WO2022270452A1 - Injection molding machine and injection molding method - Google Patents

Injection molding machine and injection molding method Download PDF

Info

Publication number
WO2022270452A1
WO2022270452A1 PCT/JP2022/024476 JP2022024476W WO2022270452A1 WO 2022270452 A1 WO2022270452 A1 WO 2022270452A1 JP 2022024476 W JP2022024476 W JP 2022024476W WO 2022270452 A1 WO2022270452 A1 WO 2022270452A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
screw
injection molding
injection device
section
Prior art date
Application number
PCT/JP2022/024476
Other languages
French (fr)
Japanese (ja)
Inventor
博文 村田
利美 加藤
穂積 依田
Original Assignee
日精樹脂工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日精樹脂工業株式会社 filed Critical 日精樹脂工業株式会社
Publication of WO2022270452A1 publication Critical patent/WO2022270452A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston
    • B29C45/54Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston and plasticising screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to an injection molding machine and an injection molding method comprising an injection device that rotates a screw in a heating cylinder to plasticize a molding material and advances the screw to inject the plasticized resin.
  • a plasticizing device performs a plasticizing process by rotating a built-in screw to plasticize the input molding material, and a built-in plunger moves forward to inject and fill the plasticized resin from the injection nozzle into the mold.
  • a pre-plastic injection molding machine equipped with an injection device for performing an injection process is known, and as this type of pre-plastic injection molding machine, for example, the pre-plastic injection molding machines disclosed in Patent Documents 1 and 2 are known. ing.
  • the preplasticating injection molding machine of Patent Document 1 rotates a screw contained in a plasticizing cylinder to plasticize and melt a molding material, and charges the injection cylinder with the molten resin through a non-return valve in an open state.
  • the plunger reaches a predetermined measurement end position during measurement, the rotation of the screw is stopped and the rotation amount and rotation speed of the screw are adjusted in advance. After that, the check valve provided between the plasticizing cylinder and the injection cylinder is closed.
  • the pre-plasticizer type injection molding machine of Patent Document 2 has an injection cylinder with a plunger and a plasticizing cylinder with a plasticizing screw having a check valve at the tip that can rotate and move back and forth.
  • a screw moving means and a rotating motor are provided at the rear of the plasticizing cylinder, and the backflow prevention valve is opened and closed by moving the screw back and forth by the screw moving means. It is the one that was made.
  • the plasticizing device and the injection device are configured as independent separate unit devices and connected through a resin path, there is an advantage that the plasticizing process and the injection process can be performed as independent dedicated devices, respectively.
  • a configuration in which an injection device and a plasticization device are installed side by side specifically, the injection device is installed horizontally, and the plasticization device is tilted horizontally or downward to the front, so that the upper end of the injection device is in a two-stage configuration. often installed.
  • the injection molding machine as a whole becomes large requires a space in the height direction when installed, and causes an increase in oppressiveness and intimidation, as well as an increase in the cost of the entire injection molding machine.
  • the resin path and the like have a complicated structure, maintenance and cleaning (replacement of resin) are difficult.
  • plasticization conditions such as resin temperature and injection conditions such as injection speed are usually matched to the type of molded product. Molding is performed by setting various molding conditions including also exist. For example, molding using recycled pellet materials that tend to have uneven pellet shapes compared to ordinary pellets due to the inclusion of crushed materials, etc. Molded products with a large injection volume that require plasticization of a large volume at one time are likely to cause molding defects and a decrease in the yield rate (rate of non-defective products). For this reason, conventionally, it has been dealt with by setting highly accurate settings for various molding conditions and stabilizing control. However, even if such measures are taken sufficiently, a considerable number of molding defects occur at actual production sites, and the specific cause of defects is not always known. More than a few, there was a limit to ensuring a high yield rate.
  • the purpose of the present invention is to provide an injection molding machine and an injection molding method that solve the problems existing in the background art.
  • the injection molding machine M has the function of rotating the screw 3 incorporated in the heating cylinder 2 by the rotation drive mechanism 4 and plasticizing the molding material charged from the hopper 5. and an injection device Mi having a function of advancing the screw 3 by the advance/retreat drive mechanism 6 and injecting the plasticized resin R from the nozzle 7 provided at the tip of the heating cylinder 2.
  • An injection cylinder 9 having an injection nozzle 8 at its tip is disposed axially forward Fsf of the nozzle portion 7, and a mold injection portion configured as a plunger portion 10 for inserting the nozzle portion 7 into the injection cylinder 9.
  • valve function part 11 that opens and closes a resin passage 10r provided inside the plunger part 10
  • injection device moving mechanism part 12 that moves the injection device Mi in the advancing/retreating direction Fs
  • rotation driving mechanism part 4 and an advancing/retreating driving mechanism part. 6. It is characterized by comprising a molding machine controller 13 that drives and controls at least the valve function section 11 and the injection device moving mechanism section 12 .
  • the injection device moving mechanism section 12 includes a movement drive section 14 that moves the injection device Mi in the advancing/retreating direction Fs, and a guide mechanism section 15 that guides the injection device Mi in the advancing/retreating direction Fs.
  • the movement driving section 14 can be configured to include an internal hollow piston section 14p covering the rear end section Mir of the injection device Mi and a pressurizing cylinder section 14c accommodating the piston section 14p.
  • the guide mechanism portion 15 includes at least one rail slider portion 16s, 16s provided at the lower end of the injection device Mi and at least one guide rail portion 16r, 16r for slidably supporting the rail slider portions 16s, 16s.
  • the guide mechanism portion 15 is provided integrally with a pair of tie rods 17t, 17t arranged at left and right separated positions with respect to the injection device Mi. and rod mechanism portions 17, 17 having rod slider portions 17m, 17m slidably moved along the tie rods 17t, 17t.
  • the valve function unit 11 can be configured to include a shutoff valve 11v that opens and closes the resin passage 10r, and a valve driving mechanism 11d that drives the shutoff valve 11v to open and close.
  • the volume Ah of the heating cylinder 2 for accumulating the plasticized resin R can be selected to be 0.3 to 3 times the volume Ac of the injection cylinder 9 .
  • the screw 3 incorporated in the heating cylinder 2 is rotated by the rotation drive mechanism 4, and the molding material charged from the hopper 5 is plasticized.
  • an injection cylinder 9 having an injection nozzle 8 at its tip is disposed axially forward Fsf of the nozzle portion 7, and a mold injection portion Ms configured as a plunger portion 10 for inserting the nozzle portion 7 into the injection cylinder 9; , a valve function portion 11 for opening and closing the resin passage 10r provided inside the plunger portion 10, and an injection device moving mechanism portion 12 for moving the injection device Mi in the advancing and retreating direction Fs.
  • a predetermined amount of resin R thus obtained is accumulated in the mold injection section Ms through the opened valve function section 11. After that, the valve function section 11 is closed, and the injection device Mi is moved forward by the injection device moving mechanism section 12 so that the injection nozzle It is characterized in that an injection molding process for injecting the resin R from 8 into the mold C is performed.
  • the plasticizing process is performed by closing the valve function part 11 and rotating the screw 3 to the set screw stop position Xce, and then pressurizing the screw 3.
  • the plunger part 10 can be advanced to the filling completion position Xpe.
  • a reflux process S20, S40
  • the reflux process (S20, S40) can be performed by rotating the screw 3 in the reverse rotation direction Fn for the set time Tn, and can also be performed by pressurizing the screw 3 forward Fsf with a set pressurizing force. .
  • the screw 3 is rotated to perform the plasticizing process up to the set screw stop position Xce, and then the unit reflux process is performed by advancing the screw 3 for the set time Tr. After that, by opening the valve function part 11 and pressurizing the screw 3, the plunger part 10 can be advanced to the filling completion position Xpe.
  • the mold injection part Ms is arranged in front of the injection device Mi in the axial direction, and the nozzle part 7 is configured (commonly used) as the plunger part 10 for inserting the injection cylinder 9. It is possible to reduce the overall size and size of the injection molding machine M while ensuring the same functions as those of a preplasticating injection molding machine capable of independently executing the molding process and the injection process.
  • the space in the height direction during installation can be kept to the same level as a normal inline screw injection molding machine, and the axial length can also be kept to the minimum necessary length. It is possible to avoid the problem of increasing the intimidating feeling and to reduce the cost of the entire injection molding machine M.
  • maintenance and cleaning replacement of resin
  • the resin passage can be set to the shortest distance.
  • the injection molding method of the present invention uses such an injection molding machine M to ensure the same function as a pre-plastic injection molding machine, that is, the plasticizing process for the next shot is performed during the injection process. It is possible to secure the advantage of being able to independently execute the plasticizing process and the injection process, such as being able to perform the injection molding process optimally from the viewpoint of using the injection molding machine M.
  • the moving mechanism of the injection device moving mechanism section 12 can be configured by the most orthodox mechanism, so that the reliable and stable moving mechanism section 12 can be constructed.
  • the movement driving section 14 is configured to include an internal hollow piston section 14p covering the rear end section Mir of the injection device Mi and a pressurizing cylinder section 14c accommodating the piston section 14p, Since the pressurizing cylinder portion 14c can be configured using part of the contour shape of the rear end portion Mir of the injection device Mi, the simple movement driving portion 14 can be constructed and a high-pressure hydraulic cylinder can be configured.
  • the guide mechanism part 15 is composed of at least one rail slider part 16s, 16s provided at the lower end of the injection device Mi and at least one guide rail slidably supporting the rail slider part 16s, 16s. If configured by the rail mechanism portions 16, 16 having the portions 16r, 16r, it can be guided by the rail mechanism portions 16, 16 having the most orthodox configuration, so that even the heavy injection device Mi can be moved stably and smoothly. be able to.
  • the guide mechanism part 15 is integrally provided with a pair of tie rods 17t, 17t arranged at left and right separated positions with respect to the injection device Mi and on the left and right sides of the injection device Mi, and If the rod mechanism portions 17, 17 having the rod slider portions 17m, 17m that slidably move along the 17t are configured, it is possible to prevent the injection device Mi from shaking in the left-right direction, so that the injection device Mi can be guided. This can be performed more stably, and in particular, by combining the rail mechanisms 16, 16, the most desirable form of the guide mechanism 15 can be constructed.
  • valve function unit 11 when constructing the valve function unit 11, if the shut-off valve 11v for opening and closing the resin passage 10r and the valve drive mechanism unit 11d for opening and closing the shut-off valve 11v are provided,
  • the hydraulic drive section can be used as a drive source for the valve drive mechanism section 11d, so that the control of the valve function section 11 can be simplified and ensured.
  • the simplification of the structure can contribute to speeding up the opening/closing operation of the shutoff valve 11v.
  • the volume Ah for accumulating the plasticized resin R in the heating cylinder 2 is 0.3- It can be selected three times. That is, in an in-line screw type injection molding machine or the like, the relationship between the volume Ah and the volume Ac needs to be set within a certain magnification range, but in the injection molding machine M according to the present invention, the magnification range can be set larger. can. As a result, it is possible to satisfactorily perform the molding process from a large molded product to a small molded product (ultra-small molded product), and the injection molding machine M can be provided with high versatility.
  • valve function part 11 when executing the plasticizing process, the valve function part 11 is closed and the screw 3 is rotated to perform the plasticizing process up to the set screw stop position Xce. If the plunger portion 10 is advanced to the filling completion position Xpe by applying pressure, the effective stroke of the heating cylinder 2 and the injection cylinder 9 can be utilized to the maximum, so that the most efficient and efficient molding process can be performed. .
  • the resin R when performing the reflux process (S20, S40), if the screw 3 is pressurized forward Fsf with a set pressurizing force, the resin R can be refluxed by the simplest method. This can contribute to simplification of implementation and simplification of control.
  • the screw 3 when the reflux process (S20, S40) is performed, the screw 3 is rotated to perform the plasticizing process to the set screw stop position Xce, and then the screw 3 is advanced by the set time Tr.
  • the unit reflux process is performed a set number of times N, and after that, the valve function part 11 is opened and the screw 3 is pressurized to retract the plunger part 10 to the filling completion position Xpe. Since it can be performed for the set number of times N, it is possible to obtain a plasticized resin with a higher degree of kneading and excellent homogeneity, and to realize optimization of the reflux treatment that matches the type and characteristics of the resin.
  • FIG. 1 is a partial cross-sectional side view of an injection molding machine according to a preferred embodiment of the present invention
  • a partial cross-sectional plan view of an injection device in the same injection molding machine XX line cross-sectional view in FIG. 1 in the same injection molding machine, Extracted and enlarged configuration diagram of the valve function part in the same injection molding machine,
  • a flow chart showing the molding process based on the injection molding method by the basic operation (normal mode) of the same injection molding machine in order Schematic diagram showing the state of the injection molding machine in the flowchart, Schematic diagrams showing other states in the injection molding machine of the flowchart, Schematic diagrams showing other states in the injection molding machine of the flowchart, A subroutine flowchart showing the detailed processing steps of the reflux treatment step in the standard reflux mode in the same flowchart;
  • a schematic diagram showing the state of the injection molding machine in the same subroutine flow chart Schematic diagrams showing other states in the injection molding machine of the same subroutine flow chart, Schematic diagrams showing other states in the injection molding
  • FIG. 1 the configuration of the injection molding machine M according to this embodiment will be specifically described with reference to FIGS. 1 to 4.
  • FIG. 1 is a diagrammatic representation of the injection molding machine M according to this embodiment.
  • the injection molding machine M is provided with a flat molding machine bed Mo, and on the right upper surface of the molding machine bed Mo, there is a movable bed in which an injection device Mi and a mold injection section Ms are arranged.
  • a mold clamping device Mc is provided on the left side of the molding machine bed Mo.
  • the injection device Mi has a configuration similar to that of a general inline screw injection molding machine. That is, as a basic configuration, the screw 3 incorporated in the heating cylinder 2 is rotated by the rotation drive mechanism 4 to plasticize the molding material charged from the hopper 5, and the plasticized resin R is placed in front of the screw 3. and a function of injecting the plasticized resin R from a nozzle portion 7 provided at the tip of the heating cylinder 2 by advancing the screw 3 by the forward/backward drive mechanism portion 6 .
  • the rear end of the screw 3 is fixed to the front end of the screw drive ram 22 that constitutes the advance/retreat drive mechanism 6, and the rear end of the screw drive ram 22 is connected to the rotation drive mechanism.
  • the tip end side of the rotation output shaft of the oil motor 21 is connected by a spline method.
  • the rear portion of the screw 3 is covered with a hollow housing portion 23, and a stationary platen 24 is fixed to the rear end of the housing portion 23, and the front end of the oil motor 21 is attached to the stationary platen 24.
  • the screw 3 is rotated in the forward rotation direction (plasticizing direction) Fm (see FIG. 6b) or the reverse rotation direction Fn (see FIG.
  • the screw 3 can be moved in the forward direction Fsf and back pressure can be applied in the backward direction.
  • 25 denotes a band heater attached to the outer peripheral surface of the heating cylinder 2
  • 26 denotes a nozzle touch cylinder for moving the movable bed Mom.
  • the injection device Mi is provided with an injection device moving mechanism 12 for moving the injection device Mi in the advancing/retreating direction Fs.
  • the injection device moving mechanism section 12 includes a movement drive section 14 that moves the injection device Mi in the advancing/retreating direction Fs, and a guide mechanism section 15 that guides the injection device Mi in the advancing/retreating direction Fs.
  • the moving mechanism of the injection device moving mechanism section 12 can be configured by the most orthodox mechanism, so that the reliable and stable moving mechanism section 12 can be constructed.
  • the movement driving section 14 is configured with a hollow piston section 14p covering the rear end section Mir of the injection device Mi and a pressurizing cylinder section 14c accommodating the piston section 14p. . That is, a piston rod body 14pr formed in a cylindrical shape and serving as a motor cover for covering the oil motor 21 is provided. are integrally formed to form a piston portion 14p, and the piston portion 14p is housed in a cylindrical cylinder portion 14c.
  • a single-rod pressurizing drive cylinder 14o in which the front end side of the piston rod body 14pr protrudes forward from the cylinder portion 14c is formed, and the movement drive portion 14 using this pressurizing drive cylinder is formed.
  • the lower end surface of the pressure driving cylinder 14o is fixed to the rear end portion of the movable bed Mom as shown in FIG. If such a movement driving section 14 is provided, a portion of the contour shape of the rear end portion Mir of the injection device Mi can be used to configure the pressurizing driving cylinder 14o, so that a simple movement driving section 14 can be constructed. , can constitute a high-pressure hydraulic cylinder.
  • the guide mechanism portion 15 includes rail mechanism portions 16, 16 arranged at the lower end and rod mechanism portions 17, 17 arranged at both sides.
  • the rail mechanism sections 16, 16 include at least one rail slider section 16s, 16s provided at the lower end of the injection device Mi and at least one guide rail section 16r, 16r for slidably supporting the rail slider sections 16s, 16s.
  • a support block 27 for supporting the injection device Mi is integrally provided at an intermediate position in the front-rear direction of the injection device Mi, that is, at the housing portion 23 described above. As shown in FIG.
  • a pair of left and right rail slider portions 16s, 16s are provided on the lower surface of the support block 27, and a pair of left and right guide rail portions 16r, 16r are provided on the upper surface of the movable bed Mom.
  • the rail slider portions 16s, 16s are slidably supported on the guide rail portions 16r, 16r. If the guide mechanism section 15 is configured in this way, it can be guided by the rail mechanism sections 16, 16 having the most orthodox configuration, so that even the heavy injection device Mi can be moved stably and smoothly.
  • the rod mechanism portions 17, 17 are integrally provided on the left and right sides of the injection device Mi with a pair of tie rods 17t, 17t fixed at left and right side positions separated from the injection device Mi, and along the tie rods 17t, 17t. It has rod slider parts 17m, 17m that move slidably.
  • a pair of rod support portions 28p and 28q formed in the form of bearings are fixed to the left and right sides of the pressurizing drive cylinder 14o. is fixed.
  • a pair of rod support portions 29p, 29q formed in the form of bearings are fixed to the left and right of the cylinder support portion 29, and a separately prepared rod support portion 28p, 28q is provided between the pair of rod support portions 28p, 28q and the pair of rod support portions 29p, 29q. are fixed by a pair of tie rods 17t, 17t.
  • a pair of left and right rod slider portions 17m, 17m provided integrally with the aforementioned support block 27 in the injection device Mi are slidably engaged with the respective tie rods 17t, 17t.
  • the cylinder support portion 29 is fixed to the upper surface of the movable bed Mom, and the rear end surface of the injection cylinder 9 is fixed to this cylinder support portion 29 . Further, the front end of the injection cylinder 9 is provided with an injection nozzle 8 whose tip nozzle port contacts the mold C. As shown in FIG. A shut-off nozzle type may be used for this injection nozzle 8, or a type in which a shut-off valve 11vs is built in the middle position of the injection nozzle 8 may be used.
  • the volume Ah for accumulating the plasticized resin R in the heating cylinder 2 when the volume Ah for accumulating the plasticized resin R in the heating cylinder 2 is 0.3 to 3 times the volume Ac of the injection cylinder 9, can be selected. That is, in an in-line screw type injection molding machine or the like, the relationship between the volume Ah and the volume Ac needs to be set within a certain magnification range, but in the injection molding machine M according to the present invention, the magnification range can be set larger. can.
  • the lower limit of 0.3 times is a value that considers the operation timing of the shut-off valve, the molding cycle, and the like
  • the upper limit of 3 times is a value with a margin that considers the amount of reflux. This means that it is possible to satisfactorily mold from a large molded product to a small molded product (ultra-small molded product), and the injection molding machine M can be provided with high versatility.
  • the nozzle portion 7 is configured as a plunger portion 10 that is inserted from the rear end port of the injection cylinder 9 into the inside of the cylinder. Therefore, the plunger portion 10 also serves as the nozzle portion 7, and the nozzle portion 7 also serves as the plunger portion 10.
  • the plunger portion 10 and the injection cylinder 9 constitute the mold injection portion Ms.
  • the injection molding machine M is provided with a valve function section 11 that opens and closes the resin passage 10r inside the plunger section 10, as shown in FIG.
  • the valve function unit 11 includes a shutoff valve 11v for opening and closing the resin passage 10r, and a valve drive mechanism unit 11d for opening and closing the shutoff valve 11v.
  • the shut-off valve 11v can be disposed at an intermediate position of the plunger portion 10 or between the rear end of the plunger portion 10 and the heating cylinder 2, and the resin passage 10r can be closed by rotating the cylindrical valve body 11vm by 90 degrees. can be opened and closed.
  • valve driving mechanism portion 11d includes a forward/backward drive cylinder 11dc whose rear end is connected to the support block 27 via a rotating portion, and a forward end of a drive rod 11dr projecting forward from the forward/backward drive cylinder 11dc and a valve. It comprises a connecting mechanism 11mj that connects the bodies 11vm.
  • the valve body 11vm can be switched to the closing side and the driving rod 11dr can be projected.
  • the valve body 11vm can be switched to the open side by turning 90 degrees in the direction.
  • a hydraulic drive unit 31 comprising a hydraulic circuit and various valves is provided.
  • the hydraulic drive unit 31 includes a screw drive ram 22 (advance/retreat drive mechanism 6), an oil motor 21 (rotational drive mechanism 4), and a hydraulic cylinder 14o.
  • Movement drive unit 14 and advance/retreat drive cylinder 11dc are connected, respectively, and nozzle touch cylinder 26 shown in FIG. 1 is also connected.
  • a molding machine controller 13 for giving various control commands is connected to the hydraulic drive unit 31, and various position information, time information, pressure information and switching information in the injection molding machine M are sent to the molding machine controller 13.
  • a sensor group 32 for detecting such as is connected.
  • the molding machine controller 13 can drive and control at least the rotation drive mechanism section 4 , the advance/retreat drive mechanism section 6 , the valve function section 11 and the injection device movement mechanism section 12 .
  • FIG. 5 a molding method using the injection molding machine M configured as described above, that is, an injection molding method according to the present embodiment will be described with reference to FIGS. 5 to 10.
  • FIG. 5 a molding method using the injection molding machine M configured as described above, that is, an injection molding method according to the present embodiment will be described with reference to FIGS. 5 to 10.
  • the injection molding method according to the present embodiment includes, in addition to the basic injection molding method in the normal mode, injection molding methods in various reflux modes including a reflux treatment step in which the resin R is repeatedly plasticized two or more times. can be implemented.
  • FIG. 6a shows the state of the injection molding machine M in which the resin R is not present. That is, the tip of the injection nozzle 8 touches the clamped mold C, the plunger part 10 is at the most advanced position of the injection cylinder 9, and the tip of the screw 3 is at the most advanced position of the heating cylinder 2. indicates a stopped state. Furthermore, the shut-off valve 11v is switched to an open state. When a shut-off nozzle is used as the injection nozzle 8, it is controlled to be in a shut-off state, and as shown in FIG. switch to control.
  • step S1 the plasticizing process shown in FIG. 6b is executed (step S1).
  • the shut-off valve 11v is switched to the open side, the screw 3 is controlled to rotate in the forward rotation direction Fm, which is the plasticizing direction, by driving and controlling the oil motor 21 .
  • the molding material put into the heating cylinder 2 from the hopper 5 is plasticized by the heating cylinder 2 and the screw 3 .
  • the plasticized resin R passes through the open shutoff valve 11v and further through the resin passage 10r of the plunger portion 10, and accumulates in the injection cylinder 9. As shown in FIG.
  • step S2 When the plasticizing process is completed, it is confirmed that the mold clamping process is completed (step S2), and the shutoff valve 11v is switched to the closed side (steps S3, S4). That is, in the injection molding method in the normal mode, since the reflux treatment process is not performed, the shutoff valve 11v is quickly switched to the closed side and the shutoff valve 11vs is switched to the open side after the plasticization process is completed.
  • step S5 an injection process is executed (step S5).
  • the pressurized hydraulic cylinder 14o is drive-controlled to move the entire injection device Mi forward in the direction of the arrow Fi shown in FIG. 6c, that is, to the set forward target position Xpi.
  • the plunger portion 10 moves forward from the plunger stop position Xpm to the forward target position Xpi, and injection filling of the mold C with the resin R is performed. This state is shown in FIG. 6c.
  • step S6 the cooling process is performed for the set cooling time Tc (step S6), and when the cooling time Tc has passed, the mold opening process is performed (step S7). Then, a molded article removing process for removing the molded article is performed (step S8), and the next mold clamping process can be performed (steps S9 and S10).
  • the reflux process is selected in step S3 after the plasticizing step (step S1) in the flowchart of FIG. 5 is completed. Also, when the reflux process is selected, it is assumed that the state shown in FIG. 6b is present. That is, it is in a state after the plasticizing step (step S1) in the normal mode is completed. Furthermore, in the case of the standard reflux mode, the shutoff valve 11v is kept open (step S21).
  • step S22 By selecting the reverse rotation control of the screw 3, it is confirmed that the molding process of the injection molding machine M is in the injection process (step S23), and as shown in FIG. Rotation is controlled in the reverse rotation direction Fn for a set time (steps S24 and S25). At this time, it is desirable to apply a predetermined forward pressure by controlling the driving of the pressure driving cylinder 14o.
  • FIG. 8a shows a state in which the resin R flows backward through the resin passage 10r in the direction of the arrow Frb, and the plunger portion 10 moves from the plunger stop position Xpm to the forward position Xpf. Further, due to the reflux treatment, the resin R forward of the front end of the screw 3 is refluxed rearward of the front end of the screw 3 and mixed with the resin R being plasticized.
  • step S26 the screw 3 is rotationally driven in the forward rotation direction (plasticizing direction) Fm (step S27).
  • the rotation in the plasticizing direction is performed until the screw 3 reaches the screw stop position Xce set to the rear (step S28).
  • the resin R that is being plasticized is mixed with the resin R that has been circulated, and the circulated resin R is subjected to the re-plasticizing treatment. This state is shown in FIG. 8b.
  • step S29 the screw 3 is moved forward (step S29).
  • the resin R in the heating cylinder 2 is transferred to the inside of the injection cylinder 9 through the resin passage 10r. Since the plunger portion 10 moves in the direction, the reflux processing step S20 is terminated when the plunger portion 10 reaches the filling completion position Xpe (step S30). This state is shown in FIG. 8c.
  • step S22 if the reverse rotation control of the screw 3 is not selected in step S22, the reflux process is not performed. In this case, it is confirmed that the cooling process is still in progress (step S26), and the screw 3 is controlled to rotate for the plasticizing process described above (step S27). At this time, the rotation in the plasticizing direction is performed until the screw 3 reaches the screw stop position Xce set in the rearward direction. When the part 10 reaches the filling completion position Xpe, the reflux treatment step S20 is ended (steps S28, S29, S30).
  • the screw 3 is pressurized with a predetermined pressurizing force to control the reverse rotation, the pressure in the reflux direction can be reduced, so that the reflux process can be performed quickly and the rotation speed can be variably controlled. Therefore, the reflux time and the reflux amount can be easily adjusted.
  • step S2 since the plasticizing process including the reflux process is completed, it is possible to confirm that the mold clamping process has been completed (step S2), and perform post-processing including the injection process in the normal mode shown in FIG. .
  • step S1 in the flowchart of FIG. 5 After the plasticizing step (step S1) in the flowchart of FIG. 5 is finished, the reflux treatment is not selected in step S3, and the shut-off valve 11v is switched to the closed side, and then the reflux treatment step S40 is performed. .
  • step S41 rotation control for plasticizing the screw 3 is first performed (step S41).
  • step S41 rotation control for plasticizing the screw 3 is first performed (step S41).
  • the screw 3 retreats and the plasticized resin R accumulates in front of the screw 3 . Further, as the resin R accumulates, the screw 3 retreats in the direction of the arrow Fbs. This state is shown in FIG. 10a.
  • the rotation control for this plasticizing process is performed until the screw 3 reaches the set stop position Xce (see FIG. 8b) (step S42).
  • a reflux process is performed (step S43).
  • the return process drives and controls the screw drive ram 22 to move the screw 3 forward, that is, drives and controls the pressure drive cylinder 14o to pressurize the screw 3 with a predetermined pressure for a set time.
  • Steps S44, S45 This moves the screw 3 to a predetermined forward position, for example the forward position Xcf shown in FIG. 10b.
  • a predetermined forward position for example the forward position Xcf shown in FIG. 10b.
  • the outer diameter of the screw head, etc., of the screw 3 is previously cut to a small diameter or formed with a plurality of grooves so that the resin R can be easily circulated by the applied pressure.
  • the resin R can be circulated by the simplest method, which facilitates implementation and control. can contribute.
  • steps S41 to S45 are unit return processing, this unit return processing is repeatedly performed for the preset number of times N (step S46).
  • the unit reflux process has been completed for the set number of times N, it is confirmed that the molding process of the injection molding machine M is in the cooling process (step S47), the shutoff valve 11v is switched to the open side (step S48), and the screw is 3 is moved forward (step S49).
  • the resin R in the heating cylinder 2 is transferred to the inside of the injection cylinder 9 through the resin passage 10r, and along with this, the plunger portion 10 (injection device Mi) moves backward in the direction of the arrow Fb. .
  • the plunger portion 10 reaches the filling completion position Xpe (see FIG. 10b)
  • the reflux treatment step 40 is completed (step S50).
  • the unit reflux process is performed by advancing the screw 3 for the set time Tr for the set number of times N, and then the valve If the plunger portion 10 is retracted to the filling completion position Xpe by opening the function portion 11 and pressurizing the screw 3, the unit reflux process can be performed for the set number of times N, so that the degree of kneading is higher. Therefore, it is possible to obtain a plasticized resin excellent in homogeneity, and to realize optimization of the reflux treatment that matches the type and characteristics of the resin.
  • step S41 causes the screw 3 to first reach the stop position Xce (see FIG. 10b). After confirming that the cooling process is in progress (step S47), the shut-off valve 11v is switched to the open side (step S48). Then, the screw 3 is moved forward (step S49). As a result, the resin R in the heating cylinder 2 is transferred to the inside of the injection cylinder 9 through the resin passage 10r. When the part 10 reaches the filling completion position Xpe, the reflux processing step S40 ends (step S50).
  • the plasticizing process is performed, the shut-off valve 11v is closed, and the screw 3 is rotated to perform the plasticizing process up to the set screw stop position Xce.
  • the effective strokes of the heating cylinder 2 and the injection cylinder 9 can be utilized to the maximum, so that the most efficient and efficient molding process can be performed.
  • the injection molding machine M injection molding method
  • the injection cylinder 9 having the injection nozzle 8 at the front end Fsf of the nozzle portion 7 in the axial direction and a mold injection part Ms configured as a plunger part 10 for inserting the nozzle part 7 into the injection cylinder 9; a valve function part 11 for opening and closing a resin passage 10r provided inside the plunger part 10;
  • An injection device moving mechanism 12 is provided to move the device Mi in the advancing/retreating direction Fs.
  • a predetermined amount of resin R plasticized by the injection device Mi is injected into the mold injection portion Ms through the opened valve function portion 11.
  • the molding machine M can be configured (also used) as a plunger section 10 for inserting the nozzle section 7 into the injection cylinder 9 while arranging the mold injection section Ms in front of the injection device Mi in the axial direction. As a result, it is possible to reduce the overall size of the injection molding machine M while ensuring the same functions as those of a preplasticating injection molding machine capable of independently executing the plasticizing process and the injection process.
  • the space in the height direction during installation can be kept to the same level as a normal inline screw injection molding machine, and the axial length can also be kept to the minimum necessary length. It is possible to avoid the inconvenience of increasing the intimidating feeling and to reduce the cost of the entire injection molding machine M. Moreover, maintenance and cleaning (replacement of resin) can be facilitated, for example, the resin passage can be set to the shortest distance.
  • the injection molding method according to the present embodiment by using such an injection molding machine M, the same function as that of a pre-plastic injection molding machine is ensured, that is, the next shot is plasticized during the injection process.
  • the plasticizing process and the injection process can be performed independently, and the optimum injection molding process can be performed from the viewpoint of using the injection molding machine M.
  • the present invention is not limited to such embodiments, and the gist of the present invention can be found in details such as configuration, shape, material, quantity, numerical value, and method. Changes, additions, and deletions can be made arbitrarily within a range that does not deviate.
  • the injection device moving mechanism section 12 includes the movement drive section 14 that moves the injection device Mi in the advancing/retreating direction Fs, and the guide mechanism section 15 that guides the injection device Mi in the advancing/retreating direction Fs. Any other mechanism can be substituted as long as it has a function of moving Mi in the advancing/retreating direction Fs.
  • the pair of left and right rail mechanism portions 16, 16 are illustrated, the use of a single rail mechanism portion 16 is not excluded when used in combination with the rod mechanism portions 17, 17.
  • the valve function unit 11 has been shown to include the shut-off valve 11v for opening and closing the resin passage 10r, and the valve driving mechanism 11d for opening and closing the shut-off valve 11v.
  • a hydraulic drive unit is exemplified as a drive system, it can be applied to an injection molding machine using an arbitrary drive source such as an electric drive, a hybrid system combining an electric drive and a hydraulic system, and a pneumatic system.
  • the injection molding machine and injection molding method according to the present invention can be used to mold molded articles using various resins, ranging from large molded articles to small molded articles (ultra-small molded articles).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention comprises: a mold injection part Ms which has disposed at the axially front Fsf side of a nozzle part 7 thereof an injection cylinder 9 having an injection nozzle 8 provided to the leading end and which is configured as a plunger part 10 to insert the nozzle part 7 into said injection cylinder 9; a valve function part 11 which opens and closes a resin passage 10r formed inside the plunger part 10; and an injection device moving mechanism 12 which moves an injection device Mi in the forward and backward direction Fs. At the time of molding operation, a prescribed amount of resin R that has undergone a plasticization process by the injection device Mi is accumulated in the mold injection part Ms through the valve function part 11 that is opened, then the valve function part 11 is closed, and an injection molding process is performed in which the injection device Mi is moved forward by the injection device moving mechanism 12 so as to cause the resin R to be injected into a mold C.

Description

射出成形機及び射出成形方法Injection molding machine and injection molding method
 本発明は、加熱筒のスクリュを回転させて成形材料を可塑化し、スクリュを前進させることにより可塑化した樹脂を射出する射出装置を備えて構成する射出成形機及び射出成形方法に関する。 The present invention relates to an injection molding machine and an injection molding method comprising an injection device that rotates a screw in a heating cylinder to plasticize a molding material and advances the screw to inject the plasticized resin.
 従来、内蔵したスクリュを回転させることにより投入された成形材料を可塑化する可塑化工程を行う可塑化装置と、内蔵したプランジャを前進させることにより可塑化した樹脂を射出ノズルから金型に射出充填する射出工程を行う射出装置を備えるプリプラ式射出成形機は知られており、この種のプリプラ式射出成形機としては、例えば、特許文献1及び2に開示されるプリプラ式射出成形機が知られている。 Conventionally, a plasticizing device performs a plasticizing process by rotating a built-in screw to plasticize the input molding material, and a built-in plunger moves forward to inject and fill the plasticized resin from the injection nozzle into the mold. A pre-plastic injection molding machine equipped with an injection device for performing an injection process is known, and as this type of pre-plastic injection molding machine, for example, the pre-plastic injection molding machines disclosed in Patent Documents 1 and 2 are known. ing.
 特許文献1のプリプラ式射出成形機は、可塑化シリンダに内蔵するスクリュを回転させて成形材料を可塑化溶融するとともに、溶融した樹脂を開状態の逆流防止弁を通して射出シリンダにチャージし、この射出シリンダに内蔵するプランジャを後退させて計量を行うものであり、特に、計量時に、プランジャが予め設定した計量終了位置に達したなら、スクリュの回転を停止させるとともに、予めスクリュの回転量及び回転速度により設定した制御条件により逆回転させ、この後、可塑化シリンダと射出シリンダ間に配設した逆流防止弁を閉状態にするようにしたものである。また、特許文献2のプリプラ式射出成形機は、プランジャを内装した射出シリンダと、先端に逆流防止弁を備えた可塑化用のスクリュを回転かつ進退自在に内装した可塑化シリンダとを、先端部にわたり設けた樹脂路により連通して並設し、その可塑化シリンダの後部にスクリュ移動手段と回転用のモータとを設け、そのスクリュ移動手段によるスクリュの進退移動により逆流防止弁を開閉作動するようにしたものである。 The preplasticating injection molding machine of Patent Document 1 rotates a screw contained in a plasticizing cylinder to plasticize and melt a molding material, and charges the injection cylinder with the molten resin through a non-return valve in an open state. In particular, when the plunger reaches a predetermined measurement end position during measurement, the rotation of the screw is stopped and the rotation amount and rotation speed of the screw are adjusted in advance. After that, the check valve provided between the plasticizing cylinder and the injection cylinder is closed. In addition, the pre-plasticizer type injection molding machine of Patent Document 2 has an injection cylinder with a plunger and a plasticizing cylinder with a plasticizing screw having a check valve at the tip that can rotate and move back and forth. A screw moving means and a rotating motor are provided at the rear of the plasticizing cylinder, and the backflow prevention valve is opened and closed by moving the screw back and forth by the screw moving means. It is the one that was made.
特開2004-255588号公報JP-A-2004-255588 特開平11-207794号公報JP-A-11-207794
 しかし、上述した従来における射出成形機(プリプラ式射出成形機)は、次のような解決すべき課題も存在した。 However, the conventional injection molding machine (preplastic injection molding machine) mentioned above also had the following problems to be solved.
 第一に、可塑化装置と射出装置をそれぞれ独立した別体のユニット装置として構成し、樹脂路を通して連結するため、可塑化工程と射出工程をそれぞれ独立した専用装置として実行できる利点はあるものの、射出装置と可塑化装置をそれぞれ併設した構成、具体的には、射出装置を水平に設置し、可塑化装置を水平に又は前下がりに傾斜させることにより、射出装置の上端上方に二段形態により取り付ける場合が多い。このため、射出成形機全体が大型化し、設置時における高さ方向のスペースが取られ、かつ圧迫感や威圧感の増加を招くとともに、射出成形機全体のコストアップを招きやすい。しかも、樹脂路等が構造的な煩雑さを有することから、メンテナンスやクリーニング(樹脂替え)が大変になる難点があった。 First, since the plasticizing device and the injection device are configured as independent separate unit devices and connected through a resin path, there is an advantage that the plasticizing process and the injection process can be performed as independent dedicated devices, respectively. A configuration in which an injection device and a plasticization device are installed side by side, specifically, the injection device is installed horizontally, and the plasticization device is tilted horizontally or downward to the front, so that the upper end of the injection device is in a two-stage configuration. often installed. As a result, the injection molding machine as a whole becomes large, requires a space in the height direction when installed, and causes an increase in oppressiveness and intimidation, as well as an increase in the cost of the entire injection molding machine. Moreover, since the resin path and the like have a complicated structure, maintenance and cleaning (replacement of resin) are difficult.
 第二に、プリプラ式射出成形機をはじめとした各種射出成形機により成形品の生産を行う場合、通常、成形品の種類等にマッチングする樹脂温度等の可塑化条件及び射出速度等の射出条件を含む各種成形条件を設定して成形を行うが、最終的に得られる成形品にはある程度の成形不良が発生するとともに、特に、成形品の種類等によっては、成形不良が発生しやすい成形品も存在する。例えば、可塑化時間が短く樹脂に対して十分な熱が伝わりにくいハイサイクル成形品,粉砕材等の混入により通常のペレットに比べてペレット形状が不均一な傾向を有するリサイクルペレット材料を使用した成形品,一度に大容量の可塑化が求められる射出容量の大きい成形品等は、成形不良が発生しやすく歩留率(良品率)の低下を来しやすい。このため、従来は、各種成形条件に対する精度の高い設定や制御の安定化などにより対応、例えば、樹脂に対する可塑化処理の場合、加熱温度に対する精度の高い設定やスクリュの回転速度及び可塑化時間等の最適化を図るなどにより対応していたが、このような対応を十分に行ったとしても、実際の生産現場では相当数の成形不良が発生するとともに、具体的な不良原因が解らないことも少なくなく、高い歩留率を確保するには限界があった。 Secondly, when producing molded products by various injection molding machines such as pre-plastic injection molding machines, plasticization conditions such as resin temperature and injection conditions such as injection speed are usually matched to the type of molded product. Molding is performed by setting various molding conditions including also exist. For example, molding using recycled pellet materials that tend to have uneven pellet shapes compared to ordinary pellets due to the inclusion of crushed materials, etc. Molded products with a large injection volume that require plasticization of a large volume at one time are likely to cause molding defects and a decrease in the yield rate (rate of non-defective products). For this reason, conventionally, it has been dealt with by setting highly accurate settings for various molding conditions and stabilizing control. However, even if such measures are taken sufficiently, a considerable number of molding defects occur at actual production sites, and the specific cause of defects is not always known. More than a few, there was a limit to ensuring a high yield rate.
 本発明は、このような背景技術に存在する課題を解決した射出成形機及び射出成形方法の提供を目的とするものである。 The purpose of the present invention is to provide an injection molding machine and an injection molding method that solve the problems existing in the background art.
 本発明に係る射出成形機Mは、上述した課題を解決するため、加熱筒2に内蔵したスクリュ3を回転駆動機構部4により回転させ、ホッパ5から投入された成形材料を可塑化処理する機能を備えるとともに、スクリュ3を進退駆動機構部6により前進させ、可塑化処理した樹脂Rを加熱筒2の先端に設けたノズル部7から射出する機能を有する射出装置Miを備える射出成形機であって、ノズル部7の軸心方向前方Fsfに、射出ノズル8を先端に有する射出シリンダ9を配設するとともに、ノズル部7を当該射出シリンダ9に挿入するプランジャ部10として構成した金型射出部Msと、プランジャ部10の内部に有する樹脂通路10rを開閉するバルブ機能部11と、射出装置Miを進退方向Fsに移動させる射出装置移動機構部12と、回転駆動機構部4,進退駆動機構部6,バルブ機能部11及び射出装置移動機構部12を、少なくとも駆動制御する成形機コントローラ13とを備えてなることを特徴とする。 In order to solve the above problems, the injection molding machine M according to the present invention has the function of rotating the screw 3 incorporated in the heating cylinder 2 by the rotation drive mechanism 4 and plasticizing the molding material charged from the hopper 5. and an injection device Mi having a function of advancing the screw 3 by the advance/retreat drive mechanism 6 and injecting the plasticized resin R from the nozzle 7 provided at the tip of the heating cylinder 2. An injection cylinder 9 having an injection nozzle 8 at its tip is disposed axially forward Fsf of the nozzle portion 7, and a mold injection portion configured as a plunger portion 10 for inserting the nozzle portion 7 into the injection cylinder 9. Ms, a valve function part 11 that opens and closes a resin passage 10r provided inside the plunger part 10, an injection device moving mechanism part 12 that moves the injection device Mi in the advancing/retreating direction Fs, a rotation driving mechanism part 4, and an advancing/retreating driving mechanism part. 6. It is characterized by comprising a molding machine controller 13 that drives and controls at least the valve function section 11 and the injection device moving mechanism section 12 .
 この場合、発明の好適な態様により、射出装置移動機構部12は、射出装置Miを進退方向Fsへ移動させる移動駆動部14と、射出装置Miを進退方向Fsへガイドするガイド機構部15とを備えて構成できる。この際、移動駆動部14は、射出装置Miの後端部Mirを覆う内部中空のピストン部14p及びこのピストン部14pを収容する加圧シリンダ部14cを備えて構成することができる。一方、ガイド機構部15は、射出装置Miの下端に設けた少なくとも一つのレールスライダ部16s,16sとこのレールスライダ部16s,16sをスライド自在に支持する少なくとも一つのガイドレール部16r,16rを備えるレール機構部16,16により構成できるとともに、さらに、ガイド機構部15として、射出装置Miに対して左右の離間した位置に配設した一対のタイロッド17t,17tと射出装置Miの左右に一体に設け、かつタイロッド17t,17tに沿ってスライド自在に移動するロッドスライダ部17m,17mを備えるロッド機構部17,17により構成できる。なお、バルブ機能部11は、樹脂通路10rを開閉するシャットオフバルブ11vと、このシャットオフバルブ11vを開閉駆動するバルブ駆動機構部11dを備えて構成できる。他方、加熱筒2は、可塑化処理した樹脂Rを蓄積する容積Ahとして、射出シリンダ9の容積Acに対して、0.3-3倍に選定可能である。 In this case, according to a preferred aspect of the invention, the injection device moving mechanism section 12 includes a movement drive section 14 that moves the injection device Mi in the advancing/retreating direction Fs, and a guide mechanism section 15 that guides the injection device Mi in the advancing/retreating direction Fs. can be configured with At this time, the movement driving section 14 can be configured to include an internal hollow piston section 14p covering the rear end section Mir of the injection device Mi and a pressurizing cylinder section 14c accommodating the piston section 14p. On the other hand, the guide mechanism portion 15 includes at least one rail slider portion 16s, 16s provided at the lower end of the injection device Mi and at least one guide rail portion 16r, 16r for slidably supporting the rail slider portions 16s, 16s. In addition to being constituted by the rail mechanism portions 16, 16, the guide mechanism portion 15 is provided integrally with a pair of tie rods 17t, 17t arranged at left and right separated positions with respect to the injection device Mi. and rod mechanism portions 17, 17 having rod slider portions 17m, 17m slidably moved along the tie rods 17t, 17t. The valve function unit 11 can be configured to include a shutoff valve 11v that opens and closes the resin passage 10r, and a valve driving mechanism 11d that drives the shutoff valve 11v to open and close. On the other hand, the volume Ah of the heating cylinder 2 for accumulating the plasticized resin R can be selected to be 0.3 to 3 times the volume Ac of the injection cylinder 9 .
 一方、本発明に係る射出成形方法は、上述した課題を解決するため、加熱筒2に内蔵したスクリュ3を回転駆動機構部4により回転させ、ホッパ5から投入された成形材料を可塑化処理するとともに、スクリュ3を進退駆動機構部6により前進させ、可塑化処理した樹脂Rを加熱筒2の先端に設けたノズル部7から射出する射出装置Miを用いた射出成形方法であって、予め、ノズル部7の軸心方向前方Fsfに、射出ノズル8を先端に有する射出シリンダ9を配設するとともに、ノズル部7を当該射出シリンダ9に挿入するプランジャ部10として構成した金型射出部Msと、プランジャ部10の内部に有する樹脂通路10rを開閉するバルブ機能部11と、射出装置Miを進退方向Fsに移動させる射出装置移動機構部12とを設け、成形時に、射出装置Miにより可塑化処理した所定量の樹脂Rを、開いたバルブ機能部11を通して金型射出部Msに蓄積し、この後、バルブ機能部11を閉じ、射出装置移動機構部12により射出装置Miを前進させて射出ノズル8から樹脂Rを金型Cに射出する射出成形処理を行うようにしたことを特徴とする。 On the other hand, in the injection molding method according to the present invention, in order to solve the above-described problems, the screw 3 incorporated in the heating cylinder 2 is rotated by the rotation drive mechanism 4, and the molding material charged from the hopper 5 is plasticized. At the same time, an injection molding method using an injection device Mi in which the screw 3 is advanced by the advance and retreat drive mechanism 6 and the plasticized resin R is injected from the nozzle 7 provided at the tip of the heating cylinder 2. an injection cylinder 9 having an injection nozzle 8 at its tip is disposed axially forward Fsf of the nozzle portion 7, and a mold injection portion Ms configured as a plunger portion 10 for inserting the nozzle portion 7 into the injection cylinder 9; , a valve function portion 11 for opening and closing the resin passage 10r provided inside the plunger portion 10, and an injection device moving mechanism portion 12 for moving the injection device Mi in the advancing and retreating direction Fs. A predetermined amount of resin R thus obtained is accumulated in the mold injection section Ms through the opened valve function section 11. After that, the valve function section 11 is closed, and the injection device Mi is moved forward by the injection device moving mechanism section 12 so that the injection nozzle It is characterized in that an injection molding process for injecting the resin R from 8 into the mold C is performed.
 この場合、発明の好適な態様により、可塑化処理は、バルブ機能部11を閉じ、スクリュ3を回転させることにより設定したスクリュ停止位置Xceまで可塑化処理を行い、この後、スクリュ3を加圧することにより、プランジャ部10を充填完了位置Xpeまで前進させることができる。また、可塑化処理を行った後、バルブ機能部11を開いた状態又は閉じた状態で、スクリュ3の前方に存在する樹脂Rを所定量だけスクリュの前端位置よりも後方へ還流させる還流処理(S20,S40)を行うことができる。還流処理(S20,S40)は、スクリュ3を、設定時間Tnだけ逆回転方向Fnへ回転させて行うことができるとともに、スクリュ3を、設定した加圧力により前方Fsfへ加圧して行うこともできる。さらに、還流処理(S20,S40)は、スクリュ3を回転させることにより設定したスクリュ停止位置Xceまで可塑化処理を行った後、スクリュ3を設定時間Trだけ前進させる単位還流処理を、設定回数Nだけ行い、この後、バルブ機能部11を開き、スクリュ3を加圧することにより、プランジャ部10を充填完了位置Xpeまで前進させることができる。 In this case, according to a preferred embodiment of the invention, the plasticizing process is performed by closing the valve function part 11 and rotating the screw 3 to the set screw stop position Xce, and then pressurizing the screw 3. Thereby, the plunger part 10 can be advanced to the filling completion position Xpe. Further, after the plasticizing process, a reflux process ( S20, S40) can be performed. The reflux process (S20, S40) can be performed by rotating the screw 3 in the reverse rotation direction Fn for the set time Tn, and can also be performed by pressurizing the screw 3 forward Fsf with a set pressurizing force. . Further, in the reflux process (S20, S40), the screw 3 is rotated to perform the plasticizing process up to the set screw stop position Xce, and then the unit reflux process is performed by advancing the screw 3 for the set time Tr. After that, by opening the valve function part 11 and pressurizing the screw 3, the plunger part 10 can be advanced to the filling completion position Xpe.
 このような本発明に係る射出成形機M及び射出成形方法によれば、次のような顕著な効果を奏する。 According to the injection molding machine M and the injection molding method according to the present invention, the following remarkable effects can be obtained.
 (1) 射出成形機Mは、射出装置Miの軸心方向前方に金型射出部Msを配設するとともに、ノズル部7を射出シリンダ9に挿入するプランジャ部10として構成(兼用)したため、可塑化工程と射出工程をそれぞれ独立して実行できるプリプラ式射出成形機と同様の機能を確保しつつ、射出成形機M全体の小型コンパクト化を図ることができる。特に、設置時における高さ方向のスペースを通常のインラインスクリュ式射出成形機と同等の水準に抑えることができるとともに、軸方向長さも必要最小限の長さに抑えることができるなど、圧迫感や威圧感が増加する不具合を回避し、かつ射出成形機M全体のコストダウンを図ることができる。しかも、樹脂通路を最短距離に設定できるなど、メンテナンスやクリーニング(樹脂替え)を容易化することができる。 (1) In the injection molding machine M, the mold injection part Ms is arranged in front of the injection device Mi in the axial direction, and the nozzle part 7 is configured (commonly used) as the plunger part 10 for inserting the injection cylinder 9. It is possible to reduce the overall size and size of the injection molding machine M while ensuring the same functions as those of a preplasticating injection molding machine capable of independently executing the molding process and the injection process. In particular, the space in the height direction during installation can be kept to the same level as a normal inline screw injection molding machine, and the axial length can also be kept to the minimum necessary length. It is possible to avoid the problem of increasing the intimidating feeling and to reduce the cost of the entire injection molding machine M. Moreover, maintenance and cleaning (replacement of resin) can be facilitated, for example, the resin passage can be set to the shortest distance.
 (2) 本発明の射出成形方法は、このような射出成形機Mを利用することにより、プリプラ式射出成形機と同様の機能を確保、即ち、射出工程中に次ショットの可塑化工程を行うことができるなど、可塑化工程と射出工程をそれぞれ独立して実行できるメリットを確保できるとともに、射出成形機Mを利用する観点から最適な射出成形処理を行うことができる。 (2) The injection molding method of the present invention uses such an injection molding machine M to ensure the same function as a pre-plastic injection molding machine, that is, the plasticizing process for the next shot is performed during the injection process. It is possible to secure the advantage of being able to independently execute the plasticizing process and the injection process, such as being able to perform the injection molding process optimally from the viewpoint of using the injection molding machine M.
 (3) 好適な態様により、射出装置移動機構部12を構成するに際し、射出装置Miを進退方向Fsへ移動させる移動駆動部14と、射出装置Miを進退方向Fsへガイドするガイド機構部15とを備えて構成すれば、射出装置移動機構部12の移動機構を最もオーソドックスな機構により構成できるため、確実で安定した移動機構部12を構築することができる。 (3) According to a preferred embodiment, when constructing the injection device moving mechanism 12, the movement drive unit 14 for moving the injection device Mi in the advancing/retreating direction Fs, and the guide mechanism 15 for guiding the injection device Mi in the advancing/retreating direction Fs. , the moving mechanism of the injection device moving mechanism section 12 can be configured by the most orthodox mechanism, so that the reliable and stable moving mechanism section 12 can be constructed.
 (4) 好適な態様により、移動駆動部14を、射出装置Miの後端部Mirを覆う内部中空のピストン部14p及びこのピストン部14pを収容する加圧シリンダ部14cを備えて構成すれば、射出装置Miの後端部Mirにおける外郭形状の一部を利用して加圧シリンダ部14cを構成できるため、シンプルな移動駆動部14を構築できるとともに、高圧の油圧シリンダを構成することができる。 (4) According to a preferred aspect, if the movement driving section 14 is configured to include an internal hollow piston section 14p covering the rear end section Mir of the injection device Mi and a pressurizing cylinder section 14c accommodating the piston section 14p, Since the pressurizing cylinder portion 14c can be configured using part of the contour shape of the rear end portion Mir of the injection device Mi, the simple movement driving portion 14 can be constructed and a high-pressure hydraulic cylinder can be configured.
 (5) 好適な態様により、ガイド機構部15を、射出装置Miの下端に設けた少なくとも一つのレールスライダ部16s,16sとこのレールスライダ部16s,16sをスライド自在に支持する少なくとも一つのガイドレール部16r,16rを備えるレール機構部16,16により構成すれば、最もオーソドックスな構成を有するレール機構部16,16によりガイドできるため、重量の大きな射出装置Miであっても安定かつ円滑に移動させることができる。 (5) According to a preferred embodiment, the guide mechanism part 15 is composed of at least one rail slider part 16s, 16s provided at the lower end of the injection device Mi and at least one guide rail slidably supporting the rail slider part 16s, 16s. If configured by the rail mechanism portions 16, 16 having the portions 16r, 16r, it can be guided by the rail mechanism portions 16, 16 having the most orthodox configuration, so that even the heavy injection device Mi can be moved stably and smoothly. be able to.
 (6) 好適な態様により、ガイド機構部15を、射出装置Miに対して左右の離間した位置に配設した一対のタイロッド17t,17tと射出装置Miの左右に一体に設け、かつタイロッド17t,17tに沿ってスライド自在に移動するロッドスライダ部17m,17mを備えるロッド機構部17,17により構成すれば、射出装置Miに対して左右方向のブレを防止できるため、射出装置Miに対するガイド機能をより安定に行うことができるとともに、特に、レール機構部16,16と組合わせることにより、最も望ましい形態のガイド機構部15を構築することができる。 (6) According to a preferred embodiment, the guide mechanism part 15 is integrally provided with a pair of tie rods 17t, 17t arranged at left and right separated positions with respect to the injection device Mi and on the left and right sides of the injection device Mi, and If the rod mechanism portions 17, 17 having the rod slider portions 17m, 17m that slidably move along the 17t are configured, it is possible to prevent the injection device Mi from shaking in the left-right direction, so that the injection device Mi can be guided. This can be performed more stably, and in particular, by combining the rail mechanisms 16, 16, the most desirable form of the guide mechanism 15 can be constructed.
 (7) 好適な態様により、バルブ機能部11を構成するに際し、樹脂通路10rを開閉するシャットオフバルブ11vと、このシャットオフバルブ11vを開閉駆動するバルブ駆動機構部11dを備えて構成すれば、射出装置Miの駆動系を油圧系駆動部により構成した場合、バルブ駆動機構部11dの駆動源として、この油圧系駆動部を利用できるため、バルブ機能部11の制御の簡略化及び確実化を図れるとともに、構成の簡略化に伴うシャットオフバルブ11vの開閉動作の迅速化にも寄与できる。 (7) According to a preferred embodiment, when constructing the valve function unit 11, if the shut-off valve 11v for opening and closing the resin passage 10r and the valve drive mechanism unit 11d for opening and closing the shut-off valve 11v are provided, When the drive system of the injection device Mi is composed of a hydraulic drive section, the hydraulic drive section can be used as a drive source for the valve drive mechanism section 11d, so that the control of the valve function section 11 can be simplified and ensured. At the same time, the simplification of the structure can contribute to speeding up the opening/closing operation of the shutoff valve 11v.
 (8) 好適な態様により、加熱筒2と射出シリンダ9の関係において、加熱筒2における可塑化処理した樹脂Rを蓄積する容積Ahとして、射出シリンダ9の容積Acに対して、0.3-3倍に選定することができる。即ち、インラインスクリュ式射出成形機などでは、容積Ahと容積Acの関係は、ある程度の倍率範囲に設定する必要があるが、本発明に係る射出成形機Mでは倍率範囲をより大きく設定することができる。この結果、いわば大型成形品から小型成形品(超小型成形品)まで良好に成形処理することが可能となり、汎用性の高い射出成形機Mとして提供することができる。 (8) According to a preferred embodiment, in the relationship between the heating cylinder 2 and the injection cylinder 9, the volume Ah for accumulating the plasticized resin R in the heating cylinder 2 is 0.3- It can be selected three times. That is, in an in-line screw type injection molding machine or the like, the relationship between the volume Ah and the volume Ac needs to be set within a certain magnification range, but in the injection molding machine M according to the present invention, the magnification range can be set larger. can. As a result, it is possible to satisfactorily perform the molding process from a large molded product to a small molded product (ultra-small molded product), and the injection molding machine M can be provided with high versatility.
 (9) 好適な態様により、可塑化処理を実行するに際し、バルブ機能部11を閉じ、スクリュ3を回転させることにより設定したスクリュ停止位置Xceまで可塑化処理を行い、この後、スクリュ3を加圧することにより、プランジャ部10を充填完了位置Xpeまで前進させれば、加熱筒2及び射出シリンダ9における有効ストロークを最大限に利用できるため、最も能率的かつ効率的な成形処理を行うことができる。 (9) According to a preferred embodiment, when executing the plasticizing process, the valve function part 11 is closed and the screw 3 is rotated to perform the plasticizing process up to the set screw stop position Xce. If the plunger portion 10 is advanced to the filling completion position Xpe by applying pressure, the effective stroke of the heating cylinder 2 and the injection cylinder 9 can be utilized to the maximum, so that the most efficient and efficient molding process can be performed. .
 (10) 好適な態様により、可塑化処理を行った後、バルブ機能部11を開いた状態又は閉じた状態で、スクリュ3の前方に存在する樹脂Rを所定量だけスクリュの前端位置よりも後方へ還流させる還流処理(S20,S40)を行うようにすれば、加熱筒2内において再可塑化処理することが可能になるため、混練度の高い、より均質性に優れた溶融樹脂を得ることができるとともに、不良品の削減により最終成形品の歩留率をより高めることができる。 (10) According to a preferred embodiment, after the plasticization process is performed, with the valve function part 11 opened or closed, a predetermined amount of the resin R existing in front of the screw 3 is removed behind the front end position of the screw. If the reflux treatment (S20, S40) of refluxing to is performed, it is possible to re-plasticize in the heating cylinder 2, so it is possible to obtain a molten resin with a high kneading degree and excellent homogeneity. In addition, the yield rate of the final molded product can be further increased by reducing the number of defective products.
 (11) 好適な態様により、還流処理(S20,S40)を行うに際し、スクリュ3を、設定時間Tnだけ逆回転方向Fnへ回転させて行うようにすれば、還流方向の圧力を低下させることができるため、還流処理を迅速に行えるとともに、回転速度を可変制御することにより容易に還流時間や還流量を調整することができる。 (11) According to a preferred embodiment, when the reflux process (S20, S40) is performed, the screw 3 is rotated in the reverse rotation direction Fn for the set time Tn, so that the pressure in the reflux direction can be reduced. Therefore, the reflux process can be performed quickly, and the reflux time and the reflux amount can be easily adjusted by variably controlling the rotation speed.
 (12) 好適な態様により、還流処理(S20,S40)を行うに際し、スクリュ3を、設定した加圧力により前方Fsfへ加圧して行うようにすれば、最もシンプルな方法により樹脂Rを還流させることができるため、実施の容易化及び制御の容易化に寄与できる。 (12) According to a preferred embodiment, when performing the reflux process (S20, S40), if the screw 3 is pressurized forward Fsf with a set pressurizing force, the resin R can be refluxed by the simplest method. This can contribute to simplification of implementation and simplification of control.
 (13) 好適な態様により、還流処理(S20,S40)を行うに際し、スクリュ3を回転させることにより設定したスクリュ停止位置Xceまで可塑化処理を行った後、スクリュ3を設定時間Trだけ前進させる単位還流処理を、設定回数Nだけ行い、この後、バルブ機能部11を開き、スクリュ3を加圧することにより、プランジャ部10を充填完了位置Xpeまで後退させるようにすれば、単位還流処理を、設定回数Nだけ行うことができるため、より混練度の高い、均質性に優れた可塑化樹脂を得れるとともに、樹脂の種類や特性等にマッチングした還流処理の最適化を実現できる。 (13) According to a preferred embodiment, when the reflux process (S20, S40) is performed, the screw 3 is rotated to perform the plasticizing process to the set screw stop position Xce, and then the screw 3 is advanced by the set time Tr. The unit reflux process is performed a set number of times N, and after that, the valve function part 11 is opened and the screw 3 is pressurized to retract the plunger part 10 to the filling completion position Xpe. Since it can be performed for the set number of times N, it is possible to obtain a plasticized resin with a higher degree of kneading and excellent homogeneity, and to realize optimization of the reflux treatment that matches the type and characteristics of the resin.
本発明の好適実施形態に係る射出成形機の一部断面側面図、1 is a partial cross-sectional side view of an injection molding machine according to a preferred embodiment of the present invention; 同射出成形機における射出装置の一部断面平面図、A partial cross-sectional plan view of an injection device in the same injection molding machine, 同射出成形機における図1中X-X線断面図、XX line cross-sectional view in FIG. 1 in the same injection molding machine, 同射出成形機におけるバルブ機能部の抽出拡大構成図、Extracted and enlarged configuration diagram of the valve function part in the same injection molding machine, 同射出成形機の基本動作(通常モード)による射出成形方法に基づく成形工程を順を追って示すフローチャート、A flow chart showing the molding process based on the injection molding method by the basic operation (normal mode) of the same injection molding machine in order, 同フローチャートの射出成形機の状態を示す模式図、Schematic diagram showing the state of the injection molding machine in the flowchart, 同フローチャートの射出成形機における他の状態を示す模式図、Schematic diagrams showing other states in the injection molding machine of the flowchart, 同フローチャートの射出成形機における他の状態を示す模式図、Schematic diagrams showing other states in the injection molding machine of the flowchart, 同フローチャートにおける標準の還流モードによる還流処理工程の詳細な処理工程を示すサブルーチンフローチャート、A subroutine flowchart showing the detailed processing steps of the reflux treatment step in the standard reflux mode in the same flowchart; 同サブルーチンフローチャートの射出成形機の状態を示す模式図、A schematic diagram showing the state of the injection molding machine in the same subroutine flow chart, 同サブルーチンフローチャートの射出成形機における他の状態を示す模式図、Schematic diagrams showing other states in the injection molding machine of the same subroutine flow chart, 同サブルーチンフローチャートの射出成形機における他の状態を示す模式図、Schematic diagrams showing other states in the injection molding machine of the same subroutine flow chart, 同フローチャートにおける他の還流処理工程の詳細な処理工程を示すサブルーチンフローチャート、A subroutine flow chart showing detailed processing steps of other reflux processing steps in the same flow chart, 同サブルーチンフローチャートの射出成形機の状態を示す模式図、A schematic diagram showing the state of the injection molding machine in the same subroutine flow chart, 同サブルーチンフローチャートの射出成形機における他の状態を示す模式図、Schematic diagrams showing other states in the injection molding machine of the same subroutine flow chart,
 M:射出成形機,Mi:射出装置,Mir:射出装置の後端部,Ms:金型射出部,2:加熱筒,3:スクリュ,4:回転駆動機構部,5:ホッパ,6:進退駆動機構部,7:ノズル部,8:射出ノズル,9:射出シリンダ,10:プランジャ部,10r:樹脂通路,11:バルブ機能部,11v:シャットオフバルブ,11d:バルブ駆動機構部,12:射出装置移動機構部,13:成形機コントローラ,14:移動駆動部,14p:ピストン部,14c:加圧シリンダ部,15:ガイド機構部,16:レール機構部,16s:レールスライダ部,16r:ガイドレール部,17:ロッド機構部,17t:タイロッド,17m:ロッドスライダ部,R:樹脂,Fs:進退方向,Fsf:軸心方向前方,Ah:容積,Ac:容積,C:金型,Xce:スクリュ停止位置,Xpe:充填完了位置,S20:還流処理工程,S40:還流処理工程,Fn:逆回転方向,N:設定回数 M: injection molding machine, Mi: injection device, Mir: rear end of injection device, Ms: mold injection part, 2: heating cylinder, 3: screw, 4: rotation drive mechanism part, 5: hopper, 6: advancing and retreating Drive Mechanism Part 7: Nozzle Part 8: Injection Nozzle 9: Injection Cylinder 10: Plunger Part 10r: Resin Passage 11: Valve Function Part 11v: Shutoff Valve 11d: Valve Drive Mechanism Part 12: Injection device moving mechanism part, 13: molding machine controller, 14: movement driving part, 14p: piston part, 14c: pressure cylinder part, 15: guide mechanism part, 16: rail mechanism part, 16s: rail slider part, 16r: Guide rail portion, 17: Rod mechanism portion, 17t: Tie rod, 17m: Rod slider portion, R: Resin, Fs: Retraction direction, Fsf: Forward in axial direction, Ah: Volume, Ac: Volume, C: Mold, Xce : screw stop position, Xpe: filling completion position, S20: reflux treatment process, S40: reflux treatment process, Fn: reverse rotation direction, N: set number of times
 次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。 Next, preferred embodiments according to the present invention will be presented and explained in detail based on the drawings.
 まず、本実施形態に係る射出成形機Mの構成について、図1-図4を参照して具体的に説明する。 First, the configuration of the injection molding machine M according to this embodiment will be specifically described with reference to FIGS. 1 to 4. FIG.
 射出成形機Mは、図1及び図2に示すように、平坦な成形機ベッドMoを備え、この成形機ベッドMoの右側上面に、射出装置Miと金型射出部Msを配設した可動ベッドMomを備えるとともに、成形機ベッドMoの左側に、仮想線により一部を省略して描いた型締装置Mcを配設する。 As shown in FIGS. 1 and 2, the injection molding machine M is provided with a flat molding machine bed Mo, and on the right upper surface of the molding machine bed Mo, there is a movable bed in which an injection device Mi and a mold injection section Ms are arranged. A mold clamping device Mc is provided on the left side of the molding machine bed Mo.
 この場合、射出装置Miは、一般的なインラインスクリュ式射出成形機における射出装置に類する構成を備えている。即ち、基本的構成として、加熱筒2に内蔵したスクリュ3を、回転駆動機構部4により回転させることにより、ホッパ5から投入された成形材料を可塑化し、スクリュ3の前方に可塑化した樹脂Rを蓄積する機能を備えるとともに、スクリュ3を、進退駆動機構部6により前進させることにより可塑化した樹脂Rを加熱筒2の先端に設けたノズル部7から射出する機能を備える。 In this case, the injection device Mi has a configuration similar to that of a general inline screw injection molding machine. That is, as a basic configuration, the screw 3 incorporated in the heating cylinder 2 is rotated by the rotation drive mechanism 4 to plasticize the molding material charged from the hopper 5, and the plasticized resin R is placed in front of the screw 3. and a function of injecting the plasticized resin R from a nozzle portion 7 provided at the tip of the heating cylinder 2 by advancing the screw 3 by the forward/backward drive mechanism portion 6 .
 したがって、図2に示すように、スクリュ3の後端は、進退駆動機構部6を構成するスクリュ駆動ラム22の前端に固定するとともに、このスクリュ駆動ラム22の後端には、回転駆動機構部4を構成するオイルモータ21の回転出力軸の先端側をスプライン方式により結合する。この場合、スクリュ3の後部側は、中空状のハウジング部23により覆うとともに、このハウジング部23の後端に固定盤24を固定し、この固定盤24にオイルモータ21の前端を取付ける。これにより、オイルモータ21を駆動制御することにより、スクリュ駆動ラム22を介してスクリュ3を、正回転方向(可塑化方向)Fm(図6b参照)又は逆回転方向Fn(図8a参照)に回転できる。一方、スクリュ駆動ラム22を駆動制御することにより、スクリュ3を前進方向Fsfに移動できるとともに、後退方向に背圧を付与できる。なお、25は加熱筒2の外周面に付設したバンドヒータ、26は可動ベッドMomを移動させるノズルタッチシリンダをそれぞれ示す。 Therefore, as shown in FIG. 2, the rear end of the screw 3 is fixed to the front end of the screw drive ram 22 that constitutes the advance/retreat drive mechanism 6, and the rear end of the screw drive ram 22 is connected to the rotation drive mechanism. 4, the tip end side of the rotation output shaft of the oil motor 21 is connected by a spline method. In this case, the rear portion of the screw 3 is covered with a hollow housing portion 23, and a stationary platen 24 is fixed to the rear end of the housing portion 23, and the front end of the oil motor 21 is attached to the stationary platen 24. As a result, by driving and controlling the oil motor 21, the screw 3 is rotated in the forward rotation direction (plasticizing direction) Fm (see FIG. 6b) or the reverse rotation direction Fn (see FIG. 8a) via the screw driving ram 22. can. On the other hand, by controlling the driving of the screw driving ram 22, the screw 3 can be moved in the forward direction Fsf and back pressure can be applied in the backward direction. 25 denotes a band heater attached to the outer peripheral surface of the heating cylinder 2, and 26 denotes a nozzle touch cylinder for moving the movable bed Mom.
 次に、本発明に係る射出成形機Mの要部の構成について説明する。まず、射出装置Miには、図1-図3に示すように、この射出装置Miを進退方向Fsに移動させる射出装置移動機構部12を付設する。この射出装置移動機構部12は、射出装置Miを進退方向Fsへ移動させる移動駆動部14と、射出装置Miを進退方向Fsへガイドするガイド機構部15とを備えて構成する。これにより、射出装置移動機構部12の移動機構を最もオーソドックスな機構により構成できるため、確実で安定した移動機構部12を構築することができる。 Next, the configuration of the main part of the injection molding machine M according to the present invention will be explained. First, as shown in FIGS. 1 to 3, the injection device Mi is provided with an injection device moving mechanism 12 for moving the injection device Mi in the advancing/retreating direction Fs. The injection device moving mechanism section 12 includes a movement drive section 14 that moves the injection device Mi in the advancing/retreating direction Fs, and a guide mechanism section 15 that guides the injection device Mi in the advancing/retreating direction Fs. As a result, the moving mechanism of the injection device moving mechanism section 12 can be configured by the most orthodox mechanism, so that the reliable and stable moving mechanism section 12 can be constructed.
 この場合、移動駆動部14は、図2に示すように、射出装置Miの後端部Mirを覆う内部中空のピストン部14p及びこのピストン部14pを収容する加圧シリンダ部14cを備えて構成する。即ち、オイルモータ21を覆う筒形に形成したモータカバーを兼ねるピストンロッド体14prを備え、このピストンロッド体14prを前述した固定盤24に固定し、このピストンロッド体14prの後端にピストン本体14pmを一体形成してピストン部14pを構成するとともに、このピストン部14pは筒形のシリンダ部14cに収容する。 In this case, as shown in FIG. 2, the movement driving section 14 is configured with a hollow piston section 14p covering the rear end section Mir of the injection device Mi and a pressurizing cylinder section 14c accommodating the piston section 14p. . That is, a piston rod body 14pr formed in a cylindrical shape and serving as a motor cover for covering the oil motor 21 is provided. are integrally formed to form a piston portion 14p, and the piston portion 14p is housed in a cylindrical cylinder portion 14c.
 これにより、ピストンロッド体14prの前端側がシリンダ部14cから前方へ突出する片ロッドタイプの加圧駆動シリンダ14oが構成されるとともに、この加圧駆動シリンダを用いた移動駆動部14が構成される。そして、この加圧駆動シリンダ14oの下端面は、図1に示すように、可動ベッドMomの後端部に固定する。このような移動駆動部14を設ければ、射出装置Miの後端部Mirにおける外郭形状の一部を利用して加圧駆動シリンダ14oを構成できるため、シンプルな移動駆動部14を構築できるとともに、高圧の油圧シリンダを構成することができる。 As a result, a single-rod pressurizing drive cylinder 14o in which the front end side of the piston rod body 14pr protrudes forward from the cylinder portion 14c is formed, and the movement drive portion 14 using this pressurizing drive cylinder is formed. The lower end surface of the pressure driving cylinder 14o is fixed to the rear end portion of the movable bed Mom as shown in FIG. If such a movement driving section 14 is provided, a portion of the contour shape of the rear end portion Mir of the injection device Mi can be used to configure the pressurizing driving cylinder 14o, so that a simple movement driving section 14 can be constructed. , can constitute a high-pressure hydraulic cylinder.
 また、ガイド機構部15は、下端に配設するレール機構部16,16と両サイドに配設するロッド機構部17,17を備える。レール機構部16,16は、射出装置Miの下端に設けた少なくとも一つのレールスライダ部16s,16sとこのレールスライダ部16s,16sをスライド自在に支持する少なくとも一つのガイドレール部16r,16rを備える。この場合、射出装置Miにおける前後方向の中間位置、即ち、前述したハウジング部23に射出装置Miを支持する支持ブロック27を一体に設ける。そして、図3に示すように、この支持ブロック27の下面に、左右一対のレールスライダ部16s,16sを設けるとともに、可動ベッドMomの上面に、左右一対のガイドレール部16r,16rを設ける。これにより、レールスライダ部16s,16sは、ガイドレール部16r,16r上をスライド自在に支持される。ガイド機構部15を、このように構成すれば、最もオーソドックスな構成を有するレール機構部16,16によりガイドできるため、重量の大きな射出装置Miであっても安定かつ円滑に移動させることができる。 Further, the guide mechanism portion 15 includes rail mechanism portions 16, 16 arranged at the lower end and rod mechanism portions 17, 17 arranged at both sides. The rail mechanism sections 16, 16 include at least one rail slider section 16s, 16s provided at the lower end of the injection device Mi and at least one guide rail section 16r, 16r for slidably supporting the rail slider sections 16s, 16s. . In this case, a support block 27 for supporting the injection device Mi is integrally provided at an intermediate position in the front-rear direction of the injection device Mi, that is, at the housing portion 23 described above. As shown in FIG. 3, a pair of left and right rail slider portions 16s, 16s are provided on the lower surface of the support block 27, and a pair of left and right guide rail portions 16r, 16r are provided on the upper surface of the movable bed Mom. Thereby, the rail slider portions 16s, 16s are slidably supported on the guide rail portions 16r, 16r. If the guide mechanism section 15 is configured in this way, it can be guided by the rail mechanism sections 16, 16 having the most orthodox configuration, so that even the heavy injection device Mi can be moved stably and smoothly.
 さらに、ロッド機構部17,17は、射出装置Miに対して左右の離間したサイド位置に固定した一対のタイロッド17t,17tと射出装置Miの左右に一体に設け、かつタイロッド17t,17tに沿ってスライド自在に移動するロッドスライダ部17m,17mを備える。この場合、図2に示すように、加圧駆動シリンダ14oの左右に軸受形態に形成した一対のロッド支持部28p,28qを固定し、他方、可動ベッドMomの前部に、後述する射出シリンダ9を支持するシリンダ支持部29を固定する。これにより、このシリンダ支持部29の左右に軸受形態に形成した一対のロッド支持部29p,29qを固定し、一対のロッド支持部28p,28qと一対のロッド支持部29p,29q間に、別途用意した一対のタイロッド17t,17tによりそれぞれ固定する。そして、射出装置Miにおける前述した支持ブロック27に一体に設けた左右一対のロッドスライダ部17m,17mを各タイロッド17t,17tに対してスライド自在に係合させる。このように構成すれば、射出装置Miに対して左右方向のブレを防止できるため、射出装置Miに対するガイド機能をより安定に行うことができるとともに、特に、レール機構部16,16と組合わせることにより、最も望ましい形態のガイド機構部15を構築できる。 Further, the rod mechanism portions 17, 17 are integrally provided on the left and right sides of the injection device Mi with a pair of tie rods 17t, 17t fixed at left and right side positions separated from the injection device Mi, and along the tie rods 17t, 17t. It has rod slider parts 17m, 17m that move slidably. In this case, as shown in FIG. 2, a pair of rod support portions 28p and 28q formed in the form of bearings are fixed to the left and right sides of the pressurizing drive cylinder 14o. is fixed. As a result, a pair of rod support portions 29p, 29q formed in the form of bearings are fixed to the left and right of the cylinder support portion 29, and a separately prepared rod support portion 28p, 28q is provided between the pair of rod support portions 28p, 28q and the pair of rod support portions 29p, 29q. are fixed by a pair of tie rods 17t, 17t. A pair of left and right rod slider portions 17m, 17m provided integrally with the aforementioned support block 27 in the injection device Mi are slidably engaged with the respective tie rods 17t, 17t. With this configuration, it is possible to prevent the injection device Mi from moving in the horizontal direction, so that the guide function for the injection device Mi can be performed more stably. Thus, the most desirable form of the guide mechanism section 15 can be constructed.
 一方、ノズル部7の軸心方向前方Fsfには、図1に示すように、射出シリンダ9を配設する。この場合、可動ベッドMomの上面にシリンダ支持部29を固定し、このシリンダ支持部29に射出シリンダ9の後端面を固定する。また、射出シリンダ9の前端には、先端のノズル口が、金型Cに当接する射出ノズル8を備える。この射出ノズル8には、シャットオフノズルタイプを用いてもよいし、射出ノズル8の中途位置にシャットオフバルブ11vsを内蔵するタイプを用いてもよい。 On the other hand, as shown in FIG. In this case, the cylinder support portion 29 is fixed to the upper surface of the movable bed Mom, and the rear end surface of the injection cylinder 9 is fixed to this cylinder support portion 29 . Further, the front end of the injection cylinder 9 is provided with an injection nozzle 8 whose tip nozzle port contacts the mold C. As shown in FIG. A shut-off nozzle type may be used for this injection nozzle 8, or a type in which a shut-off valve 11vs is built in the middle position of the injection nozzle 8 may be used.
 なお、加熱筒2と射出シリンダ9の関係においては、加熱筒2における可塑化処理した樹脂Rを蓄積する容積Ahとした場合、射出シリンダ9の容積Acに対して、0.3-3倍に選定することができる。即ち、インラインスクリュ式射出成形機などでは、容積Ahと容積Acの関係は、ある程度の倍率範囲に設定する必要があるが、本発明に係る射出成形機Mでは倍率範囲をより大きく設定することができる。この場合、下限となる0.3倍は、シャットオフバルブの動作タイミングや成形サイクル等を考慮した値となり、また、上限となる3倍は、還流量を考慮した余裕のある値となる。これにより、いわば大型成形品から小型成形品(超小型成形品)まで良好に成形処理することが可能になることを意味し、汎用性の高い射出成形機Mとして提供することができる。 Regarding the relationship between the heating cylinder 2 and the injection cylinder 9, when the volume Ah for accumulating the plasticized resin R in the heating cylinder 2 is 0.3 to 3 times the volume Ac of the injection cylinder 9, can be selected. That is, in an in-line screw type injection molding machine or the like, the relationship between the volume Ah and the volume Ac needs to be set within a certain magnification range, but in the injection molding machine M according to the present invention, the magnification range can be set larger. can. In this case, the lower limit of 0.3 times is a value that considers the operation timing of the shut-off valve, the molding cycle, and the like, and the upper limit of 3 times is a value with a margin that considers the amount of reflux. This means that it is possible to satisfactorily mold from a large molded product to a small molded product (ultra-small molded product), and the injection molding machine M can be provided with high versatility.
 また、ノズル部7は、射出シリンダ9の後端口からシリンダ内部に挿入するプランジャ部10として構成する。したがって、プランジャ部10はノズル部7を兼用するとともに、ノズル部7はプランジャ部10を兼用することになり、このプランジャ部10と射出シリンダ9により金型射出部Msが構成される。これにより、加熱筒2側の樹脂Rは、プランジャ部10の内部に有する樹脂通路10rを通して射出シリンダ9の内部に収容されるとともに、プランジャ部10を前進させることにより、射出シリンダ9内の樹脂Rを射出ノズル8を通して金型Cに射出充填することができる。 Further, the nozzle portion 7 is configured as a plunger portion 10 that is inserted from the rear end port of the injection cylinder 9 into the inside of the cylinder. Therefore, the plunger portion 10 also serves as the nozzle portion 7, and the nozzle portion 7 also serves as the plunger portion 10. The plunger portion 10 and the injection cylinder 9 constitute the mold injection portion Ms. As a result, the resin R on the heating cylinder 2 side is accommodated inside the injection cylinder 9 through the resin passage 10r provided inside the plunger portion 10, and by advancing the plunger portion 10, the resin R inside the injection cylinder 9 is can be injected into the mold C through the injection nozzle 8.
 加えて、射出成形機Mは、図4に示すように、プランジャ部10の内部に有する樹脂通路10rを開閉するバルブ機能部11を備える。例示の場合、バルブ機能部11は、樹脂通路10rを開閉するシャットオフバルブ11vと、このシャットオフバルブ11vを開閉駆動するバルブ駆動機構部11dを備えて構成する。シャットオフバルブ11vは、プランジャ部10の中間位置又はプランジャ部10の後端と加熱筒2間に配設することができ、円柱形の弁体11vmを90゜回動変位させることにより樹脂通路10rを開閉することができる。このため、バルブ駆動機構部11dは、後端を、支持ブロック27に回動部を介して連結した進退駆動シリンダ11dcと、この進退駆動シリンダ11dcから前方へ突出させた駆動ロッド11drの先端と弁体11vmを連結する連結機構11mjを備えて構成する。 In addition, the injection molding machine M is provided with a valve function section 11 that opens and closes the resin passage 10r inside the plunger section 10, as shown in FIG. In the illustrated case, the valve function unit 11 includes a shutoff valve 11v for opening and closing the resin passage 10r, and a valve drive mechanism unit 11d for opening and closing the shutoff valve 11v. The shut-off valve 11v can be disposed at an intermediate position of the plunger portion 10 or between the rear end of the plunger portion 10 and the heating cylinder 2, and the resin passage 10r can be closed by rotating the cylindrical valve body 11vm by 90 degrees. can be opened and closed. For this reason, the valve driving mechanism portion 11d includes a forward/backward drive cylinder 11dc whose rear end is connected to the support block 27 via a rotating portion, and a forward end of a drive rod 11dr projecting forward from the forward/backward drive cylinder 11dc and a valve. It comprises a connecting mechanism 11mj that connects the bodies 11vm.
 これにより、図4に示すように、進退駆動シリンダ11dcを駆動制御し、駆動ロッド11drを引込方向Fpに変位させれば、弁体11vmを閉側に切換えることができるとともに、駆動ロッド11drを突出方向に90゜回動変位させれば、弁体11vmを開側に切換えることができる。このように構成すれば、射出装置Miの駆動系を油圧系駆動部により構成した場合、バルブ駆動機構部11dの駆動源として、この油圧系駆動部を利用できるため、バルブ機能部11の制御の簡略化及び確実化を図ることができるとともに、構成の簡略化に伴うシャットオフバルブ11vの開閉動作の迅速化にも寄与できる。 As a result, as shown in FIG. 4, by controlling the driving of the forward/backward driving cylinder 11dc and displacing the driving rod 11dr in the retracting direction Fp, the valve body 11vm can be switched to the closing side and the driving rod 11dr can be projected. The valve body 11vm can be switched to the open side by turning 90 degrees in the direction. With this configuration, when the drive system of the injection device Mi is composed of the hydraulic drive section, the hydraulic drive section can be used as a drive source for the valve drive mechanism section 11d. It is possible to achieve simplification and reliability, and contribute to speeding up the opening/closing operation of the shutoff valve 11v accompanying the simplification of the configuration.
 他方、図2に示すように、油圧ポンプ.油圧回路及び各種バルブを備えて構成する油圧駆動部31を備え、この油圧駆動部31に、スクリュ駆動ラム22(進退駆動機構部6),オイルモータ21(回転駆動機構部4),油圧シリンダ14o(移動駆動部14),進退駆動シリンダ11dc(バルブ駆動機構部11d)をそれぞれ接続するとともに、図1に示したノズルタッチシリンダ26を接続する。そして、油圧駆動部31には、各種制御指令を付与する成形機コントローラ13を接続するとともに、この成形機コントローラ13に対して、射出成形機Mにおける各種位置情報,時間情報,圧力情報,切換情報等を検出するセンサ群32を接続する。これにより、成形機コントローラ13により、回転駆動機構部4,進退駆動機構部6,バルブ機能部11及び射出装置移動機構部12を少なくとも駆動制御することができる。 On the other hand, as shown in Fig. 2, the hydraulic pump. A hydraulic drive unit 31 comprising a hydraulic circuit and various valves is provided. The hydraulic drive unit 31 includes a screw drive ram 22 (advance/retreat drive mechanism 6), an oil motor 21 (rotational drive mechanism 4), and a hydraulic cylinder 14o. (Movement drive unit 14) and advance/retreat drive cylinder 11dc (valve drive mechanism unit 11d) are connected, respectively, and nozzle touch cylinder 26 shown in FIG. 1 is also connected. A molding machine controller 13 for giving various control commands is connected to the hydraulic drive unit 31, and various position information, time information, pressure information and switching information in the injection molding machine M are sent to the molding machine controller 13. A sensor group 32 for detecting such as is connected. As a result, the molding machine controller 13 can drive and control at least the rotation drive mechanism section 4 , the advance/retreat drive mechanism section 6 , the valve function section 11 and the injection device movement mechanism section 12 .
 次に、このように構成する射出成形機Mを用いた成形方法、即ち、本実施形態に係る射出成形方法について、図5-図10を参照して説明する。 Next, a molding method using the injection molding machine M configured as described above, that is, an injection molding method according to the present embodiment will be described with reference to FIGS. 5 to 10. FIG.
 本実施形態に係る射出成形方法は、通常モードによる基本形態の射出成形方法に加え、樹脂Rに対して二回以上の可塑化処理を繰り返して行う還流処理工程を含む各種還流モードによる射出成形方法を実施することができる。 The injection molding method according to the present embodiment includes, in addition to the basic injection molding method in the normal mode, injection molding methods in various reflux modes including a reflux treatment step in which the resin R is repeatedly plasticized two or more times. can be implemented.
 最初に、通常モードによる射出成形方法について、図6a-図6cを参照し、図5に示すフローチャートに従って説明する。 First, the injection molding method in the normal mode will be described according to the flow chart shown in FIG. 5 with reference to FIGS. 6a-6c.
 図6aは、樹脂Rが存在しない射出成形機Mの状態を示す。即ち、型締された金型Cに射出ノズル8の先端がノズルタッチし、また、プランジャ部10は、射出シリンダ9の最前進位置にあるとともに、スクリュ3の先端が加熱筒2の最前進位置に停止している状態を示す。さらに、シャットオフバルブ11vは開状態に切換えておく。なお、射出ノズル8に、シャットオフノズルを用いた場合は、シャットオフ状態に制御するとともに、図6bに例示するように、射出ノズル8の中途位置にシャットオフバルブ11vsを設けた際は閉側に切換制御する。 FIG. 6a shows the state of the injection molding machine M in which the resin R is not present. That is, the tip of the injection nozzle 8 touches the clamped mold C, the plunger part 10 is at the most advanced position of the injection cylinder 9, and the tip of the screw 3 is at the most advanced position of the heating cylinder 2. indicates a stopped state. Furthermore, the shut-off valve 11v is switched to an open state. When a shut-off nozzle is used as the injection nozzle 8, it is controlled to be in a shut-off state, and as shown in FIG. switch to control.
 通常モードでは、まず、図6bに示す可塑化工程を実行する(ステップS1)。可塑化工程では、シャットオフバルブ11vが開側に切換えられているため、オイルモータ21を駆動制御することにより、スクリュ3を可塑化方向となる正回転方向Fmに回転制御する。これにより、ホッパー5から加熱筒2内に投入された成形材料(ペレット材料)は、加熱筒2及びスクリュ3により可塑化処理される。また、可塑化された樹脂Rは、開状態のシャットオフバルブ11vを通り、さらに、プランジャ部10の樹脂通路10rを通って射出シリンダ9内に蓄積される。 In the normal mode, first, the plasticizing process shown in FIG. 6b is executed (step S1). In the plasticizing process, since the shut-off valve 11v is switched to the open side, the screw 3 is controlled to rotate in the forward rotation direction Fm, which is the plasticizing direction, by driving and controlling the oil motor 21 . Thereby, the molding material (pellet material) put into the heating cylinder 2 from the hopper 5 is plasticized by the heating cylinder 2 and the screw 3 . Further, the plasticized resin R passes through the open shutoff valve 11v and further through the resin passage 10r of the plunger portion 10, and accumulates in the injection cylinder 9. As shown in FIG.
 そして、可塑化工程が進行し、射出シリンダ9の内部に樹脂Rが蓄積されれば、プランジャ部10及び射出装置Miは、蓄積された樹脂量に応じて矢印Fb方向へ後退移動する。この際、加圧駆動シリンダ14oを駆動制御することにより、スクリュ3に対して所定の背圧を付与する。この後、プランジャ部10が、設定したプランジャ停止位置Xpmに達したなら可塑化工程を終了する。この状態が図6bの状態となる。 Then, when the plasticizing process progresses and the resin R is accumulated inside the injection cylinder 9, the plunger portion 10 and the injection device Mi move backward in the direction of the arrow Fb according to the amount of the accumulated resin. At this time, a predetermined back pressure is applied to the screw 3 by controlling the driving of the pressure driving cylinder 14o. After that, when the plunger portion 10 reaches the set plunger stop position Xpm, the plasticizing process is terminated. This state becomes the state of FIG. 6b.
 可塑化工程が終了したなら、型締工程が終了していることを確認(ステップS2)し、シャットオフバルブ11vを閉側に切換える(ステップS3,S4)。即ち、通常モードによる射出成形方法では、還流処理工程は行わないため、可塑化工程の終了後、速やかにシャットオフバルブ11vを閉側に切換えるとともに、シャットオフバルブ11vsを開側に切換制御する。そして、この後、射出工程を実行する(ステップS5)。射出工程では、加圧駆動油圧シリンダ14oを駆動制御し、射出装置Miの全体を図6cに示す矢印Fi方向へ前進移動、即ち、設定した前進目標位置Xpiまで前進移動させる。これにより、プランジャ部10はプランジャ停止位置Xpmから前進目標位置Xpiまで前進移動し、金型Cに対する樹脂Rの射出充填が行われる。この状態を図6cに示す。 When the plasticizing process is completed, it is confirmed that the mold clamping process is completed (step S2), and the shutoff valve 11v is switched to the closed side (steps S3, S4). That is, in the injection molding method in the normal mode, since the reflux treatment process is not performed, the shutoff valve 11v is quickly switched to the closed side and the shutoff valve 11vs is switched to the open side after the plasticization process is completed. After that, an injection process is executed (step S5). In the injection process, the pressurized hydraulic cylinder 14o is drive-controlled to move the entire injection device Mi forward in the direction of the arrow Fi shown in FIG. 6c, that is, to the set forward target position Xpi. As a result, the plunger portion 10 moves forward from the plunger stop position Xpm to the forward target position Xpi, and injection filling of the mold C with the resin R is performed. This state is shown in FIG. 6c.
 この後、設定された冷却時間Tcにわたって冷却工程を行うとともに(ステップS6)、冷却時間Tcが経過したなら型開工程を行う(ステップS7)。そして、成形品を取出す成形品取出工程を行うとともに(ステップS8)、次の型締工程を行うことができる(ステップS9,S10)。 After that, the cooling process is performed for the set cooling time Tc (step S6), and when the cooling time Tc has passed, the mold opening process is performed (step S7). Then, a molded article removing process for removing the molded article is performed (step S8), and the next mold clamping process can be performed (steps S9 and S10).
 次に、標準の還流モード、即ち、図5のフローチャートに示す還流処理工程S20を用いた射出成形方法について、図8a-図8cを参照し、図5に示したフローチャート及び図7に示すサブルーチンフローチャートに従って説明する。 Next, with regard to the injection molding method using the standard reflux mode, that is, the reflux treatment step S20 shown in the flowchart of FIG. 5, please refer to FIGS. will be explained according to
 標準の還流モードでは、図5のフローチャートにおける可塑化工程(ステップS1)の終了後、ステップS3において還流処理が選択される。また、還流処理が選択されたときは、図6bの状態にあるものとする。即ち、通常モードにおける可塑化工程(ステップS1)が終了した後の状態にある。さらに、標準の還流モードの場合には、シャットオフバルブ11vが開状態に維持される(ステップS21)。 In the standard reflux mode, the reflux process is selected in step S3 after the plasticizing step (step S1) in the flowchart of FIG. 5 is completed. Also, when the reflux process is selected, it is assumed that the state shown in FIG. 6b is present. That is, it is in a state after the plasticizing step (step S1) in the normal mode is completed. Furthermore, in the case of the standard reflux mode, the shutoff valve 11v is kept open (step S21).
 一方、標準の還流モードでは、スクリュ3の逆回転制御を実行するか否かの選択が可能である。今、逆回転制御を選択した場合を想定する(ステップS22)。スクリュ3の逆回転制御の選択により、射出成形機Mの成形工程が射出工程中にあることを確認(ステップS23)し、図8aに示すように、スクリュ3に対して、設定した回転速度により設定時間だけ逆回転方向Fnに回転制御する(ステップS24,S25)。この際、加圧駆動シリンダ14oを駆動制御することにより、前方へ所定の加圧力を付与することが望ましい。この結果、スクリュ3の逆回転動作により、スクリュ3の前端よりも前方にある少なくとも一部の樹脂Rは、スクリュ3の前端よりも後方へ相対的に還流されるとともに、射出シリンダ9内の樹脂Rも、樹脂通路10rを通して加熱筒2内の樹脂Rに混入する。この結果、還流分だけ、プランジャ部10が前進移動する。図8aは、樹脂Rが樹脂通路10rを矢印Frb方向に逆流し、プランジャ部10がプランジャ停止位置Xpmから前方位置Xpfまで移動した状態を示している。また、還流処理により、スクリュ3の前端よりも前方の樹脂Rは、スクリュ3の前端よりも後方へ還流され、可塑化処理中の樹脂Rに混入する。 On the other hand, in the standard reflux mode, it is possible to select whether to execute reverse rotation control of the screw 3. Assume now that reverse rotation control is selected (step S22). By selecting the reverse rotation control of the screw 3, it is confirmed that the molding process of the injection molding machine M is in the injection process (step S23), and as shown in FIG. Rotation is controlled in the reverse rotation direction Fn for a set time (steps S24 and S25). At this time, it is desirable to apply a predetermined forward pressure by controlling the driving of the pressure driving cylinder 14o. As a result, due to the reverse rotation of the screw 3, at least a portion of the resin R in front of the front end of the screw 3 is relatively circulated rearward of the front end of the screw 3, and the resin in the injection cylinder 9 is R is also mixed into the resin R in the heating cylinder 2 through the resin passage 10r. As a result, the plunger portion 10 moves forward by the amount of the reflux. FIG. 8a shows a state in which the resin R flows backward through the resin passage 10r in the direction of the arrow Frb, and the plunger portion 10 moves from the plunger stop position Xpm to the forward position Xpf. Further, due to the reflux treatment, the resin R forward of the front end of the screw 3 is refluxed rearward of the front end of the screw 3 and mixed with the resin R being plasticized.
 このように、還流処理工程S20を行うに際し、スクリュ3を、設定時間Tnだけ逆回転方向Fnへ回転制御すれば、還流方向の圧力を低下させることができるため、還流処理を迅速に行えるとともに、回転速度を可変制御することにより容易に還流時間や還流量を調整することができる。 In this way, when performing the reflux treatment step S20, if the screw 3 is controlled to rotate in the reverse rotation direction Fn for the set time Tn, the pressure in the reflux direction can be reduced, so that the reflux treatment can be performed quickly. By variably controlling the rotation speed, the reflux time and the reflux amount can be easily adjusted.
 そして、冷却工程中であることを確認(ステップS26)し、スクリュ3を正回転方向(可塑化方向)Fmへ回転駆動する(ステップS27)。この場合、可塑化方向への回転は、スクリュ3が、後方に設定したスクリュ停止位置Xceに達するまで行う(ステップS28)。この時の可塑化処理は、可塑化処理中の樹脂Rに対して還流された樹脂Rが混入し、還流された樹脂Rに対する再可塑化処理が行われる。この状態を図8bに示す。 Then, it is confirmed that the cooling process is in progress (step S26), and the screw 3 is rotationally driven in the forward rotation direction (plasticizing direction) Fm (step S27). In this case, the rotation in the plasticizing direction is performed until the screw 3 reaches the screw stop position Xce set to the rear (step S28). In the plasticizing treatment at this time, the resin R that is being plasticized is mixed with the resin R that has been circulated, and the circulated resin R is subjected to the re-plasticizing treatment. This state is shown in FIG. 8b.
 この後、スクリュ3がスクリュ停止位置Xceに達っしたなら、スクリュ3を前進移動させる(ステップS29)。これにより、加熱筒2内の樹脂Rは、樹脂通路10rを通して射出シリンダ9の内部に移送され、これに伴い、前方位置Xpfに位置するプランジャ部10(射出装置Mi)は、後方となる矢印Fb方向へ移動するため、プランジャ部10が充填完了位置Xpeに達したなら、還流処理工程S20を終了させる(ステップS30)。この状態を図8cに示す。 After that, when the screw 3 reaches the screw stop position Xce, the screw 3 is moved forward (step S29). As a result, the resin R in the heating cylinder 2 is transferred to the inside of the injection cylinder 9 through the resin passage 10r. Since the plunger portion 10 moves in the direction, the reflux processing step S20 is terminated when the plunger portion 10 reaches the filling completion position Xpe (step S30). This state is shown in FIG. 8c.
 なお、ステップS22において、スクリュ3の逆回転制御を選択しない場合には、還流処理は行われない。この場合には、そのまま冷却工程中であることを確認(ステップS26)し、スクリュ3に対する上述した可塑化処理のための回転制御を行う(ステップS27)。この際、可塑化方向への回転は、スクリュ3が、後方に設定したスクリュ停止位置Xceに達するまで行うとともに、スクリュ3がスクリュ停止位置Xceに達っしたなら、スクリュ3を前進移動させ、プランジャ部10が充填完了位置Xpeに達したなら、還流処理工程S20を終了させる(ステップS28,S29,S30)。 It should be noted that if the reverse rotation control of the screw 3 is not selected in step S22, the reflux process is not performed. In this case, it is confirmed that the cooling process is still in progress (step S26), and the screw 3 is controlled to rotate for the plasticizing process described above (step S27). At this time, the rotation in the plasticizing direction is performed until the screw 3 reaches the screw stop position Xce set in the rearward direction. When the part 10 reaches the filling completion position Xpe, the reflux treatment step S20 is ended (steps S28, S29, S30).
 このように、標準の還流モードでは、還流処理工程S20を備えるため、スクリュ3の逆回転制御により、スクリュ3の前端よりも前方にある一部の樹脂Rが、スクリュ3の前端よりも後方へ還流される。この結果、還流された樹脂Rは、スクリュ3の回転(可塑化)により、再度可塑化されることになり、混練度の高い、より均質性に優れた溶融樹脂を得ることができるとともに、不良品の削減により最終成形品の歩留率をより高めることができる。特に、スクリュ3に対して、所定の加圧力により加圧することにより逆回転制御すれば、還流方向の圧力を低下させることができるため、還流処理を迅速に行えるとともに、回転速度を可変制御することにより容易に還流時間や還流量を調整できる。 Thus, in the standard reflux mode, since the reflux treatment step S20 is provided, a portion of the resin R forward of the front end of the screw 3 is moved backward of the front end of the screw 3 by reverse rotation control of the screw 3. Reflux. As a result, the recirculated resin R is plasticized again by the rotation (plasticization) of the screw 3, so that a molten resin having a high degree of kneading and excellent homogeneity can be obtained. By reducing non-defective products, the yield rate of final molded products can be further increased. In particular, if the screw 3 is pressurized with a predetermined pressurizing force to control the reverse rotation, the pressure in the reflux direction can be reduced, so that the reflux process can be performed quickly and the rotation speed can be variably controlled. Therefore, the reflux time and the reflux amount can be easily adjusted.
 以上により、還流処理を含む可塑化工程が終了するため、型締工程が終了していることを確認(ステップS2)し、図5に示す通常モードの射出工程を含む後段処理を行うことができる。 As described above, since the plasticizing process including the reflux process is completed, it is possible to confirm that the mold clamping process has been completed (step S2), and perform post-processing including the injection process in the normal mode shown in FIG. .
 次に、他の還流モード、即ち、図5のフローチャートに示す還流処理工程S40を用いた射出成形方法について、図10a-図10bを参照し、図5に示したフローチャート及び図9に示すサブルーチンフローチャートに従って説明する。 10a and 10b, the flow chart shown in FIG. 5 and the subroutine flow chart shown in FIG. will be explained according to
 図5のフローチャートにおける可塑化工程(ステップS1)の終了後、ステップS3において、還流処理が選択されず、シャットオフバルブ11vを閉側に切換えた後に、還流処理工程S40を行う場合の例を示す。 After the plasticizing step (step S1) in the flowchart of FIG. 5 is finished, the reflux treatment is not selected in step S3, and the shut-off valve 11v is switched to the closed side, and then the reflux treatment step S40 is performed. .
 この還流処理工程S40では、まず、スクリュ3に対する可塑化処理のための回転制御を行う(ステップS41)。これにより、スクリュ3は後退し、このスクリュ3の前方には可塑化した樹脂Rが蓄積される。また、樹脂Rの蓄積に伴い、スクリュ3は矢印Fbs方向に後退する。この状態を図10aに示す。この可塑化処理のための回転制御は、スクリュ3が設定した停止位置Xce(図8b参照)に達するまで行う(ステップS42)。 In this reflux treatment step S40, rotation control for plasticizing the screw 3 is first performed (step S41). As a result, the screw 3 retreats and the plasticized resin R accumulates in front of the screw 3 . Further, as the resin R accumulates, the screw 3 retreats in the direction of the arrow Fbs. This state is shown in FIG. 10a. The rotation control for this plasticizing process is performed until the screw 3 reaches the set stop position Xce (see FIG. 8b) (step S42).
 そして、この後、還流処理を行う(ステップS43)。この場合の還流処理は、スクリュ駆動ラム22を駆動制御し、スクリュ3を前進移動、即ち、加圧駆動シリンダ14oを駆動制御し、所定の加圧力によりスクリュ3を加圧する処理を設定時間だけ行う(ステップS44,S45)。これにより、スクリュ3は所定の前方位置、例えば、図10bに示す前方位置Xcfまで移動する。この結果、加圧力の作用により、スクリュ3の前端から前方における少なくとも一部の樹脂Rは、スクリュ3の前端よりも後方へ相対移動する。このため、スクリュ3におけるスクリュヘッド等の外径は、予め小径に切削したり複数の溝を形成するなどにより、加圧力により樹脂Rが還流しやすいように処理しておくことが望ましい。このように、スクリュ3を、設定した加圧力により前方Fsfへ加圧して行うようにすれば、最もシンプルな方法により樹脂Rを還流させることができるため、実施の容易化及び制御の容易化に寄与できる。 Then, after this, a reflux process is performed (step S43). In this case, the return process drives and controls the screw drive ram 22 to move the screw 3 forward, that is, drives and controls the pressure drive cylinder 14o to pressurize the screw 3 with a predetermined pressure for a set time. (Steps S44, S45). This moves the screw 3 to a predetermined forward position, for example the forward position Xcf shown in FIG. 10b. As a result, at least a portion of the resin R in front of the front end of the screw 3 relatively moves rearward from the front end of the screw 3 due to the action of the pressurizing force. Therefore, it is desirable that the outer diameter of the screw head, etc., of the screw 3 is previously cut to a small diameter or formed with a plurality of grooves so that the resin R can be easily circulated by the applied pressure. In this way, if the screw 3 is pressurized forward Fsf with a set pressurizing force, the resin R can be circulated by the simplest method, which facilitates implementation and control. can contribute.
 また、この場合、ステップS41-S45は単位還流処理となるため、この単位還流処理は、予め設定した設定回数Nだけ繰り返して行う(ステップS46)。そして、単位還流処理が設定回数Nだけ終了したなら、射出成形機Mの成形工程が冷却工程にあることを確認(ステップS47)し、シャットオフバルブ11vを開側に切換え(ステップS48)、スクリュ3を前進移動させる(ステップS49)。これにより、加熱筒2内の樹脂Rは、樹脂通路10rを通して射出シリンダ9の内部に転送されるとともに、これに伴い、プランジャ部10(射出装置Mi)は、矢印Fb方向となる後方へ移動する。この結果、プランジャ部10が充填完了位置Xpe(図10b参照)に達したなら、還流処理工程40が終了する(ステップS50)。 Also, in this case, since steps S41 to S45 are unit return processing, this unit return processing is repeatedly performed for the preset number of times N (step S46). When the unit reflux process has been completed for the set number of times N, it is confirmed that the molding process of the injection molding machine M is in the cooling process (step S47), the shutoff valve 11v is switched to the open side (step S48), and the screw is 3 is moved forward (step S49). As a result, the resin R in the heating cylinder 2 is transferred to the inside of the injection cylinder 9 through the resin passage 10r, and along with this, the plunger portion 10 (injection device Mi) moves backward in the direction of the arrow Fb. . As a result, when the plunger portion 10 reaches the filling completion position Xpe (see FIG. 10b), the reflux treatment step 40 is completed (step S50).
 このように、スクリュ3を回転させることにより設定したスクリュ停止位置Xceまで可塑化処理を行った後、スクリュ3を設定時間Trだけ前進させる単位還流処理を、設定回数Nだけ行い、この後、バルブ機能部11を開き、スクリュ3を加圧することにより、プランジャ部10を充填完了位置Xpeまで後退させるようにすれば、単位還流処理を、設定回数Nだけ行うことができるため、より混練度の高い、均質性に優れた可塑化樹脂を得れるとともに、樹脂の種類や特性等にマッチングした還流処理の最適化を実現することができる。 In this way, after the plasticizing process is performed up to the set screw stop position Xce by rotating the screw 3, the unit reflux process is performed by advancing the screw 3 for the set time Tr for the set number of times N, and then the valve If the plunger portion 10 is retracted to the filling completion position Xpe by opening the function portion 11 and pressurizing the screw 3, the unit reflux process can be performed for the set number of times N, so that the degree of kneading is higher. Therefore, it is possible to obtain a plasticized resin excellent in homogeneity, and to realize optimization of the reflux treatment that matches the type and characteristics of the resin.
 なお、ステップS43において、還流処理を選択しない場合には、可塑化処理のための回転制御により(ステップS41)、スクリュ3が、最初に、停止位置Xce(図10b参照)に達したなら、そのまま冷却工程中であることを確認(ステップS47)し、シャットオフバルブ11vを開側に切換える(ステップS48)。そして、スクリュ3を前進移動させる(ステップS49)。これにより、加熱筒2内の樹脂Rは、樹脂通路10rを通して射出シリンダ9の内部に移送され、これに伴い、プランジャ部10(射出装置Mi)は後方となる矢印Fb方向へ移動するため、プランジャ部10が充填完了位置Xpeに達したなら、還流処理工程S40が終了する(ステップS50)。 If the return process is not selected in step S43, the rotation control for the plasticizing process (step S41) causes the screw 3 to first reach the stop position Xce (see FIG. 10b). After confirming that the cooling process is in progress (step S47), the shut-off valve 11v is switched to the open side (step S48). Then, the screw 3 is moved forward (step S49). As a result, the resin R in the heating cylinder 2 is transferred to the inside of the injection cylinder 9 through the resin passage 10r. When the part 10 reaches the filling completion position Xpe, the reflux processing step S40 ends (step S50).
 このように、可塑化処理を実行し、シャットオフバルブ11vを閉じ、スクリュ3を回転させることにより設定したスクリュ停止位置Xceまで可塑化処理を行い、この後、スクリュ3を加圧することにより、プランジャ部10を充填完了位置Xpeまで前進させれば、加熱筒2及び射出シリンダ9における有効ストロークを最大限に利用できるため、最も能率的かつ効率的な成形処理を行うことができる。 In this way, the plasticizing process is performed, the shut-off valve 11v is closed, and the screw 3 is rotated to perform the plasticizing process up to the set screw stop position Xce. By moving the part 10 forward to the filling completion position Xpe, the effective strokes of the heating cylinder 2 and the injection cylinder 9 can be utilized to the maximum, so that the most efficient and efficient molding process can be performed.
 よって、このような本実施形態に係る射出成形機M(射出成形方法)によれば、基本的な手法として、ノズル部7の軸心方向前方Fsfに、射出ノズル8を先端に有する射出シリンダ9を配設するとともに、ノズル部7を当該射出シリンダ9に挿入するプランジャ部10として構成した金型射出部Msと、プランジャ部10の内部に有する樹脂通路10rを開閉するバルブ機能部11と、射出装置Miを進退方向Fsに移動させる射出装置移動機構部12とを設け、成形時に、射出装置Miにより可塑化処理した所定量の樹脂Rを、開いたバルブ機能部11を通して金型射出部Msに蓄積し、この後、バルブ機能部11を閉じ、射出装置移動機構部12により射出装置Miを前進させて射出ノズル8から樹脂Rを金型Cに射出する射出成形処理を行うようにしたため、射出成形機Mは、射出装置Miの軸心方向前方に金型射出部Msを配設するとともに、ノズル部7を射出シリンダ9に挿入するプランジャ部10として構成(兼用)することができる。これにより、可塑化工程と射出工程をそれぞれ独立して実行できるプリプラ式射出成形機と同様の機能を確保しつつ、射出成形機M全体の小型コンパクト化を図ることができる。特に、設置時における高さ方向のスペースを通常のインラインスクリュ式射出成形機と同等の水準に抑えることができるとともに、軸方向長さも必要最小限の長さに抑えることができるなど、圧迫感や威圧感が増加する不具合を回避し、かつ射出成形機M全体のコストダウンを図ることができる。しかも、樹脂通路を最短距離に設定できるなど、メンテナンスやクリーニング(樹脂替え)を容易化することができる。特に、本実施形態に係る射出成形方法によれば、このような射出成形機Mを利用することにより、プリプラ式射出成形機と同様の機能を確保、即ち、射出工程中に次ショットの可塑化工程を行うことができるなど、可塑化工程と射出工程をそれぞれ独立して実行できるメリットを確保できるとともに、射出成形機Mを利用する観点から最適な射出成形処理を行うことができる。 Therefore, according to the injection molding machine M (injection molding method) according to the present embodiment, as a basic method, the injection cylinder 9 having the injection nozzle 8 at the front end Fsf of the nozzle portion 7 in the axial direction and a mold injection part Ms configured as a plunger part 10 for inserting the nozzle part 7 into the injection cylinder 9; a valve function part 11 for opening and closing a resin passage 10r provided inside the plunger part 10; An injection device moving mechanism 12 is provided to move the device Mi in the advancing/retreating direction Fs. During molding, a predetermined amount of resin R plasticized by the injection device Mi is injected into the mold injection portion Ms through the opened valve function portion 11. After that, the valve function unit 11 is closed, and the injection device moving mechanism 12 advances the injection device Mi to perform the injection molding process in which the resin R is injected from the injection nozzle 8 into the mold C. The molding machine M can be configured (also used) as a plunger section 10 for inserting the nozzle section 7 into the injection cylinder 9 while arranging the mold injection section Ms in front of the injection device Mi in the axial direction. As a result, it is possible to reduce the overall size of the injection molding machine M while ensuring the same functions as those of a preplasticating injection molding machine capable of independently executing the plasticizing process and the injection process. In particular, the space in the height direction during installation can be kept to the same level as a normal inline screw injection molding machine, and the axial length can also be kept to the minimum necessary length. It is possible to avoid the inconvenience of increasing the intimidating feeling and to reduce the cost of the entire injection molding machine M. Moreover, maintenance and cleaning (replacement of resin) can be facilitated, for example, the resin passage can be set to the shortest distance. In particular, according to the injection molding method according to the present embodiment, by using such an injection molding machine M, the same function as that of a pre-plastic injection molding machine is ensured, that is, the next shot is plasticized during the injection process. The plasticizing process and the injection process can be performed independently, and the optimum injection molding process can be performed from the viewpoint of using the injection molding machine M.
 以上、好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値,手法等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。 Although the preferred embodiments have been described in detail above, the present invention is not limited to such embodiments, and the gist of the present invention can be found in details such as configuration, shape, material, quantity, numerical value, and method. Changes, additions, and deletions can be made arbitrarily within a range that does not deviate.
 例えば、射出装置移動機構部12は、射出装置Miを進退方向Fsへ移動させる移動駆動部14と、射出装置Miを進退方向Fsへガイドするガイド機構部15とを備えて構成したが、射出装置Miを進退方向Fsへ移動させる機能を有するものであれば、他の機構により置換可能である。また、左右一対のレール機構部16,16を例示したが、ロッド機構部17,17と組合わせて使用する場合には、単一のレール機構部16を用いる場合を排除するものではない。さらに、バルブ機能部11は、樹脂通路10rを開閉するシャットオフバルブ11vと、このシャットオフバルブ11vを開閉駆動するバルブ駆動機構部11dを備えて構成した場合を示したが、樹脂通路10rを開閉する機能を有するものであれば、他の各種バルブ機能部11により置換可能である。一方、還流モードとして、二つの異なる態様の還流処理工程S20,S40を例示したが、還流処理を実現できる態様であれば、実行するタイミングや細部の処理は、他の各種態様により置換可能である。なお、駆動方式として、油圧式駆動部を例示しが、電動式,電動式と油圧式を組合わせたハイブリッド式,空圧式等、任意の駆動源を利用した射出成形機に適用可能である。 For example, the injection device moving mechanism section 12 includes the movement drive section 14 that moves the injection device Mi in the advancing/retreating direction Fs, and the guide mechanism section 15 that guides the injection device Mi in the advancing/retreating direction Fs. Any other mechanism can be substituted as long as it has a function of moving Mi in the advancing/retreating direction Fs. Moreover, although the pair of left and right rail mechanism portions 16, 16 are illustrated, the use of a single rail mechanism portion 16 is not excluded when used in combination with the rod mechanism portions 17, 17. FIG. Further, the valve function unit 11 has been shown to include the shut-off valve 11v for opening and closing the resin passage 10r, and the valve driving mechanism 11d for opening and closing the shut-off valve 11v. It can be replaced by other various valve function units 11 as long as they have the function of On the other hand, two different aspects of the reflux processing steps S20 and S40 have been illustrated as the reflux mode, but the execution timing and detailed processing can be replaced with other various aspects as long as the reflux processing can be realized. . Although a hydraulic drive unit is exemplified as a drive system, it can be applied to an injection molding machine using an arbitrary drive source such as an electric drive, a hybrid system combining an electric drive and a hydraulic system, and a pneumatic system.
 本発明に係る射出成形機及び射出成形方法は、大型成形品から小型成形品(超小型成形品)までの各種樹脂を用いた成形品の成形に利用することができる。 The injection molding machine and injection molding method according to the present invention can be used to mold molded articles using various resins, ranging from large molded articles to small molded articles (ultra-small molded articles).

Claims (17)

  1.  加熱筒に内蔵したスクリュを回転駆動機構部により回転させ、ホッパから投入された成形材料を可塑化処理する機能を備えるとともに、前記スクリュを進退駆動機構部により前進させ、可塑化処理した樹脂を前記加熱筒の先端に設けたノズル部から射出する機能を有する射出装置を備える射出成形機であって、前記ノズル部の軸心方向前方に、射出ノズルを先端に有する射出シリンダを配設するとともに、前記ノズル部を当該射出シリンダに挿入するプランジャ部として構成した金型射出部と、前記プランジャ部の内部に有する樹脂通路を開閉するバルブ機能部と、前記射出装置を進退方向に移動させる射出装置移動機構部と、前記回転駆動機構部,前記進退駆動機構部,前記バルブ機能部及び前記射出装置移動機構部を、少なくとも駆動制御する成形機コントローラとを備えてなることを特徴とする射出成形機。 The screw contained in the heating cylinder is rotated by the rotation drive mechanism to plasticize the molding material fed from the hopper. An injection molding machine comprising an injection device having a function of injecting from a nozzle portion provided at the tip of a heating cylinder, wherein an injection cylinder having an injection nozzle at the tip thereof is arranged in front of the nozzle portion in the axial direction, A mold injection part configured as a plunger part for inserting the nozzle part into the injection cylinder, a valve function part for opening and closing a resin passage provided inside the plunger part, and an injection device movement for moving the injection device in a forward and backward direction An injection molding machine comprising: a mechanism section; and a molding machine controller that drives and controls at least the rotation drive mechanism section, the advance/retreat drive mechanism section, the valve function section, and the injection device movement mechanism section.
  2.  前記射出装置移動機構部は、前記射出装置を進退方向へ移動させる移動駆動部と、前記射出装置を進退方向へガイドするガイド機構部とを備えることを特徴とする請求項1記載の射出成形機。 2. The injection molding machine according to claim 1, wherein the injection device moving mechanism section includes a movement drive section for moving the injection device in the advancing and retreating direction, and a guide mechanism section for guiding the injection device in the advancing and retreating direction. .
  3.  前記移動駆動部は、前記射出装置の後端部を覆う内部中空のピストン部及びこのピストン部を収容する加圧シリンダ部を備えることを特徴とする請求項2記載の射出成形機。 3. The injection molding machine according to claim 2, wherein the moving drive section comprises an internal hollow piston section covering the rear end of the injection device and a pressurizing cylinder section accommodating the piston section.
  4.  前記ガイド機構部は、前記射出装置の下端に設けた少なくとも一つのレールスライダ部とこのレールスライダ部をスライド自在に支持する少なくとも一つのガイドレール部を備えるレール機構部により構成することを特徴とする請求項2又は3記載の射出成形機。 The guide mechanism section is configured by a rail mechanism section including at least one rail slider section provided at the lower end of the injection device and at least one guide rail section for slidably supporting the rail slider section. 4. The injection molding machine according to claim 2 or 3.
  5.  前記ガイド機構部は、前記射出装置に対して左右の離間した位置に配設した一対のタイロッドと前記射出装置の左右に一体に設け、かつ前記タイロッドに沿ってスライド自在に移動するロッドスライダ部を備えるロッド機構部により構成することを特徴とする請求項2,3又は4記載の射出成形機。 The guide mechanism includes a pair of tie rods arranged at left and right separated positions with respect to the injection device, and a rod slider unit provided integrally on the left and right sides of the injection device and slidably moving along the tie rods. 5. The injection molding machine according to claim 2, 3 or 4, wherein the injection molding machine comprises a rod mechanism portion.
  6.  前記バルブ機能部は、前記樹脂通路を開閉するシャットオフバルブと、このシャットオフバルブを開閉駆動するバルブ駆動機構部を備えることを特徴とする請求項1記載の射出成形機。 The injection molding machine according to claim 1, wherein the valve function section comprises a shutoff valve for opening and closing the resin passage, and a valve drive mechanism section for opening and closing the shutoff valve.
  7.  前記加熱筒は、可塑化処理した樹脂を蓄積する容積として、前記射出シリンダの容積に対して、0.3-3倍に選定することを特徴とする請求項1記載の射出成形機。 The injection molding machine according to claim 1, wherein the volume of the heating cylinder for accumulating the plasticized resin is selected to be 0.3 to 3 times the volume of the injection cylinder.
  8.  加熱筒に内蔵したスクリュを回転駆動機構部により回転させ、ホッパから投入された成形材料を可塑化処理するとともに、前記スクリュを進退駆動機構部により前進させ、可塑化処理した樹脂を前記加熱筒の先端に設けたノズル部から射出する射出装置を用いた射出成形方法であって、予め、前記ノズル部の軸心方向前方に、射出ノズルを先端に有する射出シリンダを配設するとともに、前記ノズル部を当該射出シリンダに挿入するプランジャ部として構成した金型射出部と、前記プランジャ部の内部に有する樹脂通路を開閉するバルブ機能部と、前記射出装置を進退方向に移動させる射出装置移動機構部とを設け、成形時に、前記射出装置により可塑化処理した所定量の樹脂を、開いた前記バルブ機能部を通して前記金型射出部に蓄積し、この後、前記バルブ機能部を閉じ、前記射出装置移動機構部により前記射出装置を前進させて前記射出ノズルから樹脂を金型に射出する射出成形処理を行うことを特徴とする射出成形方法。 The screw contained in the heating cylinder is rotated by the rotation drive mechanism to plasticize the molding material fed from the hopper, and the screw is advanced by the advance/retreat drive mechanism to feed the plasticized resin into the heating cylinder. An injection molding method using an injection device that injects from a nozzle portion provided at the tip, wherein an injection cylinder having an injection nozzle at the tip is disposed in advance in front of the nozzle portion in the axial direction, and the nozzle portion into the injection cylinder, a valve function part that opens and closes a resin passage provided inside the plunger part, and an injection device movement mechanism that moves the injection device in the advance and retreat direction. is provided, during molding, a predetermined amount of resin plasticized by the injection device is accumulated in the mold injection unit through the opened valve function unit, after which the valve function unit is closed and the injection device is moved An injection molding method, comprising: performing an injection molding process in which the injection device is moved forward by a mechanical section to inject resin from the injection nozzle into a mold.
  9.  前記可塑化処理は、前記バルブ機能部を閉じ、前記スクリュを回転させることにより設定したスクリュ停止位置まで可塑化処理を行い、この後、前記スクリュを加圧することにより、前記プランジャ部を充填完了位置まで前進させることを特徴とする請求項8記載の射出成形方法。 In the plasticizing process, the valve function part is closed and the screw is rotated to perform the plasticizing process up to a set screw stop position. 9. The injection molding method according to claim 8, wherein the step is advanced to the
  10.  前記可塑化処理を行った後、前記バルブ機能部を開いた状態で、前記スクリュの前方に存在する樹脂を所定量だけ前記スクリュの前端位置よりも後方へ還流させる還流処理を行うことを特徴とする請求項8記載の射出成形方法。 After performing the plasticizing process, a reflux process is performed in which a predetermined amount of resin existing in front of the screw is circulated to the rear of the front end position of the screw while the valve function part is opened. The injection molding method according to claim 8.
  11.  前記還流処理は、前記スクリュを設定した設定時間だけ逆回転させて行うことを特徴とする請求項10記載の射出成形方法。 The injection molding method according to claim 10, wherein the reflux treatment is performed by rotating the screw in reverse for a set time.
  12.  前記還流処理は、前記スクリュを前方へ設定した加圧力により加圧して行うことを特徴とする請求項10記載の射出成形方法。 The injection molding method according to claim 10, wherein the reflux treatment is performed by pressurizing the screw with a pressure set forward.
  13.  前記還流処理は、前記スクリュを回転させることにより設定したスクリュ停止位置まで可塑化処理を行った後、前記スクリュを設定時間だけ前進させる単位還流処理を、設定回数だけ行い、この後、前記バルブ機能部を開き、前記スクリュを加圧することにより、前記プランジャ部を充填完了位置まで前進させることを特徴とする請求項10記載の射出成形方法。 In the reflux process, the screw is rotated to perform a plasticizing process up to a set screw stop position, and then a unit reflux process is performed by advancing the screw for a set period of time for a set number of times. 11. The injection molding method according to claim 10, wherein the plunger portion is advanced to a filling completion position by opening the portion and pressurizing the screw.
  14.  前記可塑化処理を行った後、前記バルブ機能部を閉じた状態で、前記スクリュの前方に存在する樹脂を所定量だけ前記スクリュの前端位置よりも後方へ還流させる還流処理を行うことを特徴とする請求項8記載の射出成形方法。 After performing the plasticizing process, a reflux process is performed in which a predetermined amount of the resin present in front of the screw is refluxed backward from the front end position of the screw while the valve function part is closed. The injection molding method according to claim 8.
  15.  前記還流処理は、前記スクリュを設定した設定時間だけ逆回転させて行うことを特徴とする請求項14記載の射出成形方法。 The injection molding method according to claim 14, wherein the reflux treatment is performed by rotating the screw in reverse for a set time.
  16.  前記還流処理は、前記スクリュを前方へ設定した加圧力により加圧して行うことを特徴とする請求項14記載の射出成形方法。 The injection molding method according to claim 14, wherein the reflux treatment is performed by pressurizing the screw with a pressure set forward.
  17.  前記還流処理は、前記スクリュを回転させることにより設定したスクリュ停止位置まで可塑化処理を行った後、前記スクリュを設定時間だけ前進させる単位還流処理を、設定回数だけ行い、この後、前記バルブ機能部を開き、前記スクリュを加圧することにより、前記プランジャ部を充填完了位置まで前進させることを特徴とする請求項14記載の射出成形方法。 In the reflux process, the screw is rotated to perform a plasticizing process up to a set screw stop position, and then a unit reflux process is performed by advancing the screw for a set period of time for a set number of times. 15. The injection molding method according to claim 14, wherein the plunger portion is advanced to a filling completion position by opening the portion and pressurizing the screw.
PCT/JP2022/024476 2021-06-24 2022-06-20 Injection molding machine and injection molding method WO2022270452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021104885A JP7297818B2 (en) 2021-06-24 2021-06-24 Injection molding machine and injection molding method
JP2021-104885 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022270452A1 true WO2022270452A1 (en) 2022-12-29

Family

ID=84545666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024476 WO2022270452A1 (en) 2021-06-24 2022-06-20 Injection molding machine and injection molding method

Country Status (2)

Country Link
JP (1) JP7297818B2 (en)
WO (1) WO2022270452A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512765A (en) * 1974-06-28 1976-01-10 Asahi Dow Ltd SANDOITSUCHIKOZOSEIKEITAINO SHASHUTSUSEIKEISOCHI
JPH0596587A (en) * 1991-10-09 1993-04-20 Tokai Jiyuken Kogyo Kk Large-capacity injection molding mechanism utilizing extrusion molding machine
JPH11506712A (en) * 1996-01-17 1999-06-15 シュタインル,アルフレート Injection molding equipment
JP2003534936A (en) * 2000-04-14 2003-11-25 クラウス−マッファイ クンストシュトッフテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Injection unit for injection molding machine with continuously operating plasticizing unit
JP2007001268A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Preplasticizing type injection molding apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512765A (en) * 1974-06-28 1976-01-10 Asahi Dow Ltd SANDOITSUCHIKOZOSEIKEITAINO SHASHUTSUSEIKEISOCHI
JPH0596587A (en) * 1991-10-09 1993-04-20 Tokai Jiyuken Kogyo Kk Large-capacity injection molding mechanism utilizing extrusion molding machine
JPH11506712A (en) * 1996-01-17 1999-06-15 シュタインル,アルフレート Injection molding equipment
JP2003534936A (en) * 2000-04-14 2003-11-25 クラウス−マッファイ クンストシュトッフテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Injection unit for injection molding machine with continuously operating plasticizing unit
JP2007001268A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Preplasticizing type injection molding apparatus

Also Published As

Publication number Publication date
JP2023003668A (en) 2023-01-17
JP7297818B2 (en) 2023-06-26

Similar Documents

Publication Publication Date Title
CN108568956B (en) Injection molding machine
CN104842528A (en) Injection unit and injection molding method
JP5552780B2 (en) Injection molding apparatus and injection molding method
WO2022270452A1 (en) Injection molding machine and injection molding method
KR20060033017A (en) Molding method, purging method, and molding machine
JP5022734B2 (en) Injection molding machine
JP6356041B2 (en) Injection molding machine
KR20170038159A (en) Injection molding machine
JP4297277B2 (en) Injection molding method
KR101273164B1 (en) Control method for screw of injection molding machine
EP3061588B1 (en) Injection molding machine and operation screen of injection molding machine
WO2022102643A1 (en) Molding method for pre-plunger-type injection molding machine
JP4533345B2 (en) Method of ejecting molded product of injection molding machine
JP3403453B2 (en) Injection compression molding method for an injection molding machine having a toggle type mold clamping mechanism
JP7165177B2 (en) Molding method of pre-plastic injection molding machine
JP7165167B2 (en) Injection molding machine and injection molding method
CN108501298B (en) Injection molding machine
JP7165179B2 (en) Molding method of pre-plastic injection molding machine
JP4443373B2 (en) Injection molding machine
CN106985332B (en) Injection molding machine
JP7270690B2 (en) Horizontal injection molding machine
WO2022210979A1 (en) Control device for injection molding machine, injection molding machine, and control method
EP4049826A1 (en) Injection molding machine
JP5047722B2 (en) Electric injection molding machine equipped with a ball screw drive controller
JP2018126982A (en) Injection molding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE