WO2022270415A1 - Light distribution controller and vehicle light system - Google Patents

Light distribution controller and vehicle light system Download PDF

Info

Publication number
WO2022270415A1
WO2022270415A1 PCT/JP2022/024219 JP2022024219W WO2022270415A1 WO 2022270415 A1 WO2022270415 A1 WO 2022270415A1 JP 2022024219 W JP2022024219 W JP 2022024219W WO 2022270415 A1 WO2022270415 A1 WO 2022270415A1
Authority
WO
WIPO (PCT)
Prior art keywords
light distribution
signal
patterning device
distribution controller
pwm
Prior art date
Application number
PCT/JP2022/024219
Other languages
French (fr)
Japanese (ja)
Inventor
昌司 加藤
浩孝 沢田
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2023530415A priority Critical patent/JPWO2022270415A1/ja
Publication of WO2022270415A1 publication Critical patent/WO2022270415A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights

Definitions

  • the present invention relates to a vehicle lamp.
  • Vehicle lamps can generally be switched between low beam and high beam.
  • the low beam illuminates the vicinity of the vehicle with a predetermined illuminance, and is used mainly when driving in an urban area.
  • high beams illuminate a wide area ahead and far away with relatively high illuminance, and are mainly used when driving at high speed on roads with few oncoming or preceding vehicles. Therefore, although the high beam is superior in visibility to the driver compared to the low beam, there is a problem in that it gives glare to the driver of the vehicle and pedestrians present in front of the vehicle.
  • ADB Adaptive Driving Beam
  • FIG. 1 is a block diagram of an LED array type ADB lamp.
  • the ADB lamp 1 includes an LED array 10 , a light distribution controller 20 and a power supply circuit 30 .
  • the LED array 10 includes a plurality of LEDs 12 arranged in an array and an LED driver 14 that drives the plurality of LEDs 12 .
  • Each LED 12 corresponds to a pixel.
  • the LED driver 14 includes a current source (switch) corresponding to each pixel, and switches each pixel between on and off by controlling the on/off of the current source.
  • a power supply circuit 30 supplies a power supply voltage VDD to the LED array 10 .
  • the light distribution controller 20 generates a control signal designating ON/OFF of the plurality of pixels, and transmits the control signal to the LED array 10 .
  • a beam emitted from the LED array 10 is irradiated onto the virtual vertical screen 40 through an optical system (not shown).
  • a light distribution pattern 42 corresponding to ON/OFF of the plurality of light emitting elements 12 is formed on the virtual vertical screen 40 .
  • In-vehicle parts including vehicle lamps, require high reliability.
  • a function of detecting whether the correct light distribution pattern 42 is formed is required.
  • the present disclosure has been made in such a situation, and one exemplary purpose of certain aspects thereof is to provide a lighting system and a light distribution controller with more advanced anomaly detection capabilities.
  • a light distribution controller controls a patterning device that includes a plurality of control elements arranged in an array.
  • the light distribution controller is a rendering processing unit that generates multi-gradation light distribution image data that defines light distribution, and the pixel value of each pixel of the light distribution image data is used for PWM control of the corresponding control element of the patterning device.
  • an interface circuit that converts light distribution image data into a serial interface signal having a signal format required by the patterning device and transmits the signal to the light distribution controller; a decoder that receives a feedback signal based on the patterning device and restores a PWM control signal for a pixel of interest in the patterning device; and an abnormality detector that determines whether there is an abnormality based on the PWM control signal restored by the decoder.
  • FIG. 1 is a block diagram of an LED array type ADB lamp;
  • FIG. 1 is a block diagram of a lamp system according to an embodiment;
  • FIG. 1 is a block diagram of a lighting system including a light distribution controller according to an embodiment;
  • FIG. 3 is a block diagram showing a configuration example of an interface circuit;
  • FIG. 3 is a diagram showing an example of light distribution image data IMG_LD, serial interface signal SerIF, and PWM control signal PWM_PIX;
  • FIG. It is a block diagram which shows the structural example of an abnormality detector.
  • a light distribution controller controls a patterning device including a plurality of control elements arranged in an array.
  • the light distribution controller is a rendering processing unit that generates multi-gradation light distribution image data that defines light distribution, and the pixel value of each pixel of the light distribution image data is used for PWM control of the corresponding control element of the patterning device.
  • an interface circuit that converts light distribution image data into a serial interface signal having a signal format required by the patterning device and transmits the signal to the light distribution controller; a decoder that receives a feedback signal based on the patterning device and restores a PWM control signal for a pixel of interest in the patterning device; and an abnormality detector that determines whether there is an abnormality based on the PWM control signal restored by the decoder.
  • the serial interface signal generated by the interface circuit is monitored, and an abnormality is detected according to the feedback signal based thereon. This makes it possible to detect not only anomalies caused by the drawing processing unit, but also anomalies caused by the interface circuit in the succeeding stage, enabling more advanced anomaly detection.
  • the anomaly detector may measure at least one of the high section and low section of the PWM control signal using a time measurement unit (TMU).
  • TMU time measurement unit
  • the presence or absence of abnormality can be determined by whether the measured time matches the expected value based on the original light distribution image data.
  • the decoder may restore the PWM control signal with all pixels of the turning device as pixels of interest. By subjecting all pixels to abnormality detection, more advanced abnormality detection becomes possible.
  • the light distribution image data may include n pixels.
  • the interface circuit may include a pulse width modulator that generates n intermediate codes corresponding to n pixels, and a serializer that converts the n intermediate codes into the serial interface signal.
  • the intermediate code may include m bits, and the number of 1's included in the j-th (1 ⁇ j ⁇ n) intermediate code may correspond to the pixel value of the j-th pixel.
  • the serial interface signal may include m slots, each slot including n bits, and the m bits forming the j-th intermediate code may be assigned to the j-th bit of the m slots.
  • the intermediate code may be a thermometer code.
  • the patterning device may be a micro LED.
  • a state in which member A is connected to member B refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
  • the state in which member C is provided between member A and member B refers to the case where member A and member C or member B and member C are directly connected, as well as the case where they are electrically connected. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
  • FIG. 2 is a block diagram of the lamp system 100 according to the embodiment.
  • the lamp system 100 is a variable light distribution lamp such as an ADB lamp or a road drawing lamp, and includes a host controller 102 , a patterning device 200 and a light distribution controller 300 .
  • the patterning device 200 comprises an LED array (also called micro-LEDs) 210 that functions as a spatial light modulator, and an interface circuit 220 .
  • the LED array 210 includes an array of a plurality of n control elements (hereinafter referred to as luminescent pixels PIX), and each luminescent pixel PIX can be individually switched between on (lighting) and off (extinguishing).
  • the light-emitting pixel PIX can include, for example, a semiconductor light-emitting element such as an LED, and a current source that supplies drive current to the semiconductor light-emitting element.
  • the beams emitted from the LED array 210 are irradiated onto the virtual vertical screen 40 through an optical system (not shown).
  • a light distribution pattern 42 is formed on the virtual vertical screen 40 corresponding to the on/off state of the plurality of light emitting pixels PIX.
  • the interface circuit 220 includes a serial receiver.
  • the interface circuit 220 is connected to the light distribution controller 300 via the serial signal line 202 .
  • Patterning device 200 receives serial interface signal SerIF from light distribution controller 300 .
  • This serial interface signal SerIF contains control information for the plurality of light emitting pixels PIX of the LED array 210 .
  • the interface circuit 220 controls the brightness of the plurality of light emitting pixels PIX1 to PIXn forming the LED array 210 in multiple gradations based on the serial interface signal SerIF.
  • the light distribution controller 300 controls the patterning device 200 to form the desired light distribution pattern 42 .
  • Information INFO necessary for generating the light distribution pattern 42 is supplied to the light distribution controller 300 in addition to the lighting command CMD from the host controller 102 .
  • the host controller 102 may be a vehicle-side ECU (Electronic Control Unit) or a lamp-side ECU. Specifically, the host controller 102 inputs to the light distribution controller 300 a lighting command CMD that instructs to turn on/off the low beam and high beam.
  • the information INFO that the host controller 102 supplies to the light distribution controller 300 may include ambient environment information and vehicle information.
  • Surrounding environment information includes (i) information on preceding and oncoming vehicles, pedestrians, signs, targets such as delineators, and (ii) road information (expressway, general road, suburb, urban area, straight road or curved road). (iii) information such as weather, visibility, and road conditions.
  • Vehicle information may include vehicle speed, steering angle, vehicle tilt angle, and the like.
  • the light distribution controller 300 determines a light distribution pattern based on vehicle information, and controls the patterning device 200 so that the determined light distribution pattern is obtained.
  • FIG. 3 is a block diagram of the lighting system 100 including the light distribution controller 300 according to the embodiment.
  • the patterning device 200 to be controlled by the light distribution controller 300 will be described.
  • the patterning device 200 comprises an LED array 210 and an interface circuit 220 .
  • the light-emitting pixels PIX of the LED array 210 can be switched between two states of ON/OFF.
  • the patterning device 200 expresses the brightness of each pixel in multiple gradations by changing the ON time (duty cycle) per cycle by PWM control.
  • the interface circuit 220 includes a serial receiver.
  • the interface circuit 220 is connected to the light distribution controller 300 via the serial signal line 202 .
  • Patterning device 200 receives serial interface signal SerIF from light distribution controller 300 .
  • This serial interface signal SerIF contains luminance information of the plurality of light emitting pixels PIX of the LED array 210 .
  • the interface circuit 220 generates PWM control signals PWM_PIX1 to PWM_PIXn corresponding to the plurality of light emitting pixels PIX1 to PIXn based on the serial interface signal SerIF.
  • the i-th light-emitting pixel PIXi is controlled to be turned on or off based on the corresponding PWM control signal PWM_PIXi.
  • the light distribution controller 300 includes a vehicle bus interface 302 , a drawing processor (drawing engine) 310 , an interface circuit 320 , a decoder 330 and an abnormality detector 340 .
  • the vehicle bus interface 302 is CAN (Controller Area Network), LIN (Local Interconnect Network), etc., and is provided for communication with the host controller 102 and other devices.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • the light distribution controller 300 generates light distribution image data IMG_LD that defines the light distribution pattern 42 based on the information INFO from the upper controller 102 , converts it into a serial interface signal SerIF, and transmits it to the patterning device 200 .
  • Light distribution controller 300 and patterning device 200 are connected via a serial signal line 202 .
  • the drawing processing unit 310 generates multi-gradation light distribution image data IMG_LD that defines the light distribution of the variable light distribution lamp.
  • Each pixel of the light distribution image data IMG_LD defines the brightness of the corresponding portion of the light distribution pattern 42 .
  • Gradation control of the patterning device 200 is based on PWM control, and each pixel of the LED array 210 is PWM-controlled based on the PWM control signal PIX_PWM. Therefore, it can be said that each pixel of the light distribution image data IMG_LD defines the duty cycle, that is, the pulse width of the PWM control signal PIX_PWM for the corresponding light-emitting pixel PIX of the LED array 210 .
  • the drawing processing unit 310 may include a processor and hardware logic circuits.
  • the drawing processing unit 310 may be an SOC (System-on-a-chip).
  • the interface circuit 320 converts the light distribution image data IMG_LD into a serial interface signal SerIF having a signal format required by the interface circuit 220 of the patterning device 200 .
  • the decoder 330 receives a feedback signal FB based on the serial interface signal SerIF.
  • the decoder 330 restores the PWM control signal PWM_PIXz for the target pixel PIXz in the patterning device 200 based on the feedback signal FB.
  • the restored PWM control signal PWM_PIXz is denoted as PWM_PIXz'.
  • the anomaly detector 340 determines whether there is an anomaly based on the PWM control signal PWM_PIXz' restored by the decoder 330 .
  • the number of target pixels is not limited, it is preferable to perform abnormality detection using all pixels as target pixels.
  • the feedback signal FB may be taken from the middle (i) of the serial signal line 202, as shown in FIG. (iii) may be taken out.
  • FIG. 4 is a block diagram showing a configuration example (320A) of the interface circuit 320.
  • Interface circuit 320A includes pulse width modulator 322 and serializer 324 .
  • the pulse width modulator 322 generates n intermediate codes MC1-MCn corresponding to the n pixels p1-pn of the light distribution image data IMG_LD.
  • the intermediate code MC includes m bits, and the number of 1's included in the j-th (1 ⁇ j ⁇ n) intermediate code MCj corresponds to the pixel value of the j-th pixel pj. For example, when the pixel value of pixel pj is 3, intermediate code MCj includes three 1's and (m-3) 0's.
  • the n intermediate codes MC1 to MCn are set M times for one light distribution image data IMG_LD, Generated repeatedly.
  • the pulse width modulator 322 generates a triangular wave (ramp wave, sawtooth wave) having a PWM frequency, compares the triangular wave with the pixel value pj, and converts it into a binary signal.
  • the intermediate code MCj may be generated by dividing this binary signal into m parts within one PWM period.
  • the serializer 324 converts the n intermediate codes MC1 to MCn into a serial interface signal SerIF.
  • the configuration of the lamp system 100 is as described above. Next, the operation will be explained.
  • FIG. 5 is a diagram showing an example of the light distribution image data IMG_LD, the serial interface signal SerIF, and the PWM control signal PWM_PIX.
  • the number of pixels in the light distribution image data IMG_LD that is, the number n of light emitting pixels of the LED array 210 is four.
  • the four pixels be p1 to p4.
  • the pixel values of the plurality of pixels p1 to p4 of the light distribution image data IMG_LD change in (m+1) gradations.
  • m 8 and the pixel values can be 9 gradations from 0 to 8.
  • the pixel values of the four pixels p1 to p4 of the light distribution image data IMG_LD are 4, 3, 6, and 2, respectively.
  • the serial interface signal SerIF includes m time slots TS1 to TSm. Each time slot contains n bits. Each pixel of the light distribution image data IMG_LD is assigned to a corresponding one of the n bits in each of the plurality of time slots. For example, the first pixel p1 is assigned to the leftmost bit of time slot TS, the second pixel p2 to the second bit from the left, and the jth pixel pj to the jth from the left.
  • An intermediate code MCj representing the pixel value of pixel pj is stored in the j-th bit of m time slots TS1 to TSm.
  • the intermediate code MCj is preferably a right-justified or left-justified thermometer code.
  • the intermediate code MCj may be a code in which 1 bits are centrally concentrated.
  • serial interface signal SerIF generated by the light distribution controller 300 .
  • the feedback signal FB has the same format as the serial interface signal SerIF.
  • the interface circuit 220 decodes this serial interface signal SerIF and generates a plurality of PWM control signals PWM_PIX1 to PWM_PIXn.
  • interface circuit 220 includes a decoder 222 .
  • the decoder 222 generates the PWM control signal PWM_PIXj to be supplied to the j-th light-emitting pixel PIXj by combining the j-th bit of each of the m time slots TS1 to TSm.
  • a decoder 222 generates PWM control signals PWM_PIX1 to PWM_PIXn for all pixels.
  • the luminance (time average value) of the j-th light-emitting pixel PIXj is the same as that of the pixel pj corresponding to the original light distribution image data IMG_LD. according to the value.
  • the decoder 330 restores the PWM control signal PWM_PIXz of the target pixel from the feedback signal FB.
  • feedback signal FB has the same format as serial interface signal SerIF, so decoder 330 is configured to have the same functionality as decoder 222 of interface circuit 220 . That is, the decoder 330 receives the feedback signal FB instead of the serial interface signal SerIF, and generates the PWM control signal PWM_PIXz for the pixel of interest.
  • the decoder 330 combines the z-th bits of each of the m time slots TS1 to TSm included in the feedback signal FB to generate a PWM control signal to be supplied to the z-th light-emitting pixel PIXz, which is the pixel of interest. Generate PWM_PIXz'.
  • the pixel of interest is not limited to one, and may be all pixels.
  • the decoder 330 restores the PWM control signals PWM_PIX1' to PWM_PIXn' for all pixels, like the decoder 222 of the interface circuit 220.
  • the abnormality detector 340 can know the waveform (expected waveform) of the PWM control signal PWM_PIXz to be generated inside the patterning device 200 based on the light distribution image data IMG_LD. For example, if the intermediate code MC generated by the pulse width modulator 322 of FIG. 4 is a thermometer code, the thermometer code represents the expected waveform of the PWM control signal PWM_PIXz. If the waveform of the PWM control signal PWM_PIXz' restored by the decoder 330 matches the expected waveform, it can be determined to be normal, and if it does not match, it can be determined to be abnormal. Matching or mismatching of the waveforms may be performed by comparing the pulse widths, or by comparing the lengths of the high section and the low section.
  • FIG. 6 is a block diagram showing a configuration example (340A) of the anomaly detector 340.
  • the anomaly detector 340A includes a TMU (time measurement unit) 342 and a determination section 344.
  • the TMU 342 measures the length of one or both of the high section T L and the low section T L of the PWM control signal PWM_PIXz'.
  • the determination unit 344 generates expected values of the times T H and T L measured by the TMU 342 based on the pixel values of the corresponding pixels in the light distribution image data IMG_LD. Then, the determination unit 344 determines whether the time actually measured by the TMU 342 matches or does not match the expected value. If they do not match, the determination unit 344 asserts (for example, high level) the abnormality detection signal ERR.
  • the abnormality detection signal ERR may be an interrupt signal, or may be data including the number of a pixel in which an abnormality has occurred.
  • the serial interface signal SerIF which is the output of the interface circuit 320
  • the decoder 330 reproduces the PWM control signal PWM_PIX. Therefore, it is possible to detect a state in which an error occurs in the interface circuit 320 and a correct serial interface signal SerIF cannot be generated.
  • the serial interface signal SerIF is normal at the output end of the interface circuit 320
  • the serial interface signal SerIF received by the interface circuit 220 may be garbled due to waveform distortion and noise during transmission on the serial signal line 202. have a nature.
  • the extraction position of the feedback signal FB is brought closer to the interface circuit 220, the feedback signal FB will be garbled like the serial interface signal SerIF.
  • the abnormality detector 340 can determine that it is abnormal.
  • patterning device 200 may include a light source that produces a beam with a uniform intensity distribution and a spatial light modulator that patterns the intensity distribution of the light source.
  • spatial light modulators include DMDs (Digital Micromirror Devices) and liquid crystal panels.
  • Modification 2 The format of the serial interface signal SerIF transmitted from the interface circuit 320 to the patterning device 200 is not limited to that illustrated in FIG.
  • the configuration and determination method of the abnormality detector 340 are not limited to those of FIG. 6 either.
  • the TMU is used to measure the time in FIG. 6, the PWM control signal PWM_PIXz' may be converted into a bit string and the bit string pattern may be compared with the expected value pattern.
  • the present invention relates to a vehicle lamp.
  • DESCRIPTION OF SYMBOLS 100... Lamp system, 102... Upper controller, 200... Patterning device, 202... Serial signal line, 210... LED array, 220... Interface circuit, 300... Light distribution controller, 302... Vehicle bus interface, 310... Rendering processing part, 320 ... interface circuit, 322 ... pulse width modulator, 324 ... serializer, 330 ... decoder, 340 ... abnormality detector, 342 ... TMU, 344 ... determination unit.

Abstract

A drawing processing unit (310) generates multi-gradation light distribution image data (IMG_LD) defining light distribution. An interface circuit (320) converts the light distribution image data (IMG_LD) into a serial interface signal (SerIF) having a signal format required by a patterning device (200), and transmits the serial interface signal (SerIF) to a light distribution controller (300). A decoder (330) receives a feedback signal (FB) based on the serial interface signal (SerIF), and restores a PWM control signal (PWM_PIXz) with respect to a pixel of interest in the patterning device (200). An abnormality detector (340) determines, on the basis of the PWM control signal (PWM_PIXz) restored by the decoder (330), whether or not an abnormality is present.

Description

配光コントローラおよび車両用灯具システムLight distribution controller and vehicle lighting system
 本発明は、車両用灯具に関する。 The present invention relates to a vehicle lamp.
 車両用灯具は、一般にロービームとハイビームとを切りかえることが可能である。ロービームは、自車近傍を所定の照度で照明するものであって、対向車や先行車にグレアを与えないよう配光規定が定められており、主に市街地を走行する場合に用いられる。一方、ハイビームは、前方の広範囲および遠方を比較的高い照度で照明するものであり、主に対向車や先行車が少ない道路を高速走行する場合に用いられる。したがって、ハイビームはロービームと比較してより運転者による視認性に優れているが、車両前方に存在する車両の運転者や歩行者にグレアを与えてしまうという問題がある。 Vehicle lamps can generally be switched between low beam and high beam. The low beam illuminates the vicinity of the vehicle with a predetermined illuminance, and is used mainly when driving in an urban area. On the other hand, high beams illuminate a wide area ahead and far away with relatively high illuminance, and are mainly used when driving at high speed on roads with few oncoming or preceding vehicles. Therefore, although the high beam is superior in visibility to the driver compared to the low beam, there is a problem in that it gives glare to the driver of the vehicle and pedestrians present in front of the vehicle.
 近年、車両の周囲の状態にもとづいて、ハイビームの配光パターンを動的、適応的に制御するADB(Adaptive Driving Beam)が提案されている。ADB技術は、車両の前方の先行車、対向車や歩行者の有無を検出し、車両あるいは歩行者に対応する領域を減光あるいは消灯するなどして、車両あるいは歩行者に与えるグレアを低減するものである。 In recent years, ADB (Adaptive Driving Beam) has been proposed that dynamically and adaptively controls the high beam light distribution pattern based on the surrounding conditions of the vehicle. ADB technology detects the presence of preceding vehicles, oncoming vehicles, and pedestrians in front of the vehicle, and dims or extinguishes the area corresponding to the vehicle or pedestrian to reduce glare to the vehicle or pedestrian. It is a thing.
 ADBランプとして、LED(発光ダイオード)アレイ方式のものが提案されている。図1は、LEDアレイ方式のADBランプのブロック図である。ADBランプ1は、LEDアレイ10と、配光コントローラ20、電源回路30を備える。LEDアレイ10は、アレイ状に配置される複数のLED12と、複数のLED12を駆動するLEDドライバ14を備える。各LED12は画素に対応する。LEDドライバ14は、各画素に対応する電流源(スイッチ)を含み、電流源のオンオフを制御することで、各画素のオン、オフを切り替える。 An LED (light emitting diode) array system has been proposed as an ADB lamp. FIG. 1 is a block diagram of an LED array type ADB lamp. The ADB lamp 1 includes an LED array 10 , a light distribution controller 20 and a power supply circuit 30 . The LED array 10 includes a plurality of LEDs 12 arranged in an array and an LED driver 14 that drives the plurality of LEDs 12 . Each LED 12 corresponds to a pixel. The LED driver 14 includes a current source (switch) corresponding to each pixel, and switches each pixel between on and off by controlling the on/off of the current source.
 電源回路30は、LEDアレイ10に電源電圧VDDを供給する。配光コントローラ20は、複数の画素のオン、オフを指定する制御信号を生成し、LEDアレイ10に送信する。LEDアレイ10の出射ビームは、図示しない光学系を経て、仮想鉛直スクリーン40上に照射される。仮想鉛直スクリーン40には、複数の発光素子12のオン、オフに対応した配光パターン42が形成される。 A power supply circuit 30 supplies a power supply voltage VDD to the LED array 10 . The light distribution controller 20 generates a control signal designating ON/OFF of the plurality of pixels, and transmits the control signal to the LED array 10 . A beam emitted from the LED array 10 is irradiated onto the virtual vertical screen 40 through an optical system (not shown). A light distribution pattern 42 corresponding to ON/OFF of the plurality of light emitting elements 12 is formed on the virtual vertical screen 40 .
特開2018-172038号公報Japanese Patent Application Laid-Open No. 2018-172038
 車両用灯具を初めとする車載部品には、高い信頼性が要求される。図1のADBランプの場合、正しい配光パターン42が形成できているかを検出する機能が求められる。  In-vehicle parts, including vehicle lamps, require high reliability. In the case of the ADB lamp of FIG. 1, a function of detecting whether the correct light distribution pattern 42 is formed is required.
 本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、より高度な異常検出機能を備える灯具システムおよび配光コントローラの提供にある。 The present disclosure has been made in such a situation, and one exemplary purpose of certain aspects thereof is to provide a lighting system and a light distribution controller with more advanced anomaly detection capabilities.
 本開示のある態様の配光コントローラは、アレイ状に配置された複数の制御要素を含むパターニングデバイスを制御する。配光コントローラは、配光を規定する多階調の配光画像データを生成する描画処理部であって、配光画像データの各画素の画素値が、パターニングデバイスの対応する制御要素に対するPWM制御信号のデューティサイクルを規定している描画処理部と、配光画像データを、パターニングデバイスが要求する信号形式を有するシリアルインタフェース信号に変換し、配光コントローラに送信するインタフェース回路と、シリアルインタフェース信号にもとづくフィードバック信号を受け、パターニングデバイス内の注目画素に対するPWM制御信号を復元するデコーダと、デコーダが復元したPWM制御信号にもとづいて、異常の有無を判定する異常検出器と、を備える。 A light distribution controller according to an aspect of the present disclosure controls a patterning device that includes a plurality of control elements arranged in an array. The light distribution controller is a rendering processing unit that generates multi-gradation light distribution image data that defines light distribution, and the pixel value of each pixel of the light distribution image data is used for PWM control of the corresponding control element of the patterning device. an interface circuit that converts light distribution image data into a serial interface signal having a signal format required by the patterning device and transmits the signal to the light distribution controller; a decoder that receives a feedback signal based on the patterning device and restores a PWM control signal for a pixel of interest in the patterning device; and an abnormality detector that determines whether there is an abnormality based on the PWM control signal restored by the decoder.
 なお、以上の構成要素を任意に組み合わせたもの、あるいは本開示の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。 Arbitrary combinations of the above components, or conversions of the expressions of the present disclosure between methods, devices, etc. are also effective as aspects of the present invention.
 本開示のある態様によれば、灯具システムの高機能な異常を提供できる。 According to an aspect of the present disclosure, it is possible to provide a highly functional malfunction of the lamp system.
LEDアレイ方式のADBランプのブロック図である。1 is a block diagram of an LED array type ADB lamp; FIG. 実施の形態に係る灯具システムのブロック図である。1 is a block diagram of a lamp system according to an embodiment; FIG. 実施形態に係る配光コントローラを備える灯具システムのブロック図である。1 is a block diagram of a lighting system including a light distribution controller according to an embodiment; FIG. インタフェース回路の構成例を示すブロック図である。3 is a block diagram showing a configuration example of an interface circuit; FIG. 配光画像データIMG_LD、シリアルインタフェース信号SerIF、PWM制御信号PWM_PIXの一例を示す図である。3 is a diagram showing an example of light distribution image data IMG_LD, serial interface signal SerIF, and PWM control signal PWM_PIX; FIG. 異常検出器の構成例を示すブロック図である。It is a block diagram which shows the structural example of an abnormality detector.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Overview of embodiment)
SUMMARY OF THE INVENTION Several exemplary embodiments of the disclosure are summarized. This summary presents, in simplified form, some concepts of one or more embodiments, as a prelude to the more detailed description that is presented later, and for the purpose of a basic understanding of the embodiments. The size is not limited. This summary is not a comprehensive overview of all possible embodiments, and it is intended to neither identify key elements of all embodiments nor delineate the scope of some or all aspects. For convenience, "one embodiment" may be used to refer to one embodiment (example or variation) or multiple embodiments (examples or variations) disclosed herein.
 一実施形態に係る配光コントローラは、アレイ状に配置された複数の制御要素を含むパターニングデバイスを制御する。配光コントローラは、配光を規定する多階調の配光画像データを生成する描画処理部であって、配光画像データの各画素の画素値が、パターニングデバイスの対応する制御要素に対するPWM制御信号のデューティサイクルを規定している描画処理部と、配光画像データを、パターニングデバイスが要求する信号形式を有するシリアルインタフェース信号に変換し、配光コントローラに送信するインタフェース回路と、シリアルインタフェース信号にもとづくフィードバック信号を受け、パターニングデバイス内の注目画素に対するPWM制御信号を復元するデコーダと、デコーダが復元したPWM制御信号にもとづいて、異常の有無を判定する異常検出器と、を備える。 A light distribution controller according to one embodiment controls a patterning device including a plurality of control elements arranged in an array. The light distribution controller is a rendering processing unit that generates multi-gradation light distribution image data that defines light distribution, and the pixel value of each pixel of the light distribution image data is used for PWM control of the corresponding control element of the patterning device. an interface circuit that converts light distribution image data into a serial interface signal having a signal format required by the patterning device and transmits the signal to the light distribution controller; a decoder that receives a feedback signal based on the patterning device and restores a PWM control signal for a pixel of interest in the patterning device; and an abnormality detector that determines whether there is an abnormality based on the PWM control signal restored by the decoder.
 この構成によると、インタフェース回路が生成するシリアルインタフェース信号を監視し、それにもとづくフィードバック信号に応じて、異常を検出することとした。これにより、描画処理部に起因する異常のみでなく、その後段のインタフェース回路に起因する異常を検出することができ、より高度な異常検出が可能となる。 According to this configuration, the serial interface signal generated by the interface circuit is monitored, and an abnormality is detected according to the feedback signal based thereon. This makes it possible to detect not only anomalies caused by the drawing processing unit, but also anomalies caused by the interface circuit in the succeeding stage, enabling more advanced anomaly detection.
 一実施形態において、異常検出器は、時間測定ユニット(TMU:Time Measurement Unit)を利用して、PWM制御信号のハイ区間、ロー区間の少なくとも一方を測定してもよい。この場合、測定した時間が、元の配光画像データにもとづく期待値と一致しているか否かによって、異常の有無を判定できる。 In one embodiment, the anomaly detector may measure at least one of the high section and low section of the PWM control signal using a time measurement unit (TMU). In this case, the presence or absence of abnormality can be determined by whether the measured time matches the expected value based on the original light distribution image data.
 一実施形態において、デコーダは、ターニングデバイスのすべての画素を注目画素として、PWM制御信号を復元してもよい。全画素を異常検出の対象とすることにより、より高度な異常検出が可能となる。 In one embodiment, the decoder may restore the PWM control signal with all pixels of the turning device as pixels of interest. By subjecting all pixels to abnormality detection, more advanced abnormality detection becomes possible.
 一実施形態において、配光画像データは、n個の画素を含んでもよい。インタフェース回路は、n個の画素に対応するn個の中間コードを生成するパルス幅変調器と、n個の中間コードを、前記シリアルインタフェース信号に変換するシリアライザと、を含んでもよい。中間コードはmビットを含み、j番目(1≦j≦n)の中間コードに含まれる1の個数は、j番目の画素の画素値に対応していてもよい。シリアルインタフェース信号は、m個のスロットを含み、各スロットは、nビットを含み、j番目の中間コードを構成するmビットは、m個のスロットのj番目のビットに割り当てられてもよい。 In one embodiment, the light distribution image data may include n pixels. The interface circuit may include a pulse width modulator that generates n intermediate codes corresponding to n pixels, and a serializer that converts the n intermediate codes into the serial interface signal. The intermediate code may include m bits, and the number of 1's included in the j-th (1≤j≤n) intermediate code may correspond to the pixel value of the j-th pixel. The serial interface signal may include m slots, each slot including n bits, and the m bits forming the j-th intermediate code may be assigned to the j-th bit of the m slots.
 一実施形態において、中間コードは、サーモメータコードであってもよい。 In one embodiment, the intermediate code may be a thermometer code.
 一実施形態において、パターニングデバイスは、マイクロLEDであってもよい。 In one embodiment, the patterning device may be a micro LED.
(実施形態)
 以下、好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示および発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
(embodiment)
Preferred embodiments will be described below with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Moreover, the embodiments are illustrative rather than limiting of the disclosure and invention, and not all features or combinations thereof described in the embodiments are necessarily essential to the disclosure and invention. No.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, "a state in which member A is connected to member B" refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "the state in which member C is provided between member A and member B" refers to the case where member A and member C or member B and member C are directly connected, as well as the case where they are electrically connected. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
 図2は、実施の形態に係る灯具システム100のブロック図である。灯具システム100は、ADBランプや路面描画ランプなどの配光可変ランプであり、上位コントローラ102、パターニングデバイス200および配光コントローラ300を備える。 FIG. 2 is a block diagram of the lamp system 100 according to the embodiment. The lamp system 100 is a variable light distribution lamp such as an ADB lamp or a road drawing lamp, and includes a host controller 102 , a patterning device 200 and a light distribution controller 300 .
 パターニングデバイス200は、空間光変調器として機能するLEDアレイ(マイクロLEDともいう)210と、インタフェース回路220を備える。LEDアレイ210は、複数n個の制御要素(以下、発光画素PIXという)のアレイを含み、各発光画素PIXは、個別にオン(点灯)、オフ(消灯)が切り替え可能となっている。発光画素PIXは、たとえばLEDなどの半導体発光素子と、半導体発光素子に駆動電流を供給する電流源と、を含みうる。 The patterning device 200 comprises an LED array (also called micro-LEDs) 210 that functions as a spatial light modulator, and an interface circuit 220 . The LED array 210 includes an array of a plurality of n control elements (hereinafter referred to as luminescent pixels PIX), and each luminescent pixel PIX can be individually switched between on (lighting) and off (extinguishing). The light-emitting pixel PIX can include, for example, a semiconductor light-emitting element such as an LED, and a current source that supplies drive current to the semiconductor light-emitting element.
 LEDアレイ210の出射ビームは、図示しない光学系を経て、仮想鉛直スクリーン40上に照射される。仮想鉛直スクリーン40には、複数の発光画素PIXのオン、オフに対応した配光パターン42が形成される。 The beams emitted from the LED array 210 are irradiated onto the virtual vertical screen 40 through an optical system (not shown). A light distribution pattern 42 is formed on the virtual vertical screen 40 corresponding to the on/off state of the plurality of light emitting pixels PIX.
 インタフェース回路220は、シリアル形式のレシーバを含む。インタフェース回路220は、シリアル信号線202を介して配光コントローラ300と接続されている。パターニングデバイス200は、配光コントローラ300からシリアルインタフェース信号SerIFを受信する。このシリアルインタフェース信号SerIFには、LEDアレイ210の複数の発光画素PIXの制御情報が含まれている。 The interface circuit 220 includes a serial receiver. The interface circuit 220 is connected to the light distribution controller 300 via the serial signal line 202 . Patterning device 200 receives serial interface signal SerIF from light distribution controller 300 . This serial interface signal SerIF contains control information for the plurality of light emitting pixels PIX of the LED array 210 .
 インタフェース回路220は、シリアルインタフェース信号SerIFにもとづいて、LEDアレイ210を構成する複数の発光画素PIX1~PIXnの輝度を多階調で制御する。 The interface circuit 220 controls the brightness of the plurality of light emitting pixels PIX1 to PIXn forming the LED array 210 in multiple gradations based on the serial interface signal SerIF.
 配光コントローラ300は、パターニングデバイス200を制御し、所望の配光パターン42を形成する。配光コントローラ300には、上位コントローラ102からの点灯指令CMDに加えて、配光パターン42を生成する上で必要な情報INFOが供給される。上位コントローラ102は車両側のECU(Electronic Control Unit)であってもよいし、灯具側のECUであってもよい。具体的には、上位コントローラ102から配光コントローラ300には、ロービームやハイビームのオン、オフを指示する点灯指令CMDが入力される。 The light distribution controller 300 controls the patterning device 200 to form the desired light distribution pattern 42 . Information INFO necessary for generating the light distribution pattern 42 is supplied to the light distribution controller 300 in addition to the lighting command CMD from the host controller 102 . The host controller 102 may be a vehicle-side ECU (Electronic Control Unit) or a lamp-side ECU. Specifically, the host controller 102 inputs to the light distribution controller 300 a lighting command CMD that instructs to turn on/off the low beam and high beam.
 また上位コントローラ102が配光コントローラ300に供給する情報INFOは、周囲環境情報や車両情報を含みうる。周囲環境情報は、(i)先行車や対向車、歩行者や標識、デリニエータなどの物標に関する情報、(ii)道路情報(高速道路、一般道路、郊外、市街地などの区分、直線路か曲路かなどの情報)、(iii)天気、視界の良否、路面の状態などの情報を含みうる。車両情報は、車速やステアリング角、車両の傾斜角などを含みうる。 The information INFO that the host controller 102 supplies to the light distribution controller 300 may include ambient environment information and vehicle information. Surrounding environment information includes (i) information on preceding and oncoming vehicles, pedestrians, signs, targets such as delineators, and (ii) road information (expressway, general road, suburb, urban area, straight road or curved road). (iii) information such as weather, visibility, and road conditions. Vehicle information may include vehicle speed, steering angle, vehicle tilt angle, and the like.
 配光コントローラ300は、車両情報にもとづいて配光パターンを決定し、決定した配光パターンが得られるように、パターニングデバイス200を制御する。 The light distribution controller 300 determines a light distribution pattern based on vehicle information, and controls the patterning device 200 so that the determined light distribution pattern is obtained.
 図3は、実施形態に係る配光コントローラ300を備える灯具システム100のブロック図である。 FIG. 3 is a block diagram of the lighting system 100 including the light distribution controller 300 according to the embodiment.
 はじめに配光コントローラ300の制御対象であるパターニングデバイス200について説明する。 First, the patterning device 200 to be controlled by the light distribution controller 300 will be described.
 パターニングデバイス200は、LEDアレイ210およびインタフェース回路220を備える。LEDアレイ210の発光画素PIXは、オン/オフの二状態が切りかえ可能である。パターニングデバイス200は、PWM制御によって、1周期当たりのオン時間(デューティサイクル)を変化させることにより、各画素の明るさを多階調で表現する。 The patterning device 200 comprises an LED array 210 and an interface circuit 220 . The light-emitting pixels PIX of the LED array 210 can be switched between two states of ON/OFF. The patterning device 200 expresses the brightness of each pixel in multiple gradations by changing the ON time (duty cycle) per cycle by PWM control.
 インタフェース回路220は、シリアル形式のレシーバを含む。インタフェース回路220は、シリアル信号線202を介して配光コントローラ300と接続されている。パターニングデバイス200は、配光コントローラ300からシリアルインタフェース信号SerIFを受信する。このシリアルインタフェース信号SerIFには、LEDアレイ210の複数の発光画素PIXの輝度情報が含まれている。 The interface circuit 220 includes a serial receiver. The interface circuit 220 is connected to the light distribution controller 300 via the serial signal line 202 . Patterning device 200 receives serial interface signal SerIF from light distribution controller 300 . This serial interface signal SerIF contains luminance information of the plurality of light emitting pixels PIX of the LED array 210 .
 インタフェース回路220は、シリアルインタフェース信号SerIFにもとづいて、複数の発光画素PIX1~PIXnに対応するPWM制御信号PWM_PIX1~PWM_PIXnを生成する。i番目の発光画素PIXiは、対応するPWM制御信号PWM_PIXiにもとづいて、オン、オフが制御される。 The interface circuit 220 generates PWM control signals PWM_PIX1 to PWM_PIXn corresponding to the plurality of light emitting pixels PIX1 to PIXn based on the serial interface signal SerIF. The i-th light-emitting pixel PIXi is controlled to be turned on or off based on the corresponding PWM control signal PWM_PIXi.
 続いて配光コントローラ300の構成を説明する。配光コントローラ300は、ビークルバスインタフェース302、描画処理部(描画エンジン)310、インタフェース回路320、デコーダ330、異常検出器340を備える。 Next, the configuration of the light distribution controller 300 will be described. The light distribution controller 300 includes a vehicle bus interface 302 , a drawing processor (drawing engine) 310 , an interface circuit 320 , a decoder 330 and an abnormality detector 340 .
 ビークルバスインタフェース302は、CAN(Controller Area Network )やLIN(Local Interconnect Network)などであり、上位コントローラ102やその他のデバイスとの通信のために設けられる。 The vehicle bus interface 302 is CAN (Controller Area Network), LIN (Local Interconnect Network), etc., and is provided for communication with the host controller 102 and other devices.
 配光コントローラ300は、上位コントローラ102からの情報INFOにもとづいて、配光パターン42を規定する配光画像データIMG_LDを生成し、シリアルインタフェース信号SerIFに変換して、パターニングデバイス200に送信する。配光コントローラ300とパターニングデバイス200は、シリアル信号線202を介して接続される。 The light distribution controller 300 generates light distribution image data IMG_LD that defines the light distribution pattern 42 based on the information INFO from the upper controller 102 , converts it into a serial interface signal SerIF, and transmits it to the patterning device 200 . Light distribution controller 300 and patterning device 200 are connected via a serial signal line 202 .
 描画処理部310は、配光可変ランプの配光を規定する多階調の配光画像データIMG_LDを生成する。配光画像データIMG_LDの各画素は、配光パターン42の対応する部分の明るさを規定する。パターニングデバイス200の階調制御は、PWM制御をベースとしており、LEDアレイ210の各画素は、PWM制御信号PIX_PWMにもとづいてPWM制御される。したがって、配光画像データIMG_LDの各画素は、LEDアレイ210の対応する発光画素PIXに対するPWM制御信号PIX_PWMのデューティサイクル、すなわちパルス幅を規定しているといえる。 The drawing processing unit 310 generates multi-gradation light distribution image data IMG_LD that defines the light distribution of the variable light distribution lamp. Each pixel of the light distribution image data IMG_LD defines the brightness of the corresponding portion of the light distribution pattern 42 . Gradation control of the patterning device 200 is based on PWM control, and each pixel of the LED array 210 is PWM-controlled based on the PWM control signal PIX_PWM. Therefore, it can be said that each pixel of the light distribution image data IMG_LD defines the duty cycle, that is, the pulse width of the PWM control signal PIX_PWM for the corresponding light-emitting pixel PIX of the LED array 210 .
 描画処理部310は、プロセッサおよびハードウェアロジック回路を含みうる。描画処理部310は、SOC(System-on-a-chip)であってもよい。 The drawing processing unit 310 may include a processor and hardware logic circuits. The drawing processing unit 310 may be an SOC (System-on-a-chip).
 インタフェース回路320は、配光画像データIMG_LDを、パターニングデバイス200のインタフェース回路220が要求する信号形式を有するシリアルインタフェース信号SerIFに変換する。 The interface circuit 320 converts the light distribution image data IMG_LD into a serial interface signal SerIF having a signal format required by the interface circuit 220 of the patterning device 200 .
 デコーダ330は、シリアルインタフェース信号SerIFにもとづくフィードバック信号FBを受ける。デコーダ330は、フィードバック信号FBにもとづいて、パターニングデバイス200内の注目画素PIXzに対するPWM制御信号PWM_PIXzを復元する。復元されたPWM制御信号PWM_PIXzを、PWM_PIXz’と表記する。異常検出器340は、デコーダ330が復元したPWM制御信号PWM_PIXz’にもとづいて、異常の有無を判定する。注目画素の個数は限定されないが、すべての画素を、注目画素として異常検出を行うことが好ましい。 The decoder 330 receives a feedback signal FB based on the serial interface signal SerIF. The decoder 330 restores the PWM control signal PWM_PIXz for the target pixel PIXz in the patterning device 200 based on the feedback signal FB. The restored PWM control signal PWM_PIXz is denoted as PWM_PIXz'. The anomaly detector 340 determines whether there is an anomaly based on the PWM control signal PWM_PIXz' restored by the decoder 330 . Although the number of target pixels is not limited, it is preferable to perform abnormality detection using all pixels as target pixels.
 フィードバック信号FBは、図3に示すように、シリアル信号線202の途中(i)から取り出してもよいし、パターニングデバイス200の入力端(ii)から取り出してもよいし、インタフェース回路320の出力端(iii)から取り出してもよい。 The feedback signal FB may be taken from the middle (i) of the serial signal line 202, as shown in FIG. (iii) may be taken out.
 図4は、インタフェース回路320の構成例(320A)を示すブロック図である。インタフェース回路320Aは、パルス幅変調器322およびシリアライザ324を含む。パルス幅変調器322は、配光画像データIMG_LDのn個の画素p1~pnに対応するn個の中間コードMC1~MCnを生成する。中間コードMCはmビットを含み、j番目(1≦j≦n)の中間コードMCjに含まれる1の個数は、j番目の画素pjの画素値に対応している。たとえば画素pjの画素値が3であるとき、中間コードMCjは、3個の1と、(m-3)個の0を含む。 FIG. 4 is a block diagram showing a configuration example (320A) of the interface circuit 320. As shown in FIG. Interface circuit 320A includes pulse width modulator 322 and serializer 324 . The pulse width modulator 322 generates n intermediate codes MC1-MCn corresponding to the n pixels p1-pn of the light distribution image data IMG_LD. The intermediate code MC includes m bits, and the number of 1's included in the j-th (1≤j≤n) intermediate code MCj corresponds to the pixel value of the j-th pixel pj. For example, when the pixel value of pixel pj is 3, intermediate code MCj includes three 1's and (m-3) 0's.
 PWM周波数が、配光画像データIMG_LDの更新レートのM倍(M≧1)であるとき、1枚の配光画像データIMG_LDに対して、n個の中間コードMC1~MCnのセットがM回、繰り返し生成される。 When the PWM frequency is M times (M≧1) the update rate of the light distribution image data IMG_LD, the n intermediate codes MC1 to MCn are set M times for one light distribution image data IMG_LD, Generated repeatedly.
 たとえばパルス幅変調器322は、PWM周波数を有する三角波(ランプ波、のこぎり波)を生成し、三角波を画素値pjと比較し、二値信号に変換する。この二値信号を、1PWM周期内でm個に分割することで、中間コードMCjを生成してもよい。 For example, the pulse width modulator 322 generates a triangular wave (ramp wave, sawtooth wave) having a PWM frequency, compares the triangular wave with the pixel value pj, and converts it into a binary signal. The intermediate code MCj may be generated by dividing this binary signal into m parts within one PWM period.
 シリアライザ324は、n個の中間コードMC1~MCnを、シリアルインタフェース信号SerIFに変換する。 The serializer 324 converts the n intermediate codes MC1 to MCn into a serial interface signal SerIF.
 以上が灯具システム100の構成である。続いてその動作を説明する。 The configuration of the lamp system 100 is as described above. Next, the operation will be explained.
 図5は、配光画像データIMG_LD、シリアルインタフェース信号SerIF、PWM制御信号PWM_PIXの一例を示す図である。 FIG. 5 is a diagram showing an example of the light distribution image data IMG_LD, the serial interface signal SerIF, and the PWM control signal PWM_PIX.
 ここでは説明の簡略化と理解の容易化のため、配光画像データIMG_LDの画素数、つまりLEDアレイ210の発光画素の個数nが4であるものとする。4個の画素をp1~p4とする。また配光画像データIMG_LDの複数の画素p1~p4の画素値はそれぞれ、(m+1)階調で変化するものとする。この例では、m=8、画素値は0~8の9階調でありうる。具体的には、配光画像データIMG_LDの4個の画素p1~p4の画素値は、4,3,6,2であるものとする。 Here, to simplify the explanation and facilitate understanding, it is assumed that the number of pixels in the light distribution image data IMG_LD, that is, the number n of light emitting pixels of the LED array 210 is four. Let the four pixels be p1 to p4. It is also assumed that the pixel values of the plurality of pixels p1 to p4 of the light distribution image data IMG_LD change in (m+1) gradations. In this example, m=8 and the pixel values can be 9 gradations from 0 to 8. Specifically, it is assumed that the pixel values of the four pixels p1 to p4 of the light distribution image data IMG_LD are 4, 3, 6, and 2, respectively.
 シリアルインタフェース信号SerIFは、m個のタイムスロットTS1~TSmを含む。各タイムスロットは、nビットを含む。配光画像データIMG_LDの各画素は、複数のタイムスロットそれぞれにおいて、nビットのうちの対応する一つに割り当てられる。たとえば1番目の画素p1は、タイムスロットTSの一番左のビットに、2番目の画素p2は、左から2番目のビットに、j番目の画素pjは、左からj番目に割り当てられる。 The serial interface signal SerIF includes m time slots TS1 to TSm. Each time slot contains n bits. Each pixel of the light distribution image data IMG_LD is assigned to a corresponding one of the n bits in each of the plurality of time slots. For example, the first pixel p1 is assigned to the leftmost bit of time slot TS, the second pixel p2 to the second bit from the left, and the jth pixel pj to the jth from the left.
 m個のタイムスロットTS1~TSmの第jビットには、画素pjの画素値を表す中間コードMCjが格納される。中間コードMCjは、右詰あるいは左詰のサーモメータコードが好適である。たとえば画素pjの画素値が4であるとき、左詰のサーモメータコードはMCj=[11110000]であり、画素pjの画素値が7であるとき、左詰のサーモメータコードはMCj=[11111110]となる。あるいは中間コードMCjは、1のビットを中央に集中させたコードであってもよい。これらの中間コードMCjは、PWM信号と把握することができる。 An intermediate code MCj representing the pixel value of pixel pj is stored in the j-th bit of m time slots TS1 to TSm. The intermediate code MCj is preferably a right-justified or left-justified thermometer code. For example, when the pixel value of pixel pj is 4, the left-justified thermometer code is MCj=[11110000], and when the pixel value of pixel pj is 7, the left-justified thermometer code is MCj=[11111110]. becomes. Alternatively, the intermediate code MCj may be a code in which 1 bits are centrally concentrated. These intermediate codes MCj can be grasped as PWM signals.
 以上が配光コントローラ300が生成するシリアルインタフェース信号SerIFの例である。なお、フィードバック信号FBは、シリアルインタフェース信号SerIFと同じフォーマットを有していることに留意されたい。 The above is an example of the serial interface signal SerIF generated by the light distribution controller 300 . Note that the feedback signal FB has the same format as the serial interface signal SerIF.
 インタフェース回路220は、このシリアルインタフェース信号SerIFをデコードし、複数のPWM制御信号PWM_PIX1~PWM_PIXnを生成する。具体的には、インタフェース回路220は、デコーダ222を含む。デコーダ222は、m個のタイムスロットTS1~TSmそれぞれの第jビットを結合することによりj番目の発光画素PIXjに供給すべきPWM制御信号PWM_PIXjを生成する。デコーダ222によって、全画素に対するPWM制御信号PWM_PIX1~PWM_PIXnが生成される。 The interface circuit 220 decodes this serial interface signal SerIF and generates a plurality of PWM control signals PWM_PIX1 to PWM_PIXn. Specifically, interface circuit 220 includes a decoder 222 . The decoder 222 generates the PWM control signal PWM_PIXj to be supplied to the j-th light-emitting pixel PIXj by combining the j-th bit of each of the m time slots TS1 to TSm. A decoder 222 generates PWM control signals PWM_PIX1 to PWM_PIXn for all pixels.
 PWM制御信号PWM_PIXjに応じて、j番目の発光画素PIXjをスイッチング駆動することにより、j番目の発光画素PIXjの輝度(時間平均値)は、元の配光画像データIMG_LDの対応する画素pjの画素値に応じたものとなる。 By switching-driving the j-th light-emitting pixel PIXj according to the PWM control signal PWM_PIXj, the luminance (time average value) of the j-th light-emitting pixel PIXj is the same as that of the pixel pj corresponding to the original light distribution image data IMG_LD. according to the value.
 一方で、デコーダ330は、フィードバック信号FBから、注目画素のPWM制御信号PWM_PIXzを復元する。上述のように、フィードバック信号FBは、シリアルインタフェース信号SerIFと同じフォーマットを有しているから、デコーダ330は、インタフェース回路220のデコーダ222と同じ機能を有するように構成される。すなわちデコーダ330は、シリアルインタフェース信号SerIFに代えて、フィードバック信号FBを受け、注目画素のPWM制御信号PWM_PIXzを生成する。具体的には、デコーダ330は、フィードバック信号FBに含まれるm個のタイムスロットTS1~TSmそれぞれの第zビットを結合することにより注目画素であるz番目の発光画素PIXzに供給すべきPWM制御信号PWM_PIXz’を生成する。 On the other hand, the decoder 330 restores the PWM control signal PWM_PIXz of the target pixel from the feedback signal FB. As described above, feedback signal FB has the same format as serial interface signal SerIF, so decoder 330 is configured to have the same functionality as decoder 222 of interface circuit 220 . That is, the decoder 330 receives the feedback signal FB instead of the serial interface signal SerIF, and generates the PWM control signal PWM_PIXz for the pixel of interest. Specifically, the decoder 330 combines the z-th bits of each of the m time slots TS1 to TSm included in the feedback signal FB to generate a PWM control signal to be supplied to the z-th light-emitting pixel PIXz, which is the pixel of interest. Generate PWM_PIXz'.
 上述のように、注目画素は1個には限定されず、全画素であってもよい。その場合、デコーダ330は、インタフェース回路220のデコーダ222と同様に、全画素のPWM制御信号PWM_PIX1’~PWM_PIXn’を復元することとなる。 As described above, the pixel of interest is not limited to one, and may be all pixels. In that case, the decoder 330 restores the PWM control signals PWM_PIX1' to PWM_PIXn' for all pixels, like the decoder 222 of the interface circuit 220. FIG.
 続いて異常検出器340の動作例を説明する。異常検出器340は、パターニングデバイス200の内部において生成されるべきPWM制御信号PWM_PIXzの波形(期待波形)を、配光画像データIMG_LDにもとづいて知ることができる。たとえば、図4のパルス幅変調器322が生成する中間コードMCが、サーモメータコードである場合、サーモメータコードは、PWM制御信号PWM_PIXzの期待波形を表す。そして、デコーダ330が復元したPWM制御信号PWM_PIXz’の波形が、期待波形と一致している場合には正常、不一致の場合には異常と判定することができる。波形の一致、不一致は、パルス幅同士を比較することによって行ってもよいし、ハイ区間とロー区間の長さを比較することによって行ってもよい。 Next, an operation example of the anomaly detector 340 will be described. The abnormality detector 340 can know the waveform (expected waveform) of the PWM control signal PWM_PIXz to be generated inside the patterning device 200 based on the light distribution image data IMG_LD. For example, if the intermediate code MC generated by the pulse width modulator 322 of FIG. 4 is a thermometer code, the thermometer code represents the expected waveform of the PWM control signal PWM_PIXz. If the waveform of the PWM control signal PWM_PIXz' restored by the decoder 330 matches the expected waveform, it can be determined to be normal, and if it does not match, it can be determined to be abnormal. Matching or mismatching of the waveforms may be performed by comparing the pulse widths, or by comparing the lengths of the high section and the low section.
 図6は、異常検出器340の構成例(340A)を示すブロック図である。異常検出器340Aは、TMU(時間測定ユニット)342および判定部344を含む。TMU342は、PWM制御信号PWM_PIXz’のハイ区間T、ロー区間Tの一方、あるいはそれらの両方の長さを測定する。判定部344は、配光画像データIMG_LDの対応する画素の画素値にもとづいて、TMU342が測定する時間T,Tの期待値を生成する。そして判定部344は、TMU342が実際に測定した時間と期待値との一致・不一致を判定する。判定部344は、不一致の場合に、異常検出信号ERRをアサート(たとえばハイレベル)する。異常検出信号ERRは、割り込み信号であってもよいし、異常が発生した画素の番号などを含むデータであってもよい。 FIG. 6 is a block diagram showing a configuration example (340A) of the anomaly detector 340. As shown in FIG. The anomaly detector 340A includes a TMU (time measurement unit) 342 and a determination section 344. FIG. The TMU 342 measures the length of one or both of the high section T L and the low section T L of the PWM control signal PWM_PIXz'. The determination unit 344 generates expected values of the times T H and T L measured by the TMU 342 based on the pixel values of the corresponding pixels in the light distribution image data IMG_LD. Then, the determination unit 344 determines whether the time actually measured by the TMU 342 matches or does not match the expected value. If they do not match, the determination unit 344 asserts (for example, high level) the abnormality detection signal ERR. The abnormality detection signal ERR may be an interrupt signal, or may be data including the number of a pixel in which an abnormality has occurred.
 以上が灯具システム100の動作である。この灯具システム100によれば、インタフェース回路320の出力であるシリアルインタフェース信号SerIFをフィードバックし、デコーダ330によってPWM制御信号PWM_PIXを再生している。したがって、インタフェース回路320に異常が生じて、正しいシリアルインタフェース信号SerIFが生成できないような状態を検出できる。 The above is the operation of the lamp system 100. According to this lamp system 100, the serial interface signal SerIF, which is the output of the interface circuit 320, is fed back, and the decoder 330 reproduces the PWM control signal PWM_PIX. Therefore, it is possible to detect a state in which an error occurs in the interface circuit 320 and a correct serial interface signal SerIF cannot be generated.
 また、シリアル信号線202の途中、あるいはインタフェース回路220の入力端(ii)に近い箇所から、フィードバック信号FBを取り出すことにより、シリアル信号線202での波形歪みやノイズによる異常を検出することもできる。すなわち、インタフェース回路320の出力端において、シリアルインタフェース信号SerIFが正常であっても、シリアル信号線202の伝送中に波形歪みやノイズの影響で、インタフェース回路220が受信するシリアルインタフェース信号SerIFが化ける可能性がある。この場合、フィードバック信号FBの取り出し位置をインタフェース回路220に近づけておくと、フィードバック信号FBは、シリアルインタフェース信号SerIFと同様に化けることとなる。この場合、フィードバック信号FBにもとづいて復元されたPWM制御信号PWM_PIXzは、誤った信号となるから、異常検出器340において異常と判定することができる。 Further, by extracting the feedback signal FB from the middle of the serial signal line 202 or from a portion near the input terminal (ii) of the interface circuit 220, it is possible to detect an abnormality due to waveform distortion or noise in the serial signal line 202. . That is, even if the serial interface signal SerIF is normal at the output end of the interface circuit 320, the serial interface signal SerIF received by the interface circuit 220 may be garbled due to waveform distortion and noise during transmission on the serial signal line 202. have a nature. In this case, if the extraction position of the feedback signal FB is brought closer to the interface circuit 220, the feedback signal FB will be garbled like the serial interface signal SerIF. In this case, since the PWM control signal PWM_PIXz restored based on the feedback signal FB is an erroneous signal, the abnormality detector 340 can determine that it is abnormal.
 続いて変形例を説明する。 Next, a modified example will be explained.
(変形例1)
 配光コントローラ300の制御対象であるパターニングデバイス200の構成は特に限定されない。たとえばパターニングデバイス200は、均一な強度分布を有するビームを生成する光源と、光源の強度分布をパターニングする空間光変調器を含んでもよい。空間光変調器としては、DMD(Digital Micromirror Device)や液晶パネルなどが例示される。
(Modification 1)
The configuration of the patterning device 200 to be controlled by the light distribution controller 300 is not particularly limited. For example, patterning device 200 may include a light source that produces a beam with a uniform intensity distribution and a spatial light modulator that patterns the intensity distribution of the light source. Examples of spatial light modulators include DMDs (Digital Micromirror Devices) and liquid crystal panels.
(変形例2)
 インタフェース回路320からパターニングデバイス200に送信するシリアルインタフェース信号SerIFのフォーマットは図5で例示したそれに限定されない。
(Modification 2)
The format of the serial interface signal SerIF transmitted from the interface circuit 320 to the patterning device 200 is not limited to that illustrated in FIG.
(変形例3)
 異常検出器340の構成や判定方法も、図6のそれに限定されない。図6では、TMUを利用して時間を測定したが、PWM制御信号PWM_PIXz’をビット列に変換し、ビット列のパターンを、期待値パターンと比較してもよい。
(Modification 3)
The configuration and determination method of the abnormality detector 340 are not limited to those of FIG. 6 either. Although the TMU is used to measure the time in FIG. 6, the PWM control signal PWM_PIXz' may be converted into a bit string and the bit string pattern may be compared with the expected value pattern.
 実施形態にもとづき、具体的な用語を用いて本開示を説明したが、実施の形態は、本開示および/または発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present disclosure has been described using specific terms based on the embodiments, the embodiments merely illustrate the principles and applications of the present disclosure and/or invention, and the embodiments do not include the claims. Many variations and rearrangements are permissible without departing from the spirit of the invention as defined in its scope.
 本発明は、車両用灯具に関する。 The present invention relates to a vehicle lamp.
100…灯具システム、102…上位コントローラ、200…パターニングデバイス、202…シリアル信号線、210…LEDアレイ、220…インタフェース回路、300…配光コントローラ、302…ビークルバスインタフェース、310…描画処理部、320…インタフェース回路、322…パルス幅変調器、324…シリアライザ、330…デコーダ、340…異常検出器、342…TMU、344…判定部。 DESCRIPTION OF SYMBOLS 100... Lamp system, 102... Upper controller, 200... Patterning device, 202... Serial signal line, 210... LED array, 220... Interface circuit, 300... Light distribution controller, 302... Vehicle bus interface, 310... Rendering processing part, 320 ... interface circuit, 322 ... pulse width modulator, 324 ... serializer, 330 ... decoder, 340 ... abnormality detector, 342 ... TMU, 344 ... determination unit.

Claims (7)

  1.  アレイ状に配置された複数の制御要素を含むパターニングデバイスを制御する配光コントローラであって、
     配光を規定する多階調の配光画像データを生成する描画処理部であって、前記配光画像データの各画素の画素値が、前記パターニングデバイスの対応する制御要素に対するPWM(Pulse Width Modulation)制御信号のデューティサイクルを規定している、描画処理部と、
     前記配光画像データを、前記パターニングデバイスが要求する信号形式を有するシリアルインタフェース信号に変換し、前記配光コントローラに送信するインタフェース回路と、
     前記シリアルインタフェース信号にもとづくフィードバック信号を受け、前記パターニングデバイス内の注目画素に対するPWM制御信号を復元するデコーダと、
     前記デコーダが復元した前記PWM制御信号にもとづいて、異常の有無を判定する異常検出器と、
     を備えることを特徴とする配光コントローラ。
    A light distribution controller for controlling a patterning device comprising a plurality of control elements arranged in an array,
    A rendering processing unit for generating multi-gradation light distribution image data defining light distribution, wherein pixel values of pixels of the light distribution image data are PWM (Pulse Width Modulation) for corresponding control elements of the patterning device. ) a drawing processor, which defines the duty cycle of the control signal;
    an interface circuit that converts the light distribution image data into a serial interface signal having a signal format required by the patterning device and transmits the signal to the light distribution controller;
    a decoder that receives a feedback signal based on the serial interface signal and restores a PWM control signal for a pixel of interest in the patterning device;
    an anomaly detector that determines the presence or absence of an anomaly based on the PWM control signal restored by the decoder;
    A light distribution controller comprising:
  2.  前記異常検出器は、時間測定ユニットを利用して、前記PWM制御信号のハイ区間、ロー区間の少なくとも一方を測定することを特徴とする請求項1に記載の配光コントローラ。 The light distribution controller according to claim 1, wherein the anomaly detector uses a time measurement unit to measure at least one of a high section and a low section of the PWM control signal.
  3.  前記デコーダは、前記ターニングデバイスのすべての画素を前記注目画素として、前記PWM制御信号を復元することを特徴とする請求項1または2に記載の配光コントローラ。 3. The light distribution controller according to claim 1, wherein the decoder restores the PWM control signal with all pixels of the turning device as the pixels of interest.
  4.  前記配光画像データは、n個の画素を含み、
     前記インタフェース回路は、
     n個の画素に対応するn個の中間コードを生成するパルス幅変調器であって、前記中間コードはmビットを含み、j番目(1≦j≦n)の前記中間コードに含まれる1の個数は、j番目の画素の画素値に対応している、パルス変調器と、
     前記n個の前記中間コードを、前記シリアルインタフェース信号に変換するシリアライザと、
     を含み、
     前記シリアルインタフェース信号は、m個のスロットを含み、各スロットは、nビットを含み、j番目の前記中間コードを構成するmビットは、前記m個のスロットのj番目のビットに割り当てられることを特徴とする請求項1または2に記載の配光コントローラ。
    The light distribution image data includes n pixels,
    The interface circuit is
    A pulse width modulator for generating n intermediate codes corresponding to n pixels, wherein the intermediate code includes m bits and 1's included in the j-th (1≤j≤n) intermediate code. a pulse modulator, the number of which corresponds to the pixel value of the j-th pixel;
    a serializer that converts the n intermediate codes into the serial interface signal;
    including
    The serial interface signal includes m slots, each slot includes n bits, and m bits forming the j-th intermediate code are assigned to the j-th bit of the m slots. 3. A light distribution controller according to claim 1 or 2.
  5.  前記中間コードは、サーモメータコードであることを特徴とする請求項4に記載の配光コントローラ。 The light distribution controller according to claim 4, wherein the intermediate code is a thermometer code.
  6.  前記パターニングデバイスは、マイクロLEDであることを特徴とする請求項1または2に記載の配光コントローラ。 The light distribution controller according to claim 1 or 2, wherein the patterning device is a micro LED.
  7.  パターニングデバイスと、
     前記パターニングデバイスを制御する請求項1または2に記載の配光コントローラと、
     を備えることを特徴とする車両用灯具システム。
    a patterning device;
    A light distribution controller according to claim 1 or 2, which controls the patterning device;
    A vehicle lamp system comprising:
PCT/JP2022/024219 2021-06-22 2022-06-16 Light distribution controller and vehicle light system WO2022270415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530415A JPWO2022270415A1 (en) 2021-06-22 2022-06-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103590 2021-06-22
JP2021-103590 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270415A1 true WO2022270415A1 (en) 2022-12-29

Family

ID=84544879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024219 WO2022270415A1 (en) 2021-06-22 2022-06-16 Light distribution controller and vehicle light system

Country Status (2)

Country Link
JP (1) JPWO2022270415A1 (en)
WO (1) WO2022270415A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018128A1 (en) * 2015-07-30 2017-02-02 株式会社小糸製作所 Lighting circuit, vehicular light
WO2019198604A1 (en) * 2018-04-10 2019-10-17 株式会社小糸製作所 Vehicle lamp, lighting circuit therefor, driver circuit, and driver-integrated light source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018128A1 (en) * 2015-07-30 2017-02-02 株式会社小糸製作所 Lighting circuit, vehicular light
WO2019198604A1 (en) * 2018-04-10 2019-10-17 株式会社小糸製作所 Vehicle lamp, lighting circuit therefor, driver circuit, and driver-integrated light source

Also Published As

Publication number Publication date
JPWO2022270415A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US20230403771A1 (en) High speed image refresh system
KR102405205B1 (en) Dynamic Pixel Diagnostics for High Refresh Rate LED Arrays
KR102650543B1 (en) Large LED array with reduced data management
EP3459790B1 (en) Apparatus and method for controlling adb-mode vehicle headlamp
CN108966405B (en) Vehicle lamp
WO2022270415A1 (en) Light distribution controller and vehicle light system
CN115380324A (en) Fault detection and correction for LED arrays
KR102331664B1 (en) High speed image refresh system
WO2022270414A1 (en) Lamp controller and vehicle lighting system
JP7248735B2 (en) High-speed image refresh system
KR20040071802A (en) Scan Mask Which Controls the Scan Waveform Using Data Status and Method Thereof
CN110686210A (en) Lighting device for a motor vehicle headlight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828332

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530415

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE