WO2022271472A1 - Methods and systems for detecting and managing unexpected spectral content in an amplifier system - Google Patents

Methods and systems for detecting and managing unexpected spectral content in an amplifier system Download PDF

Info

Publication number
WO2022271472A1
WO2022271472A1 PCT/US2022/033190 US2022033190W WO2022271472A1 WO 2022271472 A1 WO2022271472 A1 WO 2022271472A1 US 2022033190 W US2022033190 W US 2022033190W WO 2022271472 A1 WO2022271472 A1 WO 2022271472A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
driving system
transducer driving
spectral content
modifying
Prior art date
Application number
PCT/US2022/033190
Other languages
French (fr)
Inventor
Dana J. Taipale
Jon D. Hendrix
Emmanuel A. Marchais
Original Assignee
Cirrus Logic International Semiconductor Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/549,399 external-priority patent/US11908310B2/en
Application filed by Cirrus Logic International Semiconductor Ltd. filed Critical Cirrus Logic International Semiconductor Ltd.
Priority to GB2318605.9A priority Critical patent/GB2621801A/en
Publication of WO2022271472A1 publication Critical patent/WO2022271472A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/13Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using electromagnetic driving means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • H03F3/187Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2175Class D power amplifiers; Switching amplifiers using analogue-digital or digital-analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications

Definitions

  • the present disclosure relates in general to detecting unexpected spectral content in an amplifier system, such as an amplifier used to drive a haptic vibrational load, and the management of such unexpected spectral content.
  • Vibro-haptic transducers for example linear resonant actuators (LRAs) are widely used in portable devices such as mobile phones to generate vibrational feedback to a user. Vibro-haptic feedback in various forms creates different feelings of touch to a user’s skin, and may play increasing roles in human-machine interactions for modern devices.
  • An LRA may be modelled as a mass-spring electro-mechanical vibration system. When driven with appropriately designed or controlled driving signals, an LRA may generate certain desired forms of vibrations. For example, a sharp and clear- cut vibration pattern on a user’ s finger may be used to create a sensation that mimics a mechanical button click. This clear-cut vibration may then be used as a virtual switch to replace mechanical buttons.
  • FIGURE 1 illustrates an example of a vibro-haptic system in a device 100.
  • Device 100 may comprise a controller 101 configured to control a signal applied to an amplifier 102.
  • Amplifier 102 may then drive a haptic transducer 103 based on the signal.
  • Controller 101 may be triggered by a trigger to output to the signal.
  • the trigger may for example comprise a pressure or force sensor on a screen or virtual button of device 100.
  • tonal vibrations of sustained duration may play an important role to notify the user of the device of certain predefined events, such as incoming calls or messages, emergency alerts, and timer warnings, etc.
  • the resonance frequency fo of a haptic transducer may be approximately estimated as: where C is the compliance of the spring system, and M is the equivalent moving mass, which may be determined based on both the actual moving part in the haptic transducer and the mass of the portable device holding the haptic transducer. Due to sample-to-sample variations in individual haptic transducers, mobile device assembly variations, temporal component changes caused by aging, component changes caused by self-heating, and use conditions such as various different strengths of a user gripping of the device, the vibration resonance of the haptic transducer may vary from time to time.
  • FIGURE 2A illustrates an example of a linear resonant actuator (LRA) modelled as a linear system including a mass-spring system 201.
  • LRA linear resonant actuator
  • FIGURE 2B illustrates an example of an LRA modelled as a linear system, including an electrically equivalent model of mass-spring system 201 of LRA.
  • the LRA is modelled as a third order system having electrical and mechanical elements.
  • Re and Le are the DC resistance and coil inductance of the coil-magnet system, respectively; and Bl is the magnetic force factor of the coil.
  • the driving amplifier outputs the voltage waveform F(t) with the output impedance Ro.
  • the terminal voltage V T (t) may be sensed across the terminals of the haptic transducer.
  • the mass-spring system 201 moves with velocity u(t).
  • An electromagnetic load such as an LRA may be characterized by its impedance Z LRA as seen as the sum of a coil impedance Z coa and a mechanical impedance Z mech :
  • Coil impedance Z coa may in turn comprise a direct current (DC) resistance Re in series with an inductance Le :
  • Mechanical impedance Z mech may be defined by three parameters including the resistance at resonance R RES representing an electrical resistance representative of mechanical friction of the mass-spring system of the haptic transducer, a capacitance C M E S representing an electrical capacitance representative of an equivalent moving mass M of the mass-spring system of the haptic transducer, and inductance L CES representative of a compliance C of the mass-spring system of the haptic transducer.
  • the electrical equivalent of the total mechanical impedance is the parallel connection of RRE S , C MES , L ces .
  • the Laplace transform of this parallel connection is described by:
  • the resonant frequency / 0 of the haptic transducer can be represented as:
  • the quality factor Q of the LRA can be represented as: Referring to equation (6), it may appear non-intuitive that the expression involves a subexpression describing the parallel connection of resistances Re and
  • R RES (i- e ⁇ ’ RRES*Re ) while in FIGURE 2B these resistances are shown in a series RRES+RB connection.
  • the voltage amplifier shown in FIGURE 2B may be considered to have a low source impedance, ideally zero source impedance. Under these conditions, when driving voltage Ve goes to zero, the voltage amplifier effectively disappears from the circuit. At that point, the top-most terminal of resistance Re in FIGURE 2B is grounded as is the bottom-most terminal of resistance R RE S , and so resistances Re and R RES are indeed connected in parallel as reflected in equation (6).
  • FIGURE 3 is a graph of an example response of an LRA, depicting an example driving signal to the LRA, a current through the LRA, and a back electromotive force (back EMF) of the LRA, wherein such back EMF may be proportional to the velocity of a moving element (e.g., coil or magnet) of the transducer.
  • back EMF back electromotive force
  • the attack time of the back EMF may be slow as energy is transferred to the LRA, and some “ringing” of the back EMF may occur after the driving signal has ended as the mechanical energy stored in the LRA is discharged.
  • Such behavioral characteristic may result in a “mushy” feeling click or pulse, instead of a “crisp” tactile response.
  • an LRA may instead have a response similar to that shown in FIGURE 4, in which there exists minimal ringing after the driving signal has ended, and which may provide a more “crisp” tactile response in a haptic context.
  • it may be desirable to apply processing to a driving signal such that when the processed driving signal is applied to the transducer, the velocity or back EMF of the transducer more closely approaches that of FIGURE 4.
  • One way to provide such processing is to cancel some of the impedance presence in the driving circuit.
  • the impedances of an electromagnetic transducer may vary across time, use, part variations, and/or temperature. Thus, a constant impedance cancellation may be problematic if the cancellation is not matched to the part. If the cancellation is incomplete, the LRA response may ring too much and make the haptic effect feel “mushy” to a user. If too much cancellation is applied, the apparent source resistance may become negative. Such negative resistance may result in unstable behavior of the system (e.g., signal oscillations may occur independent of the desired response). For such a system to remain reliably stable, a way to detect and compensate for unstable behavior is desired so the control loop can be corrected.
  • the disadvantages and problems associated with detecting unexpected spectral content in an amplifier system may be reduced or eliminated.
  • a method may include receiving, by a transducer driving system, a first signal for driving an amplifier that drives an electromagnetic load and receiving, by the transducer driving system, a second signal driven by the amplifier in order to control a feedback loop of the transducer driving system.
  • the method may also include detecting unexpected spectral content in the second signal, declaring an indicator event based on the detected unexpected spectral content, determining whether the indicator event occurs in an undesired pattern, and in response to the indicator event occurring in the undesired pattern, modifying a behavior of the transducer driving system.
  • a method may include receiving, by a transducer driving system, a first signal for driving an amplifier that drives an electromagnetic load and receiving, by the transducer driving system, a second signal driven by the amplifier in order to control a feedback loop of the transducer driving system.
  • the method may also include detecting unexpected spectral content in the second signal.
  • the method may further include, in response to detecting the unexpected spectral content, modifying a system behavior of the transducer driving system by monitoring the unexpected spectral content and the second signal for patterns that identify a physical damage of the electromagnetic load and modifying a signal gain applied to the first signal to protect the transducer driving system.
  • a transducer driving system may include a driver output for driving an amplifier that drives an electromagnetic load, a feedback input for receiving a signal driven by the amplifier in order to control a feedback loop of the transducer driving system, and an unexpected spectral content detector and controller subsystem.
  • the unexpected spectral content detector and controller subsystem may be configured to detect unexpected spectral content in the signal, declare an indicator event based on the detected unexpected spectral content, determine whether the indicator event occurs in an undesired pattern, and in response to the indicator event occurring in the undesired pattern, modify a behavior of the transducer driving system.
  • a transducer driving system may include a driver output for driving an amplifier that drives an electromagnetic load, a feedback input for receiving a signal driven by the amplifier in order to control a feedback loop of the transducer driving system; and an unexpected spectral content detector and controller subsystem.
  • the unexpected spectral content detector and controller subsystem may be configured to detect unexpected spectral content in the signal and in response to detecting the unexpected spectral content, modify a system behavior of the transducer driving system by monitoring the unexpected spectral content and the second signal for patterns that identify a physical damage of the electromagnetic load and modifying a signal gain applied to the first signal to protect the transducer driving system.
  • FIGURE 1 illustrates an example of a vibro-haptic system in a device, as is known in the art
  • FIGURES 2A and 2B each illustrate an example of a Linear Resonant Actuator (LRA) modelled as a linear system, as is known in the art;
  • LRA Linear Resonant Actuator
  • FIGURE 3 illustrates a graph of example waveforms of an electromagnetic load, as is known in the art
  • FIGURE 4 illustrates a graph of desirable example waveforms of an electromagnetic load, in accordance with embodiments of the present disclosure
  • FIGURE 5 illustrates a block diagram of selected components of an example mobile device, in accordance with embodiments of the present disclosure
  • FIGURE 6 illustrates a block diagram of selected components of an example integrated haptic system, in accordance with embodiments of the present disclosure
  • FIGURE 7 illustrates an example system for improving transducer dynamics, in accordance with embodiments of the present disclosure
  • FIGURE 8 illustrates an example of a linear resonant actuator (LRA) modelled as a linear system and including a negative resistance, in accordance with embodiments of the present disclosure
  • LRA linear resonant actuator
  • FIGURE 9 illustrates a block diagram of selected components of an example unexpected spectral content detector, in accordance with embodiments of the present disclosure.
  • FIGURE 10 illustrates a block diagram of selected components of an example unexpected spectral content controller, in accordance with embodiments of the present disclosure.
  • Various electronic devices or smart devices may have transducers, speakers, and acoustic output transducers, for example any transducer for converting a suitable electrical driving signal into an acoustic output such as a sonic pressure wave or mechanical vibration.
  • many electronic devices may include one or more speakers or loudspeakers for sound generation, for example, for playback of audio content, voice communications and/or for providing audible notifications.
  • Such speakers or loudspeakers may comprise an electromagnetic actuator, for example a voice coil motor, which is mechanically coupled to a flexible diaphragm, for example a conventional loudspeaker cone, or which is mechanically coupled to a surface of a device, for example the glass screen of a mobile device.
  • Some electronic devices may also include acoustic output transducers capable of generating ultrasonic waves, for example for use in proximity detection type applications and/or machine- to-machine communication.
  • an electronic device may additionally or alternatively include more specialized acoustic output transducers, for example, haptic transducers, tailored for generating vibrations for haptic control feedback or notifications to a user.
  • an electronic device may have a connector, e.g., a socket, for making a removable mating connection with a corresponding connector of an accessory apparatus, and may be arranged to provide a driving signal to the connector so as to drive a transducer, of one or more of the types mentioned above, of the accessory apparatus when connected.
  • Such an electronic device will thus comprise driving circuitry for driving the transducer of the host device or connected accessory with a suitable driving signal.
  • FIGURE 5 illustrates a block diagram of selected components of an example host device 502, in accordance with embodiments of the present disclosure.
  • host device 502 may comprise an enclosure 501, a controller 503, a memory 504, a force sensor 505, a microphone 506, a linear resonant actuator 507, a radio transmitter/receiver 508, a speaker 510, and an integrated haptic system 512.
  • Enclosure 501 may comprise any suitable housing, casing, or other enclosure for housing the various components of host device 502.
  • Enclosure 501 may be constructed from plastic, metal, and/or any other suitable materials.
  • enclosure 501 may be adapted (e.g., sized and shaped) such that host device 502 is readily transported on a person of a user of host device 502.
  • host device 502 may include but is not limited to a smart phone, a tablet computing device, a handheld computing device, a personal digital assistant, a notebook computer, a video game controller, or any other device that may be readily transported on a person of a user of host device 502.
  • Controller 503 may be housed within enclosure 501 and may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data, and may include, without limitation a microprocessor, microcontroller, digital signal processor (DSP), application specific integrated circuit (ASIC), or any other digital or analog circuitry configured to interpret and/or execute program instructions and/or process data.
  • controller 503 interprets and/or executes program instructions and/or processes data stored in memory 504 and/or other computer-readable media accessible to controller 503.
  • Memory 504 may be housed within enclosure 501, may be communicatively coupled to controller 503, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media).
  • Memory 504 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to host device 502 is turned off.
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • PCMCIA Personal Computer Memory Card International Association
  • flash memory magnetic storage
  • opto-magnetic storage or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to host device 502 is turned off.
  • Microphone 506 may be housed at least partially within enclosure 501, may be communicatively coupled to controller 503, and may comprise any system, device, or apparatus configured to convert sound incident at microphone 506 to an electrical signal that may be processed by controller 503, wherein such sound is converted to an electrical signal using a diaphragm or membrane having an electrical capacitance that varies based on sonic vibrations received at the diaphragm or membrane.
  • Microphone 506 may include an electrostatic microphone, a condenser microphone, an electret microphone, a microelectromechanical systems (MEMS) microphone, or any other suitable capacitive microphone.
  • MEMS microelectromechanical systems
  • Radio transmitter/receiver 508 may be housed within enclosure 501, may be communicatively coupled to controller 503, and may include any system, device, or apparatus configured to, with the aid of an antenna, generate and transmit radio- frequency signals as well as receive radio-frequency signals and convert the information carried by such received signals into a form usable by controller 503.
  • Radio transmitter/receiver 508 may be configured to transmit and/or receive various types of radio-frequency signals, including without limitation, cellular communications (e.g., 2G, 3G, 4G, LTE, etc.), short-range wireless communications (e.g., BLUETOOTH), commercial radio signals, television signals, satellite radio signals (e.g., GPS), Wireless Fidelity, etc.
  • cellular communications e.g., 2G, 3G, 4G, LTE, etc.
  • short-range wireless communications e.g., BLUETOOTH
  • commercial radio signals e.g., television signals, satellite radio signals (e.g., GPS), Wireless Fidel
  • a speaker 510 may be housed at least partially within enclosure 501 or may be external to enclosure 501, may be communicatively coupled to controller 503, and may comprise any system, device, or apparatus configured to produce sound in response to electrical audio signal input.
  • a speaker may comprise a dynamic loudspeaker, which employs a lightweight diaphragm mechanically coupled to a rigid frame via a flexible suspension that constrains a voice coil to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet.
  • Force sensor 505 may be housed within enclosure 501, and may include any suitable system, device, or apparatus for sensing a force, a pressure, or a touch (e.g., an interaction with a human finger) and generating an electrical or electronic signal in response to such force, pressure, or touch.
  • a force, a pressure, or a touch e.g., an interaction with a human finger
  • an electrical or electronic signal may be a function of a magnitude of the force, pressure, or touch applied to the force sensor.
  • such electronic or electrical signal may comprise a general purpose input/output signal (GPIO) associated with an input signal to which haptic feedback is given.
  • Force sensor 505 may include, without limitation, a capacitive displacement sensor, an inductive force sensor (e.g., a resistive-inductive-capacitive sensor), a strain gauge, a piezoelectric force sensor, force sensing resistor, piezoelectric force sensor, thin film force sensor, or a quantum tunneling composite-based force sensor.
  • the term “force” as used herein may refer not only to force, but to physical quantities indicative of force or analogous to force, such as, but not limited to, pressure and touch.
  • Linear resonant actuator 507 may be housed within enclosure 501, and may include any suitable system, device, or apparatus for producing an oscillating mechanical force across a single axis.
  • linear resonant actuator 507 may rely on an alternating current voltage to drive a voice coil pressed against a moving mass connected to a spring. When the voice coil is driven at the resonant frequency of the spring, linear resonant actuator 507 may vibrate with a perceptible force.
  • linear resonant actuator 507 may be useful in haptic applications within a specific frequency range.
  • linear resonant actuator 507 any other type or types of vibrational actuators (e.g., eccentric rotating mass actuators) may be used in lieu of or in addition to linear resonant actuator 507.
  • actuators arranged to produce an oscillating mechanical force across multiple axes may be used in lieu of or in addition to linear resonant actuator 507.
  • a linear resonant actuator 507 based on a signal received from integrated haptic system 512, may render haptic feedback to a user of host device 502 for at least one of mechanical button replacement and capacitive sensor feedback.
  • Integrated haptic system 512 may be housed within enclosure 501, may be communicatively coupled to force sensor 505 and linear resonant actuator 507, and may include any system, device, or apparatus configured to receive a signal from force sensor 505 indicative of a force applied to host device 502 (e.g., a force applied by a human finger to a virtual button of host device 502) and generate an electronic signal for driving linear resonant actuator 507 in response to the force applied to host device 502.
  • a force applied to host device 502 e.g., a force applied by a human finger to a virtual button of host device 502
  • FIGURE 6 Detail of an example integrated haptic system in accordance with embodiments of the present disclosure is depicted in FIGURE 6.
  • a host device 502 in accordance with this disclosure may comprise one or more components not specifically enumerated above.
  • FIGURE 5 depicts certain user interface components
  • host device 502 may include one or more other user interface components in addition to those depicted in FIGURE 5 (including but not limited to a keypad, a touch screen, and a display), thus allowing a user to interact with and/or otherwise manipulate host device 502 and its associated components.
  • FIGURE 6 illustrates a block diagram of selected components of an example integrated haptic system 512A, in accordance with embodiments of the present disclosure.
  • integrated haptic system 512A may be used to implement integrated haptic system 512 of FIGURE 5.
  • integrated haptic system 512A may include a digital signal processor (DSP) 602, a memory 604, and an amplifier 606.
  • DSP digital signal processor
  • DSP 602 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 602 may interpret and/or execute program instructions and/or process data stored in memory 604 and/or other computer-readable media accessible to DSP 602.
  • Memory 604 may be communicatively coupled to DSP 602, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media).
  • Memory 604 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to host device 502 is turned off.
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • PCMCIA Personal Computer Memory Card International Association
  • flash memory magnetic storage
  • opto-magnetic storage or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to host device 502 is turned off.
  • Amplifier 606 may be electrically coupled to DSP 602 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT.
  • VIN e.g., a time-varying voltage or current
  • amplifier 606 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal.
  • Amplifier 606 may include any suitable amplifier class, including without limitation, a Class-D amplifier.
  • memory 604 may store one or more haptic playback waveforms.
  • each of the one or more haptic playback waveforms may define a haptic response a(t) as a desired acceleration of a linear resonant actuator (e.g., linear resonant actuator 507) as a function of time.
  • DSP 602 may be configured to receive a force signal VSENSE indicative of force applied to force sensor 505. Either in response to receipt of force signal VSENSE indicating a sensed force or independently of such receipt, DSP 602 may retrieve a haptic playback waveform from memory 604 and process such haptic playback waveform to determine a processed haptic playback signal VIN.
  • processed haptic playback signal VIN may comprise a pulse- width modulated signal.
  • DSP 602 may cause processed haptic playback signal VIN to be output to amplifier 606, and amplifier 606 may amplify processed haptic playback signal VIN to generate a haptic output signal VOUT for driving linear resonant actuator 507.
  • integrated haptic system 512A may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control.
  • integrated haptic system 512A as part of a single monolithic integrated circuit, latencies between various interfaces and system components of integrated haptic system 512A may be reduced or eliminated.
  • FIGURE 7 illustrates an example transducer driving system 700 for improving dynamics of an electromagnetic load 701, in accordance with embodiments of the present disclosure.
  • system 700 may be integral to a host device (e.g., host device 502) comprising system 700 and electromagnetic load 701.
  • a pulse generator 722 of a system 700 of a host device may generate a raw transducer driving signal x'(t) (which, in some embodiments, may be a waveform signal, such as a haptic waveform signal or audio signal).
  • raw transducer driving signal x'(t) may be generated based on a desired playback waveform received by pulse generator 722.
  • Raw transducer driving signal x'(t) may be received by a delay element 728 that may apply a time delay to raw transducer driving signal x'(t) to generate a delayed raw transducer driving signal x d (t).
  • the amount of delay applied by delay 728 may be approximately equal to a path delay between raw transducer driving signal x'(t) and sensed terminal voltage V T (t ' ).
  • a gain element 727 may apply a signal gain generated by an unexpected spectral content controller 721 to raw transducer driving signal x'(t) in order to generate gained raw transducer driving signal x g (t).
  • Gained raw transducer driving signal x g ' (t) may be received by negative impedance filter 726 which, as described in greater detail below, may be applied to gained raw transducer driving signal x g ' (t) to reduce an effective quality factor q of the electromagnetic load 701, which may in turn decrease attack time and minimize ringing occurring after the raw transducer driving signal has ended, thus generating transducer driving signal x(t) to the output of negative impedance filter 726.
  • Transducer driving signal x(t) may in turn be amplified by amplifier 706 to generate a driving signal V(t ) for driving electromagnetic load 701.
  • a sensed terminal voltage V T t) of electromagnetic load 701 may be converted to a digital representation by a first analog-to-digital converter (ADC) 703.
  • sensed current /(t) may be converted to a digital representation by a second ADC 704.
  • Current / (t) may be sensed across a shunt resistor 702 having resistance R s coupled to a terminal of electromagnetic load 701.
  • the terminal voltage V T (t) may be sensed by a terminal voltage sensing block 707, for example a voltmeter.
  • system 700 may include an impedance estimator 710.
  • Impedance estimator 710 may include any suitable system, device, or apparatus configured to estimate, based on sensed terminal voltage V T (t), sensed current /(t), and/or any other measured parameters of electromagnetic load 701, one or more components of the electrical and/or mechanical impedances of electromagnetic load 701, and generate one or more control signals (e.g., a negative impedance Re_neg) for controlling a response of negative impedance filter 726. Examples of approaches for estimating one or more components of the electrical and/or mechanical impedances of electromagnetic load 701 and generating a negative impedance value Re_neg are described in, without limitation, U.S. Patent Application Ser. No.
  • a system 700 may implement negative impedance filter 726 to apply to the raw transducer driving signal, which may reduce an effective quality factor q of the transducer, which may in turn decrease attack time and minimize ringing occurring after the raw transducer driving signal has ended.
  • Quality factor q of a transducer may be expressed as:
  • FIGURE 8 illustrates an example of electromagnetic load 701 modelled as a linear system including electrical components 802 and electrical model of mechanical components 804, and including a negative resistance resistor 806 with negative impedance Re_neg inserted in series with electromagnetic load 701, in accordance with embodiments of the present disclosure.
  • the addition of negative impedance Re_neg may lower quality factor q because effectively it subtracts from DC resistance Re thereby reducing the overall DC electrical impedance.
  • negative impedance filter 726 may comprise a digital filter configured to behave substantially like the circuit shown in FIGURE 8, including a mathematical model of negative impedance Re_neg in series with a mathematical model of electromagnetic load 701.
  • negative impedance filter 726 may in effect compute a voltage V m that would occur at the junction of negative impedance Re_neg and DC resistance Re as shown in FIGURE 8, if, in fact, it were possible to place a physical resistor with negative impedance Re_neg in series with electromagnetic load 701. Computed voltage Vminister, may then be used to drive electromagnetic load 701.
  • system 700 implements a negative impedance feedback loop for electromagnetic load 701.
  • the feedback loop may use a dynamic estimate of parameters of electromagnetic load 701 and generate feedback (e.g., negative impedance Re_neg and the response of negative impedance filter 726) to cancel most of the electrical and mechanical impedance of electromagnetic load 701.
  • the electrical and mechanical impedance of electromagnetic load 701 may change in response to the stimulus applied to it (e.g., amplitude and frequency of driving signal V (t) ), ambient temperature conditions, and/or other factors.
  • the stimulus applied to it e.g., amplitude and frequency of driving signal V (t)
  • ambient temperature conditions e.g., ambient temperature conditions, and/or other factors.
  • most of the impedance of electromagnetic load 701 should be cancelled (e.g., from 95% to just under 100% of the impedance of electromagnetic load 701).
  • instability of the feedback loop may result, for example if the impedance to be cancelled is incorrectly estimated. Such instability may result from non-linearity of amplifier 706 that may occur when the feedback loop cancels almost all of the impedance of electromagnetic load 701, thus resulting in unexpected spectral content present in sensed terminal voltage V T t).
  • system 700 may include an unexpected spectral content detector 712 to detect unexpected spectral content present in sensed terminal voltage V T t) and, when such unexpected spectral content is detected, generate an unexpected spectral content flag (e.g., labeled as “indicator flag” in FIGURE 7) communicated to unexpected spectral content controller 721 such that unexpected spectral content controller 721 may reduce (at least temporarily) the amount of the impedance of electromagnetic load 701 cancelled in order to reduce the presence of unexpected spectral content in order to prevent non-linearity/instability.
  • an unexpected spectral content detector 712 to detect unexpected spectral content present in sensed terminal voltage V T t) and, when such unexpected spectral content is detected, generate an unexpected spectral content flag (e.g., labeled as “indicator flag” in FIGURE 7) communicated to unexpected spectral content controller 721 such that unexpected spectral content controller 721 may reduce (at least temporarily) the amount of the impedance of electromagnetic load 701 cancelled in order
  • FIGURE 9 illustrates a block diagram of selected components of an example unexpected spectral content detector 712, in accordance with embodiments of the present disclosure.
  • unexpected spectral content detector 712 may receive sensed terminal voltage V T (t) and delayed raw transducer driving signal x d ' (t) and apply a Hilbert transform 902 (or any other suitable transform with similar functionality) to generate analytic signals having both real and imaginary components of sensed terminal voltage V T (t ) and delayed raw transducer driving signal x d (t).
  • Conjugate multiplier 904 may conjugate these real and imaginary components to obtain a phase angle that represents a phase angle difference between sensed terminal voltage V T t) and delayed raw transducer driving signal x d (t).
  • the signal output by conjugate multiplier 904 may be filtered by high-pass filter 906 to remove direct- current components, leaving a phase angle Dy representing the phase difference between sensed terminal voltage V T ( t) and delayed raw transducer driving signal x d ' (t )
  • Absolute value block 908 may receive phase angle Lf and output phase angle magnitude ⁇ Df ⁇ .
  • a comparator 910 may compare phase angle magnitude ⁇ Af ⁇ to a threshold value. If phase angle magnitude ⁇ Df ⁇ exceeds the threshold value, comparator 910 may set an indicator flag to indicate the presence of unexpected spectral content in sensed terminal voltage V T (t) , which may be an early indicator of non-linearity and impending instability of the feedback loop of FIGURE 7.
  • unexpected spectral content controller 721 may select an impedance gain RE GAIN to be applied to negative impedance Re_neg by a gain element 723 of FIGURE 7 and/or select a signal gain SIGNAL GAIN to be applied to raw transducer driving signal x' (t) to generate gained raw transducer driving signal x g ' ⁇ t).
  • unexpected spectral content controller 721 may (at least temporarily) reduce impedance gain RE GAIN and/or signal gain SIGNAL GAIN to reduce the likelihood of non-linearity/instability of the feedback loop of the system shown in FIGURE 7.
  • FIGURE 10 illustrates a block diagram of selected components of an example unexpected spectral content controller 721, in accordance with embodiments of the present disclosure.
  • unexpected spectral content controller 721 may include a multiplexer 1014 controlled by the indicator flag generated by unexpected spectral content detector 712 such that, immediately upon the indicator flag being set, multiplexer 1014 may select an impedance gain RE GAIN2 instead of RE GAIN1, wherein RE GAIN2 ⁇ RE GAIN1, such that the resulting impedance gain RE GAIN3 may immediately reduce impedance gain RE GAIN, thus reducing negative impedance Re_neg used by negative impedance filter 726, as disclosed in U.S. Patent Publication No. 2021/0175869 entitled “Methods and Systems for Detecting and Managing Amplifier Instability,” published June 10, 2021 and incorporated by reference herein.
  • Unexpected spectral content controller 721 may also include a low-pass filter 1001 configured to low-pass filter the indicator flag in order to generate an indicator statistic.
  • a comparator 1013 may compare the indicator statistic to an indicator event threshold. If the indicator statistic is larger than the indicator event threshold, comparator 1013 may assert an indicator event signal which may be communicated to logical OR gate 1005. Thus, when the indicator event signal is asserted, logical OR gate 1005 may assert an indicator sticky flag signal.
  • a multiplexer 1009 may be controlled by the indicator sticky flag signal, such that when the indicator sticky flag signal is asserted, multiplexer 1009 selects an impedance gain RE GAIN 4 lesser than impedance gain RE GAIN 3 to be applied to impedance gain RE GAIN, which may further reduce the negative impedance/resistance Re used by the negative impedance filter 726.
  • a pulse generator 1006 may also receive the indicator event signal, whose output may also be applied to an input of logical OR gate 1005. The use of pulse generator 1006 may maintain assertion of the indicator sticky flag signal for a period matching the duration of pulse generator 1006. Such duration may be any suitable value of time from zero to infinity. As also shown in FIGURE 10, pulse generator 1006 may receive an external reset signal configured to reset pulse generator 1006.
  • the indicator sticky flag may also be used to further reduce impedance gain RE GAIN used by negative impedance filter 726, by signalling adjust gain down block 1004 to reduce impedance gain RE GAIN and setting mux 1009 to select impedance gain RE GAIN4 as impedance gain RE GAIN.
  • This adjustment by adjust gain down block 1004 may reduce impedance gain RE GAIN by a significant amount for the duration of the pulse of pulse generator 1006.
  • adjust gain down block 1004 may reduce impedance gain RE GAIN to zero if desired, which may effectively disable the negative impedance cancellation for the duration of the pulse of pulse generator 1006.
  • the indicator sticky flag may also be used to reduce the signal gain SIGNAL GAIN applied by multiplier 727, by signalling adjust gain down block 1016 to reduce signal gain RE GAIN and setting mux 1015 to select signal gain SIGNAL GAIN6 as signal gain SIGNAL GAIN. This adjustment by adjust gain down block 1016 may reduce SIGNAL gain SIGNAL GAIN by a significant amount for the duration of the pulse of pulse generator 1006.
  • Peak correlation block 1002 may correlate peaks in raw transducer driving signal x'(t) to events that cause an indicator flag to be set. In response to a high correlation between raw transducer driving signal x'(t) and the indicator flag, peak correlation block 1002 may cause a multiplexer 1010 to select a lower signal gain SIGNAL GAIN2 in lieu of a default signal gain SIGNAL GAIN1. Such alternate gain selection may distort signal peaks but may also protect system hardware from potential damage.
  • correlation duration block 1003 may correlate indicator flag events with long duration signals of raw transducer driving signal x'(t) (e.g., that might happen due to overheating with extended use). In response to a large duration correlation between raw transducer driving signal x' (t) and the indicator flag, duration correlation block 1003 may cause a multiplexer 1011 to select a lower signal gain SIGNAL GAIN4 in lieu of a default signal gain SIGNAL GAIN3.
  • a minimum block 1012 may select the smaller of the selected peak signal gain and selected duration signal gain as a SIGNAL GAIN 5.
  • Multiplexer 1015 may select signal gain SIGNAL GAIN5 under conditions in which the indicator sticky flag is not set, and select signal gain SIGNAL GAIN6 for conditions where an indicator sticky flag is set.
  • unexpected spectral content detector 712 and unexpected spectral content controller 721 may monitor a reaction of the closed-loop system of FIGURE 7 to the strength of the control loop controls (e.g., estimated resistances and inductances of electromagnetic load 701). Further, unexpected spectral content detector 712 and unexpected spectral content controller 721 may modify the estimated resistances and inductances of electromagnetic load 701 dynamically based on indicator flag events and/or one or more statistics based on indicator flag events.
  • unexpected spectral content detector 712 and unexpected spectral content controller 721 may accomplish one or more of the following objectives:
  • unexpected spectral content detector 712 may control other parameters in order to maintain feedback loop stability.
  • unexpected spectral content detector 712 and/or unexpected system content controller 721 may control a response of negative impedance filter 726, operational parameters of amplifier 706, and/or any other parameters of system 700.
  • One example method may involve a transducer driving system receiving a first signal for driving an amplifier that drives an electromagnetic load.
  • the transducer driving system may receive a second signal driven by the amplifier.
  • the method may further include detecting unexpected spectral content in the feedback control loop and declaring an indicator event based on the detected unexpected spectral content.
  • the method may also include determining whether the indicator event occurs in an undesired pattern. In response to the indicator event occurring in the undesired pattern, a system behavior of the transducer driving system may be modified.
  • the modified system behavior may disable a negative impedance of the feedback loop until the negative impedance is re-enabled from a higher level control.
  • the modified system behavior may disable a negative impedance of the feedback loop for some amount of time which is a function of the undesired pattern.
  • the impedance modification may be for a fixed time.
  • the impedance modification may be modified for a dynamic time, depending on the history of the instability events.
  • the modified system behavior may tune a gain of a negative impedance of the feedback loop.
  • the modified system behavior may tune a signal gain of the first signal. The gain may be reduced to limit frequency of occurrence of instability events. The gain may be reduced to limit frequency of occurrence of instability events.
  • Another example method may include a transducer driving system receiving a first signal for driving an amplifier that drives an electromagnetic load and further receiving a second signal driven by the amplifier.
  • the method may further include detecting unexpected spectral content in the feedback control loop and modifying behavior of the transducer driving system based on detection of the unexpected spectral content. Such modification may be accomplished by monitoring the unexpected spectral content and the second signal for patterns that identify a physical damage of the electromagnetic load and modifying a signal gain to protect the transducer driving system.
  • the monitored pattern may be used to identify a correlation between indicator events and signal peaks.
  • the signal gain may be dynamically modified to reduce the signal peaks.
  • the monitored pattern may be used to look for correlation between indicator events and signal duration.
  • the signal gain may be dynamically modified to reduce signal strength for long duration signals.
  • references in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated.
  • each refers to each member of a set or each member of a subset of a set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • User Interface Of Digital Computer (AREA)
  • Burglar Alarm Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A method may include receiving, by a transducer driving system, a first signal for driving an amplifier that drives an electromagnetic load and receiving, by the transducer driving system, a second signal driven by the amplifier in order to control a feedback loop of the transducer driving system. The method may also include detecting unexpected spectral content in the second signal, declaring an indicator event based on the detected unexpected spectral content, determining whether the indicator event occurs in an undesired pattern, and in response to the indicator event occurring in the undesired pattern, modifying a behavior of the transducer driving system.

Description

METHODS AND SYSTEMS FOR DETECTING AND MANAGING UNEXPECTED SPECTRAL CONTENT IN AN AMPLIFIER SYSTEM
FIELD OF DISCLOSURE The present disclosure relates in general to detecting unexpected spectral content in an amplifier system, such as an amplifier used to drive a haptic vibrational load, and the management of such unexpected spectral content.
BACKGROUND Vibro-haptic transducers, for example linear resonant actuators (LRAs), are widely used in portable devices such as mobile phones to generate vibrational feedback to a user. Vibro-haptic feedback in various forms creates different feelings of touch to a user’s skin, and may play increasing roles in human-machine interactions for modern devices. An LRA may be modelled as a mass-spring electro-mechanical vibration system. When driven with appropriately designed or controlled driving signals, an LRA may generate certain desired forms of vibrations. For example, a sharp and clear- cut vibration pattern on a user’ s finger may be used to create a sensation that mimics a mechanical button click. This clear-cut vibration may then be used as a virtual switch to replace mechanical buttons.
FIGURE 1 illustrates an example of a vibro-haptic system in a device 100. Device 100 may comprise a controller 101 configured to control a signal applied to an amplifier 102. Amplifier 102 may then drive a haptic transducer 103 based on the signal. Controller 101 may be triggered by a trigger to output to the signal. The trigger may for example comprise a pressure or force sensor on a screen or virtual button of device 100.
Among the various forms of vibro-haptic feedback, tonal vibrations of sustained duration may play an important role to notify the user of the device of certain predefined events, such as incoming calls or messages, emergency alerts, and timer warnings, etc. In order to generate tonal vibration notifications efficiently, it may be desirable to operate the haptic actuator at its resonance frequency.
The resonance frequency fo of a haptic transducer may be approximately estimated as:
Figure imgf000004_0001
where C is the compliance of the spring system, and M is the equivalent moving mass, which may be determined based on both the actual moving part in the haptic transducer and the mass of the portable device holding the haptic transducer. Due to sample-to-sample variations in individual haptic transducers, mobile device assembly variations, temporal component changes caused by aging, component changes caused by self-heating, and use conditions such as various different strengths of a user gripping of the device, the vibration resonance of the haptic transducer may vary from time to time. FIGURE 2A illustrates an example of a linear resonant actuator (LRA) modelled as a linear system including a mass-spring system 201. LRAs are non-linear components that may behave differently depending on, for example, the voltage levels applied, the operating temperature, and the frequency of operation. However, these components may be modelled as linear components within certain conditions. FIGURE 2B illustrates an example of an LRA modelled as a linear system, including an electrically equivalent model of mass-spring system 201 of LRA. In this example, the LRA is modelled as a third order system having electrical and mechanical elements. In particular, Re and Le are the DC resistance and coil inductance of the coil-magnet system, respectively; and Bl is the magnetic force factor of the coil. The driving amplifier outputs the voltage waveform F(t) with the output impedance Ro. The terminal voltage VT(t) may be sensed across the terminals of the haptic transducer. The mass-spring system 201 moves with velocity u(t). An electromagnetic load such as an LRA may be characterized by its impedance ZLRA as seen as the sum of a coil impedance Zcoa and a mechanical impedance Zmech :
Figure imgf000005_0001
Coil impedance Zcoa may in turn comprise a direct current (DC) resistance Re in series with an inductance Le :
Zcoil = Re + s * Le (3)
Mechanical impedance Zmech may be defined by three parameters including the resistance at resonance RRES representing an electrical resistance representative of mechanical friction of the mass-spring system of the haptic transducer, a capacitance CMES representing an electrical capacitance representative of an equivalent moving mass M of the mass-spring system of the haptic transducer, and inductance LCES representative of a compliance C of the mass-spring system of the haptic transducer. The electrical equivalent of the total mechanical impedance is the parallel connection of RRES, CMES, Lces. The Laplace transform of this parallel connection is described by:
Figure imgf000005_0002
The resonant frequency /0 of the haptic transducer can be represented as:
Figure imgf000005_0003
The quality factor Q of the LRA can be represented as:
Figure imgf000005_0004
Referring to equation (6), it may appear non-intuitive that the expression involves a subexpression describing the parallel connection of resistances Re and
RRES (i-e·’ RRES*Re ) while in FIGURE 2B these resistances are shown in a series RRES+RB connection. However, such may be the case where a driving voltage Ve is oscillating but then abruptly turns off and goes to zero. The voltage amplifier shown in FIGURE 2B may be considered to have a low source impedance, ideally zero source impedance. Under these conditions, when driving voltage Ve goes to zero, the voltage amplifier effectively disappears from the circuit. At that point, the top-most terminal of resistance Re in FIGURE 2B is grounded as is the bottom-most terminal of resistance RRE S , and so resistances Re and RRES are indeed connected in parallel as reflected in equation (6).
Electromagnetic transducers, such as LRAs or microspeakers, may have slow response times. FIGURE 3 is a graph of an example response of an LRA, depicting an example driving signal to the LRA, a current through the LRA, and a back electromotive force (back EMF) of the LRA, wherein such back EMF may be proportional to the velocity of a moving element (e.g., coil or magnet) of the transducer. As shown in FIGURE 3, the attack time of the back EMF may be slow as energy is transferred to the LRA, and some “ringing” of the back EMF may occur after the driving signal has ended as the mechanical energy stored in the LRA is discharged. In the context of a haptic LRA, such behavioral characteristic may result in a “mushy” feeling click or pulse, instead of a “crisp” tactile response. Thus, it may be desirable for an LRA to instead have a response similar to that shown in FIGURE 4, in which there exists minimal ringing after the driving signal has ended, and which may provide a more “crisp” tactile response in a haptic context. Accordingly, it may be desirable to apply processing to a driving signal such that when the processed driving signal is applied to the transducer, the velocity or back EMF of the transducer more closely approaches that of FIGURE 4. One way to provide such processing is to cancel some of the impedance presence in the driving circuit.
The impedances of an electromagnetic transducer may vary across time, use, part variations, and/or temperature. Thus, a constant impedance cancellation may be problematic if the cancellation is not matched to the part. If the cancellation is incomplete, the LRA response may ring too much and make the haptic effect feel “mushy” to a user. If too much cancellation is applied, the apparent source resistance may become negative. Such negative resistance may result in unstable behavior of the system (e.g., signal oscillations may occur independent of the desired response). For such a system to remain reliably stable, a way to detect and compensate for unstable behavior is desired so the control loop can be corrected.
SUMMARY
In accordance with the teachings of the present disclosure, the disadvantages and problems associated with detecting unexpected spectral content in an amplifier system may be reduced or eliminated.
In accordance with embodiments of the present disclosure, a method may include receiving, by a transducer driving system, a first signal for driving an amplifier that drives an electromagnetic load and receiving, by the transducer driving system, a second signal driven by the amplifier in order to control a feedback loop of the transducer driving system. The method may also include detecting unexpected spectral content in the second signal, declaring an indicator event based on the detected unexpected spectral content, determining whether the indicator event occurs in an undesired pattern, and in response to the indicator event occurring in the undesired pattern, modifying a behavior of the transducer driving system.
In accordance with these and other embodiments of the present disclosure, a method may include receiving, by a transducer driving system, a first signal for driving an amplifier that drives an electromagnetic load and receiving, by the transducer driving system, a second signal driven by the amplifier in order to control a feedback loop of the transducer driving system. The method may also include detecting unexpected spectral content in the second signal. The method may further include, in response to detecting the unexpected spectral content, modifying a system behavior of the transducer driving system by monitoring the unexpected spectral content and the second signal for patterns that identify a physical damage of the electromagnetic load and modifying a signal gain applied to the first signal to protect the transducer driving system.
In accordance with these and other embodiments of the present disclosure, a transducer driving system may include a driver output for driving an amplifier that drives an electromagnetic load, a feedback input for receiving a signal driven by the amplifier in order to control a feedback loop of the transducer driving system, and an unexpected spectral content detector and controller subsystem. The unexpected spectral content detector and controller subsystem may be configured to detect unexpected spectral content in the signal, declare an indicator event based on the detected unexpected spectral content, determine whether the indicator event occurs in an undesired pattern, and in response to the indicator event occurring in the undesired pattern, modify a behavior of the transducer driving system.
In accordance with these and other embodiments of the present disclosure, a transducer driving system may include a driver output for driving an amplifier that drives an electromagnetic load, a feedback input for receiving a signal driven by the amplifier in order to control a feedback loop of the transducer driving system; and an unexpected spectral content detector and controller subsystem. The unexpected spectral content detector and controller subsystem may be configured to detect unexpected spectral content in the signal and in response to detecting the unexpected spectral content, modify a system behavior of the transducer driving system by monitoring the unexpected spectral content and the second signal for patterns that identify a physical damage of the electromagnetic load and modifying a signal gain applied to the first signal to protect the transducer driving system. Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims. It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
FIGURE 1 illustrates an example of a vibro-haptic system in a device, as is known in the art;
FIGURES 2A and 2B each illustrate an example of a Linear Resonant Actuator (LRA) modelled as a linear system, as is known in the art;
FIGURE 3 illustrates a graph of example waveforms of an electromagnetic load, as is known in the art; FIGURE 4 illustrates a graph of desirable example waveforms of an electromagnetic load, in accordance with embodiments of the present disclosure;
FIGURE 5 illustrates a block diagram of selected components of an example mobile device, in accordance with embodiments of the present disclosure;
FIGURE 6 illustrates a block diagram of selected components of an example integrated haptic system, in accordance with embodiments of the present disclosure;
FIGURE 7 illustrates an example system for improving transducer dynamics, in accordance with embodiments of the present disclosure; FIGURE 8 illustrates an example of a linear resonant actuator (LRA) modelled as a linear system and including a negative resistance, in accordance with embodiments of the present disclosure;
FIGURE 9 illustrates a block diagram of selected components of an example unexpected spectral content detector, in accordance with embodiments of the present disclosure; and
FIGURE 10 illustrates a block diagram of selected components of an example unexpected spectral content controller, in accordance with embodiments of the present disclosure. DETAILED DESCRIPTION
The description below sets forth example embodiments according to this disclosure. Further example embodiments and implementations will be apparent to those having ordinary skill in the art. Further, those having ordinary skill in the art will recognize that various equivalent techniques may be applied in lieu of, or in conjunction with, the embodiment discussed below, and all such equivalents should be deemed as being encompassed by the present disclosure.
Various electronic devices or smart devices may have transducers, speakers, and acoustic output transducers, for example any transducer for converting a suitable electrical driving signal into an acoustic output such as a sonic pressure wave or mechanical vibration. For example, many electronic devices may include one or more speakers or loudspeakers for sound generation, for example, for playback of audio content, voice communications and/or for providing audible notifications.
Such speakers or loudspeakers may comprise an electromagnetic actuator, for example a voice coil motor, which is mechanically coupled to a flexible diaphragm, for example a conventional loudspeaker cone, or which is mechanically coupled to a surface of a device, for example the glass screen of a mobile device. Some electronic devices may also include acoustic output transducers capable of generating ultrasonic waves, for example for use in proximity detection type applications and/or machine- to-machine communication.
Many electronic devices may additionally or alternatively include more specialized acoustic output transducers, for example, haptic transducers, tailored for generating vibrations for haptic control feedback or notifications to a user. Additionally or alternatively, an electronic device may have a connector, e.g., a socket, for making a removable mating connection with a corresponding connector of an accessory apparatus, and may be arranged to provide a driving signal to the connector so as to drive a transducer, of one or more of the types mentioned above, of the accessory apparatus when connected. Such an electronic device will thus comprise driving circuitry for driving the transducer of the host device or connected accessory with a suitable driving signal. For acoustic or haptic transducers, the driving signal will generally be an analog time varying voltage signal, for example, a time varying waveform. FIGURE 5 illustrates a block diagram of selected components of an example host device 502, in accordance with embodiments of the present disclosure. As shown in FIGURE 5, host device 502 may comprise an enclosure 501, a controller 503, a memory 504, a force sensor 505, a microphone 506, a linear resonant actuator 507, a radio transmitter/receiver 508, a speaker 510, and an integrated haptic system 512. Enclosure 501 may comprise any suitable housing, casing, or other enclosure for housing the various components of host device 502. Enclosure 501 may be constructed from plastic, metal, and/or any other suitable materials. In addition, enclosure 501 may be adapted (e.g., sized and shaped) such that host device 502 is readily transported on a person of a user of host device 502. Accordingly, host device 502 may include but is not limited to a smart phone, a tablet computing device, a handheld computing device, a personal digital assistant, a notebook computer, a video game controller, or any other device that may be readily transported on a person of a user of host device 502. Controller 503 may be housed within enclosure 501 and may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data, and may include, without limitation a microprocessor, microcontroller, digital signal processor (DSP), application specific integrated circuit (ASIC), or any other digital or analog circuitry configured to interpret and/or execute program instructions and/or process data. In some embodiments, controller 503 interprets and/or executes program instructions and/or processes data stored in memory 504 and/or other computer-readable media accessible to controller 503.
Memory 504 may be housed within enclosure 501, may be communicatively coupled to controller 503, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 504 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to host device 502 is turned off.
Microphone 506 may be housed at least partially within enclosure 501, may be communicatively coupled to controller 503, and may comprise any system, device, or apparatus configured to convert sound incident at microphone 506 to an electrical signal that may be processed by controller 503, wherein such sound is converted to an electrical signal using a diaphragm or membrane having an electrical capacitance that varies based on sonic vibrations received at the diaphragm or membrane. Microphone 506 may include an electrostatic microphone, a condenser microphone, an electret microphone, a microelectromechanical systems (MEMS) microphone, or any other suitable capacitive microphone.
Radio transmitter/receiver 508 may be housed within enclosure 501, may be communicatively coupled to controller 503, and may include any system, device, or apparatus configured to, with the aid of an antenna, generate and transmit radio- frequency signals as well as receive radio-frequency signals and convert the information carried by such received signals into a form usable by controller 503. Radio transmitter/receiver 508 may be configured to transmit and/or receive various types of radio-frequency signals, including without limitation, cellular communications (e.g., 2G, 3G, 4G, LTE, etc.), short-range wireless communications (e.g., BLUETOOTH), commercial radio signals, television signals, satellite radio signals (e.g., GPS), Wireless Fidelity, etc.
A speaker 510 may be housed at least partially within enclosure 501 or may be external to enclosure 501, may be communicatively coupled to controller 503, and may comprise any system, device, or apparatus configured to produce sound in response to electrical audio signal input. In some embodiments, a speaker may comprise a dynamic loudspeaker, which employs a lightweight diaphragm mechanically coupled to a rigid frame via a flexible suspension that constrains a voice coil to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet. The coil and the driver’ s magnetic system interact, generating a mechanical force that causes the coil (and thus, the attached cone) to move back and forth, thereby reproducing sound under the control of the applied electrical signal coming from the amplifier. Force sensor 505 may be housed within enclosure 501, and may include any suitable system, device, or apparatus for sensing a force, a pressure, or a touch (e.g., an interaction with a human finger) and generating an electrical or electronic signal in response to such force, pressure, or touch. In some embodiments, such electrical or electronic signal may be a function of a magnitude of the force, pressure, or touch applied to the force sensor. In these and other embodiments, such electronic or electrical signal may comprise a general purpose input/output signal (GPIO) associated with an input signal to which haptic feedback is given. Force sensor 505 may include, without limitation, a capacitive displacement sensor, an inductive force sensor (e.g., a resistive-inductive-capacitive sensor), a strain gauge, a piezoelectric force sensor, force sensing resistor, piezoelectric force sensor, thin film force sensor, or a quantum tunneling composite-based force sensor. For purposes of clarity and exposition in this disclosure, the term “force” as used herein may refer not only to force, but to physical quantities indicative of force or analogous to force, such as, but not limited to, pressure and touch.
Linear resonant actuator 507 may be housed within enclosure 501, and may include any suitable system, device, or apparatus for producing an oscillating mechanical force across a single axis. For example, in some embodiments, linear resonant actuator 507 may rely on an alternating current voltage to drive a voice coil pressed against a moving mass connected to a spring. When the voice coil is driven at the resonant frequency of the spring, linear resonant actuator 507 may vibrate with a perceptible force. Thus, linear resonant actuator 507 may be useful in haptic applications within a specific frequency range. While, for the purposes of clarity and exposition, this disclosure is described in relation to the use of linear resonant actuator 507, it is understood that any other type or types of vibrational actuators (e.g., eccentric rotating mass actuators) may be used in lieu of or in addition to linear resonant actuator 507. In addition, it is also understood that actuators arranged to produce an oscillating mechanical force across multiple axes may be used in lieu of or in addition to linear resonant actuator 507. As described elsewhere in this disclosure, a linear resonant actuator 507, based on a signal received from integrated haptic system 512, may render haptic feedback to a user of host device 502 for at least one of mechanical button replacement and capacitive sensor feedback.
Integrated haptic system 512 may be housed within enclosure 501, may be communicatively coupled to force sensor 505 and linear resonant actuator 507, and may include any system, device, or apparatus configured to receive a signal from force sensor 505 indicative of a force applied to host device 502 (e.g., a force applied by a human finger to a virtual button of host device 502) and generate an electronic signal for driving linear resonant actuator 507 in response to the force applied to host device 502. Detail of an example integrated haptic system in accordance with embodiments of the present disclosure is depicted in FIGURE 6.
Although specific example components are depicted above in FIGURE 5 as being integral to host device 502 (e.g., controller 503, memory 504, force sensor 505, microphone 506, radio transmitter/receiver 508, speakers(s) 510), a host device 502 in accordance with this disclosure may comprise one or more components not specifically enumerated above. For example, although FIGURE 5 depicts certain user interface components, host device 502 may include one or more other user interface components in addition to those depicted in FIGURE 5 (including but not limited to a keypad, a touch screen, and a display), thus allowing a user to interact with and/or otherwise manipulate host device 502 and its associated components.
FIGURE 6 illustrates a block diagram of selected components of an example integrated haptic system 512A, in accordance with embodiments of the present disclosure. In some embodiments, integrated haptic system 512A may be used to implement integrated haptic system 512 of FIGURE 5. As shown in FIGURE 6, integrated haptic system 512A may include a digital signal processor (DSP) 602, a memory 604, and an amplifier 606.
DSP 602 may include any system, device, or apparatus configured to interpret and/or execute program instructions and/or process data. In some embodiments, DSP 602 may interpret and/or execute program instructions and/or process data stored in memory 604 and/or other computer-readable media accessible to DSP 602.
Memory 604 may be communicatively coupled to DSP 602, and may include any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media). Memory 604 may include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), a Personal Computer Memory Card International Association (PCMCIA) card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to host device 502 is turned off. Amplifier 606 may be electrically coupled to DSP 602 and may comprise any suitable electronic system, device, or apparatus configured to increase the power of an input signal VIN (e.g., a time-varying voltage or current) to generate an output signal VOUT. For example, amplifier 606 may use electric power from a power supply (not explicitly shown) to increase the amplitude of a signal. Amplifier 606 may include any suitable amplifier class, including without limitation, a Class-D amplifier.
In operation, memory 604 may store one or more haptic playback waveforms. In some embodiments, each of the one or more haptic playback waveforms may define a haptic response a(t) as a desired acceleration of a linear resonant actuator (e.g., linear resonant actuator 507) as a function of time. DSP 602 may be configured to receive a force signal VSENSE indicative of force applied to force sensor 505. Either in response to receipt of force signal VSENSE indicating a sensed force or independently of such receipt, DSP 602 may retrieve a haptic playback waveform from memory 604 and process such haptic playback waveform to determine a processed haptic playback signal VIN. In embodiments in which amplifier 606 is a Class D amplifier, processed haptic playback signal VIN may comprise a pulse- width modulated signal. In response to receipt of force signal VSENSE indicating a sensed force, DSP 602 may cause processed haptic playback signal VIN to be output to amplifier 606, and amplifier 606 may amplify processed haptic playback signal VIN to generate a haptic output signal VOUT for driving linear resonant actuator 507.
In some embodiments, integrated haptic system 512A may be formed on a single integrated circuit, thus enabling lower latency than existing approaches to haptic feedback control. By providing integrated haptic system 512A as part of a single monolithic integrated circuit, latencies between various interfaces and system components of integrated haptic system 512A may be reduced or eliminated.
The problem illustrated in FIGURE 3 may result from a linear resonant actuator 507 with a high quality factor q with a sharp peak in impedance at a resonant frequency fo of linear resonant actuator 507. FIGURE 7 illustrates an example transducer driving system 700 for improving dynamics of an electromagnetic load 701, in accordance with embodiments of the present disclosure. In some embodiments, system 700 may be integral to a host device (e.g., host device 502) comprising system 700 and electromagnetic load 701. In operation, a pulse generator 722 of a system 700 of a host device may generate a raw transducer driving signal x'(t) (which, in some embodiments, may be a waveform signal, such as a haptic waveform signal or audio signal). In some embodiments, raw transducer driving signal x'(t) may be generated based on a desired playback waveform received by pulse generator 722. Raw transducer driving signal x'(t) may be received by a delay element 728 that may apply a time delay to raw transducer driving signal x'(t) to generate a delayed raw transducer driving signal xd(t). The amount of delay applied by delay 728 may be approximately equal to a path delay between raw transducer driving signal x'(t) and sensed terminal voltage VT(t'). In addition, a gain element 727 may apply a signal gain generated by an unexpected spectral content controller 721 to raw transducer driving signal x'(t) in order to generate gained raw transducer driving signal xg(t). Gained raw transducer driving signal xg' (t) may be received by negative impedance filter 726 which, as described in greater detail below, may be applied to gained raw transducer driving signal xg' (t) to reduce an effective quality factor q of the electromagnetic load 701, which may in turn decrease attack time and minimize ringing occurring after the raw transducer driving signal has ended, thus generating transducer driving signal x(t) to the output of negative impedance filter 726.
Transducer driving signal x(t) may in turn be amplified by amplifier 706 to generate a driving signal V(t ) for driving electromagnetic load 701. Responsive to driving signal F(t), a sensed terminal voltage VT t) of electromagnetic load 701 may be converted to a digital representation by a first analog-to-digital converter (ADC) 703. Similarly, sensed current /(t) may be converted to a digital representation by a second ADC 704. Current / (t) may be sensed across a shunt resistor 702 having resistance Rs coupled to a terminal of electromagnetic load 701. The terminal voltage VT(t) may be sensed by a terminal voltage sensing block 707, for example a voltmeter.
As shown in FIGURE 7, system 700 may include an impedance estimator 710. Impedance estimator 710 may include any suitable system, device, or apparatus configured to estimate, based on sensed terminal voltage VT(t), sensed current /(t), and/or any other measured parameters of electromagnetic load 701, one or more components of the electrical and/or mechanical impedances of electromagnetic load 701, and generate one or more control signals (e.g., a negative impedance Re_neg) for controlling a response of negative impedance filter 726. Examples of approaches for estimating one or more components of the electrical and/or mechanical impedances of electromagnetic load 701 and generating a negative impedance value Re_neg are described in, without limitation, U.S. Patent Application Ser. No. 16/816,790 filed March 12, 2020 and entitled “Methods and Systems for Improving Transducer Dynamics;” U.S. Patent Application Ser. No. 16/816,833 filed March 12, 2020 and entitled “Methods and Systems for Estimating Transducer Parameters;” U.S. Patent Application Ser. No. 16/842,482 filed April 7, 2020 and entitled “Thermal Model of Transducer for Thermal Protection and Resistance Estimation;” and U.S. Patent Application Ser. No. 16/369,556 filed March 29, 2019 and entitled “Driver Circuitry;” all of which are incorporated by reference herein in their entireties.
As mentioned above and described in greater detail below, a system 700 may implement negative impedance filter 726 to apply to the raw transducer driving signal, which may reduce an effective quality factor q of the transducer, which may in turn decrease attack time and minimize ringing occurring after the raw transducer driving signal has ended. Quality factor q of a transducer may be expressed as:
Figure imgf000018_0001
In equation (7), as DC resistance Re increases, the numerator term RRES * Re increases more rapidly than the denominator term RRES + Re. Therefore, quality factor q generally increases with increasing DC resistance Re. Accordingly, one way system 700 may minimize quality factor q is to effectively decrease DC resistance Re. In some embodiments, system 700 may ideally decrease the effective DC resistance Re to a point in which critical damping occurs in electromagnetic load 701. Turning briefly to FIGURE 8, FIGURE 8 illustrates an example of electromagnetic load 701 modelled as a linear system including electrical components 802 and electrical model of mechanical components 804, and including a negative resistance resistor 806 with negative impedance Re_neg inserted in series with electromagnetic load 701, in accordance with embodiments of the present disclosure. The addition of negative impedance Re_neg may lower quality factor q because effectively it subtracts from DC resistance Re thereby reducing the overall DC electrical impedance.
In practice, negative resistors do not exist. Instead, negative impedance filter 726 may comprise a digital filter configured to behave substantially like the circuit shown in FIGURE 8, including a mathematical model of negative impedance Re_neg in series with a mathematical model of electromagnetic load 701. In operation, negative impedance filter 726 may in effect compute a voltage Vm that would occur at the junction of negative impedance Re_neg and DC resistance Re as shown in FIGURE 8, if, in fact, it were possible to place a physical resistor with negative impedance Re_neg in series with electromagnetic load 701. Computed voltage V„, may then be used to drive electromagnetic load 701.
In essence, system 700 implements a negative impedance feedback loop for electromagnetic load 701. The feedback loop may use a dynamic estimate of parameters of electromagnetic load 701 and generate feedback (e.g., negative impedance Re_neg and the response of negative impedance filter 726) to cancel most of the electrical and mechanical impedance of electromagnetic load 701. The electrical and mechanical impedance of electromagnetic load 701 may change in response to the stimulus applied to it (e.g., amplitude and frequency of driving signal V (t) ), ambient temperature conditions, and/or other factors. In order for impedance cancellation performed by the feedback loop to be effective, most of the impedance of electromagnetic load 701 should be cancelled (e.g., from 95% to just under 100% of the impedance of electromagnetic load 701). However, when the feedback loop cancels almost all of the impedance of electromagnetic load 701, instability of the feedback loop may result, for example if the impedance to be cancelled is incorrectly estimated. Such instability may result from non-linearity of amplifier 706 that may occur when the feedback loop cancels almost all of the impedance of electromagnetic load 701, thus resulting in unexpected spectral content present in sensed terminal voltage VT t). To balance the effectiveness of reducing quality factor q with prevention of instability in the feedback loop, system 700 may include an unexpected spectral content detector 712 to detect unexpected spectral content present in sensed terminal voltage VT t) and, when such unexpected spectral content is detected, generate an unexpected spectral content flag (e.g., labeled as “indicator flag” in FIGURE 7) communicated to unexpected spectral content controller 721 such that unexpected spectral content controller 721 may reduce (at least temporarily) the amount of the impedance of electromagnetic load 701 cancelled in order to reduce the presence of unexpected spectral content in order to prevent non-linearity/instability.
FIGURE 9 illustrates a block diagram of selected components of an example unexpected spectral content detector 712, in accordance with embodiments of the present disclosure. As shown in FIGURE 9, unexpected spectral content detector 712 may receive sensed terminal voltage VT (t) and delayed raw transducer driving signal xd' (t) and apply a Hilbert transform 902 (or any other suitable transform with similar functionality) to generate analytic signals having both real and imaginary components of sensed terminal voltage VT(t ) and delayed raw transducer driving signal xd(t). Conjugate multiplier 904 may conjugate these real and imaginary components to obtain a phase angle that represents a phase angle difference between sensed terminal voltage VT t) and delayed raw transducer driving signal xd(t). The signal output by conjugate multiplier 904 may be filtered by high-pass filter 906 to remove direct- current components, leaving a phase angle Dy representing the phase difference between sensed terminal voltage VT( t) and delayed raw transducer driving signal xd' (t ) Absolute value block 908 may receive phase angle Lf and output phase angle magnitude \Df\. A comparator 910 may compare phase angle magnitude \Af\ to a threshold value. If phase angle magnitude \Df\ exceeds the threshold value, comparator 910 may set an indicator flag to indicate the presence of unexpected spectral content in sensed terminal voltage VT (t) , which may be an early indicator of non-linearity and impending instability of the feedback loop of FIGURE 7.
In operation, unexpected spectral content controller 721 may select an impedance gain RE GAIN to be applied to negative impedance Re_neg by a gain element 723 of FIGURE 7 and/or select a signal gain SIGNAL GAIN to be applied to raw transducer driving signal x' (t) to generate gained raw transducer driving signal xg' {t). Thus, in response to the frequency, duration, or pattern of instability flag events being outside desired limits, unexpected spectral content controller 721 may (at least temporarily) reduce impedance gain RE GAIN and/or signal gain SIGNAL GAIN to reduce the likelihood of non-linearity/instability of the feedback loop of the system shown in FIGURE 7.
FIGURE 10 illustrates a block diagram of selected components of an example unexpected spectral content controller 721, in accordance with embodiments of the present disclosure.
As shown in FIGURE 10, unexpected spectral content controller 721 may include a multiplexer 1014 controlled by the indicator flag generated by unexpected spectral content detector 712 such that, immediately upon the indicator flag being set, multiplexer 1014 may select an impedance gain RE GAIN2 instead of RE GAIN1, wherein RE GAIN2 < RE GAIN1, such that the resulting impedance gain RE GAIN3 may immediately reduce impedance gain RE GAIN, thus reducing negative impedance Re_neg used by negative impedance filter 726, as disclosed in U.S. Patent Publication No. 2021/0175869 entitled “Methods and Systems for Detecting and Managing Amplifier Instability,” published June 10, 2021 and incorporated by reference herein.
Unexpected spectral content controller 721 may also include a low-pass filter 1001 configured to low-pass filter the indicator flag in order to generate an indicator statistic. A comparator 1013 may compare the indicator statistic to an indicator event threshold. If the indicator statistic is larger than the indicator event threshold, comparator 1013 may assert an indicator event signal which may be communicated to logical OR gate 1005. Thus, when the indicator event signal is asserted, logical OR gate 1005 may assert an indicator sticky flag signal. A multiplexer 1009 may be controlled by the indicator sticky flag signal, such that when the indicator sticky flag signal is asserted, multiplexer 1009 selects an impedance gain RE GAIN 4 lesser than impedance gain RE GAIN 3 to be applied to impedance gain RE GAIN, which may further reduce the negative impedance/resistance Re used by the negative impedance filter 726. A pulse generator 1006 may also receive the indicator event signal, whose output may also be applied to an input of logical OR gate 1005. The use of pulse generator 1006 may maintain assertion of the indicator sticky flag signal for a period matching the duration of pulse generator 1006. Such duration may be any suitable value of time from zero to infinity. As also shown in FIGURE 10, pulse generator 1006 may receive an external reset signal configured to reset pulse generator 1006.
The indicator sticky flag may also be used to further reduce impedance gain RE GAIN used by negative impedance filter 726, by signalling adjust gain down block 1004 to reduce impedance gain RE GAIN and setting mux 1009 to select impedance gain RE GAIN4 as impedance gain RE GAIN. This adjustment by adjust gain down block 1004 may reduce impedance gain RE GAIN by a significant amount for the duration of the pulse of pulse generator 1006.
In some instances, adjust gain down block 1004 may reduce impedance gain RE GAIN to zero if desired, which may effectively disable the negative impedance cancellation for the duration of the pulse of pulse generator 1006. In a similar manner, the indicator sticky flag may also be used to reduce the signal gain SIGNAL GAIN applied by multiplier 727, by signalling adjust gain down block 1016 to reduce signal gain RE GAIN and setting mux 1015 to select signal gain SIGNAL GAIN6 as signal gain SIGNAL GAIN. This adjustment by adjust gain down block 1016 may reduce SIGNAL gain SIGNAL GAIN by a significant amount for the duration of the pulse of pulse generator 1006.
Additional reliability for the system of FIGURE 7 may be achieved by examining the indicator flag for patterns that cause undesirable system behaviour. Peak correlation block 1002 may correlate peaks in raw transducer driving signal x'(t) to events that cause an indicator flag to be set. In response to a high correlation between raw transducer driving signal x'(t) and the indicator flag, peak correlation block 1002 may cause a multiplexer 1010 to select a lower signal gain SIGNAL GAIN2 in lieu of a default signal gain SIGNAL GAIN1. Such alternate gain selection may distort signal peaks but may also protect system hardware from potential damage.
In a similar manner, correlation duration block 1003 may correlate indicator flag events with long duration signals of raw transducer driving signal x'(t) (e.g., that might happen due to overheating with extended use). In response to a large duration correlation between raw transducer driving signal x' (t) and the indicator flag, duration correlation block 1003 may cause a multiplexer 1011 to select a lower signal gain SIGNAL GAIN4 in lieu of a default signal gain SIGNAL GAIN3.
A minimum block 1012 may select the smaller of the selected peak signal gain and selected duration signal gain as a SIGNAL GAIN 5. Multiplexer 1015 may select signal gain SIGNAL GAIN5 under conditions in which the indicator sticky flag is not set, and select signal gain SIGNAL GAIN6 for conditions where an indicator sticky flag is set.
Using the systems and methods described above, unexpected spectral content detector 712 and unexpected spectral content controller 721 may monitor a reaction of the closed-loop system of FIGURE 7 to the strength of the control loop controls (e.g., estimated resistances and inductances of electromagnetic load 701). Further, unexpected spectral content detector 712 and unexpected spectral content controller 721 may modify the estimated resistances and inductances of electromagnetic load 701 dynamically based on indicator flag events and/or one or more statistics based on indicator flag events.
In doing so, unexpected spectral content detector 712 and unexpected spectral content controller 721 may accomplish one or more of the following objectives:
1) Keeping track of a local frequency of indicator flag events. A number of indicator flag events exceeding a threshold within a particular duration of time may in effect trigger decrease in negative impedance applied by negative impedance filter 726 to a safe level. Such an event may be referred to as a negative impedance failure.
2) Handling negative impedance failures with varying complexity: a) Disabling negative impedance feedback, then attempting to return after some time has passed. b) Testing reduced negative impedance strength to determine if reducing negative impedance feedback gain limits feedback loop instability. c) Testing reduced signal gain to determine if reducing signal gain limits feedback loop instability. d) Examining unexpected spectral content for patterns that may aid in identifying physical damage to electromagnetic load 701 and/or other hardware components. e) Modifying a playback signal and feedback to avoid further system damage.
Although the foregoing contemplates instability control by controlling a gain applied to negative impedance Re_neg, in some embodiments, unexpected spectral content detector 712 may control other parameters in order to maintain feedback loop stability. For example, in addition to or in lieu of controlling a gain applied to negative impedance Re_neg, in some embodiments, unexpected spectral content detector 712 and/or unexpected system content controller 721 may control a response of negative impedance filter 726, operational parameters of amplifier 706, and/or any other parameters of system 700.
In summary, methods and systems for detecting and managing unexpected spectral content in an amplifier system are provided. One example method may involve a transducer driving system receiving a first signal for driving an amplifier that drives an electromagnetic load. The transducer driving system may receive a second signal driven by the amplifier. The method may further include detecting unexpected spectral content in the feedback control loop and declaring an indicator event based on the detected unexpected spectral content. The method may also include determining whether the indicator event occurs in an undesired pattern. In response to the indicator event occurring in the undesired pattern, a system behavior of the transducer driving system may be modified.
The modified system behavior may disable a negative impedance of the feedback loop until the negative impedance is re-enabled from a higher level control. The modified system behavior may disable a negative impedance of the feedback loop for some amount of time which is a function of the undesired pattern. The impedance modification may be for a fixed time. The impedance modification may be modified for a dynamic time, depending on the history of the instability events. The modified system behavior may tune a gain of a negative impedance of the feedback loop. The modified system behavior may tune a signal gain of the first signal. The gain may be reduced to limit frequency of occurrence of instability events. The gain may be reduced to limit frequency of occurrence of instability events.
Another example method may include a transducer driving system receiving a first signal for driving an amplifier that drives an electromagnetic load and further receiving a second signal driven by the amplifier. The method may further include detecting unexpected spectral content in the feedback control loop and modifying behavior of the transducer driving system based on detection of the unexpected spectral content. Such modification may be accomplished by monitoring the unexpected spectral content and the second signal for patterns that identify a physical damage of the electromagnetic load and modifying a signal gain to protect the transducer driving system.
The monitored pattern may be used to identify a correlation between indicator events and signal peaks. The signal gain may be dynamically modified to reduce the signal peaks. In addition or alternatively, the monitored pattern may be used to look for correlation between indicator events and signal duration. The signal gain may be dynamically modified to reduce signal strength for long duration signals.
Although the foregoing discusses application to a linear electromagnetic load, it is understood that systems and methods similar or identical to those disclosed may be applied to other linear or non-linear systems.
Further, although the foregoing contemplates use of a negative resistance filter to implement a model of an LRA, in some embodiments a mathematical equivalent to an LRA may be used in lieu of a model.
As used herein, when two or more elements are referred to as “coupled” to one another, such term indicates that such two or more elements are in electronic communication or mechanical communication, as applicable, whether connected indirectly or directly, with or without intervening elements.
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
Although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described above.
Unless otherwise specifically noted, articles depicted in the drawings are not necessarily drawn to scale. All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.
Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages. Additionally, other technical advantages may become readily apparent to one of ordinary skill in the art after review of the foregoing figures and description.
To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. § 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.

Claims

WHAT IS CLAIMED IS:
1. A method comprising: receiving, by a transducer driving system, a first signal for driving an amplifier that drives an electromagnetic load; receiving, by the transducer driving system, a second signal driven by the amplifier in order to control a feedback loop of the transducer driving system; detecting unexpected spectral content in the second signal; declaring an indicator event based on the detected unexpected spectral content; determining whether the indicator event occurs in an undesired pattern; in response to the indicator event occurring in the undesired pattern, modifying a behavior of the transducer driving system.
2. The method of Claim 1, wherein modifying the behavior of the transducer driving system comprises modifying a negative impedance of the feedback loop.
3. The method of Claim 1, wherein modifying the behavior of the transducer driving system comprises modifying a negative impedance of the feedback loop for a duration of time which is a function of the undesired pattern.
4. The method of Claim 3, wherein the negative impedance is modified for a fixed period of time.
5. The method of Claim 3, wherein the negative impedance is modified for a dynamically-adjustable time which is a function of a history of indicator events.
6. The method of any of Claims 1-5, wherein modifying the behavior of the transducer driving system comprises tuning a gain of a negative impedance of the feedback loop.
7. The method of Claim 6, further comprising reducing the gain of the negative impedance to limit frequency of occurrence of indicator events.
8. The method of any of Claims 1-7, wherein modifying the behavior of the transducer driving system comprises modifying a signal gain of the first signal.
9. The method of Claim 8, further comprising reducing the signal gain to limit frequency of occurrence of instability events.
10. A method comprising: receiving, by a transducer driving system, a first signal for driving an amplifier that drives an electromagnetic load; receiving, by the transducer driving system, a second signal driven by the amplifier in order to control a feedback loop of the transducer driving system; detecting unexpected spectral content in the second signal; in response to detecting the unexpected spectral content, modifying a system behavior of the transducer driving system by: monitoring the unexpected spectral content and the second signal for patterns that identify a physical damage of the electromagnetic load; and modifying a signal gain applied to the first signal to protect the transducer driving system.
11. The method of Claim 10, wherein the patterns comprise a correlation between unexpected spectral content events and signal peaks of the second signal and the method further comprises dynamically modifying the signal gain to reduce the signal peaks.
12. The method of Claim 10 or 11, wherein the patterns comprise a correlation between instability events and a signal duration of the second signal; and the method further comprises dynamically modifying the signal gain to reduce signal strength for long-duration signals.
13. A transducer driving system, comprising: a driver output for driving an amplifier that drives an electromagnetic load; a feedback input for receiving a signal driven by the amplifier in order to control a feedback loop of the transducer driving system; and an unexpected spectral content detector and controller subsystem configured to: detect unexpected spectral content in the signal; declare an indicator event based on the detected unexpected spectral content; determine whether the indicator event occurs in an undesired pattern; and in response to the indicator event occurring in the undesired pattern, modify a behavior of the transducer driving system.
14. The transducer driving system of Claim 13, wherein modifying the behavior of the transducer driving system comprises modifying a negative impedance of the feedback loop.
15. The transducer driving system of Claim 14, wherein modifying the behavior of the transducer driving system comprises modifying the negative impedance of the feedback loop for a duration of time which is a function of the undesired pattern.
16. The transducer driving system of Claim 15, wherein the negative impedance is modified for a fixed period of time.
17. The transducer driving system of Claim 15, wherein the negative impedance is modified for a dynamically-adjustable time which is a function of a history of indicator events.
18. The transducer driving system of any of Claims 13-17, wherein modifying the behavior of the transducer driving system comprises tuning a gain of a negative impedance of the feedback loop.
19. The transducer driving system of Claim 18, wherein the unexpected spectral content detector and controller subsystem is further configured to reduce the gain of the negative impedance to limit frequency of occurrence of indicator events.
20. The transducer driving system of any of Claims 13-19, wherein modifying the behavior of the transducer driving system comprises modifying a signal gain of a first signal.
21. The transducer driving system of Claim 20, wherein the unexpected spectral content detector and controller subsystem is further configured to reduce the signal gain to limit frequency of occurrence of instability events.
22. A transducer driving system comprising: a driver output for driving an amplifier that drives an electromagnetic load; a feedback input for receiving a first signal driven by the amplifier in order to control a feedback loop of the transducer driving system; and an unexpected spectral content detector and controller subsystem configured to: detect unexpected spectral content in the signal; and in response to detecting the unexpected spectral content, modify a system behavior of the transducer driving system by: monitoring the unexpected spectral content and a second signal for patterns that identify a physical damage of the electromagnetic load; and modifying a signal gain applied to the first signal to protect the transducer driving system.
23. The transducer driving system of Claim 22, wherein the patterns comprise a correlation between unexpected spectral content events and signal peaks of the second signal and the method further comprises dynamically modifying the signal gain to reduce the signal peaks.
24. The transducer driving system of Claim 22 or 23, wherein the patterns comprise a correlation between instability events and a signal duration of the second signal; and the method further comprises dynamically modifying the signal gain to reduce signal strength for long-duration signals.
PCT/US2022/033190 2021-06-22 2022-06-13 Methods and systems for detecting and managing unexpected spectral content in an amplifier system WO2022271472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2318605.9A GB2621801A (en) 2021-06-22 2022-06-13 Methods and systems for detecting and managing unexpected spectral content in an amplifier system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163213357P 2021-06-22 2021-06-22
US63/213,357 2021-06-22
US17/549,399 2021-12-13
US17/549,399 US11908310B2 (en) 2021-06-22 2021-12-13 Methods and systems for detecting and managing unexpected spectral content in an amplifier system

Publications (1)

Publication Number Publication Date
WO2022271472A1 true WO2022271472A1 (en) 2022-12-29

Family

ID=82492562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/033190 WO2022271472A1 (en) 2021-06-22 2022-06-13 Methods and systems for detecting and managing unexpected spectral content in an amplifier system

Country Status (2)

Country Link
GB (1) GB2621801A (en)
WO (1) WO2022271472A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200139403A1 (en) * 2018-11-02 2020-05-07 Texas Instruments Incorporated Resonant frequency tracking and control
US20200306796A1 (en) * 2019-03-29 2020-10-01 Cirrus Logic International Semiconductor Ltd. Methods and systems for improving transducer dynamics
US20200348249A1 (en) * 2019-05-01 2020-11-05 Cirrus Logic International Semiconductor Ltd. Thermal model of transducer for thermal protection and resistance estimation
US20210174777A1 (en) * 2019-12-05 2021-06-10 Cirrus Logic International Semiconductor Ltd. Methods and systems for estimating coil impedance of an electromagnetic transducer
US20210175869A1 (en) 2019-12-06 2021-06-10 Cirrus Logic International Semiconductor Ltd. Methods and systems for detecting and managing amplifier instability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200139403A1 (en) * 2018-11-02 2020-05-07 Texas Instruments Incorporated Resonant frequency tracking and control
US20200306796A1 (en) * 2019-03-29 2020-10-01 Cirrus Logic International Semiconductor Ltd. Methods and systems for improving transducer dynamics
US20200348249A1 (en) * 2019-05-01 2020-11-05 Cirrus Logic International Semiconductor Ltd. Thermal model of transducer for thermal protection and resistance estimation
US20210174777A1 (en) * 2019-12-05 2021-06-10 Cirrus Logic International Semiconductor Ltd. Methods and systems for estimating coil impedance of an electromagnetic transducer
US20210175869A1 (en) 2019-12-06 2021-06-10 Cirrus Logic International Semiconductor Ltd. Methods and systems for detecting and managing amplifier instability

Also Published As

Publication number Publication date
GB2621801A (en) 2024-02-21
GB202318605D0 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US11545951B2 (en) Methods and systems for detecting and managing amplifier instability
US11765499B2 (en) Methods and systems for managing mixed mode electromechanical actuator drive
US20210174777A1 (en) Methods and systems for estimating coil impedance of an electromagnetic transducer
US11933822B2 (en) Methods and systems for in-system estimation of actuator parameters
US11150733B2 (en) Methods and apparatuses for providing a haptic output signal to a haptic actuator
US11500469B2 (en) Integrated haptic system
WO2020256996A1 (en) Minimizing transducer settling time
US11644370B2 (en) Force sensing with an electromagnetic load
US11908310B2 (en) Methods and systems for detecting and managing unexpected spectral content in an amplifier system
WO2022271472A1 (en) Methods and systems for detecting and managing unexpected spectral content in an amplifier system
GB2590549A (en) Methods and systems for detecting and managing amplifier instability
WO2022271475A1 (en) Methods and systems for managing mixed mode electromechanical actuator drive
WO2022265825A1 (en) Methods and systems for in-system estimation of actuator parameters
GB2592462A (en) Methods and systems for estimating coil impedance of an electromagnet transducer
CN117597202A (en) Method and system for managing mixed mode electromechanical actuator drive
KR20240138508A (en) Detection and prevention of nonlinear deviation in haptic actuators
CN118591424A (en) Detection and prevention of nonlinear offset in haptic actuators
GB2562328A (en) Integrated haptic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22741113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318605

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220613

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22741113

Country of ref document: EP

Kind code of ref document: A1