WO2022271506A1 - Appareil et procédé de détection, d'identification et de localisation de drones - Google Patents

Appareil et procédé de détection, d'identification et de localisation de drones Download PDF

Info

Publication number
WO2022271506A1
WO2022271506A1 PCT/US2022/033604 US2022033604W WO2022271506A1 WO 2022271506 A1 WO2022271506 A1 WO 2022271506A1 US 2022033604 W US2022033604 W US 2022033604W WO 2022271506 A1 WO2022271506 A1 WO 2022271506A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
emissions
carrier frequencies
circuitry
drone
Prior art date
Application number
PCT/US2022/033604
Other languages
English (en)
Inventor
Tyler Shake
Thomas Wilkerson
John Dishon
Original Assignee
Raytheon Bbn Technologies Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/833,452 external-priority patent/US20220413122A1/en
Application filed by Raytheon Bbn Technologies Corp. filed Critical Raytheon Bbn Technologies Corp.
Publication of WO2022271506A1 publication Critical patent/WO2022271506A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/24Systems for measuring distance only using transmission of interrupted, pulse modulated waves using frequency agility of carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control

Definitions

  • Embodiments pertain to drone detection, drone identification and drone location. Some embodiments pertain to radio-frequency (RF) signatures. Some embodiments pertain to forced non-linear emissions (FNLEs).
  • RF radio-frequency
  • FNLEs forced non-linear emissions
  • UAVs Unmanned aerial vehicles
  • drones are one of the technological innovations of our age.
  • FIG. 1 illustrates an example of drone, in accordance with some embodiments.
  • FIG. 2 illustrates an example frequency spectrum, in accordance with some embodiments.
  • FIG. 3 illustrates an example of drone detection, in accordance with some embodiments.
  • FIG. 4 illustrates a drone detecting, identifying, and locating system, in accordance with some embodiments.
  • FIG. 5 illustrates a block diagram of an example machine, in accordance with some embodiments.
  • FIG. 6 is a flow chart describing a procedure 600 for drone detection, identification and location, in accordance with some embodiments.
  • a drone detection, identification and location system and method may illuminate a target with one or multiple selected radio-frequency (RF) carrier frequencies. Both direct emissions received from the target and re emissions generated by the target may be processed to determine whether the target is a drone, to identify the drone, and to locate the drone.
  • the re-emissions may be generated by circuitry of the target resulting from the illumination with the one or multiple RF carrier frequencies.
  • the re-emissions may comprise cross-modulation products (CMPs) including forced non-linear emissions (FNLEs).
  • CMPs cross-modulation products
  • FNLEs forced non-linear emissions
  • the direct emissions and the re-emissions may be processed to generate an RF signature for the target.
  • Drone 100 may be an unmanned aerial vehicle (UAV) and when operating, may be controlled by a remotely-located operator. Drone 100 may include various active and passive circuitry, including communication antennas, as well as structural elements, which may generate direct emissions and re emissions used for drone detecting, identifying and/or locating as described here. These embodiments are described in more detail below.
  • UAV unmanned aerial vehicle
  • Drone 100 may include various active and passive circuitry, including communication antennas, as well as structural elements, which may generate direct emissions and re emissions used for drone detecting, identifying and/or locating as described here.
  • FIG. 2 illustrates an example frequency spectrum, in accordance with some embodiments.
  • the frequency spectrum includes direct emissions 202 from the drone as well as re-emissions 204 from the drone.
  • the re-emissions 204 may be generated by circuitry of the target resulting from the illumination with selected one or multiple RF carrier frequencies 206.
  • FIG. 3 illustrates an example of drone detection, in accordance with some embodiments.
  • Drone 100 may be illuminated by a transmit waveform 302 comprising the selected one or multiple RF carrier frequencies 206 (FIG. 2). Emissions as well as re-emissions 304 generated by the drone 100 may be detected and processed for drone detection, identification and/or geo-location as described herein.
  • one or more transmit antennas 312 may be used for the transmission of the one or multiple RF carrier frequencies.
  • One or more receive antennas 314 may be used to receive the emissions and re emissions.
  • the one or more receive antennas 314 may receive cross-modulation product (CMP) return signals re-emitted by the target, although the scope of the embodiments is not limited in this respect.
  • CMP cross-modulation product
  • an apparatus, method, and computer program product for drone detecting, identifying, and/or locating.
  • a target device may be intentionally illuminated with electromagnetic energy selected to have specific characteristics (e.g., frequency, power, waveform, directionality, duration, etc.) described herein.
  • the target device which may be drone, may act as a non-linear mixer and may be forced to emit radiative signals containing information about the target device behavior, state, and physical characteristics.
  • the forced emissions may be received and useful data may be extracted and analyzed to determine target device characteristics (e.g., a drone type, based on a comparison of data from known drone types).
  • the illumination may be controlled so the forced emissions radiate without interfering with the drone’s communications.
  • a drone can be located via the strength and directionality of the forced emissions.
  • a drone detection, identification, and location system may comprise a software defined radio (SDR) that may be configured for remote detection and analysis of a drone.
  • the SDR may include transmitter circuitry configured to illuminate the target device with electromagnetic energy configured to stimulate electromagnetic signals in the target device.
  • the stimulated electromagnetic signals in the target device may be configured to mix with the electromagnetic energy to produce forced non-linear emissions (FNLE) that radiate from the target device.
  • the SDR may also include receiver circuitry configured to receive the forced non-linear emissions from the target device and processing circuitry to determine whether the target devices is a drone, based on the received FNLE.
  • the processing circuitry may also determine a drone type from among known drone types by comparing a reference evaluation of a reference device of known type using, among other things, FNLE profiles of the reference device.
  • FIG. 4 illustrates a drone detecting, identifying, and locating system, in accordance with some embodiments.
  • Drone detecting, identifying, and locating system 400 may include, among other things, transceiver circuitry 402, processing circuitry 404, and memory 406.
  • Drone detecting, identifying, and locating system 400 may also include one or more antennas 401 coupled to transceiver circuitry 402. Antennas may include separate transmit and receive antennas although this is not a requirement as antennas may be use for both transmit and receive operations.
  • drone detecting, identifying, and locating system 400 may be a SDR.
  • Some embodiments are directed to an apparatus for drone detection, identification and location, such as drone detecting, identifying and locating system 400 (FIG. 4).
  • the apparatus may comprise, for example, processing circuitry 402; and memory 406.
  • the processing circuitry 402 may configure transceiver circuitry 402 to illuminate a target with one or multiple radio-frequency (RF) carrier frequencies.
  • the processing circuitry 402 may process both direct emissions received from the target and re-emissions generated by the target to determine whether the target is a drone.
  • the re-emissions may be generated by circuitry of the target resulting from the illumination with the one or multiple RF carrier frequencies.
  • the re-emissions may be generated by active circuitry of the target, although this is not a requirement as re-emissions may also be generated by non-active/passive circuit components of target.
  • the re-emissions may comprise cross modulation products (CMPs) which may be caused from a mixing of the one or multiple RF carrier frequencies with signals present on the circuitry of the target.
  • CMPs cross modulation products
  • the processing circuitry 402 may process the direct emissions and the re-emissions to generate an RF signature for the target and may determine whether the target is a drone based on the RF signature.
  • drones including small form-factor drones, may be identified based on their RF signature.
  • the CMPs may include forced non-linear emissions (FNLEs) generated by the target.
  • the one or multiple RF carrier frequencies may be selected to cause circuitry of the target to produce the FNLEs.
  • the processing circuitry 402 may process frequency, amplitude and/or phase characteristics of the direct emissions and the re-emissions to generate the RF signature for the target.
  • the one or multiple carrier frequencies are selected to be at or near antenna frequencies of the target.
  • the antenna frequencies may include frequencies used by the target for communication.
  • the direct emissions comprise emissions from at least a clock signal of the circuitry of the target.
  • the CMPs may comprise a mixing product of the clock signal and one of the RF carrier frequencies.
  • the clock signal may be generated by circuity on the target based on a crystal oscillator, which may produce at least some of the direct emissions.
  • a particular RF carrier frequency may be selected so that the drone circuitry generates a FNLE based on the clock signal or the direct emissions of the crystal oscillator.
  • the direct emissions of the target may further include RF emissions from one or more busses of the circuitry of the target and RF emissions from switching of control circuitry of the target.
  • the CMPs may be generated by the target from a mixing of the one or multiple RF carrier frequencies with the RF emissions from the one or more busses and the RF emissions from the control circuitry.
  • direct emissions from data busses such as I2C or SPI, memory busses such as those that interface with DRAM, storage busses such as SATA, and switching caused by voltage control circuitry may be used to generate CMPs to help identify whether the target is a drone and identify the type of drone.
  • the memory 406 is configured to store a plurality of RF signatures of known drone types.
  • each signature may be associated with CMPs for one or more different types of drones for one or more of the multiple carrier frequencies and direct-emission characteristics for the one or more different types of drones.
  • the processing circuitry 402 may compare the RF signature generated from the direct emissions and the re-emissions with the RF signatures stored in the memory 406 to determine whether to classify the target as a drone or something other than a drone and to determine a type of drone (e.g., make and model) when classified as a drone.
  • a type of drone e.g., make and model
  • each type of drone may have a unique RF signature.
  • different signatures may be associated with different drone makes and models allowing the make and model of a drone to be identified based on its signature.
  • the processing circuitry 402 may be configured to identify the target as a non-drone device based on the direct emissions and the re-emissions. In these embodiments, the processing circuitry 402 may also be configured to identify the target as a non-electronic flying object (e.g., birds) based on a lack of re-emissions. In these embodiments, other electronic devices which produce CMPs based on their circuit assemblies may have different characteristics in terms of their frequency, amplitude, and phase responses than drone devices and may be identified as non-drone devices.
  • the processing circuitry 402 may configure the transceiver circuitry 402 to transmit a set of the multiple RF carrier frequencies.
  • the processing circuitry 402 may process the CMPs generated from the set of multiple RF carrier frequencies along with the direct emissions to generate the RF signature for the target.
  • a particular set of RF carrier frequencies may be selected based on the type of drone to be detected.
  • the processing circuitry 402 may apply one or more matched filters designed by known reference signals.
  • the processing circuitry 402 may be configured to determine a geo-location of the target comprising a range and an angle by processing the CMPs generated by the target caused by illumination of the target comprising the one or multiple carrier frequencies. In these embodiments, a single receiver and/or receive antenna may be used for geo location, although the scope of the embodiments is not limited in this respect. [0030] In some embodiments, the processing circuitry 402 may also be configured to determine the geo-location of the target by processing the direct emissions, the re-emissions, and/or CMP return signals re-emitted by the target caused by illumination of the target with a pulse comprising the one or multiple carrier frequencies.
  • small form-factor drones which may be difficult to detect by conventional radar because they generate lower level returns, may be detected based on a combination of their skin returns and the non-linear emissions (e.g., using CMP radar techniques).
  • drones, including small form-factor drones may be distinguished from larger drones and aircraft based on their size and/or speed which may be determined from the return signals.
  • the processing circuitry 402 may shift to a mono-frequency illumination pulse and a tight window on the return CMP signal, although the scope of the embodiments is not limited in this respect.
  • the direct emissions may comprise RF signals within a first spectrum 202 (FIG. 2) and the re-emissions comprise RF signals with a second spectrum 204 (FIG. 2).
  • the one or multiple carrier frequencies 206 may be within the second spectrum 204.
  • the direct emissions may range from 1 MHz to 100 MHz and the re-emissions may range from 100 MHz to 4 GHz, although the scope of the embodiments is not limited in this respect.
  • the transceiver circuitry 402 may be coupled to one or more directional antennas 401 for transmission of the one or multiple RF carrier frequencies in a direction of the target.
  • the transceiver circuitry 402 may also be coupled to an array of receive antennas to receive the signals from the target including the direct emissions, the re-emissions and/or the return signals.
  • at least one of the receive antennas may be configured to receive the direct emissions and re-emissions (see FIG. 3 for example).
  • the processing circuitry 402 may also be configured to cause the transceiver circuitry 402 to scan an area with the one or multiple RF carrier frequencies to detect targets in the area based on re emissions received through the array of receive antennas.
  • a power level for the one or multiple carrier frequencies may be selected based on the range to the target to minimize and/or reduce interference without disrupting operation of the target. In these embodiments, the power level may be selected to minimize non-linear emissions from the target.
  • the power level of the one or multiple carrier frequencies may be increased to disrupt operation of the drone, although the scope of the embodiments is not limited in this respect.
  • the apparatus may comprise a software- defined radio (SDR), although the scope of the embodiments is not limited in this respect.
  • SDR software- defined radio
  • Some embodiments are directed to a method for drone detection comprising illuminating a target with one or multiple radio-frequency (RF) carrier frequencies and processing direct emissions received from the target and re-emissions generated by the target to determine whether the target is a drone.
  • RF radio-frequency
  • Some embodiments are directed to a non-transitory computer- readable storage medium that stores instructions for execution by processing circuitry 402 configured for drone detection, identification and/or location.
  • the processing circuitry 402 may configure transceiver circuitry 402 to illuminate a target with one or multiple radio-frequency (RF) carrier frequencies and may process both direct emissions received from the target and re-emissions generated by the target to determine whether the target is a drone.
  • RF radio-frequency
  • Embodiments may be implemented in one or a combination of hardware, firmware and software. Embodiments may also be implemented as instructions stored on a computer-readable storage device, which may be read and executed by at least one processor to perform the operations described herein.
  • a computer-readable storage device may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer).
  • a computer-readable storage device may include read only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and other storage devices and media.
  • Some embodiments may include one or more processors and may be configured with instructions stored on a computer-readable storage device.
  • FIG. 5 illustrates a block diagram of an example machine 500 upon which any one or more of the techniques (e.g., methodologies) discussed herein may perform.
  • the machine 500 may operate as a standalone device or may be connected (e.g., networked) to other machines.
  • the machine 500 may operate in the capacity of a server machine, a client machine, or both in server-client network environments.
  • the machine 500 may act as a peer machine in peer-to-peer (P2P) (or other distributed) network environment.
  • P2P peer-to-peer
  • the machine 500 may be a personal computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a mobile telephone, a smart phone, a web appliance, a network router, switch or bridge, or any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • PC personal computer
  • PDA personal digital assistant
  • STB set-top box
  • PDA personal digital assistant
  • mobile telephone a smart phone
  • web appliance a web appliance
  • network router switch or bridge
  • Examples, as described herein, may include, or may operate on, logic or a number of components, modules, or mechanisms.
  • Modules are tangible entities (e.g., hardware) capable of performing specified operations and may be configured or arranged in a certain manner.
  • circuits may be arranged (e.g., internally or with respect to external entities such as other circuits) in a specified manner as a module.
  • the whole or part of one or more computer systems e.g., a standalone, client or server computer system
  • one or more hardware processors may be configured by firmware or software (e.g., instructions, an application portion, or an application) as a module that operates to perform specified operations.
  • the software may reside on a non-transitory computer-readable storage medium.
  • the software when executed by the underlying hardware of the module, causes the hardware to perform the specified operations.
  • the non-transitory computer-readable storage medium may store instructions for execution by one or more processors or processing circuitry, to perform the operations described herein.
  • module is understood to encompass a tangible entity, be that an entity that is physically constructed, specifically configured (e.g., hardwired), or temporarily (e.g., transitorily) configured (e.g., programmed) to operate in a specified manner or to perform part or all of any operation described herein.
  • each of the modules need not be instantiated at any one moment in time.
  • the modules comprise a general-purpose hardware processor configured using software
  • the general-purpose hardware processor may be configured as respective different modules at different times.
  • Software may accordingly configure a hardware processor, for example, to constitute a particular module at one instance of time and to constitute a different module at a different instance of time.
  • Machine 500 may include processing circuitry such as a hardware processor 502 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), a hardware processor core, or any combination thereof), a main memory 504 and a static memory 506, some or all of which may communicate with each other via an interlink (e.g., bus) 508.
  • the machine 500 may further include a display unit 510, an alphanumeric input device 512 (e.g., a keyboard), and a user interface (UI) navigation device 514 (e.g., a mouse).
  • the display unit 510, input device 512 and UI navigation device 514 may be a touch screen display.
  • the machine 500 may additionally include a storage device (e.g., drive unit) 516, a signal generation device 518 (e.g., a speaker), a network interface device 520, and one or more sensors 521, such as a global positioning system (GPS) sensor, compass, accelerometer, or other sensor.
  • the machine 500 may include an output controller 528, such as a serial (e.g., universal serial bus (USB), parallel, or other wired or wireless (e.g., infrared(IR), near field communication (NFC), etc.) connection to communicate or control one or more peripheral devices (e.g., a printer, card reader, etc.).
  • a serial e.g., universal serial bus (USB), parallel, or other wired or wireless (e.g., infrared(IR), near field communication (NFC), etc.) connection to communicate or control one or more peripheral devices (e.g., a printer, card reader, etc.).
  • USB universal serial bus
  • NFC near field
  • the storage device 516 may include a machine readable medium
  • the instructions 524 may also reside, completely or at least partially, within the main memory 504, within static memory 506, or within the hardware processor 502 during execution thereof by the machine 500.
  • the hardware processor 502, the main memory 504, the static memory 506, or the storage device 516 may constitute machine readable media.
  • machine readable medium 522 is illustrated as a single medium, the term “machine readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) configured to store the one or more instructions 524.
  • machine readable medium may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) configured to store the one or more instructions 524.
  • machine readable medium may include any medium that is capable of storing, encoding, or carrying instructions for execution by the machine 500 and that cause the machine 500 to perform any one or more of the techniques of the present disclosure, or that is capable of storing, encoding or carrying data structures used by or associated with such instructions.
  • Non limiting machine readable medium examples may include solid-state memories, and optical and magnetic media.
  • machine readable media may include: non-volatile memory, such as semiconductor memory devices (e.g., Electrically Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM)) and flash memory devices; magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; Random Access Memory (RAM); and CD-ROM and DVD-ROM disks.
  • EPROM Electrically Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory devices e.g., Electrically Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM)
  • EPROM Electrically Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory devices e.g., Electrically Erasable Programmable Read-Only Memory (EEPROM)
  • flash memory devices e.g., Electrically Erasable Programmable Read-On
  • the instructions 524 may further be transmitted or received over a communications network 526 using a transmission medium via the network interface device 520 utilizing any one of a number of transfer protocols (e.g., frame relay, internet protocol (IP), transmission control protocol (TCP), user datagram protocol (UDP), hypertext transfer protocol (HTTP), etc.).
  • the network interface device 520 may include a plurality of antennas to wirelessly communicate using at least one of single-input multiple-output (SIMO), multiple-input multiple-output (MIMO), or multiple-input single-output (MISO) techniques.
  • SIMO single-input multiple-output
  • MIMO multiple-input multiple-output
  • MISO multiple-input single-output
  • the network interface device 520 may wirelessly communicate using Multiple User MIMO techniques.
  • FIG. 6 is a flow chart describing a procedure 600 for drone detection, identification and location, in accordance with some embodiments.
  • Procedure 600 may be performed by processing circuitry and memory of an apparatus for drone detection, identification and location, although this is not a requirement as other devices may be used.
  • Operation 602 comprises selection of one or multiple radio- frequency (RF) carrier frequencies to cause circuitry of a target to produce re emissions.
  • RF radio- frequency
  • Operation 604 comprises illumination of the target with the selected one or multiple RF carrier frequencies.
  • Operation 606 comprises processing direct emissions received from the target and the re-emissions generated by the target.
  • the re-emissions may comprise cross-modulation products (CMPs) and including forced non-linear emissions (FNLEs).
  • Operation 608 comprises generating an RF signature for the target from the direct emissions and re-emissions.
  • Operation 610 comprising determining whether the target is a drone based on its RF signature.
  • Operation 612 comprises, when the target is a drone, identifying the type of drone based on its RF signature.
  • procedure 600 may also include determining the location of the drone as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Un système et un procédé de détection, d'identification et de localisation de drones peuvent éclairer une cible avec une ou plusieurs fréquences porteuses radiofréquence (RF) sélectionnées. Les émissions directes reçues de la cible et les réémissions générées par la cible peuvent être traitées pour déterminer si la cible est un drone. Les réémissions peuvent être générées par des circuits de la cible résultant de l'éclairage avec la ou les fréquences porteuses RF multiples. Les réémissions peuvent comprendre des produits de modulation croisée (CMP) comprenant des émissions non linéaires forcées (FNLE). Les émissions directes et les réémissions peuvent être traitées pour générer une signature RF pour la cible. La cible peut être déterminée comme étant un drone et le type de drone peut être identifié sur la base de la signature RF.
PCT/US2022/033604 2021-06-24 2022-06-15 Appareil et procédé de détection, d'identification et de localisation de drones WO2022271506A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163214581P 2021-06-24 2021-06-24
US63/214,581 2021-06-24
US17/833,452 US20220413122A1 (en) 2021-06-24 2022-06-06 Apparatus and method for detecting, identifying and locating drones
US17/833,452 2022-06-06

Publications (1)

Publication Number Publication Date
WO2022271506A1 true WO2022271506A1 (fr) 2022-12-29

Family

ID=82702842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/033604 WO2022271506A1 (fr) 2021-06-24 2022-06-15 Appareil et procédé de détection, d'identification et de localisation de drones

Country Status (1)

Country Link
WO (1) WO2022271506A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7464005B1 (en) * 2007-06-29 2008-12-09 The Curators Of The University Of Missouri Electromagnetic emissions stimulation and detection system
US20110267222A1 (en) * 2010-04-30 2011-11-03 Murray Craig Location detection methods and systems
US20170288788A1 (en) * 2016-04-01 2017-10-05 Raytheon Bbn Technologies Corp. Apparatus and method for remote analysis of a target device
US20170289786A1 (en) * 2016-04-01 2017-10-05 Raytheon Bbn Technologies Corp. Apparatus and method for rapid electronic device discovery
US20190086470A1 (en) * 2016-04-01 2019-03-21 Tyler Shake Operating general purpose hardware as radio
US10270482B2 (en) 2016-04-01 2019-04-23 Raytheon Bbn Technologies Corp. Automated avionics testing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7464005B1 (en) * 2007-06-29 2008-12-09 The Curators Of The University Of Missouri Electromagnetic emissions stimulation and detection system
US20110267222A1 (en) * 2010-04-30 2011-11-03 Murray Craig Location detection methods and systems
US20170288788A1 (en) * 2016-04-01 2017-10-05 Raytheon Bbn Technologies Corp. Apparatus and method for remote analysis of a target device
US20170289786A1 (en) * 2016-04-01 2017-10-05 Raytheon Bbn Technologies Corp. Apparatus and method for rapid electronic device discovery
US20190086470A1 (en) * 2016-04-01 2019-03-21 Tyler Shake Operating general purpose hardware as radio
US10264440B2 (en) 2016-04-01 2019-04-16 Raytheon Bbn Technologies Corp. Apparatus and method for rapid electronic device discovery
US10270482B2 (en) 2016-04-01 2019-04-23 Raytheon Bbn Technologies Corp. Automated avionics testing
US10291274B2 (en) 2016-04-01 2019-05-14 Raytheon Bbn Technologies Corp. Apparatus and method for remote analysis of a target device
US10295593B2 (en) 2016-04-01 2019-05-21 Raytheon Bbn Technologies Corp. Operating general purpose hardware as radio

Similar Documents

Publication Publication Date Title
US20220406067A1 (en) Systems, methods, apparatuses, and devices for identifying, tracking, and managing unmanned aerial vehicles
EP3417309B1 (fr) Détection de mouvement sur la base d'émissions sans fil répétées
US10044465B1 (en) Adaptively disrupting unmanned aerial vehicles
US10264440B2 (en) Apparatus and method for rapid electronic device discovery
CN108139474A (zh) 使用天线阵列的角速度感测
US11995934B2 (en) Electronic device for controlling entry or exit by using wireless communication, and method therefor
WO2020236328A2 (fr) Détection et négation d'un uas
KR20190017225A (ko) 표적 탐지 장치 및 표적을 탐지하기 위한 방법
US20220312402A1 (en) Method and device for performing beam searching in mobile communication system
US20220337986A1 (en) Method of ultra-wideband communication based on account information and electronic device therefor
CN112859003B (zh) 干扰信号参数估计方法和探测装置
US11201641B2 (en) Apparatus and method for detection of cyber tampering, physical tampering, and changes in performance of electronic devices
US20220413122A1 (en) Apparatus and method for detecting, identifying and locating drones
US20140269384A1 (en) Through Wall Sensing System Using WiFi/Cellular Radar
WO2022271506A1 (fr) Appareil et procédé de détection, d'identification et de localisation de drones
US10749618B1 (en) Methods of closed-loop control of a radio frequency (RF) test environment based on machine learning
CN111641430B (zh) 一种信号调整方法及相关设备
US20180352452A1 (en) System and method for testing a wireless communication device
CN105490704B (zh) 一种信息处理方法及电子设备
CN111830537B (zh) 一种gps跟踪模块检测方法、装置、电子设备及存储介质
US20240094380A1 (en) Method for performing positioning operation and electronic device for supporting same
KR102266380B1 (ko) 신호정보수집 비행체를 위한 점검 시스템
US20230394360A1 (en) Method of training an artificial intelligence circuit, monitoring method and system for monitoring a radio frequency environment
US20230156429A1 (en) Radio frequency switch circuit, communication unit and method therefor
Smith Comparing RF Fingerprinting Performance of Hobbyist and Commercial-Grade SDRs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22747811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE