WO2022270527A1 - Negative photosensitive resin composition, negative photosensitive polmer, cured film and semiconductor device - Google Patents

Negative photosensitive resin composition, negative photosensitive polmer, cured film and semiconductor device Download PDF

Info

Publication number
WO2022270527A1
WO2022270527A1 PCT/JP2022/024837 JP2022024837W WO2022270527A1 WO 2022270527 A1 WO2022270527 A1 WO 2022270527A1 JP 2022024837 W JP2022024837 W JP 2022024837W WO 2022270527 A1 WO2022270527 A1 WO 2022270527A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
carbon atoms
negative photosensitive
resin composition
Prior art date
Application number
PCT/JP2022/024837
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 今井
昭彦 乙黒
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2023530080A priority Critical patent/JPWO2022270527A1/ja
Publication of WO2022270527A1 publication Critical patent/WO2022270527A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to a negative photosensitive resin composition, a negative photosensitive polymer, a cured film and a semiconductor device.
  • Polyimide resin has high mechanical strength, heat resistance, insulation, and solvent resistance, so it is widely used as a protective material for liquid crystal display elements and semiconductors, as an insulating material, and as a thin film for electronic materials such as color filters.
  • Patent Document 1 discloses a block copolyimide that is soluble in a dipolar aprotic solvent, and states that a predetermined acid anhydride can be used to obtain the block copolyimide.
  • Patent Document 2 discloses a polyimide resin composed of structural units having a predetermined structure. This document describes an example of synthesizing a polyimide resin using 4,4-diamino-3,3-diethyl-5,5-dimethyldiphenylmethane.
  • Patent Document 3 discloses an aromatic tetracarboxylic dianhydride, 4,4'-diaminodiphenylmethane having at least one or more alkyl groups in an aromatic ring having an amino group, and p-aminobenzoic acid ester groups at both ends.
  • a polyimide elastomer resin is disclosed which is a terpolymer obtained from a polyether oligomer having a specific molecular weight.
  • the document describes that the resin has excellent heat and humidity resistance.
  • Patent Document 4 discloses a block copolymer comprising a polyimide structural unit formed from an aromatic tetracarboxylic dianhydride and a 4,4'-diaminodiphenylmethane derivative and a dimethylsiloxane structural unit.
  • the document mentions bis(4-amino-3-ethyl-5-methylphenyl)methane as 4,4'-diaminodiphenylmethane.
  • the literature describes that the resin is excellent in heat resistance and solvent solubility.
  • Patent Document 5 discloses a photosensitive composition containing a polyimide terminated with a predetermined maleimide group.
  • Patent Document 6 discloses an optical waveguide having a core portion containing a first compound having a functional group that can be dimerized by light irradiation. are exemplified by cyclic olefin resins terminated with maleimide groups of
  • the film containing polyimide obtained from the photosensitive resin composition has room for improvement in mechanical strength such as elongation.
  • Patent Document 6 does not describe the combined use with a predetermined polyimide.
  • the present inventors have found that the above problems can be solved by using a polyimide having a specific structure, and completed the present invention. That is, the present invention can be shown below.
  • (A) contains polyimide,
  • the polyimide (A) is a structural unit (a1) represented by the following general formula (a1); a structural unit (a2) represented by the following general formula (a2); At least one of both ends is a group represented by the following general formula (t), a negative photosensitive resin composition.
  • Y is a divalent organic group.
  • R 1 to R 4 each independently represent an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and R 1 and R 2 are different groups; R3 and R4 are different groups.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • Q 2 represents a divalent organic group. * indicates a bond.
  • [2] The negative photosensitive resin composition according to [1], wherein Y in the general formula (a1) is a divalent group containing an alkylene group or a divalent group containing at least one aromatic ring.
  • Y in the general formula (a1) is a divalent organic group selected from the following general formula (a1-1), the following general formula (a1-2) and the following general formula (a1-3).
  • R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 7 and a plurality of R 8 may be the same or different
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; may be the same or different
  • * indicates a bond.
  • each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different. * indicates a bond.
  • Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group. * indicates a bond.
  • Y in the general formula (a1) is a divalent organic group represented by the following general formula (a1-4): thing.
  • Z2 represents a divalent aromatic group.
  • R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, and multiple R 5 and multiple R 6 are the same X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, and m and n each independently represent 0 or 1.
  • the divalent organic group in Q2 of the general formula (t) is a structural unit (a2) represented by the general formula (a2) or a structural unit (a3) represented by the general formula (a3)
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • Q 1 represents a single bond or a divalent organic group
  • G 1 , G 2 and G 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms
  • m is 0, 1 or 2.
  • the negative photosensitive resin composition according to any one of [1] to [13], further comprising a silane coupling agent (D).
  • Y is a divalent organic group.
  • R 1 to R 4 are each independently an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms. is an alkoxy group, R 1 and R 2 are different groups, and R 3 and R 4 are different groups.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • Q 2 represents a divalent organic group. * indicates a bond.
  • [16] The negative photosensitive polymer according to [15], wherein Y in the general formula (a1) is a divalent group containing an alkylene group or a divalent group containing at least one aromatic ring.
  • Y in the general formula (a1) is a divalent organic group selected from the following general formula (a1-1), general formula (a1-2) and general formula (a1-3) below.
  • R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 7 and a plurality of R 8 may be the same or different
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; may be the same or different, and * indicates a bond.
  • each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different. * indicates a bond.
  • Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group. * indicates a bond.
  • Y in general formula (a1) is a divalent organic group represented by general formula (a1-4) below.
  • Z2 represents a divalent aromatic group.
  • R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, and multiple R 5 and multiple R 6 are the same X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, and m and n each independently represent 0 or 1.
  • the divalent organic group in Q2 of the general formula (t) is a structural unit (a2) represented by the general formula (a2) or a structural unit (a3) represented by the general formula (a3)
  • the negative photosensitive polymer according to [20].
  • a cured film comprising a cured product of the negative photosensitive resin composition according to any one of [1] to [14].
  • a semiconductor device comprising a resin film containing a cured product of the negative photosensitive resin composition according to any one of [1] to [14].
  • an interlayer insulating film comprising:
  • a negative photosensitive polymer capable of obtaining a cured product such as a film having excellent solubility in an organic solvent and excellent mechanical strength such as elongation, and a negative photosensitive resin composition containing the polymer. can be provided.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment
  • the negative photosensitive resin composition of the present embodiment contains (A) polyimide.
  • the polyimide (A) (negative photosensitive polymer) of the present embodiment includes a structural unit (a1) represented by the following general formula (a1), and a structural unit (a2) represented by the following general formula (a2). and at least one of both ends is a group represented by the following general formula (t).
  • Y is a divalent organic group.
  • the divalent organic group a known organic group can be used as long as the effect of the present invention is exhibited. From the viewpoint of the effect of the present invention, Y is a divalent group containing an alkylene group, or at least one A divalent group containing one aromatic ring is preferred.
  • the alkylene group is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • the aromatic ring includes a divalent benzene ring, a divalent naphthalene ring, a divalent anthracene ring, a divalent biphenyl group and the like, preferably a divalent benzene ring or a divalent biphenyl group.
  • Y in the general formula (a1) is a divalent selected from the following general formula (a1-1), the following general formula (a1-2), the following general formula (a1-3) and the following general formula (a1-4) is more preferably an organic group of
  • R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and multiple R 7 , multiple R 8 may be the same or different.
  • R 7 and R 8 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 9 may be the same or different.
  • R 9 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom. * indicates a bond.
  • each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different.
  • R 10 and R 11 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably at least one of R 10 and at least one of R 11 an alkyl group having 1 to 3 carbon atoms, more preferably three R 10 are alkyl groups having 1 to 3 carbon atoms, one R 10 is a hydrogen atom, and three R 11 are alkyl groups having 1 to 3 carbon atoms one R 11 is a hydrogen atom, particularly preferably three R 10 are methyl groups and one R 10 is a hydrogen atom, and three R 11 are methyl groups and one R 11 is It is a hydrogen atom. * indicates a bond.
  • Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group. * indicates a bond.
  • Z 2 represents a divalent aromatic group, preferably a divalent benzene ring. * indicates a bond.
  • R 1 to R 4 each independently represent an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and from the viewpoint of the effect of the present invention, preferably carbon It is an alkyl group of numbers 1 to 3.
  • R 1 and R 2 are different groups, and R 3 and R 4 are different groups.
  • the structural unit represented by the general formula (a2) has an asymmetric molecular structure, so that the main chain of the polymer having the structural unit is twisted. This is considered to be one of the reasons for the improvement in solvent solubility.
  • X 1 is preferably a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms, and more A linear or branched alkylene group having 1 to 5 carbon atoms or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms is preferred.
  • the polyimide (A) of the present embodiment suppresses the influence of the imide ring on the electrons, suppresses the hydrolysis of the polyimide, and improves mechanical properties such as elongation. Excellent strength and excellent solubility in organic solvents.
  • the polyimide (A) of the present embodiment and the negative photosensitive resin composition containing the polyimide (A) have an excellent balance of these properties.
  • Polyimide (A) includes a polyimide in which at least one of both ends is a group t represented by the following general formula (t).
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and from the viewpoint of the effect of the present invention, an alkyl group having 1 or 2 carbon atoms is preferable, A C 1 alkyl group (methyl group) is more preferred. * indicates a bond.
  • R 5 and R 6 are methyl groups, hydrolysis of the polyimide is further suppressed, and mechanical strength such as elongation is further excellent, and solubility in organic solvents is also excellent.
  • Q2 represents a divalent organic group.
  • a known organic group can be used as long as the effect of the present invention is exhibited.
  • the structural unit (a2) represented by the general formula (a2) is preferable.
  • Specific examples include a divalent organic group represented by the following general formula (t-1).
  • the polyimide (A) can further contain a structural unit (a3) represented by the following general formula (a3).
  • R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, preferably a hydrogen atom or a haloalkyl group having 1 to 4 carbon atoms.
  • a plurality of R 5 may be the same or different, and a plurality of R 6 may be the same or different.
  • X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, preferably a single bond or a haloalkylene group having 1 to 4 carbon atoms.
  • m and n each independently represent 0 or 1;
  • the divalent organic group Q 2 may be the structural unit (a3) represented by the general formula (a3). Specific examples include a divalent organic group represented by the following general formula (t-2).
  • R 5 , R 6 , X, m and n have the same meanings as in general formula (a3). * indicates a bond.
  • the polyimide (A) preferably contains a polyimide in which at least one end, preferably both ends, is a group t represented by the general formula (t).
  • the polyimide (A) of the present embodiment is excellent in mechanical strength because it contains a polyimide having a group t represented by general formula (t) at at least one end. Furthermore, since photodimerization is possible without causing a radical reaction, polyimide (A) can be photopolymerized with each other, polyimide (A) and a cross-linking agent (B) described later, and mechanical strength is excellent. Moreover, the polyimide (A) may contain a polyimide having a group u represented by the following general formula (u) at its end.
  • the ratio of the number of moles of the group b to the total number of moles of the group t and the group u (t/t+u) is 0.5 or more, preferably 0.55. above, more preferably 0.6 or above. If it is this range, the polyimide component eluted by development can be reduced.
  • the polyimide (A) of the present embodiment can contain a structural unit 1 represented by the following general formula (1).
  • R 1 to R 4 and X 1 have the same meanings as in general formula (a2), and Y has the same meaning as in general formula (a1).
  • the polyimide (A) of the present embodiment may further contain a structural unit 2 represented by the following general formula (2) in addition to the structural unit 1.
  • R 5 to R 6 , X, m and n have the same meanings as in general formula (a3), and Y has the same meaning as in general formula (a1).
  • the weight average molecular weight of the polyimide (A) of this embodiment is 5,000 to 200,000, preferably 10,000 to 100,000.
  • the polyimide (A) (negative photosensitive polymer) of the present embodiment is excellent in hydrolysis resistance, and has a weight average molecular weight reduction rate of less than 50%, preferably 30% or less, measured under the following conditions. More preferably 20% or less, more preferably 10% or less, particularly preferably 7% or less.
  • the polyimide (A) of the present embodiment has a weight average molecular weight reduction rate within the above range, so that hydrolysis is suppressed and a cured product such as a film having excellent mechanical strength such as elongation can be obtained. .
  • the polyimide (A) of the present embodiment has excellent solubility in solvents and does not need to be varnished in a precursor state, a varnish containing the polyimide (A) can be prepared. A cured product such as a film can be obtained from the varnish.
  • Polyimide (A) (negative photosensitive polymer) having a structural unit represented by the general formula (1) of the present embodiment and at least one of both ends being a group t represented by the general formula (t)
  • the manufacturing method is An acid anhydride (a1′) represented by the following general formula (a1′), a diamine (a2′) represented by the following general formula (a2′), and an anhydride represented by the following general formula (t′)
  • a step of reacting with a maleic acid derivative (t') is included.
  • a polyimide (A) having excellent solubility in organic solvents can be synthesized by a simple method.
  • Y is a group represented by general formula (a1-1), general formula (a1-2), general formula (a1-3) and general formula (a1-4). is selected from
  • R 1 to R 4 and X 1 have the same meanings as in general formula (a2).
  • R 5 and R 6 have the same meanings as in general formula (t).
  • the equivalent ratio of diamine (a2') and acid anhydride (a1') in the reaction is an important factor that determines the molecular weight of the resulting polyimide.
  • the equivalent ratio of the diamine (a2′) and the acid anhydride (a1′) to be used is not particularly limited, but the equivalent ratio of the acid anhydride (a1′) to the diamine (a2′) is from 0.80 to It is preferably in the range of 1.06.
  • R 5 , R 6 , X, m and n are synonymous with general formula (a3).
  • the equivalent ratio of acid anhydride (a1'), diamine (a2') and diamine (a3') is an important factor that determines the molecular weight of the resulting polymer.
  • the equivalent ratio of the acid anhydride (a1′), the diamine (a2′) and the diamine (a3′) to be used is not particularly limited.
  • the equivalent ratio of diamine (a3') is preferably in the range of 0.80 to 1.06. If the corresponding amount ratio is within the above range, the mechanical strength is excellent and the manufacturing stability is excellent.
  • the amount of the maleic anhydride derivative (t') can be 3 times the molar amount of amino groups that are not reacted with the acid anhydride (a1').
  • a cured product such as a film having excellent mechanical properties as well as excellent low dielectric loss tangent can be obtained.
  • the reaction can be carried out by a known method in an organic solvent.
  • organic solvents examples include aprotic polar solvents such as ⁇ -butyl lactone (GBL), N,N-dimethylformamide, N,N-dimethylacetamide, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, cyclohexanone, and 1,4-dioxane. , and one type or two or more types may be used in combination.
  • a nonpolar solvent compatible with the aprotic polar solvent may be mixed and used.
  • Nonpolar solvents include aromatic hydrocarbons such as toluene, ethylbenzene, xylene, mesitylene and solvent naphtha.
  • the ratio of the non-polar solvent in the mixed solvent is set arbitrarily according to the resin properties such as the stirring device capacity and solution viscosity, as long as the solubility of the solvent decreases and the polyamic acid resin obtained by the reaction does not precipitate. can do.
  • the reaction temperature is 0° C. or higher and 100° C. or lower, preferably 20° C. or higher and 80° C. or lower, for about 30 minutes to 2 hours. React for some time.
  • Maleic anhydride derivative (t') may be present in the imidization reaction of acid anhydride (a1') with diamine (a2') and diamine (a3'), but acid anhydride (a1' ) and the diamines (a2′) and (a3′) during or after the reaction is completed, the maleic anhydride derivative (t′) dissolved in the above organic solvent is added and reacted to block the polyimide terminals. can be done.
  • the maleic anhydride derivative (t') is added separately, it is preferable to react after the addition at 100°C or higher and 250°C or lower, preferably 120°C or higher and 200°C or lower for about 1 to 5 hours.
  • a reaction solution containing the polyimide (A) (terminal-blocked polyimide) of the present embodiment can be obtained by the above steps, further diluted with an organic solvent or the like as necessary, and used as a polymer solution (coating varnish). be able to.
  • organic solvent those exemplified in the reaction step can be used, and the same organic solvent as in the reaction step may be used, or a different organic solvent may be used.
  • this reaction solution can be put into a poor solvent to reprecipitate the polyimide (A) to remove unreacted monomers, dry and solidify, and dissolve again in an organic solvent for use as a purified product.
  • the polyimide (A) concentration in the polymer solution (100% by weight) is not particularly limited, but is about 10 to 30% by weight.
  • Table A below shows preferred formulation examples of the negative photosensitive polymer of the present embodiment.
  • ⁇ MED-J 4,4-diamino-3,3-diethyl-5,5-dimethyldiphenylmethane
  • ⁇ HFBAPP 4,4′-(hexafluoroisopropylidene)bis[(4-aminophenoxy)benzene]
  • ⁇ TFMB 4,4′-diamino-2,2′-bis(trifluoromethyl)biphenyl
  • TMPBP-TME 4-[4-(1,3-dioxoisobenzofuran-5-ylcarbonyloxy)- 2,3,5-trimethylphenyl]-2,3,6-trimethylphenyl 1,3-dioxoisobenzofuran-5-carboxylate
  • HQDA 1,4-bis(3,4-dicarboxyphenoxy)benzoic acid
  • Dianhydride/DMMI 2,3-dimethylmaleic anhydride
  • the negative photosensitive resin composition of the present embodiment can preferably further contain a cross-linking agent (B) having a substituted or unsubstituted maleimide group (excluding the polyimide (A)).
  • a cross-linking agent (B) examples include 4,4′-diphenylmethanebis(dimethyl)maleimide, polyphenylmethane(dimethyl)maleimide, m-phenylenebis(dimethyl)maleimide, p-phenylenebis(dimethyl)maleimide, bisphenol A diphenyl ether bis (dimethyl)maleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebis(dimethyl)maleimide, 4-methyl-1,3-phenylenebis(dimethyl)maleimide, 1,6′ -bis(dimethyl)maleimido-(2,2,4-trimethyl)hexane, 1,2-bis((di)
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and from the viewpoint of the effect of the present invention, an alkyl group having 1 or 2 carbon atoms is preferable, A C 1 alkyl group is more preferred.
  • Q1 represents a single bond or a divalent organic group.
  • the divalent organic group of Q 1 a known organic group can be used within the scope of the effects of the present invention, and examples thereof include an alkylene group having 1 to 8 carbon atoms or a (poly)alkylene glycol chain. can be done.
  • the alkylene group having 1 to 8 carbon atoms is preferably an alkylene group having 2 to 6 carbon atoms.
  • alkylene group having 1 to 8 carbon atoms examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, and octylene group.
  • the alkylene oxide constituting the (poly)alkylene glycol chain is not particularly limited, but is preferably composed of an alkylene oxide having 1 to 18 carbon atoms, more preferably an alkylene oxide having 2 to 8 carbon atoms, such as ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, 1-butene oxide, 2-butene oxide, trimethylethylene oxide, tetramethylene oxide, tetramethylethylene oxide, butadiene monoxide, octylene oxide and the like.
  • G 1 , G 2 and G 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms.
  • hydrocarbon groups having 1 to 30 carbon atoms include alkyl groups, alkenyl groups, alkynyl groups, alkylidene groups, aryl groups, aralkyl groups, alkaryl groups, cycloalkyl groups, and the like.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, Octyl, nonyl, and decyl groups are included.
  • Alkenyl groups include, for example, allyl groups, pentenyl groups, and vinyl groups.
  • Alkynyl groups include ethynyl groups.
  • the alkylidene group includes, for example, a methylidene group and an ethylidene group.
  • Aryl groups include, for example, phenyl, naphthyl, and anthracenyl groups.
  • Aralkyl groups include, for example, benzyl groups and phenethyl groups.
  • alkaryl groups include tolyl and xylyl groups.
  • Cycloalkyl groups include, for example, adamantyl, cyclopentyl, cyclohexyl, and cyclooctyl groups.
  • the hydrocarbon group having 1 to 30 carbon atoms may contain at least one atom selected from O, N, S, P and Si in its structure.
  • the hydrocarbon group having 1 to 30 carbon atoms is preferably a hydrocarbon group having 1 to 15 carbon atoms, more preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 30 carbon atoms is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms, and an alkyl group having 1 to 10 carbon atoms. is even more preferred.
  • Examples of the substituted hydrocarbon group having 1 to 30 carbon atoms include a hydroxyl group, an amino group, a cyano group, an ester group, an ether group, an amide group, a sulfonamide group, and the like. may be substituted.
  • any one of G 1 , G 2 , and G 3 is preferably a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and the rest are hydrogen atoms, and all are hydrogen atoms. It is more preferable to have m is 0, 1 or 2, preferably 0 or 1, more preferably 0;
  • the cross-linking agent (B) of the present embodiment has the structure represented by the general formula (b), it is excellent in low dielectric loss tangent. Furthermore, the cross-linking agent (B) has a predetermined maleimide group in the side chain, and photodimerization is possible without causing a radical reaction. A) can be photopolymerized, and the mechanical strength is also superior.
  • the cross-linking agent (B) of the present embodiment can be synthesized as follows.
  • a compound (b') represented by the following general formula (b') is addition-polymerized, and if necessary, addition-polymerized with another norbornene-based compound to obtain a polymer.
  • Addition polymerization is carried out, for example, by coordination polymerization.
  • R 1 , R 2 , Q 1 , G 1 , G 2 , G 3 and m have the same meanings as in general formula (b).
  • norbornene compounds include norbornenes having an alkyl group such as 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene
  • Norbornenes having an alkenyl group such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, 5-cyclopentenylnorbornene; 5-phenylnorbornene, 5-phenylmethylnorbornene, 5-phenyl norbornenes having an aromatic ring such as ethyl norbornene and 5-phenylpropyl norbornene;
  • solution polymerization can be performed by dissolving the compound and the organometallic catalyst in a solvent and then heating for a predetermined time.
  • the heating temperature can be, for example, 30°C to 200°C, preferably 40°C to 150°C, more preferably 50°C to 120°C.
  • the yield of the cross-linking agent (B) can be improved by making the heating temperature higher than conventionally.
  • the heating time can be, for example, 0.5 hours to 72 hours.
  • chain transfer agents examples include alkylsilane compounds such as trimethylsilane, triethylsilane, and tributylsilane. These chain transfer agents may be used singly or in combination of two or more.
  • Solvents used in the polymerization reaction include, for example, methyl ethyl ketone (MEK), propylene glycol monomethyl ether, diethyl ether, cyclopentyl methyl ether, tetrahydrofuran (THF), 4-methyltetrahydropyran, toluene, cyclohexane, methylcyclohexane, ethyl acetate, One or more of esters such as butyl acetate and alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol can be used.
  • MK methyl ethyl ketone
  • F tetrahydrofuran
  • esters such as butyl acetate and alcohols
  • alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol
  • the organometallic catalyst is not particularly selected as long as the addition polymerization proceeds. good. One or more of these can be used.
  • the palladium complex examples include (acetato- ⁇ 0)(acetonitrile)bis[tris(1-methylethyl)phosphine]palladium(I) tetrakis(2,3,4,5,6-pentafluorophenyl)borate, ⁇ - allylpalladium complexes such as allylpalladium chloride dimer, Organic carboxylates of palladium such as palladium acetate, propionate, maleate, naphthoate, palladium complexes of organic carboxylic acids such as palladium acetate triphenylphosphine complexes, palladium acetate tri(m-tolyl)phosphine complexes, palladium acetate tricyclohexylphosphine complexes, organic sulfonates of palladium such as palladium dibutyl phosphite, p-toluenesulfonate, ⁇ -diketone compounds of pal
  • phosphine ligands examples include triphenylphosphine, dicyclohexylphenylphosphine, cyclohexyldiphenylphosphine, and tricyclohexylphosphine.
  • Examples of the counter anion include triphenylcarbeniumtetrakis(pentafluorophenyl)borate, triphenylcarbeniumtetrakis[3,5-bis(trifluoromethyl)phenyl]borate, triphenylcarbeniumtetrakis(2,4, 6-trifluorophenyl)borate, triphenylcarbenium tetraphenylborate, tributylammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, N,N-diethylanilinium tetrakis ( pentafluorophenyl)borate, N,N-diphenylanilinium tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate and the like.
  • the amount of the organometallic catalyst can be 300 ppm to 5000 ppm, preferably 1000 ppm to 3500 ppm, more preferably 1500 ppm to 2500 ppm with respect to the norbornene-based monomer. Thereby, the yield of the cross-linking agent (B) can be improved.
  • the resulting reaction solution containing the cross-linking agent (B) is added to an alcohol such as hexane or methanol to precipitate the cross-linking agent (B).
  • the cross-linking agent (B) is collected by filtration, washed with alcohol such as hexane or methanol, and dried.
  • the cross-linking agent (B) can be synthesized in this manner. According to the production method of the present embodiment, the cross-linking agent (B) can be obtained with a high yield of 70% or more.
  • the conversion rate with dialkyl maleic anhydride is preferably 70% or more. More preferably 80%, more preferably 90% or more. If it is this range, the polyimide component eluted by development can be reduced.
  • the cross-linking agent (B) of the present embodiment may contain other structural units other than the structural unit (b) within the scope of the effect of the present invention, and the other structural units include the other norbornene-based compounds Structural units derived from
  • the weight average molecular weight of the cross-linking agent (B) of the present embodiment is 3,000 to 300,000, preferably 5,000 to 200,000.
  • the ratio (A:B) of the polyimide (A) and the cross-linking agent (B) is 5:95 to 95:5, preferably 10:90 to 90:10. , and more preferably 20:80 to 80:20.
  • the negative photosensitive resin composition of this embodiment can further contain a photosensitizer (C).
  • Examples of the photosensitizer (C) include benzophenone-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, benzyl-based photopolymerization initiators, and Michler's ketone-based photopolymerization initiators. Among these, benzophenone-based photopolymerization initiators and thioxanthone-based photopolymerization initiators are preferred.
  • Benzophenone-based photopolymerization initiators include benzophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-diaminobenzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4′-methyl-diphenyl sulfide and the like. These benzophenones and derivatives thereof can improve the curing speed by using a tertiary amine as a hydrogen donor.
  • benzophenone-based photopolymerization initiators examples include SPEEDCUREMBP (4-methylbenzophenone), SPEEDCUREMBB (methyl-2-benzoylbenzoate), SPPEDCUREBMS (4-benzoyl-4'methyldiphenyl sulfide), SPPEDCUREPBZ (4-phenyl benzophenone), SPPEDCUREEMK (4,4′-bis(diethylamino)benzophenone) (both trade names, manufactured by DKSH Japan Co., Ltd.), and the like.
  • Thioxanthone-based photopolymerization initiators include thioxanthone, diethylthioxanthone, isopropylthioxanthone, and chlorothioxanthone.
  • Preferred diethylthioxanthone is 2,4-diethylthioxanthone
  • isopropylthioxanthone is 2-isopropylthioxanthone
  • chlorothioxanthone is 2-chlorothioxanthone.
  • a thioxanthone-based photopolymerization initiator containing diethylthioxanthone is more preferable.
  • thioxanthone-based photopolymerization initiators examples include SpeedcureDETX (2,4-diethylthioxanthone), SpeedcureITX (2-isopropylthioxanthone), SpeedcureCTX (2-chlorothioxanthone), and SPEEDCURECPTX (1-chloro-4-propylthioxanthone).
  • the amount of the photosensitizer (C) added is not particularly limited, but it is preferably about 0.05 to 15% by mass of the total solid content of the negative photosensitive resin composition, and 0.1 to 12.5%. It is more preferably about mass %, more preferably about 0.2 to 10 mass %.
  • the negative photosensitive resin composition of this embodiment can further contain a silane coupling agent (D). Thereby, the adhesiveness of the resin film or pattern formed of the negative photosensitive resin composition to the substrate can be enhanced.
  • the usable silane coupling agent (D) is not particularly limited.
  • silane coupling agents such as aminosilane, epoxysilane, acrylsilane, mercaptosilane, vinylsilane, ureidosilane, acid anhydride-functional silane, and sulfidesilane can be used.
  • Silane coupling agents (D) may be used alone or in combination of two or more.
  • epoxysilanes i.e., compounds containing both an epoxy moiety and a group that generates a silanol group by hydrolysis in one molecule
  • anhydride-functional silanes i.e., in one molecule, an anhydride and a group that generates a silanol group by hydrolysis
  • the group of the silane coupling agent on the side opposite to the silane is bonded to the polymer A or the polymer B or has good compatibility with the polymer, so that the resin film or pattern formed with the negative photosensitive resin composition is Adhesion to the substrate can be further enhanced.
  • aminosilanes include bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -amino propylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, N-phenyl- ⁇ -amino-propyltrimethoxysilane, and the like.
  • epoxysilanes include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidylpropyltrimethoxysilane, and the like.
  • acrylic silanes include ⁇ -(methacryloxypropyl)trimethoxysilane, ⁇ -(methacryloxypropyl)methyldimethoxysilane, ⁇ -(methacryloxypropyl)methyldiethoxysilane, and the like.
  • Mercaptosilanes include, for example, 3-mercaptopropyltrimethoxysilane.
  • Vinylsilanes include, for example, vinyltris( ⁇ -methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, and the like.
  • Ureidosilanes include, for example, 3-ureidopropyltriethoxysilane.
  • Anhydride-functional silanes include, for example, 3-trimethoxysilylpropylsuccinic anhydride.
  • sulfide silanes include bis(3-(triethoxysilyl)propyl)disulfide and bis(3-(triethoxysilyl)propyl)tetrasulfide.
  • silane coupling agent (D) When using a silane coupling agent (D), only 1 type may be used and 2 or more types may be used together.
  • the content of the silane coupling agent (D) is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass when the total solid content of the negative photosensitive resin composition is 100 parts by mass. be. It is considered that by setting the amount in this range, it is possible to obtain sufficient "adhesion", which is the effect of the silane coupling agent (D), while maintaining a balance with other performances.
  • the negative photosensitive resin composition according to the present embodiment can contain a urea compound or an amide compound having an acyclic structure as a solvent.
  • the solvent preferably contains, for example, a urea compound.
  • a urea compound indicates a compound having a urea bond, that is, a urea bond.
  • an amide compound indicates a compound having an amide bond, that is, an amide.
  • amides specifically include primary amides, secondary amides, and tertiary amides.
  • an acyclic structure means that the structure of a compound does not have a cyclic structure such as a carbocyclic ring, an inorganic ring, or a heterocyclic ring.
  • a cyclic structure such as a carbocyclic ring, an inorganic ring, or a heterocyclic ring.
  • structures of compounds that do not have a cyclic structure include straight-chain structures and branched-chain structures.
  • the urea compound and the amide compound having a non-cyclic structure those having a large number of nitrogen atoms in the molecular structure are preferred.
  • the number of nitrogen atoms in the molecular structure is preferably two or more. Thereby, the number of lone electron pairs can be increased. Therefore, the adhesion to metals such as Al and Cu can be improved.
  • the structure of the urea compound include a cyclic structure and an acyclic structure.
  • the structure of the urea compound is preferably an acyclic structure.
  • the urea compound having a non-cyclic structure is less constrained in molecular motion and has a greater degree of freedom in deformation of the molecular structure than the urea compound having a cyclic structure. Therefore, when a urea compound having a non-cyclic structure is used, a strong coordinate bond can be formed and adhesion can be improved.
  • urea compounds include tetramethylurea (TMU), 1,3-dimethyl-2-imidazolidinone, tetrabutylurea, N,N′-dimethylpropyleneurea, 1,3-dimethoxy-1,3 -dimethylurea, N,N'-diisopropyl-O-methylisourea, O,N,N'-triisopropylisourea, O-tert-butyl-N,N'-diisopropylisourea, O-ethyl-N,N '-diisopropylisourea, O-benzyl-N,N'-diisopropylisourea and the like.
  • TNU tetramethylurea
  • 1,3-dimethyl-2-imidazolidinone 1,3-dimethyl-2-imidazolidinone
  • tetrabutylurea N,N′-dimethylpropyleneurea
  • urea compound one or a combination of two or more of the above specific examples can be used.
  • tetramethylurea TMA
  • tetrabutylurea 1,3-dimethoxy-1,3-dimethylurea, N,N'-diisopropyl-O-methylisourea, O,N ,N'-triisopropylisourea, O-tert-butyl-N,N'-diisopropylisourea, O-ethyl-N,N'-diisopropylisourea and O-benzyl-N,N'-diisopropylisourea
  • TEU tetramethylurea
  • TNU tetrabutylurea
  • 1,3-dimethoxy-1,3-dimethylurea N,N'-diisopropyl-O-methylisourea
  • acyclic amide compounds include 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylformamide, N,N-dimethylpropionamide, N,N-dimethylacetamide, N, N-diethylacetamide, 3-butoxy-N,N-dimethylpropanamide, N,N-dibutylformamide and the like.
  • the negative photosensitive resin composition according to the present embodiment may contain, as a solvent, a solvent having no nitrogen atom in addition to the urea compound and the amide compound having an acyclic structure.
  • solvents having no nitrogen atom include ether-based solvents, ester-based solvents, alcohol-based solvents, ketone-based solvents, lactone-based solvents, carbonate-based solvents, sulfone-based solvents, ester-based solvents, and aromatic hydrocarbons. system solvents and the like.
  • solvent having no nitrogen atom one or a combination of two or more of the above specific examples can be used.
  • ether solvent examples include propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol, ethylene glycol diethyl ether, and diethylene glycol diethyl ether. , diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, 1,3-butylene glycol-3-monomethyl ether and the like.
  • ester solvent examples include propylene glycol monomethyl ether acetate (PGMEA), methyl lactate, ethyl lactate, butyl lactate, and methyl-1,3-butylene glycol acetate.
  • PGMEA propylene glycol monomethyl ether acetate
  • methyl lactate methyl lactate
  • ethyl lactate methyl lactate
  • butyl lactate methyl-1,3-butylene glycol acetate
  • the alcohol solvent include tetrahydrofurfuryl alcohol, benzyl alcohol, 2-ethylhexanol, butanediol, and isopropyl alcohol.
  • Specific examples of the ketone solvent include cyclopentanone, cyclohexanone, diacetone alcohol, and 2-heptanone.
  • Specific examples of the lactone solvent include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone.
  • the carbonate-based solvent include ethylene carbonate and propylene carbonate.
  • Specific examples of the sulfone-based solvent include dimethylsulfoxide (DMSO) and sulfolane.
  • ester solvent examples include methyl pyruvate, ethyl pyruvate, and methyl-3-methoxypropionate.
  • aromatic hydrocarbon solvent examples include mesitylene, toluene, and xylene.
  • the lower limit of the content of the urea compound and the amide compound having an acyclic structure in the solvent is, for example, preferably 10 parts by mass or more, preferably 20 parts by mass or more, when the solvent is 100 parts by mass. More preferably, it is 30 parts by mass or more, even more preferably 50 parts by mass or more, and even more preferably 70 parts by mass or more.
  • the lower limit of the content of the urea compound and the amide compound with an acyclic structure in the solvent can be, for example, 100 parts by mass or less when the solvent is 100 parts by mass. From the viewpoint of improving adhesion, it is preferable that the solvent contains a large amount of the urea compound and the amide compound having an acyclic structure.
  • the negative photosensitive resin composition according to this embodiment may further contain a surfactant.
  • the surfactant is not limited, and specifically polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether, polyoxyethylene Polyoxyethylene aryl ethers such as nonylphenyl ether; Nonionic surfactants such as polyoxyethylene dialkyl esters such as polyoxyethylene dilaurate and polyoxyethylene distearate; Ftop EF301, Ftop EF303, Ftop EF352 (manufactured by Shin-Akita Kasei), Megafac F171, Megafac F172, Megafac F173, Megafac F177, Megafac F444, Megafac F470, Megafac F471, Megafac F475, Megafac F482, Megafac F477 (DIC Corporation) manufactured), Florado FC-430, Florard FC-431, Novec FC4430, Nov
  • a fluorine-based surfactant having a perfluoroalkyl group As the specific examples of the perfluoroalkyl group-containing fluorosurfactant, Megafac F171, Megafac F173, Megafac F444, Megafac F470, Megafac F471, Megafac F475, Megafac F482, and Megafac
  • F477 manufactured by DIC
  • Surflon S-381, Surflon S-383, Surflon S-393 manufactured by AGC Seimi Chemical Co., Ltd.
  • Novec FC4430 and Novec FC4432 manufactured by 3M Japan
  • a silicone-based surfactant eg, polyether-modified dimethylsiloxane, etc.
  • silicone surfactants include SH series, SD series and ST series from Dow Corning Toray Co., Ltd., BYK series from BYK Chemie Japan, KP series from Shin-Etsu Chemical Co., Ltd., Disfoam from NOF CORPORATION ( (registered trademark) series, TSF series of Toshiba Silicone Co., Ltd., and the like.
  • the upper limit of the content of the surfactant in the negative photosensitive resin composition is 1% by mass (10,000 ppm) or less with respect to the entire negative photosensitive resin composition (including the solvent). It is preferably 0.5% by mass (5,000 ppm) or less, more preferably 0.3% by mass (3,000 ppm) or less.
  • the content of the surfactant in the negative photosensitive resin composition is 0.001% by mass (10 ppm) or more with respect to the whole (including the solvent). Applicability and uniformity of the coating film can be improved while maintaining other properties by appropriately adjusting the amount of the surfactant.
  • the negative photosensitive resin composition according to this embodiment may further contain an antioxidant.
  • an antioxidant one or more selected from phenol-based antioxidants, phosphorus-based antioxidants and thioether-based antioxidants can be used.
  • the antioxidant can suppress oxidation of the resin film formed from the negative photosensitive resin composition.
  • Phenolic antioxidants include pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 3,9-bis ⁇ 2-[3-(3 -t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl ⁇ 2,4,8,10-tetraoxaspiro[5,5]undecane, octadecyl-3-(3, 5-di-t-butyl-4-hydroxyphenyl)propionate, 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 1,3,5 -trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t -butyl-4
  • Phosphorus antioxidants include bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite, tris(2,4-di-t-butylphenylphosphite), tetrakis(2 ,4-di-t-butyl-5-methylphenyl)-4,4′-biphenylenediphosphonite, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, bis-(2,6 -dicumylphenyl)pentaerythritol diphosphite, 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite, tris(mixed mono and di-nonylphenylphosphite), bis(2, 4-di-t-butylphenyl)pentaerythritol diphosphite, bis(2,6
  • Thioether antioxidants include dilauryl-3,3′-thiodipropionate, bis(2-methyl-4-(3-n-dodecyl)thiopropionyloxy)-5-t-butylphenyl)sulfide , distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis(3-lauryl)thiopropionate, and the like.
  • the negative photosensitive resin composition according to this embodiment may further contain a filler.
  • a filler an appropriate filler can be selected according to the mechanical properties and thermal properties required for the resin film made of the negative photosensitive resin composition.
  • fillers include inorganic fillers and organic fillers.
  • specific examples of the inorganic filler include silica such as fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, and finely divided silica; alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, and silicon carbide. , aluminum hydroxide, magnesium hydroxide, titanium white, and other metal compounds; talc; clay; mica; As the inorganic filler, one or a combination of two or more of the above specific examples can be used.
  • organic filler examples include organosilicone powder and polyethylene powder.
  • organic filler one or a combination of two or more of the above specific examples can be used.
  • a method for preparing the negative photosensitive resin composition in the present embodiment is not limited, and a known method can be used depending on the components contained in the negative photosensitive resin composition. For example, it can be prepared by mixing and dissolving the above components in a solvent.
  • the negative photosensitive resin composition according to the present embodiment is formed by applying the negative photosensitive resin composition to a surface comprising a metal such as Al or Cu, and then pre-baking to dry it to form a resin film. Then, the resin film is patterned into a desired shape by exposure and development, and then the resin film is cured by heat treatment to form a cured film.
  • the pre-baking conditions may be, for example, heat treatment at a temperature of 80° C. or higher and 150° C. or lower for 30 seconds or longer and 1 hour or shorter. Further, as the conditions of the heat treatment, for example, the heat treatment can be performed at a temperature of 150° C. or more and 350° C. or less for 2 minutes or more and 10 hours or less.
  • the viscosity of the negative photosensitive resin composition according to this embodiment can be appropriately set according to the desired thickness of the resin film.
  • the viscosity of the negative photosensitive resin composition can be adjusted by adding a solvent. During the adjustment, it is necessary to keep the contents of the urea compound and the non-cyclic amide compound in the solvent constant.
  • the upper limit of the viscosity of the negative photosensitive resin composition according to this embodiment may be, for example, 2000 mPa ⁇ s or less, 1800 mPa ⁇ s or less, or 1500 mPa ⁇ s or less.
  • the lower limit of the viscosity of the negative photosensitive resin composition according to the present embodiment may be, for example, 10 mPa ⁇ s or more or 50 mPa ⁇ s or more depending on the desired thickness of the resin film.
  • the film obtained from the negative photosensitive resin composition of the present embodiment has a maximum elongation of 2 to 200%, preferably 5 to 150%, and an average elongation of 1 as measured by a tensile test using a Tensilon tester. ⁇ 150%, preferably 2-120%.
  • a film obtained from the negative photosensitive resin composition of the present embodiment can have a tensile strength of 30 to 300 MPa, preferably 50 to 200 MPa.
  • the negative photosensitive resin composition of this embodiment can provide a cured product such as a film having excellent mechanical strength. Although the reason for this is not clear, it is presumed that strong packing between polymer chains suppresses breakage due to sliding of the polymer chains, improves elongation, and provides excellent flexibility.
  • the negative photosensitive resin composition of the present embodiment is used for forming resin films for semiconductor devices such as permanent films and resists.
  • resin films for semiconductor devices such as permanent films and resists.
  • Use of a permanent film from the viewpoint of improving the adhesion between the cured film of the negative photosensitive resin composition and the metal, and also from the viewpoint of improving the chemical resistance of the negative photosensitive resin composition after heat treatment. It is preferably used for
  • the resin film includes a cured film of a negative photosensitive resin composition. That is, the resin film according to this embodiment is obtained by curing a negative photosensitive resin composition.
  • the permanent film is composed of a resin film obtained by pre-baking, exposing, and developing a negative photosensitive resin composition, patterning it into a desired shape, and then curing it by heat treatment. Permanent films can be used as protective films, interlayer films, dam materials, and the like for semiconductor devices.
  • the above-mentioned resist can be obtained, for example, by applying a negative photosensitive resin composition to an object to be masked by the resist by a method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, and negative photosensitive resin composition. It is composed of a resin film obtained by removing the solvent from a flexible resin composition.
  • the semiconductor device 100 according to this embodiment can be a semiconductor device including the resin film.
  • one or more of the group consisting of the passivation film 32, the insulating layer 42, and the insulating layer 44 in the semiconductor device 100 can be a resin film containing the cured product of the present embodiment.
  • the resin film is preferably the permanent film described above.
  • the semiconductor device 100 is, for example, a semiconductor chip.
  • a semiconductor package is obtained by mounting the semiconductor device 100 on the wiring substrate via the bumps 52 .
  • the semiconductor device 100 includes a semiconductor substrate provided with semiconductor elements such as transistors, and a multilayer wiring layer (not shown) provided on the semiconductor substrate.
  • An interlayer insulating film 30 and a top layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layers.
  • the uppermost layer wiring 34 is made of aluminum Al, for example.
  • a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34 . A portion of the passivation film 32 is provided with an opening through which the uppermost layer wiring 34 is exposed.
  • a rewiring layer 40 is provided on the passivation film 32 .
  • the rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, have An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42 .
  • the rewiring 46 is formed on the insulating layer 42 and in openings provided in the insulating layer 42 and connected to the uppermost layer wiring 34 .
  • the insulating layer 44 is provided with an opening connected to the rewiring 46 .
  • a bump 52 is formed in the opening provided in the insulating layer 44 via a UBM (Under Bump Metallurgy) layer 50, for example.
  • Semiconductor device 100 is connected to a wiring substrate or the like via bumps 52, for example.
  • MED-J 4,4-diamino-3,3-diethyl-5,5-dimethyldiphenylmethane
  • HFBAPP 4,4′-(hexafluoroisopropylidene)bis[(4-aminophenoxy)benzene]
  • TFMB 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl
  • HQDA 1,4-bis(3,4-dicarboxyphenoxy)benzoic acid dianhydride
  • Example 1 First, 43.99 g (155.8 mmol) of MED-J and 89.22 g (144.2 mmol) of TMPBP-TME were placed in an appropriately sized reaction vessel equipped with a stirrer and condenser. After that, 399.64 g of ⁇ -butyrolactone (hereinafter also referred to as GBL) was added to the reactor. After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour.
  • GBL ⁇ -butyrolactone
  • a solution was prepared by dissolving 8.73 g (69.2 mmol) of dimethylmaleic anhydride in 26.19 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked. The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at 80° C.
  • polymer 125.88 g of polymer.
  • GPC measurement of the polymer revealed a weight average molecular weight Mw of 74,000, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.62, and a terminal blocking rate of 65%.
  • the obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
  • Example 2 First, 5.92 g (21.0 mmol) of MED-J, 10.86 g (21.0 mmol) of HFBAPP and 23.57 g of TMPBP-TME (38 .1 mmol) was added. After that, 121.04 g of ⁇ -butyrolactone (hereinafter also referred to as GBL) was added to the reactor. After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour.
  • GBL ⁇ -butyrolactone
  • a solution was prepared by dissolving 2.88 g (22.9 mmol) of dimethylmaleic anhydride in 8.65 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked. The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The obtained white solid was collected and dried in vacuum at a temperature of 80° C.
  • the obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
  • Example 3 First, 7.33 g (26.0 mmol) of MED-J, 8.31 g (26.0 mmol) of TFMB, and 29.74 g of TMPBP-TME (48 .1 mmol) was added. After that, 136.16 g of ⁇ -butyrolactone (hereinafter also referred to as GBL) was added to the reactor. After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour.
  • GBL ⁇ -butyrolactone
  • a solution was prepared by dissolving 2.91 g (23.1 mmol) of dimethylmaleic anhydride in 8.73 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked. The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at a temperature of 80° C.
  • polymer 35.44 g of polymer.
  • GPC measurement of the polymer revealed a weight average molecular weight Mw of 69,500, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.51, and a terminal blocking rate of 65%.
  • the obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
  • Example 4 First, 8.60 g (30.4 mmol) of MED-J and 11.89 g (29.6 mmol) of HQDA were placed in an appropriately sized reaction vessel equipped with a stirrer and condenser. After that, 81.96 g of ⁇ -butyrolactone (hereinafter also referred to as GBL) was added to the reactor. After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour.
  • GBL ⁇ -butyrolactone
  • a solution was prepared by dissolving 0.67 g (5.3 mmol) of dimethylmaleic anhydride in 2.68 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked. The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at a temperature of 80° C.
  • the obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
  • Comparative Examples 1 and 2 Comparative Examples 1 and 2 were synthesized in the same manner as in Example 1 except for the conditions described in Table 1. The obtained Mw and Mw/Mn are shown in Table 1.
  • the negative photosensitive polymers of the present invention obtained in Examples are excellent in solubility in organic solvents and elongation. It was inferred that the decrease in physical strength was suppressed.
  • Photosensitive agent 1-chloro-4-propoxythioxanthone (SPEEDCURE CPTX (trade name) manufactured by Lambson, UK)
  • Solvent Cyclopentanone
  • the crude product was applied to a flash chromatography column (250 g silica gel) and eluted with a solvent mixture of 1.7 liters of cyclohexane/ethyl acetate (95/5 wt ratio). The elution solvent was removed using an evaporator, followed by drying under vacuum at 45° C. for 18 hours to give 80.4 g (92.7% yield) of the desired product.
  • a reaction formula is shown below.
  • Example 5 (Preparation of negative photosensitive resin composition)
  • the polymer solution of Example 1 polymer DMMI-PI 12.0 parts by mass
  • the polymer of Synthesis Example 1 DMMI-PNB
  • the components shown in Table 2 were mixed in the amounts shown in Table 2 to give a photosensitive polymer.
  • a resin composition was prepared.
  • the obtained negative type photosensitive resin composition was spin-coated on the surface of a silicon wafer so that the film thickness after drying was 10 ⁇ m, prebaked at 120° C. for 4 minutes, and then exposed at 1500 mJ/cm 2 with a high-pressure mercury lamp. After that, heat treatment was performed at 200° C. for 120 minutes in a nitrogen atmosphere to prepare a film.
  • Glass transition temperature (Tg) A test piece of 8 mm ⁇ 40 mm was cut out from the film obtained in Example 5, and the test piece was subjected to dynamic viscoelasticity measurement (DMA device, manufactured by TA Instruments, Q800) at a heating rate of 5. A dynamic viscoelasticity measurement was performed at °C/min and a frequency of 1 Hz, and the temperature at which the loss tangent tan ⁇ showed the maximum value was measured as the glass transition temperature.
  • the tensile test was performed using a tensile tester (Tensilon RTC-1210A) manufactured by Orientec.
  • the strength was obtained by measuring five test pieces and averaging the stress at the breaking point.
  • the tensile elongation was calculated from the breaking distance and the initial distance, and the average and maximum values of the elongation were obtained.
  • test piece cut out from the film obtained in Example 5 was subjected to HAST (unsaturated pressurized steam test) for 96 hours under conditions of a temperature of 130 ° C. and a relative humidity of 85% RH. Similarly, the average value and maximum value of the elongation rate were determined.
  • HAST unsaturated pressurized steam test
  • Example 5 (Dielectric loss tangent Df) The photosensitive resin composition of Example 5 was applied onto a substrate, the coating film was dried at 120°C for 10 minutes, subjected to PLA exposure (540 mJ), and cured in a nitrogen atmosphere at 200°C for 2 hours to form a film having a thickness of 100 ⁇ m. got the film. The dielectric loss tangent at 10 GHz of the obtained film was measured by the cavity resonator method.
  • Example 5 [Evaluation of patterning characteristics] It was confirmed as follows that the photosensitive resin composition of Example 5 could be sufficiently patterned by exposure and development.
  • the photosensitive resin composition of Example 5 was applied onto an 8-inch silicon wafer using a spin coater. After the application, it was pre-baked on a hot plate at 120° C. for 4 minutes in the atmosphere to obtain a coating film having a thickness of about 8.0 ⁇ m.
  • This coating film was irradiated with an i-line through a mask having a via pattern with a width of 20 ⁇ m.
  • An i-line stepper (NSR-4425i manufactured by Nikon Corporation) was used for irradiation.
  • the film obtained from the negative photosensitive resin composition containing the negative photosensitive polymer of the present invention has excellent low dielectric loss tangent and excellent elongation, and further has hydrolysis resistance. Since it contains an excellent negative type photosensitive polymer, it has been clarified that the mechanical strength is excellent even after the HAST test. Moreover, it was confirmed that the patterning property was also favorable and it was suitably used as a negative photosensitive resin composition.
  • interlayer insulating film 32 passivation film 34 top layer wiring 40 rewiring layer 42 insulating layer 44 insulating layer 46 rewiring 50 UBM layer 52 bump

Abstract

A negative photosensitive resin composition according to the present invention contains (A) a polyimide; and the polyimide (A) comprises a structural unit (a1) represented by general formula (a1) and a structural unit (a2) represented by general formula (a2), while having a group represented by general formula (t) at least at one of both ends.

Description

ネガ型感光性樹脂組成物、ネガ型感光性ポリマー、硬化膜および半導体装置Negative photosensitive resin composition, negative photosensitive polymer, cured film and semiconductor device
 本発明は、ネガ型感光性樹脂組成物、ネガ型感光性ポリマー、硬化膜および半導体装置に関する。 The present invention relates to a negative photosensitive resin composition, a negative photosensitive polymer, a cured film and a semiconductor device.
 ポリイミド樹脂は、高い機械的強度、耐熱性、絶縁性、耐溶剤性を有しているため、液晶表示素子や半導体における保護材料、絶縁材料、カラーフィルタ等の電子材料用薄膜として広く用いられている。 Polyimide resin has high mechanical strength, heat resistance, insulation, and solvent resistance, so it is widely used as a protective material for liquid crystal display elements and semiconductors, as an insulating material, and as a thin film for electronic materials such as color filters. there is
 特許文献1には、双極性非プロトン性溶媒中に可溶であるブロックコポリイミドが開示され、所定の酸無水物を用いてブロックコポリイミドを得ることができると記載されている。 Patent Document 1 discloses a block copolyimide that is soluble in a dipolar aprotic solvent, and states that a predetermined acid anhydride can be used to obtain the block copolyimide.
 特許文献2には、所定の構造を有する構造単位からなるポリイミド樹脂が開示されている。当該文献には、4,4-ジアミノ-3,3-ジエチル-5,5-ジメチルジフェニルメタンを用いてポリイミド樹脂を合成した例が記載されている。 Patent Document 2 discloses a polyimide resin composed of structural units having a predetermined structure. This document describes an example of synthesizing a polyimide resin using 4,4-diamino-3,3-diethyl-5,5-dimethyldiphenylmethane.
 特許文献3には、芳香族テトラカルボン酸二無水物、アミノ基を有する芳香環に少なくとも1個以上のアルキル基を有する4,4′-ジアミノジフェニルメタンと、両末端にp-アミノ安息香酸エステル基を持つポリエーテルオリゴマーから得られる三元共重合体であり、所定の分子量を有するポリイミドエラストマー樹脂が開示されている。当該文献には、4,4′-ジアミノジフェニルメタンとしてビス(4-アミノ-3-エチル-5-メチルフェニル)メタンが挙げられている。当該文献には、当該樹脂が耐熱湿性に優れると記載されている。 Patent Document 3 discloses an aromatic tetracarboxylic dianhydride, 4,4'-diaminodiphenylmethane having at least one or more alkyl groups in an aromatic ring having an amino group, and p-aminobenzoic acid ester groups at both ends. A polyimide elastomer resin is disclosed which is a terpolymer obtained from a polyether oligomer having a specific molecular weight. The document mentions bis(4-amino-3-ethyl-5-methylphenyl)methane as 4,4'-diaminodiphenylmethane. The document describes that the resin has excellent heat and humidity resistance.
 特許文献4には、芳香族テトラカルボン酸二無水物と4,4′-ジアミノジフェニルメタン誘導体とから形成されるポリイミド構造単位とジメチルシロキサン構造単位とよりなるブロック共重合体が開示されている。当該文献には、4,4′-ジアミノジフェニルメタンとしてビス(4-アミノ-3-エチル-5-メチルフェニル)メタンが挙げられている。当該文献には、当該樹脂が耐熱性や溶媒溶解性に優れると記載されている。
 特許文献5には、所定のマレイミド基を末端に備えるポリイミドを含む感光性組成物が開示されている。
Patent Document 4 discloses a block copolymer comprising a polyimide structural unit formed from an aromatic tetracarboxylic dianhydride and a 4,4'-diaminodiphenylmethane derivative and a dimethylsiloxane structural unit. The document mentions bis(4-amino-3-ethyl-5-methylphenyl)methane as 4,4'-diaminodiphenylmethane. The literature describes that the resin is excellent in heat resistance and solvent solubility.
Patent Document 5 discloses a photosensitive composition containing a polyimide terminated with a predetermined maleimide group.
 特許文献6には、光照射によって二量化可能な官能基を有する第1化合物を含むコア部を有する光導波路が開示されており、当該第1化合物として、二量化可能な当該官能基として、所定のマレイミド基を末端に備える環状オレフィン樹脂が例示されている。 Patent Document 6 discloses an optical waveguide having a core portion containing a first compound having a functional group that can be dimerized by light irradiation. are exemplified by cyclic olefin resins terminated with maleimide groups of
国際公開第015/091122豪International Publication No. 015/091122 Australia 特開昭64-16829号公報JP-A-64-16829 特開平8-217874号公報JP-A-8-217874 特開平9-40777号公報JP-A-9-40777 国際公開第2020/181021号WO2020/181021 特開2019-028115号公報JP 2019-028115 A
 しかしながら、特許文献1~5に記載の従来の技術においては、感光性樹脂組成物から得られたポリイミドを含むフィルムに伸び等の機械的強度に改善の余地があった。 However, in the conventional techniques described in Patent Documents 1 to 5, the film containing polyimide obtained from the photosensitive resin composition has room for improvement in mechanical strength such as elongation.
 従来から、有機溶剤に対するポリイミドの溶解性を改善するために当該ポリイミドの骨格にフッ素原子を導入することが行われているが、本発明者らは、フッ素原子を含むジアミン化合物を用いてポリイミドを合成した場合、フッ素原子の強い電子吸引性によりイミド環の電子に影響を及ぼすことにより得られたポリイミドが加水分解を受けやすくなり、それによって伸び等の機械的強度が低下することを見出した。
 すなわち、従来のポリイミドは有機溶剤への溶解性と伸び等の機械的強度とのバランスの点で改善の余地があった。
 なお、特許文献6には、所定のポリイミドと併用することについては記載されていない。
Conventionally, in order to improve the solubility of polyimide in organic solvents, fluorine atoms have been introduced into the skeleton of the polyimide. When synthesized, it was found that the strong electron-withdrawing property of fluorine atoms affects the electrons of the imide ring, making the resulting polyimide susceptible to hydrolysis, which reduces mechanical strength such as elongation.
That is, conventional polyimides have room for improvement in terms of the balance between solubility in organic solvents and mechanical strength such as elongation.
In addition, Patent Document 6 does not describe the combined use with a predetermined polyimide.
 本発明者らは、特定の構造を備えるポリイミドであれば上記の課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下に示すことができる。
The present inventors have found that the above problems can be solved by using a polyimide having a specific structure, and completed the present invention.
That is, the present invention can be shown below.
[1] (A)ポリイミド
を含み、
 前記ポリイミド(A)は、
 下記一般式(a1)で表される構造単位(a1)と、
 下記一般式(a2)で表される構造単位(a2)と、
を含み、両末端の少なくとも一方が下記一般式(t)で表される基である、ネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(一般式(a1)中、Yは2価の有機基である。
 一般式(a2)中、R~Rは、それぞれ独立して、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、RとRは異なる基であり、RとRは異なる基である。
は単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、または炭素数1~5の直鎖または分岐のフルオロアルキレン基を示し、複数存在するXは同一でも異なっていてもよい。
 一般式(t)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは2価の有機基を示す。*は結合手を示す。)
[2] 前記一般式(a1)のYは、アルキレン基含む2価の基、または少なくとも1つの芳香環含む2価の基である、[1]に記載のネガ型感光性樹脂組成物。
[3] 前記一般式(a1)中のYは、下記一般式(a1-1)、下記一般式(a1-2)および下記一般式(a1-3)から選択される2価の有機基である、[1]または[2]に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000021
(一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。
一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。*は結合手を示す。
一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
*は結合手を示す。)
[4] 前記一般式(a1)中のYは、下記一般式(a1-4)で表される2価の有機基である、[1]または[2]に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000022
(一般式(a1-4)中、Zは2価の芳香族基を示す。*は結合手を示す。)
[5] 前記ポリイミド(A)の両末端が前記一般式(t)で表される基である、[1]~[4]のいずれかに記載のネガ型感光性樹脂組成物。
[6] 前記ポリイミド(A)は、さらに一般式(a3)で表される構造単位(a3)を含む、[1]~[5]のいずれかに記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000023
(一般式(a3)中、RおよびRは各々独立して水素原子、炭素数1~4のハロアルキル基、または水酸基を示し、複数存在するR同士および複数存在するR同士は同一でも異なっていてもよい。Xは単結合、炭素数1~4のアルキレン基、炭素数1~4のハロアルキレン基を示す。m、nは各々独立して0または1を示す。)
[7] 前記一般式(t)の前記Qにおける2価の有機基は、一般式(a2)で表される構造単位(a2)または一般式(a3)で表される構造単位(a3)である、[6]に記載のネガ型感光性樹脂組成物。
[8] 前記ポリイミド(A)は、下記一般式(1)で表される構造単位を含む、[1]~[7]のいずれかに記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000024
(一般式(1)中、R~R、Xは一般式(a2)と同義であり、Yは一般式(a1)と同義である。)
[9] 前記ポリイミド(A)は、下記一般式(2)で表される構造単位を含む、[6]~[8]のいずれかに記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000025
(一般式(2)中、R~R、X、m、nは一般式(a3)と同義であり、Yは一般式(a1)と同義である。)
[10] さらに、置換または無置換のマレイミド基を備える架橋剤(B)(前記ポリイミド(A)を除く)を含む、[1]~[9]のいずれかに記載のネガ型感光性樹脂組成物。
[11] 架橋剤(B)は、下記一般式(b)で表される構造単位を含む、[10]に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000026
(一般式(b)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは単結合、または2価の有機基を示し、G、G、およびGはそれぞれ独立して水素原子、置換または無置換の炭素数1~30の炭化水素基を示す。mは0、1または2である。)
[12] Qの2価の前記有機基は、炭素数1~8のアルキレン基または(ポリ)アルキレングリコール鎖である、[11]に記載のネガ型感光性樹脂組成物。
[13] さらに光増感剤(C)を含む、[1]~[12]のいずれかに記載のネガ型感光性樹脂組成物。
[14] さらにシランカップリング剤(D)を含む、[1]~[13]のいずれかに記載のネガ型感光性樹脂組成物。
[15] 下記一般式(a1)で表される構造単位(a1)と、
 下記一般式(a2)で表される構造単位(a2)と、
を含み、両末端の少なくとも一方が下記一般式(t)で表される基である、ネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(一般式(a1)中、Yは2価の有機基である
 一般式(a2)中、R~Rは、それぞれ独立して、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、RとRは異なる基であり、RとRは異なる基である。
は単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、または炭素数1~5の直鎖または分岐のフルオロアルキレン基を示し、複数存在するXは同一でも異なっていてもよい。
 一般式(t)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは2価の有機基を示す。*は結合手を示す。)
[16] 前記一般式(a1)のYは、アルキレン基含む2価の基、または少なくとも1つの芳香環含む2価の基である、[15]に記載のネガ型感光性ポリマー。
[17] 前記一般式(a1)中のYは、下記一般式(a1-1)、下記一般式(a1-2)および下記一般式(a1-3)から選択される2価の有機基である、[15]または[16]に記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000030
(一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。
一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。*は結合手を示す。
一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
*は結合手を示す。)
[18] 前記一般式(a1)中のYは、下記一般式(a1-4)で表される2価の有機基である、[15]または[16]に記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000031
(一般式(a1-4)中、Zは2価の芳香族基を示す。*は結合手を示す。)
[19] 両末端が前記一般式(t)で表される基である、[15]~[18]のいずれかに記載のネガ型感光性ポリマー。
[20] さらに一般式(a3)で表される構造単位(a3)を含む、[15]~[19]のいずれかに記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000032
(一般式(a3)中、RおよびRは各々独立して水素原子、炭素数1~4のハロアルキル基、または水酸基を示し、複数存在するR同士および複数存在するR同士は同一でも異なっていてもよい。Xは単結合、炭素数1~4のアルキレン基、炭素数1~4のハロアルキレン基を示す。m、nは各々独立して0または1を示す。)
[21] 前記一般式(t)の前記Qにおける2価の有機基は、一般式(a2)で表される構造単位(a2)または一般式(a3)で表される構造単位(a3)である、[20]に記載のネガ型感光性ポリマー。
[22] 下記一般式(1)で表される構造単位を含む、[15]~[21]のいずれかに記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000033
(一般式(1)中、R~R、Xは一般式(a2)と同義であり、Yは一般式(a1)と同義である。)
[23] 下記一般式(2)で表される構造単位を含む、[20]~[22]のいずれかに記載のネガ型感光性ポリマー。
Figure JPOXMLDOC01-appb-C000034
(一般式(2)中、R~R、X、m、nは一般式(a3)と同義であり、Yは一般式(a1)と同義である。)
[24] 以下の条件で測定された重量平均分子量の減少率が50%未満である、[15]~[23]のいずれかに記載のネガ型感光性ポリマー。
(条件)
 前記ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出する。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
[25] [1]~[14]のいずれかに記載のネガ型感光性樹脂組成物の硬化物からなる硬化膜。
[26] [1]~[14]のいずれかに記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜を備える半導体装置。
[27] 層間絶縁膜と、
 前記層間絶縁膜上に設けられた、[1]~[14]のいずれかに記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜と、
 前記樹脂膜中に埋設された再配線と、
を備えることを特徴とする、半導体装置。
[1] (A) contains polyimide,
The polyimide (A) is
a structural unit (a1) represented by the following general formula (a1);
a structural unit (a2) represented by the following general formula (a2);
At least one of both ends is a group represented by the following general formula (t), a negative photosensitive resin composition.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(In general formula (a1), Y is a divalent organic group.
In general formula (a2), R 1 to R 4 each independently represent an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and R 1 and R 2 are different groups; R3 and R4 are different groups.
X 1 represents a single bond, -SO 2 -, -C(=O)-, a linear or branched alkylene group having 1 to 5 carbon atoms, or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms; , a plurality of X 1 may be the same or different.
In general formula (t), R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Q 2 represents a divalent organic group. * indicates a bond. )
[2] The negative photosensitive resin composition according to [1], wherein Y in the general formula (a1) is a divalent group containing an alkylene group or a divalent group containing at least one aromatic ring.
[3] Y in the general formula (a1) is a divalent organic group selected from the following general formula (a1-1), the following general formula (a1-2) and the following general formula (a1-3). The negative photosensitive resin composition according to [1] or [2].
Figure JPOXMLDOC01-appb-C000021
(In general formula (a1-1), R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 7 and a plurality of R 8 may be the same or different, R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; may be the same or different, and * indicates a bond.
In general formula (a1-2), each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different. * indicates a bond.
In general formula (a1-3), Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group.
* indicates a bond. )
[4] The negative photosensitive resin composition according to [1] or [2], wherein Y in the general formula (a1) is a divalent organic group represented by the following general formula (a1-4): thing.
Figure JPOXMLDOC01-appb-C000022
(In general formula (a1-4), Z2 represents a divalent aromatic group. * represents a bond.)
[5] The negative photosensitive resin composition according to any one of [1] to [4], wherein both ends of the polyimide (A) are groups represented by the general formula (t).
[6] The negative photosensitive resin composition according to any one of [1] to [5], wherein the polyimide (A) further contains a structural unit (a3) represented by general formula (a3).
Figure JPOXMLDOC01-appb-C000023
(In general formula (a3), R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, and multiple R 5 and multiple R 6 are the same X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, and m and n each independently represent 0 or 1.)
[7] The divalent organic group in Q2 of the general formula (t) is a structural unit (a2) represented by the general formula (a2) or a structural unit (a3) represented by the general formula (a3) The negative photosensitive resin composition according to [6].
[8] The negative photosensitive resin composition according to any one of [1] to [7], wherein the polyimide (A) comprises a structural unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000024
(In general formula (1), R 1 to R 4 and X 1 have the same meanings as in general formula (a2), and Y has the same meaning as in general formula (a1).)
[9] The negative photosensitive resin composition according to any one of [6] to [8], wherein the polyimide (A) contains a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000025
(In general formula (2), R 5 to R 6 , X, m, and n are synonymous with general formula (a3), and Y is synonymous with general formula (a1).)
[10] The negative photosensitive resin composition according to any one of [1] to [9], further comprising a cross-linking agent (B) having a substituted or unsubstituted maleimide group (excluding the polyimide (A)). thing.
[11] The negative photosensitive resin composition according to [10], wherein the cross-linking agent (B) contains a structural unit represented by the following general formula (b).
Figure JPOXMLDOC01-appb-C000026
(In general formula (b), R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, Q 1 represents a single bond or a divalent organic group, G 1 , G 2 and G 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and m is 0, 1 or 2.)
[12] The negative photosensitive resin composition according to [11], wherein the divalent organic group of Q 1 is an alkylene group having 1 to 8 carbon atoms or a (poly)alkylene glycol chain.
[13] The negative photosensitive resin composition according to any one of [1] to [12], further comprising a photosensitizer (C).
[14] The negative photosensitive resin composition according to any one of [1] to [13], further comprising a silane coupling agent (D).
[15] a structural unit (a1) represented by the following general formula (a1);
a structural unit (a2) represented by the following general formula (a2);
At least one of both ends is a group represented by the following general formula (t), a negative photosensitive polymer.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(In general formula (a1), Y is a divalent organic group. In general formula (a2), R 1 to R 4 are each independently an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms. is an alkoxy group, R 1 and R 2 are different groups, and R 3 and R 4 are different groups.
X 1 represents a single bond, -SO 2 -, -C(=O)-, a linear or branched alkylene group having 1 to 5 carbon atoms, or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms; , a plurality of X 1 may be the same or different.
In general formula (t), R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Q 2 represents a divalent organic group. * indicates a bond. )
[16] The negative photosensitive polymer according to [15], wherein Y in the general formula (a1) is a divalent group containing an alkylene group or a divalent group containing at least one aromatic ring.
[17] Y in the general formula (a1) is a divalent organic group selected from the following general formula (a1-1), general formula (a1-2) and general formula (a1-3) below. The negative photosensitive polymer according to [15] or [16].
Figure JPOXMLDOC01-appb-C000030
(In general formula (a1-1), R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 7 and a plurality of R 8 may be the same or different, R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; may be the same or different, and * indicates a bond.
In general formula (a1-2), each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different. * indicates a bond.
In general formula (a1-3), Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group.
* indicates a bond. )
[18] The negative photosensitive polymer according to [15] or [16], wherein Y in general formula (a1) is a divalent organic group represented by general formula (a1-4) below.
Figure JPOXMLDOC01-appb-C000031
(In general formula (a1-4), Z2 represents a divalent aromatic group. * represents a bond.)
[19] The negative photosensitive polymer according to any one of [15] to [18], wherein both terminals are groups represented by the general formula (t).
[20] The negative photosensitive polymer according to any one of [15] to [19], further comprising a structural unit (a3) represented by general formula (a3).
Figure JPOXMLDOC01-appb-C000032
(In general formula (a3), R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, and multiple R 5 and multiple R 6 are the same X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, and m and n each independently represent 0 or 1.)
[21] The divalent organic group in Q2 of the general formula (t) is a structural unit (a2) represented by the general formula (a2) or a structural unit (a3) represented by the general formula (a3) The negative photosensitive polymer according to [20].
[22] The negative photosensitive polymer according to any one of [15] to [21], which contains a structural unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000033
(In general formula (1), R 1 to R 4 and X 1 have the same meanings as in general formula (a2), and Y has the same meaning as in general formula (a1).)
[23] The negative photosensitive polymer according to any one of [20] to [22], which contains a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000034
(In general formula (2), R 5 to R 6 , X, m, and n are synonymous with general formula (a3), and Y is synonymous with general formula (a1).)
[24] The negative photosensitive polymer according to any one of [15] to [23], which has a weight-average molecular weight reduction rate of less than 50% as measured under the following conditions.
(conditions)
400 parts by mass of γ-butyrolactone, 200 parts by mass of 4-methyltetrahydropyran, and 50 parts by mass of water are added to 100 parts by mass of the negative photosensitive polymer, and the mixture is stirred at 100°C for 6 hours. .
Formula: [(weight average molecular weight before test - weight average molecular weight after test) / weight average molecular weight before test] × 100
[25] A cured film comprising a cured product of the negative photosensitive resin composition according to any one of [1] to [14].
[26] A semiconductor device comprising a resin film containing a cured product of the negative photosensitive resin composition according to any one of [1] to [14].
[27] an interlayer insulating film;
a resin film containing a cured product of the negative photosensitive resin composition according to any one of [1] to [14] provided on the interlayer insulating film;
a rewiring embedded in the resin film;
A semiconductor device comprising:
 本発明によれば、有機溶剤への溶解性に優れるとともに、伸び等の機械的強度に優れたフィルム等の硬化物が得られるネガ型感光性ポリマーおよび当該ポリマーを含むネガ型感光性樹脂組成物を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a negative photosensitive polymer capable of obtaining a cured product such as a film having excellent solubility in an organic solvent and excellent mechanical strength such as elongation, and a negative photosensitive resin composition containing the polymer. can be provided.
本実施形態の半導体装置の概略断面図である。1 is a schematic cross-sectional view of a semiconductor device according to an embodiment; FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「A~B」は特に断りがなければ「A以上」から「B以下」を表す。
 本実施形態のネガ型感光性樹脂組成物は、(A)ポリイミドを含む。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in all the drawings, the same constituent elements are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. In addition, "A to B" represents "above A" to "below B" unless otherwise specified.
The negative photosensitive resin composition of the present embodiment contains (A) polyimide.
[ポリイミド(A)]
 本実施形態のポリイミド(A)(ネガ型感光性ポリマー)は、下記一般式(a1)で表される構造単位(a1)と、下記一般式(a2)で表される構造単位(a2)と、を含み、両末端の少なくとも一方が下記一般式(t)で表される基である。
[Polyimide (A)]
The polyimide (A) (negative photosensitive polymer) of the present embodiment includes a structural unit (a1) represented by the following general formula (a1), and a structural unit (a2) represented by the following general formula (a2). and at least one of both ends is a group represented by the following general formula (t).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 一般式(a1)中、Yは2価の有機基である。
 2価の有機基としては、本発明の効果を奏する範囲で公知の有機基を用いることができるが、本発明の効果の観点から、Yは、アルキレン基を含む2価の基、または少なくとも1つの芳香環を含む2価の基であることが好ましい。
アルキレン基としては、好ましくは炭素数1~5のアルキレン基、より好ましくは炭素数1~3のアルキレン基である。芳香環としては、2価のベンゼン環、2価のナフタレン環、2価のアントラセン環、2価のビフェニル基等を挙げることができ、2価のベンゼン環または2価のビフェニル基が好ましい。
 一般式(a1)のYは、下記一般式(a1-1)、下記一般式(a1-2)、下記一般式(a1-3)および下記一般式(a1-4)から選択される2価の有機基であることがさらに好ましい。
In general formula (a1), Y is a divalent organic group.
As the divalent organic group, a known organic group can be used as long as the effect of the present invention is exhibited. From the viewpoint of the effect of the present invention, Y is a divalent group containing an alkylene group, or at least one A divalent group containing one aromatic ring is preferred.
The alkylene group is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms. The aromatic ring includes a divalent benzene ring, a divalent naphthalene ring, a divalent anthracene ring, a divalent biphenyl group and the like, preferably a divalent benzene ring or a divalent biphenyl group.
Y in the general formula (a1) is a divalent selected from the following general formula (a1-1), the following general formula (a1-2), the following general formula (a1-3) and the following general formula (a1-4) is more preferably an organic group of
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。
 RおよびRは、本発明の効果の観点から、好ましくは水素原子または炭素数1~3のアルキル基であり、より好ましく水素原子である。
 Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。
 Rは、本発明の効果の観点から、好ましくは水素原子または炭素数1~3のアルキル基であり、より好ましく水素原子である。
*は結合手を示す。
In general formula (a1-1), R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and multiple R 7 , multiple R 8 may be the same or different.
From the viewpoint of the effects of the present invention, R 7 and R 8 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 9 may be the same or different.
From the viewpoint of the effects of the present invention, R 9 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
* indicates a bond.
 一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。 In general formula (a1-2), each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different.
 R10およびR11は、本発明の効果の観点から、好ましくは水素原子または炭素数1~3のアルキル基であり、より好ましくはR10の少なくとも1つおよびR11の少なくとも1つは炭素数1~3のアルキル基であり、さらに好ましくは3つのR10が炭素数1~3のアルキル基であり1つのR10が水素原子であり、かつ3つのR11が炭素数1~3のアルキル基であり1つのR11が水素原子であり、特に好ましくは3つのR10がメチル基であり1つのR10が水素原子であり、かつ3つのR11がメチル基であり1つのR11が水素原子である。
 *は結合手を示す。
From the viewpoint of the effect of the present invention, R 10 and R 11 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably at least one of R 10 and at least one of R 11 an alkyl group having 1 to 3 carbon atoms, more preferably three R 10 are alkyl groups having 1 to 3 carbon atoms, one R 10 is a hydrogen atom, and three R 11 are alkyl groups having 1 to 3 carbon atoms one R 11 is a hydrogen atom, particularly preferably three R 10 are methyl groups and one R 10 is a hydrogen atom, and three R 11 are methyl groups and one R 11 is It is a hydrogen atom.
* indicates a bond.
 一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
*は結合手を示す。
 一般式(a1-4)中、Zは2価の芳香族基を示し、好ましくは2価のベンゼン環である。*は結合手を示す。
In general formula (a1-3), Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group.
* indicates a bond.
In general formula (a1-4), Z 2 represents a divalent aromatic group, preferably a divalent benzene ring. * indicates a bond.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 一般式(a2)中、R~Rは、それぞれ独立して、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、本発明の効果の観点から、好ましくは炭素数1~3のアルキル基である。
 RとRは異なる基であり、RとRは異なる基である。これにより、一般式(a2)で表される構造単位が非対称な分子構造を有するため、当該構造単位を有するポリマーの主鎖のねじれが生じる。このことが、溶剤溶解性の向上をもたらしている原因の一つと考えられる。
In general formula (a2), R 1 to R 4 each independently represent an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and from the viewpoint of the effect of the present invention, preferably carbon It is an alkyl group of numbers 1 to 3.
R 1 and R 2 are different groups, and R 3 and R 4 are different groups. As a result, the structural unit represented by the general formula (a2) has an asymmetric molecular structure, so that the main chain of the polymer having the structural unit is twisted. This is considered to be one of the reasons for the improvement in solvent solubility.
 Xは単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、または炭素数1~5の直鎖または分岐のフルオロアルキレン基を示し、複数存在するXは同一でも異なっていてもよい。 X 1 represents a single bond, -SO 2 -, -C(=O)-, a linear or branched alkylene group having 1 to 5 carbon atoms, or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms; , a plurality of X 1 may be the same or different.
 Xは、本発明の効果の観点から、好ましくは単結合、炭素数1~5の直鎖または分岐のアルキレン基、または炭素数1~5の直鎖または分岐のフルオロアルキレン基であり、より好ましくは炭素数1~5の直鎖または分岐のアルキレン基、または炭素数1~5の直鎖または分岐のフルオロアルキレン基である。 X 1 is preferably a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms, and more A linear or branched alkylene group having 1 to 5 carbon atoms or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms is preferred.
 本実施形態のポリイミド(A)が、一般式(a2)で表される構造単位を含むことにより、イミド環の電子への影響が抑制され当該ポリイミドの加水分解が抑制され、伸び等の機械的強度に優れるとともに、有機溶剤への溶解性にも優れる。言い換えれば、本実施形態のポリイミド(A)およびポリイミド(A)を含むネガ型感光性樹脂組成物はこれらの特性のバランスに優れる。 By containing the structural unit represented by the general formula (a2), the polyimide (A) of the present embodiment suppresses the influence of the imide ring on the electrons, suppresses the hydrolysis of the polyimide, and improves mechanical properties such as elongation. Excellent strength and excellent solubility in organic solvents. In other words, the polyimide (A) of the present embodiment and the negative photosensitive resin composition containing the polyimide (A) have an excellent balance of these properties.
 ポリイミド(A)は、両末端の少なくとも一方が下記一般式(t)で表される基tであるポリイミドを含む。 Polyimide (A) includes a polyimide in which at least one of both ends is a group t represented by the following general formula (t).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 一般式(t)中、RおよびRは各々独立して水素原子もしくは炭素数1~3のアルキル基を示し、本発明の効果の観点から、炭素数1または2のアルキル基が好ましく、炭素数1のアルキル基(メチル基)がより好ましい。*は結合手を示す。
 RおよびRのいずれもがメチル基であることにより、ポリイミドの加水分解がより抑制され、伸び等の機械的強度にさらに優れるとともに、有機溶剤への溶解性にも優れる。
In the general formula (t), R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and from the viewpoint of the effect of the present invention, an alkyl group having 1 or 2 carbon atoms is preferable, A C 1 alkyl group (methyl group) is more preferred. * indicates a bond.
When both R 5 and R 6 are methyl groups, hydrolysis of the polyimide is further suppressed, and mechanical strength such as elongation is further excellent, and solubility in organic solvents is also excellent.
 Qは2価の有機基を示す。
 2価の前記有機基としては、本発明の効果を奏する範囲で公知の有機基を用いることができるが、例えば、前記一般式(a2)で表される構造単位(a2)であることが好ましい。具体的には、下記一般式(t-1)で表される2価の有機基を挙げることができる。
Q2 represents a divalent organic group.
As the divalent organic group, a known organic group can be used as long as the effect of the present invention is exhibited. For example, the structural unit (a2) represented by the general formula (a2) is preferable. . Specific examples include a divalent organic group represented by the following general formula (t-1).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 一般式(t-1)中、X、R~Rは、一般式(a2)と同義である。
 *は結合手を示す。
In general formula (t-1), X 1 and R 1 to R 4 have the same meanings as in general formula (a2).
* indicates a bond.
 前記ポリイミド(A)は、さらに下記一般式(a3)で表される構造単位(a3)を含むことができる。 The polyimide (A) can further contain a structural unit (a3) represented by the following general formula (a3).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 一般式(a3)中、RおよびRは各々独立して水素原子、炭素数1~4のハロアルキル基、または水酸基を示し、好ましくは水素原子または炭素数1~4のハロアルキル基である。複数存在するR同士は同一でも異なっていてもよく、複数存在するR同士は同一でも異なっていてもよい。 In general formula (a3), R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, preferably a hydrogen atom or a haloalkyl group having 1 to 4 carbon atoms. A plurality of R 5 may be the same or different, and a plurality of R 6 may be the same or different.
 Xは単結合、炭素数1~4のアルキレン基、炭素数1~4のハロアルキレン基を示し、好ましくは単結合、炭素数1~4のハロアルキレン基である。
 m、nは各々独立して0または1を示す。
X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, preferably a single bond or a haloalkylene group having 1 to 4 carbon atoms.
m and n each independently represent 0 or 1;
 前記一般式(t)において、Qの2価の有機基としては、前記一般式(a3)で表される構造単位(a3)であってもよい。具体的には、下記一般式(t-2)で表される2価の有機基を挙げることができる。 In the general formula (t), the divalent organic group Q 2 may be the structural unit (a3) represented by the general formula (a3). Specific examples include a divalent organic group represented by the following general formula (t-2).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 一般式(t-2)中、R、R、X、m、nは一般式(a3)と同義である。
 *は結合手を示す。
In general formula (t-2), R 5 , R 6 , X, m and n have the same meanings as in general formula (a3).
* indicates a bond.
 ポリイミド(A)は、本発明の効果の観点から、少なくとも一方の末端、好ましくは両末端が前記一般式(t)で表される基tであるポリイミドを含むことが好ましい。 From the viewpoint of the effects of the present invention, the polyimide (A) preferably contains a polyimide in which at least one end, preferably both ends, is a group t represented by the general formula (t).
 本実施形態のポリイミド(A)は一般式(t)で表される基tを少なくとも一方の末端に備えるポリイミドを含むことから機械的強度に優れる。さらに、ラジカル反応が生じず光二量化が可能であることから、ポリイミド(A)同士、ポリイミド(A)と後述する架橋剤(B)とを光重合することができ、機械的強度により優れる。
 また、ポリイミド(A)は、その末端が下記一般式(u)で表される基uを備えるポリイミドを含んでいてもよい。
The polyimide (A) of the present embodiment is excellent in mechanical strength because it contains a polyimide having a group t represented by general formula (t) at at least one end. Furthermore, since photodimerization is possible without causing a radical reaction, polyimide (A) can be photopolymerized with each other, polyimide (A) and a cross-linking agent (B) described later, and mechanical strength is excellent.
Moreover, the polyimide (A) may contain a polyimide having a group u represented by the following general formula (u) at its end.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 一般式(u)中、X、R~Rは、一般式(a2)と同義である。 In general formula (u), X 1 and R 1 to R 4 have the same meanings as in general formula (a2).
 ポリイミド(A)が、前記基uを備えるポリイミドを含む場合、基tと基uとの合計モル数に対する基bのモル数の比(t/t+u)は0.5以上、好ましくは0.55以上、より好ましくは0.6以上とすることができる。この範囲であれば、現像で溶出するポリイミド成分を低減することができる。 When the polyimide (A) contains a polyimide having the group u, the ratio of the number of moles of the group b to the total number of moles of the group t and the group u (t/t+u) is 0.5 or more, preferably 0.55. above, more preferably 0.6 or above. If it is this range, the polyimide component eluted by development can be reduced.
 本実施形態のポリイミド(A)は、具体的には、下記一般式(1)で表される構造単位1を含むことができる。 Specifically, the polyimide (A) of the present embodiment can contain a structural unit 1 represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 一般式(1)中、R~R、Xは一般式(a2)と同義であり、Yは一般式(a1)と同義である。 In general formula (1), R 1 to R 4 and X 1 have the same meanings as in general formula (a2), and Y has the same meaning as in general formula (a1).
 本実施形態のポリイミド(A)は、具体的には、構造単位1とともに、さらに下記一般式(2)で表される構造単位2を含んでいてもよい。 Specifically, the polyimide (A) of the present embodiment may further contain a structural unit 2 represented by the following general formula (2) in addition to the structural unit 1.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 一般式(2)中、R~R、X、m、nは一般式(a3)と同義であり、Yは一般式(a1)と同義である。 In general formula (2), R 5 to R 6 , X, m and n have the same meanings as in general formula (a3), and Y has the same meaning as in general formula (a1).
 本実施形態のポリイミド(A)の重量平均分子量は、5,000~200,000であり、好ましくは10,000~100,000である。 The weight average molecular weight of the polyimide (A) of this embodiment is 5,000 to 200,000, preferably 10,000 to 100,000.
 本実施形態のポリイミド(A)(ネガ型感光性ポリマー)は、耐加水分解性に優れており、以下の条件で測定された重量平均分子量の減少率が50%未満、好ましくは30%以下、さらに好ましくは20%以下、より好ましくは10%以下、特に好ましくは7%以下である。
(条件)
 前記ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出する。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
The polyimide (A) (negative photosensitive polymer) of the present embodiment is excellent in hydrolysis resistance, and has a weight average molecular weight reduction rate of less than 50%, preferably 30% or less, measured under the following conditions. More preferably 20% or less, more preferably 10% or less, particularly preferably 7% or less.
(conditions)
400 parts by mass of γ-butyrolactone, 200 parts by mass of 4-methyltetrahydropyran, and 50 parts by mass of water are added to 100 parts by mass of the negative photosensitive polymer, and the mixture is stirred at 100°C for 6 hours. .
Formula: [(weight average molecular weight before test - weight average molecular weight after test) / weight average molecular weight before test] × 100
 本実施形態のポリイミド(A)は、重量平均分子量の減少率が上記範囲にあることにより、加水分解が抑制されており伸び等の機械的強度に優れたフィルム等の硬化物を得ることができる。 The polyimide (A) of the present embodiment has a weight average molecular weight reduction rate within the above range, so that hydrolysis is suppressed and a cured product such as a film having excellent mechanical strength such as elongation can be obtained. .
 また、本実施形態のポリイミド(A)は、溶剤への溶解性に優れており前駆体の状態でワニスとする必要がないことから、ポリイミド(A)を含むワニスを調製することができ、当該ワニスからフィルム等の硬化物を得ることができる。 In addition, since the polyimide (A) of the present embodiment has excellent solubility in solvents and does not need to be varnished in a precursor state, a varnish containing the polyimide (A) can be prepared. A cured product such as a film can be obtained from the varnish.
<ポリイミド(A)の製造方法>
 本実施形態の一般式(1)で表される構造単位を有し、両末端の少なくとも一方が一般式(t)で表される基tであるポリイミド(A)(ネガ型感光性ポリマー)の製造方法は、
 下記一般式(a1')で表される酸無水物(a1')と、下記一般式(a2')で表されるジアミン(a2')と、下記一般式(t')で表される無水マレイン酸誘導体(t')とを、反応させる工程を含む。
 本実施形態によれば、有機溶剤に対する溶解性に優れたポリイミド(A)を簡便な方法で合成することができる。
<Method for producing polyimide (A)>
Polyimide (A) (negative photosensitive polymer) having a structural unit represented by the general formula (1) of the present embodiment and at least one of both ends being a group t represented by the general formula (t) The manufacturing method is
An acid anhydride (a1′) represented by the following general formula (a1′), a diamine (a2′) represented by the following general formula (a2′), and an anhydride represented by the following general formula (t′) A step of reacting with a maleic acid derivative (t') is included.
According to this embodiment, a polyimide (A) having excellent solubility in organic solvents can be synthesized by a simple method.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 一般式(a1')中、Yは前記一般式(a1-1)、前記一般式(a1-2)、前記一般式(a1-3)および前記一般式(a1-4)で表される基から選択される。 In general formula (a1′), Y is a group represented by general formula (a1-1), general formula (a1-2), general formula (a1-3) and general formula (a1-4). is selected from
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 一般式(a2')中、R~R、Xは一般式(a2)と同義である。 In general formula (a2'), R 1 to R 4 and X 1 have the same meanings as in general formula (a2).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 一般式(t')中、R、Rは前記一般式(t)と同義である。 In general formula (t'), R 5 and R 6 have the same meanings as in general formula (t).
 当該反応におけるジアミン(a2')と酸無水物(a1')の当量比は、得られるポリイミドの分子量を決定する重要な因子である。一般に、ポリマーの分子量と機械的性質の間に相関があることは良く知られており、分子量が大きいほど機械的性質が優れている。従って、実用的に優れた強度のポリイミドを得るためには、ある程度高分子量であることが必要である。本発明では、使用するジアミン(a2')と酸無水物(a1')の当量比を特に制限はしないが、ジアミン(a2')に対する酸無水物(a1')の当量比が0.80~1.06の範囲にあることが好ましい。0.80未満では、分子量が低くて脆くなるため機械強度が弱くなる。また、1.06を越えると、未反応のカルボン酸が加熱時に脱炭酸してガス発生、発泡の原因となり好ましくないことがある。 The equivalent ratio of diamine (a2') and acid anhydride (a1') in the reaction is an important factor that determines the molecular weight of the resulting polyimide. In general, it is well known that there is a correlation between the molecular weight and mechanical properties of polymers, the higher the molecular weight the better the mechanical properties. Therefore, in order to obtain a polyimide having practically excellent strength, it is necessary to have a certain degree of high molecular weight. In the present invention, the equivalent ratio of the diamine (a2′) and the acid anhydride (a1′) to be used is not particularly limited, but the equivalent ratio of the acid anhydride (a1′) to the diamine (a2′) is from 0.80 to It is preferably in the range of 1.06. If it is less than 0.80, the molecular weight is low and the material becomes brittle, resulting in low mechanical strength. On the other hand, if it exceeds 1.06, unreacted carboxylic acid may be decarboxylated during heating to cause gas generation and foaming, which is not preferable.
 本実施形態においては、本発明の効果の観点から、酸無水物(a1')と、ジアミン(a2')と、無水マレイン酸誘導体(t')と、さらに下記一般式(a3')で表されるジアミン(a3')を、反応させることも好ましい。 In the present embodiment, from the viewpoint of the effect of the present invention, an acid anhydride (a1′), a diamine (a2′), a maleic anhydride derivative (t′), and further represented by the following general formula (a3′) It is also preferred to react the diamine (a3′) to be formed.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 一般式(a3')中、R、R、X、m、nは一般式(a3)と同義である。 In general formula (a3'), R 5 , R 6 , X, m and n are synonymous with general formula (a3).
 酸無水物(a1')とジアミン(a2')とジアミン(a3')との当量比は、得られる重合体の分子量を決定する重要な因子である。一般に、ポリマーの分子量と機械的性質の間に相関があることは良く知られており、分子量が大きいほど機械的性質が優れている。従って、実用的に優れた強度の重合体を得るためには、ある程度高分子量であることが必要である。本発明では、使用する酸無水物(a1')とジアミン(a2')とジアミン(a3')との当量比は特に制限されないが、酸無水物(a1')に対する、ジアミン(a2')およびジアミン(a3')の当量比が0.80~1.06の範囲にあることが好ましい。当該当量比が上記範囲内にあれば、機械的強度に優れ、製造安定性に優れる。 The equivalent ratio of acid anhydride (a1'), diamine (a2') and diamine (a3') is an important factor that determines the molecular weight of the resulting polymer. In general, it is well known that there is a correlation between the molecular weight and mechanical properties of polymers, the higher the molecular weight the better the mechanical properties. Therefore, in order to obtain a polymer having practically excellent strength, it is necessary to have a high molecular weight to some extent. In the present invention, the equivalent ratio of the acid anhydride (a1′), the diamine (a2′) and the diamine (a3′) to be used is not particularly limited. The equivalent ratio of diamine (a3') is preferably in the range of 0.80 to 1.06. If the corresponding amount ratio is within the above range, the mechanical strength is excellent and the manufacturing stability is excellent.
 無水マレイン酸誘導体(t')の量は、酸無水物(a1')との反応に供さないアミノ基のモル量に対し、3倍モル量とすることができる。 The amount of the maleic anhydride derivative (t') can be 3 times the molar amount of amino groups that are not reacted with the acid anhydride (a1').
 これにより、ポリイミドに光二量化による感光性を付与することができ、低誘電正接により優れるとともに、機械物性により優れたフィルム等の硬化物を得ることができる。
 当該反応は、有機溶媒中で、公知の方法で行うことができる。
Thereby, photosensitivity by photodimerization can be imparted to the polyimide, and a cured product such as a film having excellent mechanical properties as well as excellent low dielectric loss tangent can be obtained.
The reaction can be carried out by a known method in an organic solvent.
 有機溶媒としては、γ-ブチルラクトン(GBL)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、シクロヘキサノン、1,4-ジオキサン等の非プロトン性極性溶媒類が挙げられ、1種類又は2種類以上を組み合わせて用いてもよい。この時、上記非プロトン性極性溶媒と相溶性がある非極性溶媒を混合して使用しても良い。非極性溶媒としては、トルエン、エチルベンゼン、キシレン、メシチレン、ソルベントナフサ等の芳香族炭化水素類が挙げられる。混合溶媒における非極性溶媒の割合については、溶媒の溶解度が低下し、反応して得られるポリアミド酸樹脂が析出しない範囲であれば、攪拌装置能力や溶液粘度等の樹脂性状に応じて任意に設定することができる。 Examples of organic solvents include aprotic polar solvents such as γ-butyl lactone (GBL), N,N-dimethylformamide, N,N-dimethylacetamide, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, cyclohexanone, and 1,4-dioxane. , and one type or two or more types may be used in combination. At this time, a nonpolar solvent compatible with the aprotic polar solvent may be mixed and used. Nonpolar solvents include aromatic hydrocarbons such as toluene, ethylbenzene, xylene, mesitylene and solvent naphtha. The ratio of the non-polar solvent in the mixed solvent is set arbitrarily according to the resin properties such as the stirring device capacity and solution viscosity, as long as the solubility of the solvent decreases and the polyamic acid resin obtained by the reaction does not precipitate. can do.
 反応温度は、0℃以上100℃以下、好ましくは20℃以上80℃以下で30分~2時間程度反応させた後、100℃以上250℃以下、好ましくは120℃以上200℃以下で1~5時間程度反応させる。 The reaction temperature is 0° C. or higher and 100° C. or lower, preferably 20° C. or higher and 80° C. or lower, for about 30 minutes to 2 hours. React for some time.
 無水マレイン酸誘導体(t')は、酸無水物(a1’)と、ジアミン(a2’)および ジアミン(a3’)とのイミド化反応において存在していてもよいが、酸無水物(a1’)とジアミン(a2’)および(a3’)との反応中または反応終了後に、上記有機溶媒に溶解させた無水マレイン酸誘導体(t’)を添加して反応させ、ポリイミド末端を封止することができる。 Maleic anhydride derivative (t') may be present in the imidization reaction of acid anhydride (a1') with diamine (a2') and diamine (a3'), but acid anhydride (a1' ) and the diamines (a2′) and (a3′) during or after the reaction is completed, the maleic anhydride derivative (t′) dissolved in the above organic solvent is added and reacted to block the polyimide terminals. can be done.
 無水マレイン酸誘導体(t’)を別途添加する場合、添加後、100℃以上250℃以下、好ましくは120℃以上200℃以下で1~5時間程度反応させることが好ましい。 When the maleic anhydride derivative (t') is added separately, it is preferable to react after the addition at 100°C or higher and 250°C or lower, preferably 120°C or higher and 200°C or lower for about 1 to 5 hours.
 以上の工程により本実施形態のポリイミド(A)(末端封止ポリイミド)を含む反応溶液を得ることができ、さらに必要に応じて有機溶媒等で希釈し、ポリマー溶液(塗布用ワニス)として使用することができる。有機溶剤としては、反応工程において例示したものを用いることができ、反応工程と同じ有機溶剤であってもよく、異なる有機溶剤であってもよい。 A reaction solution containing the polyimide (A) (terminal-blocked polyimide) of the present embodiment can be obtained by the above steps, further diluted with an organic solvent or the like as necessary, and used as a polymer solution (coating varnish). be able to. As the organic solvent, those exemplified in the reaction step can be used, and the same organic solvent as in the reaction step may be used, or a different organic solvent may be used.
 また、この反応溶液を貧溶媒中に投入してポリイミド(A)を再沈殿析出させて未反応モノマーを除去し、乾燥固化させたもの再び有機溶剤に溶解し精製品として用いることもできる。特に不純物や異物が問題になる用途では、再び有機溶剤に溶解して濾過精製ワニスとすることが好ましい。
 ポリマー溶液中(100重量%)のポリイミド(A)濃度は、特に限定されないが、10~30重量%程度である。
In addition, this reaction solution can be put into a poor solvent to reprecipitate the polyimide (A) to remove unreacted monomers, dry and solidify, and dissolve again in an organic solvent for use as a purified product. Particularly in applications where impurities and foreign matters are a problem, it is preferable to redissolve the varnish in an organic solvent to obtain a filtration-purified varnish.
The polyimide (A) concentration in the polymer solution (100% by weight) is not particularly limited, but is about 10 to 30% by weight.
 本実施形態のネガ型感光性ポリマーの好ましい配合例を以下の表Aに示す。 Table A below shows preferred formulation examples of the negative photosensitive polymer of the present embodiment.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
・MED-J:4,4-ジアミノ-3,3-ジエチル-5,5-ジメチルジフェニルメタン
・HFBAPP:4,4'-(ヘキサフルオロイソプロピリデン)ビス[(4-アミノフェノキシ)ベンゼン]
・TFMB:4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル
・TMPBP-TME:4-[4-(1,3-ジオキソイソベンゾフラン-5-イルカルボニロキシ)-2,3,5-トリメチルフェニル]-2,3,6-トリメチルフェニル 1,3-ジオキソイソベンゾフラン-5-カルボキシレート
・HQDA:1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン酸二無水物
・DMMI:2,3-ジメチルマレイン酸無水物
・MED-J: 4,4-diamino-3,3-diethyl-5,5-dimethyldiphenylmethane ・HFBAPP: 4,4′-(hexafluoroisopropylidene)bis[(4-aminophenoxy)benzene]
・TFMB: 4,4′-diamino-2,2′-bis(trifluoromethyl)biphenyl ・TMPBP-TME: 4-[4-(1,3-dioxoisobenzofuran-5-ylcarbonyloxy)- 2,3,5-trimethylphenyl]-2,3,6-trimethylphenyl 1,3-dioxoisobenzofuran-5-carboxylate HQDA: 1,4-bis(3,4-dicarboxyphenoxy)benzoic acid Dianhydride/DMMI: 2,3-dimethylmaleic anhydride
[架橋剤(B)]
 本実施形態のネガ型感光性樹脂組成物は、好ましくは、さらに置換または無置換のマレイミド基を備える架橋剤(B)(前記ポリイミド(A)を除く)を含むことができる。
 架橋剤(B)としては、4,4’-ジフェニルメタンビス(ジメチル)マレイミド、ポリフェニルメタン(ジメチル)マレイミド、m-フェニレンビス(ジメチル)マレイミド、p-フェニレンビス(ジメチル)マレイミド、ビスフェノールAジフェニルエーテルビス(ジメチル)マレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビス(ジメチル)マレイミド、4-メチル-1,3-フェニレンビス(ジメチル)マレイミド、1,6’-ビス(ジメチル)マレイミド-(2,2,4-トリメチル)ヘキサン、1,2-ビス((ジメチル)マレイミド)エタン、1,4-ビス((ジメチル)マレイミド)ブタン、1,6-ビス((ジメチル)マレイミド)ヘキサン、1,12-ビス((ジメチル)マレイミド)ドデカン、1-(ジメチル)マレイミド-3-(ジメチル)マレイミドメチル-3,5,5-トリメチルシクロヘキサン、1,1’-(シクロヘキサン-1,3-ジイルビス(メチレン))ビス((3,4-ジメチル)-1H-ピロール-2,5-ジオン)、1,1’-(4,4’-メチレンビス(シクロヘキサン-4,1-ジイル))ビス((3,4-ジメチル)-1H-ピロール-2,5-ジオン)、1,1’-(3,3’-(ピペラジン-1,4-ジイル)ビス(プロパン-3,1-ジイル))ビス(1H-ピロール-2,5-ジオン)、2,2’-(エチレンジオキシ)ビス(エチル(ジメチル)マレイミド)、置換または無置換のマレイミド基を備えるポリノルボルネン等を挙げることができ、当該ポリノルボルネンであることが好ましい。
 前記ポリノルボルネンは、好ましくは下記一般式(b)で表される構造単位(b)を有する。
[Crosslinking agent (B)]
The negative photosensitive resin composition of the present embodiment can preferably further contain a cross-linking agent (B) having a substituted or unsubstituted maleimide group (excluding the polyimide (A)).
Examples of the cross-linking agent (B) include 4,4′-diphenylmethanebis(dimethyl)maleimide, polyphenylmethane(dimethyl)maleimide, m-phenylenebis(dimethyl)maleimide, p-phenylenebis(dimethyl)maleimide, bisphenol A diphenyl ether bis (dimethyl)maleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebis(dimethyl)maleimide, 4-methyl-1,3-phenylenebis(dimethyl)maleimide, 1,6′ -bis(dimethyl)maleimido-(2,2,4-trimethyl)hexane, 1,2-bis((dimethyl)maleimido)ethane, 1,4-bis((dimethyl)maleimido)butane, 1,6-bis( (dimethyl)maleimido)hexane, 1,12-bis((dimethyl)maleimido)dodecane, 1-(dimethyl)maleimido-3-(dimethyl)maleimidomethyl-3,5,5-trimethylcyclohexane, 1,1′-( Cyclohexane-1,3-diylbis(methylene))bis((3,4-dimethyl)-1H-pyrrole-2,5-dione), 1,1′-(4,4′-methylenebis(cyclohexane-4,1 -diyl))bis((3,4-dimethyl)-1H-pyrrole-2,5-dione), 1,1′-(3,3′-(piperazine-1,4-diyl)bis(propane-3 ,1-diyl))bis(1H-pyrrole-2,5-dione), 2,2′-(ethylenedioxy)bis(ethyl(dimethyl)maleimide), polynorbornene with a substituted or unsubstituted maleimide group, etc. and preferably the polynorbornene.
The polynorbornene preferably has a structural unit (b) represented by the following general formula (b).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 一般式(b)中、RおよびRは各々独立して水素原子もしくは炭素数1~3のアルキル基を示し、本発明の効果の観点から、炭素数1または2のアルキル基が好ましく、炭素数1のアルキル基がより好ましい。
 Qは単結合、または2価の有機基を示す。
In the general formula (b), R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and from the viewpoint of the effect of the present invention, an alkyl group having 1 or 2 carbon atoms is preferable, A C 1 alkyl group is more preferred.
Q1 represents a single bond or a divalent organic group.
 Qの2価の前記有機基としては、本発明の効果を奏する範囲で公知の有機基を用いることができるが、例えば炭素数1~8のアルキレン基または(ポリ)アルキレングリコール鎖を挙げることができる。炭素数1~8のアルキレン基は、炭素数2~6のアルキレン基であることが好ましい。 As the divalent organic group of Q 1 , a known organic group can be used within the scope of the effects of the present invention, and examples thereof include an alkylene group having 1 to 8 carbon atoms or a (poly)alkylene glycol chain. can be done. The alkylene group having 1 to 8 carbon atoms is preferably an alkylene group having 2 to 6 carbon atoms.
 炭素数1~8のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、及びオクチレン基等が挙げられる。 Examples of the alkylene group having 1 to 8 carbon atoms include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, and octylene group.
 (ポリ)アルキレングリコール鎖を構成するアルキレンオキサイドは特に限定されないが、炭素数1~18のアルキレンオキサイドにより構成されることが好ましく、より好ましくは炭素数2~8のアルキレンオキサイドであり、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、イソブチレンオキサイド、1-ブテンオキサイド、2-ブテンオキサイド、トリメチルエチレンオキサイド、テトラメチレンオキサイド、テトラメチルエチレンオキサイド、ブタジエンモノオキサイド、オクチレンオキサイド等が挙げられる。 The alkylene oxide constituting the (poly)alkylene glycol chain is not particularly limited, but is preferably composed of an alkylene oxide having 1 to 18 carbon atoms, more preferably an alkylene oxide having 2 to 8 carbon atoms, such as ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, 1-butene oxide, 2-butene oxide, trimethylethylene oxide, tetramethylene oxide, tetramethylethylene oxide, butadiene monoxide, octylene oxide and the like.
 G、G、およびGはそれぞれ独立して水素原子、置換または無置換の炭素数1~30の炭化水素基を示す。
 炭素数1~30の炭化水素基としては、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、またはシクロアルキル等が挙げられる。
G 1 , G 2 and G 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms.
Examples of hydrocarbon groups having 1 to 30 carbon atoms include alkyl groups, alkenyl groups, alkynyl groups, alkylidene groups, aryl groups, aralkyl groups, alkaryl groups, cycloalkyl groups, and the like.
 アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。
 アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。
 アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。
Examples of alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, Octyl, nonyl, and decyl groups are included.
Alkenyl groups include, for example, allyl groups, pentenyl groups, and vinyl groups. Alkynyl groups include ethynyl groups.
The alkylidene group includes, for example, a methylidene group and an ethylidene group.
 アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。
 アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。
Aryl groups include, for example, phenyl, naphthyl, and anthracenyl groups.
Aralkyl groups include, for example, benzyl groups and phenethyl groups.
 アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。
 シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。
 炭素数1~30の炭化水素基は、その構造中に、O、N、S、PおよびSiから選択される少なくとも1つの原子を含んでいてもよい。
Examples of alkaryl groups include tolyl and xylyl groups.
Cycloalkyl groups include, for example, adamantyl, cyclopentyl, cyclohexyl, and cyclooctyl groups.
The hydrocarbon group having 1 to 30 carbon atoms may contain at least one atom selected from O, N, S, P and Si in its structure.
 本実施形態において、前記炭素数1~30の炭化水素基は、炭素数1~15の炭化水素基であることが好ましく、炭素数1~10の炭化水素基であることがより好ましい。また、炭素数1~30の炭化水素基は、炭素数1~30のアルキル基であることが好ましく、炭素数1~15のアルキル基であることがより好ましく、炭素数1~10のアルキル基であることがさらにより好ましい。 In the present embodiment, the hydrocarbon group having 1 to 30 carbon atoms is preferably a hydrocarbon group having 1 to 15 carbon atoms, more preferably a hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group having 1 to 30 carbon atoms is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms, and an alkyl group having 1 to 10 carbon atoms. is even more preferred.
 置換された炭素数1~30の炭化水素基の置換基は、水酸基、アミノ基、シアノ基、エステル基、エーテル基、アミド基、スルホンアミド基等を挙げることができ、少なくとも1種の基で置換されていてもよい。 Examples of the substituted hydrocarbon group having 1 to 30 carbon atoms include a hydroxyl group, an amino group, a cyano group, an ester group, an ether group, an amide group, a sulfonamide group, and the like. may be substituted.
 本実施形態において、G、G、およびGのいずれか1つが、置換または無置換の炭素数1~30の炭化水素基、残りが水素原子であることが好ましく、全てが水素原子であることがより好ましい。
 mは0、1または2であり、好ましくは0または1であり、より好ましくは0である。
In the present embodiment, any one of G 1 , G 2 , and G 3 is preferably a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and the rest are hydrogen atoms, and all are hydrogen atoms. It is more preferable to have
m is 0, 1 or 2, preferably 0 or 1, more preferably 0;
 本実施形態の架橋剤(B)は一般式(b)で表される構造を備えることから低誘電正接に優れる。さらに、架橋剤(B)は側鎖に所定のマレイミド基を有しており、ラジカル反応が生じず光二量化が可能であることから、架橋剤(B)同士、架橋剤(B)とポリイミド(A)とを光重合することができ、機械的強度にもより優れる。
 本実施形態の架橋剤(B)は、以下のように合成することができる。
Since the cross-linking agent (B) of the present embodiment has the structure represented by the general formula (b), it is excellent in low dielectric loss tangent. Furthermore, the cross-linking agent (B) has a predetermined maleimide group in the side chain, and photodimerization is possible without causing a radical reaction. A) can be photopolymerized, and the mechanical strength is also superior.
The cross-linking agent (B) of the present embodiment can be synthesized as follows.
 まず、以下の一般式(b’)で表される化合物(b’)を付加重合して、必要に応じて他のノルボルネン系化合物と付加重合して重合体を得る。たとえば配位重合により、付加重合が行われる。 First, a compound (b') represented by the following general formula (b') is addition-polymerized, and if necessary, addition-polymerized with another norbornene-based compound to obtain a polymer. Addition polymerization is carried out, for example, by coordination polymerization.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 一般式(b’)中、R、R、Q、G、G、Gおよびmは一般式(b)と同義である。 In general formula (b'), R 1 , R 2 , Q 1 , G 1 , G 2 , G 3 and m have the same meanings as in general formula (b).
 他のノルボルネン系化合物としては、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等のアルキル基を有するノルボルネン類;5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;5-フェニルノルボルネン、5-フェニルメチルノルボルネン、5-フェニルエチルノルボルネン、5-フェニルプロピルノルボルネン等の芳香環を有するノルボルネン類;等が挙げられる。 Other norbornene compounds include norbornenes having an alkyl group such as 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene Norbornenes having an alkenyl group such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, 5-cyclopentenylnorbornene; 5-phenylnorbornene, 5-phenylmethylnorbornene, 5-phenyl norbornenes having an aromatic ring such as ethyl norbornene and 5-phenylpropyl norbornene;
 本実施形態においては、上記化合物と、有機金属触媒と、を溶剤に溶解した後、所定時間加熱することにより溶液重合を行うことができる。このとき、加熱温度は、たとえば30℃~200℃、好ましくは40℃~150℃、さらに好ましくは50℃~120℃とすることができる。本実施形態においては、従来よりも加熱温度を高温とすることで架橋剤(B)の収率を向上させることができる。 In the present embodiment, solution polymerization can be performed by dissolving the compound and the organometallic catalyst in a solvent and then heating for a predetermined time. At this time, the heating temperature can be, for example, 30°C to 200°C, preferably 40°C to 150°C, more preferably 50°C to 120°C. In this embodiment, the yield of the cross-linking agent (B) can be improved by making the heating temperature higher than conventionally.
 また、加熱時間は、たとえば0.5時間~72時間とすることができる。なお、窒素バブリングにより溶剤中の溶存酸素を除去したうえで、溶液重合を行うことがより好ましい。 Also, the heating time can be, for example, 0.5 hours to 72 hours. In addition, after removing the dissolved oxygen in a solvent by nitrogen bubbling, it is more preferable to perform solution polymerization.
 また、必要に応じて分子量調整剤や連鎖移動剤を使用する事ができる。連鎖移動剤としては、例えば、トリメチルシラン、トリエチルシラン、トリブチルシラン、等のアルキルシラン化合物を挙げることができる。これらの連鎖移動剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition, molecular weight modifiers and chain transfer agents can be used as necessary. Examples of chain transfer agents include alkylsilane compounds such as trimethylsilane, triethylsilane, and tributylsilane. These chain transfer agents may be used singly or in combination of two or more.
 上記重合反応に用いられる溶剤としては、たとえば、メチルエチルケトン(MEK)、プロピレングリコールモノメチルエーテル、ジエチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン(THF)、4-メチルテトラヒドロピラン、トルエン、シクロヘキサン、メチルシクロヘキサン、酢酸エチル、酢酸ブチル等のエステル、メチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール類のうち一種または二種以上を使用することができる。 Solvents used in the polymerization reaction include, for example, methyl ethyl ketone (MEK), propylene glycol monomethyl ether, diethyl ether, cyclopentyl methyl ether, tetrahydrofuran (THF), 4-methyltetrahydropyran, toluene, cyclohexane, methylcyclohexane, ethyl acetate, One or more of esters such as butyl acetate and alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol can be used.
 上記有機金属触媒としては、付加重合が進行すれば特に選ばないが、例えばパラジウム錯体およびニッケル錯体に対してホスフィン系や、ジイミン系などの配位子を配位させ、カウンターアニオンなどを用いても良い。このうちの一種または二種以上を使用できる。 The organometallic catalyst is not particularly selected as long as the addition polymerization proceeds. good. One or more of these can be used.
 上記パラジウム錯体としては、たとえば(アセタト-κ0)(アセトニトリル)ビス[トリス(1-メチルエチル)ホスフィン]パラジウム(I)テトラキス(2,3,4,5,6-ペンタフルオロフェニル)ボレート、π-アリルパラジウムクロリドダイマーなどのアリルパラジウム錯体、
パラジウムの酢酸塩、プロピオン酸塩、マレイン酸塩、ナフトエ酸塩などのパラジウムの有機カルボン酸塩、
酢酸パラジウムのトリフェニルホスフィン錯体、酢酸パラジウムのトリ(m-トリル)ホスフィン錯体、酢酸パラジウムのトリシクロヘキシルホスフィン錯体などのパラジウムの有機カルボン酸の錯体、
パラジウムのジブチル亜リン酸塩、p-トルエンスルホン酸塩などのパラジウムの有機スルフォン酸塩、
ビス(アセチルアセトナート)パラジウム、ビス(ヘキサフロロアセチルアセトナート)パラジウム、ビス(エチルアセトアセテート)パラジウム、ビス(フェニルアセトアセテート)パラジウムなどのパラジウムのβ-ジケトン化合物、
ジクロロビス(トリフェニルホスフィン)パラジウム、ビス[トリ(m-トリルホスフィン)]パラジウム、ジブロモビス[トリ(m-トリルホスフィン)]パラジウム、アセトニルトリフェニルホスフォニウム錯体などのパラジウムのハロゲン化物錯体等が挙げられる。
Examples of the palladium complex include (acetato-κ0)(acetonitrile)bis[tris(1-methylethyl)phosphine]palladium(I) tetrakis(2,3,4,5,6-pentafluorophenyl)borate, π- allylpalladium complexes such as allylpalladium chloride dimer,
Organic carboxylates of palladium such as palladium acetate, propionate, maleate, naphthoate,
palladium complexes of organic carboxylic acids such as palladium acetate triphenylphosphine complexes, palladium acetate tri(m-tolyl)phosphine complexes, palladium acetate tricyclohexylphosphine complexes,
organic sulfonates of palladium such as palladium dibutyl phosphite, p-toluenesulfonate,
β-diketone compounds of palladium such as bis(acetylacetonate)palladium, bis(hexafluoroacetylacetonate)palladium, bis(ethylacetoacetate)palladium, bis(phenylacetoacetate)palladium,
Halide complexes of palladium such as dichlorobis(triphenylphosphine)palladium, bis[tri(m-tolylphosphine)]palladium, dibromobis[tri(m-tolylphosphine)]palladium, acetonyltriphenylphosphonium complexes, and the like. be done.
 上記ホスフィン配位子としては、トリフェニルホスフィン、ジシクロヘキシルフェニルホスフィン、シクロヘキシルジフェニルホスフィン、トリシクロヘキシルホスフィンなどが挙げられる。 Examples of the phosphine ligands include triphenylphosphine, dicyclohexylphenylphosphine, cyclohexyldiphenylphosphine, and tricyclohexylphosphine.
 上記カウンターアニオンとしては、例えば、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート、トリフェニルカルベニウムテトラキス(2,4,6-トリフルオロフェニル)ボレート、トリフェニルカルベニウムテトラフェニルボレート、トリブチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジフェニルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、リチウムテトラキス(ペンタフルオロフェニル)ボレートなど挙げられる。 Examples of the counter anion include triphenylcarbeniumtetrakis(pentafluorophenyl)borate, triphenylcarbeniumtetrakis[3,5-bis(trifluoromethyl)phenyl]borate, triphenylcarbeniumtetrakis(2,4, 6-trifluorophenyl)borate, triphenylcarbenium tetraphenylborate, tributylammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, N,N-diethylanilinium tetrakis ( pentafluorophenyl)borate, N,N-diphenylanilinium tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate and the like.
 有機金属触媒の量は、ノルボルネン系モノマーに対して300ppm~5000ppm、好ましくは1000ppm~3500ppm、さらに好ましくは1500ppm~2500ppmとすることができる。これにより、架橋剤(B)の収率を向上させることができる。 The amount of the organometallic catalyst can be 300 ppm to 5000 ppm, preferably 1000 ppm to 3500 ppm, more preferably 1500 ppm to 2500 ppm with respect to the norbornene-based monomer. Thereby, the yield of the cross-linking agent (B) can be improved.
 得られた架橋剤(B)を含む反応液を、例えば、ヘキサンやメタノール等のアルコール中に添加して架橋剤(B)を析出させる。次いで、架橋剤(B)を濾取し、例えば、ヘキサンやメタノール等のアルコール等により洗浄した後、これを乾燥させる。
 本実施形態においては、たとえばこのようにして架橋剤(B)を合成することができる。
 本実施形態の製造方法によれば、架橋剤(B)を、70%以上の高収率で得ることができる。
The resulting reaction solution containing the cross-linking agent (B) is added to an alcohol such as hexane or methanol to precipitate the cross-linking agent (B). Next, the cross-linking agent (B) is collected by filtration, washed with alcohol such as hexane or methanol, and dried.
In this embodiment, for example, the cross-linking agent (B) can be synthesized in this manner.
According to the production method of the present embodiment, the cross-linking agent (B) can be obtained with a high yield of 70% or more.
 ジアルキル無水マレイン酸による変換率は、70%以上であることが好ましい。さらにこのましくは80%、さらに好ましくは90%以上である。この範囲であれば、現像で溶出するポリイミド成分を低減することができる。 The conversion rate with dialkyl maleic anhydride is preferably 70% or more. More preferably 80%, more preferably 90% or more. If it is this range, the polyimide component eluted by development can be reduced.
 本実施形態の架橋剤(B)は、本発明の効果を奏する範囲で構造単位(b)以外のその他の構造単位を含むことができ、その他の構造単位としては、上記の他のノルボルネン系化合物から誘導される構造単位が挙げられる。 The cross-linking agent (B) of the present embodiment may contain other structural units other than the structural unit (b) within the scope of the effect of the present invention, and the other structural units include the other norbornene-based compounds Structural units derived from
 本実施形態の架橋剤(B)の重量平均分子量は、3,000~300,000であり、好ましくは5,000~200,000である。 The weight average molecular weight of the cross-linking agent (B) of the present embodiment is 3,000 to 300,000, preferably 5,000 to 200,000.
 本実施形態において、本発明の効果の観点から、ポリイミド(A)と架橋剤(B)との比率(A:B)は、5:95~95:5、好ましくは10:90~90:10、さらに好ましくは20:80~80:20とすることができる。 In the present embodiment, from the viewpoint of the effect of the present invention, the ratio (A:B) of the polyimide (A) and the cross-linking agent (B) is 5:95 to 95:5, preferably 10:90 to 90:10. , and more preferably 20:80 to 80:20.
[光増感剤(C)]
 本実施形態のネガ型感光性樹脂組成物は、さらに光増感剤(C)を含むことができる。
[Photosensitizer (C)]
The negative photosensitive resin composition of this embodiment can further contain a photosensitizer (C).
 光増感剤(C)としては、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、ベンジル系光重合開始剤、ミヒラーケトン系光重合開始剤等が挙げられる。これらの中でも、ベンゾフェノン系光重合開始剤またはチオキサントン系光重合開始剤であることが好ましい。 Examples of the photosensitizer (C) include benzophenone-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, benzyl-based photopolymerization initiators, and Michler's ketone-based photopolymerization initiators. Among these, benzophenone-based photopolymerization initiators and thioxanthone-based photopolymerization initiators are preferred.
 ベンゾフェノン系光重合開始剤としては、ベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。これらのベンゾフェノンやその誘導体は、3級アミンを水素供与体として硬化速度を向上させることができる。 Benzophenone-based photopolymerization initiators include benzophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-diaminobenzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4′-methyl-diphenyl sulfide and the like. These benzophenones and derivatives thereof can improve the curing speed by using a tertiary amine as a hydrogen donor.
 ベンゾフェノン系光重合開始剤の市販品として、例えば、SPEEDCUREMBP(4-メチルベンゾフェノン)、SPEEDCUREMBB(メチル-2-ベンゾイルベンゾエイト)、SPPEDCUREBMS(4-ベンゾイル-4’メチルジフェニルサルファイド)、SPPEDCUREPBZ(4-フェニルベンゾフェノン)、SPPEDCUREEMK(4,4’-ビス(ジエチルアミノ)ベンゾフェノン)(以上商品名、DKSHジャパン株式会社製)等が挙げられる。 Examples of commercially available benzophenone-based photopolymerization initiators include SPEEDCUREMBP (4-methylbenzophenone), SPEEDCUREMBB (methyl-2-benzoylbenzoate), SPPEDCUREBMS (4-benzoyl-4'methyldiphenyl sulfide), SPPEDCUREPBZ (4-phenyl benzophenone), SPPEDCUREEMK (4,4′-bis(diethylamino)benzophenone) (both trade names, manufactured by DKSH Japan Co., Ltd.), and the like.
 チオキサントン系光重合開始剤としては、チオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントンが挙げられる。ジエチルチオキサントンとしては、2,4-ジエチルチオキサントン、イソプロピルチオキサントンとしては2-イソプロピルチオキサントン、クロロチオキサントンとしては2クロロチオキサントンが好ましい。中でも、ジエチルチオキサントンを含むチオキサントン系光重合開始剤がさらに好ましい。 Thioxanthone-based photopolymerization initiators include thioxanthone, diethylthioxanthone, isopropylthioxanthone, and chlorothioxanthone. Preferred diethylthioxanthone is 2,4-diethylthioxanthone, isopropylthioxanthone is 2-isopropylthioxanthone, and chlorothioxanthone is 2-chlorothioxanthone. Among them, a thioxanthone-based photopolymerization initiator containing diethylthioxanthone is more preferable.
 チオキサントン系光重合開始剤の市販品として、例えば、SpeedcureDETX(2,4-ジエチルチオキサントン)、SpeedcureITX(2-イソプロピルチオキサントン)、SpeedcureCTX(2-クロロチオキサントン)、SPEEDCURECPTX(1-クロロ-4-プロピルチオキサントン)(以上商品名、DKSHジャパン株式会社製)、KAYACUREDETX(2,4-ジエチルチオキサントン)(商品名、日本化薬株式会社製)、DAIDO UV―CURE DETX(大同化成工業株式会社製)等が挙げられる。 Examples of commercially available thioxanthone-based photopolymerization initiators include SpeedcureDETX (2,4-diethylthioxanthone), SpeedcureITX (2-isopropylthioxanthone), SpeedcureCTX (2-chlorothioxanthone), and SPEEDCURECPTX (1-chloro-4-propylthioxanthone). (trade name, manufactured by DKSH Japan Co., Ltd.), KAYACUREDETX (2,4-diethylthioxanthone) (trade name, manufactured by Nippon Kayaku Co., Ltd.), DAIDO UV-CURE DETX (manufactured by Daido Kasei Kogyo Co., Ltd.), and the like. .
 光増感剤(C)の添加量は、特に限定されないが、ネガ型感光性樹脂組成物の固形分全体の0.05~15質量%程度であるのが好ましく、0.1~12.5質量%程度であるのがより好ましく、0.2~10質量%程度であるのがさらに好ましい。光増感剤(C)の添加量を前記範囲内に設定することにより、ネガ型感光性樹脂組成物を含む感光性樹脂層のパターニング性を高めるとともに、ネガ型感光性樹脂組成物の長期保管性を向上させることができる。 The amount of the photosensitizer (C) added is not particularly limited, but it is preferably about 0.05 to 15% by mass of the total solid content of the negative photosensitive resin composition, and 0.1 to 12.5%. It is more preferably about mass %, more preferably about 0.2 to 10 mass %. By setting the addition amount of the photosensitizer (C) within the above range, the patterning property of the photosensitive resin layer containing the negative photosensitive resin composition is enhanced, and the negative photosensitive resin composition is stored for a long period of time. can improve sexuality.
[シランカップリング剤(D)]
 本実施形態のネガ型感光性樹脂組成物は、さらにシランカップリング剤(D)を含むことができる。
 これにより、ネガ型感光性樹脂組成物で形成された樹脂膜やパターンの、基板との密着性を高めることができる。
[Silane coupling agent (D)]
The negative photosensitive resin composition of this embodiment can further contain a silane coupling agent (D).
Thereby, the adhesiveness of the resin film or pattern formed of the negative photosensitive resin composition to the substrate can be enhanced.
 使用可能なシランカップリング剤(D)は特に限定されない。例えば、アミノシラン、エポキシシラン、アクリルシラン、メルカプトシラン、ビニルシラン、ウレイドシラン、酸無水物官能型シラン、スルフィドシラン等のシランカップリング剤を用いることができる。シランカップリング剤(D)は、1種を単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、エポキシシラン(すなわち、1分子中に、エポキシ部位と、加水分解によりシラノール基を発生する基の両方を含む化合物)または酸無水物官能型シラン(すなわち、1分子中に、酸無水物基と、加水分解によりシラノール基を発生する基の両方を含む化合物)が好ましい。シランカップリング剤のシランとは反対側の基が、ポリマーAまたはポリマーBと結合やポリマーとなじみが良くなる等することにより、ネガ型感光性樹脂組成物で形成された樹脂膜やパターンの、基板との密着性をより高めることができる。 The usable silane coupling agent (D) is not particularly limited. For example, silane coupling agents such as aminosilane, epoxysilane, acrylsilane, mercaptosilane, vinylsilane, ureidosilane, acid anhydride-functional silane, and sulfidesilane can be used. Silane coupling agents (D) may be used alone or in combination of two or more. Among these, epoxysilanes (i.e., compounds containing both an epoxy moiety and a group that generates a silanol group by hydrolysis in one molecule) or anhydride-functional silanes (i.e., in one molecule, an anhydride and a group that generates a silanol group by hydrolysis) are preferred. The group of the silane coupling agent on the side opposite to the silane is bonded to the polymer A or the polymer B or has good compatibility with the polymer, so that the resin film or pattern formed with the negative photosensitive resin composition is Adhesion to the substrate can be further enhanced.
 アミノシランとしては、例えば、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、またはN-フェニル-γ-アミノ-プロピルトリメトキシシラン等が挙げられる。 Examples of aminosilanes include bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-amino propylmethyldimethoxysilane, N-β (aminoethyl)γ-aminopropyltrimethoxysilane, N-β (aminoethyl)γ-aminopropyltriethoxysilane, N-β (aminoethyl)γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysilane, N-phenyl-γ-amino-propyltrimethoxysilane, and the like.
 エポキシシランとしては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ
-グリシドキシプロピルメチルジエトキシシラン、またはβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシジルプロピルトリメトキシシラン等が挙げられる。
Examples of epoxysilanes include γ-glycidoxypropyltrimethoxysilane, γ
-glycidoxypropylmethyldiethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidylpropyltrimethoxysilane, and the like.
 アクリルシランとしては、例えば、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-(メタクリロキシプロピル)メチルジメトキシシラン、またはγ-(メタクリロキシプロピル)メチルジエトキシシラン等が挙げられる。
 メルカプトシランとしては、例えば、3-メルカプトプロピルトリメトキシシラン等が挙げられる。
Examples of acrylic silanes include γ-(methacryloxypropyl)trimethoxysilane, γ-(methacryloxypropyl)methyldimethoxysilane, γ-(methacryloxypropyl)methyldiethoxysilane, and the like.
Mercaptosilanes include, for example, 3-mercaptopropyltrimethoxysilane.
 ビニルシランとしては、例えば、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、またはビニルトリメトキシシラン等が挙げられる。
 ウレイドシランとしては、例えば、3-ウレイドプロピルトリエトキシシラン等が挙げられる。
 酸無水物官能型シランとしては、例えば、3-トリメトキシシリルプロピルコハク酸無水物などが挙げられる。
Vinylsilanes include, for example, vinyltris(β-methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, and the like.
Ureidosilanes include, for example, 3-ureidopropyltriethoxysilane.
Anhydride-functional silanes include, for example, 3-trimethoxysilylpropylsuccinic anhydride.
 スルフィドシランとしては、例えば、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、またはビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等が挙げられる。
 シランカップリング剤(D)を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Examples of sulfide silanes include bis(3-(triethoxysilyl)propyl)disulfide and bis(3-(triethoxysilyl)propyl)tetrasulfide.
When using a silane coupling agent (D), only 1 type may be used and 2 or more types may be used together.
 シランカップリング剤(D)の含有量は、ネガ型感光性樹脂組成物の固形分全体を100質量部としたとき、通常0.01~10質量部、好ましくは0.05~5質量部である。この範囲とすることで、他の性能とのバランスを取りつつ、シランカップリング剤(D)の効果である「密着性」を十分に得ることができると考えられる。 The content of the silane coupling agent (D) is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass when the total solid content of the negative photosensitive resin composition is 100 parts by mass. be. It is considered that by setting the amount in this range, it is possible to obtain sufficient "adhesion", which is the effect of the silane coupling agent (D), while maintaining a balance with other performances.
(溶媒)
 本実施形態に係るネガ型感光性樹脂組成物は、溶媒として、ウレア化合物、または、非環状構造のアミド化合物を含むことができる。溶媒としては、例えば、ウレア化合物を含むことが好ましい。これにより、ネガ型感光性樹脂組成物の硬化物と、Al、Cuといった金属との密着性をより向上できる。
(solvent)
The negative photosensitive resin composition according to the present embodiment can contain a urea compound or an amide compound having an acyclic structure as a solvent. The solvent preferably contains, for example, a urea compound. Thereby, the adhesiveness of the hardened|cured material of a negative photosensitive resin composition and metals, such as Al and Cu, can be improved more.
 なお、本明細書において、ウレア化合物とは、尿素結合、すなわち、ウレア結合を備える化合物を示す。また、アミド化合物とは、アミド結合を備える化合物、すなわちアミドを示す。なお、アミドとは、具体的には、1級アミド、2級アミド、3級アミドが挙げられる。 In this specification, a urea compound indicates a compound having a urea bond, that is, a urea bond. Moreover, an amide compound indicates a compound having an amide bond, that is, an amide. Note that amides specifically include primary amides, secondary amides, and tertiary amides.
 また、本実施形態において、非環状構造とは、化合物の構造中に炭素環、無機環、複素環などの環状構造を備えないことを意味する。環状構造を備えない化合物の構造としては、例えば、直鎖状構造、分岐鎖状構造などが挙げられる。 In addition, in the present embodiment, an acyclic structure means that the structure of a compound does not have a cyclic structure such as a carbocyclic ring, an inorganic ring, or a heterocyclic ring. Examples of structures of compounds that do not have a cyclic structure include straight-chain structures and branched-chain structures.
 ウレア化合物、非環状構造のアミド化合物としては、分子構造中の窒素原子の数が多いものが好ましい。具体的には、分子構造中の窒素原子の数が2個以上であることが好ましい。これにより、孤立電子対の数を増やすことができる。したがって、Al、Cuといった金属との密着性を向上できる。 As the urea compound and the amide compound having a non-cyclic structure, those having a large number of nitrogen atoms in the molecular structure are preferred. Specifically, the number of nitrogen atoms in the molecular structure is preferably two or more. Thereby, the number of lone electron pairs can be increased. Therefore, the adhesion to metals such as Al and Cu can be improved.
 ウレア化合物の構造としては、具体的には、環状構造、非環状構造などが挙げられる。ウレア化合物の構造としては、上記具体例のうち、非環状構造であることが好ましい。これにより、ネガ型感光性樹脂組成物の硬化物と、Al、Cuといった金属との密着性を向上できる。この理由は以下のように推測される。非環状構造のウレア化合物は、環状構造のウレア化合物と比べて、配位結合を形成しやすいと推測される。これは非環状構造のウレア化合物は、環状構造のウレア化合物と比べて、分子運動の束縛が少なく、さらに、分子構造の変形の自由度が大きいためと考えられる。したがって、非環状構造のウレア化合物を用いた場合、強力な配位結合を形成でき、密着性を向上できる。 Specific examples of the structure of the urea compound include a cyclic structure and an acyclic structure. Of the above specific examples, the structure of the urea compound is preferably an acyclic structure. Thereby, the adhesiveness of the hardened|cured material of a negative photosensitive resin composition and metals, such as Al and Cu, can be improved. The reason for this is presumed as follows. It is presumed that a urea compound with a non-cyclic structure forms a coordinate bond more easily than a urea compound with a cyclic structure. This is probably because the urea compound having a non-cyclic structure is less constrained in molecular motion and has a greater degree of freedom in deformation of the molecular structure than the urea compound having a cyclic structure. Therefore, when a urea compound having a non-cyclic structure is used, a strong coordinate bond can be formed and adhesion can be improved.
 ウレア化合物としては、具体的には、テトラメチル尿素(TMU)、1,3-ジメチル-2-イミダゾリジノン、テトラブチル尿素、N,N'-ジメチルプロピレン尿素、1,3-ジメトキシ-1,3-ジメチル尿素、N,N'-ジイソプロピル-O-メチルイソ尿素、O,N,N'-トリイソプロピルイソ尿素、O-tert-ブチル-N,N'-ジイソプロピルイソ尿素、O-エチル-N,N'-ジイソプロピルイソ尿素、O-ベンジル-N,N'-ジイソプロピルイソ尿素などが挙げられる。ウレア化合物としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。ウレア化合物としては、上記具体例のうち例えば、テトラメチル尿素(TMU)、テトラブチル尿素、1,3-ジメトキシ-1,3-ジメチル尿素、N,N'-ジイソプロピル-O-メチルイソ尿素、O,N,N'-トリイソプロピルイソ尿素、O-tert-ブチル-N,N'-ジイソプロピルイソ尿素、O-エチル-N,N'-ジイソプロピルイソ尿素及びO-ベンジル-N,N'-ジイソプロピルイソ尿素からなる群より選択される1種または2種以上を用いることが好ましく、テトラメチル尿素(TMU)を用いることがより好ましい。これにより、強力な配位結合を形成でき、密着性を向上できる。 Specific examples of urea compounds include tetramethylurea (TMU), 1,3-dimethyl-2-imidazolidinone, tetrabutylurea, N,N′-dimethylpropyleneurea, 1,3-dimethoxy-1,3 -dimethylurea, N,N'-diisopropyl-O-methylisourea, O,N,N'-triisopropylisourea, O-tert-butyl-N,N'-diisopropylisourea, O-ethyl-N,N '-diisopropylisourea, O-benzyl-N,N'-diisopropylisourea and the like. As the urea compound, one or a combination of two or more of the above specific examples can be used. Among the above specific examples of the urea compound, for example, tetramethylurea (TMU), tetrabutylurea, 1,3-dimethoxy-1,3-dimethylurea, N,N'-diisopropyl-O-methylisourea, O,N ,N'-triisopropylisourea, O-tert-butyl-N,N'-diisopropylisourea, O-ethyl-N,N'-diisopropylisourea and O-benzyl-N,N'-diisopropylisourea It is preferable to use one or more selected from the group consisting of, more preferably tetramethylurea (TMU). Thereby, a strong coordinate bond can be formed and the adhesion can be improved.
 非環状構造のアミド化合物としては、具体的には、3-メトキシ-N、N-ジメチルプロパンアミド、N,N-ジメチルホルムアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジブチルホルムアミドなどが挙げられる。
 本実施形態に係るネガ型感光性樹脂組成物は、溶媒として、ウレア化合物、非環状構造のアミド化合物のほかに、窒素原子を備えない溶媒を含んでもよい。
Specific examples of the acyclic amide compounds include 3-methoxy-N,N-dimethylpropanamide, N,N-dimethylformamide, N,N-dimethylpropionamide, N,N-dimethylacetamide, N, N-diethylacetamide, 3-butoxy-N,N-dimethylpropanamide, N,N-dibutylformamide and the like.
The negative photosensitive resin composition according to the present embodiment may contain, as a solvent, a solvent having no nitrogen atom in addition to the urea compound and the amide compound having an acyclic structure.
 窒素原子を備えない溶媒としては、具体的には、エーテル系溶媒、エステル系溶媒、アルコール系溶媒、ケトン系溶媒、ラクトン系溶媒、カーボネート系溶媒、スルホン系溶媒、エステル系溶媒、芳香族炭化水素系溶媒などが挙げられる。窒素原子を備えない溶媒としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。 Specific examples of solvents having no nitrogen atom include ether-based solvents, ester-based solvents, alcohol-based solvents, ketone-based solvents, lactone-based solvents, carbonate-based solvents, sulfone-based solvents, ester-based solvents, and aromatic hydrocarbons. system solvents and the like. As the solvent having no nitrogen atom, one or a combination of two or more of the above specific examples can be used.
 上記エーテル系溶媒としては、具体的には、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコール、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、1,3-ブチレングリコール-3-モノメチルエーテルなどが挙げられる。 Specific examples of the ether solvent include propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol, ethylene glycol diethyl ether, and diethylene glycol diethyl ether. , diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, 1,3-butylene glycol-3-monomethyl ether and the like.
 上記エステル系溶媒としては、具体的には、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテートなどが挙げられる。 Specific examples of the ester solvent include propylene glycol monomethyl ether acetate (PGMEA), methyl lactate, ethyl lactate, butyl lactate, and methyl-1,3-butylene glycol acetate.
 上記アルコール系溶媒としては、具体的には、テトラヒドロフルフリルアルコール、ベンジルアルコール、2-エチルヘキサノール、ブタンジオール、イソプロピルアルコールなどが挙げられる。
 上記ケトン系溶媒としては、具体的には、シクロペンタノン、シクロヘキサノン、ジアセトンアルコール、2-ヘプタノンなどが挙げられる。
 上記ラクトン系溶媒としては、具体的には、γ-ブチロラクトン(GBL)、γ-バレロラクトンなどが挙げられる。
 上記カーボネート系溶媒としては、具体的には、エチレンカルボナート、炭酸プロピレンなどが挙げられる。
 上記スルホン系溶媒としては、具体的には、ジメチルスルホキシド(DMSO)、スルホランなどが挙げられる。
 上記エステル系溶媒としては、具体的には、ピルビン酸メチル、ピルビン酸エチル、メチル-3-メトキシプロピオネートなどが挙げられる。
 上記芳香族炭化水素系溶媒としては、具体的には、メシチレン、トルエン、キシレンなどが挙げられる。
Specific examples of the alcohol solvent include tetrahydrofurfuryl alcohol, benzyl alcohol, 2-ethylhexanol, butanediol, and isopropyl alcohol.
Specific examples of the ketone solvent include cyclopentanone, cyclohexanone, diacetone alcohol, and 2-heptanone.
Specific examples of the lactone solvent include γ-butyrolactone (GBL) and γ-valerolactone.
Specific examples of the carbonate-based solvent include ethylene carbonate and propylene carbonate.
Specific examples of the sulfone-based solvent include dimethylsulfoxide (DMSO) and sulfolane.
Specific examples of the ester solvent include methyl pyruvate, ethyl pyruvate, and methyl-3-methoxypropionate.
Specific examples of the aromatic hydrocarbon solvent include mesitylene, toluene, and xylene.
 溶媒中のウレア化合物及び非環状構造のアミド化合物の含有量の下限値としては、溶媒を100質量部としたとき、例えば、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることが更に好ましく、50質量部以上であることが一層好ましく、70質量部以上であることが殊更好ましい。これにより、ネガ型感光性樹脂組成物の硬化物と、Al、Cuといった金属との密着性をより向上できる。 The lower limit of the content of the urea compound and the amide compound having an acyclic structure in the solvent is, for example, preferably 10 parts by mass or more, preferably 20 parts by mass or more, when the solvent is 100 parts by mass. More preferably, it is 30 parts by mass or more, even more preferably 50 parts by mass or more, and even more preferably 70 parts by mass or more. Thereby, the adhesiveness of the hardened|cured material of a negative photosensitive resin composition and metals, such as Al and Cu, can be improved more.
 また、溶媒中のウレア化合物及び非環状構造のアミド化合物の含有量の下限値としては、溶媒を100質量部としたとき、例えば、100質量部以下とすることができる。溶媒中には、ウレア化合物及び非環状構造のアミド化合物の含有量が多いことが、密着性向上の観点から好ましい。 In addition, the lower limit of the content of the urea compound and the amide compound with an acyclic structure in the solvent can be, for example, 100 parts by mass or less when the solvent is 100 parts by mass. From the viewpoint of improving adhesion, it is preferable that the solvent contains a large amount of the urea compound and the amide compound having an acyclic structure.
(界面活性剤)
 本実施形態に係るネガ型感光性樹脂組成物は、界面活性剤をさらに含んでいてもよい。
(Surfactant)
The negative photosensitive resin composition according to this embodiment may further contain a surfactant.
 界面活性剤としては、限定されず、具体的にはポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアリールエーテル類;ポリオキシエチレンジラウレート、ポリオキシエチレンジステアレートなどのポリオキシエチレンジアルキルエステル類などのノニオン系界面活性剤;エフトップEF301、エフトップEF303、エフトップEF352(新秋田化成社製)、メガファックF171、メガファックF172、メガファックF173、メガファックF177、メガファックF444、メガファックF470、メガファックF471、メガファックF475、メガファックF482、メガファックF477(DIC社製)、フロラードFC-430、フロラードFC-431、ノベックFC4430、ノベックFC4432(スリーエムジャパン社製)、サーフロンS-381、サーフロンS-382、サーフロンS-383、サーフロンS-393、サーフロンSC-101、サーフロンSC-102、サーフロンSC-103、サーフロンSC-104、サーフロンSC-105、サーフロンSC-106、(AGCセイミケミカル社製)などの名称で市販されているフッ素系界面活性剤;オルガノシロキサン共重合体KP341(信越化学工業社製);(メタ)アクリル酸系共重合体ポリフローNo.57、95(共栄社化学社製)などが挙げられる。 The surfactant is not limited, and specifically polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether, polyoxyethylene Polyoxyethylene aryl ethers such as nonylphenyl ether; Nonionic surfactants such as polyoxyethylene dialkyl esters such as polyoxyethylene dilaurate and polyoxyethylene distearate; Ftop EF301, Ftop EF303, Ftop EF352 (manufactured by Shin-Akita Kasei), Megafac F171, Megafac F172, Megafac F173, Megafac F177, Megafac F444, Megafac F470, Megafac F471, Megafac F475, Megafac F482, Megafac F477 (DIC Corporation) manufactured), Florado FC-430, Florard FC-431, Novec FC4430, Novec FC4432 (manufactured by 3M Japan), Surflon S-381, Surflon S-382, Surflon S-383, Surflon S-393, Surflon SC-101, Surflon SC-102, Surflon SC-103, Surflon SC-104, Surflon SC-105, Surflon SC-106, commercially available fluorine-based surfactants (manufactured by AGC Seimi Chemical Co., Ltd.); Combined KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.); (meth)acrylic acid-based copolymer Polyflow No. 57, 95 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 これらのなかでも、パーフルオロアルキル基を有するフッ素系界面活性剤を用いることが好ましい。パーフルオロアルキル基を有するフッ素系界面活性剤としては、上記具体例のうち、メガファックF171、メガファックF173、メガファックF444、メガファックF470、メガファックF471、メガファックF475、メガファックF482、メガファックF477(DIC社製)、サーフロンS-381、サーフロンS-383、サーフロンS-393(AGCセイミケミカル社製)、ノベックFC4430及びノベックFC4432(スリーエムジャパン社製)から選択される1種または2種以上を用いることが好ましい。 Among these, it is preferable to use a fluorine-based surfactant having a perfluoroalkyl group. Among the specific examples of the perfluoroalkyl group-containing fluorosurfactant, Megafac F171, Megafac F173, Megafac F444, Megafac F470, Megafac F471, Megafac F475, Megafac F482, and Megafac One or more selected from F477 (manufactured by DIC), Surflon S-381, Surflon S-383, Surflon S-393 (manufactured by AGC Seimi Chemical Co., Ltd.), Novec FC4430 and Novec FC4432 (manufactured by 3M Japan) is preferably used.
 また、界面活性剤としては、シリコーン系界面活性剤(例えばポリエーテル変性ジメチルシロキサンなど)も好ましく用いることができる。シリコーン系界面活性剤として具体的には、東レダウコーニング社のSHシリーズ、SDシリーズおよびSTシリーズ、ビックケミー・ジャパン社のBYKシリーズ、信越化学工業株式会社のKPシリーズ、日油株式会社のディスフォーム(登録商標)シリーズ、東芝シリコーン社のTSFシリーズなどを挙げることができる。 Also, as the surfactant, a silicone-based surfactant (eg, polyether-modified dimethylsiloxane, etc.) can be preferably used. Specific examples of silicone surfactants include SH series, SD series and ST series from Dow Corning Toray Co., Ltd., BYK series from BYK Chemie Japan, KP series from Shin-Etsu Chemical Co., Ltd., Disfoam from NOF CORPORATION ( (registered trademark) series, TSF series of Toshiba Silicone Co., Ltd., and the like.
 ネガ型感光性樹脂組成物中の界面活性剤の含有量の上限値は、ネガ型感光性樹脂組成物の全体(溶媒を含む)に対して1質量%(10,000ppm)以下であることが好ましく、0.5質量%(5,000ppm)以下であることであることがより好ましく、0.3質量%(3,000ppm)以下であることが更に好ましい。 The upper limit of the content of the surfactant in the negative photosensitive resin composition is 1% by mass (10,000 ppm) or less with respect to the entire negative photosensitive resin composition (including the solvent). It is preferably 0.5% by mass (5,000 ppm) or less, more preferably 0.3% by mass (3,000 ppm) or less.
 また、ネガ型感光性樹脂組成物中の界面活性剤の含有量の下限値は、特には無いが、界面活性剤による効果を十分に得る観点からは、例えば、ネガ型感光性樹脂組成物の全体(溶媒を含む)に対して0.001質量%(10ppm)以上である。
 界面活性剤の量を適当に調整することで、他の性能を維持しつつ、塗布性や塗膜の均一性などを向上させることができる。
In addition, although there is no particular lower limit for the content of the surfactant in the negative photosensitive resin composition, from the viewpoint of sufficiently obtaining the effect of the surfactant, for example, the negative photosensitive resin composition It is 0.001% by mass (10 ppm) or more with respect to the whole (including the solvent).
Applicability and uniformity of the coating film can be improved while maintaining other properties by appropriately adjusting the amount of the surfactant.
(酸化防止剤)
 本実施形態に係るネガ型感光性樹脂組成物は、酸化防止剤をさらに含んでもよい。酸化防止剤としては、フェノ-ル系酸化防止剤、リン系酸化防止剤およびチオエ-テル系酸化防止剤から選択される1種以上を使用できる。酸化防止剤は、ネガ型感光性樹脂組成物により形成される樹脂膜の酸化を抑制できる。
(Antioxidant)
The negative photosensitive resin composition according to this embodiment may further contain an antioxidant. As the antioxidant, one or more selected from phenol-based antioxidants, phosphorus-based antioxidants and thioether-based antioxidants can be used. The antioxidant can suppress oxidation of the resin film formed from the negative photosensitive resin composition.
 フェノ-ル系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、4,4'-チオビス(6-t-ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ-t-ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2'-メチレンビス(4-メチル-6-t-ブチル-6-ブチルフェノール)、2,-2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド〕グリコールエステル、4,4'-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2'-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2'-エチリデンビス(4-s-ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス〔2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、2-t-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4-8,10-テトラオキサスピロ[5,5]ウンデカン-ビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、トリエチレングリコ-ルビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、1,1'-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2'-メチレンビス(6-(1-メチルシクロヘキシル)-4-メチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、3,9-ビス(2-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニルプロピオニロキシ)1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)サルファイド、4,4'-チオビス(6-t-ブチル-2-メチルフェノール)、2,5-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノン、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジメチル-6-(1-メチルシクロヘキシル、スチレネイティッドフェノール、2,4-ビス((オクチルチオ)メチル)-5-メチルフェノール、などが挙げられる。 Phenolic antioxidants include pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 3,9-bis{2-[3-(3 -t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl}2,4,8,10-tetraoxaspiro[5,5]undecane, octadecyl-3-(3, 5-di-t-butyl-4-hydroxyphenyl)propionate, 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 1,3,5 -trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t -butyl-4-ethylphenol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-di-t-butyl-4-hydroxyphenyl) propionate, distearyl (3,5-di-t -butyl-4-hydroxybenzyl)phosphonate, thiodiethylene glycol bis[(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 4,4'-thiobis(6-t-butyl-m-cresol) , 2-octylthio-4,6-di(3,5-di-t-butyl-4-hydroxyphenoxy)-s-triazine, 2,2′-methylenebis(4-methyl-6-t-butyl-6- butylphenol), 2,-2'-methylenebis(4-ethyl-6-t-butylphenol), bis[3,3-bis(4-hydroxy-3-t-butylphenyl)butyric acid]glycol ester, 4, 4'-butylidenebis(6-t-butyl-m-cresol), 2,2'-ethylidenebis(4,6-di-t-butylphenol), 2,2'-ethylidenebis(4-s-butyl-6 -t-butylphenol), 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, bis[2-t-butyl-4-methyl-6-(2-hydroxy- 3-t-butyl-5-methylbenzyl)phenyl]terephthalate, 1,3,5-tris(2,6-dimethyl-3-hydroxy-4-t-butylbenzyl)isocyanurate, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,3,5- Lis[(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxyethyl]isocyanurate, tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane , 2-t-butyl-4-methyl-6-(2-acryloyloxy-3-t-butyl-5-methylbenzyl)phenol, 3,9-bis(1,1-dimethyl-2-hydroxyethyl)- 2,4-8,10-tetraoxaspiro[5,5]undecane-bis[β-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate], triethylene glycol-bis[β-( 3-t-butyl-4-hydroxy-5-methylphenyl)propionate], 1,1′-bis(4-hydroxyphenyl)cyclohexane, 2,2′-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 2,2'-methylenebis(6-(1-methylcyclohexyl)-4-methylphenol), 4,4'-butylidenebis(3-methyl -6-t-butylphenol), 3,9-bis(2-(3-t-butyl-4-hydroxy-5-methylphenylpropionyloxy)1,1-dimethylethyl)-2,4,8,10- Tetraoxaspiro(5,5)undecane, 4,4'-thiobis(3-methyl-6-t-butylphenol), 4,4'-bis(3,5-di-t-butyl-4-hydroxybenzyl) Sulfide, 4,4'-thiobis(6-t-butyl-2-methylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, 2-t-butyl-6 -(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, 2,4-dimethyl-6-(1-methylcyclohexyl, styreneated phenol, 2,4-bis(( octylthio)methyl)-5-methylphenol, and the like.
 リン系酸化防止剤としては、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニルホスファイト)、テトラキス(2,4-ジ-t-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイト、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、ビス-(2,6-ジクミルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、トリス(ミックスドモノandジ-ノニルフェニルホスファイト)、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メトキシカルボニルエチル-フェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-オクタデシルオキシカルボニルエチルフェニル)ペンタエリスリトールジホスファイトなどが挙げられる。 Phosphorus antioxidants include bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite, tris(2,4-di-t-butylphenylphosphite), tetrakis(2 ,4-di-t-butyl-5-methylphenyl)-4,4′-biphenylenediphosphonite, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, bis-(2,6 -dicumylphenyl)pentaerythritol diphosphite, 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite, tris(mixed mono and di-nonylphenylphosphite), bis(2, 4-di-t-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-t-butyl-4-methoxycarbonylethyl-phenyl)pentaerythritol diphosphite, bis(2,6-di-t -Butyl-4-octadecyloxycarbonylethylphenyl)pentaerythritol diphosphite and the like.
 チオエ-テル系酸化防止剤としては、ジラウリル-3,3'-チオジプロピオネート、ビス(2-メチル-4-(3-n-ドデシル)チオプロピオニルオキシ)-5-t-ブチルフェニル)スルフィド、ジステアリル-3,3'-チオジプロピオネート、ペンタエリスリトール-テトラキス(3-ラウリル)チオプロピオネートなどが挙げられる。 Thioether antioxidants include dilauryl-3,3′-thiodipropionate, bis(2-methyl-4-(3-n-dodecyl)thiopropionyloxy)-5-t-butylphenyl)sulfide , distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis(3-lauryl)thiopropionate, and the like.
(フィラー)
 本実施形態に係るネガ型感光性樹脂組成物は、フィラーを更に含んでいてもよい。フィラーとしては、ネガ型感光性樹脂組成物によってなる樹脂膜に求められる機械的特性、熱的特性に応じて適切な充填材を選択できる。
(filler)
The negative photosensitive resin composition according to this embodiment may further contain a filler. As the filler, an appropriate filler can be selected according to the mechanical properties and thermal properties required for the resin film made of the negative photosensitive resin composition.
 フィラーとしては、具体的には、無機フィラーまたは有機フィラーなどが挙げられる。
 上記無機フィラーとしては、具体的には、溶融破砕シリカ、溶融球状シリカ、結晶性シリカ、2次凝集シリカ、微粉シリカなどのシリカ;アルミナ、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化チタン、炭化ケイ素、水酸化アルミニウム、水酸化マグネシウム、チタンホワイトなどの金属化合物;タルク;クレー;マイカ;ガラス繊維などが挙げられる。無機フィラーとしては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。
Specific examples of fillers include inorganic fillers and organic fillers.
Specific examples of the inorganic filler include silica such as fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, and finely divided silica; alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, and silicon carbide. , aluminum hydroxide, magnesium hydroxide, titanium white, and other metal compounds; talc; clay; mica; As the inorganic filler, one or a combination of two or more of the above specific examples can be used.
 上記有機フィラーとしては、具体的には、オルガノシリコーンパウダー、ポリエチレンパウダーなどが挙げられる。有機フィラーとしては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。 Specific examples of the organic filler include organosilicone powder and polyethylene powder. As the organic filler, one or a combination of two or more of the above specific examples can be used.
(ネガ型感光性樹脂組成物の調製)
 本実施形態におけるネガ型感光性樹脂組成物を調製する方法は限定されず、ネガ型感光性樹脂組成物に含まれる成分に応じて、公知の方法を用いることができる。
 例えば、上記各成分を、溶媒に混合して溶解することにより調製することができる。
(Preparation of negative photosensitive resin composition)
A method for preparing the negative photosensitive resin composition in the present embodiment is not limited, and a known method can be used depending on the components contained in the negative photosensitive resin composition.
For example, it can be prepared by mixing and dissolving the above components in a solvent.
(ネガ型感光性樹脂組成物)
 本実施形態に係るネガ型感光性樹脂組成物は、該ネガ型感光性樹脂組成物をAl、Cuといった金属を備える面に対して塗工し、次いで、プリベークすることで乾燥させ樹脂膜を形成し、次いで、露光及び現像することで所望の形状に樹脂膜をパターニングし、次いで、樹脂膜を熱処理することで硬化させ硬化膜を形成することで使用される。
(Negative photosensitive resin composition)
The negative photosensitive resin composition according to the present embodiment is formed by applying the negative photosensitive resin composition to a surface comprising a metal such as Al or Cu, and then pre-baking to dry it to form a resin film. Then, the resin film is patterned into a desired shape by exposure and development, and then the resin film is cured by heat treatment to form a cured film.
 なお、上記永久膜を作製する場合、プリベークの条件としては、例えば、温度80℃以上150℃以下で、30秒間以上1時間以下の熱処理とすることができる。また、熱処理の条件としては、例えば、温度150℃以上350℃以下で、2分間以上10時間以下の熱処理とすることができる。 When the permanent film is produced, the pre-baking conditions may be, for example, heat treatment at a temperature of 80° C. or higher and 150° C. or lower for 30 seconds or longer and 1 hour or shorter. Further, as the conditions of the heat treatment, for example, the heat treatment can be performed at a temperature of 150° C. or more and 350° C. or less for 2 minutes or more and 10 hours or less.
 本実施形態に係るネガ型感光性樹脂組成物の粘度は、所望の樹脂膜の厚みに応じて適宜設定することができる。ネガ型感光性樹脂組成物の粘度の調整は、溶媒を添加することでできる。なお、調整の際、溶媒中のウレア化合物及び非環状構造のアミド化合物の含有量を一定に保つ必要がある。 The viscosity of the negative photosensitive resin composition according to this embodiment can be appropriately set according to the desired thickness of the resin film. The viscosity of the negative photosensitive resin composition can be adjusted by adding a solvent. During the adjustment, it is necessary to keep the contents of the urea compound and the non-cyclic amide compound in the solvent constant.
 本実施形態に係るネガ型感光性樹脂組成物の粘度の上限値は、例えば、2000mPa・s以下でもよく、1800mPa・s以下でもよく、1500mPa・s以下でもよい。また、本実施形態に係るネガ型感光性樹脂組成物の粘度の下限値は、所望の樹脂膜の厚みに応じて、例えば、10mPa・s以上でもよく、50mPa・s以上でもよい。 The upper limit of the viscosity of the negative photosensitive resin composition according to this embodiment may be, for example, 2000 mPa·s or less, 1800 mPa·s or less, or 1500 mPa·s or less. Also, the lower limit of the viscosity of the negative photosensitive resin composition according to the present embodiment may be, for example, 10 mPa·s or more or 50 mPa·s or more depending on the desired thickness of the resin film.
 本実施形態のネガ型感光性樹脂組成物から得られるフィルムは、テンシロン試験機による引張試験により測定された伸び率が、最大値2~200%、好ましくは5~150%であり、平均値1~150%、好ましくは2~120%である。
 本実施形態のネガ型感光性樹脂組成物から得られるフィルムは、引張強度が、30~300MPa、好ましくは50~200MPaとすることができる。
The film obtained from the negative photosensitive resin composition of the present embodiment has a maximum elongation of 2 to 200%, preferably 5 to 150%, and an average elongation of 1 as measured by a tensile test using a Tensilon tester. ~150%, preferably 2-120%.
A film obtained from the negative photosensitive resin composition of the present embodiment can have a tensile strength of 30 to 300 MPa, preferably 50 to 200 MPa.
 このように、本実施形態のネガ型感光性樹脂組成物は、機械的強度に優れたフィルム等の硬化物を提供することができる。この理由は明らかでないが、ポリマー鎖間の強いパッキングにより、ポリマー鎖の滑りぬけによる破断が抑えられ、伸びが向上し、可とう性に優れるためと推察される。 Thus, the negative photosensitive resin composition of this embodiment can provide a cured product such as a film having excellent mechanical strength. Although the reason for this is not clear, it is presumed that strong packing between polymer chains suppresses breakage due to sliding of the polymer chains, improves elongation, and provides excellent flexibility.
(用途)
 本実施形態のネガ型感光性樹脂組成物は、永久膜、レジストなどの半導体装置用の樹脂膜を形成するために用いられる。これらの中でも、プリベーク後のネガ型感光性樹脂組成物及びAlパッドの密着性向上と、現像時のネガ型感光性樹脂組成物の残渣の発生の抑制とをバランスよく発現する観点、熱処理後のネガ型感光性樹脂組成物の硬化膜と、金属との密着性を向上する観点、加えて、熱処理後のネガ型感光性樹脂組成物の耐薬品性を向上する観点から、永久膜を用いる用途に用いられることが好ましい。
(Application)
The negative photosensitive resin composition of the present embodiment is used for forming resin films for semiconductor devices such as permanent films and resists. Among these, from the viewpoint of expressing in a well-balanced manner the improvement in adhesion between the negative photosensitive resin composition and the Al pad after prebaking and the suppression of the generation of residues of the negative photosensitive resin composition during development, Use of a permanent film from the viewpoint of improving the adhesion between the cured film of the negative photosensitive resin composition and the metal, and also from the viewpoint of improving the chemical resistance of the negative photosensitive resin composition after heat treatment. It is preferably used for
 なお、本実施形態において、樹脂膜は、ネガ型感光性樹脂組成物の硬化膜を含む。すなわち、本実施形態にかかる樹脂膜とは、ネガ型感光性樹脂組成物を硬化させてなるものである。 In addition, in the present embodiment, the resin film includes a cured film of a negative photosensitive resin composition. That is, the resin film according to this embodiment is obtained by curing a negative photosensitive resin composition.
 上記永久膜は、ネガ型感光性樹脂組成物に対してプリベーク、露光及び現像を行い、所望の形状にパターニングした後、熱処理することによって硬化させることにより得られた樹脂膜で構成される。永久膜は、半導体装置の保護膜、層間膜、ダム材などに用いることができる。 The permanent film is composed of a resin film obtained by pre-baking, exposing, and developing a negative photosensitive resin composition, patterning it into a desired shape, and then curing it by heat treatment. Permanent films can be used as protective films, interlayer films, dam materials, and the like for semiconductor devices.
 上記レジストは、例えば、ネガ型感光性樹脂組成物をスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の方法で、レジストにとってマスクされる対象に塗工し、ネガ型感光性樹脂組成物から溶媒を除去することにより得られた樹脂膜で構成される。 The above-mentioned resist can be obtained, for example, by applying a negative photosensitive resin composition to an object to be masked by the resist by a method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, and negative photosensitive resin composition. It is composed of a resin film obtained by removing the solvent from a flexible resin composition.
 本実施形態に係る半導体装置の一例を図1に示す。
 本実施形態に係る半導体装置100は、上記樹脂膜を備える半導体装置とすることができる。具体的には、半導体装置100のうち、パッシベーション膜32、絶縁層42および絶縁層44からなる群の1つ以上を、本実施形態の硬化物を含む樹脂膜とすることができる。ここで、樹脂膜は、上述した永久膜であることが好ましい。
An example of a semiconductor device according to this embodiment is shown in FIG.
The semiconductor device 100 according to this embodiment can be a semiconductor device including the resin film. Specifically, one or more of the group consisting of the passivation film 32, the insulating layer 42, and the insulating layer 44 in the semiconductor device 100 can be a resin film containing the cured product of the present embodiment. Here, the resin film is preferably the permanent film described above.
 半導体装置100は、たとえば半導体チップである。この場合、たとえば半導体装置100を、バンプ52を介して配線基板上に搭載することにより半導体パッケージが得られる。 The semiconductor device 100 is, for example, a semiconductor chip. In this case, for example, a semiconductor package is obtained by mounting the semiconductor device 100 on the wiring substrate via the bumps 52 .
 半導体装置100は、トランジスタ等の半導体素子が設けられた半導体基板と、半導体基板上に設けられた多層配線層(図示せず。)と、を備えている。多層配線層のうち最上層には、層間絶縁膜30と、層間絶縁膜30上に設けられた最上層配線34が設けられている。最上層配線34は、たとえば、アルミニウムAlにより構成される。また、層間絶縁膜30上および最上層配線34上には、パッシベーション膜32が設けられている。パッシベーション膜32の一部には、最上層配線34が露出する開口が設けられている。 The semiconductor device 100 includes a semiconductor substrate provided with semiconductor elements such as transistors, and a multilayer wiring layer (not shown) provided on the semiconductor substrate. An interlayer insulating film 30 and a top layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layers. The uppermost layer wiring 34 is made of aluminum Al, for example. A passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34 . A portion of the passivation film 32 is provided with an opening through which the uppermost layer wiring 34 is exposed.
 パッシベーション膜32上には、再配線層40が設けられている。再配線層40は、パッシベーション膜32上に設けられた絶縁層42と、絶縁層42上に設けられた再配線46と、絶縁層42上および再配線46上に設けられた絶縁層44と、を有する。絶縁層42には、最上層配線34に接続する開口が形成されている。再配線46は、絶縁層42上および絶縁層42に設けられた開口内に形成され、最上層配線34に接続されている。絶縁層44には、再配線46に接続する開口が設けられている。 A rewiring layer 40 is provided on the passivation film 32 . The rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, have An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42 . The rewiring 46 is formed on the insulating layer 42 and in openings provided in the insulating layer 42 and connected to the uppermost layer wiring 34 . The insulating layer 44 is provided with an opening connected to the rewiring 46 .
 絶縁層44に設けられた開口内には、たとえばUBM(Under Bump Metallurgy)層50を介してバンプ52が形成される。半導体装置100は、たとえばバンプ52を介して配線基板等に接続される。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。
A bump 52 is formed in the opening provided in the insulating layer 44 via a UBM (Under Bump Metallurgy) layer 50, for example. Semiconductor device 100 is connected to a wiring substrate or the like via bumps 52, for example.
Although the embodiments of the present invention have been described above, these are merely examples of the present invention, and various configurations other than those described above can be employed within the scope that does not impair the effects of the present invention.
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 実施例においては以下の化合物を用いた。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.
The following compounds were used in the examples.
 下記式で示される、4,4-ジアミノ-3,3-ジエチル-5,5-ジメチルジフェニルメタン(以下、MED-Jとも示す)
Figure JPOXMLDOC01-appb-C000052
4,4-diamino-3,3-diethyl-5,5-dimethyldiphenylmethane (hereinafter also referred to as MED-J) represented by the following formula
Figure JPOXMLDOC01-appb-C000052
 下記式で示される、4,4'-(ヘキサフルオロイソプロピリデン)ビス[(4-アミノフェノキシ)ベンゼン](以下、HFBAPPとも示す)
Figure JPOXMLDOC01-appb-C000053
4,4′-(hexafluoroisopropylidene)bis[(4-aminophenoxy)benzene] (hereinafter also referred to as HFBAPP) represented by the following formula
Figure JPOXMLDOC01-appb-C000053
 下記式で示される、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル(以下、TFMBとも示す)
Figure JPOXMLDOC01-appb-C000054
4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (hereinafter also referred to as TFMB) represented by the following formula
Figure JPOXMLDOC01-appb-C000054
 下記式で示される、4-[4-(1,3-ジオキソイソベンゾフラン-5-イルカルボニロキシ)-2,3,5-トリメチルフェニル]-2,3,6-トリメチルフェニル 1,3-ジオキソイソベンゾフラン-5-カルボキシレート(以下、TMPBP-TMEとも示す)
Figure JPOXMLDOC01-appb-C000055
4-[4-(1,3-dioxoisobenzofuran-5-ylcarbonyloxy)-2,3,5-trimethylphenyl]-2,3,6-trimethylphenyl 1,3 represented by the following formula -dioxoisobenzofuran-5-carboxylate (hereinafter also referred to as TMPBP-TME)
Figure JPOXMLDOC01-appb-C000055
 下記式で示される、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン酸二無水物(以下、HQDAとも示す)
Figure JPOXMLDOC01-appb-C000056
1,4-bis(3,4-dicarboxyphenoxy)benzoic acid dianhydride (hereinafter also referred to as HQDA) represented by the following formula
Figure JPOXMLDOC01-appb-C000056
 下記式で示される、4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAとも示す)
Figure JPOXMLDOC01-appb-C000057
4,4′-(Hexafluoroisopropylidene)diphthalic anhydride (hereinafter also referred to as 6FDA) represented by the following formula
Figure JPOXMLDOC01-appb-C000057
[実施例1]
 はじめに、撹拌機および冷却管を備えた適切なサイズの反応容器に、MED-J 43.99g(155.8mmol)と、TMPBP-TME 89.22g(144.2mmol)を入れた。その後、反応容器に、さらにγ-ブチロラクトン(以下、GBLとも示す)399.64gを加えた。
 窒素を10分間通気した後、撹拌しつつ温度60℃まで上げ、1時間反応させた。事前に、ジメチル無水マレイン酸8.73g(69.2mmol)をガンマブチロラクトン26.19gに溶解させた溶液を作成し、この溶液を反応容器へ入れ、さらに30分反応を行った。さらに175℃で3時間反応させることで、ジアミンと酸無水物を重合させ末端を封止した、重合溶液を作製した。
 得られた重合溶液を、テトラヒドロフランで希釈して希釈液を作製し、次いで、希釈液をメタノール溶液に滴下することで、白色固体を析出させた。得られた白色固体を回収し、温度80℃で真空乾燥することにより、ポリマー125.88gを得た。
 ポリマーをGPC測定したところ、重量平均分子量Mwは74,000、多分散度(重量平均分子量Mw/数平均分子量Mn)は2.62であり、末端封止率は65%であった。
 得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000058
[Example 1]
First, 43.99 g (155.8 mmol) of MED-J and 89.22 g (144.2 mmol) of TMPBP-TME were placed in an appropriately sized reaction vessel equipped with a stirrer and condenser. After that, 399.64 g of γ-butyrolactone (hereinafter also referred to as GBL) was added to the reactor.
After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour. In advance, a solution was prepared by dissolving 8.73 g (69.2 mmol) of dimethylmaleic anhydride in 26.19 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked.
The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at 80° C. to obtain 125.88 g of polymer.
GPC measurement of the polymer revealed a weight average molecular weight Mw of 74,000, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.62, and a terminal blocking rate of 65%.
The obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
Figure JPOXMLDOC01-appb-C000058
[実施例2]
 はじめに、撹拌機および冷却管を備えた適切なサイズの反応容器に、MED-J 5.92g(21.0mmol)と、HFBAPP 10.86g(21.0mmol)と、TMPBP-TME 23.57g(38.1mmol)を入れた。その後、反応容器に、さらにγ-ブチロラクトン(以下、GBLとも示す)121.04gを加えた。
 窒素を10分間通気した後、撹拌しつつ温度60℃まで上げ、1時間反応させた。事前に、ジメチル無水マレイン酸2.88g(22.9mmol)をガンマブチロラクトン8.65gに溶解させた溶液を作成し、この溶液を反応容器へ入れ、さらに30分反応を行った。さらに175℃で3時間反応させることで、ジアミンと酸無水物を重合させ末端を封止した、重合溶液を作製した。
 得られた重合溶液を、テトラヒドロフランで希釈して希釈液を作製し、次いで、希釈液をメタノール溶液に滴下することで、白色固体を析出させた。得られた白色固体を回収し、温度80℃で真空乾燥することにより、ポリマー35.42gを得た。
 ポリマーをGPC測定したところ、重量平均分子量Mwは55,600、多分散度(重量平均分子量Mw/数平均分子量Mn)は2.33であり、末端封止率は75%であった。
 得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000059
[Example 2]
First, 5.92 g (21.0 mmol) of MED-J, 10.86 g (21.0 mmol) of HFBAPP and 23.57 g of TMPBP-TME (38 .1 mmol) was added. After that, 121.04 g of γ-butyrolactone (hereinafter also referred to as GBL) was added to the reactor.
After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour. In advance, a solution was prepared by dissolving 2.88 g (22.9 mmol) of dimethylmaleic anhydride in 8.65 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked.
The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The obtained white solid was collected and dried in vacuum at a temperature of 80° C. to obtain 35.42 g of polymer.
GPC measurement of the polymer revealed a weight average molecular weight Mw of 55,600, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.33, and a terminal blocking rate of 75%.
The obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
Figure JPOXMLDOC01-appb-C000059
[実施例3]
 はじめに、撹拌機および冷却管を備えた適切なサイズの反応容器に、MED-J 7.33g(26.0mmol)と、TFMB 8.31g(26.0mmol)と、TMPBP-TME 29.74g(48.1mmol)を入れた。その後、反応容器に、さらにγ-ブチロラクトン(以下、GBLとも示す)136.16gを加えた。
 窒素を10分間通気した後、撹拌しつつ温度60℃まで上げ、1時間反応させた。事前に、ジメチル無水マレイン酸2.91g(23.1mmol)をガンマブチロラクトン8.73gに溶解させた溶液を作成し、この溶液を反応容器へ入れ、さらに30分反応を行った。さらに175℃で3時間反応させることで、ジアミンと酸無水物を重合させ末端を封止した、重合溶液を作製した。
 得られた重合溶液を、テトラヒドロフランで希釈して希釈液を作製し、次いで、希釈液をメタノール溶液に滴下することで、白色固体を析出させた。得られた白色固体を回収し、温度80℃で真空乾燥することにより、ポリマー35.44gを得た。
 ポリマーをGPC測定したところ、重量平均分子量Mwは69,500、多分散度(重量平均分子量Mw/数平均分子量Mn)は2.51であり、末端封止率は65%であった。
 得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000060
[Example 3]
First, 7.33 g (26.0 mmol) of MED-J, 8.31 g (26.0 mmol) of TFMB, and 29.74 g of TMPBP-TME (48 .1 mmol) was added. After that, 136.16 g of γ-butyrolactone (hereinafter also referred to as GBL) was added to the reactor.
After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour. In advance, a solution was prepared by dissolving 2.91 g (23.1 mmol) of dimethylmaleic anhydride in 8.73 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked.
The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at a temperature of 80° C. to obtain 35.44 g of polymer.
GPC measurement of the polymer revealed a weight average molecular weight Mw of 69,500, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.51, and a terminal blocking rate of 65%.
The obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
Figure JPOXMLDOC01-appb-C000060
[実施例4]
 はじめに、撹拌機および冷却管を備えた適切なサイズの反応容器に、MED-J 8.60g(30.4mmol)と、HQDA 11.89g(29.6mmol)を入れた。その後、反応容器に、さらにγ-ブチロラクトン(以下、GBLとも示す)81.96gを加えた。
 窒素を10分間通気した後、撹拌しつつ温度60℃まで上げ、1時間反応させた。事前に、ジメチル無水マレイン酸0.67g(5.3mmol)をガンマブチロラクトン2.68gに溶解させた溶液を作成し、この溶液を反応容器へ入れ、さらに30分反応を行った。さらに175℃で3時間反応させることで、ジアミンと酸無水物を重合させ末端を封止した、重合溶液を作製した。
 得られた重合溶液を、テトラヒドロフランで希釈して希釈液を作製し、次いで、希釈液をメタノール溶液に滴下することで、白色固体を析出させた。得られた白色固体を回収し、温度80℃で真空乾燥することにより、ポリマー15.15gを得た。
 ポリマーをGPC測定したところ、重量平均分子量Mwは63,400、多分散度(重量平均分子量Mw/数平均分子量Mn)は2.83であり、末端封止率は79%であった。
 得られたポリマーは、その一部に下記式で表される繰り返し単位が含まれ、末端にジメチルマレイミド基を備えていた。
Figure JPOXMLDOC01-appb-C000061
[Example 4]
First, 8.60 g (30.4 mmol) of MED-J and 11.89 g (29.6 mmol) of HQDA were placed in an appropriately sized reaction vessel equipped with a stirrer and condenser. After that, 81.96 g of γ-butyrolactone (hereinafter also referred to as GBL) was added to the reactor.
After bubbling nitrogen for 10 minutes, the temperature was raised to 60° C. while stirring, and the reaction was allowed to proceed for 1 hour. In advance, a solution was prepared by dissolving 0.67 g (5.3 mmol) of dimethylmaleic anhydride in 2.68 g of gamma-butyrolactone, and this solution was placed in a reaction vessel and reacted for an additional 30 minutes. Furthermore, by reacting at 175° C. for 3 hours, a polymerization solution was prepared in which the diamine and the acid anhydride were polymerized and the terminals were blocked.
The resulting polymerization solution was diluted with tetrahydrofuran to prepare a diluted solution, and then the diluted solution was added dropwise to a methanol solution to precipitate a white solid. The resulting white solid was collected and vacuum dried at a temperature of 80° C. to obtain 15.15 g of polymer.
GPC measurement of the polymer revealed a weight average molecular weight Mw of 63,400, a polydispersity (weight average molecular weight Mw/number average molecular weight Mn) of 2.83, and a terminal blocking rate of 79%.
The obtained polymer partially contained repeating units represented by the following formula and had a dimethylmaleimide group at the terminal.
Figure JPOXMLDOC01-appb-C000061
[比較例1~2]
 比較例1、2について、表1中に記載の条件以外は、実施例1と同様の手法で合成を行った。得られたMw、Mw/Mnについては表1中に記載した。
[Comparative Examples 1 and 2]
Comparative Examples 1 and 2 were synthesized in the same manner as in Example 1 except for the conditions described in Table 1. The obtained Mw and Mw/Mn are shown in Table 1.
[末端封止率の測定]
 反応後の溶液をガスクロマトグラフィーで測定し、反応で消費されたジメチル無水マレイン酸の全てがポリマー末端に結合したと仮定した場合において、ジメチル無水マレイン酸の理論消費量に対する実消費量の割合をジメチル無水マレイン酸によるポリマー末端の封止率とした
[Measurement of terminal capping rate]
The solution after the reaction was measured by gas chromatography, and assuming that all of the dimethylmaleic anhydride consumed in the reaction was bound to the polymer terminal, the ratio of the actual consumption to the theoretical consumption of dimethylmaleic anhydride was calculated. It is defined as the capping rate of the polymer terminal by dimethyl maleic anhydride.
[有機溶媒に対する溶解性]
 実施例1~3、比較例1、2で得られたネガ型感光性ポリマーのγ-ブチルラクトン(GBL)に対する溶解性を以下の基準で評価した。結果を表1に示す。
(溶解性の評価基準)
○:ポリマーが5質量%以上溶解
△:ポリマーが1~5質量%溶解
×:ポリマー溶解が1質量%未満
[Solubility in organic solvents]
The solubility in γ-butyl lactone (GBL) of the negative photosensitive polymers obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was evaluated according to the following criteria. Table 1 shows the results.
(Evaluation criteria for solubility)
○: 5% by mass or more of polymer dissolved △: 1 to 5% by mass of polymer dissolved ×: Less than 1% by mass of polymer dissolved
[耐加水分解性]
 以下の条件で、実施例および比較例で得られたネガ型感光性ポリマーの重量平均分子量の減少率を測定した。結果を表1に示す。
(条件(トリエチルアミン無添加))
 ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出した。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
[Hydrolysis resistance]
The rate of decrease in the weight average molecular weight of the negative photosensitive polymers obtained in Examples and Comparative Examples was measured under the following conditions. Table 1 shows the results.
(Conditions (no addition of triethylamine))
400 parts by mass of γ-butyrolactone, 200 parts by mass of 4-methyltetrahydropyran, and 50 parts by mass of water were added to 100 parts by mass of the negative photosensitive polymer, and the mixture was stirred at 100°C for 6 hours.
Formula: [(weight average molecular weight before test - weight average molecular weight after test) / weight average molecular weight before test] × 100
(条件(トリエチルアミン添加))
 ネガ型感光性ポリマー100質量部に、トリエチルアミン10質量部、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出した。
 式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
(Conditions (addition of triethylamine))
10 parts by mass of triethylamine, 400 parts by mass of γ-butyrolactone, 200 parts by mass of 4-methyltetrahydropyran, and 50 parts by mass of water were added to 100 parts by mass of the negative photosensitive polymer, and the mixture was stirred at 100°C for 6 hours. Calculated by the formula.
Formula: [(weight average molecular weight before test - weight average molecular weight after test) / weight average molecular weight before test] × 100
[伸び率]
 実施例、比較例で得られたポリマー溶液(ポリマー100質量部)をシリコンウェハ表面にスピンコートし、120℃4分間のプリベーク後、200℃120分間、窒素下での熱処理により、フィルムを調製した。
 得られたフィルムから切り出した試験片(6.5mm×60mm×10μm厚)に対して引張試験(延伸速度:5mm/分)を23℃雰囲気中で実施した。引張試験は、オリエンテック社製引張試験機(テンシロンRTC-1210A)を用いて行った。試験片5本を測定し、破断した距離と初期距離から引張伸び率を算出し、伸び率の最大値と平均値を求めた。結果を表1に示す。
[Growth rate]
The polymer solution (100 parts by mass of polymer) obtained in Examples and Comparative Examples was spin-coated on the surface of a silicon wafer, prebaked at 120°C for 4 minutes, and then heat-treated at 200°C for 120 minutes under nitrogen to prepare a film. .
A tensile test (stretching speed: 5 mm/min) was performed in an atmosphere of 23° C. on a test piece (6.5 mm×60 mm×10 μm thick) cut out from the obtained film. The tensile test was performed using a tensile tester (Tensilon RTC-1210A) manufactured by Orientec. Five test pieces were measured, the tensile elongation was calculated from the breaking distance and the initial distance, and the maximum and average values of the elongation were obtained. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 表1に示すように、実施例で得られた本発明のネガ型感光性ポリマーは有機溶剤への溶解性および伸びに優れ、さらに加水分解が抑制されていることから伸び率の低下が少なく機械的強度の低下が抑制されていると推察された。 As shown in Table 1, the negative photosensitive polymers of the present invention obtained in Examples are excellent in solubility in organic solvents and elongation. It was inferred that the decrease in physical strength was suppressed.
 ネガ型感光性樹脂組成物の調製においては以下の化合物を用いた。
・感光剤:1-クロロ-4‐プロポキシチオキサントン(英Lambson社製、SPEEDCURE CPTX(商品名))
・溶剤:シクロペンタノン
The following compounds were used in the preparation of the negative photosensitive resin composition.
Photosensitive agent: 1-chloro-4-propoxythioxanthone (SPEEDCURE CPTX (trade name) manufactured by Lambson, UK)
・Solvent: Cyclopentanone
[合成例1]
(無水マレイン酸変性ノルボルネンモノマー(DMMIBuNB、1-[4-(5-2-ノルボルニル)ブチル]-3,4-ジメチル-ピロール-2,5-ジオン)の合成)
 500mLの丸底フラスコ中で、ジメチルマレイン酸無水物(42.6g、0.34mol)を室温でトルエン(300mL)に溶解させた。酸素を除去するために、溶液を窒素ガス雰囲気下に置いた。反応フラスコを氷浴中に置き、発熱反応に由来する過剰な加熱を防いだ。ジメチルマレイン酸無水物が溶解した時点で、5-ノルボルネン-2-ブチルアミン(49.6g、0.30mol)を含む滴下漏斗を装着し、ノルボルネン化合物を反応フラスコに3時間に渡って滴下した。滴下漏斗を取り外し、ディーンスターク管および還流冷却器をフラスコに装着した。溶液を加熱して125℃に設定したオイルバス中で還流させ、反応物を18時間その温度で撹拌した。この間に約6mLの水がディーンスターク管に回収された。フラスコをオイルバスから取り出し、室温に冷却した。エバポレーターを用いてトルエン溶媒を除去し、黄色油状物質を得た。粗生成物をフラッシュクロマトグラフィーカラム(250gのシリカゲル)にのせ、1.7リットルのシクロヘキサン/酢酸エチル(95/5wt比)の溶媒混合物を用いて溶出させた。エバポレーターを用いて溶出溶媒を除去し、その後、真空下45℃で18時間乾燥させて、80.4g(収率92.7%)の目的とする生成物を得た。反応式を下記に示す。
[Synthesis Example 1]
(Synthesis of maleic anhydride-modified norbornene monomer (DMMIBuNB, 1-[4-(5-2-norbornyl)butyl]-3,4-dimethyl-pyrrole-2,5-dione))
Dimethylmaleic anhydride (42.6 g, 0.34 mol) was dissolved in toluene (300 mL) at room temperature in a 500 mL round bottom flask. The solution was placed under a nitrogen gas atmosphere to remove oxygen. The reaction flask was placed in an ice bath to prevent excessive heating resulting from the exothermic reaction. Once the dimethylmaleic anhydride dissolved, a dropping funnel containing 5-norbornene-2-butylamine (49.6 g, 0.30 mol) was fitted and the norbornene compound was added dropwise to the reaction flask over 3 hours. The dropping funnel was removed and the flask was fitted with a Dean-Stark tube and reflux condenser. The solution was heated to reflux in an oil bath set at 125° C. and the reaction was stirred at that temperature for 18 hours. About 6 mL of water was collected in the Dean-Stark tube during this time. The flask was removed from the oil bath and cooled to room temperature. The toluene solvent was removed using an evaporator to obtain a yellow oily substance. The crude product was applied to a flash chromatography column (250 g silica gel) and eluted with a solvent mixture of 1.7 liters of cyclohexane/ethyl acetate (95/5 wt ratio). The elution solvent was removed using an evaporator, followed by drying under vacuum at 45° C. for 18 hours to give 80.4 g (92.7% yield) of the desired product. A reaction formula is shown below.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
(ポリマー(DMMI-PNB)の合成)
 窒素置換した反応容器に、上記の方法で得られた1-[4-(5-2-ノルボルニル)ブチル]-3,4-ジメチル-ピロール-2,5-ジオン)24.6g、トリエチルシラン3.1g、トルエン13.5g、酢酸エチル4.5gを仕込んだ。さらに、濃度2.1wt%の[Pd(P(iPr)3)2(OCOCH3)(NCCH3)]テトラキス(ペンタフルオロフェニル)ボレート0.065g、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボラート0.043gにトルエン3.8g、酢酸エチル1.3gを加えた混合溶液を作製し、反応容器に加えて70℃で3時間反応させて重合体溶液を得た。重合体への転化率は91%であった。また、得られた重合体の重量平均分子量は6,700、分子量分布は1.89であった。
 調製された重合体溶液をテトラヒドロフランで希釈し、メタノールで再沈殿、ろ過後、50℃で真空乾燥することで重合体(DMMI-PNB)を18g得た。
(Synthesis of polymer (DMMI-PNB))
24.6 g of 1-[4-(5-2-norbornyl)butyl]-3,4-dimethyl-pyrrole-2,5-dione) obtained by the above method, triethylsilane 3 .1 g, 13.5 g of toluene and 4.5 g of ethyl acetate were charged. Further, 0.065 g of [Pd(P(iPr)3)2(OCOCH3)(NCCH3)]tetrakis(pentafluorophenyl)borate at a concentration of 2.1 wt%, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate A mixed solution was prepared by adding 3.8 g of toluene and 1.3 g of ethyl acetate to 0.043 g, added to a reaction vessel and reacted at 70° C. for 3 hours to obtain a polymer solution. The conversion to polymer was 91%. The weight average molecular weight of the obtained polymer was 6,700, and the molecular weight distribution was 1.89.
The prepared polymer solution was diluted with tetrahydrofuran, reprecipitated with methanol, filtered, and vacuum-dried at 50° C. to obtain 18 g of polymer (DMMI-PNB).
[実施例5]
(ネガ型感光性樹脂組成物の調製)
 実施例1のポリマー溶液(ポリマーDMMI-PI 12.0質量部)と、合成例1のポリマー(DMMI-PNB)と、表2に示す成分とを、表2に示す量で混合し、感光性樹脂組成物を調製した。
 得られたネガ型感光性樹脂組成物を、シリコンウェハ表面に乾燥後の膜厚が10μmになるようにスピンコートし、120℃4分間のプリベーク後、高圧水銀灯にて1500mJ/cmの露光を行い、その後、窒素雰囲気下で200℃120分間熱処理を行ってフィルムを調製した。
[Example 5]
(Preparation of negative photosensitive resin composition)
The polymer solution of Example 1 (polymer DMMI-PI 12.0 parts by mass), the polymer of Synthesis Example 1 (DMMI-PNB), and the components shown in Table 2 were mixed in the amounts shown in Table 2 to give a photosensitive polymer. A resin composition was prepared.
The obtained negative type photosensitive resin composition was spin-coated on the surface of a silicon wafer so that the film thickness after drying was 10 μm, prebaked at 120° C. for 4 minutes, and then exposed at 1500 mJ/cm 2 with a high-pressure mercury lamp. After that, heat treatment was performed at 200° C. for 120 minutes in a nitrogen atmosphere to prepare a film.
[ガラス転移温度(Tg)]
 実施例5で得られたフィルムから8mm×40mmの試験片を切り出し、その試験片に対し、動的粘弾性測定(DMA装置、TAインスツルメント社製、Q800)を用いて、昇温速度5℃/min、周波数1Hzで動的粘弾性測定を行い、損失正接tanδが最大値を示す温度をガラス転移温度として測定した。
[Glass transition temperature (Tg)]
A test piece of 8 mm × 40 mm was cut out from the film obtained in Example 5, and the test piece was subjected to dynamic viscoelasticity measurement (DMA device, manufactured by TA Instruments, Q800) at a heating rate of 5. A dynamic viscoelasticity measurement was performed at °C/min and a frequency of 1 Hz, and the temperature at which the loss tangent tan δ showed the maximum value was measured as the glass transition temperature.
[伸び率]
 実施例5で得られたフィルムから切り出した試験片(6.5mm×60mm×10μm厚)に対して引張試験(延伸速度:5mm/分)を23℃雰囲気中で実施した。引張試験は、オリエンテック社製引張試験機(テンシロンRTC-1210A)を用いて行った。試験片5本を測定し、破断点の応力を平均化したものを強度とした。破断した距離と初期距離から引張伸び率を算出し、伸び率の平均値と最大値を求めた。
 さらに、実施例5で得られたフィルムから切り出した前記試験片を、温度130℃、相対湿度85%RHの条件で、96時間、HAST(不飽和加圧蒸気試験)を行った後、前記と同様にして伸び率の平均値と最大値を求めた。
[Growth rate]
A test piece (6.5 mm×60 mm×10 μm thick) cut out from the film obtained in Example 5 was subjected to a tensile test (stretching speed: 5 mm/min) in an atmosphere of 23° C. The tensile test was performed using a tensile tester (Tensilon RTC-1210A) manufactured by Orientec. The strength was obtained by measuring five test pieces and averaging the stress at the breaking point. The tensile elongation was calculated from the breaking distance and the initial distance, and the average and maximum values of the elongation were obtained.
Furthermore, the test piece cut out from the film obtained in Example 5 was subjected to HAST (unsaturated pressurized steam test) for 96 hours under conditions of a temperature of 130 ° C. and a relative humidity of 85% RH. Similarly, the average value and maximum value of the elongation rate were determined.
(誘電正接Df)
 実施例5の感光性樹脂組成物を基板上に塗布し、この塗布膜を120℃10分間乾燥し、PLA露光(540mJ)を行い、窒素雰囲気下で200℃2時間硬化させて膜厚100μmのフィルムを得た。得られたフィルムについて、10GHzでの誘電正接を空洞共振器法で測定した。
(Dielectric loss tangent Df)
The photosensitive resin composition of Example 5 was applied onto a substrate, the coating film was dried at 120°C for 10 minutes, subjected to PLA exposure (540 mJ), and cured in a nitrogen atmosphere at 200°C for 2 hours to form a film having a thickness of 100 µm. got the film. The dielectric loss tangent at 10 GHz of the obtained film was measured by the cavity resonator method.
[パターニング特性に関する評価]
 実施例5の感光性樹脂組成物が、露光・現像により十分にパターニング可能であることを、以下のようにして確認した。
 実施例5の感光性樹脂組成物を、8インチシリコンウエハー上にスピンコーターを用いて塗布した。塗布後、大気下でホットプレートにて120℃で4分間プリベークし、膜厚約8.0μmの塗膜を得た。
 この塗膜に、幅20μmのビアパターンが描かれているマスクを通して、i線を照射した。照射には、i線ステッパー(ニコン社製・NSR-4425i)を用いた。
 露光後、現像液としてシクロペンタノンを用い、120秒間スプレー現像し、未露光部を溶解除去して、ビアパターンを得た。
 得られたビアパターンの断面を、卓上SEMを用いて観察した。ビアパターンの底面と開口部の中間の高さにおける幅をビア幅とし、以下基準で評価した。
 パターニング性良好:20μmのビアパターンが開口
 パターニング性不良:20μmのビアパターンが開口しない
 実施例5の感光性樹脂組成物から得られた塗膜はパターニング性が良好であった。
[Evaluation of patterning characteristics]
It was confirmed as follows that the photosensitive resin composition of Example 5 could be sufficiently patterned by exposure and development.
The photosensitive resin composition of Example 5 was applied onto an 8-inch silicon wafer using a spin coater. After the application, it was pre-baked on a hot plate at 120° C. for 4 minutes in the atmosphere to obtain a coating film having a thickness of about 8.0 μm.
This coating film was irradiated with an i-line through a mask having a via pattern with a width of 20 μm. An i-line stepper (NSR-4425i manufactured by Nikon Corporation) was used for irradiation.
After exposure, spray development was carried out using cyclopentanone as a developer for 120 seconds, and the unexposed areas were removed by dissolution to obtain a via pattern.
A cross section of the obtained via pattern was observed using a desktop SEM. The width at the middle height between the bottom surface of the via pattern and the opening was defined as the via width, and evaluation was made according to the following criteria.
Good patterning property: 20 μm via pattern opens Poor patterning property: 20 μm via pattern does not open The coating film obtained from the photosensitive resin composition of Example 5 had good patterning property.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 表2に記載のように、本発明のネガ型感光性ポリマーを含むネガ型感光性樹脂組成物から得られたフィルムは、低誘電正接に優れるとともに伸びに優れており、さらに耐加水分解性に優れたネガ型感光性ポリマーを含むことからHAST試験後においても機械的強度に優れることが明らかとなった。また、パターニング性も良好であり、ネガ型感光性樹脂組成物として好適に用いることが確認された。 As shown in Table 2, the film obtained from the negative photosensitive resin composition containing the negative photosensitive polymer of the present invention has excellent low dielectric loss tangent and excellent elongation, and further has hydrolysis resistance. Since it contains an excellent negative type photosensitive polymer, it has been clarified that the mechanical strength is excellent even after the HAST test. Moreover, it was confirmed that the patterning property was also favorable and it was suitably used as a negative photosensitive resin composition.
 この出願は、2021年6月25日に出願された日本出願特願2021-105687号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-105687 filed on June 25, 2021, and the entire disclosure thereof is incorporated herein.
100  半導体装置
30   層間絶縁膜
32   パッシベーション膜
34   最上層配線
40   再配線層
42   絶縁層
44   絶縁層
46   再配線
50   UBM層
52   バンプ
100 semiconductor device 30 interlayer insulating film 32 passivation film 34 top layer wiring 40 rewiring layer 42 insulating layer 44 insulating layer 46 rewiring 50 UBM layer 52 bump

Claims (27)

  1.  (A)ポリイミド
    を含み、
     前記ポリイミド(A)は、
     下記一般式(a1)で表される構造単位(a1)と、
     下記一般式(a2)で表される構造単位(a2)と、
    を含み、両末端の少なくとも一方が下記一般式(t)で表される基である、ネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (一般式(a1)中、Yは2価の有機基である。
     一般式(a2)中、R~Rは、それぞれ独立して、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、RとRは異なる基であり、RとRは異なる基である。
    は単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、または炭素数1~5の直鎖または分岐のフルオロアルキレン基を示し、複数存在するXは同一でも異なっていてもよい。
     一般式(t)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは2価の有機基を示す。*は結合手を示す。)
    (A) contains a polyimide;
    The polyimide (A) is
    a structural unit (a1) represented by the following general formula (a1);
    a structural unit (a2) represented by the following general formula (a2);
    At least one of both ends is a group represented by the following general formula (t), a negative photosensitive resin composition.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (a1), Y is a divalent organic group.
    In general formula (a2), R 1 to R 4 each independently represent an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and R 1 and R 2 are different groups; R3 and R4 are different groups.
    X 1 represents a single bond, -SO 2 -, -C(=O)-, a linear or branched alkylene group having 1 to 5 carbon atoms, or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms; , a plurality of X 1 may be the same or different.
    In general formula (t), R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Q 2 represents a divalent organic group. * indicates a bond. )
  2.  前記一般式(a1)のYは、アルキレン基含む2価の基、または少なくとも1つの芳香環含む2価の基である、請求項1に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein Y in the general formula (a1) is a divalent group containing an alkylene group or a divalent group containing at least one aromatic ring.
  3.  前記一般式(a1)中のYは、下記一般式(a1-1)、下記一般式(a1-2)および下記一般式(a1-3)から選択される2価の有機基である、請求項1または2に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。
    一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。*は結合手を示す。
    一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
    *は結合手を示す。)
    Y in the general formula (a1) is a divalent organic group selected from the following general formula (a1-1), the following general formula (a1-2) and the following general formula (a1-3). 3. The negative photosensitive resin composition according to Item 1 or 2.
    Figure JPOXMLDOC01-appb-C000004
    (In general formula (a1-1), R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 7 and a plurality of R 8 may be the same or different, R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; may be the same or different, and * indicates a bond.
    In general formula (a1-2), each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different. * indicates a bond.
    In general formula (a1-3), Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group.
    * indicates a bond. )
  4.  前記一般式(a1)中のYは、下記一般式(a1-4)で表される2価の有機基である、請求項1または2に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(a1-4)中、Zは2価の芳香族基を示す。*は結合手を示す。)
    3. The negative photosensitive resin composition according to claim 1, wherein Y in the general formula (a1) is a divalent organic group represented by the following general formula (a1-4).
    Figure JPOXMLDOC01-appb-C000005
    (In general formula (a1-4), Z2 represents a divalent aromatic group. * represents a bond.)
  5.  前記ポリイミド(A)の両末端が前記一般式(t)で表される基である、請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1 or 2, wherein both ends of the polyimide (A) are groups represented by the general formula (t).
  6.  前記ポリイミド(A)は、さらに一般式(a3)で表される構造単位(a3)を含む、請求項1または2に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(a3)中、RおよびRは各々独立して水素原子、炭素数1~4のハロアルキル基、または水酸基を示し、複数存在するR同士および複数存在するR同士は同一でも異なっていてもよい。Xは単結合、炭素数1~4のアルキレン基、炭素数1~4のハロアルキレン基を示す。m、nは各々独立して0または1を示す。)
    3. The negative photosensitive resin composition according to claim 1, wherein said polyimide (A) further comprises a structural unit (a3) represented by general formula (a3).
    Figure JPOXMLDOC01-appb-C000006
    (In general formula (a3), R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, and multiple R 5 and multiple R 6 are the same X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, and m and n each independently represent 0 or 1.)
  7.  前記一般式(t)の前記Qにおける2価の有機基は、一般式(a2)で表される構造単位(a2)または一般式(a3)で表される構造単位(a3)である、請求項6に記載のネガ型感光性樹脂組成物。 The divalent organic group in Q 2 of the general formula (t) is a structural unit (a2) represented by the general formula (a2) or a structural unit (a3) represented by the general formula (a3). The negative photosensitive resin composition according to claim 6.
  8.  前記ポリイミド(A)は、下記一般式(1)で表される構造単位を含む、請求項1または2に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(1)中、R~R、Xは一般式(a2)と同義であり、Yは一般式(a1)と同義である。)
    The negative photosensitive resin composition according to claim 1 or 2, wherein the polyimide (A) contains a structural unit represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000007
    (In general formula (1), R 1 to R 4 and X 1 have the same meanings as in general formula (a2), and Y has the same meaning as in general formula (a1).)
  9.  前記ポリイミド(A)は、下記一般式(2)で表される構造単位を含む、請求項6に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(2)中、R~R、X、m、nは一般式(a3)と同義であり、Yは一般式(a1)と同義である。)
    The negative photosensitive resin composition according to claim 6, wherein the polyimide (A) contains a structural unit represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000008
    (In general formula (2), R 5 to R 6 , X, m, and n are synonymous with general formula (a3), and Y is synonymous with general formula (a1).)
  10.  さらに、置換または無置換のマレイミド基を備える架橋剤(B)(前記ポリイミド(A)を除く)を含む、請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1 or 2, further comprising a cross-linking agent (B) (excluding the polyimide (A)) having a substituted or unsubstituted maleimide group.
  11.  架橋剤(B)は、下記一般式(b)で表される構造単位を含む、請求項10に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009
    (一般式(b)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは単結合、または2価の有機基を示し、G、G、およびGはそれぞれ独立して水素原子、置換または無置換の炭素数1~30の炭化水素基を示す。mは0、1または2である。)
    The negative photosensitive resin composition according to claim 10, wherein the cross-linking agent (B) contains a structural unit represented by the following general formula (b).
    Figure JPOXMLDOC01-appb-C000009
    (In general formula (b), R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, Q 1 represents a single bond or a divalent organic group, G 1 , G 2 and G 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, and m is 0, 1 or 2.)
  12.  Qの2価の前記有機基は、炭素数1~8のアルキレン基または(ポリ)アルキレングリコール鎖である、請求項11に記載のネガ型感光性樹脂組成物。 12. The negative photosensitive resin composition according to claim 11, wherein the divalent organic group of Q 1 is an alkylene group having 1 to 8 carbon atoms or a (poly)alkylene glycol chain.
  13.  さらに光増感剤(C)を含む、請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1 or 2, further comprising a photosensitizer (C).
  14.  さらにシランカップリング剤(D)を含む、請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1 or 2, further comprising a silane coupling agent (D).
  15.  下記一般式(a1)で表される構造単位(a1)と、
     下記一般式(a2)で表される構造単位(a2)と、
    を含み、両末端の少なくとも一方が下記一般式(t)で表される基である、ネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (一般式(a1)中、Yは2価の有機基である
     一般式(a2)中、R~Rは、それぞれ独立して、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、RとRは異なる基であり、RとRは異なる基である。
    は単結合、-SO-、-C(=O)-、炭素数1~5の直鎖または分岐のアルキレン基、または炭素数1~5の直鎖または分岐のフルオロアルキレン基を示し、複数存在するXは同一でも異なっていてもよい。
     一般式(t)中、RおよびRは各々独立して水素原子または炭素数1~3のアルキル基を示し、Qは2価の有機基を示す。*は結合手を示す。)
    a structural unit (a1) represented by the following general formula (a1);
    a structural unit (a2) represented by the following general formula (a2);
    At least one of both ends is a group represented by the following general formula (t), a negative photosensitive polymer.
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (In general formula (a1), Y is a divalent organic group. In general formula (a2), R 1 to R 4 are each independently an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms. is an alkoxy group, R 1 and R 2 are different groups, and R 3 and R 4 are different groups.
    X 1 represents a single bond, -SO 2 -, -C(=O)-, a linear or branched alkylene group having 1 to 5 carbon atoms, or a linear or branched fluoroalkylene group having 1 to 5 carbon atoms; , a plurality of X 1 may be the same or different.
    In general formula (t), R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Q 2 represents a divalent organic group. * indicates a bond. )
  16.  前記一般式(a1)のYは、アルキレン基含む2価の基、または少なくとも1つの芳香環含む2価の基である、請求項15に記載のネガ型感光性ポリマー。 The negative photosensitive polymer according to claim 15, wherein Y in the general formula (a1) is a divalent group containing an alkylene group or a divalent group containing at least one aromatic ring.
  17.  前記一般式(a1)中のYは、下記一般式(a1-1)、下記一般式(a1-2)および下記一般式(a1-3)から選択される2価の有機基である、請求項15または16に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000013
    (一般式(a1-1)中、RおよびRは、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士、複数存在するR同士は同一でも異なっていてもよい。Rは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR同士は同一でも異なっていてもよい。*は結合手を示す。
    一般式(a1-2)中、R10およびR11は、それぞれ独立して、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基を示し、複数存在するR10同士、複数存在するR11同士は同一でも異なっていてもよい。*は結合手を示す。
    一般式(a1-3)中、Zは炭素数1~5のアルキレン基、2価の芳香族基を示す。
    *は結合手を示す。)
    Y in the general formula (a1) is a divalent organic group selected from the following general formula (a1-1), the following general formula (a1-2) and the following general formula (a1-3). 17. The negative photosensitive polymer according to Item 15 or 16.
    Figure JPOXMLDOC01-appb-C000013
    (In general formula (a1-1), R 7 and R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and a plurality of R 7 and a plurality of R 8 may be the same or different, R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; may be the same or different, and * indicates a bond.
    In general formula (a1-2), each of R 10 and R 11 independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; , a plurality of R 11 may be the same or different. * indicates a bond.
    In general formula (a1-3), Z 1 represents an alkylene group having 1 to 5 carbon atoms or a divalent aromatic group.
    * indicates a bond. )
  18.  前記一般式(a1)中のYは、下記一般式(a1-4)で表される2価の有機基である、請求項15または16に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000014
    (一般式(a1-4)中、Zは2価の芳香族基を示す。*は結合手を示す。)
    17. The negative photosensitive polymer according to claim 15, wherein Y in general formula (a1) is a divalent organic group represented by general formula (a1-4) below.
    Figure JPOXMLDOC01-appb-C000014
    (In general formula (a1-4), Z2 represents a divalent aromatic group. * represents a bond.)
  19.  両末端が前記一般式(t)で表される基である、請求項15または16に記載のネガ型感光性ポリマー。 The negative photosensitive polymer according to claim 15 or 16, wherein both ends are groups represented by the general formula (t).
  20.  さらに一般式(a3)で表される構造単位(a3)を含む、請求項15または16に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000015
    (一般式(a3)中、RおよびRは各々独立して水素原子、炭素数1~4のハロアルキル基、または水酸基を示し、複数存在するR同士および複数存在するR同士は同一でも異なっていてもよい。Xは単結合、炭素数1~4のアルキレン基、炭素数1~4のハロアルキレン基を示す。m、nは各々独立して0または1を示す。)
    17. The negative photosensitive polymer according to claim 15, further comprising a structural unit (a3) represented by general formula (a3).
    Figure JPOXMLDOC01-appb-C000015
    (In general formula (a3), R 5 and R 6 each independently represent a hydrogen atom, a haloalkyl group having 1 to 4 carbon atoms, or a hydroxyl group, and multiple R 5 and multiple R 6 are the same X represents a single bond, an alkylene group having 1 to 4 carbon atoms, or a haloalkylene group having 1 to 4 carbon atoms, and m and n each independently represent 0 or 1.)
  21.  前記一般式(t)の前記Qにおける2価の有機基は、一般式(a2)で表される構造単位(a2)または一般式(a3)で表される構造単位(a3)である、請求項20に記載のネガ型感光性ポリマー。 The divalent organic group in Q 2 of the general formula (t) is a structural unit (a2) represented by the general formula (a2) or a structural unit (a3) represented by the general formula (a3). 21. The negative photosensitive polymer of claim 20.
  22.  下記一般式(1)で表される構造単位を含む、請求項15または16に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000016
    (一般式(1)中、R~R、Xは一般式(a2)と同義であり、Yは一般式(a1)と同義である。)
    17. The negative photosensitive polymer according to claim 15 or 16, comprising a structural unit represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000016
    (In general formula (1), R 1 to R 4 and X 1 have the same meanings as in general formula (a2), and Y has the same meaning as in general formula (a1).)
  23.  下記一般式(2)で表される構造単位を含む、請求項20に記載のネガ型感光性ポリマー。
    Figure JPOXMLDOC01-appb-C000017
    (一般式(2)中、R~R、X、m、nは一般式(a3)と同義であり、Yは一般式(a1)と同義である。)
    21. The negative photosensitive polymer according to claim 20, comprising a structural unit represented by general formula (2) below.
    Figure JPOXMLDOC01-appb-C000017
    (In general formula (2), R 5 to R 6 , X, m, and n are synonymous with general formula (a3), and Y is synonymous with general formula (a1).)
  24.  以下の条件で測定された重量平均分子量の減少率が50%未満である、請求項15または16に記載のネガ型感光性ポリマー。
    (条件)
     前記ネガ型感光性ポリマー100質量部に、γ-ブチロラクトン400質量部、4-メチルテトラヒドロピラン200質量部、および水50質量部を加え、100℃で6時間攪拌した場合において、下記式で算出する。
     式:[(試験前の重量平均分子量-試験後の重量平均分子量)/試験前の重量平均分子量]×100
    17. The negative photosensitive polymer according to claim 15 or 16, wherein the weight average molecular weight reduction rate measured under the following conditions is less than 50%.
    (conditions)
    400 parts by mass of γ-butyrolactone, 200 parts by mass of 4-methyltetrahydropyran, and 50 parts by mass of water are added to 100 parts by mass of the negative photosensitive polymer, and the mixture is stirred at 100°C for 6 hours. .
    Formula: [(weight average molecular weight before test - weight average molecular weight after test) / weight average molecular weight before test] × 100
  25.  請求項1または2に記載のネガ型感光性樹脂組成物の硬化物からなる硬化膜。 A cured film comprising a cured product of the negative photosensitive resin composition according to claim 1 or 2.
  26.  請求項1または2に記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜を備える半導体装置。 A semiconductor device comprising a resin film containing a cured product of the negative photosensitive resin composition according to claim 1 or 2.
  27.  層間絶縁膜と、
     前記層間絶縁膜上に設けられた、請求項1または2に記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜と、
     前記樹脂膜中に埋設された再配線と、
    を備えることを特徴とする、半導体装置。
    an interlayer insulating film;
    A resin film containing a cured product of the negative photosensitive resin composition according to claim 1 or 2, provided on the interlayer insulating film;
    a rewiring embedded in the resin film;
    A semiconductor device comprising:
PCT/JP2022/024837 2021-06-25 2022-06-22 Negative photosensitive resin composition, negative photosensitive polmer, cured film and semiconductor device WO2022270527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530080A JPWO2022270527A1 (en) 2021-06-25 2022-06-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021105687 2021-06-25
JP2021-105687 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022270527A1 true WO2022270527A1 (en) 2022-12-29

Family

ID=84545731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024837 WO2022270527A1 (en) 2021-06-25 2022-06-22 Negative photosensitive resin composition, negative photosensitive polmer, cured film and semiconductor device

Country Status (4)

Country Link
JP (1) JPWO2022270527A1 (en)
CN (1) CN116848467A (en)
TW (1) TW202311368A (en)
WO (1) WO2022270527A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316291A (en) * 1994-03-29 1995-12-05 Toshiba Corp Polyimide precursor, fluorinated aromatic diamine compound, cured bismaleimide resin precursor, and electronic part
JP2017125210A (en) * 2017-04-05 2017-07-20 住友ベークライト株式会社 Polyamide resin, positive photosensitive resin composition, cured film, protective film, insulation film, semiconductor device and display device
US20200283579A1 (en) * 2019-03-05 2020-09-10 Promerus, Llc Reactive end group containing polyimides and polyamic acids and photosensitive compositions thereof
WO2020196764A1 (en) * 2019-03-27 2020-10-01 株式会社カネカ Alkali-soluble polyimide and production method thereof, negative-type photosensitive resin composition, cured film, and production method of pattern cured film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316291A (en) * 1994-03-29 1995-12-05 Toshiba Corp Polyimide precursor, fluorinated aromatic diamine compound, cured bismaleimide resin precursor, and electronic part
JP2017125210A (en) * 2017-04-05 2017-07-20 住友ベークライト株式会社 Polyamide resin, positive photosensitive resin composition, cured film, protective film, insulation film, semiconductor device and display device
US20200283579A1 (en) * 2019-03-05 2020-09-10 Promerus, Llc Reactive end group containing polyimides and polyamic acids and photosensitive compositions thereof
WO2020196764A1 (en) * 2019-03-27 2020-10-01 株式会社カネカ Alkali-soluble polyimide and production method thereof, negative-type photosensitive resin composition, cured film, and production method of pattern cured film

Also Published As

Publication number Publication date
CN116848467A (en) 2023-10-03
TW202311368A (en) 2023-03-16
JPWO2022270527A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
KR101719045B1 (en) Negative photosensitive resin composition, method for manufacturing hardening relief pattern, and semiconductor device
US20200209745A1 (en) Photosensitive resin composition
JP6564065B2 (en) Polymers of maleimide and cycloolefin monomers as permanent dielectrics
US20190112400A1 (en) Polymers from bis-arylcyclobutene group containing monomers that cure through other groups and methods for making the same
JP5054158B2 (en) Positive photosensitive composition
US11061328B2 (en) Positive tone photosensitive compositions containing amic acid as latent base catalyst
JP2021152634A (en) Negative photosensitive resin composition, negative photosensitive polymer and applications thereof
JP2023116922A (en) Method for producing polynorbornene, polynorbornene-containing solution, polynorbornene powder, photosensitive resin composition, and semiconductor device
WO2022270527A1 (en) Negative photosensitive resin composition, negative photosensitive polmer, cured film and semiconductor device
JP2018124502A (en) Photosensitive resin composition, resin film prepared therewith, and electronic apparatus including resin film
WO2022270529A1 (en) Negative photosensitive polymer, polymer solution, negative photosensitive resin composition, cured film, and semiconductor device
WO2022172988A1 (en) Photosensitive resin composition, cured film, and semiconductor device
JP2024024621A (en) Photosensitive resin compositions, cured films and semiconductor devices
JP2024024620A (en) Photosensitive resin compositions, cured films and semiconductor devices
JP2011053678A (en) Positive photosensitive composition
JP7405309B2 (en) Negative photosensitive polymers, polymer solutions, negative photosensitive resin compositions, cured films, and semiconductor devices
WO2022270541A1 (en) Negative photosensitive resin composition, negative photosensitive polymer, cured film, and semiconductor device
JP2024024622A (en) Photosensitive resin composition, cured product, cured film, and semiconductor device
JP7435110B2 (en) Polyhydroxyimide, polymer solution, photosensitive resin composition and its uses
JP2024024623A (en) Photosensitive resin composition, cured product, cured film, and semiconductor device
JP2023004156A (en) negative photosensitive polymer
WO2022270544A1 (en) Negative photosensitive resin composition, negative photosensitive polmer, cured film and semiconductor device
JP2022135427A (en) Negative type photosensitive resin composition and use of the same
TW202039633A (en) Unsaturated cyclic anhydride end capped polyimides and polyamic acids and photosensitive compositions thereof
KR20100036111A (en) Positive type photosensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530080

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE