be a difference index or a difference sequence number.
  • the first conversion identifier and the second conversion identifier can at least convert different conversion relationships in the conversion table, and the conversion relationship between the cooperative parameter configuration and the non-cooperative parameter configuration can be known by looking up the table.
  • the QoS request message includes at least one of the following:
  • the configuration information of the candidate configuration set is directly carried in the QoS establishment request message, so that when establishing the corresponding QoS flow, the first network device knows the candidate configuration set of the QoS flow.
  • the first network device will receive the QoS modification request message, and carry the configuration of the candidate configuration set through the QoS modification request message.
  • the coordinated parameter configuration of the modified QoS flow can be known synchronously.
  • the first network device obtains the configuration information of the candidate configuration set by receiving the QoS request message, on the one hand, it can realize the configuration information of the candidate configuration set that at least includes the cooperative parameter configuration without introducing new messages.
  • the configuration information can be obtained in the QoS flow scheduling scenario at the beginning of the establishment or modification of the QoS flow, covering most of the scenarios that need to obtain collaborative parameter configuration, and has the characteristics of simple implementation and wide coverage.
  • the QoS setup request message includes but is not limited to: Protocol Data Unit (Protocol Data Unit, PDU) Session Resource Setup Request (PDU Session Resource Setup Request) and/or Initial Context Setup Request (Initial Context Setup Request).
  • PDU Protocol Data Unit
  • PDU Session Resource Setup Request PDU Session Resource Setup Request
  • Initial Context Setup Request Initial Context Setup Request
  • the QoS modification request message includes but not limited to: PDU Session Resource Modify Request (PDU Session Resource Modify Request).
  • the method also includes:
  • Coordinated scheduling of at least two QoS flows is performed only when there is a need for coordinated scheduling. If there is no need for coordinated scheduling, coordinated scheduling of QoS flows can be performed without referring to the configuration of coordinated parameters, and individual scheduling for a single QoS flow can be performed.
  • the first network device may determine by itself the need for coordinated scheduling of the QoS flows. For example, when the first network device receives resource scheduling requests from multiple UEs in the same UE group, it may determine that different QoS flows corresponding to the multiple UEs have an association relationship.
  • this is only an example to illustrate the manner in which the first network device itself determines whether there is a need for coordinated scheduling of multiple QoS flows, and the specific implementation is not limited thereto.
  • the coordinated parameter configuration of the coordinated scheduling is replaced according to the coordinated parameter configuration.
  • the situation of the coordinated scheduling changes which may be at least one of the above situations.
  • the second network device may send coordinated control information, and the coordinated control information triggers the first device to switch the coordinated parameter configuration for coordinated scheduling of multiple QoS flows.
  • any of the above situations may correspond to a trigger event, and the event identifier of the trigger event may be carried in the coordinated control information, so that when the first network device receives the coordinated control information, it will also know the current event that causes the transmission of the coordinated control information. trigger event, and further select the coordinated parameter configuration after switching according to the trigger event.
  • the coordinated control information may also indicate a trigger event of coordinated parameter configuration that requires coordinated scheduling of multiple QoS flows.
  • two or more QoS flows use their own QoS parameters when there is no coordinated scheduling, such as parameter configuration 1 and parameter configuration 2, but in a coordinated scheduling scenario, QoS flow 1 cannot meet the requirements, namely It can be considered that a trigger event is detected, and the two coordinated Qos will use respective candidate parameter configurations for coordinated scheduling, parameter configuration 1' and parameter configuration 2'.
  • the candidate configuration set includes multiple sets of parameter configurations, namely parameter configuration 1 and parameter configuration 1'; for QoS flow 2, the candidate configuration set includes multiple sets of parameter configurations, namely parameter configuration 2 and parameter configuration 2'.
  • the method also includes:
  • parameter configurations used for individual scheduling of QoS flows are adjusted according to the non-cooperative parameter configuration.
  • the QoS flow independent scheduling will be adaptively adjusted. parameter configuration.
  • the method also includes:
  • the change of the aforementioned individual scheduling situation can be configured as a trigger condition corresponding to the trigger event, and the first network device, the second network device and/or the UE can detect whether the trigger event occurs, if the first network device itself detects the occurrence of the trigger event , you can switch the parameter configuration of individual scheduling by yourself. If the second network device or UE detects a trigger event, the first network device will receive the notification, so that the first network device can perform QoS flow independent scheduling according to the notification. parameter configuration.
  • the change of the individual scheduling situation may include at least one of the following:
  • the notification is carried in a service request message.
  • the service request message includes at least one of the following:
  • the notification also indicates the changed QoS flows requiring separate scheduling.
  • the method also includes:
  • the candidate configuration set contains multiple sets of non-cooperative parameter configurations
  • a QoS flow scheduling method in an embodiment of the present disclosure may be executed by a first network device, and the method may include:
  • S210 In response to receiving the coordinated control information, determine a coordinated scheduling requirement with a QoS flow.
  • the coordinated control information may come from the second network device that sends the QoS request message but is not limited to the second network device.
  • the first network device When the first network device schedules resources for multiple QoS flows with coordinated scheduling requirements, it will perform coordinated scheduling according to the coordinated parameter configuration of the QoS flows.
  • this embodiment can be executed alone or in combination with the aforementioned S110 and the like.
  • the coordinated scheduling of multiple QoS flows is performed; or the coordinated scheduling parameters of the started multi-QoS flows are switched. .
  • the core network device indicates that multiple QoS flows have a cooperative scheduling requirement through the coordinated control information.
  • the coordinated control information may indicate to start the coordinated scheduling, so that the first network device starts the coordinated scheduling of multiple QoS flows after receiving the information.
  • the coordinated control information may further include: event information that triggers a trigger event that is sent in coordination with the control information, or, the coordinated control information may also indicate the determination of the coordinated parameter configuration used in the coordinated scheduling information.
  • the determination information includes, but is not limited to, the event information of the above-mentioned trigger event that has a corresponding relationship with different coordination parameter configurations, and may also be a configuration identifier of the coordination parameter configuration, and the like.
  • the receiving coordinated control information includes:
  • the coordinated control information mentioned in the foregoing embodiments may be carried in any message for transmission between the first network device and other network devices (such as the second network device), but in the embodiments of the present disclosure, it may be carried in a service request message.
  • the first network device can know whether the QoS flow of the corresponding service has a coordinated scheduling requirement while performing the service request and/or service modification.
  • the service request message includes at least one of the following:
  • the coordinated control information also indicates the QoS flows requiring coordinated scheduling.
  • the QoS flow indicating that coordinated scheduling and the need for coordinated scheduling may be indicated by the same field.
  • the first field may include a service identifier, a flow identifier of a QoS flow, and/or a group identifier of a UE group.
  • Different QoS flows corresponding to multiple UEs in the same UE group have great functions and require coordinated scheduling. If this field indicates a group ID, it can be considered that the group ID corresponds to the multiple UEs in the UE group
  • a QoS flow is a QoS flow that requires coordinated scheduling.
  • a piece of coordinated control information contains flow identifiers or service identifiers of multiple QoS flows, then according to the flow identifiers or service identifiers or group identifiers, on the one hand, it can be known which QoS flows need to be coordinated, and it is equivalent to indicating the current Coordinated scheduling requirements for multiple QoS flows.
  • the service establishment request message of service A carries the service identifier, flow identifier or group identifier of service B.
  • the service identifier, flow identifier or group identifier is equivalent to instructing the QoS flow of service A to proceed.
  • the coordinated scheduling QoS flow is equivalent to indicating that there is a cooperative scheduling requirement between the QoS flow of the A service and the QoS flow of the B service.
  • the coordinated scheduling requirements of multiple QoS flows and the QoS flows requiring coordinated scheduling may be indicated by different fields.
  • field A may include one or more bits indicating whether there is a coordinated scheduling requirement
  • field B Indicates the flow identifier, service identifier and/or group identifier of the UE group of the QoS flow that needs to be coordinated.
  • the first network device does not receive explicit coordinated control information, but the coordinated control information is implicitly indicated.
  • the second network device will group multiple QoS flows requiring coordinated scheduling into the same OoS flow group, and the grouping information of the QoS flow group can be considered as information that implicitly indicates the coordinated scheduling requirements of the multiple QoS flows.
  • the coordinated control information is determined according to grouping information of multiple QoS flows.
  • the first network device when the second network device determines that there is a need for coordinated scheduling of multiple QoS flows, the first network device will receive the group information of the multiple QoS flows sent by the second network device.
  • the grouping information may be group identifiers or service identifiers of multiple grouped QoS flows.
  • the group information indicates multiple QoS flows requiring coordinated scheduling, and also indicates the coordinated scheduling requirements of multiple QoS flows.
  • the method further comprises: in response to receiving non-cooperative control information, resuming individual scheduling of at least two of said QoS flows that are co-scheduled.
  • the non-cooperative control information here can be called independent control information.
  • the non-coordinated control information is equivalent to instructing the corresponding QoS flow to quit the coordinated scheduling of the multiple QoS flows and restore to independent scheduling.
  • the non-coordinated control information is equivalent to instructing the corresponding QoS flows to maintain independent scheduling.
  • an embodiment of the present disclosure provides a method for scheduling a QoS flow, which is performed by a second network device, and the method includes:
  • S310 Send a QoS request message, where the QoS request message indicates a candidate configuration set of the QoS flow; the candidate configuration set includes: multiple sets of parameter configurations of the QoS flow.
  • the candidate configuration set includes at least one of the following:
  • Coordinated parameter configuration wherein the coordinated parameter configuration is: parameter configuration for coordinated scheduling of multiple QoS flows;
  • Non-cooperative parameter configuration wherein the non-cooperative parameter configuration is: parameter configuration for separate scheduling of QoS flows.
  • the non-cooperative parameter configurations included in the candidate parameter configuration set can be one or more sets; similarly, the coordinated parameter configurations included in the candidate configuration set can also be one or more sets.
  • the non-cooperative parameter configuration includes: multiple sets of parameter configurations for separately scheduling QoS flows in different situations.
  • the second network device may be a network device of a core network, and a network device of a core network is referred to as a core network device for short.
  • the second network device includes but is not limited to: network devices such as AMF, SMF, or UPF.
  • the QoS request message indicates that the candidate configuration set for the QoS flow includes but is not limited to:
  • the QoS request message includes configuration information that explicitly indicates the candidate configuration set
  • the QoS request message includes information corresponding to the candidate configuration set and also indicates other content, and this indication mode is equivalent to an implicit indication.
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and difference configurations; the difference configuration indicates that non-reference parameter configurations in the multiple sets of parameter configurations are relative to the reference Differences in parameter configuration;
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and conversion relationship configurations, wherein the conversion relationship configuration indicates that non-reference parameter configurations in the multiple sets of parameter configurations and The conversion relationship between the reference parameter configurations.
  • the conversion relationship between the reference parameter configuration and the same parameter of the non-reference parameter configuration indicates at least one of the following:
  • the candidate configuration set indicates the coordinated parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a non-cooperative parameter configuration and a first difference configuration
  • the first difference configuration indicates: the coordinated a differential configuration of the parameter configuration relative to the non-cooperative parameter configuration
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a system parameter configuration and a second difference parameter configuration
  • the second difference configuration includes: the non-cooperative parameter configuration A differential configuration of the configuration relative to the collaborative parameter configuration.
  • first difference configuration and the second difference configuration For the descriptions of the first difference configuration and the second difference configuration here, reference may be made to the foregoing embodiments, which will not be repeated here. If the candidate configuration set that includes both the coordinated parameter configuration and the non-coordinated parameter configuration is indicated by the second network device, using the first difference configuration and the second difference configuration to realize the indication of the two parameter configurations can reduce the number of bits overhead, reducing the length of signaling interaction between the first network device and the second network device.
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the non-cooperative parameter configuration and a first conversion identifier, where the first conversion identifier indicates A conversion relationship between the non-coordinated parameter configuration and the coordinated parameter configuration;
  • the candidate configuration set indicates the coordinated parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the coordinated parameter configuration and a second conversion identifier, wherein the second conversion identifier indicates the non-cooperative parameter configuration A conversion relationship between the parameter configuration and the coordinated parameter configuration.
  • the first conversion identifier and/or the second conversion identifier indicate the conversion relationship between the coordinated parameter configuration and the non-coordinated parameter configuration.
  • both the first conversion identifier and the second conversion identifier may be Corresponding to the index or number of the conversion relationship, after receiving the configuration information of the candidate configuration set, the first network device first determines a set of configurations among the cooperative parameter configuration and the non-cooperative parameter configuration from the candidate configuration set, and then based on the first conversion identification Or the second conversion indicator finds a conversion relationship, and inputs the determined parameter configuration as a known quantity into the conversion relationship to obtain another set of parameter configurations.
  • the configuration information contains only one conversion flag, which has the characteristics of small bit overhead compared with the parameter value carrying the overall parameter configuration.
  • the conversion relationship between the non-cooperative parameter configuration and the coordinated parameter configuration indicates at least one of the following:
  • the QoS request message includes at least one of the following:
  • the QoS establishment request message includes, but is not limited to: a protocol data unit (Protocol Data Unit, PDU) session resource establishment request (PDU Session Resource Setup Request) and/or an initial context establishment request (Initial Context Setup Request).
  • PDU Protocol Data Unit
  • PDU Session Resource Setup Request an initial context establishment request
  • Initial Context Setup Request an initial Context Setup Request
  • the QoS modification request message includes but not limited to: PDU Session Resource Modify Request (PDU Session Resource Modify Request).
  • an embodiment of the present disclosure provides a QoS flow scheduling method, which is executed by a second network device.
  • the QoS flow scheduling method may include:
  • S410 In response to the coordinated scheduling requirement of the QoS flow, send coordinated control information, where the coordinated control information indicates the coordinated scheduling requirement.
  • the second network device issues coordinated control information, and the coordinated control information can trigger the first network device to perform coordinated scheduling of multiple QoS flows.
  • the first network device After the first network device receives the coordinated scheduling requirement, it can perform coordinated scheduling of multiple QoS flows according to the coordinated parameter configuration sent by the second network device, or according to the coordinated scheduling determined by the first network device in other ways (for example, based on protocols). Parameter configuration for coordinated scheduling of multiple QoS flows.
  • the QoS flow scheduling method provided by the embodiment of the present disclosure may be executed alone, or may be combined with other QoS flow scheduling methods applied to the second network device.
  • the sending coordinated control information includes:
  • the coordinated control information is included in the service request message, so that the coordinated control information does not need to involve dedicated signaling to transmit the coordinated control information, and when there is a service request or service modification, the coordinated control information is sent.
  • One message implements multiple functions, reducing the amount of information exchange between the first network device and the second network device.
  • the method further includes: monitoring QoS values of multiple QoS flows having an association relationship.
  • Monitoring the QoS values of multiple QoS flows here may include: monitoring the QoS values of QoS parameters such as actual delay, allocated bandwidth, packet loss rate, and/or QoS parameters of the QoS flows.
  • monitoring the QoS values of the multiple QoS flows here may include: the first network device itself monitors the QoS values of the multiple QoS flows, or receives the QoS values of the QoS flows monitored by the UE from the UE.
  • the method may include:
  • determining whether there is a coordinated scheduling requirement for multiple QoS flows may also be determined according to the result of resource allocation at the beginning of the establishment of multiple QoS flows.
  • the method may include:
  • the QoS value of any QoS flow of the plurality of QoS flows reaches the QoS threshold, and determining that there is a coordinated scheduling requirement of the QoS flow;
  • a need for co-scheduling with the QoS flows is determined.
  • the plurality of QoS flows in response to the QoS value of at least one QoS flow of the plurality of QoS flows being lower than the QoS threshold, in response to the change of the QoS value of at least one QoS flow of the plurality of QoS flows, the plurality of QoS flows The QoS value of any QoS flow of the QoS flow reaches the QoS threshold, in response to resource allocation failure of at least one QoS flow in the plurality of QoS flows, in response to each QoS flow in the plurality of QoS flows Resource allocation failures can be considered as corresponding to a trigger event. Once the trigger event occurs, it is determined that there is a need for coordinated scheduling, and the coordinated control information is sent to the first network device.
  • QoS value of at least one QoS flow is monitored to be lower than the QoS threshold, the QoS value of this QoS flow will degrade the overall quality of multiple QoS flows with associated relationships. If other QoS flows continue to maintain large resource allocation, the It leads to waste of resources and poor communication quality.
  • the QoS value of each QoS flow in the multiple QoS flows with an association relationship reaches the QoS threshold, it means that multiple QoS flows can be combined to provide users with better communication quality.
  • the QoS threshold it means that multiple QoS flows can be combined to provide users with better communication quality.
  • there is cooperative scheduling demand For example, the actual delay of each QoS flow in multiple QoS flows is smaller than the packet data delay budget of the cooperative scheduling. At this time, it indicates that the network environment has a high transmission rate. Independent scheduling of flows, on the one hand, cannot effectively use communication resources, and on the other hand, cannot provide high QoS allowed by the current network environment.
  • the creation stage of the QoS flow it can be determined whether to maintain the scheduling of the remaining QoS flows according to the resource allocation results of multiple QoS flows, or determine whether to continue to coordinate scheduling of multiple QoS flows after completing the resource allocation of each QoS flow H.
  • the first network device can be triggered to temporarily release resources allocated to other QoS flows in the plurality of QoS flows, or delay resource allocation of other associated QoS flows, for example, after successfully After the flow resources are allocated, resource allocation is performed for other QoS flows associated with the QoS flow.
  • the coordinated control information is also used for QoS flows requiring coordinated scheduling.
  • the method also includes:
  • non-coordinated control information is sent, wherein the non-coordinated control information indicates to resume independent scheduling of multiple QoS flows.
  • the non-coordinated control information indicates the disappearance of the coordinated scheduling requirement, and if the multiple QoS flows are currently in the coordinated scheduling scenario, the first network device receives After receiving the non-cooperative control information, the individual scheduling of each QoS flow will be resumed. If any QoS flow of multiple QoS flows has entered the non-coordinated scheduling scenario of independent scheduling due to other reasons, the first network device will continue to maintain Corresponds to individual scheduling of QoS flows.
  • An embodiment of the present disclosure provides a QoS flow scheduling method, which can be executed by a second device, and the method further includes:
  • a notification indicating a change in the condition of the individual scheduling is sent.
  • a notification indicating that the individual scheduling situation has changed will be sent to the first network device, so that the first network device can adjust the parameter configuration used for scheduling a single QoS flow in time according to the situation change.
  • the notification includes: a notification that a trigger event occurs.
  • the notification is carried in a service request message.
  • the service request message includes at least one of the following:
  • the QoS establishment request message includes, but is not limited to: a protocol data unit (Protocol Data Unit, PDU) session resource establishment request (PDU Session Resource Setup Request) and/or an initial context establishment request (Initial Context Setup Request).
  • PDU Protocol Data Unit
  • PDU Session Resource Setup Request an initial context establishment request
  • Initial Context Setup Request an initial Context Setup Request
  • the QoS modification request message includes but not limited to: PDU Session Resource Modify Request (PDU Session Resource Modify Request).
  • the notification also indicates the changed QoS flows requiring separate scheduling.
  • the method also includes:
  • a notification is sent indicating that the condition for an individual schedule has resumed.
  • the notification indicating recovery of the individual scheduling can enable the first network device to restore the original parameter configuration or default parameter configuration of the individual scheduling of QoS flows.
  • the coordinated scheduling of QoS flows is added.
  • the candidate configuration set of the Qos flow is added, and the processing of the cooperative scheduling of the base station is added.
  • the base station may perform resource allocation and scheduling of multiple QoS flows according to the cooperative parameter configuration in the candidate configuration set.
  • the Qos establishment/modification request When the Qos establishment/modification request is sent from the core network to the base station, it can carry the candidate configuration set of the Qos flow; the candidate configuration set of the Qos flow can be used for the base station, that is, the configuration and use of the Qos flow in the coordinated scheduling scenario;
  • the core network when the core network notifies the parameter configuration in the non-coordinated scheduling scenario, it can also carry the candidate configuration set in the coordinated scheduling scenario;
  • one or more sets of candidate coordination parameter configurations may be assigned to a certain QoS flow for use in a coordinated scheduling scenario;
  • the coordinated scheduling scenario here refers to a scenario of coordinated scheduling of multiple QoS flows.
  • some parameters of the coordinated parameter configuration may be the same as or different from the non-coordinated parameter configuration in the non-coordinated scheduling scenario.
  • the parameter configuration of the packet data delay budget (Packet Delay Budget) in Qos flow 1 in a non-coordinated scheduling scenario 100ms;
  • the parameter value of the packet data delay budget in Qos flow 1 is also given as 50ms;
  • the parameter value of the packet data delay budget in Qos flow 1 is also given as 20ms;
  • the coordinated control parameters of the Qos flow can be configured by the core network to the base station through explicit signaling, or can be agreed upon in a protocol.
  • the core network can carry the parameter configuration in the cooperative scheduling scenario when notifying the parameter configuration in the non-coordinated scheduling scenario;
  • the non-coordinated scheduling scenario is: multiple QoS flows are not coordinated scheduling, only each flow is independent Scheduling, scenes that are not associated with each other.
  • the parameter configuration of the coordinated scheduling scenario is carried in the candidate parameter configuration sent by the core network, and only the incremental part (or difference part) is carried relative to the non-cooperative parameter configuration, so that signaling overhead can be reduced.
  • the core network can only carry an effective identifier when notifying the parameter configuration in the coordinated scheduling scenario, that is, the effective parameter configuration in the coordinated scheduling scenario;
  • the Qos establishment/modification request message initiated by the core network may be one or more of the following messages:
  • PDU SESSION RESOURCE SETUP REQUEST Packet data session resource establishment request
  • PDU SESSION RESOURCE MODIFY REQUEST Packet data session resource modification request
  • the base station After receiving the request for Qos coordination sent by the core network, the base station configures the coordination parameters of the Qos flow.
  • the service establishment/modification request initiated by the core network will carry coordinated control information.
  • the coordinated control information indicates whether the core network expects the access network to perform coordinated scheduling on the data flow or the like.
  • Collaborative control information that is, what kind of collaborative processing the core network expects to perform on the data flow.
  • the coordinated control information can be implicitly carried in group information, that is, if the core network notifies the base station that both QOs flow 1 and QOs flow 2 of a certain PDN session belong to a certain group that needs to be coordinated, it is implicitly expressed
  • the core network expects QoS coordination for these two data flows; that is, which candidate configuration set to use.
  • QOs flow 1 and QOs flow 2 both belong to a certain group that needs to be coordinated, which may span multiple terminal devices.
  • the candidate configuration set may be pre-agreed, or the core network may display a notification.
  • the parameter configuration of the packet delay budget (Packet Delay Budget) in Qos flow 1 in the non-coordinated scheduling scenario is: 100ms;
  • the parameter configuration of the packet delay budget (Packet Delay Budget) in Qos flow 2 in the non-coordinated scheduling scenario is: 100ms.
  • the parameter configuration 1 of the packet data delay budget in Qos flow 1 and Qos flow 2 in the collaborative scheduling scenario is: 50ms.
  • the coordinated control information may be that when the base station detects a specific trigger event, the core network expects to process other data flows in the same coordinated group. That is, the change of one QOs flow will affect the parameter changes of other Qos flows;
  • the rate of the QOs flow 1 of the PDN session is lower than a certain threshold; That is, the base station detects that event A occurs.
  • the base station when it detects that A occurs, it will use Qos flow 2 to adopt a candidate control parameter set (down/or up);
  • the notification indicating the change of the individual scheduling situation may also be that the core network expects to process a data flow when the base station detects a specific trigger event. For example, it is detected that the rate of QOs flow 1 is lower than a certain threshold, that is, the base station detects that event B occurs. At this time, when the base station detects that B occurs, it will use Qos flow 1 to adopt other parameter configurations in the candidate non-cooperative parameter configuration, so that the parameter configuration currently used by the QoS flow is lowered or increased)
  • the specific trigger event may also be that the base station detects a change in the quality of the wireless signal or the load of the base station, and these are the cases where the aforementioned individual scheduling situation changes, and of course it may also be the trigger event of the aforementioned coordinated control information transmission;
  • the specific triggering event may be that the core network notifies the base station through a Qos establishment/modification request message initiated.
  • the base station can also fall back to the uncoordinated scenario after receiving the core network's request to stop QoS coordinated scheduling, and perform non-coordinated scheduling of the corresponding QoS flow according to the non-coordinated parameter configuration.
  • an embodiment of the present disclosure provides an apparatus for scheduling QoS flows, wherein the apparatus includes:
  • the determining module 610 is configured to determine a candidate configuration set of the QoS flow, wherein the candidate configuration set includes: multiple sets of parameter configurations of the QoS flow.
  • the QoS flow scheduling device can be applied to first network equipment including an access network, such as a base station.
  • the determination module 610 may be a program module; after the program module is executed by the processor, it can realize the determination of the candidate parameter sets for the cooperative scheduling of multiple QoS flows.
  • the determining module 610 may be a combination of hardware and software; the combination of hardware and software includes, but is not limited to: a programmable array; the programmable array includes, but is not limited to: a field programmable array and/or complex programmable arrays.
  • the determination module 610 may be a pure hardware module; the pure hardware module includes but is not limited to an application specific integrated circuit.
  • the candidate configuration set includes at least one of the following:
  • Coordinated parameter configuration wherein the coordinated parameter configuration is: parameter configuration for coordinated scheduling of multiple QoS flows;
  • Non-cooperative parameter configuration wherein the non-cooperative parameter configuration is: parameter configuration for separate scheduling of QoS flows.
  • the non-cooperative parameter configuration includes:
  • the determining module 610 is configured to receive a QoS request message, wherein the QoS request message includes configuration information of a candidate configuration set of a QoS flow; or, determine a candidate configuration set according to a protocol.
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and difference configurations; the difference configuration indicates non-reference parameters in the multiple sets of parameter configurations a difference in configuration relative to said reference parameter configuration;
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and conversion relationship configurations, wherein the conversion relationship configuration indicates that non-reference parameter configurations in the multiple sets of parameter configurations and The conversion relationship between the reference parameter configurations.
  • the conversion relationship between the reference parameter configuration and the same parameter of the non-reference parameter configuration indicates at least one of the following:
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a non-cooperative parameter configuration and a first difference configuration
  • the first difference configuration indicates: the The differential configuration of the cooperative parameter configuration relative to the non-cooperative parameter configuration
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a system parameter configuration and a second difference parameter configuration
  • the second difference configuration includes: the non-cooperative parameter configuration A differential configuration of the configuration relative to the collaborative parameter configuration.
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the non-cooperative parameter configuration and a first conversion identifier, wherein the first conversion identifier , indicating the conversion relationship between the non-cooperative parameter configuration and the coordinated parameter configuration;
  • the candidate configuration set indicates the coordinated parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the coordinated parameter configuration and a second conversion identifier, wherein the second conversion identifier indicates the non-cooperative parameter configuration A conversion relationship between the parameter configuration and the coordinated parameter configuration.
  • the QoS request message includes at least one of the following:
  • the device further includes:
  • the coordinated scheduling module is configured to coordinate scheduling of at least two QoS flows according to the coordinated parameter configuration in response to determining that there is a coordinated scheduling requirement of the QoS flows.
  • the device also includes:
  • the coordinated scheduling requirement module is configured to determine the coordinated scheduling requirement with the QoS flow in response to receiving the coordinated control information.
  • the receiving module is configured to receive a service request message including the coordinated control information.
  • the service request message includes at least one of the following:
  • the coordinated control information also indicates the QoS flows requiring coordinated scheduling.
  • the coordinated control information is determined according to grouping information of multiple QoS flows.
  • the device also includes:
  • a recovery module configured to recover individual scheduling of the at least two QoS flows that are coordinated to be scheduled in response to receiving non-cooperative control information.
  • the device also includes:
  • the individual scheduling module is configured to adjust the parameter configuration used for the individual scheduling of QoS flows according to the non-cooperative parameter configuration in response to changes in the individual scheduling.
  • the device also includes:
  • a situation change module configured to determine that a situation of the individual schedule has changed in response to receiving the notification of the trigger event.
  • the notification is carried in a service request message.
  • the service request message includes at least one of the following:
  • the notification also indicates the changed QoS flows requiring separate scheduling.
  • the device also includes:
  • the original parameter configuration restoration module is configured to restore the original parameter configuration of the QoS flow independent scheduling in response to receiving the notification that the individual scheduling is restored.
  • an embodiment of the present disclosure provides an apparatus for scheduling QoS flows, wherein the apparatus includes:
  • the sending module 710 is configured to send a QoS request message, where the QoS request message indicates a candidate configuration set for a QoS flow;
  • the candidate configuration set includes: multiple sets of parameter configurations of the QoS flow.
  • the sending module 710 may be a program module; after the program module is executed by the processor, the sending of the QoS request message can be realized.
  • the sending module 710 can be a combination of hardware and software; the combination of hardware and software includes, but is not limited to: various programmable arrays; the programmable arrays include, but not limited to: field programmable arrays and /or complex programmable arrays.
  • the sending module 710 may be a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • the candidate configuration set includes at least one of the following:
  • Coordinated parameter configuration wherein the coordinated parameter configuration is: parameter configuration for coordinated scheduling of multiple QoS flows;
  • Non-cooperative parameter configuration wherein the non-cooperative parameter configuration is: parameter configuration for separate scheduling of QoS flows.
  • the non-cooperative parameter configuration includes: multiple sets of parameter configurations for independently scheduling QoS flows in different situations.
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and difference configurations; the difference configuration indicates non-reference parameters in the multiple sets of parameter configurations a difference in configuration relative to said reference parameter configuration;
  • the candidate configuration set includes: multiple sets of parameter configurations; the candidate configuration set includes: a set of reference parameter configurations and conversion relationship configurations, wherein the conversion relationship configuration indicates that non-reference parameter configurations in the multiple sets of parameter configurations and The conversion relationship between the reference parameter configurations.
  • the conversion relationship between the non-coordinated parameter configuration and the coordinated parameter configuration indicates at least one of the following:
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a non-cooperative parameter configuration and a first difference configuration
  • the first difference configuration indicates: the The differential configuration of the cooperative parameter configuration relative to the non-cooperative parameter configuration
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes a system parameter configuration and a second difference parameter configuration
  • the second difference configuration includes: the non-cooperative parameter configuration A differential configuration of the configuration relative to the collaborative parameter configuration.
  • the candidate configuration set indicates the cooperative parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the non-cooperative parameter configuration and a first conversion identifier, wherein the first conversion identifier , indicating the conversion relationship between the non-cooperative parameter configuration and the coordinated parameter configuration;
  • the candidate configuration set indicates the coordinated parameter configuration and the non-cooperative parameter configuration
  • the candidate configuration set includes the coordinated parameter configuration and a second conversion identifier, wherein the second conversion identifier indicates the non-cooperative parameter configuration A conversion relationship between the parameter configuration and the coordinated parameter configuration.
  • the QoS request message includes at least one of the following:
  • the device also includes:
  • the coordinated control information module is configured to send coordinated control information in response to the coordinated scheduling requirement of the QoS flow, wherein the coordinated control information indicates the coordinated scheduling requirement.
  • the coordinated control information module is configured to send a service request message including the coordinated control information.
  • the device also includes:
  • a collaborative scheduling demand module configured to perform at least one of the following:
  • the QoS value of any QoS flow of the plurality of QoS flows reaches the QoS threshold, and determining that there is a coordinated scheduling requirement of the QoS flow;
  • a need for co-scheduling with the QoS flows is determined.
  • the coordinated control information is also used for QoS flows requiring coordinated scheduling.
  • the method also includes:
  • the non-cooperative control information module is configured to send non-cooperative control information in response to disappearance of the cooperative scheduling requirement of multiple QoS flows, wherein the non-cooperative control information indicates to resume individual scheduling of multiple QoS flows.
  • the sending module is further configured to send non-cooperative control information in response to the disappearance of the coordinated scheduling requirement of multiple QoS flows, wherein the non-coordinated control information indicates recovery of multiple QoS flows Scheduling individually.
  • the sending module is configured to, in response to a change in the situation of the individual scheduling, send a notification indicating that the situation of the individual scheduling changes.
  • the notification includes: a notification that a trigger event occurs.
  • the notification is carried in a service request message.
  • the service request message includes at least one of the following:
  • the notification also indicates the changed QoS flows requiring separate scheduling.
  • the sending module is further configured to send a notification indicating that the individually scheduled situation resumes.
  • An embodiment of the present disclosure provides a network device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the QoS flow scheduling method provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize information stored thereon after the network device is powered off.
  • the network device includes: an access network device of an access network and/or a core network device of a core network.
  • the processor can be connected to the memory through a bus, etc., for reading the executable program stored on the memory, for example, at least one of the methods shown in Figure 2A, Figure 2B, Figure 3A, Figure 3B and Figures 4 to 6 one.
  • an embodiment of the present disclosure shows a structure of a network device.
  • the network device 900 may be provided as a network side device.
  • the network device may be the aforementioned access device and/or core network device.
  • network device 900 includes processing component 922 , which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922 , such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any of the above-mentioned methods applied to the access device, for example, the methods shown in 2, FIG. 3A, FIG. 3B and FIGS. 4 to 6 .
  • Network device 900 may also include a power supply component 926 configured to perform power management of network device 900, a wired or wireless network interface 950 configured to connect network device 900 to a network, and an input-output (I/O) interface 958 .
  • the network device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • Embodiments of the present disclosure also provide a non-transitory computer-readable storage medium including instructions, such as the memory 932 including instructions, and the above instructions can be executed by the processing component 920 of the network device to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the QoS flow scheduling method provided by any of the aforementioned technical solutions can be implemented, for example, at least one of the methods shown in Figure 2A, Figure 2B, Figure 3A, Figure 3B and Figures 4 to 6 is executed one.

Abstract

本公开实施例提供一种QoS流的调度方法及装置、网络设备及存储介质。由第一网络设备执行的QoS流的调度方法可包括:确定QoS流的候选配置集,其中,所述候选配置集包括:所述QoS流的多套参数配置。

Description

服务质量流的调度方法及装置、网络设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种服务质量(Quality of Service,QoS)流的调度方法及装置、网络设备及存储介质。
背景技术
QoS(Flow)流都会定义QoS配置,该QoS配置具有一个或多个QoS参数,这些QoS参数限制需要满足该QoS流的一些特性。所述QoS参数包括但不限于:5G服务质量指示器(QoS Indicator,QI)、优先等级、QoS反射属性、分组数据延迟预算(Packet Delay Budget)等。
示例性地,按照QoS流可以分为保障流比特速率(Guaranteed Bit Rate,GBR)的QoS流和非GRB的QoS流。
通常情况下,基站当接入网设备根据QoS流的QoS配置进行对应QoS的资源调度和分配。现有技术中,核心网仅仅提供基站Qos流的一套参数配置。
发明内容
本公开实施例提供一种QoS流的调度方法及装置、网络设备及存储介质网络设备。
本公开实施例第一方面提供一种QoS流的调度方法,其中,由第一网络设备执行,所述方法包括:确定QoS流的候选配置集,其中,所述候选配置集包括:所述QoS流的多套参数配置。
本公开实施例第二方面提供一种QoS流的调度方法,其中,由第二网络设备执行,所述方法包括:
发送QoS请求消息,所述QoS请求消息指示QoS流的候选配置集;所述候选配置集包括:所述QoS流的多套参数配置。
本公开实施例第三方面提供一种QoS流的调度装置,其中,所述装置包括:确定模块,被配置为确定QoS流的候选配置集,其中,所述候选配置集包括:所述QoS流的多套参数配置。
本公开实施例第四方面提供一种QoS流的调度装置,其中,所述装置包括:
发送模块,被配置为发送QoS请求消息,所述QoS请求消息指示QoS流的候选配置集;所述候选配置集包括:多套所述QoS流的参数配。
本公开实施例第五方面提供一种网络设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面或第二方面提供的QoS流的调度方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面或第二方面提供的QoS流的调度方法。
本公开实施例提供的技术方案,第一网络设备会确定出QoS流调度的候选配置集,候选配置集可能包含有套参数配置,这些参数配置可以用于QoS流的不同情况下的调度,从而实现QoS流不同情况下调度,以满足不同情况QoS流调度需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2A是根据一示例性实施例示出的一种QoS流的调度方法的流程示意图;
图2B是根据一示例性实施例示出的一种QoS流的调度方法的流程示意图;
图3A是根据一示例性实施例示出的一种QoS流的调度方法的流程示意图
图3B是根据一示例性实施例示出的一种QoS流的调度方法的流程示意图;
图4是根据一示例性实施例示出的一种QoS流的调度方法的流程示意图;
图5是根据一示例性实施例示出的一种QoS流的调度方法的流程示意图;
图6是根据一示例性实施例示出的一种QoS流的调度方法的流程示意图;
图7是根据一示例性实施例示出的一种QoS流的调度装置的结构示意图;
图8是根据一示例性实施例示出的一种QoS流的调度装置的结构示意图;
图9是根据一示例性实施例示出的一种网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信 息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个接入设备12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车 对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个接入设备12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2A所示,本公开实施例提供一种QoS流的调度方法,由第一网络设备执行,所述方法可包括:
S100:确定QoS流的候选配置集,其中,所述候选配置集包括:所述QoS流的多套参数配置。
该第一网络设备可为接入网设备,示例性地,该接入网设备包括但不限于基站,该基站可为eNB或者gNB。
此处的参数配置可包括QoS配置中的一个或多个QoS参数。该QoS参数包括但不限于GBR、反射QoS属性、分组数据延迟预算、优先等级和/或5QI。
这些QoS参数可以用于基站对QoS流的资源调度和分配。
所述候选配置集,包括以下至少之一:
协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
所述协同参数配置为:多个QoS流协同调度的参数配置,例如,两个或两个以上的QoS流关联,这些QoS流中的部分QoS流的QoS值会影响这多个QoS流所提供的业务或服务的质量,此时为了确保业务或服务的通信质量,例如,为了确保延时足够小,速率足够块以及误码率足够低等其中的一个或多个,需要协同调度这些QoS流,此时使用的参数配置和非协同场景下可有所不同,比如有更加严格的延时(delay)要求,此时即为所述协同参数配置。
作为一个实施例,两个或两个以上的QoS流在没有协同调度的时候使用各自的参数配置。该阐述配置包括一个或多个QoS参数,该QoS阐述具体见下表1至表3格定义,比如参数配置1和参数配置2,而在协同调度场景中,将都使用各自的协同调度的参数配置,参数配置1’和参数配置2’。此时,对于QoS流1而言,候选配置集中包括了多套参数配置,即参数配置1和参数配置1’;对于QoS流2而言,候选配置集中包括了多套参数配置,即参数配置2和参数配置2’。
非协同参数配置又称为单独调度参数配置,用于各QoS流的单独调度,在单独调度的场景下,第一网络设备会针对QoS流进行单独调度,例如,仅仅参考该QoS流自身的QoS值等情况,进行单独调度。
作为一个实施例,单独调度场景下的Qos流也可能存在多套候选配置。参数配置1和参数配置 2;在网络检测到异常情况发生时候将使用参数配置2,其他情况将使用参数配置1。
在一个实施例中,所述协同参数配置和/或非协同参数配置都可以有一套或多套。
在一个实施例中,针对确定仅仅会发生单独调度的QoS流,例如,典型的用户进行传统语音通话的业务,所述候选配置集可包括多套非协同参数配置,不包含协同参数配置。
在另一个实施例中,针对多模态设备的多模态业务而言,可能仅仅存在协同调度不存在单独调度,所述候选配置集可包括:多套协同参数配置,不包含非协同参数配置。
在还有一个实施例中,针对同时存在单独调度和协同调度的QoS流而言,所述候选参数配置集可能既包括协同参数配置,还包括非协同参数配置。示例性地,所述候选参数配置集包括:至少一套非协同参数配置和至少一套协同参数配置。
在本公开实施例中,所述候选配置集包括多套参数配置,这些参数配置可以前述协同参数配置和非协同参数配置中的任意一种,具体的包含的参数配置可以根据QoS流具有的调度场景和/或可能存在的调度情况来确定。
示例性地,在一个实施例中,所述非协同参数配置包括:在不同情况下单独调度QoS流的多套参数配置。
例如,不同的单独调度情况可包括以下至少之一:
不同的网络状态对应的单独调度情况;
不同的UE状态对应的单独调度情况;
不同的业务签约情况对应的单独调度情况。
在一些情况下,在网络剩余带宽大时,可以提供高清视频的QoS流,此时在单独调度的情况下,可以选择高QoS值的参数配置进行QoS流的单独调度,从而提高网络资源的有效利用率。
在另一些情况下,在UE的剩余资源少时,可以适当降低QoS流的QoS值,例如,适当降低视频的QoS流的清晰度减少视频播放卡顿现象时,可以选择较低一些的QoS值的参数配置进行QoS流的单独调度。
在还有一些情况下,用户与运营商之间可以基于业务签约信息,若签约了高QoS值的业务服务,则使用高QoS值的参数配置进行单独调度,若没有签约高QoS值的业务服务,则可以使用较低的QoS值的参数配置进行单独调度。
如图2B所示,本公开实施例提供一种QoS流的调度方法,由第一网络设备执行,所述方法包括:
S110:确定多个QoS流协同调度的协同参数配置。
作为一种实施例,协同参数配置为:一个QoS流与其他QoS流被协同调度时的参数配置,此处的参数配置可包括QoS配置中的一个或多个QoS参数。该QoS参数包括但不限于GBR、反射QoS属性、分组数据延迟预算、优先等级和/或5QI。
作为一种实施例,非协同参数配置为:一个QoS流在触发事件满足时更换到另外一套候选的 QoS参数配置,此处的参数配置可包括QoS配置中的一个或多个QoS参数。该QoS参数包括但不限于GBR、反射QoS属性、分组数据延迟预算、优先等级和/或5QI。
示例性地,前述QoS参数可如表1至表3中任意一个。
Figure PCTCN2021108247-appb-000001
Figure PCTCN2021108247-appb-000002
表1
Figure PCTCN2021108247-appb-000003
Figure PCTCN2021108247-appb-000004
表2
Figure PCTCN2021108247-appb-000005
Figure PCTCN2021108247-appb-000006
表3
值得注意的是:表1至表3所示的任意一个QoS参数可以单独使用,或者与其他QoS参数组合使用。
该协同参数配置,用于执行设备对多个QoS流的协同调度,多个QoS流的协同调度对应的场景为协同调度场景。通常协同调度的多个QoS流是具有关联性的,例如,在联合学习的场景下,任意两个不同设备之间交互的训练数据。
该非协同参数配置,也用于执行设备对单个QoS流在不同触发事件对应的触发条件下的单独调度。例如,在Qos的某项指标无法达到门限,将切换到另外一套调度QOs参数。
在一个实施例中,所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;或者,所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考 参数配置之间的换算关系。
此处的参考参数配置可以为任意指定的参数配置。例如,该参考参数配置可为:QoS流在单独调度场景的预设情况下的参数配置,其他的非参考参数配置为不同于参考参数配置的任意参数配置。
示范性的,一套参考参数配置即不承载多模态业务,即不存在多个流的协同调度需求时的Qos参数;
示例性地,若候选配置集包括:一套非协同参数配置和至少一套协同参数配置,则可以选择该套非协同参数配置作为前述参考参数配置,其他所有协同参数配置作为差异配置。
作为一个实施例,两个或两个以上的QoS流在没有协同调度的时候使用各自的QoS参数,比如参数配置1和参数配置2,而在协同调度场景中,将都使用各自的协同调度的参数配置,参数配置1’和参数配置2’。此时,对于QoS流1而言,候选配置集中包括了多套参数配置,即参数配置1和参数配置1’;此时,参数配置1为参考参数配置;参数配置2是可以差异配置和参考参数配置共同确定。例如,参数配置1限定的分组数据包时延估计为100ms,而差值配置指示-50ms,则基于该参数配置1和差异配置,得到参数配置2的分组数据延时为50ms。对于QoS流2而言,候选配置集中包括了多套参数配置,即参数配置2和参数配置2’。此时,参数配置2为综合参数配置2和差异配置确定的。
示例性地,若候选配置集包括:多套非协同参数配置,则可以选择其中一套非协同参数配置作为前述参考参数配置,其他非协同参数配置作为差异配置。
作为一个实施例,单独调度场景下的Qos流也可能存在多套候选配置。参数配置1和参数配置2;在网络检测到异常情况发生时候将使用参数配置2,其他情况将使用参数配置1。此时,参数配置1为参考参数配置;参考参数配置2为差异配置;
示例性地,若候选配置集包括:一套非协同参数配置和至少一套协同参数配置,则可以选择该套非协同参数配置作为前述参考参数配置,其他所有协同参数配置作为非协同参数配置。
又示例性地,若候选配置集包括:一套协同参数配置和至少一套非协同参数配置,可以选择这一套协同参数配置作为参考参数配置,其他的参数配置都是非协同参数配置,或者,选择对应的QoS值最小的一套非协同参数配置作为参考参数配置,其他的参数配置都是非协同参数配置。
示例性地,:首先参考参数配置为候选配置集中的一套参数配置。
在具体实现时,从候选配置集中的多套参数配置中选择出参考参数配置。
该参考参数配置,可以为多套参数配置如下至少之一;
最小分组数据延时预估所在的参数配置;
最大分组数据延时预估所在的参数配置;
第二网络设备指定的任意一套参数配置;
协议约定的一套参数配置。
所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
或者,
所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
不管是协同参数配置和非协同参数配置,都是对QoS流的QoS参数赋值。
因此,不同套参数配置的相同QoS参数之间可以做差值得到前述差异,相对于用一个或多个比特指示原始的QoS参数的参数值,仅仅用于指示差异值,可以减少比特开销。
所述差异配置可以包括但不限于直接指示差异值。
同样地,不同套参数配置的相同QoS参数之间的参数值可以用换算关系进行来进行换算,如此,通过一个或多个比特携带指示换算关系,相对于完整携带每一套参数配置的所有QoS参数的参数值,具有比特开销小的特点。
所述换算关系配置可以包括但不限于直接换算关系标识。
在一些实施例中,所述非协同参数配置与所述协同参数配置之间的换算关系,指示以下至少之一:
所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
示例性,协同调度场景下的QoS流的分组数据延迟预算是单独调度场景下分组数据延迟预算的1/2或者1/3等比值。
又示例性地,协同调度场景下的QoS流的分组数据延迟预算是单独调度场景下分组数据延迟预算之间的差值为10ms或者20ms或者50ms等取值。
该换算函数可为由任意四则运算构成的换算函数或者其他换算函数。例如,在一些情况下,协同参数配置和非协同参数配置的多个QoS参数,在确定换算关系时,单独比值和差值都不能很好体现两者之间的换算关系,就可能需要通过函数拟合的方式,拟合出两者之间的换算关系,该换算函数可以为多项式函数等函数。
在一些实施例中,协同调度的多个QoS流可包括以下至少之一:
同一多模态输入场景下,不同多模态输入设备对应的不同QoS流;
同一个多模态输出场景下,不同多模态输出设备对应的不同QoS流;
联邦学习场景下,不同学习设备对应的QoS流。
若所述协同参数配置生效,则基站会协同调度多个QoS流,则基站为具有关联关系的QoS流的资源分配和调度具有协同性,这种协同性体现在以下任意方面:
同时为多个QoS流分配无线资源;
同时释放为多个QoS流分配的无线资源;
同时调节为多个QoS流分配的资源数量,此处的资源数量的调节包括:资源数量的增加和/或资 源数量的减少。
当然以上仅仅是对多个QoS流的协同分配调度的举例说明,具体实现不限于上述举例。
在公开实施例中,第一网络设备会确定多个QoS流的协同参数配置,从而需要协同调度多个QoS流进行协同调度,减少需要协同调度的多个QoS流的独立调度导致的调度不同步问题,进而因为这种不同步问题导致的资源浪费或者在资源浪费的同时导致业务质量差的现象。
如图3A所示,本公开实施例提供一种QoS流的调度方法,其中,由第一网络设备执行,所述方法可包括:
S111:接收QoS请求消息,其中,所述QoS请求消息包含QoS流的候选配置集的配置信息,
该候选配置集至少包含:该QoS流的至少两套参数配置。
示例性地,该候选配置集,包括以下参数配置中的多套;
协同参数配置,用于该QoS流与其他QoS流的协同调度;
非协同参数配置,用于该QoS流的单独调度。
在本公开实施例中,基站等接入网设备会从核心网设备接收QoS请求消息,该QoS请求消息中包含QoS流的候选配置集的配置信息。
例如,QoS流A和QoS流B是同一个协同调度场景下的两个QoS流,若第一网络设备接收到QoS请求消息发送QoS流A的QoS请求消息时,该QoS请求消息指示的候选配置集中包含与QoS流B协同调度时的系统参数配置。此时,第一网络设备接收到QoS请求消息后,可以在需要协同调度QoS流A和QoS流B时,使用QoS流A的QoS请求消息指示的候选配置集内的协同参数配置,进行QoS流A的调度。
如图3B所示,本公开实施例提供一种QoS流的调度方法,其中,由第一网络设备执行,所述方法可包括:
S112:根据协议确定候选配置。
此处的协议包括:已经行业公认且标准化的标准协议,和/或多个厂家或厂商联合定制的私有协议。
若协议规定了多个QoS流调度的候选配置集,则第一网络设备可以通过查询协议就可以知晓QoS流的候选配置集,且基于确定的候选配置集得到该协同参数配置。
示例性地,候选配置集可为仅包含协同参数配置的集合,则核心网和/或协议限定仅仅是QoS流的协同参数配置。又示例性地,该候选配置集还可以包括协同参数配置以外的非协同参数配置。该非协同参数配置有可以称之为独立参数配置,该非协同参数配置可以用于对应QoS流的独立调度。
在一些实施例中,所述候选配置集还指示:非协同参数配置,用于QoS流的单独调度。
若QoS流A和QoS流B的协同调度需求消除时,但是QoS流A还在传输,则此时可以用QoS流的非协同参数配置进行QoS流A的独立调度。
示例性地,在多个录像设备的录像场景下,若不同录像设备的QoS分开传输的情况下,这两个QoS流可能需要协同调度,例如,通过协同调度QoS流的协同传输,确保多个录像设备传输的数据 流在达到接收端的延时差不会太大,从而减少因为某一个录像设备的数据流到达延时大,使得接收端接收的画面始终缺少一个局部的现象。在一些场景下,若某一个录像设备录像的画面切出,则该录像设备A的数据流无需与其他录像设备继续协同调度,则这种场景下将回复录像设备A的单独调度。在单独调度场景下,可以释放掉为路线设备A分配的资源,或者减少为录像设备A分配的资源等。当然以上仅是举例说明,具体实现不限于该举例。
在一个实施例中,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含非协同参数配置和第一差异配置,其中,所述第一差异配置指示:所述协同参数配置相对于所述非协同参数配置的差异配置;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含协同参数配置和第二差异参数配置,其中,所述第二差异配置包括:所述非协同参数配置相对于所述协同参数配置的差异配置。
在一些情况下,协同参数配置和非协同参数配置的某些QoS参数的取值相同,若仅仅在包含第一差异配置或第二差异配置,则可以减少针对协同参数配置和非协同参数配置这两套配置都配置完成的QoS配置,从而可以减少比特开销。
在另一些情况下,协同参数配置和非协同参数配的所有QoS参数的取值可都不同,但是将一个作为参照值求取出两者的差值,差值相对于作为被减数的QoS参数的取值都小,因而可以使用更少的比特来指示,从而能够减少比特开销。
故采用这种方式可以减少比特开销,尤其适用于核心网向接入网下发所述候选配置集的方式。
在一些实施例中,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述非协同参数配置和第一换算标识,其中,所述第一换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述协同参数配置和第二换算标识,其中,所述第二换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系。
在一些实施例中,第一换算标识和第二换算标识指示的是换算关系。
示例性地,在单独调度下的带宽与协同调度的带宽可以满足一个或多个换算关系,而当前是采用哪种换算关系,可以由候选配置集携带的第一换算标识或第二换算标识确定。采用这种方式来指示协同参数配置和非协同参数配置,具有比特开销小的特点,尤其适合候选配置集的配置信息需要在不同网络设备之间传输的场景。
在一些实施例中,所述非协同参数配置与所述协同参数配置之间的换算关系,指示以下至少之一:
所述非协同参数配置与所述协同参数配置的相同参数之间的比值;
所述非协同参数配置与所述协同参数配置的相同参数之间的差值;
所述非协同参数配置与所述协同参数配置的相同参数之间的换算函数。
示例性,协同调度场景下的QoS流的分组数据延迟预算是单独调度场景下分组数据延迟预算的1/2或者1/3等取值。
又示例性地,协同调度场景下的QoS流的分组数据延迟预算是单独调度场景下分组数据延迟预算之间的差值为10ms或者20ms或者50ms等取值。
上述不同的比值或者不同的差值,可以对应于不同的第一换算标识和/或第二换算标识。
不同于上一个实施例中的第一差异配置和第二差异配置,若所述第一换算标识和/或第二换算标识指示差值,但可以不是差值本身。例如,该第一换算标识和第二换算标识可以为差值索引或者差值序号等。
在另一些实施例中,第一换算标识和第二换算标识可以至少换算表格中不同的换算关系,通过查表的方式就可以知晓协同参数配置和非协同参数配置之间的换算关系。
在一些实施例中,所述QoS请求消息包括以下至少之一:
QoS建立请求消息;
QoS修改请求消息。
直接将候选配置集的配置信息携带在QoS建立请求消息中,如此在建立对应的QoS流时,第一网络设备就知晓了该QoS流的候选配置集。
在网络状态和/或参与通信的UE状态发生变化时,就可能出现QoS流修改的需求,此时第一网络设备将接收到QoS修改请求消息,通过QoS修改请求消息携带该候选配置集的配置信息,可以在进行QoS流进行修改的同时,同步知晓修改后的QoS流的协同参数配置。
总之,不管采用哪种方式,若第一网络设备是通过接收QoS请求消息来获取候选配置集的配置信息,一方面不用引入新的消息就可以实现至少包含协同参数配置的候选配置集的配置信息的获取,另一方面可以在QoS流建立之初或修改时存在QoS流调度场景下获取到该配置信息,覆盖了大部分需要获取协同参数配置的场景,具有实现简便及覆盖范围广的特点。
该QoS建立请求消息包括但不限于:协议数据单元(Protocol Data Unit,PDU)会话资源建立请求(PDU Session Resource Setup Request)和/或初始上下文建立请求(Initial Context Setup Request)。
该QoS修改请求消息包括但不限于:PDU会话资源修改请求(PDU Session Resource Modify Request)。
在一些实施例中,所述方法,还包括:
响应于确定具有QoS流的协同调度需求,根据所述协同参数配置协同调度至少两个所述QoS流。
在有协同调度需求的情况时,才进行至少两个QoS流的协同调度,在没有协同调度需求可以不用参照协同参数配置进行QoS流的协同调度,可以针对单个QoS流的单独调度。
第一网络设备可以在确定出多个QoS流之间具有关联关系时,可以自身确定具有QoS流的协同 调度需求。例如,第一网络设备接收到位于同一个UE组内的多个UE的资源调度请求,可以认定这多个UE所对应的不同QoS流之间具有关联关系。当然此处仅是举例说明第一网络设备自身确定是否具有多个QoS流的协同调度需求的方式,具体实现时不局限于此。
响应于协同调度的情况发生变化,根据所述协同参数配置更换协同调度的协同参数配置。
该协同调度的情况发生变化,可以上述情况至少之一。
若发生上述情况,第二网络设备可以发送协同控制信息,该协同控制信息触发第一设备切换协同调度多个QoS流的协同参数配置。
上述任意一种情况,可以对应于一个触发事件,该触发事件的事件标识可以携带在协同控制信息中,如此第一网络设备接收到协同控制信息时,还会知晓当前导致该协同控制信息传输的触发事件,并可以进一步根据触发事件,选择切换后的协同参数配置。
即在一个实施例中,所述协同控制信息还可以指示需要多个QoS流协同调度的协同参数配置的触发事件。
作为一个实施例,两个或两个以上的QoS流在没有协同调度的时候使用各自的QoS参数,比如参数配置1和参数配置2,而在协同调度场景中,QoS流1无法满足需求,即可认为检测到触发事件,则将对于协同的两个Qos将使用各自的协同调度的候选参数配置,参数配置1’和参数配置2’。此时,对于QoS流1而言,候选配置集中包括了多套参数配置,即参数配置1和参数配置1’;对于QoS流2而言,候选配置集中包括了多套参数配置,即参数配置2和参数配置2’。
在一些实施例中,所述方法还包括:
响应于单独调度的情况发生变化,根据所述非协同参数配置调整QoS流单独调度使用的参数配置。
例如,网络状况、UE状况发生和/或业务签订至少其中之一发生变化时,都可以认为单独调度的情况发生变化,在本公开实施例中会适配性调整QoS流单独调度所会用的参数配置。
示例性地,所述方法还包括:
响应于接收到触发事件的通知,确定单独调度的情况发生变化。
前述单独调度的情况的变化,可以配置为触发事件对应的触发条件,第一网络设备、第二网络设备和/或UE可以检测是否发生触发事件,若第一网络设备自身检测到触发事件的发生,则可以自行进行单独调度的参数配置的切换,若第二网络设备或者UE检测到发生触发事件,则第一网络设备会接收到通知,如此第一网络设备可以根据通知进行QoS流单独调度使用的参数配置。
在一个实施例中,所述单独调度的情况发生变化可包括以下至少之一:
响应于在所述QoS流的QoS值降低到低于QoS门限,确定具有QoS流的单独调度情况发生变化;
响应于在所述QoS流的QoS值变化后达到QoS门限,确定具有QoS流的单独调度情况发生变化;
响应于在所述QoS流的资源分配失败,确定具有QoS流的单独调度情况发生变化;
响应于在所述QoS流的资源分配失败,具有QoS流的单独调度情况发生变化。
在一些实施例中,若所述通知来自第二网络设备,所述通知携带在业务请求消息中。
示例性地,所述业务请求消息包括以下至少之一:
业务建立请求消息;
业务修改请求消息。
在一些实施例中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
在一些实施例中,所述方法还包括:
响应于接收到单独调度的情况恢复的通知,恢复QoS流单独调度的原始参数配置。
单独调度的情况恢复,因此可以适应性恢复到QoS流的参数配置切之前的原始参数配置。
在一些实施例中,若所述候选配置集中包含多套非协同参数配置,则有一套默认参数配置或者指定的一套参数配置可为初始参数配置,即QoS流初始建立时使用的参数配置为初始参数配置,后续将根据是否满足触发事件,在候选配置集中进行多套参数配置的切换使用。
如图4所示,本公开实施例一种QoS流调度方法,可由第一网络设备执行,该方法可包括:
S210:响应于接收到协同控制信息,确定具有QoS流的协同调度需求。
该协同控制信息可以来自下发所述QoS请求消息的第二网络设备但是不限于第二网络设备。
第一网络设备针对具有协同调度需求的多个QoS流的资源调度时,会根据QoS流的协同参数配置进行协同调度。
具体的协同调度方式可以参见前述实施例,也可以是前述实施例提供方式以外的其他协同调度方式。
总之,该实施例可以单独执行,也可以与前述的S110等组合执行。
在接收到协同控制信息之后,确定具有QoS流的协同调度需求,则在对应的QoSL流启动之后,进行多个QoS流的协同调度;或者对已经启动多QoS流协同调度进行协同调度参数的切换。
例如,核心网设备通过协同控制信息指示多个QoS流之间具有协同调度需求。
在一个实施例中,所述协同控制信息可以指示启动协同调度,如此第一网络设备接收到之后启动多QoS流的协同调度。在另一个实施例中,所述协同控制信息还可包括:触发协同该控制信息发送的触发事件的事件信息,或者,协同控制信息还会指示用于确定协同调度中所使用协同参数配置的确定信息。该确定信息包括但不限于上述与不同协同参数配置具有对应关系的触发事件的事件信息,还可以是协同参数配置的配置标识等。
在一些实施例中,所述接收协同控制信息,包括:
接收包含所述协同控制信息的业务请求消息。
前述实施例提到的协同控制信息可以携带在任意消息中在第一网络设备与其他网络设备(例如第二网络设备)之间传输,而在本公开实施例中可以携带在业务请求消息中。
通过业务请求消息携带该协同控制信息,可以在进行业务请求和/或业务修改的同时,就让第一 网络设备知晓对应业务的QoS流是否具有协同调度需求。
示例性地,所述业务请求消息包括以下至少之一:
业务建立请求消息;
业务修改请求消息。
在一些实施例中,所述协同控制信息,还指示需要协同调度的QoS流。
在一个实施例中,指示需要协同调度的QoS流和协同调度的需求可以由同一个字段指示。例如,第一字段,该第一字段可包含业务标识、QoS流的流标识和/或UE组的组标识。同一个UE组内的多个UE对应的不同QoS流具有极大的功能具有协同调度的需求,若该字段指示的是一个组标识,则可以认为组标识所对应UE组内的多个UE的QoS流是需要协同调度的QoS流。
例如,在一个协同控制信息包含多个QoS流的流标识或者业务标识,则根据该流标识或业务标识或者组标识,一方面可以知晓哪些QoS流需要协同调度,且相当于同时指示了当前具有多个QoS流的协同调度需求。
再例如,在A业务的业务建立请求消息中携带有B业务的业务标识或者流标识或者组标识,此时该业务标识或者流标识或者组标识,一方面相当于指示了A业务的QoS流进行协同调度的QoS流,另一方面相当于指示了A业务的QoS流和B业务的QoS流之间具有协同调度需求。
在另一个实施例中,多个QoS流的协同调度需求和需要协同调度的QoS流可以由不同的字段来指示,例如,字段A可包括一个或多个比特指示是否具有协同调度需求,字段B指示需要协同调度的QoS流的流标识、业务标识和/或UE组的组标识。
在一些实施例中,所述第一网络设备未接收到显性指示的协同控制信息,但是协同控制信息是被隐含指示的。
例如,第二网络设备会将需要协同调度的多个QoS流分到同一个OoS流组,该QoS流组的分组信息可以认为是隐含指示多个QoS流的协同调度需求的信息。
因此在一些实施例中,所述协同控制信息是根据多个QoS流的分组信息确定。
例如,第二网络设备在确定出有多个QoS流的协同调度需求时,第一网络设备将接收到第二网络设备的发送的多个QoS流的分组信息。该分组信息可以是多个已分组的QoS流的组标识或者业务标识等。该分组信息一方面指示出了需要协同调度的多个QoS流,而且还相当于指示了多个QoS流的协同调度需求。
在一个实施例中,所述方法还包括:响应于接收到非协同控制信息,恢复协同调度的至少两个所述QoS流的单独调度。
此处的非协同控制信息有可以称之为独立控制信息。
在多个QoS流当前处于协同调度场景下,该非协同控制信息相当于指示对应的QoS流退出多个QoS流的协同调度,恢复到独立调度。
在多个QoS流当前处于非协同调度场景下,该非协同控制信息相当于指示对应的QoS流维持独立调度。
如图5所示,本公开实施例提供一种QoS流的调度方法,其中,由第二网络设备执行,所述方法包括:
S310:发送QoS请求消息,所述QoS请求消息指示QoS流的候选配置集;所述候选配置集包括:所述QoS流的多套参数配置。
示例性地,所述候选配置集,包括以下至少之一:
协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
此处候选参数配置集包含的非协同参数配置可为一套或多套;同样地,候选配置集包含的协同参数配置也可以为一套或多套。
示例性地,所述非协同参数配置包括:在不同情况下单独调度QoS流的多套参数配置。
在一些实施例中,所述第二网络设备可为核心网的网络设备,核心网的网络设备简称核心网设备。
该第二网络设备包括但不限于:AMF、SMF或者UPF等网络设备。
该QoS请求消息指示QoS流的候选配置集包括但不限于:
该QoS请求消息包含有显性指示所述候选配置集的配置信息;
和/或,
该QoS请求消息包含与候选配置集对应且还指示其他内容的信息,这种指示方式相当于隐含指示。
所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
或者,
所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
在一个实施例中,所述参考参数配置与所述非参考参数配置的相同参数的换算关系,指示以下至少之一:
所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
例如,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含非协同参数配置和第一差异配置,其中,所述第一差异配置指示:所述协同参数配置相对于所述非协同参数配置的差异配置;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含系统参数配置和第二差异参数配置,其中,所述第二差异配置包括:所述非协同参数配置相对于所述协同参数配置的差异配置。
此处的第一差异配置和第二差异配置的描述可以参见前述实施例,此处就不再重复了。若同时包含协同参数配置和非协同参数配置的候选配置集是由第二网络设备指示的,采用这种第一差异配置和第二差异配置的方式来实现两种参数配置的指示,可以减少比特开销,减少第一网络设备和第二网络设备之间的信令交互长度。
又例如,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述非协同参数配置和第一换算标识,其中,所述第一换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述协同参数配置和第二换算标识,其中,所述第二换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系。
第一换算标识和/或第二换算标识,指示的都是协同参数配置和非协同参数配置之间的换算关系,例如,在本公开实施例中第一换算标识和第二换算标识都可以是对应换算关系的索引或编号,则第一网络设备接收到候选配置集的配置信息之后,先从候选配置集中确定出协同参数配置和非协同参数配置中的一套配置,然后基于第一换算标识或第二换算标识找到换算关系,将已经确定出的参数配置作为已知量输入到换算关系中,得到另一套参数配置。配置信息仅包含一个换算标识,相对于携带整体参数配置的参数值,具有比特开销小的特点。
示例性地,所述非协同参数配置与所述协同参数配置之间的换算关系,指示以下至少之一:
所述非协同参数配置与所述协同参数配置的相同参数之间的比值;
所述非协同参数配置与所述协同参数配置的相同参数之间的差值;
所述非协同参数配置与所述协同参数配置的相同参数之间的换算函数。
在一些实施例中,所述QoS请求消息包括以下至少之一:
QoS建立请求消息;
QoS修改请求消息。
示例性地,该QoS建立请求消息包括但不限于:协议数据单元(Protocol Data Unit,PDU)会话资源建立请求(PDU Session Resource Setup Request)和/或初始上下文建立请求(Initial Context Setup Request)。
该QoS修改请求消息包括但不限于:PDU会话资源修改请求(PDU Session Resource Modify Request)。
如图6所示,本公开实施例提供一种QoS流的调度方法,由第二网络设备执行,所述QoS流的调度方法可包括:
S410:响应于具有QoS流的协同调度需求,发送协同控制信息,其中,所述协同控制信息,指示所述协同调度需求。
在本公开实施例中,该第二网络设备会下发协同控制信息,该协同控制信息可以触发第一网络设备进行多个QoS流的协同调度。
第一网络设备接收到该协同调度需求之后,可以根据第二网络设备发送的协同参数配置进行多个QoS流的协同调度,也可以根据第一网络设备通过其他方式(例如基于协议)确定的协同参数配置进行多个QoS流的协同调度。
总之,本公开实施例提供的QoS流的调度方法可以单独执行,也可以与前述应用于第二网络设备的其他QoS流的调度方法组合执行。
在一个实施例中,所述发送协同控制信息,包括:
发送包含所述协同控制信息的业务请求消息。
在本公开实施例中,该协同控制信息是包含在业务请求消息中的,如此不用涉及专用信令来传输该协同控制信息,且在有业务请求或业务修改时,就发送协同控制信息,具有一条消息实现了多重功能,减少了第一网络设备和第二网络设备之间的信息交互量的特点。
在一些实施例中,所述方法还包括:监控具有关联关系的多个QoS流的QoS值。
此处的监控多个QoS流的QoS值可包括:监控QoS流的实际延时、分配的带宽、丢包率和/或等QoS参数的QoS值。示例性地,此处的监控多个QoS流的QoS值,可以包括:所述第一网络设备自身监控多个QoS流的QoS值,或者,从UE接收UE监控的QoS流的QoS值。
在一些实施例中,所述方法可包括:
根据监控的QoS值确定是否具有多个QoS流的协同调度需求。
当然确定是否具有多个QoS流的协同调度需求,还可以是根据多个QoS流建立之初的资源分配结果来确定。
示例性地,所述方法可包括:
响应于在所述多个QoS流的至少一个QoS流的QoS值低于QoS门限,确定具有QoS流的协同调度需求;
响应于在所述多个QoS流的至少一个QoS流的QoS值变化后所述多个QoS流的任意一个QoS流的QoS值都达到QoS门限,确定具有QoS流的协同调度需求;
响应于在所述多个QoS流中的至少一个QoS流的资源分配失败,确定具有QoS流的协同调度需求;
响应于在所述多个QoS流中的每一个QoS流的资源分配失败,确定具有QoS流的协同调度需求。
值得注意的是:响应于在所述多个QoS流的至少一个QoS流的QoS值低于QoS门限、响应于在所述多个QoS流的至少一个QoS流的QoS值变化后所述多个QoS流的任意一个QoS流的QoS值都达到QoS门限、响应于在所述多个QoS流中的至少一个QoS流的资源分配失败、响应于在所 述多个QoS流中的每一个QoS流的资源分配失败都可认为对应一个触发事件,一旦触发事件发生,确定有协同调度需求,且向第一网络设备发送协同控制信息。
监控具有关联关系的多个QoS流的实际带宽、误码率、掉包率等一个或多个QoS参数的QoS值的。在监控到至少一个QoS流的QoS值低于QoS门限,则该QoS流的QoS值会使得具有关联关系的多个QoS流的整体质量下降,若其他QoS流还继续维持大资源分配,就会导致资源浪费的同时具有通信质量差。
在具有关联关系的多个QoS流中的每一个QoS流的QoS值都达到QoS门限,则说明当前可以多个QoS流组合后可以向用户提供较好的通信质量,此时可以认为具有协同调度的需求。例如,多个QoS流中的每一个QoS流的实际延迟都小于协同调度的分组数据延迟预算,此时说明网络环境具有较高的传输速率,若继续按照较大的分组数据延迟预算进行各个QoS流的独立调度,一方面不能有效使用通信资源,另外一方面不能提供当前网络环境允许下的高QoS。
同样地,在QoS流的创建阶段,可以根据多个QoS流的资源分配结果,确定是否需要维持剩余QoS流的调度,或者,确定在完成各个QoS流的资源分配之后继续协同调度多个QoS流的资源。
示例性地,若具有关联关系的多个QoS流至少一个QoS流的资源分配失败,且该QoS流的资源分配失败,会使得多个QoS流组合提供的通信服务不能实现或者质量极差,则可以认为具有协同调度需求,则可以触发第一网络设备暂时释放掉已经分配该多个QoS流中其他QoS流的资源,或者,延迟关联的其他QoS流的资源分配,例如,在成功为该QoS流的资源分配后,再为该QoS流关联的其他QoS流进行资源分配。
在一些实施例中,所述协同控制信息,还用于需要协同调度的QoS流。
协同控制信息如何指示需要协同调度的QoS流可以参见前述对应实施例,此处就不再重复了。
在一些实施例中,所述方法还包括:
响应于多个QoS流的协同调度需求消失,发送非协同控制信息,其中,所述非协同该控制信息,指示恢复多个QoS流的单独调度。
在本公开实施例中,若多个QoS流的协同调度需求消失,则通过非协同控制信息指示协同调度需求的消失,若多个QoS流当前还处于协同调度场景下,则第一网络设备接收到该非协同控制信息之后,就会恢复各QoS流的单独调度,若多个QoS流的任意一个QoS流已经基于其他原因进入到独立调度的非协同调度场景,则第一网络设备会继续维持对应QoS流的单独调度。
本公开实施例提供一种QoS流调度方法,可由第二设备执行,所述方法还包括:
响应于单独调度的情况发生变化,发送指示单独调度的情况发生变化的通知。
若确定出单独调度的情况发生变化,会向第一网络设备发送指示单独调度的情况发生变化的通知,从而使第一网络设备能够及时根据情况变化调整单个QoS流的调度所使用的参数配置。
在一些实施例中,所述通知包括:发生触发事件的通知。
在一些实施例中,所述通知携带在业务请求消息中。
在一些实施例中,所述业务请求消息包括以下至少之一:
业务建立请求消息;
业务修改请求消息。
示例性地,该QoS建立请求消息包括但不限于:协议数据单元(Protocol Data Unit,PDU)会话资源建立请求(PDU Session Resource Setup Request)和/或初始上下文建立请求(Initial Context Setup Request)。
该QoS修改请求消息包括但不限于:PDU会话资源修改请求(PDU Session Resource Modify Request)。
在一些实施例中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
在一些实施例中,所述方法还包括:
发送指示单独调度的情况恢复的通知。
该指示单独调度的情况恢复的通知,能够使得第一网络设备恢复QoS流单独调度的原始参数配置或者默认参数配置等。
为新增加的多模态业务和联邦学习业务等多UE的应用场景,增加Qos流的协同调度。例如增加Qos流的候选配置集,增加基站的协同调度的处理。示例性地,基站可以根据候选配置集中的协同参数配置进行多个QoS流的资源分配调度。
Qos建立/修改请求从核心网发送到达基站时,可以携带Qos流的候选配置集;该Qos流候选配置集,可以用于基站即该Qos流在协同调度场景下的配置使用;
作为一种实施例,核心网可以在通知非协同调度场景下的参数配置时,同时携带协同调度场景下的候选配置集;
示例性地,可以给某个Qos流一套或者多套候选的协同参数配置,供协同调度场景下使用;此处的协同调度场景即为:多个QoS流协同调度的场景。
在一些情况下,协同参数配置的部分参数,可以和非协同调度应场景下的非协同参数配置相同或者不同。
示例性地,Qos流1中分组数据延迟预算(Packet Delay Budget)这个参数非协同调度场景下的参数配置=100ms;
同时在协同调度场景下,还会给出Qos流1中分组数据延迟预算这个参数的参数值为50ms;
同时在协同调度场景下,还会给出Qos流1中分组数据延迟预算这个参数的参数值为20ms;
Qos流的协同控制参数可以通过显示信令由核心网配置给基站,也可以协议约定。
作为一种实施例,核心网可以在通知非协同调度场景下的参数配置时同时携带协同调度场景下的参数配置;非协同调度场景即为:多个QoS流不协同调度,仅仅是各个流独立调度,彼此没有关联的场景。
在一个实施例中,协同调度场景的参数配置在核心网发送的候选参数配置中,相对于非协同参数配置仅仅携带增量部分(或者说差异部分),从而可以减少信令开销。
作为一种实施例,可以协议约定某个Qos流如何由协同调度场景下的参数配置确定到非协同调 度场景下的参数配置;比如说,分组数据延迟预算(Packet Delay Budget)这个参数减为原来的一半。
此时,核心网可以在通知协同调度场景下的参数配置时仅需携带一个生效标识,即生效协同调度场景下的参数配置;
值得注意的是:
核心网发起的Qos建立/修改请求消息可以是如下消息中的一个或多个:
分组数据会话资源建立请求(PDU SESSION RESOURCE SETUP REQUEST);
分组数据会话资源修改请求(PDU SESSION RESOURCE MODIFY REQUEST);
初始化上下文建立请求(INITIAL CONTEXT SETUP REQUEST)。
基站在收到核心网发送的需要进行Qos协同的需求之后,使用Qos流的协同参数配置。
作为一种实施例:核心网发起的业务建立/修改请求中,将携带协同控制信息。
作为一种实施例:协同控制信息,指示核心网期望接入网对数据流是否进行协同调度之类的。协同控制信息,即核心网期望对数据流进行何种协同处理。
在一些实施例中,协同控制信息可以隐含用分组信息携带,即若核心网通知基站某个PDN会话的QOs流1需要和QOs流2都属于某个需要协同的分组,则隐含表达了核心网期望对这两个数据流进行QoS协同;即使用哪个候选配置集。在一个实施例中,QOs流1需要和QOs流2都属于某个需要协同的分组,可以是跨多个终端设备的。
作为一种实施例:候选配置集可以预先协议约定,或者核心网显示通知。
示例性地,Qos流1中分组数据延迟预算(Packet Delay Budget)这个参数在非协同调度场景下的参数配置为:100ms;且
Qos流2中分组数据延迟预算(Packet Delay Budget)这个参数在非协同调度场景下的参数配置为:100ms。
协同调度QoS流1和QoS流2时:
Qos流1和Qos流2中分组数据延迟预算这个参数在协同调度场景下的参数配置1为:50ms。
协同控制信息可以是基站在检测到特定触发事件时,核心网期待对同一个协同分组中其他数据流的处理。即一个QOs流的变化会影响到其他Qos流的参数变化;
示例性地,在使用协同参数配置时,若某个流达不到QoS要求,则很可能导致其他QoS流的QoS参数也下调或上升。一个例子是,摄像机1速率下降,则和他一起协同完成任务的摄像机可能会同样下调采集精度或者提升精度进行补偿。
作为一种实施例:若核心网通知基站某个PDN会话(session)的QOs流1需要和QOs流2都属于某个需要协同的分组,PDN会话的QOs流1的速率低于某个门限;即基站检测到事件A发生。
此时,基站检测到A发生,则将使用Qos流2采用候选的控制参数集合(下调/或者上升);
指示单独调度的情况发生变化的通知,还可以是基站在检测到特定触发事件时,核心网期待对一个数据流的处理。比如检测到QOs流1的速率低于某个门限,即基站检测到事件B发生。此时,基站检测到B发生,则将使用Qos流1采用候选的非协同参数配置中的其他参数配置,从而使得 QoS流当前使用的参数配置下调或者上升)
示例性地,特定的触发事件还可以是基站检测到无线信号质量或者基站负载的变更,这些都是前述单独调度的情况发生变化的情况,当然也可以是前述协同控制信息传输的触发事件;
示例性地,特定的触发事件可以是核心网通过发起的Qos建立/修改请求消息通知基站。
基站还可以在收到核心网停止进行Qos协同调度需求之后,可以回落到非协调度场景下,根据非协同参数配置,进行对应QoS流的非协同调度。
如图7所示,本公开实施例提供一种QoS流的调度装置,其中,所述装置包括:
确定模块610,被配置为确定QoS流的候选配置集,其中,所述候选配置集包括:所述QoS流的多套参数配置。
该QoS流的调度装置可应用于基站等包含接入网的第一网络设备中。
在一些实施例中,所述确定模块610可为程序模块;所述程序模块被处理器执行之后,能够实现多个QoS流协同调度的候选参数集的确定。
在另一个实施例中,所述确定模块610可为软硬结合模块;所述软硬结合模块包括但不限于:可编程阵列;所述可编程阵列包括但包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述确定模块610可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述候选配置集,包括以下至少之一:
协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
在另一些实施例中,所述非协同参数配置包括:
在不同情况下单独调度QoS流的多套参数配置。
在一些实施例中,所述确定模块610,被配置为接收QoS请求消息,其中,所述QoS请求消息包含QoS流的候选配置集的配置信息;或者,根据协议确定候选配置集。
在一些实施例中,所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
或者,
所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
在一些实施例中,所述参考参数配置与所述非参考参数配置的相同参数的换算关系,指示以下至少之一:
所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
示例性地,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含非协同参数配置和第一差异配置,其中,所述第一差异配置指示:所述协同参数配置相对于所述非协同参数配置的差异配置;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含系统参数配置和第二差异参数配置,其中,所述第二差异配置包括:所述非协同参数配置相对于所述协同参数配置的差异配置。
又示例性地,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述非协同参数配置和第一换算标识,其中,所述第一换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述协同参数配置和第二换算标识,其中,所述第二换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系。
在一些实施例中,所述QoS请求消息包括以下至少之一:
QoS建立请求消息;
QoS修改请求消息。
在一些实施例中,所述装置,还包括:
协同调度模块,被配置为响应于确定具有QoS流的协同调度需求,根据协同参数配置协同调度至少两个所述QoS流。
在一些实施例中,所述装置还包括:
协同调度需求模块,被配置为响应于接收到协同控制信息,确定具有QoS流的协同调度需求。
在一些实施例中,所述接收模块,被配置为接收包含所述协同控制信息的业务请求消息。
在一些实施例中,所述业务请求消息包括以下至少之一:
业务建立请求消息;
业务修改请求消息。
在一些实施例中,所述协同控制信息,还指示需要协同调度的QoS流。
在一些实施例中,所述协同控制信息是根据多个QoS流的分组信息确定。
在一些实施例中,所述装置还包括:
恢复模块,被配置为响应于接收到非协同控制信息,恢复协同调度的至少两个所述QoS流的单独调度。
在一些实施例中,所述装置还包括:
单独调度模块,被配置为响应于单独调度的情况发生变化,根据所述非协同参数配置调整QoS流单独调度使用的参数配置。
在一些实施例中,所述装置还包括:
情况变化模块,被配置为响应于接收到触发事件的通知,确定单独调度的情况发生变化。
在一些实施例中,所述通知携带在业务请求消息中。
在一些实施例中,所述业务请求消息包括以下至少之一:
业务建立请求消息;
业务修改请求消息。
在一些实施例中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
在一些实施例中,所述装置还包括:
原始参数配置恢复模块,被配置为响应于接收到单独调度的情况恢复的通知,恢复QoS流单独调度的原始参数配置。
如图8所示,本公开实施例提供一种QoS流的调度装置,其中,所述装置包括:
发送模块710,被配置为发送QoS请求消息,所述QoS请求消息指示QoS流的候选配置集;
所述候选配置集包括:所述QoS流的多套参数配置。
在一些实施例中,所述发送模块710可为程序模块;所述程序模块被处理器执行之后,能够实现所述QoS请求消息的发送。
在一些实施例中,所述发送模块710可为软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述发送模块710可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述候选配置集,包括以下至少之一:
协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
在一些实施例中,所述非协同参数配置包括:在不同情况下单独调度QoS流的多套参数配置。
在一些实施例中,所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
或者,
所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
在一些实施例中,所述非协同参数配置与所述协同参数配置之间的换算关系,指示以下至少之 一:
所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
示例性地,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含非协同参数配置和第一差异配置,其中,所述第一差异配置指示:所述协同参数配置相对于所述非协同参数配置的差异配置;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含系统参数配置和第二差异参数配置,其中,所述第二差异配置包括:所述非协同参数配置相对于所述协同参数配置的差异配置。
又示例性地,所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述非协同参数配置和第一换算标识,其中,所述第一换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系;
或者,
所述候选配置集指示所述协同参数配置和所述非协同参数配置,所述候选配置集包含所述协同参数配置和第二换算标识,其中,所述第二换算标识,指示所述非协同参数配置与所述协同参数配置之间的换算关系。
在一些实施例中,所述QoS请求消息包括以下至少之一:
QoS建立请求消息;
QoS修改请求消息。
在一些实施例中,所述装置还包括:
协同控制信息模块,被配置为响应于具有QoS流的协同调度需求,发送协同控制信息,其中,所述协同控制信息,指示所述协同调度需求。
在一些实施例中,所述协同控制信息模块,被配置为发送包含所述协同控制信息的业务请求消息。
在一些实施例中,所述装置还包括:
协同调度需求模块,被配置为执行以下至少之一:
响应于在所述多个QoS流的至少一个QoS流的QoS值低于QoS门限,确定具有QoS流的协同调度需求;
响应于在所述多个QoS流的至少一个QoS流的QoS值变化后所述多个QoS流的任意一个QoS流的QoS值都达到QoS门限,确定具有QoS流的协同调度需求;
响应于在所述多个QoS流中的至少一个QoS流的资源分配失败,确定具有QoS流的协同调度 需求;
响应于在所述多个QoS流中的每一个QoS流的资源分配失败,确定具有QoS流的协同调度需求。
在一些实施例中,所述协同控制信息,还用于需要协同调度的QoS流。
在一些实施例中,所述方法还包括:
非协同控制信息模块,被配置为响应于多个QoS流的协同调度需求消失,发送非协同控制信息,其中,所述非协同该控制信息,指示恢复多个QoS流的单独调度。
在一些实施例中,所述发送模块,还被配置为响应于多个QoS流的协同调度需求消失,发送非协同控制信息,其中,所述非协同该控制信息,指示恢复多个QoS流的单独调度。
在一些实施例中,所述发送模块,被配置为响应于单独调度的情况发生变化,发送指示单独调度的情况发生变化的通知。
在一些实施例中,所述通知包括:发生触发事件的通知。
在一些实施例中,所述通知携带在业务请求消息中。
在一些实施例中,所述业务请求消息包括以下至少之一:
业务建立请求消息;
业务修改请求消息。
在一些实施例中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
在一些实施例中,所述发送模块,还被配置为发送指示单独调度的情况恢复的通知。
本公开实施例提供一种网络设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的QoS流的调度方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在网络设备掉电之后能够继续记忆存储其上的信息。
这里,所述网络设备包括:接入网的接入网设备和/或核心网的核心网设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2A、图2B、图3A、图3B及图4至6所示的方法的至少其中之一。
如图9所示,本公开一实施例示出一种网络设备的结构。例如,网络设备900可以被提供为一网络侧设备。该网络设备可为前述的接入设备和/或核心网设备。
参照图9,网络设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,2、图3A、图3B 及图4至6所示方法。
网络设备900还可以包括一个电源组件926被配置为执行网络设备900的电源管理,一个有线或无线网络接口950被配置为将网络设备900连接到网络,和一个输入输出(I/O)接口958。网络设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开实施例还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器932,上述指令可由网络设备的处理组件920执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
该指令被处理器执行后,能够实现前述任意技术方案提供的QoS流的调度方法,例如,执行如图2A、图2B、图3A、图3B及图4至6所示的方法的至少其中之一。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (76)

  1. 一种服务质量QoS流的调度方法,其中,由第一网络设备执行,所述方法包括:
    确定QoS流的候选配置集,其中,所述候选配置集包括:所述QoS流的多套参数配置。
  2. 根据权利要求1所述的方法,其中,所述候选配置集,包括以下至少之一:
    协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
    非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
  3. 根据权利要求2所述的方法,其中,所述非协同参数配置包括:
    在不同情况下单独调度QoS流的多套参数配置。
  4. 根据权利要求1至3任一项所述的方法,其中,所述确定QoS流的候选配置集,包括:
    接收QoS请求消息,其中,所述QoS请求消息包含QoS流的候选配置集的配置信息;
    或者,
    根据协议确定候选配置集。
  5. 根据权利要求1至4任一项所述的方法,其中,
    所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
    或者,
    所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
  6. 根据权利要求5所述的方法,其中,所述换算关系,指示以下至少之一:
    所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
  7. 根据权利要求1至6任一项所述的方法,其中,所述QoS请求消息包括以下至少之一:
    QoS建立请求消息;
    QoS修改请求消息。
  8. 根据权利要求1至7任一项所述的方法,其中,所述方法,还包括:
    响应于确定具有QoS流的协同调度需求,根据所述协同参数配置协同调度至少两个所述QoS流。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    响应于接收到协同控制信息,确定具有QoS流的协同调度需求。
  10. 根据权利要求9所述的方法,其中,所述方法,还包括:
    接收包含所述协同控制信息的业务请求消息。
  11. 根据权利要求10所述的方法,其中,所述业务请求消息包括以下至少之一:
    业务建立请求消息;
    业务修改请求消息。
  12. 根据权利要求8至11任一项所述的方法,其中,所述协同控制信息,还指示需要协同调度的QoS流。
  13. 根据权利要求12所述的方法,其中,所述协同控制信息是根据多个QoS流的分组信息确定。
  14. 根据权利要求1至13任一项所述的方法,其中,所述方法还包括:
    响应于接收到非协同控制信息,恢复协同调度的至少两个所述QoS流的单独调度。
  15. 根据权利要求2至14任一项所述的方法,其中,所述方法还包括:
    响应于单独调度的情况发生变化,根据所述非协同参数配置调整QoS流单独调度使用的参数配置。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    响应于接收到触发事件的通知,确定单独调度的情况发生变化。
  17. 根据权利要求16所述的方法,其中,所述通知携带在业务请求消息中。
  18. 根据权利要求17所述的方法,其中,所述业务请求消息包括以下至少之一:
    业务建立请求消息;
    业务修改请求消息。
  19. 根据权利要求16至18任一项所述的方法,其中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
  20. 根据权利要求2至14任一项所述的方法,其中,所述方法还包括:
    响应于接收到单独调度的情况恢复的通知,恢复QoS流单独调度的原始参数配置。
  21. 一种QoS流的调度方法,其中,由第二网络设备执行,所述方法包括:
    发送QoS请求消息,所述QoS请求消息指示QoS流的候选配置集;所述候选配置集包括:所述QoS流的多套参数配置。
  22. 根据权利要求21所述的方法,其中,所述候选配置集,包括以下至少之一:
    协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
    非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
  23. 根据权利要求22所述的方法,其中,所述非协同参数配置包括:
    在不同情况下单独调度QoS流的多套参数配置。
  24. 根据权利要求21所述的方法,其中,所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
    或者,
    所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配 置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
  25. 根据权利要求24所述的方法,其中,所述参考参数配置与所述非参考参数配置的相同参数的换算关系,指示以下至少之一:
    所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
  26. 根据权利要求21至25任一项所述的方法,其中,所述QoS请求消息包括以下至少之一:
    QoS建立请求消息;
    QoS修改请求消息。
  27. 根据权利要求21至26任一项所述的方法,其中,所述方法还包括:
    响应于具有QoS流的协同调度需求,发送协同控制信息,其中,所述协同控制信息,指示所述协同调度需求。
  28. 根据权利要求27所述的方法,其中,所述发送协同控制信息,包括:
    发送包含所述协同控制信息的业务请求消息。
  29. 根据权利要求27或28所述的方法,其中,所述方法还包括如下至少之一:
    响应于在所述多个QoS流的至少一个QoS流的QoS值低于QoS门限,确定具有QoS流的协同调度需求;
    响应于在所述多个QoS流的至少一个QoS流的QoS值变化后所述多个QoS流的任意一个QoS流的QoS值都达到QoS门限,确定具有QoS流的协同调度需求;
    响应于在所述多个QoS流中的至少一个QoS流的资源分配失败,确定具有QoS流的协同调度需求;
    响应于在所述多个QoS流中的每一个QoS流的资源分配失败,确定具有QoS流的协同调度需求。
  30. 根据权利要求27至29任一项所述的方法,其中,所述协同控制信息,还用于需要协同调度的QoS流。
  31. 根据权利要求21至30任一项所述的方法,其中,所述方法还包括:
    响应于多个QoS流的协同调度需求消失,发送非协同控制信息,其中,所述非协同该控制信息,指示恢复多个QoS流的单独调度。
  32. 根据权利要求22至31任一项所述的方法,其中,所述方法还包括:
    响应于单独调度的情况发生变化,发送指示单独调度的情况发生变化的通知。
  33. 根据权利要求32所述的方法,其中,所述通知包括:发生触发事件的通知。
  34. 根据权利要求32或33所述的方法,其中,所述通知携带在业务请求消息中。
  35. 根据权利要求34所述的方法,其中,所述业务请求消息包括以下至少之一:
    业务建立请求消息;
    业务修改请求消息。
  36. 根据权利要求22至35任一项所述的方法,其中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
  37. 根据权利要求2至14任一项所述的方法,其中,所述方法还包括:
    发送指示单独调度的情况恢复的通知。
  38. 一种QoS流的调度装置,其中,所述装置包括:
    确定模块,被配置为确定QoS流的候选配置集,其中,所述候选配置集包括:所述QoS流的多套参数配置。
  39. 根据权利要求38所述的装置,其中,所述候选配置集,包括以下至少之一:
    协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
    非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
  40. 根据权利要求39所述的装置,其中,所述非协同参数配置包括:
    在不同情况下单独调度QoS流的多套参数配置。
  41. 根据权利要求38至40任一项所述的装置,其中,所述确定模块,被配置为接收QoS请求消息,其中,所述QoS请求消息包含QoS流的候选配置集的配置信息;或者,根据协议确定候选配置集。
  42. 根据权利要求39至41任一项所述的装置,其中,
    所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
    或者,
    所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
  43. 根据权利要求42所述的装置,其中,所述换算关系,指示以下至少之一:
    所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
  44. 根据权利要求38至43任一项所述的装置,其中,所述QoS请求消息包括以下至少之一:
    QoS建立请求消息;
    QoS修改请求消息。
  45. 根据权利要求38至44任一项所述的装置,其中,所述装置,还包括:
    协同调度模块,被配置为响应于确定具有QoS流的协同调度需求,根据所述协同参数配置协同调度至少两个所述QoS流。
  46. 根据权利要求45所述的装置,其中,所述装置还包括:
    协同调度需求模块,被配置为响应于接收到协同控制信息,确定具有QoS流的协同调度需求。
  47. 根据权利要求46所述的装置,其中,所述装置还包括:
    协同控制信息模块,被配置为接收包含所述协同控制信息的业务请求消息。
  48. 根据权利要求47所述的装置,其中,所述业务请求消息包括以下至少之一:
    业务建立请求消息;
    业务修改请求消息。
  49. 根据权利要求46至48任一项所述的装置,其中,所述协同控制信息,还指示需要协同调度的QoS流。
  50. 根据权利要求49所述的装置,其中,所述协同控制信息是根据多个QoS流的分组信息确定。
  51. 根据权利要求38至50任一项所述的装置,其中,所述装置还包括:
    恢复模块,被配置为响应于接收到非协同控制信息,恢复协同调度的至少两个所述QoS流的单独调度。
  52. 根据权利要求39至51任一项所述的装置,其中,所述装置还包括:
    单独调度模块,被配置为响应于单独调度的情况发生变化,根据所述非协同参数配置调整QoS流单独调度使用的参数配置。
  53. 根据权利要求52所述的装置,其中,所述装置还包括:
    情况变化模块,被配置为响应于接收到触发事件的通知,确定单独调度的情况发生变化。
  54. 根据权利要求53所述的装置,其中,所述通知携带在业务请求消息中。
  55. 根据权利要求54所述的装置,其中,所述业务请求消息包括以下至少之一:
    业务建立请求消息;
    业务修改请求消息。
  56. 根据权利要求53至55任一项所述的装置,其中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
  57. 根据权利要求37至51任一项所述的装置,其中,所述装置还包括:
    原始参数配置恢复模块,被配置为响应于接收到单独调度的情况恢复的通知,恢复QoS流单独调度的原始参数配置。
  58. 一种QoS流的调度装置,其中,所述装置包括:
    发送模块,被配置为发送QoS请求消息,所述QoS请求消息指示QoS流的候选配置集;所述候选配置集包括:所述QoS流的多套参数配置。
  59. 根据权利要求58所述的装置,其中,所述候选配置集,包括以下至少之一:
    协同参数配置,其中,所述协同参数配为:多个QoS流协同调度的参数配置;
    非协同参数配置,其中,所述非协同参数配置为:QoS流单独调度的参数配置。
  60. 根据权利要求59所述的装置,其中,所述非协同参数配置包括:
    在不同情况下单独调度QoS流的多套参数配置。
  61. 根据权利要求58至59任一项所述的装置,其中,所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和差异配置;所述差异配置,指示所述多套参数配置中非参考参数配置相对于所述参考参数配置的差异;
    或者,
    所述候选配置集包括:多套参数配置;所述候选配置集包括:一套参考参数配置和换算关系配置,其中,所述换算关系配置,指示所述多套参数配置中非参考参数配置与所述参考参数配置之间的换算关系。
  62. 根据权利要求61所述的装置,其中,所述非协同参数配置与所述协同参数配置之间的换算关系,指示以下至少之一:
    所述参考参数配置与所述非参考参数配置的相同参数之间的比值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的差值;
    所述参考参数配置与所述非参考参数配置的相同参数之间的换算函数。
  63. 根据权利要求58至62任一项所述的装置,其中,所述QoS请求消息包括以下至少之一:
    QoS建立请求消息;
    QoS修改请求消息。
  64. 根据权利要求59至63任一项所述的装置,其中,所述发送模块,还被配置为响应于具有QoS流的协同调度需求,发送协同控制信息,其中,所述协同控制信息,指示所述协同调度需求。
  65. 根据权利要求64所述的装置,其中,所述发送模块,还被配置为发送包含所述协同控制信息的业务请求消息。
  66. 根据权利要求64或65所述的装置,其中,所述发送模块,还被配置为执行以下至少之一:
    响应于在所述多个QoS流的至少一个QoS流的QoS值低于QoS门限,确定具有QoS流的协同调度需求;
    响应于在所述多个QoS流的至少一个QoS流的QoS值变化后所述多个QoS流的任意一个QoS流的QoS值都达到QoS门限,确定具有QoS流的协同调度需求;
    响应于在所述多个QoS流中的至少一个QoS流的资源分配失败,确定具有QoS流的协同调度需求;
    响应于在所述多个QoS流中的每一个QoS流的资源分配失败,确定具有QoS流的协同调度需求。
  67. 根据权利要求64至66任一项所述的装置,其中,所述协同控制信息,还用于需要协同调度的QoS流。
  68. 根据权利要求64至67任一项所述的装置,其中,所述发送模块,还被配置为响应于多个QoS流的协同调度需求消失,发送非协同控制信息,其中,所述非协同该控制信息,指示恢复多个 QoS流的单独调度。
  69. 根据权利要求59至68任一项所述的装置,其中,所述发送模块,被配置为响应于单独调度的情况发生变化,发送指示单独调度的情况发生变化的通知。
  70. 根据权利要求69所述的装置,其中,所述通知包括:发生触发事件的通知。
  71. 根据权利要求69或70所述的装置,其中,所述通知携带在业务请求消息中。
  72. 根据权利要求71所述的装置,其中,所述业务请求消息包括以下至少之一:
    业务建立请求消息;
    业务修改请求消息。
  73. 根据权利要求59至72任一项所述的装置,其中,所述通知,还指示需要单独调度的情况发生变化的QoS流。
  74. 根据权利要求59至73任一项所述的装置,其中,所述发送模块,还被配置为发送指示单独调度的情况恢复的通知。
  75. 一种网络设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至20、或21至37任一项提供的方法。
  76. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至20、或21至37任一项提供的方法。
PCT/CN2021/108247 2021-07-23 2021-07-23 服务质量流的调度方法及装置、网络设备及存储介质 WO2023000330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108247 WO2023000330A1 (zh) 2021-07-23 2021-07-23 服务质量流的调度方法及装置、网络设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108247 WO2023000330A1 (zh) 2021-07-23 2021-07-23 服务质量流的调度方法及装置、网络设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023000330A1 true WO2023000330A1 (zh) 2023-01-26

Family

ID=84980395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108247 WO2023000330A1 (zh) 2021-07-23 2021-07-23 服务质量流的调度方法及装置、网络设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023000330A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332187A (zh) * 2015-06-30 2017-01-11 华为技术有限公司 一种WLAN中的QoS参数配置方法、装置及系统
CN110769461A (zh) * 2018-07-26 2020-02-07 中国移动通信有限公司研究院 一种QoS参数的配置方法、装置和计算机可读存储介质
US20200128432A1 (en) * 2018-04-09 2020-04-23 Lg Electronics Inc. Method and smf for supporting qos

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332187A (zh) * 2015-06-30 2017-01-11 华为技术有限公司 一种WLAN中的QoS参数配置方法、装置及系统
US20200128432A1 (en) * 2018-04-09 2020-04-23 Lg Electronics Inc. Method and smf for supporting qos
CN110769461A (zh) * 2018-07-26 2020-02-07 中国移动通信有限公司研究院 一种QoS参数的配置方法、装置和计算机可读存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "KI#3A Support QoS mapping based on priority for TSC exposure", 3GPP DRAFT; S2-2105088, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20210517 - 20210528, 28 May 2021 (2021-05-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052016903 *
NOKIA, NOKIA SHANGHAI BELL, ERICSSON, CATT, ZTE, SAMSUNG, LG ELECTRONICS, INTERDIGITAL, NTT DOCOMO INC.: "(TP for BL CR V2X for TS 38.413) Support for Alternative QoS Profiles over NG", 3GPP DRAFT; R3-204047, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-Meeting; 20200601 - 20200612, 15 June 2020 (2020-06-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051898559 *
NOKIA, NOKIA SHANGHAI BELL: "Enhancement of QoS recovery", 3GPP DRAFT; R3-196537, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820370 *
VODAFONE GROUP PLC: "Non-Monotonic Alternative QoS Parameter values", 3GPP DRAFT; R3-205922, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20201102 - 20201112, 14 October 2020 (2020-10-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939246 *

Similar Documents

Publication Publication Date Title
US11432297B2 (en) Method for improving service reliability, device, and system
WO2019149080A1 (zh) 获取链路质量的方法和装置
US20210337404A1 (en) Service continuity implementation method, apparatus, and system
EP3675551B1 (en) Method and system for detecting quality of service of service
US20230209406A1 (en) Multi-flow associated transmission method, apparatus, and system
WO2022205381A1 (zh) 广播多播业务传输方法、装置及存储介质
EP4138439A1 (en) Communication method, apparatus, and system
WO2023130483A1 (zh) 信息处理方法及装置、通信设备及存储介质
JP2023547080A (ja) 接続確立方法、装置、通信機器及び記憶媒体
US10051508B2 (en) System and method for mobility support selection
WO2023000330A1 (zh) 服务质量流的调度方法及装置、网络设备及存储介质
WO2022016450A1 (zh) 逻辑信道复用方法及装置、通信设备及存储介质
EP4013110A1 (en) Sidelink radio bearing configuration method, terminal and network-side device
CN108366397B (zh) 数据映射方法及装置和无线设备
WO2023283791A1 (zh) 策略处理方法及装置、通信设备及存储介质
WO2022061773A1 (zh) 数据流处理方法及装置、通信设备及存储介质
WO2022257629A1 (zh) 一种无线通信方法及通信装置
WO2022153523A1 (ja) 通信装置、通信方法、及びプログラム
WO2022257133A1 (zh) 多终端共享pdu会话的方法、装置、通信设备及存储介质
WO2023185402A1 (zh) 通信方法及装置
WO2024031396A1 (zh) 逻辑信道的调度方法、装置、通信设备及存储介质
WO2024036632A1 (zh) Bsr增强调度方法以及装置、通信设备及存储介质
WO2024092733A1 (en) Method of synchronization of multi-modal traffic flows and related devices
WO2024000518A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2024032603A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE