WO2022270547A1 - Monitoring device - Google Patents

Monitoring device Download PDF

Info

Publication number
WO2022270547A1
WO2022270547A1 PCT/JP2022/024929 JP2022024929W WO2022270547A1 WO 2022270547 A1 WO2022270547 A1 WO 2022270547A1 JP 2022024929 W JP2022024929 W JP 2022024929W WO 2022270547 A1 WO2022270547 A1 WO 2022270547A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
unit
base station
power
circuit block
Prior art date
Application number
PCT/JP2022/024929
Other languages
French (fr)
Japanese (ja)
Inventor
義浩 奥山
健夫 芝
静士 時任
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Publication of WO2022270547A1 publication Critical patent/WO2022270547A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • H04M1/73Battery saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a distribution monitoring device that is attached to an article and stores the environment in which the article is placed during distribution, and a monitoring device such as a wearable monitoring device.
  • Brewed alcoholic beverages such as fruit wine and Japanese sake are prone to deterioration due to temperature, so it is desirable to transport and store them under temperature control. Quality deterioration may occur if temperature is not controlled during transportation and storage. If such deterioration in quality occurs, the evaluation of the product, store, etc. will be lowered when the product is consumed at a restaurant or at home after being sold. Adverse effects due to temperature anomalies are not limited to brewed alcoholic beverages, but also occur in the transportation of other foods, agricultural products, human body tissues, and the like. In addition to the abnormal temperature, abnormalities such as acceleration such as impact and vibration, and humidity also cause deterioration in the quality of the article.
  • Patent Document 1 describes a distribution management system capable of recording information on the state of each item.
  • articles are stored in a refrigerator of a freight truck and transported, and each article is packaged with a sensor tag.
  • the sensor tag transmits temperature readings over long waves, which are sent via a repeater located in the cold store to a communication terminal outside the cold store on the freight truck.
  • the communication terminal In the communication terminal, the measured temperature values and the time of measurement are stored, and the measured values and the like are sent to the central station via wireless communication for management.
  • a monitoring device includes a communication unit, a measurement unit, a power supply battery that supplies power to the communication unit and the measurement unit, and a wakeup unit that is not supplied with power from the power supply battery, and the wakeup unit identifies a wireless base station by radio wave power obtained from the radio wave and outputs an interrupt signal to the communication unit; the measurement unit performs measurement using a sensor and stores measurement data; Waking up from the deep sleep mode by an interrupt signal, wirelessly transmits the measurement data stored in the measurement unit to the wireless base station or another wireless base station.
  • FIG. 1 illustrates one embodiment of a device for monitoring;
  • 4A and 4B are diagrams showing the operation of the circuit according to the first embodiment;
  • FIG. FIG. 10 is a diagram showing the operation of the circuit in Example 2;
  • FIG. 10 is a diagram showing the operation of the circuit in Example 3;
  • a monitoring device is used for distribution, and is attached to articles to be distributed or stored.
  • a flexible sensor tag 1 is shown in FIG.
  • the sensor tag 1 is in the form of a sheet and can be attached to a bottle or the like having a curved surface.
  • electronic paper is provided on which the date and time when distribution or storage was started, the destination, a two-dimensional bar code, and the like are displayed.
  • a communication circuit block 11 On the back side of the electronic paper, a communication circuit block 11, a measurement circuit block 12 including a sensor, a first control circuit block 13 including a first CPU, a thin power battery 15, a passive WUP circuit block 16, etc. are provided.
  • It is A flexible wiring board or the like is used for these circuits, and they have flexibility as a whole. Therefore, it can be attached to a curved surface such as a bottle.
  • the sensor tag 1 is attached to an article 2 as shown in FIG. 2 and distributed and stored.
  • the sensor tag 1 is shown attached to articles 2 such as a bottle and a box.
  • the destination, start date and time, etc. are input to the sensor tag 1 and displayed as shown in FIG. Then, the sensor tag 1 is attached to the article 2 by sticking.
  • Articles 2 to which sensor tags 1 are attached are refrigerated by refrigerated trucks 3, which are transportation equipment, and are transported to distribution facilities 4 at various locations.
  • the distribution facility 4 is provided with one or more gateways 41 (G/W), which are wireless base stations. Each gateway 41 is connected to the Internet 5 via a router 42 . And it is connected to the server 6 .
  • G/W gateways 41
  • the server 6 stores information such as temperature obtained from the sensor tag 1, and can transmit the information by accessing from the outside.
  • the physical distribution facility 4 may be a receiving facility such as a store for the goods 2, or may be a physical distribution relay facility, a drive-in, a parking area, or the like.
  • a sensor tag 1 which is an embodiment of the present application, has a block configuration shown in FIG.
  • the communication circuit block 11 is provided with a transceiver and an antenna for communicating with the gateway 41 .
  • the measurement circuit block 12 also includes sensors for detecting information that needs to be managed in physical distribution, such as temperature sensors and impact sensors, and amplifiers for performing necessary processing on the signals detected by these sensors. , an A/D converter, etc. are provided.
  • a first control circuit block 13 is provided to control the communication circuit block 11 and the measurement circuit block 12 .
  • the first control circuit block 13 is provided with a first CPU, a first memory, and a counter.
  • the communication circuit block 11 , the measurement circuit block 12 and the first control circuit block 13 are operated by power from the main power supply circuit block 14 .
  • the main power supply circuit block 14 is provided with a voltage step-up/down circuit and a power supply stabilizing circuit. Power for the main power circuit block 14 is supplied from a power battery 15 .
  • the power battery 15 is a chemical battery.
  • the first control circuit block 13 and the main power circuit block 14 are connected to the electronic paper device.
  • the first control circuit block 13 is connected to the second control circuit block 161 of the passive WUP circuit block 16.
  • the passive WUP circuit block 16 basically does not obtain power from the power supply battery 15, but operates on power obtained from radio waves.
  • the passive WUP circuit block 16 has a second control circuit block 161 and a wireless power supply circuit block 162 .
  • the second control circuit block 161 has a demodulation/decoding circuit, a second CPU, and a second memory
  • the wireless power supply circuit block 162 has an antenna, a rectifying/smoothing circuit, a booster circuit, and a power stabilizing circuit.
  • the antenna of the wireless power supply circuit block 162 and the antenna of the communication circuit block 11 are provided separately, but if the frequencies to be used are close, the antennas can be shared and switched by a switch.
  • the first memory of the first control circuit block 13 and the second memory of the second control circuit block 161 store base station IDs corresponding to a plurality of gateways 41 with which the sensor tag 1 can transmit and receive. Then, if the base station ID included in the connection request signal (advertising signal) of the gateway 41 is stored in the second memory, the INT signal (interrupt signal) is sent to the first control circuit block 13 .
  • the wireless power supply circuit block 162 converts radio wave power of radio waves generated by the gateway 41 and supplies power to the second control circuit block 161 . If the base station ID included in the connection request signal of gateway 41 is stored in the first memory, measurement data can be transmitted via that gateway 41 .
  • temperature measurement by a temperature sensor is performed as a periodic measurement target, and acceleration measurement is performed by an impact sensor as an event-driven measurement target.
  • the temperature sensor, impact sensor, amplifier, A/D converter, etc. of the measurement circuit block 12 are controlled by the first control circuit block 13 to generate measurement data consisting of measurement values and measurement dates.
  • the sensor tag 1 is normally in a deep sleep mode (SLP), and the power consumption of the power supply battery 15 is suppressed.
  • SLP deep sleep mode
  • the deep sleep mode is a mode that reduces power consumption and makes the power supply battery 15 last longer.
  • the communication circuit block 11 is not operated. Therefore, the transmitter/receiver that consumes a large amount of power is stopped.
  • the measurement circuit block 12 consumes only minimal power. Although power is supplied to the first control circuit block 13, only a circuit for measuring time, such as a counter, is operated, so the power consumption is the lowest.
  • each block In wake-up mode (WUP), each block operates normally, but power consumption is high. In this mode, power is supplied to the communication circuit block 11 and the measurement circuit block 12, and the transceiver, amplifier, A/D converter, etc. are operated.
  • the semi-wakeup mode (SWUP) is a mode with slightly lower power consumption. In this mode, the communication circuit block 11 equipped with a transceiver that consumes a large amount of power is not operated. However, the measurement circuit block 12 is operated and the first CPU of the first control circuit block 13 operates at the normal clock frequency.
  • the semi-wakeup mode (SWUP) consumes less power than the wakeup mode (WUP) and more power than the deep sleep mode (SLP).
  • Example 1 the operation of temperature measurement is performed as follows.
  • the first control circuit block 13 counts in the deep sleep mode (SLP).
  • a counter forms a timer. Each time the timer indicates that a predetermined time has elapsed, the process proceeds to step SM12.
  • the deep sleep mode (SLP) is switched to the semi-wakeup mode (SWUP).
  • SWUP semi-wakeup mode
  • step SM13 the power-supplied measurement circuit block 12 amplifies the output of the temperature sensor and performs A/D conversion.
  • the temperature measurement value is stored in the first memory together with the date and time of measurement. Thereafter, at step SM14, the process returns to the deep sleep mode (SLP) again.
  • step SM12 the deep sleep mode (SLP) is switched to the semi-wakeup mode (SWUP).
  • step SM13 the first control circuit block 13 stores the impact (acceleration greater than or equal to a predetermined value) and the date and time of the impact detection in the first memory. Then, in step SM14, it returns to the deep sleep mode (SLP) again.
  • the first memory of the first control circuit block 13 stores the temperature at predetermined time intervals together with the date and time of measurement. The date and time of detection are stored together.
  • the sensor tag 1 shown in FIG. 2 enters the distribution facility 4 in the process of distribution or storage and the passive WUP circuit block 16 receives radio waves from the gateway 41, as shown in the wakeup section of FIG. Power supply starts. Radio waves are converted into electric power by the wireless power supply circuit block 162 shown in FIG.
  • the G/W signal (gateway signal) is received by the connection request signal issued by the gateway 41.
  • the G/W signal contains a unique base station ID for each gateway 41, which is a radio base station.
  • the second control circuit block 161 at step SW13, it is collated with the base station ID stored in the second memory. If it is identified as the base station ID stored in the second memory, an INT signal (interrupt signal) is transmitted to the communication section in step SW14.
  • steps SW12 and SW13 G/W signal reception and G/W signal identification are repeated until the base station ID stored in the second memory is identified. In this way, the sensor tag 1 detects the approach of the gateway 41 capable of transmitting measurement data without consuming the power of the power supply battery 15 .
  • the communication section Upon receiving the INT signal from the wakeup section, the communication section shifts from the deep sleep mode (SLP) to the semi-wakeup mode (SWUP) in step SC11. Therefore, the power consumption is suppressed by setting the deep sleep mode (SLP) except during measurement until the data can be transmitted to the gateway 41 . Then, in step SC12, the presence or absence of measurement data in the first memory of the first control circuit block 13 is confirmed. In the quasi-wakeup mode (SWUP), the communication circuit block 11 does not operate and therefore does not consume power, but the first control circuit block 13 operates normally. If there is no measurement data in the first memory, the process returns to the deep sleep mode (SLP) at step SC17. On the other hand, if there is measurement data in the first memory, the process shifts to wakeup mode (WUP) in step SC13.
  • SWUP wakeup mode
  • step SC14 it is determined whether or not the base station ID of the received G/W signal is stored in the first memory. If the received base station ID is not in the first memory, the process returns to the deep sleep mode (SLP) at step SC17.
  • SLP deep sleep mode
  • step SC14 If the base station ID of the G/W signal is in the first memory in step SC14, the measurement data in the first memory is sent to the G/W (gateway 41) together with the tag ID, which is a code unique to the sensor tag 1, in step SC15. wirelessly to Then, in step SC16, the measurement data stored in the first memory is erased, and in step SC17, the deep sleep mode (SLP) is entered.
  • G/W gateway 41
  • the gateway 41 received during wake-up and the gateway 41 during communication may differ.
  • the base station ID is separately identified in the flow of the wakeup part and the flow of the communication part. Therefore, even if the gateways 41 are different as described above, wireless transmission of measurement data and the like can be performed without any problem.
  • the first CPU of the first control circuit block 13 is used for both the flow of the measurement unit and the flow of the communication unit in FIG.
  • the flow of the communication section is not performed until the flow of the measurement section goes to step SM14 and enters the deep sleep mode (SLP).
  • the flow of the measurement unit starts to operate due to a timer or event drive while the flow of the communication unit is being executed, the flow of the communication unit is stopped and the flow of the measurement unit is performed. However, the process is not stopped between steps SC15 and SC16. If the communication unit receives the INT signal when the flow of the measurement unit reaches step SM14, the process starts from step SC11. The flow of the measurement part takes precedence over the flow of the communication part.
  • the measurement data and tag IDs transmitted as described above are sent from the gateway 41 to the server 6 via the Internet 5 and stored.
  • the tag ID of the sensor tag 1 is displayed on the electronic paper of the sensor tag 1 as a two-dimensional bar code as shown in FIG. Therefore, by loading the displayed two-dimensional bar code into the terminal and accessing the server 6, the history of temperature and impact can be viewed. Then, when quality deterioration occurs in the article 2, it is possible to evaluate in which process, such as transportation or storage, the abnormal temperature or shock occurred from the date and time of the measurement data, and to improve the process.
  • a step of returning to step SC12 after switching to a quasi-wakeup mode may be provided when the G/W signal is received.
  • the process shifts to deep sleep mode (SLP) in step SC17. By doing so, the frequency of deep sleep mode (SLP) can be reduced.
  • the operation of the CPU is set to the deep sleep mode (SLP) mode when measurement and communication are not required, the sensor is used for intermittent measurement and event-driven type, and the operation mode of the processor driving the electronic paper is rewritten.
  • SLP deep sleep mode
  • step SM24 of the second embodiment it is determined whether there is an INT signal by step SW24 in the flow of the wakeup section. If there is no INT signal, it returns to the deep sleep mode (SLP) at step SM26. If there is an INT signal, a wake-up (WUP) request is made to the communication section in step SM25. Then, in step SM26, it returns to the deep sleep mode (SLP). Steps SW21 to SW24, which are the operations of the wakeup section, are the same as steps SW11 to SW14 in the first embodiment.
  • step SC21 in the communication unit when both the INT signal from the wakeup unit and the wakeup request (WUP request) from the measurement unit are present, the deep sleep mode (SLP) is switched to the wakeup mode. (WUP).
  • step SC14 to SC17 of the first embodiment after identifying the base station ID of the G/W signal in steps SC22 to SC25 and transmitting the measurement data in the memory and the tag ID to the gateway 41 (G/W), Erase the measurement data and return to deep sleep mode (SLP).
  • the first CPU of the first control circuit block 13 is used for both the flow of the measurement unit and the flow of the communication unit in FIG.
  • the flow of the communication section starts after a WUP request is issued in step SM24 of the measurement section. It is unlikely that an impact will occur during execution of the flow of the measurement part or the communication part and it will be event-driven.
  • the INT signal is identified in step SM24, and if there is an INT signal, a WUP request is made in step SM25.
  • WUP wakeup mode
  • Example 3 the operations of temperature measurement and impact measurement are performed in the same manner as steps SM11 to SM14 in Example 1, as shown in steps SM31 to SM34 in the flow of the measurement unit in FIG. Steps SW31 to SW34, which are the operations of the wakeup section, are also the same as steps SW11 to SW14 in the first embodiment.
  • the communication unit receives the INT signal from the wakeup unit and shifts from deep sleep mode (SLP) to wakeup mode (WUP) in step SC31.
  • wakeup mode WUP
  • power is supplied to the communication circuit block 11 .
  • step SC32 it is determined whether or not the base station ID stored in the first memory is present in the G/W signal of the received radio wave. If there is no such G/W signal, it returns to the deep sleep mode (SLP) at step SC37 and waits for an INT signal at step SC31.
  • step SC33 the presence or absence of measurement data in the first memory of the first control circuit block 13 is checked in step SC33. If there is no measurement data in the first memory, the process proceeds to step SC36. On the other hand, if there is measurement data in the first memory, in step SC34 the measurement data in the first memory and the tag ID are transmitted to the gateway 41 (G/W) of the base station ID identified in step SC32. After that, in step SC35, the measurement data is erased from the first memory, and the process proceeds to step SC36.
  • G/W gateway 41
  • step SC36 the mode shifts to the deep sleep mode (SLP), and when the timer by the counter of the first control circuit block 13 elapses for a predetermined time, the mode shifts to the wakeup mode (WUP) again. Then, the process returns to step SC32 to identify the G/W signal.
  • step SC36 the power consumption of the power supply battery 15 can be suppressed by repeating the deep sleep mode (SLP) and the wakeup mode (WUP) at predetermined time intervals while the G/W signal is present.
  • step SC36 There is a possibility that the measurement data is stored in the first memory while in the deep sleep mode (SLP) for a predetermined period of time in step SC36.
  • step SC32 returns to the deep sleep mode (SLP) of step SC37. Then, it waits for the next INT signal.
  • the sensor tag 1 does not move much and wireless transmission is possible, if the measurement data and the tag ID are stored in the first memory, they are wirelessly transmitted to the gateway 41 .
  • the predetermined time in step SC36 is preferably longer than the temperature measurement interval in step SM31.
  • the first CPU of the first control circuit block 13 is used for both the flow of the measurement unit and the flow of the communication unit in FIG.
  • the measurement data is stored in the first memory by shifting to the quasi-wakeup mode (SWUP) by the timer of the measurement unit or event driven. be. It is unlikely that the measurement unit will start to operate at a timing other than step SC36 of the communication unit flow.
  • Examples 1 to 3 are examples using the block configuration of the sensor tag 1 in one embodiment shown in FIG. 2, but the block configuration of the sensor tag in another embodiment shown in FIG. 7 may be used.
  • the passive WUP circuit block 16 is provided with a secondary battery 164 .
  • the secondary battery 164 is charged with power obtained from the wireless power supply circuit block 163, and is supplied to the second control circuit block 161 via the wireless power supply circuit block 163 when radio waves weaken.
  • the secondary battery 164 is provided so that the wireless power supply circuit block 163 can stably supply power until the second control circuit block 161 sends out the INT signal. Therefore, long-term power supply may not be performed, and a capacitor may be used for the secondary battery 164 .
  • the measurement data in the first memory is deleted after being transmitted.
  • all measurement data may be transmitted each time without being erased.
  • the wireless power supply circuit block 163 shown in FIG. 7 is connected to the power supply battery 15 .
  • the wireless power supply circuit block 163 supplies surplus power obtained from radio waves to the power supply battery 15 to charge it.
  • the power battery 15 is a secondary battery of a chemical battery. Only one of the configuration in which the power supply battery 15 is charged from the wireless power supply circuit block 163 and the configuration in which the secondary battery 164 is provided may be provided.
  • base station IDs of a plurality of gateways 41 accessible by the sensor tag 1 are stored in the first memory and the second memory.
  • the accessible gateway 41 may change at any time due to installation or removal. Therefore, the base station IDs of a plurality of accessible gateways 41 can be stored in the server 6, updated and managed, and transmitted to the sensor tag 1.
  • FIG. In this case, when the first control circuit block 13 of the sensor tag 1 accesses the server 6 via the gateway 41, the updated accessible base station ID is downloaded from the server 6 and updated.
  • the communication circuit block 11 and the measurement circuit block 12 may be provided with separate CPUs or the like.
  • gateways are used as radio base stations, radio base stations other than gateways may be used. If there is only one gateway 41, the router 42 may be omitted.
  • the date and time when distribution or storage started, the destination, a two-dimensional barcode, etc. are displayed on electronic paper. However, part or all of the display surface may be printed. Also, when using a display, the maximum temperature, the presence or absence of impact, etc. during distribution or storage may be displayed.
  • the sensor tag may be attached to a person and used as a wearable sensor.
  • wearable vital sensors such as body temperature, pulse, pulse wave (ECG (electrocardiogram), PPG (optical heart rate sensor), etc.), SpO 2 (blood oxygen concentration), blood pressure, etc. are acquired, and the acquired data is sent to the server through the gateway. etc., can be considered.
  • ECG electronic heart rate
  • PPG optical heart rate sensor
  • SpO 2 blood oxygen concentration
  • blood pressure etc.
  • it may be used as a sensor tag for radiation measurement in the form of a name tag, and used to measure the radiation dose when a worker at a nuclear power plant works.
  • the radiation dose can be detected and stored in the sensor tag together with the measurement time, and the radiation data can be retrieved by a gateway provided in a dressing room or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

In a conventional logistics management system, a sensor tag is required to include a battery of large capacity for long-wave transmission. As a result, the sensor tag cannot be small. In addition, it is required to provide a relay or a communication terminal in a cargo truck. In addition, a measurement value in a place without a communication terminal cannot be transmitted to a central station during load transfer or the like. The monitoring device comprises a communication unit, a measurement unit, a power supply battery which supplies power to the communication unit and the measurement unit, and a wakeup unit which is not supplied with the power from the power battery. In addition, the wakeup unit identifies a wireless base station by means of radiowave power obtained from a radiowave and outputs an interrupt signal to the communication unit, the measurement unit performs measurement by means of a sensor and stores measurement data, and the communication unit wakes up from a deep sleep mode due to the interruption signal and wirelessly transmits the measurement data stored in the measurement unit to the wireless base station or another wireless base station.

Description

モニタリング用デバイスmonitoring device
 本発明は、物品に取り付けて物流の際に物品のおかれた環境等を記憶する物流モニタリング用デバイスや、ウエアラブルモニタリング用デバイス等のモニタリング用デバイスに関するものである。 The present invention relates to a distribution monitoring device that is attached to an article and stores the environment in which the article is placed during distribution, and a monitoring device such as a wearable monitoring device.
 果実酒や日本酒等の醸造酒は温度で変質し易く、温度管理を行った上で輸送や保管が行われることが望ましい。輸送や保管の際に温度管理が行われていないと、品質低下を招く場合がある。このような品質低下が生じると、販売された後に飲食店や家庭で消費された際に、商品や店舗等の評価を下げることになる。温度異常による悪影響は醸造酒に限らず、他の食品や農産物、人の生体組織の輸送等においても生じる。また、温度異常以外にも、衝撃や振動等の加速度や、湿度などの異常は、物品の品質低下を招く。 Brewed alcoholic beverages such as fruit wine and Japanese sake are prone to deterioration due to temperature, so it is desirable to transport and store them under temperature control. Quality deterioration may occur if temperature is not controlled during transportation and storage. If such deterioration in quality occurs, the evaluation of the product, store, etc. will be lowered when the product is consumed at a restaurant or at home after being sold. Adverse effects due to temperature anomalies are not limited to brewed alcoholic beverages, but also occur in the transportation of other foods, agricultural products, human body tissues, and the like. In addition to the abnormal temperature, abnormalities such as acceleration such as impact and vibration, and humidity also cause deterioration in the quality of the article.
特開2006-232417号公報JP 2006-232417 A
 特許文献1には、物品ごとの状態に関する情報の記録が可能な物流管理システムが記載されている。この物流システムでは、貨物トラックの保冷庫に物品を収容して輸送するが、物品毎にセンサタグが同梱される。センサタグは温度の測定値を長波送信し、保冷庫に配置された中継器を介して、貨物トラックにおける保冷庫の外に設けた通信ターミナルへ測定値が送られる。通信ターミナルでは、温度の測定値と測定時刻が記憶され、測定値等を無線通信で集中局へ送って管理する。 Patent Document 1 describes a distribution management system capable of recording information on the state of each item. In this physical distribution system, articles are stored in a refrigerator of a freight truck and transported, and each article is packaged with a sensor tag. The sensor tag transmits temperature readings over long waves, which are sent via a repeater located in the cold store to a communication terminal outside the cold store on the freight truck. In the communication terminal, the measured temperature values and the time of measurement are stored, and the measured values and the like are sent to the central station via wireless communication for management.
 しかし、一般的に無線で送信するためには大きな電力を要する。特許文献1の物流管理システムでは、長波送信を行うためにセンサタグは大きな容量の電池を備える必要がある。そのため、センサタグを小さくすることができない。また、特許文献1の物流管理システムでは、貨物トラックに中継器や通信ターミナル等を設ける必要がある。さらに、通信ターミナルのメモリには温度の測定値を記憶するが、センサタグは温度の測定値を記憶せず、積み替え時などの通信ターミナルがない場所での測定値は集中局へ送ることができない。このセンサタグは物流を用途とするものであるが、物流以外のモニタリング用デバイスについても同様のことが言える。本発明は、上記の課題を解決するものである。 However, wireless transmission generally requires a large amount of power. In the physical distribution management system of Patent Document 1, the sensor tag needs to be equipped with a large-capacity battery in order to perform long-wave transmission. Therefore, the size of the sensor tag cannot be reduced. Further, in the physical distribution management system of Patent Document 1, it is necessary to provide a repeater, a communication terminal, and the like on the freight truck. Furthermore, while the memory of the communication terminal stores temperature readings, sensor tags do not store temperature readings, and measurements at locations where there is no communication terminal, such as during transshipment, cannot be sent to the central station. Although this sensor tag is used for physical distribution, the same can be said for monitoring devices other than physical distribution. The present invention solves the above problems.
 本発明によるモニタリング用デバイスは、通信部と、計測部と、前記通信部及び前記計測部に電力を供給する電源電池と、前記電源電池から電力が供給されないウェイクアップ部を備え、前記ウェイクアップ部は、電波から得た電波電力により無線基地局を識別して前記通信部へ割込信号を出力し、前記計測部は、センサにより計測を行うと共に計測データを記憶し、前記通信部は、前記割込信号によりディープスリープモードからウェイクアップして、前記計測部に記憶した計測データを前記無線基地局又は他の無線基地局へ無線により送信する。 A monitoring device according to the present invention includes a communication unit, a measurement unit, a power supply battery that supplies power to the communication unit and the measurement unit, and a wakeup unit that is not supplied with power from the power supply battery, and the wakeup unit identifies a wireless base station by radio wave power obtained from the radio wave and outputs an interrupt signal to the communication unit; the measurement unit performs measurement using a sensor and stores measurement data; Waking up from the deep sleep mode by an interrupt signal, wirelessly transmits the measurement data stored in the measurement unit to the wireless base station or another wireless base station.
モニタリング用デバイスの一実施形態を示す図。FIG. 1 illustrates one embodiment of a device for monitoring; センサタグを用いた物流システムを示す図。The figure which shows the physical distribution system using a sensor tag. 一実施形態におけるセンサタグのブロック構成を示す図。The figure which shows the block structure of the sensor tag in one embodiment. 実施例1における回路の動作を示す図。4A and 4B are diagrams showing the operation of the circuit according to the first embodiment; FIG. 実施例2における回路の動作を示す図。FIG. 10 is a diagram showing the operation of the circuit in Example 2; 実施例3における回路の動作を示す図。FIG. 10 is a diagram showing the operation of the circuit in Example 3; 他の実施形態におけるセンサタグのブロック構成を示す図。The figure which shows the block structure of the sensor tag in other embodiment.
 本発明の一実施形態に係るモニタリング用デバイスは物流を用途とし、流通や保管する物品に取り付けて用いられる。モニタリング用デバイスの一実施形態として、図1に柔軟性を有するセンサタグ1を示す。センサタグ1はシート状であって、曲面を有する瓶等にも貼付することができる。そして、図1に示すように、流通や保管を開始した日時と送り先、二次元バーコード等が表示される電子ペーパを具備する。また、電子ペーパの裏側には、後述する通信回路ブロック11、センサを含む計測回路ブロック12、第1CPUを含む第1制御回路ブロック13、薄型の電源電池15、パッシブ型WUP回路ブロック16等が設けられている。これらの回路にはフレキシブル配線板等を用いており、全体的に柔軟性を有している。そのため、瓶等の曲面に貼付できる。 A monitoring device according to an embodiment of the present invention is used for distribution, and is attached to articles to be distributed or stored. As one embodiment of a device for monitoring, a flexible sensor tag 1 is shown in FIG. The sensor tag 1 is in the form of a sheet and can be attached to a bottle or the like having a curved surface. As shown in FIG. 1, electronic paper is provided on which the date and time when distribution or storage was started, the destination, a two-dimensional bar code, and the like are displayed. On the back side of the electronic paper, a communication circuit block 11, a measurement circuit block 12 including a sensor, a first control circuit block 13 including a first CPU, a thin power battery 15, a passive WUP circuit block 16, etc. are provided. It is A flexible wiring board or the like is used for these circuits, and they have flexibility as a whole. Therefore, it can be attached to a curved surface such as a bottle.
 センサタグ1は、図2に示すように物品2に取り付けられて流通や保管が行われる。図2では、センサタグ1を、瓶と箱の物品2に取り付けた様子を示す。流通や保管を開始する際に、センサタグ1には送り先と開始日時等が入力され、図1に示した用に表示される。そして、センサタグ1は物品2に貼付により取り付けられる。センサタグ1が取り付けられた物品2は、輸送機器である冷蔵トラック3により冷蔵された状態で、各所の物流施設4に運ばれる。物流施設4には、無線基地局であるゲートウェイ41(G/W)が1乃至複数設けられる。各々のゲートウェイ41はルータ42を介してインターネット5に接続している。そして、サーバ6に繋がっている。 The sensor tag 1 is attached to an article 2 as shown in FIG. 2 and distributed and stored. In FIG. 2, the sensor tag 1 is shown attached to articles 2 such as a bottle and a box. When distribution or storage is started, the destination, start date and time, etc. are input to the sensor tag 1 and displayed as shown in FIG. Then, the sensor tag 1 is attached to the article 2 by sticking. Articles 2 to which sensor tags 1 are attached are refrigerated by refrigerated trucks 3, which are transportation equipment, and are transported to distribution facilities 4 at various locations. The distribution facility 4 is provided with one or more gateways 41 (G/W), which are wireless base stations. Each gateway 41 is connected to the Internet 5 via a router 42 . And it is connected to the server 6 .
 物品2が物流施設4に入り、センサタグ1がゲートウェイ41の送受信範囲内に入ると、センサタグ1とゲートウェイ41の間で無線通信を行う。そして、ゲートウェイ41からルータ42、インターネット5を介してサーバ6へ情報を送信する。サーバ6は、センサタグ1から得られた温度等の情報を記憶し、外部からのアクセス等により送信することができる。物流施設4は、店舗等の物品2の受け取り施設でもよく、物流の中継施設やドライブイン、パーキングエリア等でもよい。 When the article 2 enters the distribution facility 4 and the sensor tag 1 enters the transmission/reception range of the gateway 41, wireless communication is performed between the sensor tag 1 and the gateway 41. Then, the information is transmitted from the gateway 41 to the server 6 via the router 42 and the Internet 5 . The server 6 stores information such as temperature obtained from the sensor tag 1, and can transmit the information by accessing from the outside. The physical distribution facility 4 may be a receiving facility such as a store for the goods 2, or may be a physical distribution relay facility, a drive-in, a parking area, or the like.
 本願の一実施形態であるセンサタグ1は、図3に示すブロック構成を有する。通信回路ブロック11には、ゲートウェイ41との間で通信を行う送受信機とアンテナが設けられている。また、計測回路ブロック12には、物流において管理を必要とする情報を検出するセンサとして、例えば、温度センサや衝撃センサ、そして、これらセンサによって検出した信号に対して必要な処理を行うための増幅器、A/Dコンバータ等が設けられている。そして、通信回路ブロック11と計測回路ブロック12を制御するために、第1制御回路ブロック13が設けられている。第1制御回路ブロック13には、第1CPU、第1メモリ、カウンタが設けられている。通信回路ブロック11、計測回路ブロック12、第1制御回路ブロック13は、主要電源回路ブロック14からの電力により作動する。主要電源回路ブロック14には、昇圧/降圧回路、電源安定化回路が設けられている。主要電源回路ブロック14の電力は、電源電池15から供給される。電源電池15は、化学電池である。なお、図3には記載していないが、第1制御回路ブロック13と主要電源回路ブロック14は、電子ペーパーデバイスに接続している。 A sensor tag 1, which is an embodiment of the present application, has a block configuration shown in FIG. The communication circuit block 11 is provided with a transceiver and an antenna for communicating with the gateway 41 . The measurement circuit block 12 also includes sensors for detecting information that needs to be managed in physical distribution, such as temperature sensors and impact sensors, and amplifiers for performing necessary processing on the signals detected by these sensors. , an A/D converter, etc. are provided. A first control circuit block 13 is provided to control the communication circuit block 11 and the measurement circuit block 12 . The first control circuit block 13 is provided with a first CPU, a first memory, and a counter. The communication circuit block 11 , the measurement circuit block 12 and the first control circuit block 13 are operated by power from the main power supply circuit block 14 . The main power supply circuit block 14 is provided with a voltage step-up/down circuit and a power supply stabilizing circuit. Power for the main power circuit block 14 is supplied from a power battery 15 . The power battery 15 is a chemical battery. Although not shown in FIG. 3, the first control circuit block 13 and the main power circuit block 14 are connected to the electronic paper device.
 第1制御回路ブロック13は、パッシブ型WUP回路ブロック16の第2制御回路ブロック161に接続している。パッシブ型WUP回路ブロック16は、基本的に電源電池15から電力を得ず、電波から得られた電力により作動する。パッシブ型WUP回路ブロック16は、第2制御回路ブロック161と無線給電回路ブロック162を備える。第2制御回路ブロック161は復調/復号回路、第2CPU、第2メモリを備え、無線給電回路ブロック162はアンテナ、整流平滑回路、昇圧回路、電源安定化回路を備える。本実施形態では、無線給電回路ブロック162のアンテナと通信回路ブロック11のアンテナを別に設けているが、利用する周波数が近ければ、アンテナを共用して、スイッチで切り替えて用いることもできる。 The first control circuit block 13 is connected to the second control circuit block 161 of the passive WUP circuit block 16. The passive WUP circuit block 16 basically does not obtain power from the power supply battery 15, but operates on power obtained from radio waves. The passive WUP circuit block 16 has a second control circuit block 161 and a wireless power supply circuit block 162 . The second control circuit block 161 has a demodulation/decoding circuit, a second CPU, and a second memory, and the wireless power supply circuit block 162 has an antenna, a rectifying/smoothing circuit, a booster circuit, and a power stabilizing circuit. In this embodiment, the antenna of the wireless power supply circuit block 162 and the antenna of the communication circuit block 11 are provided separately, but if the frequencies to be used are close, the antennas can be shared and switched by a switch.
 第1制御回路ブロック13の第1メモリと第2制御回路ブロック161の第2メモリには、センサタグ1が送受信を行うことが可能な複数のゲートウェイ41に対応する基地局IDが記憶されている。そして、ゲートウェイ41の接続要求信号(アドバタイジング信号)に含まれる基地局IDが第2メモリに記憶されていると、INT信号(割込信号)を第1制御回路ブロック13に送出する。無線給電回路ブロック162は、ゲートウェイ41が発生する電波の電波電力を変換して第2制御回路ブロック161に電力供給する。ゲートウェイ41の接続要求信号に含まれる基地局IDが第1メモリに記憶されていると、そのゲートウェイ41を介して計測データを送信することができる。 The first memory of the first control circuit block 13 and the second memory of the second control circuit block 161 store base station IDs corresponding to a plurality of gateways 41 with which the sensor tag 1 can transmit and receive. Then, if the base station ID included in the connection request signal (advertising signal) of the gateway 41 is stored in the second memory, the INT signal (interrupt signal) is sent to the first control circuit block 13 . The wireless power supply circuit block 162 converts radio wave power of radio waves generated by the gateway 41 and supplies power to the second control circuit block 161 . If the base station ID included in the connection request signal of gateway 41 is stored in the first memory, measurement data can be transmitted via that gateway 41 .
 物品2に貼付されたセンサタグ1では、定期的な計測対象として温度センサによる温度計測と、イベント駆動的な計測対象として衝撃センサによる加速度計測が行われる。図4に示す計測部のフローでは、計測回路ブロック12の温度センサ、衝撃センサ、増幅器、A/Dコンバータ等を第1制御回路ブロック13により制御して、計測値と計測日時からなる計測データを第1メモリに記憶する。また、センサタグ1は、通常はディープスリープモード(SLP)であり、電源電池15の電力消費量を抑えられている。 With the sensor tag 1 attached to the article 2, temperature measurement by a temperature sensor is performed as a periodic measurement target, and acceleration measurement is performed by an impact sensor as an event-driven measurement target. In the flow of the measurement unit shown in FIG. 4, the temperature sensor, impact sensor, amplifier, A/D converter, etc. of the measurement circuit block 12 are controlled by the first control circuit block 13 to generate measurement data consisting of measurement values and measurement dates. Store in the first memory. Moreover, the sensor tag 1 is normally in a deep sleep mode (SLP), and the power consumption of the power supply battery 15 is suppressed.
 ディープスリープモード(SLP)は、消費電力を小さくするモードであり、電源電池15を長持ちさせる。このモードでは、通信回路ブロック11は動作させない。そのため、消費電力の大きい送受信機は停止する。計測回路ブロック12は、最低限の電力のみ消費する。第1制御回路ブロック13には電力供給されるが、カウンタのような時間を計測する回路のみ動作させるため、最低消費電力となる。 The deep sleep mode (SLP) is a mode that reduces power consumption and makes the power supply battery 15 last longer. In this mode, the communication circuit block 11 is not operated. Therefore, the transmitter/receiver that consumes a large amount of power is stopped. The measurement circuit block 12 consumes only minimal power. Although power is supplied to the first control circuit block 13, only a circuit for measuring time, such as a counter, is operated, so the power consumption is the lowest.
 ウェイクアップモード(WUP)は、各ブロックが通常に作動するが、消費電力は大きい。このモードでは、通信回路ブロック11と計測回路ブロック12に電力供給され、送受信機と増幅器、A/Dコンバータ等が作動する。準ウェイクアップモード(SWUP)は、消費電力がやや小さいモードである。このモードでは、消費電力が大きい送受信機を備えた通信回路ブロック11を動作させない。しかし、計測回路ブロック12は動作させ、第1制御回路ブロック13の第1CPUは通常のクロック周波数で作動する。準ウェイクアップモード(SWUP)は、ウェイクアップモード(WUP)よりは消費電力が小さく、ディープスリープモード(SLP)よりは消費電力が大きい。 In wake-up mode (WUP), each block operates normally, but power consumption is high. In this mode, power is supplied to the communication circuit block 11 and the measurement circuit block 12, and the transceiver, amplifier, A/D converter, etc. are operated. The semi-wakeup mode (SWUP) is a mode with slightly lower power consumption. In this mode, the communication circuit block 11 equipped with a transceiver that consumes a large amount of power is not operated. However, the measurement circuit block 12 is operated and the first CPU of the first control circuit block 13 operates at the normal clock frequency. The semi-wakeup mode (SWUP) consumes less power than the wakeup mode (WUP) and more power than the deep sleep mode (SLP).
 実施例1において、温度計測の動作は次のように行われる。図4の計測部のフローでは、ステップSM11において、ディープスリープモード(SLP)で第1制御回路ブロック13によりカウントを行う。カウンタはタイマーを形成する。このタイマーが所定時間経過を示す毎にステップSM12に進む。ステップSM12では、ディープスリープモード(SLP)から準ウェイクアップモード(SWUP)に切り換える。次に、電力が供給された計測回路ブロック12において、ステップSM13では温度センサの出力を増幅してA/D変換する。そして、第1制御回路ブロック13において、温度計測値を計測日時と共に第1メモリに記憶する。その後、ステップSM14で再びディープスリープモード(SLP)に戻る。 In Example 1, the operation of temperature measurement is performed as follows. In the flow of the measurement section in FIG. 4, in step SM11, the first control circuit block 13 counts in the deep sleep mode (SLP). A counter forms a timer. Each time the timer indicates that a predetermined time has elapsed, the process proceeds to step SM12. In step SM12, the deep sleep mode (SLP) is switched to the semi-wakeup mode (SWUP). Next, in step SM13, the power-supplied measurement circuit block 12 amplifies the output of the temperature sensor and performs A/D conversion. Then, in the first control circuit block 13, the temperature measurement value is stored in the first memory together with the date and time of measurement. Thereafter, at step SM14, the process returns to the deep sleep mode (SLP) again.
 また、衝撃計測の動作は次のように行われる。図4の計測部のフローにおいて、ディープスリープモード(SLP)のステップSM11で衝撃センサが所定値以上の加速度を検出すると、イベントドリブンでステップSM12に進む。ステップSM12では、ディープスリープモード(SLP)から準ウェイクアップモード(SWUP)に切り換えられる。次に、ステップSM13において、第1制御回路ブロック13により衝撃(所定値以上の加速度)とその衝撃検出の日時を第1メモリに記憶する。そして、ステップSM14で再びディープスリープモード(SLP)に戻る。 Also, the impact measurement operation is performed as follows. In the flow of the measuring unit in FIG. 4, when the impact sensor detects acceleration of a predetermined value or more in step SM11 of the deep sleep mode (SLP), the process proceeds to step SM12 in an event-driven manner. In step SM12, the deep sleep mode (SLP) is switched to the semi-wakeup mode (SWUP). Next, in step SM13, the first control circuit block 13 stores the impact (acceleration greater than or equal to a predetermined value) and the date and time of the impact detection in the first memory. Then, in step SM14, it returns to the deep sleep mode (SLP) again.
 このようにして、第1制御回路ブロック13の第1メモリには、所定時間毎の温度が計測日時と共に記憶され、所定加速度以上の衝撃が有った場合には、その衝撃を担う加速度と衝撃検出の日時が共に記憶される。 In this way, the first memory of the first control circuit block 13 stores the temperature at predetermined time intervals together with the date and time of measurement. The date and time of detection are stored together.
 次に、実施例1において、第1メモリに記憶された計測データをサーバ6に送信する状況を説明する。図2に示すセンサタグ1が流通や保管の過程で物流施設4に入り、パッシブ型WUP回路ブロック16がゲートウェイ41からの電波をうけると、図4のウェイクアップ部に示すように、ステップSW11で無線給電の開始となる。そして、図3に示す無線給電回路ブロック162で電波を電力に変換して、第2制御回路ブロック161に電力供給する。 Next, the situation in which the measurement data stored in the first memory is transmitted to the server 6 in the first embodiment will be described. When the sensor tag 1 shown in FIG. 2 enters the distribution facility 4 in the process of distribution or storage and the passive WUP circuit block 16 receives radio waves from the gateway 41, as shown in the wakeup section of FIG. Power supply starts. Radio waves are converted into electric power by the wireless power supply circuit block 162 shown in FIG.
 ステップSW12では、ゲートウェイ41が発する接続要求信号によりG/W信号(ゲートウェイ信号)を受信する。G/W信号には、無線基地局であるゲートウェイ41ごとに固有の基地局IDが含まれている。第2制御回路ブロック161では、ステップSW13で、第2メモリに記憶された基地局IDと照合する。そして、第2メモリに記憶されている基地局IDであると識別した場合には、ステップSW14でINT信号(割込信号)を通信部へ送信する。ステップSW12とステップSW13では、第2メモリに記憶されている基地局IDが識別されるまで、G/W信号受信とG/W信号識別を繰り返す。このようにして、センサタグ1は、電源電池15の電力を消費すること無く、計測データを送信できるゲートウェイ41の接近を検知する。 At step SW12, the G/W signal (gateway signal) is received by the connection request signal issued by the gateway 41. The G/W signal contains a unique base station ID for each gateway 41, which is a radio base station. In the second control circuit block 161, at step SW13, it is collated with the base station ID stored in the second memory. If it is identified as the base station ID stored in the second memory, an INT signal (interrupt signal) is transmitted to the communication section in step SW14. In steps SW12 and SW13, G/W signal reception and G/W signal identification are repeated until the base station ID stored in the second memory is identified. In this way, the sensor tag 1 detects the approach of the gateway 41 capable of transmitting measurement data without consuming the power of the power supply battery 15 .
 通信部では、ウェイクアップ部からのINT信号を受けて、ステップSC11でディープスリープモード(SLP)から準ウェイクアップモード(SWUP)に移行する。したがって、ゲートウェイ41に送信できる状態になるまで、計測時以外はディープスリープモード(SLP)として消費電力を抑える。そして、ステップSC12で、第1制御回路ブロック13の第1メモリにおける計測データの有無が確認される。準ウェイクアップモード(SWUP)では、通信回路ブロック11は動作していないので電力を消費しないが、第1制御回路ブロック13は通常動作している。第1メモリに計測データが無い場合にはステップSC17でディープスリープモード(SLP)に戻る。一方、第1メモリに計測データが有る場合には、ステップSC13でウェイクアップモード(WUP)へ移行する。 Upon receiving the INT signal from the wakeup section, the communication section shifts from the deep sleep mode (SLP) to the semi-wakeup mode (SWUP) in step SC11. Therefore, the power consumption is suppressed by setting the deep sleep mode (SLP) except during measurement until the data can be transmitted to the gateway 41 . Then, in step SC12, the presence or absence of measurement data in the first memory of the first control circuit block 13 is confirmed. In the quasi-wakeup mode (SWUP), the communication circuit block 11 does not operate and therefore does not consume power, but the first control circuit block 13 operates normally. If there is no measurement data in the first memory, the process returns to the deep sleep mode (SLP) at step SC17. On the other hand, if there is measurement data in the first memory, the process shifts to wakeup mode (WUP) in step SC13.
 ウェイクアップモード(WUP)では、通信回路ブロック11に電力を供給し、無線通信が可能な状態となる。そして、ステップSC14で、受信したG/W信号の基地局IDが第1メモリに記憶されているか否かを識別する。受信した基地局IDが第1メモリに無い場合には、ステップSC17でディープスリープモード(SLP)に戻る。 In the wake-up mode (WUP), power is supplied to the communication circuit block 11 to enable wireless communication. Then, in step SC14, it is determined whether or not the base station ID of the received G/W signal is stored in the first memory. If the received base station ID is not in the first memory, the process returns to the deep sleep mode (SLP) at step SC17.
 ステップSC14でG/W信号の基地局IDが第1メモリに有る場合には、ステップSC15で第1メモリの計測データを、センサタグ1に固有のコードであるタグIDと共にG/W(ゲートウェイ41)に無線送信する。そして、ステップSC16で、第1メモリに記憶された計測データを消去し、ステップSC17でディープスリープモード(SLP)に移行する。 If the base station ID of the G/W signal is in the first memory in step SC14, the measurement data in the first memory is sent to the G/W (gateway 41) together with the tag ID, which is a code unique to the sensor tag 1, in step SC15. wirelessly to Then, in step SC16, the measurement data stored in the first memory is erased, and in step SC17, the deep sleep mode (SLP) is entered.
 図2に示す物流施設4の中をセンサタグ1が移動すると、ウェイクアップの時に受信したゲートウェイ41と、通信の際のゲートウェイ41が異なることもあり得る。ウェイクアップ部のフローと通信部のフローでは、別々に基地局IDが識別される。そのため、上記のようにゲートウェイ41が異なる場合でも、計測データ等の無線送信は問題なく行われる。 When the sensor tag 1 moves through the logistics facility 4 shown in FIG. 2, the gateway 41 received during wake-up and the gateway 41 during communication may differ. The base station ID is separately identified in the flow of the wakeup part and the flow of the communication part. Therefore, even if the gateways 41 are different as described above, wireless transmission of measurement data and the like can be performed without any problem.
 実施例1において、図4における計測部のフローと通信部のフローは、共に第1制御回路ブロック13の第1CPUを用いている。計測部のフローを実行中にINT信号が送信されてきた場合には、計測部のフローがステップSM14となってディープスリープモード(SLP)になるまで通信部のフローは行われない。また、通信部のフローを実行中にタイマーやイベントドリブンにより計測部のフローが動き始めると、通信部のフローは中止されて計測部のフローを行う。ただし、ステップSC15とステップSC16の間では中止されない。計測部のフローがステップSM14になった際に通信部がINT信号を受ければ、ステップSC11から開始する。計測部のフローは通信部のフローに優先する。 In Embodiment 1, the first CPU of the first control circuit block 13 is used for both the flow of the measurement unit and the flow of the communication unit in FIG. When the INT signal is transmitted while the flow of the measurement section is being executed, the flow of the communication section is not performed until the flow of the measurement section goes to step SM14 and enters the deep sleep mode (SLP). Further, when the flow of the measurement unit starts to operate due to a timer or event drive while the flow of the communication unit is being executed, the flow of the communication unit is stopped and the flow of the measurement unit is performed. However, the process is not stopped between steps SC15 and SC16. If the communication unit receives the INT signal when the flow of the measurement unit reaches step SM14, the process starts from step SC11. The flow of the measurement part takes precedence over the flow of the communication part.
 以上のようにして送信された計測データとタグIDは、ゲートウェイ41からインターネット5を介してサーバ6に送られて、蓄積される。センサタグ1のタグIDは、図1に示すように二次元バーコードでセンサタグ1の電子ペーパに表示されている。したがって、表示された二次元バーコードを端末に取り込んでサーバ6にアクセスすることにより、温度と衝撃の履歴を見ることができる。そして、物品2に品質低下が生じた場合には、計測データの日時から、輸送や保管等のどの工程で温度や衝撃の異常が生じたのか評価して、工程を改善することができる。また、サーバ6に蓄積された複数のセンサタグ1の計測データから、物流全体の状況を把握して問題点を分析することができる。 The measurement data and tag IDs transmitted as described above are sent from the gateway 41 to the server 6 via the Internet 5 and stored. The tag ID of the sensor tag 1 is displayed on the electronic paper of the sensor tag 1 as a two-dimensional bar code as shown in FIG. Therefore, by loading the displayed two-dimensional bar code into the terminal and accessing the server 6, the history of temperature and impact can be viewed. Then, when quality deterioration occurs in the article 2, it is possible to evaluate in which process, such as transportation or storage, the abnormal temperature or shock occurred from the date and time of the measurement data, and to improve the process. In addition, from the measurement data of a plurality of sensor tags 1 accumulated in the server 6, it is possible to grasp the overall distribution situation and analyze the problem.
 なお、ステップSC16の直後に、G/W信号を受信している場合には準ウェイクアップモード(SWUP)にしてからステップSC12に戻るステップを設けてもよい。このステップでは、G/W信号を受信していなかったり、受信した基地局IDが第1メモリに記憶されていなかったりした場合には、ステップSC17でディープスリープモード(SLP)に移行する。このようにすることによって、ディープスリープモード(SLP)になる頻度を減少させることができる。 Immediately after step SC16, a step of returning to step SC12 after switching to a quasi-wakeup mode (SWUP) may be provided when the G/W signal is received. In this step, if the G/W signal has not been received or the received base station ID is not stored in the first memory, the process shifts to deep sleep mode (SLP) in step SC17. By doing so, the frequency of deep sleep mode (SLP) can be reduced.
 以上のように、CPUの動作を計測や通信が必要な時以外にディープスリープモード(SLP)モードにし、センサを間欠計測やイベントドリブン型で用い、さらに電子ペーパの駆動プロセッサの動作モードを、書き換え時以外にはディープスリープモード(SLP)とすることで、センサタグ1全体の消費電力を節減し、薄型である電源電池15の持続時間を大幅に延長することができる。 As described above, the operation of the CPU is set to the deep sleep mode (SLP) mode when measurement and communication are not required, the sensor is used for intermittent measurement and event-driven type, and the operation mode of the processor driving the electronic paper is rewritten. By setting the deep sleep mode (SLP) to non-time, the power consumption of the sensor tag 1 as a whole can be reduced, and the duration of the thin power supply battery 15 can be greatly extended.
 実施例2において、温度計測と衝撃計測の動作は、図5の計測部のフローにおけるステップSM21~SM23に示すように、実施例1のステップSM11~SM13と同様に行われる。しかし、実施例2のステップSM24では、ウェイクアップ部のフローにおいて、ステップSW24によるINT信号があるかを識別する。INT信号が無い場合には、ステップSM26でディープスリープモード(SLP)に戻る。INT信号が有る場合には、ステップSM25で通信部にウェイクアップ(WUP)要求する。そして、ステップSM26でディープスリープモード(SLP)に戻る。ウェイクアップ部の動作であるステップSW21~SW24は、実施例1のステップSW11~SW14と同様である。 In the second embodiment, the operations of temperature measurement and impact measurement are performed in the same manner as steps SM11 to SM13 in the first embodiment, as shown in steps SM21 to SM23 in the flow of the measurement unit in FIG. However, in step SM24 of the second embodiment, it is determined whether there is an INT signal by step SW24 in the flow of the wakeup section. If there is no INT signal, it returns to the deep sleep mode (SLP) at step SM26. If there is an INT signal, a wake-up (WUP) request is made to the communication section in step SM25. Then, in step SM26, it returns to the deep sleep mode (SLP). Steps SW21 to SW24, which are the operations of the wakeup section, are the same as steps SW11 to SW14 in the first embodiment.
 実施例2では、通信部において、ステップSC21で、ウェイクアップ部からのINT信号と計測部からのウェイクアップ要求(WUP要求)の両方が有の場合に、ディープスリープモード(SLP)からウェイクアップモード(WUP)に移行する。そして、実施例1のステップSC14~SC17と同様に、ステップSC22~SC25でG/W信号の基地局IDを識別し、メモリの計測データとタグIDをゲートウェイ41(G/W)へ送信した後に計測データを消去して、ディープスリープモード(SLP)に戻る。 In the second embodiment, in step SC21 in the communication unit, when both the INT signal from the wakeup unit and the wakeup request (WUP request) from the measurement unit are present, the deep sleep mode (SLP) is switched to the wakeup mode. (WUP). Then, similarly to steps SC14 to SC17 of the first embodiment, after identifying the base station ID of the G/W signal in steps SC22 to SC25 and transmitting the measurement data in the memory and the tag ID to the gateway 41 (G/W), Erase the measurement data and return to deep sleep mode (SLP).
 実施例2においても、図5における計測部のフローと通信部のフローは、共に第1制御回路ブロック13の第1CPUを用いている。タイマーによる温度計測では、計測部のステップSM24でWUP要求があってから通信部のフローが動き始める。計測部や通信部のフローを実行中に衝撃が発生してイベントドリブンとなる可能性は低い。 Also in the second embodiment, the first CPU of the first control circuit block 13 is used for both the flow of the measurement unit and the flow of the communication unit in FIG. In the temperature measurement by the timer, the flow of the communication section starts after a WUP request is issued in step SM24 of the measurement section. It is unlikely that an impact will occur during execution of the flow of the measurement part or the communication part and it will be event-driven.
 実施例2では、ステップSM23で計測データを第1メモリに記憶した際にステップSM24でINT信号を識別し、INT信号があるとステップSM25でWUP要求を行う。これにより、計測したタイミングでウェイクアップモード(WUP)に移行して、計測データをゲートウェイ41へ送信することができる。そのため、送信できる状態であれば、計測データが速やかに送信される。その結果、例えば、物流施設4で物品2を保管中に温度上昇があった場合などには、速やかに温度上昇が送信され、早期に対応することが可能である。 In the second embodiment, when the measurement data is stored in the first memory in step SM23, the INT signal is identified in step SM24, and if there is an INT signal, a WUP request is made in step SM25. Thereby, it is possible to shift to the wakeup mode (WUP) at the timing of the measurement and transmit the measurement data to the gateway 41 . Therefore, if it is possible to send the measurement data, the measurement data is promptly sent. As a result, for example, when there is a temperature rise while the goods 2 are being stored in the distribution facility 4, the temperature rise is promptly transmitted, and it is possible to respond early.
 実施例3において、温度計測と衝撃計測の動作は、図6の計測部のフローにおけるステップSM31~SM34に示すように、実施例1のステップSM11~SM14と同様に行われる。また、ウェイクアップ部の動作であるステップSW31~SW34も、実施例1のステップSW11~SW14と同様である。 In Example 3, the operations of temperature measurement and impact measurement are performed in the same manner as steps SM11 to SM14 in Example 1, as shown in steps SM31 to SM34 in the flow of the measurement unit in FIG. Steps SW31 to SW34, which are the operations of the wakeup section, are also the same as steps SW11 to SW14 in the first embodiment.
 実施例3では、通信部において、ウェイクアップ部からのINT信号を受けて、ステップSC31でディープスリープモード(SLP)からウェイクアップモード(WUP)に移行する。ウェイクアップモード(WUP)では、通信回路ブロック11に電力を供給する。そして、ステップSC32で、第1メモリに記憶されている基地局IDが、受信した電波のG/W信号に有るかを識別する。そのようなG/W信号が無い場合には、ステップSC37でディープスリープモード(SLP)に戻り、ステップSC31でINT信号を待つ。 In the third embodiment, the communication unit receives the INT signal from the wakeup unit and shifts from deep sleep mode (SLP) to wakeup mode (WUP) in step SC31. In wakeup mode (WUP), power is supplied to the communication circuit block 11 . Then, in step SC32, it is determined whether or not the base station ID stored in the first memory is present in the G/W signal of the received radio wave. If there is no such G/W signal, it returns to the deep sleep mode (SLP) at step SC37 and waits for an INT signal at step SC31.
 そのようなG/W信号がある場合には、ステップSC33で、第1制御回路ブロック13の第1メモリにおける計測データの有無が確認される。第1メモリに計測データが無い場合にはステップSC36に移行する。一方、第1メモリに計測データが有る場合には、ステップSC34においてステップSC32で識別した基地局IDのゲートウェイ41(G/W)に第1メモリの計測データとタグIDを送信する。そして、その後に、ステップSC35において第1メモリから計測データを消去して、ステップSC36に移行する。 If there is such a G/W signal, the presence or absence of measurement data in the first memory of the first control circuit block 13 is checked in step SC33. If there is no measurement data in the first memory, the process proceeds to step SC36. On the other hand, if there is measurement data in the first memory, in step SC34 the measurement data in the first memory and the tag ID are transmitted to the gateway 41 (G/W) of the base station ID identified in step SC32. After that, in step SC35, the measurement data is erased from the first memory, and the process proceeds to step SC36.
 ステップSC36では、ディープスリープモード(SLP)に移行し、第1制御回路ブロック13のカウンタによるタイマーが所定時間経過すると、再びウェイクアップモード(WUP)に移行する。そして、ステップSC32に戻り、G/W信号を識別する。ステップSC36によって、G/W信号が有る間において所定時間間隔でディープスリープモード(SLP)とウェイクアップモード(WUP)繰り返されることにより、電源電池15の電力消費を抑えることができる。 In step SC36, the mode shifts to the deep sleep mode (SLP), and when the timer by the counter of the first control circuit block 13 elapses for a predetermined time, the mode shifts to the wakeup mode (WUP) again. Then, the process returns to step SC32 to identify the G/W signal. By step SC36, the power consumption of the power supply battery 15 can be suppressed by repeating the deep sleep mode (SLP) and the wakeup mode (WUP) at predetermined time intervals while the G/W signal is present.
 ステップSC36で所定時間にわたりディープスリープモード(SLP)となっている間に、計測データが第1メモリに記憶されている可能性がある。しかし、所定時間の経過によりセンサタグ1が移動して、第1メモリに記憶した基地局IDを有するG/W信号を認識できなくなると、ステップSC32によってステップSC37のディープスリープモード(SLP)に戻る。そして、次のINT信号を待つ。一方、センサタグ1があまり移動せずに無線送信が可能である場合には、計測データとタグIDが第1メモリに記憶されていればゲートウェイ41へ無線送信する。ステップSC36の所定時間は、ステップSM31における温度計測の間隔よりも長いことが好ましい。  There is a possibility that the measurement data is stored in the first memory while in the deep sleep mode (SLP) for a predetermined period of time in step SC36. However, when the sensor tag 1 moves after a predetermined period of time and the G/W signal having the base station ID stored in the first memory cannot be recognized, step SC32 returns to the deep sleep mode (SLP) of step SC37. Then, it waits for the next INT signal. On the other hand, when the sensor tag 1 does not move much and wireless transmission is possible, if the measurement data and the tag ID are stored in the first memory, they are wirelessly transmitted to the gateway 41 . The predetermined time in step SC36 is preferably longer than the temperature measurement interval in step SM31.
 実施例3においても、図6における計測部のフローと通信部のフローは、共に第1制御回路ブロック13の第1CPUを用いている。実施例3では、ステップSC36でディープスリープモード(SLP)となっている間に、計測部のタイマーやイベントドリブンで準ウェイクアップモード(SWUP)に移行して、計測データが第1メモリに記憶される。通信部フローのステップSC36以外のタイミングで計測部が動き始めようとする可能性は低い。 Also in Example 3, the first CPU of the first control circuit block 13 is used for both the flow of the measurement unit and the flow of the communication unit in FIG. In the third embodiment, while the deep sleep mode (SLP) is set in step SC36, the measurement data is stored in the first memory by shifting to the quasi-wakeup mode (SWUP) by the timer of the measurement unit or event driven. be. It is unlikely that the measurement unit will start to operate at a timing other than step SC36 of the communication unit flow.
<他の実施形態>
 実施例1~3は、図2に記載した一実施形態におけるセンサタグ1のブロック構成を用いた実施例であるが、図7に記載した他の実施形態におけるセンサタグのブロック構成を用いてもよい。図7では、パッシブ型WUP回路ブロック16に二次電池164が設けられている。この二次電池164は、無線給電回路ブロック163により得られた電力で充電され、電波が弱まった場合に無線給電回路ブロック163を介して第2制御回路ブロック161に供給される。二次電池164は、第2制御回路ブロック161がINT信号を送出するまで無線給電回路ブロック163が安定して電力を供給できるように設けられている。したがって、長時間の電力供給が行われなくてもよく、二次電池164にキャパシタを用いてもよい。
<Other embodiments>
Examples 1 to 3 are examples using the block configuration of the sensor tag 1 in one embodiment shown in FIG. 2, but the block configuration of the sensor tag in another embodiment shown in FIG. 7 may be used. In FIG. 7, the passive WUP circuit block 16 is provided with a secondary battery 164 . The secondary battery 164 is charged with power obtained from the wireless power supply circuit block 163, and is supplied to the second control circuit block 161 via the wireless power supply circuit block 163 when radio waves weaken. The secondary battery 164 is provided so that the wireless power supply circuit block 163 can stably supply power until the second control circuit block 161 sends out the INT signal. Therefore, long-term power supply may not be performed, and a capacitor may be used for the secondary battery 164 .
 実施例1~3では第1メモリの計測データは送信した後に消去している。しかし、消去せずに送信済みフラグを立てて、次回以降の送信では送信しないようにしてもよい。また、消去せずに、毎回全ての計測データを送信するようにしてもよい。 In Examples 1 to 3, the measurement data in the first memory is deleted after being transmitted. However, it is also possible to set a transmitted flag without erasing the data so that the data will not be transmitted in subsequent transmissions. Alternatively, all measurement data may be transmitted each time without being erased.
 また、図7に示す無線給電回路ブロック163は、電源電池15に接続している。無線給電回路ブロック163は、電波から得られた余剰電力を電源電池15に供給して充電する。電源電池15は化学電池の二次電池である。無線給電回路ブロック163から電源電池15に充電する構成と、二次電池164を設ける構成は、どちらか一方だけを設けてもよい。 Also, the wireless power supply circuit block 163 shown in FIG. 7 is connected to the power supply battery 15 . The wireless power supply circuit block 163 supplies surplus power obtained from radio waves to the power supply battery 15 to charge it. The power battery 15 is a secondary battery of a chemical battery. Only one of the configuration in which the power supply battery 15 is charged from the wireless power supply circuit block 163 and the configuration in which the secondary battery 164 is provided may be provided.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 Although the embodiments of the present invention have been described in detail above with reference to the drawings, the specific configuration is not limited to these embodiments, and design modifications and the like are made within the scope of the present invention. is included in the present invention. In addition, each of the above-described embodiments can be combined by utilizing each other's techniques unless there is a particular contradiction or problem in the purpose, configuration, or the like.
 たとえば、実施例1~3において、センサタグ1がアクセス可能な複数のゲートウェイ41の基地局IDは、第1メモリと第2メモリに記憶されている。しかし、アクセス可能なゲートウェイ41は設置や取り外しにより随時変更される可能性がある。そこで、アクセス可能な複数のゲートウェイ41の基地局IDをサーバ6に記憶して更新管理しておき、センサタグ1に送信することができる。この場合には、センサタグ1の第1制御回路ブロック13がゲートウェイ41を介してサーバ6にアクセスした際に、サーバ6から更新されたアクセス可能な基地局IDをダウンロードして更新する。 For example, in Examples 1 to 3, base station IDs of a plurality of gateways 41 accessible by the sensor tag 1 are stored in the first memory and the second memory. However, the accessible gateway 41 may change at any time due to installation or removal. Therefore, the base station IDs of a plurality of accessible gateways 41 can be stored in the server 6, updated and managed, and transmitted to the sensor tag 1. FIG. In this case, when the first control circuit block 13 of the sensor tag 1 accesses the server 6 via the gateway 41, the updated accessible base station ID is downloaded from the server 6 and updated.
 また、実施例1~3では通信部と計測部は一つの第1CPUを用いたが、通信回路ブロック11と計測回路ブロック12が別々のCPU等を備えるようにしてもよい。また、無線基地局としてゲートウェイを用いたが、ゲートウェイ以外の無線基地局を用いてもよい。ゲートウェイ41が1台の場合は、ルータ42を省略してもよい。 In addition, although one first CPU is used for the communication unit and the measurement unit in Examples 1 to 3, the communication circuit block 11 and the measurement circuit block 12 may be provided with separate CPUs or the like. Also, although gateways are used as radio base stations, radio base stations other than gateways may be used. If there is only one gateway 41, the router 42 may be omitted.
 一実施形態、他の実施形態は、図1に示すように、流通や保管を開始した日時と送り先、二次元バーコード等を電子ペーパで表示したものである。しかし、表示面の一部または全部を印刷としてもよい。また、ディスプレイを用いる際には、流通や保管の最中における最高温度や衝撃の有無等を表示するようにしてもよい。 In one embodiment and another embodiment, as shown in FIG. 1, the date and time when distribution or storage started, the destination, a two-dimensional barcode, etc. are displayed on electronic paper. However, part or all of the display surface may be printed. Also, when using a display, the maximum temperature, the presence or absence of impact, etc. during distribution or storage may be displayed.
 上記の実施例、実施形態は物流を用途とし、物品にセンサタグを取り付けて用いるものである。しかし、センサタグを人に取り付けてウェアラブルセンサとして使用してもよい。例えば、体温、脈拍、脈波(ECG(心電図)、PPG(光学式心拍センサ)など)、SpO(血中酸素濃度)、血圧などのバイタルセンサをウェアラブルにして、取得データを、ゲートウェイを通じてサーバ等にアップロードすることが考えられる。また、名札形状とした放射線計測のセンサタグとし、原子力発電所の作業者が作業する際の放射線量の計測に用いても良い。この場合は、放射線量を検出して計測時間と共にセンサタグに記憶しておき、脱衣所等に設けたゲートウェイで放射線データを吸い上げることができる。作業者各個人の放射線データを時間毎の作業を記した作業日誌等と共に分析することにより、放射能の高い作業場所や作業内容等を調査することができる。 The above-described examples and embodiments are intended for physical distribution, and are used by attaching sensor tags to articles. However, the sensor tag may be attached to a person and used as a wearable sensor. For example, wearable vital sensors such as body temperature, pulse, pulse wave (ECG (electrocardiogram), PPG (optical heart rate sensor), etc.), SpO 2 (blood oxygen concentration), blood pressure, etc. are acquired, and the acquired data is sent to the server through the gateway. etc., can be considered. Moreover, it may be used as a sensor tag for radiation measurement in the form of a name tag, and used to measure the radiation dose when a worker at a nuclear power plant works. In this case, the radiation dose can be detected and stored in the sensor tag together with the measurement time, and the radiation data can be retrieved by a gateway provided in a dressing room or the like. By analyzing the radiation data of each individual worker together with the work diary that describes the work for each hour, it is possible to investigate the work place and work content with high radioactivity.
1 センサタグ
11 通信回路ブロック
12 計測回路ブロック
13 第1制御回路ブロック
14 主要電源回路ブロック
15 電源電池
16 パッシブ型WUP回路ブロック
161 第2制御回路ブロック
162 無線給電回路ブロック
163 無線給電回路ブロック
164 二次電池
2 物品
3 冷蔵トラック
4 物流施設
41 ゲートウェイ
42 ルータ
5 インターネット
6 サーバ
1 sensor tag 11 communication circuit block 12 measurement circuit block 13 first control circuit block 14 main power circuit block 15 power battery 16 passive WUP circuit block 161 second control circuit block 162 wireless power supply circuit block 163 wireless power supply circuit block 164 secondary battery 2 Goods 3 Refrigerated truck 4 Logistics facility 41 Gateway 42 Router 5 Internet 6 Server

Claims (6)

  1.  通信部と、計測部と、前記通信部及び前記計測部に電力を供給する電源電池と、前記電源電池から電力が供給されないウェイクアップ部を備え、
     前記ウェイクアップ部は、電波から得た電波電力により無線基地局を識別して前記通信部へ割込信号を出力し、
     前記計測部は、センサにより計測を行うと共に計測データを記憶し、
     前記通信部は、前記割込信号によりディープスリープモードからウェイクアップして、前記計測部に記憶した計測データを前記無線基地局又は他の無線基地局へ無線により送信することを特徴とするモニタリング用デバイス。
    A communication unit, a measurement unit, a power supply battery that supplies power to the communication unit and the measurement unit, and a wakeup unit that is not supplied with power from the power supply battery,
    The wakeup unit identifies a wireless base station by radio wave power obtained from radio waves and outputs an interrupt signal to the communication unit;
    The measurement unit performs measurement with a sensor and stores measurement data,
    For monitoring, wherein the communication unit wakes up from a deep sleep mode by the interrupt signal and wirelessly transmits the measurement data stored in the measurement unit to the wireless base station or another wireless base station. device.
  2.  前記電源電池は、前記ウェイクアップ部の電波電力により充電されることを特徴とする請求項1に記載されたモニタリング用デバイス。 The monitoring device according to claim 1, wherein the power battery is charged by radio wave power of the wakeup unit.
  3.  前記通信部は、前記無線基地局又は前記他の無線基地局に接続ができなくなったときに、ディープスリープモードに切り換えることを特徴とする請求項1または2に記載されたモニタリング用デバイス。 The monitoring device according to claim 1 or 2, wherein the communication unit switches to a deep sleep mode when connection to the wireless base station or the other wireless base station becomes impossible.
  4.  前記通信部は、ウェイクアップした後に所定時間間隔でディープスリープモードとウェイクアップモードを繰り返すことを特徴とする請求項1乃至3のいずれか一項に記載されたモニタリング用デバイス。 The monitoring device according to any one of claims 1 to 3, wherein the communication unit repeats a deep sleep mode and a wakeup mode at predetermined time intervals after waking up.
  5.  前記電波電力を前記電源電池とは異なる二次電池に充電して、前記二次電池から前記ウェイクアップ部に電力を供給することを特徴とする請求項1乃至4のいずれか一項に記載されたモニタリング用デバイス。 5. The apparatus according to any one of claims 1 to 4, wherein a secondary battery different from the power supply battery is charged with the radio wave power, and power is supplied from the secondary battery to the wakeup unit. monitoring device.
  6.  前記ウェイクアップ部は、前記無線基地局の基地局IDを記憶し、記憶した前記基地局IDにより前記無線基地局を識別することを特徴とする請求項1乃至5のいずれか一項に記載されたモニタリング用デバイス。 6. The apparatus according to any one of claims 1 to 5, wherein the wakeup unit stores a base station ID of the radio base station, and identifies the radio base station by the stored base station ID. monitoring device.
PCT/JP2022/024929 2021-06-25 2022-06-22 Monitoring device WO2022270547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-105647 2021-06-25
JP2021105647A JP2023004134A (en) 2021-06-25 2021-06-25 monitoring device

Publications (1)

Publication Number Publication Date
WO2022270547A1 true WO2022270547A1 (en) 2022-12-29

Family

ID=84545460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024929 WO2022270547A1 (en) 2021-06-25 2022-06-22 Monitoring device

Country Status (2)

Country Link
JP (1) JP2023004134A (en)
WO (1) WO2022270547A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033457A (en) * 2008-07-30 2010-02-12 Hitachi Ltd Position measurement system, wireless communication device and position measurement method
JP2015177283A (en) * 2014-03-14 2015-10-05 日本電気通信システム株式会社 wireless multi-hop network
WO2017043546A1 (en) * 2015-09-09 2017-03-16 株式会社村田製作所 Wireless sensor
JP2021511601A (en) * 2018-01-25 2021-05-06 バイエル、ビジネス、サービシズ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングBayer Business Services Gmbh Product monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033457A (en) * 2008-07-30 2010-02-12 Hitachi Ltd Position measurement system, wireless communication device and position measurement method
JP2015177283A (en) * 2014-03-14 2015-10-05 日本電気通信システム株式会社 wireless multi-hop network
WO2017043546A1 (en) * 2015-09-09 2017-03-16 株式会社村田製作所 Wireless sensor
JP2021511601A (en) * 2018-01-25 2021-05-06 バイエル、ビジネス、サービシズ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングBayer Business Services Gmbh Product monitoring

Also Published As

Publication number Publication date
JP2023004134A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
US10318769B2 (en) Wireless tag apparatus and related methods
US7400253B2 (en) Harvesting ambient radio frequency electromagnetic energy for powering wireless electronic devices, sensors and sensor networks and applications thereof
US6712276B1 (en) Method and apparatus for automated measurement of properties of perishable consumer products
US6700493B1 (en) Method, apparatus and system for tracking, locating and monitoring an object or individual
US8319607B2 (en) Inventory monitoring system
US7757947B2 (en) R.F.I.D. enabled storage bin and method for tracking inventory
EP1360643B1 (en) Signalling system and a transponder for use in the system
US20100277285A1 (en) Systems and methods for communication with RFID tags
US20100277283A1 (en) Systems and methods for RFID tag operation
US20100277280A1 (en) Systems and methods for relaying information with RFID tags
US9013318B2 (en) Electronic shelf label and method of displaying remaining battery life thereof
US20060012480A1 (en) Asset location system
US20070115137A1 (en) Method and apparatus for localization of RFID tags
US8674807B2 (en) Method, system and devices for data acquisition
KR20170020155A (en) Reader logger and delivery information management system for collecting and record the delivery environment information and location information
KR20060009854A (en) Multimode wireless local area network/radio frequency identification asset tag
US20060019695A1 (en) Method of communication and base station
KR20090023008A (en) System and apparatus for monitoring within container using wireless sensor network
EP3695345B1 (en) Systems and methods for operating tag
JP2007106575A (en) Article quality control system
JP2008024385A (en) Article management system
WO2019222626A1 (en) Combined radio frequency identification tag and bluetooth low energy beacon
EP1496469B1 (en) Rf-id system with sensor and method of sending additional signals
KR100964179B1 (en) A moving-state sensing device waking up and sending signal periodically and a usn-based facilities and assets management system adjusting the sending periods
EP3098749A1 (en) Sales assisting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE