WO2022270402A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2022270402A1
WO2022270402A1 PCT/JP2022/024116 JP2022024116W WO2022270402A1 WO 2022270402 A1 WO2022270402 A1 WO 2022270402A1 JP 2022024116 W JP2022024116 W JP 2022024116W WO 2022270402 A1 WO2022270402 A1 WO 2022270402A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retardation
refractive index
retardation layer
display device
Prior art date
Application number
PCT/JP2022/024116
Other languages
French (fr)
Japanese (ja)
Inventor
瑛 高月
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022095695A external-priority patent/JP2023003395A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280021956.2A priority Critical patent/CN116997951A/en
Priority to KR1020237042053A priority patent/KR20240024067A/en
Publication of WO2022270402A1 publication Critical patent/WO2022270402A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a display device, and further to an optical layered body used therein.
  • a polarizing plate including a linear polarizing layer can be used as a polarized light supply element or a polarized light detection element in a display device such as a liquid crystal display device or an organic electroluminescence (EL) display device, or can be used as an external light reflected by the display device. It is widely used as a device for suppressing radiation to the Display devices equipped with polarizing plates are also used in mobile devices such as notebook personal computers, smartphones, and tablet terminals.
  • Patent Literature 1 describes that from the viewpoint of design and expansion of the display area on the display surface of a mobile device such as a smart phone, for example, in a plan view, a non-display area is provided by notching the outer edge of the display area in a concave shape.
  • a display element and a polarizing plate are usually not arranged in the non-display area provided in the concave shape. Therefore, by arranging a camera lens and various sensors such as a light receiving sensor in the non-display area, it is possible to prevent the performance of the camera and the sensitivity of the sensor from being adversely affected.
  • the present invention provides a display device capable of suppressing the incidence of light reflected by the high refractive index layer from entering a light receiving sensor even when the high refractive index layer is provided on the viewing side, and an optical laminate used therein. With the goal.
  • the present invention provides the following display device.
  • a display device having a high refractive index layer, a first retardation layer, a linear polarizing layer, and a display unit in this order from the viewing side,
  • the refractive index of the high refractive index layer is 1.60 or more
  • the display unit has a display element and a light receiving sensor,
  • the display device, wherein the first retardation layer and the linear polarization layer are laminated so as to cover the display element and the light receiving sensor.
  • the first retardation layer covers the entire surface of the linear polarizing layer on the viewing side in plan view.
  • [3] The display device according to [1] or [2], wherein the luminosity correction single transmittance of the linearly polarizing layer is 42% or more.
  • [4] The display according to any one of [1] to [3], wherein the angle formed by the slow axis of the first retardation layer and the absorption axis of the linear polarizing layer is 10° or more and 80° or less.
  • Device. [5] The display device according to any one of [1] to [4], wherein the in-plane retardation value of the first retardation layer at a wavelength of 550 nm is 80 nm or more and 170 nm or less.
  • [6] The display device according to [5], wherein the first retardation layer has reverse wavelength dispersion.
  • [7] further comprising a second retardation layer between the high refractive index layer and the linear polarizing layer;
  • the second retardation layer is laminated so as to cover the display element and the light receiving sensor,
  • the stimulation value Y of the reflected light when the light emitted from the display element is reflected by the high refractive index layer is 3.45% or more and 4.54% or less of [1] to [7].
  • the display device according to any one of the above.
  • the present invention provides the following optical layered body.
  • An optical laminate having a high refractive index layer, a first retardation layer and a linear polarizing layer in this order, The optical laminate, wherein the high refractive index layer has a refractive index of 1.60 or more.
  • the display device of the present invention it is possible to suppress the reflected light reflected by the high refractive index layer from entering the light receiving sensor. Further, according to the optical layered body of the present invention, the display device of the present invention can be provided.
  • FIG. 1 is a schematic cross-sectional view schematically showing a display device according to an embodiment of the invention
  • FIG. 3 is a schematic cross-sectional view schematically showing a display device according to another embodiment of the invention
  • FIG. 4 is a schematic cross-sectional view schematically showing a display device according to still another embodiment of the invention
  • FIG. 4 is a schematic cross-sectional view schematically showing a display device according to still another embodiment of the invention
  • FIGS. 1 and 2 are schematic cross-sectional views schematically showing a display device according to an embodiment of the invention. 1 and 2, the upper side is the viewing side.
  • the high refractive index layer 45, the first retardation layer 31, the linear polarizing layer 11, and the display unit 40 are arranged in this order from the viewing side. have.
  • the high refractive index layer 45 , the first retardation layer 31 and the linear polarizing layer 11 constitute optical laminates 51 and 52 .
  • the refractive index of the high refractive index layer 45 is 1.60 or more, preferably 1.75 or more, more preferably 1.80 or more, usually 2.70 or less, preferably 2.40 or less. , more preferably 2.30 or less, and still more preferably 2.10 or less.
  • the refractive index of the high refractive index layer 45 can be measured by the method described in Examples below.
  • the display unit 40 has a display element 41 and a light receiving sensor 42 .
  • the display unit 40 may have a structure in which a light receiving sensor 42 is stacked on the viewing side of the display element 41, and the light receiving sensor 42 is stacked on the side opposite to the viewing side of the display element 41.
  • the sensor 42 may have a laminated structure.
  • the light-receiving sensor 42 may be fitted in a through hole or recess provided in the display element 41 .
  • the area of the display element 41 can be used as the display area of the display devices 1 and 2, from the viewpoint of enlarging the display area, in the plan view of the display unit 40, the light receiving sensor 42 is surrounded. It is preferable that the area of the display element 41 exists in the area of the display element 41 .
  • the first retardation layer 31 and the linear polarization layer 11 are laminated so as to cover the display element 41 and the light receiving sensor .
  • the first retardation layer 31 and the linear polarizing layer 11 are laminated so as to cover the entire visible-side surface of the display unit 40, that is, to cover the entire visible-side surfaces of the display element 41 and the light receiving sensor 42. is preferred.
  • the linear polarizing layer 11 By providing the linear polarizing layer 11 as described above, the area of the display element 41 around the light receiving sensor 42 is covered with the linear polarizing layer 11 in plan view, so that the display areas of the display devices 1 and 2 are expanded. easier.
  • the first retardation layer 31 may cover the entire linear polarization layer 11 in a plan view, or may cover a part thereof.
  • the planar view shape of the first retardation layer 31 may be the same as or different from the planar view shape of the linear polarizing layer 11 .
  • image display is performed by light emitted from the display element 41.
  • Part of the light emitted from the display element 41 may be reflected by the high refractive index layer 45 and enter the light receiving sensor 42 as indicated by the arrow in FIG.
  • the reflected light reflected by the high refractive index layer 45 is likely to enter the light receiving sensor 42 .
  • the reflected light is incident on the light receiving sensor 42, malfunction of the light receiving sensor 42 is likely to occur.
  • the first retardation layer 31 is laminated on the visible side of the linear polarization layer 11 covering the display element 41 and the light receiving sensor 42 .
  • the reflected light reflected by the high refractive index layer 45 is incident on the first retardation layer 31 and changes its phase by passing through the first retardation layer 31 . Therefore, at least part of the reflected light that has passed through the first retardation layer 31 is likely to be absorbed by the linear polarizing layer 11 . As a result, the light amount of the reflected light incident on the light receiving sensor 42 can be reduced, so that malfunction of the light receiving sensor 42 can be suppressed.
  • the visibility correction single transmittance of the linear polarizing layer 11 is preferably 42% or more, more preferably 43% or more, and may be 45% or more.
  • the luminosity correction single transmittance of the linear polarizing layer 11 increases, the light amount of the reflected light that passes through the linear polarizing layer 11 increases, so that the light receiving sensor 42 is likely to malfunction.
  • the display devices 1 and 2 of the present embodiment even when the linear polarizing layer 11 having a large luminosity correction single transmittance is used, the light amount of the reflected light incident on the light receiving sensor 42 is suppressed, and the light receiving sensor 42 malfunction can be suppressed.
  • the luminosity correction single transmittance of the linear polarizing layer 11 can be measured by the method described in Examples below.
  • the first retardation layer 31 may have a retardation, it preferably has a retardation in which the in-plane retardation value Re(550) at a wavelength of 550 nm is 80 nm or more and 170 nm or less.
  • the in-plane retardation value Re (550) of the first retardation layer 31 is more preferably 100 nm or more, particularly preferably 130 nm or more, may be 135 nm or more, and is 160 nm or less. is more preferably 150 nm or less.
  • the in-plane retardation value Re(550) of the first retardation layer 31 can be measured by the method described in Examples below.
  • the first retardation layer 31 has an in-plane retardation value Re (550) within the above range
  • the light emitted from the display element 41 in the display devices 1 and 2 is elliptically polarized when passing through the first retardation layer 31. converted.
  • the reflected light (elliptically polarized light) reflected by the high refractive index layer 45 is converted into linearly polarized light by passing through the first retardation layer 31 .
  • the reflected light that has passed through the first retardation layer 31 is more likely to be absorbed by the linear polarization layer 11, so that the amount of reflected light that enters the light receiving sensor 42 can be further suppressed.
  • the angle between the absorption axis of the linear polarizing layer 11 and the slow axis of the first retardation layer 31 is 10°. It is preferable to be within the range of 80° or more.
  • the angle may be 30° or more, more preferably 40° or more. Also, the angle may be 60° or less, more preferably 50° or less.
  • the first retardation layer 31 whose in-plane retardation value Re(550) is within the above range preferably has reverse wavelength dispersion.
  • the wavelength range of the reflected light absorbed by the linear polarizing layer 11 is widened, so that the amount of reflected light of various wavelengths incident on the light receiving sensor 42 can be suppressed.
  • the stimulation value Y of the reflected light when the emitted light from the display element 41 is reflected by the high refractive index layer 45 is preferably 3.45% or more and 4.54% or less.
  • the stimulus value Y of the reflected light is the ratio of the light intensity of the reflected light to the light intensity of the emitted light from the display element 41.
  • the smaller the stimulus value Y the smaller the amount of reflected light reflected by the high refractive index layer 45. , indicates that the light-receiving sensor 42 is less likely to malfunction.
  • the stimulus value Y of the reflected light can be measured by the method described in Examples below.
  • the stimulus value Y of the reflected light may be 3.48% or more, 3.50% or more, 4.30% or less, or 4.10% or less. may be 3.90% or less, or 3.76% or less.
  • the stimulus value Y of the emitted light is within the above range, it is easy to suppress the amount of reflected light incident on the light receiving sensor 42 . If the stimulus value Y of the emitted light is smaller than the above range, it is considered that the refractive index of the high refractive index layer 45 is small, or the luminosity correction single transmittance of the linear polarizing layer 11 is small. Therefore, in a display device in which the stimulus value Y of emitted light is smaller than the above range, the amount of reflected light incident on the light receiving sensor 42 is small, and malfunction of the light receiving sensor 42 is unlikely to occur. In addition, in a display device in which the stimulus value Y of emitted light is larger than the above range, the amount of reflected light incident on the light receiving sensor 42 is large, and malfunction of the light receiving sensor 42 is likely to occur.
  • the display devices 1 and 2 and the optical laminates 51 and 52 may have the first bonding layer 21 between the high refractive index layer 45 and the first retardation layer 31 as shown in FIGS. preferable.
  • the first bonding layer 21 may be in direct contact with the high refractive index layer 45 and the first retardation layer 31 .
  • the display devices 1 and 2 and the optical laminates 51 and 52 may have one or more second refractive index layers (not shown) apart from the high refractive index layer 45 described above.
  • the refractive index of the second refractive index layer can be within the above refractive index range described for the high refractive index layer 45 .
  • the second refractive index layer may be provided on the viewer side of the high refractive index layer 45 or may be provided between the high refractive index layer 45 and the first retardation layer 31 .
  • the display devices 1 and 2 and the optical laminates 51 and 52 have a lamination layer (adhesive layer or adhesive layer described later) between the high refractive index layer 45 and the second refractive index layer.
  • the lamination layer may be in direct contact with the high refractive index layer 45 and the second refractive index layer.
  • the first bonding layer 21 is the first It may be in direct contact with the retardation layer 31 and the second refractive index layer.
  • the display devices 1 and 2 and the optical laminates 51 and 52 preferably have the second bonding layer 22 between the first retardation layer 31 and the linear polarizing layer 11 .
  • the second bonding layer 22 may be in direct contact with the first retardation layer 31 and the linear polarizing layer 11 .
  • the display devices 1 and 2 and the optical laminates 51 and 52 have a first protective film 12 between the first retardation layer 31 and the linear polarizing layer 11, as shown in FIGS. good too.
  • the first protective film 12 may be a layer for protecting the viewing side surface of the linear polarizing layer 11, and the first protective film 12 and the linear polarizing layer 11 may constitute a linear polarizing plate.
  • the second bonding layer 22 may be in direct contact with the first retardation layer 31 and the first protective film 12 .
  • the display devices 1 and 2 and the optical laminates 51 and 52 have the first protective film 12
  • the display devices 1 and 2 and the optical laminates 51 and 52 are such that the first protective film 12 and the linear polarizing layer 11 are in direct contact.
  • the third bonding layer 23 may constitute a linear polarizing plate, and is preferably in direct contact with the first protective film 12 and the linear polarizing layer 11 .
  • the display devices 1 and 2 may have a fourth bonding layer 24 between the linear polarizing layer 11 and the display unit 40 (the side opposite to the first retardation layer 31 side of the linear polarizing layer 11). good.
  • the linear polarizing layer 11 and the display unit 40 may be in direct contact with the fourth bonding layer 24 as shown in FIG.
  • the fourth bonding layer 24 may be included in the optical laminates 51 and 52 .
  • a second protective film (not shown).
  • the second protective film may be a layer for protecting the surface of the linear polarizing layer 11 opposite to the viewing side, and the second protective film and the linear polarizing layer 11 may constitute a linear polarizing plate. good.
  • the second protective film and the linear polarizing layer 11 may be in direct contact with each other.
  • a lamination layer (a pressure-sensitive adhesive layer or an adhesive layer to be described later) may be provided therebetween.
  • This bonding layer may constitute a linear polarizing plate, and is preferably in direct contact with the second protective film and the linear polarizing layer 11 .
  • the fourth bonding layer 24 may be provided between the second protective film and the display unit 40 or may be in direct contact with the second protective film and the display unit 40 .
  • a third It may have a retardation layer 13 .
  • the display device 2 and the optical laminate 52 may have a fifth bonding layer 25 between the linear polarizing layer 11 and the third retardation layer 13, and The retardation layer 13 may be in direct contact with the fifth bonding layer 25 .
  • the fifth bonding layer 25 is provided between the second protective film and the third retardation layer 13, and the second protective film and the third It may be in direct contact with the retardation layer 13 .
  • the fourth bonding layer 24 may be provided between the third retardation layer 13 and the display unit 40, the third retardation layer 13 and the display unit 40 may be in direct contact.
  • the fourth bonding layer 25 may be in direct contact with the third retardation layer 13 .
  • the linearly polarizing layer 11 and the third retardation layer 13 preferably form a circularly polarizing plate, and the third retardation layer 13 is preferably a ⁇ /4 retardation layer, and more preferably has reverse wavelength dispersion properties. It is a ⁇ /4 retardation layer.
  • the linear polarizing layer 11 and the display unit 40 may have one or more fourth retardation layers (not shown).
  • the fourth retardation layer may be provided between the linear polarization layer 11 and the third retardation layer 13, and between the third retardation layer 13 and the display unit 40 (the linear polarization of the third retardation layer 13 It may be provided on the side opposite to the layer 11 side).
  • the bonding layer is the third retardation It may be in direct contact with the layer 13 and the fourth retardation layer.
  • the fifth bonding layer 25 is the linear polarization layer 11 and the fourth retardation layer may be in direct contact with
  • the fourth bonding layer 24 may be in direct contact with the fourth retardation layer and the display unit 40.
  • the optical laminate 52 has a third retardation layer on the side opposite to the linear polarization layer 11 side of the third retardation layer 13, the fourth retardation layer may be in direct contact with the fourth bonding layer.
  • the linearly polarizing layer 11, the third retardation layer 13, and the fourth retardation layer preferably form a circularly polarizing plate.
  • the fourth retardation layer constituting the circularly polarizing plate is preferably a ⁇ /2 retardation layer or a positive C layer.
  • FIG. 2 are schematic cross-sectional views schematically showing display devices according to other embodiments of the present invention.
  • the upper side is the viewing side.
  • the display devices 3 and 4 and the optical laminates 53 and 54 of the present embodiment have the second retardation layer 32 between the high refractive index layer 45 and the linear polarizing layer 11. Since it is different from the display devices 1 and 2 and the optical laminates 51 and 52 described in 1., this point will be described below.
  • the second retardation layer 32 is laminated so as to cover the display element 41 and the light receiving sensor 42.
  • the second retardation layer 32 is preferably laminated so as to cover the entire visible-side surface of the display unit 40 , that is, to cover the entire visible-side surfaces of the display element 41 and the light receiving sensor 42 .
  • the display devices 3 and 4 and the optical laminates 53 and 54 shown in FIGS. 3 and 4 have the second retardation layer 32 between the high refractive index layer 45 and the first retardation layer 31 .
  • the second retardation layer 32 preferably covers the entire first retardation layer 31 in plan view, and the planar view shape of the second retardation layer 32 is the planar view shape of the first retardation layer 31. More preferably, they are the same.
  • the second retardation layer 32 may have a retardation, it preferably has a retardation in which the thickness direction retardation value Rth(550) at a wavelength of 550 nm is -140 nm or more and -20 nm or less.
  • the thickness direction retardation value Rth (550) of the second retardation layer 32 may be greater than ⁇ 140 nm, may be ⁇ 120 nm or more, may be ⁇ 100 nm or more, or may be ⁇ 90 nm or more. It may be less than -20 nm, may be -30 or less, may be -40 or less, or may be -50 or less.
  • the thickness direction retardation value Rth (550) of the second retardation layer 32 is a value calculated based on the formula (i).
  • Rth(550) [ ⁇ (nx+ny)/2 ⁇ -nz] ⁇ d(i)
  • nx is the principal refractive index at a wavelength of 550 nm in the plane of the second retardation layer 32
  • ny is the refractive index at a wavelength of 550 nm in the same plane as nx and in a direction orthogonal to nx
  • nz is the refractive index at a wavelength of 550 nm in the thickness direction of the second retardation layer 32
  • d is the film thickness of the second retardation layer 32;
  • the reflected light incident from an oblique direction is mainly light emitted from a region of the display element 41 away from the light receiving sensor 42 and reflected by the high refractive index layer 45 in a plan view of the display unit 40 . .
  • the amount of reflected light incident from an oblique direction tends to be reduced when the thickness direction retardation value Rth (550) of the second retardation layer 32 is within the above range. Thereby, malfunction of the light receiving sensor 42 can be further suppressed.
  • the first bonding layer 21 may be provided between the high refractive index layer 45 and the second retardation layer 32, the high refractive index layer 45 and the second retardation layer It may be in direct contact with layer 32 .
  • the display devices 3 and 4 and the optical laminates 53 and 54 have a sixth bonding layer 26 between the second retardation layer 32 and the first retardation layer 31, and the second retardation layer 32 and the first Preferably, the retardation layer 31 is in direct contact with the sixth bonding layer 26 .
  • the second retardation layer 32 is provided between the high refractive index layer 45 and the linear polarizing layer 11, it is not limited to this.
  • the second retardation layer 32 may be provided between the first retardation layer 31 and the linear polarizing layer 11 .
  • the second retardation layer 32 preferably covers the entire linear polarizing layer 11 .
  • the planar view shape of the second retardation layer 32 is preferably the same as the planar view shape of the first retardation layer 31 .
  • the display devices 3 and 4 and the optical laminates 53 and 54 can have a sixth bonding layer 26 between the second retardation layer 32 and the first retardation layer 31 .
  • the second bonding layer 22 may be provided between the second retardation layer 32 and the linear polarizing layer 11.
  • the second bonding layer 22 includes the second retardation layer 32 and the first It may be in direct contact with the protective film 12 .
  • the display device described above can be used as a liquid crystal display device or an organic EL (electroluminescence) display device.
  • the display device may be a mobile terminal such as a smart phone and a tablet.
  • the display device may be a bendable flexible display.
  • the outer shape of the display area of the display device in a plan view is not particularly limited, but may be a rectangle, a square, a polygon other than a rectangle or a square, or a rounded shape having rounded corners (a shape having R).
  • the rectangular, square, polygonal, or rounded display area may have a through hole for arranging a camera or the like.
  • the display element may be a liquid crystal display element or an organic EL display element.
  • the liquid crystal display element can have, for example, a liquid crystal cell having a liquid crystal layer sandwiched between two cell substrates, a backlight, and the like.
  • An organic EL display element can have, for example, a light-emitting layer and electrodes.
  • the light emitted from the display element is preferably light with a wavelength of 320 nm or more and 4000 nm or less, more preferably light with a wavelength of 380 nm or more and 780 nm or less (visible light region), and light with a wavelength of 380 nm or more and 720 nm or less. good too.
  • the light receiving sensor detects incident light.
  • the light receiving sensor may constitute an illuminance sensor that detects the illuminance around the display device, a proximity sensor that detects the proximity of an object, a camera, or the like.
  • the light receiving sensor is preferably capable of detecting light with a wavelength of 320 nm or more and 4000 nm or less, and detects light with a wavelength of 380 nm or more and 780 nm or less (visible light region) and/or light with a wavelength of 780 nm or more and 4000 nm or less (infrared region). It is more preferable that it is possible.
  • touch sensor panel The display device and optical stack may include a touch sensor panel.
  • the touch sensor panel can detect a position touched by a user's finger or the like.
  • Examples of touch sensor panels include touch sensor panels of resistive film type, capacitive coupling type, optical sensor type, ultrasonic wave type, electromagnetic induction coupling type, and surface acoustic wave type.
  • a capacitive touch sensor panel is preferably used.
  • the touch sensor panel may be provided on the viewing side of the linear polarizing layer (the first retardation layer side of the linear polarizing layer), and provided on the side opposite to the viewing side of the linear polarizing layer.
  • the touch sensor panel may constitute a high refractive index layer, which will be described later.
  • the touch sensor panel is preferably provided between the linear polarizing layer and the display unit.
  • the high refractive index layer is not particularly limited as long as it is a layer having a refractive index within the range (1.60 or more) specified in the present embodiment.
  • the high refractive index layer may be a front plate of a display device or a touch sensor panel as long as it has the above-described refractive index.
  • the high refractive index layer may have a single layer structure or a multilayer structure.
  • the high refractive index layer may include a layer with a refractive index of less than 1.60 as long as the high refractive index layer has the above refractive index.
  • the front panel can constitute the front of the display device.
  • the front plate may be a plate-like body that can transmit light, and may be, for example, a resin plate, a resin film, a glass plate, a glass film, or the like.
  • the front plate may have a single layer structure or a multilayer structure.
  • the refractive index of the front plate may be 1.45 or more and 1.9 or less.
  • the polymer that constitutes the resin plate or resin film is not particularly limited as long as it is a resin that can transmit light.
  • Such polymers include, for example, triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, polyetherimide, poly(meth) ) acrylic, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyetherketone, polyetheretherketone, polyethersulfone, polymethyl (meth) Acrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyamideimide and the like. These polymers can
  • the front plate When the front plate is a resin film, the front plate may have a hard coat layer on at least one surface of the resin film.
  • the hard coat layer is, for example, a cured layer of an ultraviolet curable resin.
  • UV-curable resins include (meth)acrylic resins such as monofunctional (meth)acrylic resins, polyfunctional (meth)acrylic resins, and polyfunctional (meth)acrylic resins having a dendrimer structure; silicone resin; polyester resin; urethane resin; amide resin; epoxy resin and the like.
  • the hard coat layer may contain additives in order to improve strength.
  • the additive is not particularly limited, and may be inorganic fine particles, organic fine particles, or a mixture thereof.
  • the composition and thickness of each hard coat layer may be the same or different.
  • tempered glass for displays is preferably used.
  • the above-described touch sensor panel is an example of the touch sensor panel that constitutes the high refractive index layer.
  • the touch sensor panel When the touch sensor panel constitutes the high refractive index layer, the touch sensor panel has a refractive index of 1.60 or more, preferably 1.70 or more, more preferably 1.90 or more, and usually 2 .70 or less, preferably 2.60 or less, more preferably 2.40 or less.
  • first retardation layer (First retardation layer, second retardation layer, third retardation layer, fourth retardation layer)
  • the first retardation layer, the second retardation layer, the third retardation layer, and the fourth retardation layer (hereinafter collectively referred to as "retardation layer”.), Even if it is a stretched film Alternatively, it may include a cured product layer of a polymerizable liquid crystal compound.
  • the retardation layer is a stretched film
  • a conventionally known stretched film can be used, and a retardation imparted by uniaxially or biaxially stretching a resin film can be used.
  • resin films include cellulose films such as triacetyl cellulose and diacetyl cellulose, polyester films such as polyethylene terephthalate, polyethylene isophthalate and polybutylene terephthalate, acrylic resin films such as polymethyl (meth) acrylate and polyethyl (meth) acrylate, and polycarbonate films. , polyethersulfone film, polysulfone film, polyimide film, polyolefin film, polynorbornene film, etc., but not limited to these.
  • the thickness of the retardation layer is usually 5 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 80 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • a conventionally known polymerizable liquid crystal compound can be used as the polymerizable liquid crystal compound.
  • a polymerizable liquid crystal compound is a compound having at least one polymerizable group and having liquid crystallinity.
  • the type of polymerizable liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used.
  • a cured product layer formed by polymerizing a polymerizable liquid crystal compound develops retardation by curing in a state in which the polymerizable liquid crystal compound is oriented in a suitable direction.
  • the optical axis of the polymerizable liquid crystal compound coincides with the long axis direction of the polymerizable liquid crystal compound.
  • the optical axis of the polymerizable liquid crystal compound exists in a direction orthogonal to the discotic surface of the polymerizable liquid crystal compound.
  • the rod-like polymerizable liquid crystal compound for example, those described in JP-A-11-513019 (claim 1 etc.) can be preferably used.
  • JP-A-2007-108732 paragraphs [0020] to [0067], etc.
  • JP-A-2010-244038 paragraphs [0013] to [0108], etc.
  • the polymerizable group possessed by the polymerizable liquid crystal compound means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
  • a photopolymerizable group is a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
  • Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, (meth)acryloyloxy group, oxiranyl group, oxetanyl group, styryl group and allyl group. .
  • thermotropic liquid crystal a (meth)acryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • the liquid crystallinity of the polymerizable liquid crystal compound may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order.
  • at least one type preferably has two or more polymerizable groups in the molecule.
  • (meth)acryloyl refers to acryloyl and/or methacryloyl.
  • the retardation layer may contain an orientation layer.
  • the orientation layer has an orientation regulating force that orients the polymerizable liquid crystal compound in a desired direction.
  • the alignment layer may be a vertical alignment layer in which the molecular axis of the polymerizable liquid crystal compound is vertically aligned with respect to the in-plane direction of the display device, and the molecular axis of the polymerizable liquid crystal compound is aligned horizontally with respect to the in-plane direction of the display device. It may be a horizontal alignment layer, or an oblique alignment layer in which the molecular axis of the polymerizable liquid crystal compound is obliquely aligned with respect to the plane direction of the display device.
  • the alignment layers may be the same as each other or different from each other.
  • the alignment layer has a solvent resistance that does not dissolve when a composition for forming a liquid crystal layer containing a polymerizable liquid crystal compound is applied, etc., and has heat resistance to heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound. things are preferred.
  • the alignment layer include an alignment polymer layer formed of an alignment polymer, a photo-alignment polymer layer formed of a photo-alignment polymer, and a groove alignment layer having an uneven pattern or a plurality of grooves on the layer surface. can be done.
  • the cured product layer is formed by applying a composition for forming a retardation layer containing a polymerizable liquid crystal compound and a solvent, and various additives as necessary, onto the alignment layer to form a coating film, and solidifying the coating film.
  • a cured product layer of the polymerizable liquid crystal compound can be formed.
  • the composition may be applied onto the substrate layer to form a coating film, and the coating film may be stretched together with the substrate layer to form the cured product layer.
  • the composition may contain a polymerization initiator, a reactive additive, a leveling agent, a polymerization inhibitor, etc., in addition to the polymerizable liquid crystal compound and solvent described above.
  • solvent, polymerization initiator, reactive additive, leveling agent, polymerization inhibitor, etc. known ones can be appropriately used.
  • a film formed of a resin material can be used as the base layer, and for example, a film using a resin material described as a thermoplastic resin used to form the first protective film described later can be mentioned.
  • the thickness of the substrate layer is not particularly limited, but in general, it is preferably 1 to 300 ⁇ m or less, more preferably 20 to 200 ⁇ m, more preferably 30 to 120 ⁇ m from the viewpoint of workability such as strength and handleability. is more preferred.
  • the base material layer may be incorporated in the display device together with the cured material layer of the polymerizable liquid crystal compound, the base material layer is peeled off, and only the cured material layer of the polymerizable liquid crystal compound, or the cured material layer and the orientation A layer may be incorporated into a display device.
  • the thickness of the substrate layer may be less than 30 ⁇ m, for example, 25 ⁇ m or less.
  • the thickness of the retardation layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and preferably 3 ⁇ m or less, and more preferably. is 2 ⁇ m or less.
  • the linearly polarizing layer has a property of transmitting linearly polarized light having a plane of vibration perpendicular to the absorption axis when non-polarized light is incident thereon.
  • the linear polarizing layer may be a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as "PVA-based film”) in which iodine is adsorbed and oriented, and has a composition containing a compound having absorption anisotropy and liquid crystallinity. It may be a film containing a liquid crystalline polarizing layer formed by applying a substance to a substrate film.
  • the compound having absorption anisotropy and liquid crystallinity may be a mixture of a dye having absorption anisotropy and a compound having liquid crystallinity, or may be a dye having absorption anisotropy and liquid crystallinity.
  • the linear polarizing layer is preferably a PVA-based film in which iodine is adsorbed and oriented.
  • the linear polarizing layer which is a PVA-based film, is obtained by subjecting a PVA-based film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene-vinyl acetate copolymer-based partially saponified film, to a dyeing treatment with iodine and a stretching treatment. and the like.
  • the PVA-based film having iodine adsorbed and oriented by the dyeing treatment may be treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution.
  • a known method can be adopted for each step.
  • Polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin”) can be produced by saponifying polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin may be polyvinyl acetate, which is a homopolymer of vinyl acetate, or may be a copolymer of vinyl acetate and another monomer that can be copolymerized with vinyl acetate.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the PVA-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the PVA-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
  • the average degree of polymerization of the PVA-based resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000.
  • the degree of saponification and average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726 (1994). If the average degree of polymerization is less than 1,000, it is difficult to obtain desirable polarizing performance, and if it exceeds 10,000, film workability may be poor.
  • a method for producing a linear polarizing layer involves preparing a base film, applying a solution of a resin such as a PVA-based resin on the base film, and performing drying or the like to remove the solvent. may include a step of forming a resin layer on the substrate.
  • a primer layer can be formed in advance on the surface of the substrate film on which the resin layer is formed.
  • the base film a film using a resin material described as a thermoplastic resin used for forming the first protective film, which will be described later, can be used. Examples of the material for the primer layer include a resin obtained by cross-linking the hydrophilic resin used for the linear polarizing layer.
  • the amount of solvent such as moisture in the resin layer is adjusted as necessary, then the base film and the resin layer are uniaxially stretched, and then the resin layer is dyed with iodine to adsorb and align iodine on the resin layer. .
  • the resin layer in which iodine is adsorbed and oriented is treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution.
  • a resin layer in which iodine is adsorbed and oriented that is, a PVA-based film to be a linear polarizing layer is produced.
  • a known method can be adopted for each step.
  • the amount of boric acid in the boric acid-containing aqueous solution for treating the PVA-based film or resin layer in which iodine is adsorbed and oriented is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water.
  • This boric acid-containing aqueous solution preferably contains potassium iodide.
  • the amount of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by mass, preferably about 5 to 12 parts by mass, per 100 parts by mass of water.
  • the immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably about 150 to 600 seconds, more preferably about 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50°C or higher, preferably 50 to 85°C, more preferably 60 to 80°C.
  • Uniaxial stretching of the PVA-based film, the substrate film and the resin layer may be performed before dyeing, during dyeing, or during boric acid treatment after dyeing. Uniaxial stretching may be performed in each of a plurality of stages.
  • the PVA-based film, the base film and the resin layer may be uniaxially stretched in the MD direction (film transport direction). You may stretch
  • the PVA-based film, the base film and the resin layer may be uniaxially stretched in the TD direction (the direction perpendicular to the film transport direction), in which case a so-called tenter method can be used.
  • the stretching may be dry stretching in which the film is stretched in the atmosphere, or may be wet stretching in which the PVA-based film or resin layer is swollen with a solvent and then stretched.
  • the draw ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. Although there is no particular upper limit for the draw ratio, it is preferably 8 times or less from the viewpoint of suppressing breakage and the like.
  • a linear polarizing layer produced by a manufacturing method using a base film can be obtained by peeling off the base film after laminating the first protective film or the second protective film. According to this method, the thickness of the linear polarizing layer can be further reduced.
  • the thickness of the linear polarizing layer which is a PVA-based film, is preferably 1 ⁇ m or more, may be 2 ⁇ m or more, or may be 5 ⁇ m or more, and is preferably 30 ⁇ m or less, and 15 ⁇ m or less. is more preferable, and may be 10 ⁇ m or less, or may be 8 ⁇ m or less.
  • a film containing a liquid crystalline polarizing layer is obtained by coating a base film with a composition containing a dye having liquid crystallinity and absorption anisotropy, or a composition containing a dye having absorption anisotropy and a polymerizable liquid crystal.
  • a linear polarizing layer obtained by Examples of the base film include a film using a resin material described as a thermoplastic resin used for forming the first protective film, which will be described later.
  • Examples of the film containing a liquid crystalline polarizing layer include the polarizing layer described in JP-A-2013-33249.
  • the total thickness of the substrate film and the linearly polarizing layer formed as described above is preferably as small as possible. It is 5 ⁇ m or less, more preferably 0.5 to 3 ⁇ m.
  • the linear polarizing layer (PVA-based film, film containing a liquid crystalline polarizing layer) obtained as described above is coated on one or both sides thereof via an adhesive with a first protective film and/or a second protective film to be described later.
  • a linear polarizing plate in which films are laminated may be incorporated in a display device.
  • the above base film may be used as the first protective film or the second protective film.
  • thermoplastic resins include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; polyamide resins such as nylon and aromatic polyamides; Resin; polyolefin resin such as polyethylene, polypropylene, ethylene/propylene copolymer; cyclic polyolefin resin having cyclo-type and norbornene structure (also referred to as norbornene-based resin); (meth)acrylic resin; polyarylate resin; polystyrene resin; polyvinyl alcohol Resins, as well as mixtures thereof, may be mentioned.
  • the resin compositions of the first protective resin include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; polyamide
  • the first protective film may have antireflection properties, antiglare properties, hard coat properties, etc. (Hereinafter, a protective film having such properties may be referred to as a "functional protective film”.).
  • a protective film having such properties may be referred to as a "functional protective film”.
  • one surface of the linear polarizing plate may be provided with a surface functional layer such as an antireflection layer, an antiglare layer, or a hard coat layer.
  • the surface functional layer is preferably provided so as to be in direct contact with the first protective film.
  • the surface functional layer is preferably provided on the opposite side of the first protective film from the linearly polarizing layer side.
  • the first protective film and the second protective film are each independently preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less. preferable.
  • first bonding layer, second bonding layer, third bonding layer, fourth bonding layer, fifth bonding layer, sixth bonding layer The first bonding layer, the second bonding layer, the third bonding layer, the fourth bonding layer, the fifth bonding layer, the sixth bonding layer, and the bonding layer (hereinafter collectively referred to as "bonding ) are each independently a pressure-sensitive adhesive layer or an adhesive layer.
  • the lamination layer is an adhesive layer
  • it is an adhesive layer formed using an adhesive composition.
  • the pressure-sensitive adhesive composition or the reaction product of the pressure-sensitive adhesive composition develops adhesiveness by attaching itself to an adherend such as a metal layer, and is referred to as a so-called pressure-sensitive adhesive. be.
  • the adhesive layer formed using the active-energy-ray-curable adhesive composition mentioned later can adjust a crosslinking degree and adhesive strength by irradiating an active-energy-ray.
  • the adhesive composition conventionally known adhesives having excellent optical transparency can be used without particular limitation.
  • adhesives containing base polymers such as acrylic polymers, urethane polymers, silicone polymers, and polyvinyl ethers.
  • Compositions can be used.
  • the adhesive composition may also be an active energy ray-curable adhesive composition, a heat-curable adhesive composition, or the like.
  • a pressure-sensitive adhesive composition using an acrylic resin as a base polymer which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc.
  • the pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
  • the adhesive layer may be formed using an active energy ray-curable adhesive.
  • the active energy ray-curable pressure-sensitive adhesive is obtained by blending an ultraviolet-curable compound such as a polyfunctional acrylate with the above-described pressure-sensitive adhesive composition, forming a pressure-sensitive adhesive layer, and then irradiating ultraviolet rays to cure the pressure-sensitive adhesive layer.
  • An adhesive layer can be formed.
  • Active energy ray-curable pressure-sensitive adhesives have the property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams. Since the active energy ray-curable adhesive has adhesiveness even before energy ray irradiation, it adheres to the adherend and has the property that it can be cured by energy ray irradiation to adjust the adhesive strength. .
  • the thickness of the adhesive layer is not particularly limited, but is preferably 5 ⁇ m or more, may be 10 ⁇ m or more, may be 15 ⁇ m or more, may be 20 ⁇ m or more, or may be 25 ⁇ m or more, It is usually 300 ⁇ m or less, may be 250 ⁇ m or less, may be 100 ⁇ m or less, or may be 50 ⁇ m or less.
  • the adhesive layer can be formed by curing the curable component in the adhesive composition.
  • the adhesive composition for forming the adhesive layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
  • water-based adhesives include adhesives in which polyvinyl alcohol resin is dissolved or dispersed in water.
  • the method of drying when a water-based adhesive is used is not particularly limited. For example, a method of drying using a hot air dryer or an infrared ray dryer can be employed.
  • Active energy ray-curable adhesives include, for example, solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. mentioned. Adhesion between layers can be improved by using a non-solvent active energy ray-curable adhesive.
  • the active energy ray-curable adhesive preferably contains either one or both of a cationic polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness.
  • the active energy ray-curable adhesive can further contain a cationic polymerization initiator such as a photocationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • Examples of cationic polymerizable curable compounds include alicyclic epoxy compounds having an epoxy group bonded to an alicyclic ring, and polyfunctional aliphatic epoxy compounds having two or more epoxy groups and no aromatic ring. , monofunctional epoxy groups having one epoxy group (excluding those contained in alicyclic epoxy compounds), polyfunctional aromatic epoxy compounds having two or more epoxy groups and aromatic rings, etc. compounds; oxetane compounds having one or more oxetane rings in the molecule; and combinations thereof.
  • radically polymerizable curable compounds include (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule), other radically polymerizable double bonds. vinyl-based compounds, or combinations thereof.
  • the active energy ray-curable adhesive can contain a sensitizer such as a photosensitizer as needed.
  • a sensitizer By using a sensitizer, the reactivity is improved, and the mechanical strength and adhesive strength of the adhesive layer can be further improved.
  • a known sensitizer can be appropriately applied.
  • the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass as the total amount of the active energy ray-curable adhesive.
  • Active energy ray-curable adhesives may optionally contain ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow control agents, plasticizers, antifoaming agents, and antistatic agents. Additives such as agents, leveling agents, solvents and the like can be included.
  • an adhesive layer can be formed by irradiating an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive coating layer.
  • an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays
  • ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, etc. can be used. can.
  • the thickness is preferably 0.1 ⁇ m or more, and may be 0.5 ⁇ m or more, and preferably 10 ⁇ m or less, and may be 5 ⁇ m or less. .
  • the refractive index of the high refractive index layer was measured at 25° C. using a multi-wavelength Abbe refractometer [“DR-M4” manufactured by Atago Co., Ltd.] at a measurement wavelength of 589 nm.
  • MD transmittance is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the linearly polarizing layer, and is expressed as “MD” in the above formula.
  • TD transmittance is the transmittance when the direction of the polarized light emitted from the Glan-Thompson prism is perpendicular to the transmission axis of the linearly polarizing layer, and is expressed as "TD” in the above formula.
  • the obtained single transmittance was subjected to luminosity correction with a 2-degree field of view (C light source) of JIS Z 8701: 1999 “Color display method-XYZ color system and X 10 Y 10 Z 10 color system”. A sensitivity-corrected single transmittance was obtained.
  • the in-plane retardation values of the first retardation layer and the first protective film were measured using a retardation measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd.).
  • the thickness direction retardation value of the second retardation layer was measured using a retardation measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd.). In the measurement, the incident angle of light to the second retardation layer is changed, and the front retardation value of the second retardation layer and the retardation value when tilted 40° around the fast axis are measured. did. The average refractive index at each wavelength was measured using an ellipsometer M-220 manufactured by JASCO Corporation. Further, the thickness of the second retardation layer was measured using an Optical NanoGauge film thickness gauge C12562-01 manufactured by Hamamatsu Photonics K.K.
  • a spectrophotometer [CM2600d manufactured by Konica Minolta] was used to measure the stimulus value Y. Light from a spectrophotometer was incident from the moth-eye film side of the laminate, and the stimulus value Y of the reflected light was measured. Since the reflectance of the moth-eye film is very small, the influence of interfacial reflection between the air and the moth-eye film of the spectrophotometer light can be ignored. In the measurement, it was confirmed that there was no light-reflecting object within 1 m from the light emitting/receiving part of the spectrophotometer, and the measurement was performed in a sufficiently dark environment in order to eliminate the influence of external light.
  • Example 1 (Production of polarizer (1)) A polyvinyl alcohol-based resin film having a thickness of 20 ⁇ m (average polymerization degree is about 2400 and saponification degree is 99.9 mol % or more) was longitudinally uniaxially stretched at a draw ratio of about 4.5 times by dry stretching. It was immersed in pure water at a temperature of 30° C. for 60 seconds while maintaining the stretched state. Subsequently, while maintaining the strained state, it was immersed in an iodine/potassium iodide aqueous solution having a mass ratio of iodine/potassium iodide/water of 0.05/5/100 and a temperature of 28° C. for 60 seconds.
  • first retardation layer (1) A cyclic polyolefin resin film having a thickness of 25 ⁇ m and having a hard coat layer was prepared as the first retardation layer (1).
  • a cyclic polyolefin resin film having a thickness of 13 ⁇ m was prepared as a first protective film.
  • a triacetyl cellulose-based resin film [“KC4UY” manufactured by Konica Minolta, Inc., thickness 40 ⁇ m] whose surface was not saponified was prepared.
  • the first protective film (cyclic polyolefin resin film) prepared above is superposed via the water-based adhesive obtained above, and the polarizer (1) is
  • the second protective film (triacetyl cellulose resin film) prepared above is overlaid on the other surface through pure water, passed between a pair of laminating rolls, and then dried by heating at a temperature of 85° C. for 3 minutes. Thereby, the water-based adhesive is cured to form an adhesive layer as a third bonding layer, and a layer structure of first protective film/third bonding layer/polarizer (1)/second protective film is formed.
  • a linear polarizing plate (1) having The in-plane retardation value of the first protective film at a wavelength of 550 nm was 0 nm.
  • a film of ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • a non-alkali glass plate ["Eagle XG" manufactured by Corning, refractive index 1.50] by vacuum deposition.
  • An ITO layer having a thickness of 100 ⁇ m was formed to obtain a high refractive index layer which is a laminated structure of the alkali-free glass plate and the ITO layer.
  • the refractive index of this high refractive index layer was measured from the ITO layer side, it was 2.00.
  • the second protective film is peeled off from the linear polarizing plate (1), and the moth-eye film ( Geomatec g.moth) is laminated, and on the first protective film side of the linear polarizing plate (1), the second bonding layer (acrylic adhesive layer with a thickness of 5 ⁇ m), the first retardation layer (1), Laminated structure of first bonding layer (25 ⁇ m thick acrylic adhesive layer), alkali-free glass plate with refractive index of 1.50 (Eagle XG, refractive index of 1.50) and high refractive index layer (ITO layer) (refractive index 2.00) and a black acrylic plate were laminated in this order to prepare a laminate (1).
  • the second bonding layer acrylic adhesive layer with a thickness of 5 ⁇ m
  • the first retardation layer (1) Laminated structure of first bonding layer (25 ⁇ m thick acrylic adhesive layer)
  • alkali-free glass plate with refractive index of 1.50 (Eagle XG, refractive index of 1.50) and high
  • Laminate (1) was laminated so that the high refractive index layer was on the black acrylic plate side. The space between the high refractive index layer and the black acrylic plate was filled with ethanol dropped before lamination to eliminate an air layer.
  • the first retardation layer (1) was laminated so that the hard coat layer side was on the high refractive index layer side. In the laminate (1), the angle formed by the slow axis of the first retardation layer (1) and the absorption axis of the polarizer (1) of the linear polarizing plate (1) was 45°.
  • the resulting laminate (1) has a layer structure of black acrylic plate/ethanol/high refractive index layer/first bonding layer/first retardation layer (1)/second bonding layer/first protective film/ It was 3rd bonding layer/polarizer (1)/4th bonding layer/moth-eye film.
  • Table 1 shows the results of measuring the stimulus value Y of the laminate (1).
  • the moth-eye film is provided so that the laminate (1) can be evaluated ignoring the influence of interface reflection between the fourth bonding layer and the air layer.
  • a display unit is placed on the opposite side of the layer from the polarizer (1).
  • Example 2 (Preparation of first retardation layer (2)) A cyclic polyolefin resin film having a thickness of 50 ⁇ m was prepared as the first retardation layer (2).
  • the in-plane retardation value of the first retardation layer (2) at a wavelength of 550 nm was 141 nm.
  • a laminate (2) was obtained in the same manner as in Example 1, except that the first retardation layer (2) was used instead of the first retardation layer (1).
  • the layer structure of the obtained laminate (2) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (2) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (1)/4th bonding layer/moth-eye film.
  • Table 1 shows the result of measuring the stimulus value Y of the laminate (2).
  • Example 3 Preparation of Composition for Forming Horizontal Alignment Film
  • 5 parts by mass of a photo-alignable polymer having the following structure (described in JP-A-2013-33249) and 95 parts by mass of cyclopentanone (solvent) were mixed and stirred at a temperature of 80° C. for 1 hour to form a horizontal alignment film.
  • a forming composition was obtained.
  • - Photo-orientable polymer (5 parts by mass):
  • Solvent 95 parts by mass: cyclopentanone
  • NMP N-methyl-2-pyrrolidone
  • a COP (cyclic olefin resin) film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd. was subjected to corona treatment, and then the composition for forming a horizontal alignment film obtained above was applied with a bar coater at 80°C. for 1 minute, and using a polarized UV irradiation device (SPOT CURE SP-9; manufactured by Ushio Inc.), polarized UV exposure was performed at a wavelength of 313 nm with an integrated light amount of 100 mJ/cm 2 to obtain a horizontal alignment film. rice field. The film thickness of the resulting horizontal alignment film was measured with an ellipsometer and found to be 200 nm.
  • SPOT CURE SP-9 polarized UV irradiation device
  • the polymerizable liquid crystal composition (A1) obtained above was applied using a bar coater on the horizontal alignment film, heated at 120° C. for 60 seconds, and then heated with a high-pressure mercury lamp (Unicure VB-15201BY-A, Ushio Denki Co., Ltd.), the surface coated with the polymerizable liquid crystal composition (A1) is irradiated with ultraviolet rays (in a nitrogen atmosphere, the integrated light amount at a wavelength of 365 nm: 500 mJ/cm 2 ), thereby forming a horizontally aligned liquid crystal layer ( A cured product layer of a polymerizable liquid crystal compound) was formed to obtain a laminated structure (A1) having a layer structure of COP film/horizontally aligned film/horizontally aligned liquid crystal layer.
  • a high-pressure mercury lamp Unicure VB-15201BY-A, Ushio Denki Co., Ltd.
  • the in-plane retardation values Re (450) and Re (550) at a wavelength of 450 nm and a wavelength of 550 nm of the laminated structure (A1) are measured in the first retardation layer (3).
  • Re(450)/Re(550) was calculated, it was 0.87, so it was confirmed that this laminate exhibits reverse wavelength dispersion.
  • the COP film of the laminated structure (A1) was peeled off, and the horizontal alignment film/horizontally aligned liquid crystal layer was used as the first retardation layer (3).
  • a laminate (3) was obtained in the same manner as in Example 1, except that the first retardation layer (3) was used instead of the first retardation layer (1).
  • the first retardation layer (3) was laminated so that the horizontal alignment film side was the high refractive index layer side.
  • the layer structure of the obtained laminate (3) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (3) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (1)/4th bonding layer/moth-eye film.
  • Table 1 shows the result of measuring the stimulation value Y of the laminate (3).
  • Example 4 (Preparation of composition for forming vertical alignment film)
  • the silane coupling agent "KBE-9103" manufactured by Shin-Etsu Chemical Co., Ltd.
  • a mixed solvent in which ethanol and water were mixed at a ratio of 9:1 (weight ratio), and the solid content concentration was 1%.
  • a composition for forming an alignment film was obtained.
  • Second retardation layer (1) After performing corona treatment on COP (cyclic olefin resin) film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd., the composition for forming a vertical alignment film was applied with a bar coater and dried at 120° C. for 1 minute. , to obtain a vertical alignment film. The film thickness of the resulting vertical alignment film was measured with an ellipsometer and found to be 100 nm.
  • COP cyclic olefin resin
  • the polymerizable liquid crystal composition (A2) obtained above was applied using a bar coater on the vertical alignment film, dried at 120° C. for 1 minute, and then dried with a high-pressure mercury lamp (Unicure VB-15201BY-A, (manufactured by Ushio Inc.) was used to irradiate ultraviolet rays from the side to which the polymerizable liquid crystal composition (A2) was applied (in a nitrogen atmosphere, integrated light intensity at a wavelength of 365 nm: 500 mJ/cm 2 ), thereby producing a vertically aligned liquid crystal.
  • a high-pressure mercury lamp Unicure VB-15201BY-A, (manufactured by Ushio Inc.
  • Layers (cured layer of polymerizable liquid crystal compound) were formed to obtain a laminate structure (A2) having a layer structure of COP film/vertically aligned film/vertically aligned liquid crystal layer.
  • the thickness direction retardation value Rth (550) of the laminated structure (A2) at a wavelength of 550 nm was calculated as the thickness direction retardation value Rth (550) of the second retardation layer (1).
  • the Rth(550) was -70 nm.
  • the COP film and vertical alignment film of the laminated structure (A2) were peeled off, and the vertical alignment liquid crystal layer was used as the second retardation layer (1).
  • a laminate (4) was obtained in the same manner as in Example 1, except that a retardation laminate was used instead of the first retardation layer (1).
  • the retardation laminate was laminated so that the second retardation layer (1) side was on the high refractive index layer (1) side.
  • the layer structure of the obtained laminate (4) is black acrylic plate/ethanol/high refractive index layer/first bonding layer/second retardation layer (1)/sixth bonding layer/first retardation layer (3)/second bonding layer/first protective film/third bonding layer/polarizer (1)/fourth bonding layer/moth-eye film.
  • Table 1 shows the result of measuring the stimulation value Y of the laminate (4).
  • Example 5 (Production of polarizer (2)) A 20 ⁇ m-thick polyvinyl alcohol resin film (average polymerization degree is 2400 and saponification degree is 99.9 mol % or more) was longitudinally uniaxially stretched at a draw ratio of about 4.5 times by dry stretching. It was immersed in pure water at a temperature of 30° C. for 60 seconds while maintaining the stretched state. Subsequently, while maintaining the strained state, it was immersed for 60 seconds in an iodine/potassium iodide aqueous solution having a mass ratio of iodine/potassium iodide/water of 0.02/5/100 and a temperature of 28°C.
  • Example 6 A laminate (6) was obtained in the same manner as in Example 2, except that the polarizer (2) was used instead of the polarizer (1).
  • the layer structure of the obtained laminate (6) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (2) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (2)/4th bonding layer/moth-eye film.
  • Table 2 shows the result of measuring the stimulus value Y of the laminate (6).
  • Example 7 A laminate (7) was obtained in the same manner as in Example 3, except that the polarizer (2) was used instead of the polarizer (1).
  • the layer structure of the obtained laminate (7) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (3) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (2)/4th bonding layer/moth-eye film.
  • Table 2 shows the result of measuring the stimulus value Y of the laminate (7).
  • Example 8 A laminate (8) was obtained in the same manner as in Example 4, except that the polarizer (2) was used instead of the polarizer (1).
  • the layer structure of the obtained laminate (8) is black acrylic plate/ethanol/high refractive index layer/first bonding layer/second retardation layer (1)/sixth bonding layer/first retardation layer. (3)/second bonding layer/first protective film/third bonding layer/polarizer (2)/fourth bonding layer/moth-eye film.
  • Table 2 shows the result of measuring the stimulus value Y of the laminate (8).
  • Example 1 In the same manner as in Example 5, except that the first retardation layer (1) and the second bonding layer were not laminated, and the high refractive index layer was laminated on the first protective film via the first adhesive layer. to obtain a laminate (9).
  • the layer structure of the obtained laminate (9) is black acrylic plate/ethanol/high refractive index layer/first bonding layer/first protective film/third bonding layer/polarizer (2)/fourth bonding layer. It was a laminate/moth-eye film.
  • Table 2 shows the result of measuring the stimulation value Y of the laminate (9).
  • 1 to 4 display device 11 linear polarizing layer, 12 first protective film, 13 third retardation layer, 21 first bonding layer, 22 second bonding layer, 23 third bonding layer, 24 fourth bonding layer, 25 fifth bonding layer, 26 sixth bonding layer, 31 first retardation layer, 32 second retardation layer, 40 display unit, 41 display element, 42 light receiving sensor, 45 high refractive index layer, 51 ⁇ 54 Optical laminate.

Abstract

[Problem] To provide a display device (1) that is capable of suppressing the incidence of reflected light, which has been reflected by a high refractive index layer (45), on a light-receiving sensor (42) and to further provide an optical laminate (51) that is for use in the display device (1). [Solution] A display device (1) according to the present invention has a high refractive index layer (42), a first retardation layer (31), a linear polarization layer (11), and a display unit (40) in this order from the viewing side. The high refractive index layer (42) has a refractive index of 1.60 or more. The display unit (40) has a display element (41) and a light-receiving sensor (42). The first retardation layer (31) and the linear polarization layer (11) are laminated so as to cover the display element (41) and the light-receiving sensor (42). [Selected drawing] FIG. 1

Description

表示装置Display device
 本発明は、表示装置に関し、さらに、それに用いられる光学積層体に関する。 The present invention relates to a display device, and further to an optical layered body used therein.
 直線偏光層を含む偏光板は、液晶表示装置や有機エレクトロルミネッセンス(EL)表示装置等の表示装置における偏光の供給素子として、偏光の検出素子として、また、表示素子により反射された反射光の外への出射を抑制するものとして、広く用いられている。偏光板を備えた表示装置は、ノート型パーソナルコンピュータ、スマートフォン、タブレット端末等のモバイル機器にも展開されている。特許文献1には、スマートフォン等のモバイル機器の表示面における表示領域の拡大及びデザイン性の観点から、例えば平面視において、表示領域の外縁を凹状に切欠いて非表示領域を設けることが記載されている。 A polarizing plate including a linear polarizing layer can be used as a polarized light supply element or a polarized light detection element in a display device such as a liquid crystal display device or an organic electroluminescence (EL) display device, or can be used as an external light reflected by the display device. It is widely used as a device for suppressing radiation to the Display devices equipped with polarizing plates are also used in mobile devices such as notebook personal computers, smartphones, and tablet terminals. Patent Literature 1 describes that from the viewpoint of design and expansion of the display area on the display surface of a mobile device such as a smart phone, for example, in a plan view, a non-display area is provided by notching the outer edge of the display area in a concave shape. there is
 上記凹状に設けられた非表示領域には通常、表示素子及び偏光板は配置されない。そのため、非表示領域にカメラレンズ及び受光センサ等の各種センサ等を配置することにより、カメラ性能及びセンサの感度に悪影響を与えにくくすることができる。 A display element and a polarizing plate are usually not arranged in the non-display area provided in the concave shape. Therefore, by arranging a camera lens and various sensors such as a light receiving sensor in the non-display area, it is possible to prevent the performance of the camera and the sensitivity of the sensor from being adversely affected.
特開2019-219528号公報JP 2019-219528 A
 表示面における表示領域のさらなる拡大のために、非表示領域を縮小することが求められている。この場合、表示素子及び偏光板が設けられた表示領域内に受光センサ等の各種センサを配置することが考えられる。表示領域内に受光センサを配置すると、表示素子からの出射光が、偏光板の視認側に配置された高屈折率層で反射して受光センサに入射しやすくなる。受光センサに入射した反射光は、受光センサの誤作動を引き起こす原因となり易い。 In order to further expand the display area on the display surface, it is required to reduce the non-display area. In this case, it is conceivable to dispose various sensors such as a light receiving sensor in the display area provided with the display element and the polarizing plate. When the light-receiving sensor is arranged in the display area, the light emitted from the display element is reflected by the high refractive index layer arranged on the viewing side of the polarizing plate and easily enters the light-receiving sensor. The reflected light incident on the light-receiving sensor is likely to cause malfunction of the light-receiving sensor.
 本発明は、視認側に高屈折率層を備えていても、高屈折率層で反射した反射光が受光センサに入射することを抑制することができる表示装置及びそれに用いられる光学積層体の提供を目的とする。 The present invention provides a display device capable of suppressing the incidence of light reflected by the high refractive index layer from entering a light receiving sensor even when the high refractive index layer is provided on the viewing side, and an optical laminate used therein. With the goal.
 本発明は、以下の表示装置を提供する。
 〔1〕 視認側から高屈折率層、第1位相差層、直線偏光層、及び、表示ユニットをこの順に有する表示装置であって、
 前記高屈折率層の屈折率は、1.60以上であり、
 前記表示ユニットは、表示素子及び受光センサを有し、
 前記第1位相差層及び前記直線偏光層は、前記表示素子及び前記受光センサを覆うように積層されている、表示装置。
 〔2〕 前記第1位相差層は、平面視において、前記直線偏光層の視認側の全面を覆っている、〔1〕に記載の表示装置。
 〔3〕 前記直線偏光層の視感度補正単体透過率は、42%以上である、〔1〕又は〔2〕に記載の表示装置。
 〔4〕 前記第1位相差層の遅相軸と前記直線偏光層の吸収軸とがなす角は、10°以上80°以下である、〔1〕~〔3〕のいずれかに記載の表示装置。
 〔5〕 前記第1位相差層の波長550nmにおける面内位相差値は、80nm以上170nm以下である、〔1〕~〔4〕のいずれかに記載の表示装置。
 〔6〕 前記第1位相差層は、逆波長分散性を有する、〔5〕に記載の表示装置。
 〔7〕 さらに、前記高屈折率層と前記直線偏光層との間に第2位相差層を有し、
 前記第2位相差層は、前記表示素子及び前記受光センサを覆うように積層され、
 前記第2位相差層の波長550nmにおける厚み方向位相差値は、-140nm以上-20nm以下である、〔5〕又は〔6〕に記載の表示装置。
 〔8〕 前記表示素子からの出射光が前記高屈折率層で反射したときの反射光の刺激値Yは、3.45%以上4.54%以下である、〔1〕~〔7〕のいずれかに記載の表示装置。
 〔9〕 前記受光センサは、波長が320nm以上4000nm以下の光を検知可能である、〔1〕~〔8〕のいずれかに記載の表示装置。
 〔10〕 前記表示素子からの出射光は、波長が320nm以上4000nm以下の光である、〔1〕~〔9〕のいずれかに記載の表示装置。
 〔11〕 さらに、前記直線偏光層と前記表示ユニットとの間に第3位相差層を有する、〔1〕~〔10〕のいずれかに記載の表示装置。
The present invention provides the following display device.
[1] A display device having a high refractive index layer, a first retardation layer, a linear polarizing layer, and a display unit in this order from the viewing side,
The refractive index of the high refractive index layer is 1.60 or more,
The display unit has a display element and a light receiving sensor,
The display device, wherein the first retardation layer and the linear polarization layer are laminated so as to cover the display element and the light receiving sensor.
[2] The display device according to [1], wherein the first retardation layer covers the entire surface of the linear polarizing layer on the viewing side in plan view.
[3] The display device according to [1] or [2], wherein the luminosity correction single transmittance of the linearly polarizing layer is 42% or more.
[4] The display according to any one of [1] to [3], wherein the angle formed by the slow axis of the first retardation layer and the absorption axis of the linear polarizing layer is 10° or more and 80° or less. Device.
[5] The display device according to any one of [1] to [4], wherein the in-plane retardation value of the first retardation layer at a wavelength of 550 nm is 80 nm or more and 170 nm or less.
[6] The display device according to [5], wherein the first retardation layer has reverse wavelength dispersion.
[7] further comprising a second retardation layer between the high refractive index layer and the linear polarizing layer;
The second retardation layer is laminated so as to cover the display element and the light receiving sensor,
The display device according to [5] or [6], wherein the thickness direction retardation value of the second retardation layer at a wavelength of 550 nm is −140 nm or more and −20 nm or less.
[8] The stimulation value Y of the reflected light when the light emitted from the display element is reflected by the high refractive index layer is 3.45% or more and 4.54% or less of [1] to [7]. The display device according to any one of the above.
[9] The display device according to any one of [1] to [8], wherein the light receiving sensor can detect light with a wavelength of 320 nm or more and 4000 nm or less.
[10] The display device according to any one of [1] to [9], wherein the light emitted from the display element has a wavelength of 320 nm or more and 4000 nm or less.
[11] The display device according to any one of [1] to [10], further comprising a third retardation layer between the linear polarizing layer and the display unit.
 本発明は、以下の光学積層体を提供する。
 〔12〕 高屈折率層、第1位相差層及び直線偏光層をこの順に有する光学積層体であって、
 前記高屈折率層の屈折率は、1.60以上である、光学積層体。
 〔13〕 前記第1位相差層は、平面視において、前記直線偏光層の視認側の全面を覆っている、〔12〕に記載の光学積層体。
 〔14〕 前記直線偏光層の視感度補正単体透過率は、42%以上である、〔12〕又は〔13〕に記載の光学積層体。
 〔15〕 前記第1位相差層の遅相軸と前記直線偏光層の吸収軸とがなす角は、10°以上80°以下である、〔12〕又は〔13〕に記載の光学積層体。
 〔16〕 前記第1位相差層の波長550nmにおける面内位相差値は、80nm以上170nm以下である、〔12〕又は〔13〕に記載の光学積層体。
 〔17〕 前記第1位相差層は、逆波長分散性を有する、〔12〕又は〔13〕に記載の光学積層体。
 〔18〕 さらに、前記高屈折率層と前記直線偏光層との間に第2位相差層を有し、
 前記第2位相差層の波長550nmにおける厚み方向位相差値は、-140nm以上-20nm以下である、〔12〕又は〔13〕に記載の光学積層体。
 〔19〕 前記直線偏光層の前記第1位相差層側とは反対側に、さらに第3位相差層を有する、〔12〕又は〔13〕に記載の光学積層体。
The present invention provides the following optical layered body.
[12] An optical laminate having a high refractive index layer, a first retardation layer and a linear polarizing layer in this order,
The optical laminate, wherein the high refractive index layer has a refractive index of 1.60 or more.
[13] The optical layered body according to [12], wherein the first retardation layer covers the entire surface of the linear polarizing layer on the viewing side in plan view.
[14] The optical laminate according to [12] or [13], wherein the linear polarizing layer has a luminosity correction single transmittance of 42% or more.
[15] The optical laminate according to [12] or [13], wherein the angle formed by the slow axis of the first retardation layer and the absorption axis of the linear polarizing layer is 10° or more and 80° or less.
[16] The optical laminate according to [12] or [13], wherein the in-plane retardation value of the first retardation layer at a wavelength of 550 nm is 80 nm or more and 170 nm or less.
[17] The optical laminate according to [12] or [13], wherein the first retardation layer has reverse wavelength dispersion.
[18] further comprising a second retardation layer between the high refractive index layer and the linear polarizing layer;
The optical laminate according to [12] or [13], wherein the thickness direction retardation value of the second retardation layer at a wavelength of 550 nm is −140 nm or more and −20 nm or less.
[19] The optical layered body according to [12] or [13], further comprising a third retardation layer on the opposite side of the linear polarizing layer to the first retardation layer.
 本発明の表示装置によれば、高屈折率層で反射した反射光が受光センサに入射することを抑制することができる。また、本発明の光学積層体によれば、本発明の上記表示装置を提供することができる。 According to the display device of the present invention, it is possible to suppress the reflected light reflected by the high refractive index layer from entering the light receiving sensor. Further, according to the optical layered body of the present invention, the display device of the present invention can be provided.
本発明の一実施形態に係る表示装置を模式的に示す概略断面図である。1 is a schematic cross-sectional view schematically showing a display device according to an embodiment of the invention; FIG. 本発明の他の実施形態に係る表示装置を模式的に示す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically showing a display device according to another embodiment of the invention; 本発明のさらに他の実施形態に係る表示装置を模式的に示す概略断面図である。FIG. 4 is a schematic cross-sectional view schematically showing a display device according to still another embodiment of the invention; 本発明のさらに他の実施形態に係る表示装置を模式的に示す概略断面図である。FIG. 4 is a schematic cross-sectional view schematically showing a display device according to still another embodiment of the invention;
 以下、図面を参照して表示装置及び光学積層体の好ましい実施形態について説明する。各図面において、先に説明した部材と同じ部材については同じ符号を付してその説明を省略する。 Preferred embodiments of the display device and the optical layered body will be described below with reference to the drawings. In each drawing, the same reference numerals are assigned to the same members as those previously described, and the description thereof will be omitted.
 [実施形態1]
 (表示装置及び光学積層体)
 図1及び図2は、本発明の一実施形態に係る表示装置を模式的に示す概略断面図である。図1及び図2では、上側が視認側である。図1及び図2に示すように、本実施形態の表示装置1,2は、視認側から高屈折率層45、第1位相差層31、直線偏光層11、及び、表示ユニット40をこの順に有する。これらのうち、高屈折率層45、第1位相差層31及び直線偏光層11は光学積層体51,52を構成する。高屈折率層45の屈折率は、1.60以上であり、好ましくは1.75以上であり、より好ましくは1.80以上であり、通常2.70以下であり、好ましくは2.40以下であり、より好ましくは2.30以下であり、さらに好ましくは2.10以下である。高屈折率層45の屈折率は、後述する実施例に記載の方法によって測定することができる。
[Embodiment 1]
(Display device and optical laminate)
1 and 2 are schematic cross-sectional views schematically showing a display device according to an embodiment of the invention. 1 and 2, the upper side is the viewing side. As shown in FIGS. 1 and 2, in the display devices 1 and 2 of the present embodiment, the high refractive index layer 45, the first retardation layer 31, the linear polarizing layer 11, and the display unit 40 are arranged in this order from the viewing side. have. Among them, the high refractive index layer 45 , the first retardation layer 31 and the linear polarizing layer 11 constitute optical laminates 51 and 52 . The refractive index of the high refractive index layer 45 is 1.60 or more, preferably 1.75 or more, more preferably 1.80 or more, usually 2.70 or less, preferably 2.40 or less. , more preferably 2.30 or less, and still more preferably 2.10 or less. The refractive index of the high refractive index layer 45 can be measured by the method described in Examples below.
 表示ユニット40は、表示素子41及び受光センサ42を有する。表示ユニット40は、図1及び図2に示すように、表示素子41の視認側に受光センサ42が積層された構造を有していてもよく、表示素子41の視認側とは反対側に受光センサ42が積層された構造を有していてもよい。あるいは、表示素子41に設けられた貫通孔又は凹部に受光センサ42が嵌め込まれていてもよい。表示ユニット40では、表示素子41の領域を表示装置1,2の表示領域とすることができるため、表示領域を拡大する観点から、表示ユニット40の平面視において、受光センサ42の周囲を取り囲むように表示素子41の領域が存在していることが好ましい。 The display unit 40 has a display element 41 and a light receiving sensor 42 . As shown in FIGS. 1 and 2, the display unit 40 may have a structure in which a light receiving sensor 42 is stacked on the viewing side of the display element 41, and the light receiving sensor 42 is stacked on the side opposite to the viewing side of the display element 41. The sensor 42 may have a laminated structure. Alternatively, the light-receiving sensor 42 may be fitted in a through hole or recess provided in the display element 41 . In the display unit 40, since the area of the display element 41 can be used as the display area of the display devices 1 and 2, from the viewpoint of enlarging the display area, in the plan view of the display unit 40, the light receiving sensor 42 is surrounded. It is preferable that the area of the display element 41 exists in the area of the display element 41 .
 表示装置1,2において、第1位相差層31及び直線偏光層11は、表示素子41及び受光センサ42を覆うように積層されている。第1位相差層31及び直線偏光層11は、表示ユニット40の視認側の面全体を覆うように、すなわち表示素子41及び受光センサ42の視認側の面全体を覆うように、積層されていることが好ましい。上記のように直線偏光層11を設けることにより、平面視において、受光センサ42の周囲にある表示素子41の領域が直線偏光層11に覆われるため、表示装置1,2の表示領域を拡大しやすくなる。第1位相差層31は、表示素子41及び受光センサ42を覆うように積層されていれば、平面視において直線偏光層11の全体を覆っていてもよく、一部を覆っていてもよい。第1位相差層31の平面視形状は、直線偏光層11の平面視形状と同じであってもよく、異なっていてもよい。 In the display devices 1 and 2, the first retardation layer 31 and the linear polarization layer 11 are laminated so as to cover the display element 41 and the light receiving sensor . The first retardation layer 31 and the linear polarizing layer 11 are laminated so as to cover the entire visible-side surface of the display unit 40, that is, to cover the entire visible-side surfaces of the display element 41 and the light receiving sensor 42. is preferred. By providing the linear polarizing layer 11 as described above, the area of the display element 41 around the light receiving sensor 42 is covered with the linear polarizing layer 11 in plan view, so that the display areas of the display devices 1 and 2 are expanded. easier. As long as the first retardation layer 31 is laminated so as to cover the display element 41 and the light receiving sensor 42, it may cover the entire linear polarization layer 11 in a plan view, or may cover a part thereof. The planar view shape of the first retardation layer 31 may be the same as or different from the planar view shape of the linear polarizing layer 11 .
 表示装置1,2では、表示素子41から出射された光によって画像表示が行われる。表示素子41からの出射光の一部は、図1中の矢印で示すように、高屈折率層45で反射し、受光センサ42に入射する可能性がある。特に表示ユニット40の平面視において、例えば受光センサ42と表示素子41の領域とが隣合って近くに存在する等のように、受光センサ42の周囲に表示素子41の領域が配置されている場合、高屈折率層45で反射した反射光が受光センサ42に入射しやすい。受光センサ42に反射光が入射すると、受光センサ42の誤作動が生じやすくなる。本実施形態の表示装置1,2では、表示素子41及び受光センサ42を覆う直線偏光層11の視認側に、第1位相差層31が積層されている。高屈折率層45で反射した反射光は、第1位相差層31に入射し、第1位相差層31を通過することにより位相が変化する。そのため、第1位相差層31を通過した反射光の少なくとも一部が直線偏光層11に吸収されやすくなる。これにより、受光センサ42に入射する反射光の光量を低減することができるため、受光センサ42の誤作動を抑制することができる。 In the display devices 1 and 2, image display is performed by light emitted from the display element 41. Part of the light emitted from the display element 41 may be reflected by the high refractive index layer 45 and enter the light receiving sensor 42 as indicated by the arrow in FIG. In particular, when the area of the display element 41 is arranged around the light receiving sensor 42, such as when the area of the light receiving sensor 42 and the area of the display element 41 are adjacent to each other in the plan view of the display unit 40, for example. , the reflected light reflected by the high refractive index layer 45 is likely to enter the light receiving sensor 42 . When the reflected light is incident on the light receiving sensor 42, malfunction of the light receiving sensor 42 is likely to occur. In the display devices 1 and 2 of the present embodiment, the first retardation layer 31 is laminated on the visible side of the linear polarization layer 11 covering the display element 41 and the light receiving sensor 42 . The reflected light reflected by the high refractive index layer 45 is incident on the first retardation layer 31 and changes its phase by passing through the first retardation layer 31 . Therefore, at least part of the reflected light that has passed through the first retardation layer 31 is likely to be absorbed by the linear polarizing layer 11 . As a result, the light amount of the reflected light incident on the light receiving sensor 42 can be reduced, so that malfunction of the light receiving sensor 42 can be suppressed.
 直線偏光層11の視感度補正単体透過率は、42%以上であることが好ましく、43%以上であることがより好ましく、45%以上であってもよい。直線偏光層11の視感度補正単体透過率が大きくなると、直線偏光層11を透過する反射光の光量が増加するため、受光センサ42の誤作動が生じやすくなる。本実施形態の表示装置1、2によれば、視感度補正単体透過率の大きい直線偏光層11を用いた場合にも、受光センサ42に入射する反射光の光量を抑制して、受光センサ42の誤作動を抑制することができる。直線偏光層11の視感度補正単体透過率は、後述する実施例に記載の方法によって測定することができる。 The visibility correction single transmittance of the linear polarizing layer 11 is preferably 42% or more, more preferably 43% or more, and may be 45% or more. When the luminosity correction single transmittance of the linear polarizing layer 11 increases, the light amount of the reflected light that passes through the linear polarizing layer 11 increases, so that the light receiving sensor 42 is likely to malfunction. According to the display devices 1 and 2 of the present embodiment, even when the linear polarizing layer 11 having a large luminosity correction single transmittance is used, the light amount of the reflected light incident on the light receiving sensor 42 is suppressed, and the light receiving sensor 42 malfunction can be suppressed. The luminosity correction single transmittance of the linear polarizing layer 11 can be measured by the method described in Examples below.
 第1位相差層31は位相差を有していればよいが、波長550nmにおける面内位相差値Re(550)が80nm以上170nm以下である位相差を有していることが好ましい。第1位相差層31の面内位相差値Re(550)は、100nm以上であることがより好ましく、130nm以上であることが特に好ましく、135nm以上であってもよく、また、160nm以下であることがより好ましく、150nm以下であることがさらに好ましい。第1位相差層31の面内位相差値Re(550)は、後述する実施例に記載の方法によって測定することができる。 Although the first retardation layer 31 may have a retardation, it preferably has a retardation in which the in-plane retardation value Re(550) at a wavelength of 550 nm is 80 nm or more and 170 nm or less. The in-plane retardation value Re (550) of the first retardation layer 31 is more preferably 100 nm or more, particularly preferably 130 nm or more, may be 135 nm or more, and is 160 nm or less. is more preferably 150 nm or less. The in-plane retardation value Re(550) of the first retardation layer 31 can be measured by the method described in Examples below.
 第1位相差層31が上記範囲の面内位相差値Re(550)を有する場合、表示装置1,2において表示素子41からの出射光は、第1位相差層31を通過すると楕円偏光に変換される。高屈折率層45で反射した反射光(楕円偏光)は、第1位相差層31を通過することにより直線偏光に変換される。これにより、第1位相差層31を通過した反射光が直線偏光層11に吸収されやすくなるため、受光センサ42に入射する反射光の光量をより一層抑制することができる。 When the first retardation layer 31 has an in-plane retardation value Re (550) within the above range, the light emitted from the display element 41 in the display devices 1 and 2 is elliptically polarized when passing through the first retardation layer 31. converted. The reflected light (elliptically polarized light) reflected by the high refractive index layer 45 is converted into linearly polarized light by passing through the first retardation layer 31 . As a result, the reflected light that has passed through the first retardation layer 31 is more likely to be absorbed by the linear polarization layer 11, so that the amount of reflected light that enters the light receiving sensor 42 can be further suppressed.
 第1位相差層31の面内位相差値Re(550)が上記の範囲にある場合、直線偏光層11の吸収軸と第1位相差層31の遅相軸とのなす角度は、10°以上80°以下の範囲内であることが好ましい。上記角度は、30°以上であってもよく、より好ましくは40°以上である。また上記角度は、60°以下であってもよく、より好ましくは50°以下である。 When the in-plane retardation value Re (550) of the first retardation layer 31 is within the above range, the angle between the absorption axis of the linear polarizing layer 11 and the slow axis of the first retardation layer 31 is 10°. It is preferable to be within the range of 80° or more. The angle may be 30° or more, more preferably 40° or more. Also, the angle may be 60° or less, more preferably 50° or less.
 面内位相差値Re(550)が上記した範囲にある第1位相差層31は、逆波長分散性を有することが好ましい。これにより、直線偏光層11に吸収される反射光の波長範囲が広くなるため、受光センサ42に入射する種々の波長の反射光の光量を抑制することができる。 The first retardation layer 31 whose in-plane retardation value Re(550) is within the above range preferably has reverse wavelength dispersion. As a result, the wavelength range of the reflected light absorbed by the linear polarizing layer 11 is widened, so that the amount of reflected light of various wavelengths incident on the light receiving sensor 42 can be suppressed.
 表示装置1,2において、表示素子41からの出射光が高屈折率層45で反射したときの反射光の刺激値Yは、3.45%以上4.54%以下であることが好ましい。反射光の刺激値Yは、表示素子41からの出射光の光強度に対する反射光の光強度の割合であり、刺激値Yが小さいほど、高屈折率層45で反射した反射光の光量が小さく、受光センサ42の誤作動の原因となりにくいことを表す。反射光の刺激値Yは、後述する実施例に記載の方法によって測定することができる。反射光の刺激値Yは、3.48%以上であってもよく、3.50%以上であってもよく、また、4.30%以下であってもよく、4.10%以下であってもよく、3.90%以下であってもよく、3.76%以下であってもよい。 In the display devices 1 and 2, the stimulation value Y of the reflected light when the emitted light from the display element 41 is reflected by the high refractive index layer 45 is preferably 3.45% or more and 4.54% or less. The stimulus value Y of the reflected light is the ratio of the light intensity of the reflected light to the light intensity of the emitted light from the display element 41. The smaller the stimulus value Y, the smaller the amount of reflected light reflected by the high refractive index layer 45. , indicates that the light-receiving sensor 42 is less likely to malfunction. The stimulus value Y of the reflected light can be measured by the method described in Examples below. The stimulus value Y of the reflected light may be 3.48% or more, 3.50% or more, 4.30% or less, or 4.10% or less. may be 3.90% or less, or 3.76% or less.
 出射光の刺激値Yが上記の範囲にある表示装置1,2では、受光センサ42に入射する反射光の光量を抑制しやすい。出射光の刺激値Yが上記範囲よりも小さい場合は、高屈折率層45の屈折率が小さい、又は、直線偏光層11の視感度補正単体透過率が小さいと考えられる。そのため、出射光の刺激値Yが上記範囲よりも小さい表示装置では、受光センサ42に入射する反射光の光量が小さく、受光センサ42の誤作動は生じにくいと考えられる。また、出射光の刺激値Yが上記範囲よりも大きい表示装置は、受光センサ42に入射する反射光の光量が大きく、受光センサ42の誤作動が発生しやすい。 In the display devices 1 and 2 in which the stimulus value Y of the emitted light is within the above range, it is easy to suppress the amount of reflected light incident on the light receiving sensor 42 . If the stimulus value Y of the emitted light is smaller than the above range, it is considered that the refractive index of the high refractive index layer 45 is small, or the luminosity correction single transmittance of the linear polarizing layer 11 is small. Therefore, in a display device in which the stimulus value Y of emitted light is smaller than the above range, the amount of reflected light incident on the light receiving sensor 42 is small, and malfunction of the light receiving sensor 42 is unlikely to occur. In addition, in a display device in which the stimulus value Y of emitted light is larger than the above range, the amount of reflected light incident on the light receiving sensor 42 is large, and malfunction of the light receiving sensor 42 is likely to occur.
 (表示装置及び光学積層体の層構造)
 以下、上記で説明した層以外に、表示装置1,2及び光学積層体51,52が有していてもよい層について説明する。
(Layer structure of display device and optical laminate)
Hereinafter, layers that the display devices 1 and 2 and the optical laminates 51 and 52 may have in addition to the layers described above will be described.
 表示装置1,2及び光学積層体51,52は、図1及び図2に示すように、高屈折率層45と第1位相差層31との間に第1貼合層21を有することが好ましい。第1貼合層21は、高屈折率層45及び第1位相差層31に直接接していてもよい。 The display devices 1 and 2 and the optical laminates 51 and 52 may have the first bonding layer 21 between the high refractive index layer 45 and the first retardation layer 31 as shown in FIGS. preferable. The first bonding layer 21 may be in direct contact with the high refractive index layer 45 and the first retardation layer 31 .
 表示装置1,2及び光学積層体51,52は、上記高屈折率層45とは別に、1つ以上の第2屈折率層(図示せず)を有していてもよい。第2屈折率層の屈折率は、高屈折率層45において説明した上記の屈折率範囲とすることができる。第2屈折率層は、高屈折率層45の視認側に設けてもよく、高屈折率層45と第1位相差層31との間に設けてもよい。この場合、表示装置1,2及び光学積層体51,52は、高屈折率層45と第2屈折率層との間に貼合層(後述する粘着剤層又は接着剤層)を有していてもよく、この貼合層は高屈折率層45及び第2屈折率層に直接接していてもよい。表示装置1,2及び光学積層体51,52が、高屈折率層45と第1位相差層31との間に第2屈折率層を有する場合、第1貼合層21は、第1位相差層31及び第2屈折率層に直接接していてもよい。 The display devices 1 and 2 and the optical laminates 51 and 52 may have one or more second refractive index layers (not shown) apart from the high refractive index layer 45 described above. The refractive index of the second refractive index layer can be within the above refractive index range described for the high refractive index layer 45 . The second refractive index layer may be provided on the viewer side of the high refractive index layer 45 or may be provided between the high refractive index layer 45 and the first retardation layer 31 . In this case, the display devices 1 and 2 and the optical laminates 51 and 52 have a lamination layer (adhesive layer or adhesive layer described later) between the high refractive index layer 45 and the second refractive index layer. Alternatively, the lamination layer may be in direct contact with the high refractive index layer 45 and the second refractive index layer. When the display devices 1 and 2 and the optical laminates 51 and 52 have the second refractive index layer between the high refractive index layer 45 and the first retardation layer 31, the first bonding layer 21 is the first It may be in direct contact with the retardation layer 31 and the second refractive index layer.
 表示装置1,2及び光学積層体51,52は、第1位相差層31と直線偏光層11との間に第2貼合層22を有することが好ましい。第2貼合層22は、第1位相差層31及び直線偏光層11に直接接していてもよい。 The display devices 1 and 2 and the optical laminates 51 and 52 preferably have the second bonding layer 22 between the first retardation layer 31 and the linear polarizing layer 11 . The second bonding layer 22 may be in direct contact with the first retardation layer 31 and the linear polarizing layer 11 .
 表示装置1,2及び光学積層体51,52は、図1及び図2に示すように、第1位相差層31と直線偏光層11との間に、第1保護フィルム12を有していてもよい。第1保護フィルム12は、直線偏光層11の視認側の表面を保護するための層であってもよく、第1保護フィルム12及び直線偏光層11は直線偏光板を構成していてもよい。表示装置1,2及び光学積層体51,52が第1保護フィルム12を有する場合、第2貼合層22は、第1位相差層31及び第1保護フィルム12に直接接していてもよい。 The display devices 1 and 2 and the optical laminates 51 and 52 have a first protective film 12 between the first retardation layer 31 and the linear polarizing layer 11, as shown in FIGS. good too. The first protective film 12 may be a layer for protecting the viewing side surface of the linear polarizing layer 11, and the first protective film 12 and the linear polarizing layer 11 may constitute a linear polarizing plate. When the display devices 1 and 2 and the optical laminates 51 and 52 have the first protective film 12 , the second bonding layer 22 may be in direct contact with the first retardation layer 31 and the first protective film 12 .
 表示装置1,2及び光学積層体51,52が第1保護フィルム12を有する場合、表示装置1,2及び光学積層体51,52は、第1保護フィルム12と直線偏光層11とが直接接していてもよいが、第1保護フィルム12と直線偏光層11との間に第3貼合層23を有することが好ましい。第3貼合層23は、直線偏光板を構成していてもよく、第1保護フィルム12及び直線偏光層11に直接接していることが好ましい。 When the display devices 1 and 2 and the optical laminates 51 and 52 have the first protective film 12, the display devices 1 and 2 and the optical laminates 51 and 52 are such that the first protective film 12 and the linear polarizing layer 11 are in direct contact. However, it is preferable to have the third bonding layer 23 between the first protective film 12 and the linear polarizing layer 11 . The third bonding layer 23 may constitute a linear polarizing plate, and is preferably in direct contact with the first protective film 12 and the linear polarizing layer 11 .
 表示装置1,2は、直線偏光層11と表示ユニット40との間(直線偏光層11の第1位相差層31側とは反対側)に、第4貼合層24を有していてもよい。直線偏光層11及び表示ユニット40は、図1に示すように、第4貼合層24に直接接していてもよい。図1及び図2に示すように、上記第4貼合層24は光学積層体51,52が備えていてもよい。 The display devices 1 and 2 may have a fourth bonding layer 24 between the linear polarizing layer 11 and the display unit 40 (the side opposite to the first retardation layer 31 side of the linear polarizing layer 11). good. The linear polarizing layer 11 and the display unit 40 may be in direct contact with the fourth bonding layer 24 as shown in FIG. As shown in FIGS. 1 and 2, the fourth bonding layer 24 may be included in the optical laminates 51 and 52 .
 表示装置1,2及び光学積層体51,52は、直線偏光層11と表示ユニット40との間(直線偏光層11の第1位相差層31側とは反対側)に、第2保護フィルム(図示せず)を有していてもよい。第2保護フィルムは、直線偏光層11の視認側とは反対側の表面を保護するための層であってもよく、第2保護フィルム及び直線偏光層11は直線偏光板を構成していてもよい。表示装置1,2及び光学積層体51,52が第2保護フィルムを有する場合、第2保護フィルムと直線偏光層11とは直接接していてもよく、第2保護フィルムと直線偏光層11との間に貼合層(後述する粘着剤層又は接着剤層)を有していてもよい。この貼合層は、直線偏光板を構成していてもよく、第2保護フィルム及び直線偏光層11に直接接していることが好ましい。この場合、第4貼合層24は、第2保護フィルムと表示ユニット40との間に設けられてもよく、第2保護フィルム及び表示ユニット40に直接接していてもよい。 In the display devices 1 and 2 and the optical laminates 51 and 52, a second protective film ( (not shown). The second protective film may be a layer for protecting the surface of the linear polarizing layer 11 opposite to the viewing side, and the second protective film and the linear polarizing layer 11 may constitute a linear polarizing plate. good. When the display devices 1 and 2 and the optical laminates 51 and 52 have the second protective film, the second protective film and the linear polarizing layer 11 may be in direct contact with each other. A lamination layer (a pressure-sensitive adhesive layer or an adhesive layer to be described later) may be provided therebetween. This bonding layer may constitute a linear polarizing plate, and is preferably in direct contact with the second protective film and the linear polarizing layer 11 . In this case, the fourth bonding layer 24 may be provided between the second protective film and the display unit 40 or may be in direct contact with the second protective film and the display unit 40 .
 表示装置2及び光学積層体52は、図2に示すように、直線偏光層11と表示ユニット40との間(直線偏光層11の第1位相差層31側とは反対側)に、第3位相差層13を有していてもよい。この場合、表示装置2及び光学積層体52は、直線偏光層11と第3位相差層13との間に第5貼合層25を有していてもよく、直線偏光層11及び第3位相差層13は第5貼合層25に直接接していてもよい。表示装置2及び光学積層体52が第2保護フィルムを有する場合、第5貼合層25は、第2保護フィルムと第3位相差層13との間に設けられ、第2保護フィルム及び第3位相差層13に直接接していてもよい。第3位相差層13を有する表示装置2では、第4貼合層24は、第3位相差層13と表示ユニット40との間に設けられてもよく、第3位相差層13及び表示ユニット40に直接接していてもよい。第3位相差層13を有する光学積層体52では、第4貼合層25は、第3位相差層13に直接接していてもよい。直線偏光層11と第3位相差層13とは円偏光板を構成することが好ましく、第3位相差層13は、好ましくはλ/4位相差層であり、より好ましくは逆波長分散性のλ/4位相差層である。 In the display device 2 and the optical laminate 52, as shown in FIG. 2, a third It may have a retardation layer 13 . In this case, the display device 2 and the optical laminate 52 may have a fifth bonding layer 25 between the linear polarizing layer 11 and the third retardation layer 13, and The retardation layer 13 may be in direct contact with the fifth bonding layer 25 . When the display device 2 and the optical laminate 52 have a second protective film, the fifth bonding layer 25 is provided between the second protective film and the third retardation layer 13, and the second protective film and the third It may be in direct contact with the retardation layer 13 . In the display device 2 having the third retardation layer 13, the fourth bonding layer 24 may be provided between the third retardation layer 13 and the display unit 40, the third retardation layer 13 and the display unit 40 may be in direct contact. In the optical laminate 52 having the third retardation layer 13 , the fourth bonding layer 25 may be in direct contact with the third retardation layer 13 . The linearly polarizing layer 11 and the third retardation layer 13 preferably form a circularly polarizing plate, and the third retardation layer 13 is preferably a λ/4 retardation layer, and more preferably has reverse wavelength dispersion properties. It is a λ/4 retardation layer.
 表示装置2及び光学積層体52は、直線偏光層11と表示ユニット40との間(直線偏光層11の第1位相差層31側とは反対側)に、第3位相差層13とは別の、1以上の第4位相差層(図示せず)を有していてもよい。第4位相差層は、直線偏光層11と第3位相差層13との間に設けてもよく、第3位相差層13と表示ユニット40との間(第3位相差層13の直線偏光層11側とは反対側)に設けてもよい。この場合、第3位相差層13と第4位相差層との間に貼合層(後述する粘着剤層又は接着剤層)を有していてもよく、この貼合層は第3位相差層13及び第4位相差層に直接接していてもよい。表示装置2及び光学積層体52が直線偏光層11と第3位相差層13との間に第4位相差層を有する場合、第5貼合層25が直線偏光層11及び第4位相差層に直接接していてもよい。表示装置2が第3位相差層13と表示ユニット40との間に第4位相差層を有する場合、第4貼合層24が第4位相差層及び表示ユニット40に直接接していてもよい。光学積層体52が第3位相差層13の直線偏光層11側とは反対側に第3位相差層を有する場合、第4位相差層は、第4貼合層に直接接していてもよい。直線偏光層11、第3位相差層13、及び第4位相差層は、円偏光板を構成することが好ましい。円偏光板を構成する第4位相差層は、λ/2位相差層又はポジティブC層であることが好ましい。 In the display device 2 and the optical laminate 52, between the linear polarizing layer 11 and the display unit 40 (on the opposite side of the linear polarizing layer 11 to the first retardation layer 31 side), may have one or more fourth retardation layers (not shown). The fourth retardation layer may be provided between the linear polarization layer 11 and the third retardation layer 13, and between the third retardation layer 13 and the display unit 40 (the linear polarization of the third retardation layer 13 It may be provided on the side opposite to the layer 11 side). In this case, between the third retardation layer 13 and the fourth retardation layer may have a bonding layer (adhesive layer or adhesive layer described later), the bonding layer is the third retardation It may be in direct contact with the layer 13 and the fourth retardation layer. When the display device 2 and the optical laminate 52 have a fourth retardation layer between the linear polarization layer 11 and the third retardation layer 13, the fifth bonding layer 25 is the linear polarization layer 11 and the fourth retardation layer may be in direct contact with When the display device 2 has a fourth retardation layer between the third retardation layer 13 and the display unit 40, the fourth bonding layer 24 may be in direct contact with the fourth retardation layer and the display unit 40. . When the optical laminate 52 has a third retardation layer on the side opposite to the linear polarization layer 11 side of the third retardation layer 13, the fourth retardation layer may be in direct contact with the fourth bonding layer. . The linearly polarizing layer 11, the third retardation layer 13, and the fourth retardation layer preferably form a circularly polarizing plate. The fourth retardation layer constituting the circularly polarizing plate is preferably a λ/2 retardation layer or a positive C layer.
 [実施形態2]
 図3及び図4は、本発明の他の実施形態に係る表示装置を模式的に示す概略断面図である。図3及び図4では、上側が視認側である。本実施形態の表示装置3,4及び光学積層体53,54は、高屈折率層45と直線偏光層11との間に第2位相差層32を有している点において、先の実施形態で説明した表示装置1,2及び光学積層体51,52と異なっているため、以下ではこの点について説明する。
[Embodiment 2]
3 and 4 are schematic cross-sectional views schematically showing display devices according to other embodiments of the present invention. 3 and 4, the upper side is the viewing side. The display devices 3 and 4 and the optical laminates 53 and 54 of the present embodiment have the second retardation layer 32 between the high refractive index layer 45 and the linear polarizing layer 11. Since it is different from the display devices 1 and 2 and the optical laminates 51 and 52 described in 1., this point will be described below.
 表示装置3,4において、第2位相差層32は、表示素子41及び受光センサ42を覆うように積層されている。第2位相差層32は、表示ユニット40の視認側の面全体を覆うように、すなわち表示素子41及び受光センサ42の視認側の面全体を覆うように、積層されていることが好ましい。 In the display devices 3 and 4, the second retardation layer 32 is laminated so as to cover the display element 41 and the light receiving sensor 42. The second retardation layer 32 is preferably laminated so as to cover the entire visible-side surface of the display unit 40 , that is, to cover the entire visible-side surfaces of the display element 41 and the light receiving sensor 42 .
 図3及び図4に示す表示装置3,4及び光学積層体53,54は、高屈折率層45と第1位相差層31との間に第2位相差層32を有する。第2位相差層32は、平面視において第1位相差層31の全体を覆っていることが好ましく、第2位相差層32の平面視形状は、第1位相差層31の平面視形状と同じであることがより好ましい。 The display devices 3 and 4 and the optical laminates 53 and 54 shown in FIGS. 3 and 4 have the second retardation layer 32 between the high refractive index layer 45 and the first retardation layer 31 . The second retardation layer 32 preferably covers the entire first retardation layer 31 in plan view, and the planar view shape of the second retardation layer 32 is the planar view shape of the first retardation layer 31. More preferably, they are the same.
 第2位相差層32は位相差を有していればよいが、波長550nmにおける厚み方向位相差値Rth(550)が-140nm以上-20nm以下である位相差を有していることが好ましい。第2位相差層32の厚み方向位相差値Rth(550)は、-140nm超であってもよく、-120nm以上であってもよく、-100nm以上であってもよく、-90nm以上であってもよく、また、-20nm未満であってもよく、-30以下であってもよく、-40以下であってもよく、-50以下であってもよい。 Although the second retardation layer 32 may have a retardation, it preferably has a retardation in which the thickness direction retardation value Rth(550) at a wavelength of 550 nm is -140 nm or more and -20 nm or less. The thickness direction retardation value Rth (550) of the second retardation layer 32 may be greater than −140 nm, may be −120 nm or more, may be −100 nm or more, or may be −90 nm or more. It may be less than -20 nm, may be -30 or less, may be -40 or less, or may be -50 or less.
 第2位相差層32の厚み方向位相差値Rth(550)は、式(i)に基づいて算出される値である。
  Rth(550)=[{(nx+ny)/2}-nz]×d  (i)
[式(i)中、
 nxは、第2位相差層32の面内における波長550nmでの主屈折率であり、
 nyは、nxと同一面内で、nxに対して直交する方向における波長550nmでの屈折率であり、
 nzは、第2位相差層32の厚み方向における波長550nmでの屈折率であって、nx=nyである場合、nxは、第2位相差層32の面内での任意の方向の屈折率とすることができ、
 dは、第2位相差層32の膜厚である。]
The thickness direction retardation value Rth (550) of the second retardation layer 32 is a value calculated based on the formula (i).
Rth(550)=[{(nx+ny)/2}-nz]×d(i)
[In the formula (i),
nx is the principal refractive index at a wavelength of 550 nm in the plane of the second retardation layer 32,
ny is the refractive index at a wavelength of 550 nm in the same plane as nx and in a direction orthogonal to nx,
nz is the refractive index at a wavelength of 550 nm in the thickness direction of the second retardation layer 32, and when nx=ny, nx is the refractive index in any direction in the plane of the second retardation layer 32. and can be
d is the film thickness of the second retardation layer 32; ]
 表示装置3,4が第2位相差層32を有することにより、図3中の矢印で示すように、受光センサ42に入射する反射光のうちの斜め方向から入射する反射光についても、光量を低減することができる。斜め方向から入射する反射光は主に、表示ユニット40の平面視において、表示素子41のうちの受光センサ42から離れた領域から出射された出射光が高屈折率層45で反射した光である。斜め方向から入射する反射光の光量は、第2位相差層32の厚み方向位相差値Rth(550)が上記の範囲にある場合に低減されやすい。これにより、受光センサ42の誤作動をより一層抑制することができる。 Since the display devices 3 and 4 have the second retardation layer 32, as indicated by the arrows in FIG. can be reduced. The reflected light incident from an oblique direction is mainly light emitted from a region of the display element 41 away from the light receiving sensor 42 and reflected by the high refractive index layer 45 in a plan view of the display unit 40 . . The amount of reflected light incident from an oblique direction tends to be reduced when the thickness direction retardation value Rth (550) of the second retardation layer 32 is within the above range. Thereby, malfunction of the light receiving sensor 42 can be further suppressed.
 図3及び図4に示すように、第1貼合層21は、高屈折率層45と第2位相差層32との間に設けられてもよく、高屈折率層45及び第2位相差層32に直接接していてもよい。表示装置3,4及び光学積層体53,54は、第2位相差層32と第1位相差層31との間に第6貼合層26を有し、第2位相差層32及び第1位相差層31は第6貼合層26に直接接していることが好ましい。 As shown in FIGS. 3 and 4, the first bonding layer 21 may be provided between the high refractive index layer 45 and the second retardation layer 32, the high refractive index layer 45 and the second retardation layer It may be in direct contact with layer 32 . The display devices 3 and 4 and the optical laminates 53 and 54 have a sixth bonding layer 26 between the second retardation layer 32 and the first retardation layer 31, and the second retardation layer 32 and the first Preferably, the retardation layer 31 is in direct contact with the sixth bonding layer 26 .
 図3及び図4に示す表示装置3,4及び光学積層体53,54では、高屈折率層45と第1位相差層31との間に第2位相差層32を有する場合について説明しているが、高屈折率層45と直線偏光層11との間に第2位相差層32を有していればこれに限定されない。例えば第2位相差層32は、第1位相差層31と直線偏光層11との間に設けられてもよい。この場合、第2位相差層32は、直線偏光層11の全体を覆っていることが好ましい。第2位相差層32の平面視形状は、第1位相差層31の平面視形状と同じであることが好ましい。 In the display devices 3 and 4 and the optical laminates 53 and 54 shown in FIGS. However, if the second retardation layer 32 is provided between the high refractive index layer 45 and the linear polarizing layer 11, it is not limited to this. For example, the second retardation layer 32 may be provided between the first retardation layer 31 and the linear polarizing layer 11 . In this case, the second retardation layer 32 preferably covers the entire linear polarizing layer 11 . The planar view shape of the second retardation layer 32 is preferably the same as the planar view shape of the first retardation layer 31 .
 表示装置3,4及び光学積層体53,54が第1位相差層31と直線偏光層11との間に第2位相差層32を有する場合も、表示装置3,4及び光学積層体53,54は、第2位相差層32と第1位相差層31との間に第6貼合層26を有することができる。また、第2貼合層22は、第2位相差層32と直線偏光層11との間に設けられてもよく、例えば、第2貼合層22は、第2位相差層32及び第1保護フィルム12に直接接していてもよい。 Even when the display devices 3 and 4 and the optical laminates 53 and 54 have the second retardation layer 32 between the first retardation layer 31 and the linearly polarizing layer 11, the display devices 3 and 4 and the optical laminates 53 and 54 54 can have a sixth bonding layer 26 between the second retardation layer 32 and the first retardation layer 31 . Further, the second bonding layer 22 may be provided between the second retardation layer 32 and the linear polarizing layer 11. For example, the second bonding layer 22 includes the second retardation layer 32 and the first It may be in direct contact with the protective film 12 .
 以下、上記で説明した表示装置及び表示装置を構成する層等について、より詳細に説明する。 In the following, the display device and the layers constituting the display device described above will be described in more detail.
 (表示装置)
 上記した表示装置は、液晶表示装置又は有機EL(エレクトロルミネッセンス)表示装置として用いることができる。表示装置は、スマートフォン及びタブレット等の携帯端末であってもよい。表示装置は、屈曲可能なフレキシブルディスプレイであってもよい。
(Display device)
The display device described above can be used as a liquid crystal display device or an organic EL (electroluminescence) display device. The display device may be a mobile terminal such as a smart phone and a tablet. The display device may be a bendable flexible display.
 表示装置の表示領域の平面視の外形は、特に限定されないが、矩形、正方形、矩形及び正方形以外の多角形、又は、これらの角が角丸(Rを有する形状)である角丸形状であってもよい。矩形、正方形、上記多角形、又は角丸形状の表示領域は、カメラ等を配置するための貫通孔を有していてもよい。 The outer shape of the display area of the display device in a plan view is not particularly limited, but may be a rectangle, a square, a polygon other than a rectangle or a square, or a rounded shape having rounded corners (a shape having R). may The rectangular, square, polygonal, or rounded display area may have a through hole for arranging a camera or the like.
 (表示素子)
 表示素子は、液晶表示素子又は有機EL表示素子であってもよい。液晶表示素子は、例えば、2枚のセル基板間に液晶層を挟持した液晶セル及びバックライト等を有することができる。有機EL表示素子は、例えば、発光層及び電極等を有することができる。
(Display element)
The display element may be a liquid crystal display element or an organic EL display element. The liquid crystal display element can have, for example, a liquid crystal cell having a liquid crystal layer sandwiched between two cell substrates, a backlight, and the like. An organic EL display element can have, for example, a light-emitting layer and electrodes.
 表示素子からの出射光は、波長320nm以上4000nm以下の光であることが好ましく、波長380nm以上780nm以下(可視光線領域)の光であることがより好ましく、波長380nm以上720nm以下の光であってもよい。 The light emitted from the display element is preferably light with a wavelength of 320 nm or more and 4000 nm or less, more preferably light with a wavelength of 380 nm or more and 780 nm or less (visible light region), and light with a wavelength of 380 nm or more and 720 nm or less. good too.
 (受光センサ)
 受光センサは、入射した光を検知する。受光センサは、表示装置周りの照度を検知する照度センサ、物体の近接を検知する近接センサ、又はカメラ等を構成するものであってもよい。受光センサは、波長320nm以上4000nm以下の光を検知可能であることが好ましく、波長380nm以上780nm以下(可視光線領域)の光、及び/又は、波長780nm以上4000nm以下(赤外線領域)の光を検知可能であることがより好ましい。
(Light receiving sensor)
The light receiving sensor detects incident light. The light receiving sensor may constitute an illuminance sensor that detects the illuminance around the display device, a proximity sensor that detects the proximity of an object, a camera, or the like. The light receiving sensor is preferably capable of detecting light with a wavelength of 320 nm or more and 4000 nm or less, and detects light with a wavelength of 380 nm or more and 780 nm or less (visible light region) and/or light with a wavelength of 780 nm or more and 4000 nm or less (infrared region). It is more preferable that it is possible.
 (タッチセンサパネル)
 表示装置及び光学積層体は、タッチセンサパネルを含んでいてもよい。タッチセンサパネルは、ユーザが指等でタッチした位置を検知することができる。タッチセンサパネルとしては、例えば抵抗膜方式、静電容量結合方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等のタッチセンサパネルが挙げられ、このうち、抵抗膜方式、静電容量結合方式のタッチセンサパネルが好適に用いられる。
(touch sensor panel)
The display device and optical stack may include a touch sensor panel. The touch sensor panel can detect a position touched by a user's finger or the like. Examples of touch sensor panels include touch sensor panels of resistive film type, capacitive coupling type, optical sensor type, ultrasonic wave type, electromagnetic induction coupling type, and surface acoustic wave type. A capacitive touch sensor panel is preferably used.
 表示装置及び光学積層体において、タッチセンサパネルは、直線偏光層の視認側(直線偏光層の第1位相差層側)に設けられてもよく、直線偏光層の視認側とは反対側に設けられてもよい。タッチセンサパネルが直線偏光層の視認側に設けられる場合、タッチセンサパネルは、後述する高屈折率層を構成していてもよい。タッチセンサパネルが直線偏光層の視認側とは反対側に設けられる場合、タッチセンサパネルは、直線偏光層と表示ユニットとの間に設けられることが好ましい。 In the display device and the optical laminate, the touch sensor panel may be provided on the viewing side of the linear polarizing layer (the first retardation layer side of the linear polarizing layer), and provided on the side opposite to the viewing side of the linear polarizing layer. may be When the touch sensor panel is provided on the viewing side of the linear polarizing layer, the touch sensor panel may constitute a high refractive index layer, which will be described later. When the touch sensor panel is provided on the opposite side of the linear polarizing layer to the viewing side, the touch sensor panel is preferably provided between the linear polarizing layer and the display unit.
 (高屈折率層)
 高屈折率層は、屈折率が本実施形態で規定する範囲(1.60以上)である層であれば特に限定されない。高屈折率層は、上記した屈折率を有する層であれば、表示装置の前面板又はタッチセンサパネルであってもよい。高屈折率層は、単層構造を有していてもよく、多層構造を有していてもよい。高屈折率層が多層構造を有する場合、当該高屈折率層が上記の屈折率を有していれば、高屈折率層は、屈折率が1.60未満の層を含んでいてもよい。
(High refractive index layer)
The high refractive index layer is not particularly limited as long as it is a layer having a refractive index within the range (1.60 or more) specified in the present embodiment. The high refractive index layer may be a front plate of a display device or a touch sensor panel as long as it has the above-described refractive index. The high refractive index layer may have a single layer structure or a multilayer structure. When the high refractive index layer has a multilayer structure, the high refractive index layer may include a layer with a refractive index of less than 1.60 as long as the high refractive index layer has the above refractive index.
 前面板は、表示装置の最前面を構成することができる。前面板は、光を透過可能な板状体であればよく、例えば、樹脂板、樹脂フィルム、ガラス板、又はガラスフィルム等であることができる。前面板は単層構造であってもよく、多層構造であってもよい。前面板の屈折率は、1.45以上1.9以下であってもよい。 The front panel can constitute the front of the display device. The front plate may be a plate-like body that can transmit light, and may be, for example, a resin plate, a resin film, a glass plate, a glass film, or the like. The front plate may have a single layer structure or a multilayer structure. The refractive index of the front plate may be 1.45 or more and 1.9 or less.
 樹脂板又は樹脂フィルムを構成するポリマーとしては、光を透過可能な樹脂であれば特に限定されない。このようなポリマーとしては、例えば、トリアセチルセルロース、アセチルセルロースブチレート、エチレン-酢酸ビニル共重合体、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ポリエステル、ポリスチレン、ポリアミド、ポリエーテルイミド、ポリ(メタ)アクリル、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチル(メタ)アクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアミドイミド等が挙げられる。これらのポリマーは、単独で又は2種以上を混合して用いることができる。本明細書において、(メタ)アクリルとはアクリル及び/又はメタクリルをいい、(メタ)アクリレートとはアクリルレート及び/又はメタクリレートをいう。 The polymer that constitutes the resin plate or resin film is not particularly limited as long as it is a resin that can transmit light. Such polymers include, for example, triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, polyetherimide, poly(meth) ) acrylic, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyetherketone, polyetheretherketone, polyethersulfone, polymethyl (meth) Acrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyamideimide and the like. These polymers can be used alone or in combination of two or more. As used herein, (meth)acryl refers to acrylic and/or methacrylic, and (meth)acrylate refers to acrylate and/or methacrylate.
 前面板が樹脂フィルムである場合、前面板は、樹脂フィルムの少なくとも一方の面にハードコート層を有していてもよい。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えば単官能(メタ)アクリル樹脂、多官能(メタ)アクリル樹脂、デンドリマー構造を有する多官能(メタ)アクリル樹脂等の(メタ)アクリル樹脂等の(メタ)アクリル樹脂;シリコーン樹脂;ポリエステル樹脂;ウレタン樹脂;アミド樹脂;エポキシ樹脂等が挙げられる。ハードコート層は、強度を向上させるために、添加剤を含んでいてもよい。添加剤は特に限定されることはなく、無機系微粒子、有機系微粒子、又はこれらの混合物が挙げられる。樹脂フィルムの両面にハードコート層を有する場合、各ハードコート層の組成や厚みは、互いに同じであってもよく、互いに異なっていてもよい。 When the front plate is a resin film, the front plate may have a hard coat layer on at least one surface of the resin film. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of UV-curable resins include (meth)acrylic resins such as monofunctional (meth)acrylic resins, polyfunctional (meth)acrylic resins, and polyfunctional (meth)acrylic resins having a dendrimer structure; silicone resin; polyester resin; urethane resin; amide resin; epoxy resin and the like. The hard coat layer may contain additives in order to improve strength. The additive is not particularly limited, and may be inorganic fine particles, organic fine particles, or a mixture thereof. When the resin film has hard coat layers on both sides, the composition and thickness of each hard coat layer may be the same or different.
 前面板がガラス板又はガラスフィルムである場合、ディスプレイ用強化ガラスが好ましく用いられる。 When the front plate is a glass plate or glass film, tempered glass for displays is preferably used.
 高屈折率層を構成するタッチセンサパネルとしては、上記したタッチセンサパネルが挙げられる。タッチセンサパネルが高屈折率層を構成する場合、タッチセンサパネルの屈折率は、1.60以上であり、好ましくは1.70以上であり、より好ましくは1.90以上であり、通常は2.70以下であり、好ましくは2.60以下であり、より好ましくは2.40以下である。 The above-described touch sensor panel is an example of the touch sensor panel that constitutes the high refractive index layer. When the touch sensor panel constitutes the high refractive index layer, the touch sensor panel has a refractive index of 1.60 or more, preferably 1.70 or more, more preferably 1.90 or more, and usually 2 .70 or less, preferably 2.60 or less, more preferably 2.40 or less.
 (第1位相差層、第2位相差層、第3位相差層、第4位相差層)
 第1位相差層、第2位相差層、第3位相差層、及び第4位相差層(以下、これらをまとめて「位相差層」ということがある。)は、延伸フィルムであってもよく、重合性液晶化合物の硬化物層を含むものであってもよい。
(First retardation layer, second retardation layer, third retardation layer, fourth retardation layer)
The first retardation layer, the second retardation layer, the third retardation layer, and the fourth retardation layer (hereinafter collectively referred to as "retardation layer".), Even if it is a stretched film Alternatively, it may include a cured product layer of a polymerizable liquid crystal compound.
 位相差層が延伸フィルムである場合、延伸フィルムは従来公知のものを用いることができ、樹脂フィルムを一軸延伸又は二軸延伸することによって位相差を付与したものを用いることができる。樹脂フィルムとしては、トリアセチルセルロース及びジアセチルセルロース等のセルロースフィルム、ポリエチレンテレフタレート、ポリエチレンイソフタレート及びポリブチレンテレフタレート等のポリエステルフィルム、ポリメチル(メタ)アクリレート及びポリエチル(メタ)アクリレート等のアクリル樹脂フィルム、ポリカーボネートフィルム、ポリエーテルスルホンフィルム、ポリスルホンフィルム、ポリイミドフィルム、ポリオレフィンフィルム、ポリノルボルネンフィルム等を用いることができるが、これらに限定されるものではない。 When the retardation layer is a stretched film, a conventionally known stretched film can be used, and a retardation imparted by uniaxially or biaxially stretching a resin film can be used. Examples of resin films include cellulose films such as triacetyl cellulose and diacetyl cellulose, polyester films such as polyethylene terephthalate, polyethylene isophthalate and polybutylene terephthalate, acrylic resin films such as polymethyl (meth) acrylate and polyethyl (meth) acrylate, and polycarbonate films. , polyethersulfone film, polysulfone film, polyimide film, polyolefin film, polynorbornene film, etc., but not limited to these.
 位相差層が延伸フィルムである場合、位相差層の厚みは、通常5μm以上200μm以下であり、好ましくは10μm以上80μm以下であり、さらに好ましくは40μm以下である。 When the retardation layer is a stretched film, the thickness of the retardation layer is usually 5 µm or more and 200 µm or less, preferably 10 µm or more and 80 µm or less, and more preferably 40 µm or less.
 位相差層が上記硬化物層を含むものである場合、重合性液晶化合物としては、従来公知の重合性液晶化合物を用いることができる。重合性液晶化合物は、少なくとも1つの重合性基を有し、かつ、液晶性を有する化合物である。 When the retardation layer includes the above-mentioned cured product layer, a conventionally known polymerizable liquid crystal compound can be used as the polymerizable liquid crystal compound. A polymerizable liquid crystal compound is a compound having at least one polymerizable group and having liquid crystallinity.
 重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。重合性液晶化合物を重合することによって形成される硬化物層は、重合性液晶化合物を適した方向に配向させた状態で硬化することにより位相差を発現する。棒状の重合性液晶化合物が、表示装置の平面方向に対して水平配向又は垂直配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の長軸方向と一致する。円盤状の重合性液晶化合物が配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の円盤面に対して直交する方向に存在する。棒状の重合性液晶化合物としては、例えば、特表平11-513019号公報(請求項1等)に記載のものを好適に用いることができる。円盤状の重合性液晶化合物としては、特開2007-108732号公報(段落[0020]~[0067]等)、特開2010-244038号公報(段落[0013]~[0108]等)に記載のものを好適に用いることができる。 The type of polymerizable liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used. A cured product layer formed by polymerizing a polymerizable liquid crystal compound develops retardation by curing in a state in which the polymerizable liquid crystal compound is oriented in a suitable direction. When the rod-like polymerizable liquid crystal compound is aligned horizontally or vertically with respect to the planar direction of the display device, the optical axis of the polymerizable liquid crystal compound coincides with the long axis direction of the polymerizable liquid crystal compound. When the discotic polymerizable liquid crystal compound is oriented, the optical axis of the polymerizable liquid crystal compound exists in a direction orthogonal to the discotic surface of the polymerizable liquid crystal compound. As the rod-like polymerizable liquid crystal compound, for example, those described in JP-A-11-513019 (claim 1 etc.) can be preferably used. As the discotic polymerizable liquid crystal compound, JP-A-2007-108732 (paragraphs [0020] to [0067], etc.), JP-A-2010-244038 (paragraphs [0013] to [0108], etc.) described in can be preferably used.
 重合性液晶化合物が有する重合性基とは、重合反応に関与する基を意味し、光重合性基であることが好ましい。光重合性基とは、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、(メタ)アクリロイルオキシ基、オキシラニル基、オキセタニル基、スチリル基、アリル基等が挙げられる。中でも、(メタ)アクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物が有する液晶性はサーモトロピック性液晶でもリオトロピック液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよい。重合性液晶化合物の硬化物層を形成するために重合性液晶化合物を2種類以上を併用する場合、少なくとも1種類が分子内に2以上の重合性基を有することが好ましい。本明細書において、(メタ)アクリロイルとは、アクリロイル及び/又はメタクリロイルをいう。 The polymerizable group possessed by the polymerizable liquid crystal compound means a group involved in the polymerization reaction, and is preferably a photopolymerizable group. A photopolymerizable group is a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, (meth)acryloyloxy group, oxiranyl group, oxetanyl group, styryl group and allyl group. . Among them, a (meth)acryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred. The liquid crystallinity of the polymerizable liquid crystal compound may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order. When two or more types of polymerizable liquid crystal compounds are used in combination to form a cured product layer of the polymerizable liquid crystal compound, at least one type preferably has two or more polymerizable groups in the molecule. As used herein, (meth)acryloyl refers to acryloyl and/or methacryloyl.
 位相差層が上記硬化物層を含むものである場合、位相差層は配向層を含んでいてもよい。配向層は、重合性液晶化合物を所望の方向に配向させる配向規制力を有する。配向層は、重合性液晶化合物の分子軸を表示装置の平面方向に対して垂直配向した垂直配向層であってもよく、重合性液晶化合物の分子軸を表示装置の平面方向に対して水平配向した水平配向層であってもよく、重合性液晶化合物の分子軸を表示装置の平面方向に対して傾斜配向させる傾斜配向層であってもよい。位相差層が2以上の配向層を含む場合、配向層は互いに同じであってもよく、互いに異なっていてもよい。 When the retardation layer contains the cured product layer, the retardation layer may contain an orientation layer. The orientation layer has an orientation regulating force that orients the polymerizable liquid crystal compound in a desired direction. The alignment layer may be a vertical alignment layer in which the molecular axis of the polymerizable liquid crystal compound is vertically aligned with respect to the in-plane direction of the display device, and the molecular axis of the polymerizable liquid crystal compound is aligned horizontally with respect to the in-plane direction of the display device. It may be a horizontal alignment layer, or an oblique alignment layer in which the molecular axis of the polymerizable liquid crystal compound is obliquely aligned with respect to the plane direction of the display device. When the retardation layer comprises two or more alignment layers, the alignment layers may be the same as each other or different from each other.
 配向層としては、重合性液晶化合物を含む液晶層形成用組成物の塗工等により溶解しない溶媒耐性を有し、溶媒の除去や重合性液晶化合物の配向のための加熱処理に対する耐熱性を有するものが好ましい。配向層としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向性ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。 The alignment layer has a solvent resistance that does not dissolve when a composition for forming a liquid crystal layer containing a polymerizable liquid crystal compound is applied, etc., and has heat resistance to heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound. things are preferred. Examples of the alignment layer include an alignment polymer layer formed of an alignment polymer, a photo-alignment polymer layer formed of a photo-alignment polymer, and a groove alignment layer having an uneven pattern or a plurality of grooves on the layer surface. can be done.
 上記硬化物層は、重合性液晶化合物と溶剤、必要に応じて各種添加剤を含む位相差層形成用の組成物を、配向層上に塗布して塗膜を形成し、この塗膜を固化(硬化)させることによって、重合性液晶化合物の硬化物層を形成することができる。あるいは、基材層上に上記組成物を塗布して塗膜を形成し、この塗膜を基材層とともに延伸することによって硬化物層を形成してもよい。上記組成物は、上記した重合性液晶化合物及び溶剤の他に、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等を含んでいてもよい。重合性液晶化合物、溶剤、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等は、公知のものを適宜用いることができる。 The cured product layer is formed by applying a composition for forming a retardation layer containing a polymerizable liquid crystal compound and a solvent, and various additives as necessary, onto the alignment layer to form a coating film, and solidifying the coating film. By (curing), a cured product layer of the polymerizable liquid crystal compound can be formed. Alternatively, the composition may be applied onto the substrate layer to form a coating film, and the coating film may be stretched together with the substrate layer to form the cured product layer. The composition may contain a polymerization initiator, a reactive additive, a leveling agent, a polymerization inhibitor, etc., in addition to the polymerizable liquid crystal compound and solvent described above. As the polymerizable liquid crystal compound, solvent, polymerization initiator, reactive additive, leveling agent, polymerization inhibitor, etc., known ones can be appropriately used.
 基材層としては、樹脂材料で形成されたフィルムを用いることができ、例えば後述する第1保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムを挙げることができる。基材層の厚みは特に限定されないが、一般には強度や取扱い性等の作業性の点から1~300μm以下であることが好ましく、20~200μmであることがより好ましく、30~120μmであることがさらに好ましい。基材層は、重合性液晶化合物の硬化物層とともに表示装置に組み込まれていてもよく、基材層を剥離して、重合性液晶化合物の硬化物層のみ、又は、当該硬化物層及び配向層が表示装置に組み込まれていてもよい。基材層が重合性液晶化合物の硬化物層とともに表示装置に組み込まれている場合、基材層の厚みは30μm未満であってもよく、例えば25μm以下であってもよい。 A film formed of a resin material can be used as the base layer, and for example, a film using a resin material described as a thermoplastic resin used to form the first protective film described later can be mentioned. The thickness of the substrate layer is not particularly limited, but in general, it is preferably 1 to 300 μm or less, more preferably 20 to 200 μm, more preferably 30 to 120 μm from the viewpoint of workability such as strength and handleability. is more preferred. The base material layer may be incorporated in the display device together with the cured material layer of the polymerizable liquid crystal compound, the base material layer is peeled off, and only the cured material layer of the polymerizable liquid crystal compound, or the cured material layer and the orientation A layer may be incorporated into a display device. When the substrate layer is incorporated in the display device together with the cured product layer of the polymerizable liquid crystal compound, the thickness of the substrate layer may be less than 30 μm, for example, 25 μm or less.
 位相差層が上記硬化物層を含むものである場合、位相差層の厚みは、好ましくは0.1μm以上であり、より好ましくは0.2μm以上であり、また、好ましくは3μm以下であり、より好ましくは2μm以下である。 When the retardation layer contains the cured product layer, the thickness of the retardation layer is preferably 0.1 μm or more, more preferably 0.2 μm or more, and preferably 3 μm or less, and more preferably. is 2 μm or less.
 (直線偏光層)
 直線偏光層は、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する。直線偏光層は、ヨウ素が吸着配向しているポリビニルアルコール系樹脂フィルム(以下、「PVA系フィルム」ということがある。)であってもよく、吸収異方性及び液晶性を有する化合物を含む組成物を基材フィルムに塗布して形成した液晶性の偏光層を含むフィルムであってもよい。吸収異方性及び液晶性を有する化合物は、吸収異方性を有する色素と液晶性を有する化合物との混合物であってもよく、吸収異方性及び液晶性を有する色素であってもよい。
(linear polarizing layer)
The linearly polarizing layer has a property of transmitting linearly polarized light having a plane of vibration perpendicular to the absorption axis when non-polarized light is incident thereon. The linear polarizing layer may be a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as "PVA-based film") in which iodine is adsorbed and oriented, and has a composition containing a compound having absorption anisotropy and liquid crystallinity. It may be a film containing a liquid crystalline polarizing layer formed by applying a substance to a substrate film. The compound having absorption anisotropy and liquid crystallinity may be a mixture of a dye having absorption anisotropy and a compound having liquid crystallinity, or may be a dye having absorption anisotropy and liquid crystallinity.
 直線偏光層は、ヨウ素が吸着配向しているPVA系フィルムであることが好ましい。PVA系フィルムである直線偏光層は、例えば、ポリビニルアルコールフィルム、部分ホルマール化ポリビニルアルコールフィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等のPVA系フィルムに、ヨウ素による染色処理、及び延伸処理が施されたもの等が挙げられる。必要に応じて、染色処理によりヨウ素が吸着配向したPVA系フィルムをホウ酸水溶液で処理し、その後に、ホウ酸水溶液を洗い落とす洗浄工程を行ってもよい。各工程には公知の方法を採用できる。 The linear polarizing layer is preferably a PVA-based film in which iodine is adsorbed and oriented. The linear polarizing layer, which is a PVA-based film, is obtained by subjecting a PVA-based film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene-vinyl acetate copolymer-based partially saponified film, to a dyeing treatment with iodine and a stretching treatment. and the like. If necessary, the PVA-based film having iodine adsorbed and oriented by the dyeing treatment may be treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution. A known method can be adopted for each step.
 ポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)は、ポリ酢酸ビニル系樹脂をケン化することにより製造できる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと酢酸ビニルに共重合可能な他の単量体との共重合体であることもできる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類等が挙げられる。 Polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin") can be produced by saponifying polyvinyl acetate-based resin. The polyvinyl acetate-based resin may be polyvinyl acetate, which is a homopolymer of vinyl acetate, or may be a copolymer of vinyl acetate and another monomer that can be copolymerized with vinyl acetate. Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 PVA系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。PVA系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタール等も使用可能である。PVA系樹脂の平均重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000程度である。PVA系樹脂のケン化度及び平均重合度は、JIS K 6726(1994)に準拠して求めることができる。平均重合度が1000未満では好ましい偏光性能を得ることが困難であり、10000超ではフィルム加工性に劣ることがある。 The saponification degree of the PVA-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The PVA-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used. The average degree of polymerization of the PVA-based resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000. The degree of saponification and average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726 (1994). If the average degree of polymerization is less than 1,000, it is difficult to obtain desirable polarizing performance, and if it exceeds 10,000, film workability may be poor.
 PVA系フィルムである直線偏光層の製造方法は、基材フィルムを用意し、基材フィルム上にPVA系樹脂等の樹脂の溶液を塗布し、溶媒を除去する乾燥等を行って基材フィルム上に樹脂層を形成する工程を含むものであってもよい。なお、基材フィルムの樹脂層が形成される面には、予めプライマー層を形成することができる。基材フィルムとしては、後述する第1保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムを使用できる。プライマー層の材料としては、直線偏光層に用いられる親水性樹脂を架橋した樹脂等を挙げることができる。 A method for producing a linear polarizing layer, which is a PVA-based film, involves preparing a base film, applying a solution of a resin such as a PVA-based resin on the base film, and performing drying or the like to remove the solvent. may include a step of forming a resin layer on the substrate. A primer layer can be formed in advance on the surface of the substrate film on which the resin layer is formed. As the base film, a film using a resin material described as a thermoplastic resin used for forming the first protective film, which will be described later, can be used. Examples of the material for the primer layer include a resin obtained by cross-linking the hydrophilic resin used for the linear polarizing layer.
 次いで、必要に応じて樹脂層の水分等の溶媒量を調整し、その後、基材フィルム及び樹脂層を一軸延伸し、続いて、樹脂層をヨウ素で染色してヨウ素を樹脂層に吸着配向させる。次に、必要に応じてヨウ素が吸着配向した樹脂層をホウ酸水溶液で処理し、その後に、ホウ酸水溶液を洗い落とす洗浄工程を行う。これにより、ヨウ素が吸着配向された樹脂層、すなわち、直線偏光層となるPVA系フィルムが製造される。各工程には公知の方法を採用できる。 Next, the amount of solvent such as moisture in the resin layer is adjusted as necessary, then the base film and the resin layer are uniaxially stretched, and then the resin layer is dyed with iodine to adsorb and align iodine on the resin layer. . Next, if necessary, the resin layer in which iodine is adsorbed and oriented is treated with an aqueous boric acid solution, followed by a washing step of washing off the aqueous boric acid solution. As a result, a resin layer in which iodine is adsorbed and oriented, that is, a PVA-based film to be a linear polarizing layer is produced. A known method can be adopted for each step.
 ヨウ素が吸着配向したPVA系フィルム又は樹脂層を処理するホウ酸含有水溶液におけるホウ酸の量は、通常、水100質量部あたり、2~15質量部程度であり、5~12質量部が好ましい。このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの量は、通常、水100質量部あたり、0.1~15質量部程度であり、5~12質量部程度が好ましい。ホウ酸含有水溶液への浸漬時間は、通常、60~1,200秒程度であり、150~600秒程度が好ましく、200~400秒程度がより好ましい。ホウ酸含有水溶液の温度は、通常、50℃以上であり、50~85℃が好ましく、60~80℃がより好ましい。 The amount of boric acid in the boric acid-containing aqueous solution for treating the PVA-based film or resin layer in which iodine is adsorbed and oriented is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water. This boric acid-containing aqueous solution preferably contains potassium iodide. The amount of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by mass, preferably about 5 to 12 parts by mass, per 100 parts by mass of water. The immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably about 150 to 600 seconds, more preferably about 200 to 400 seconds. The temperature of the boric acid-containing aqueous solution is usually 50°C or higher, preferably 50 to 85°C, more preferably 60 to 80°C.
 PVA系フィルム、並びに、基材フィルム及び樹脂層の一軸延伸は、染色の前に行ってもよいし、染色中に行ってもよいし、染色後のホウ酸処理中に行ってもよく、これら複数の段階においてそれぞれ一軸延伸を行ってもよい。PVA系フィルム、並びに、基材フィルム及び樹脂層は、MD方向(フィルム搬送方向)に一軸延伸してもよく、この場合、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、PVA系フィルム、並びに、基材フィルム及び樹脂層は、TD方向(フィルム搬送方向に垂直な方向)に一軸延伸してもよく、この場合、いわゆるテンター法を使用することができる。また、上記延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤にてPVA系フィルム又は樹脂層を膨潤させた状態で延伸を行う湿式延伸であってもよい。直線偏光層の性能を発現するためには延伸倍率は4倍以上であり、5倍以上であることが好ましく、特に5.5倍以上が好ましい。延伸倍率の上限は特にないが、破断等を抑制する観点から8倍以下が好ましい。 Uniaxial stretching of the PVA-based film, the substrate film and the resin layer may be performed before dyeing, during dyeing, or during boric acid treatment after dyeing. Uniaxial stretching may be performed in each of a plurality of stages. The PVA-based film, the base film and the resin layer may be uniaxially stretched in the MD direction (film transport direction). You may stretch|stretch uniaxially using. Moreover, the PVA-based film, the base film and the resin layer may be uniaxially stretched in the TD direction (the direction perpendicular to the film transport direction), in which case a so-called tenter method can be used. The stretching may be dry stretching in which the film is stretched in the atmosphere, or may be wet stretching in which the PVA-based film or resin layer is swollen with a solvent and then stretched. In order to exhibit the performance of the linear polarizing layer, the draw ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. Although there is no particular upper limit for the draw ratio, it is preferably 8 times or less from the viewpoint of suppressing breakage and the like.
 基材フィルムを用いる製造方法で作製した直線偏光層は、第1保護フィルム又は第2保護フィルムを積層した後に基材フィルムを剥離することで得ることができる。この方法によれば、直線偏光層のさらなる薄膜化が可能となる。 A linear polarizing layer produced by a manufacturing method using a base film can be obtained by peeling off the base film after laminating the first protective film or the second protective film. According to this method, the thickness of the linear polarizing layer can be further reduced.
 PVA系フィルムである直線偏光層の厚みは、1μm以上であることが好ましく、2μm以上であってもよく、5μm以上であってもよく、また、30μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であってもよく、8μm以下であってもよい。 The thickness of the linear polarizing layer, which is a PVA-based film, is preferably 1 μm or more, may be 2 μm or more, or may be 5 μm or more, and is preferably 30 μm or less, and 15 μm or less. is more preferable, and may be 10 μm or less, or may be 8 μm or less.
 液晶性の偏光層を含むフィルムは、液晶性及び吸収異方性を有する色素を含む組成物、又は、吸収異方性を有する色素と重合性液晶とを含む組成物を基材フィルムに塗布して得られる直線偏光層が挙げられる。基材フィルムとしては、例えば後述する第1保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムが挙げられる。液晶性の偏光層を含むフィルムとしては、例えば特開2013-33249号公報等に記載の偏光層が挙げられる。 A film containing a liquid crystalline polarizing layer is obtained by coating a base film with a composition containing a dye having liquid crystallinity and absorption anisotropy, or a composition containing a dye having absorption anisotropy and a polymerizable liquid crystal. A linear polarizing layer obtained by Examples of the base film include a film using a resin material described as a thermoplastic resin used for forming the first protective film, which will be described later. Examples of the film containing a liquid crystalline polarizing layer include the polarizing layer described in JP-A-2013-33249.
 上記のようにして形成した基材フィルムと直線偏光層との合計厚みは小さい方が好ましいが、小さすぎると強度が低下し、加工性に劣る傾向があるため、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5~3μmである。 The total thickness of the substrate film and the linearly polarizing layer formed as described above is preferably as small as possible. It is 5 μm or less, more preferably 0.5 to 3 μm.
 上記ようにして得られた直線偏光層(PVA系フィルム、液晶性の偏光層を含むフィルム)は、その片面又は両面に、接着剤を介して、後述する第1保護フィルム及び/又は第2保護フィルムを積層した直線偏光板とした状態で表示装置に組み込まれてもよい。液晶性の偏光層を含むフィルムでは、上記した基材フィルムを第1保護フィルム又は第2保護フィルムとしてもよい。 The linear polarizing layer (PVA-based film, film containing a liquid crystalline polarizing layer) obtained as described above is coated on one or both sides thereof via an adhesive with a first protective film and/or a second protective film to be described later. A linear polarizing plate in which films are laminated may be incorporated in a display device. In the film containing the liquid crystalline polarizing layer, the above base film may be used as the first protective film or the second protective film.
 (第1保護フィルム、第2保護フィルム)
 第1保護フィルム及び第2保護フィルムとしては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性等に優れる熱可塑性樹脂から形成されたフィルムが用いられる。熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリカーボネート樹脂;ナイロンや芳香族ポリアミド等のポリアミド樹脂;ポリイミド樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン樹脂;シクロ系及びノルボルネン構造を有する環状ポリオレフィン樹脂(ノルボルネン系樹脂ともいう);(メタ)アクリル樹脂;ポリアリレート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂、並びにこれらの混合物を挙げることができる。第1保護フィルム及び第2保護フィルムの樹脂組成は同一であってもよいし、異なっていてもよい。
(First protective film, second protective film)
As the first protective film and the second protective film, for example, a film formed from a thermoplastic resin that is excellent in transparency, mechanical strength, thermal stability, water barrier properties, isotropy, stretchability, etc. is used. Specific examples of thermoplastic resins include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; polyamide resins such as nylon and aromatic polyamides; Resin; polyolefin resin such as polyethylene, polypropylene, ethylene/propylene copolymer; cyclic polyolefin resin having cyclo-type and norbornene structure (also referred to as norbornene-based resin); (meth)acrylic resin; polyarylate resin; polystyrene resin; polyvinyl alcohol Resins, as well as mixtures thereof, may be mentioned. The resin compositions of the first protective film and the second protective film may be the same or different.
 第1保護フィルムは、反射防止特性、防眩特性、ハードコート特性等を有するものであってもよい(以下、当該特性を有する保護フィルムを「機能性保護フィルム」ということがある。)。第1保護フィルムが機能性保護フィルムではない場合、直線偏光板の片面には、反射防止層、防眩層、ハードコート層等の表面機能層が設けられていてもよい。表面機能層は、第1保護フィルムに直接接するように設けられることが好ましい。表面機能層は、第1保護フィルムの直線偏光層側とは反対側に設けられることが好ましい。 The first protective film may have antireflection properties, antiglare properties, hard coat properties, etc. (Hereinafter, a protective film having such properties may be referred to as a "functional protective film".). When the first protective film is not a functional protective film, one surface of the linear polarizing plate may be provided with a surface functional layer such as an antireflection layer, an antiglare layer, or a hard coat layer. The surface functional layer is preferably provided so as to be in direct contact with the first protective film. The surface functional layer is preferably provided on the opposite side of the first protective film from the linearly polarizing layer side.
 第1保護フィルム及び第2保護フィルムは、それぞれ独立して、3μm以上であることが好ましく、5μm以上であることがより好ましく、また、50μm以下であることが好ましく、30μm以下であることがより好ましい。 The first protective film and the second protective film are each independently preferably 3 μm or more, more preferably 5 μm or more, and preferably 50 μm or less, more preferably 30 μm or less. preferable.
 (第1貼合層、第2貼合層、第3貼合層、第4貼合層、第5貼合層、第6貼合層)
 第1貼合層、第2貼合層、第3貼合層、第4貼合層、第5貼合層、第6貼合層、及び貼合層(以下、これらをまとめて「貼合層」ということがある。)は、それぞれ独立して、粘着剤層又は接着剤層である。
(First bonding layer, second bonding layer, third bonding layer, fourth bonding layer, fifth bonding layer, sixth bonding layer)
The first bonding layer, the second bonding layer, the third bonding layer, the fourth bonding layer, the fifth bonding layer, the sixth bonding layer, and the bonding layer (hereinafter collectively referred to as "bonding ) are each independently a pressure-sensitive adhesive layer or an adhesive layer.
 貼合層が粘着剤層である場合、粘着剤組成物を用いて形成された粘着剤層である。粘着剤組成物又は粘着剤組成物の反応生成物は、それ自体を金属層等の被着体に張り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。また、後述する活性エネルギー線硬化型粘着剤組成物を用いて形成された粘着剤層は、活性エネルギー線を照射することにより、架橋度や接着力を調整することができる。 When the lamination layer is an adhesive layer, it is an adhesive layer formed using an adhesive composition. The pressure-sensitive adhesive composition or the reaction product of the pressure-sensitive adhesive composition develops adhesiveness by attaching itself to an adherend such as a metal layer, and is referred to as a so-called pressure-sensitive adhesive. be. Moreover, the adhesive layer formed using the active-energy-ray-curable adhesive composition mentioned later can adjust a crosslinking degree and adhesive strength by irradiating an active-energy-ray.
 粘着剤組成物としては、従来公知の光学的な透明性に優れる粘着剤を特に制限なく用いることができ、例えば、アクリルポリマー、ウレタンポリマー、シリコーンポリマー、ポリビニルエーテル等のベースポリマーを含有する粘着剤組成物を用いることができる。また、粘着剤組成物は、活性エネルギー線硬化型粘着剤組成物、又は、熱硬化型粘着剤組成物等であってもよい。これらの中でも、透明性、粘着力、再剥離性(リワーク性)、耐候性、耐熱性等に優れるアクリル樹脂をベースポリマーとした粘着剤組成物が好適である。粘着剤層は、(メタ)アクリル樹脂、架橋剤、シラン化合物を含む粘着剤組成物の反応生成物から構成されることが好ましく、その他の成分を含んでいてもよい。 As the adhesive composition, conventionally known adhesives having excellent optical transparency can be used without particular limitation. For example, adhesives containing base polymers such as acrylic polymers, urethane polymers, silicone polymers, and polyvinyl ethers. Compositions can be used. The adhesive composition may also be an active energy ray-curable adhesive composition, a heat-curable adhesive composition, or the like. Among these, a pressure-sensitive adhesive composition using an acrylic resin as a base polymer, which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable. The pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
 粘着剤層は、活性エネルギー線硬化型粘着剤を用いて形成してもよい。活性エネルギー線硬化型粘着剤は、上記した粘着剤組成物に、多官能性アクリレート等の紫外線硬化性化合物を配合し、粘着剤層を形成した後に紫外線を照射して硬化させることにより、より硬い粘着剤層を形成することができる。活性エネルギー線硬化型粘着剤は、紫外線や電子線等のエネルギー線の照射を受けて硬化する性質を有している。活性エネルギー線硬化型粘着剤は、エネルギー線照射前においても粘着性を有しているため、被着体に密着し、エネルギー線の照射により硬化して密着力を調整することができる性質を有する。 The adhesive layer may be formed using an active energy ray-curable adhesive. The active energy ray-curable pressure-sensitive adhesive is obtained by blending an ultraviolet-curable compound such as a polyfunctional acrylate with the above-described pressure-sensitive adhesive composition, forming a pressure-sensitive adhesive layer, and then irradiating ultraviolet rays to cure the pressure-sensitive adhesive layer. An adhesive layer can be formed. Active energy ray-curable pressure-sensitive adhesives have the property of being cured by being irradiated with energy rays such as ultraviolet rays and electron beams. Since the active energy ray-curable adhesive has adhesiveness even before energy ray irradiation, it adheres to the adherend and has the property that it can be cured by energy ray irradiation to adjust the adhesive strength. .
 粘着剤層の厚みは特に限定されないが、好ましくは5μm以上であり、10μm以上であってもよく、15μm以上であってもよく、20μm以上であってもよく、25μm以上であってもよく、通常300μm以下であり、250μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。 The thickness of the adhesive layer is not particularly limited, but is preferably 5 μm or more, may be 10 μm or more, may be 15 μm or more, may be 20 μm or more, or may be 25 μm or more, It is usually 300 μm or less, may be 250 μm or less, may be 100 μm or less, or may be 50 μm or less.
 貼合層が接着剤層である場合、接着剤層は、接着剤組成物中の硬化性成分を硬化させることによって形成することができる。接着剤層を形成するための接着剤組成物としては、感圧型接着剤(粘着剤)以外の接着剤であって、例えば、水系接着剤、活性エネルギー線硬化型接着剤が挙げられる。 When the lamination layer is an adhesive layer, the adhesive layer can be formed by curing the curable component in the adhesive composition. Examples of the adhesive composition for forming the adhesive layer include adhesives other than pressure-sensitive adhesives (adhesives), such as water-based adhesives and active energy ray-curable adhesives.
 水系接着剤としては、例えば、ポリビニルアルコール樹脂を水に溶解、又は分散させた接着剤が挙げられる。水系接着剤を用いた場合の乾燥方法については特に限定されるものではないが、例えば、熱風乾燥機や赤外線乾燥機を用いて乾燥する方法が採用できる。 Examples of water-based adhesives include adhesives in which polyvinyl alcohol resin is dissolved or dispersed in water. The method of drying when a water-based adhesive is used is not particularly limited. For example, a method of drying using a hot air dryer or an infrared ray dryer can be employed.
 活性エネルギー線硬化型接着剤としては、例えば、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含む無溶剤型の活性エネルギー線硬化型接着剤が挙げられる。無溶剤型の活性エネルギー線硬化型接着剤を用いることにより、層間の密着性を向上させることができる。 Active energy ray-curable adhesives include, for example, solvent-free active energy ray-curable adhesives containing curable compounds that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. mentioned. Adhesion between layers can be improved by using a non-solvent active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤としては、良好な接着性を示すことから、カチオン重合性の硬化性化合物、ラジカル重合性の硬化性化合物のいずれか一方又は両方を含むことが好ましい。活性エネルギー線硬化型接着剤は、上記硬化性化合物の硬化反応を開始させるための光カチオン重合開始剤等のカチオン重合開始剤、又はラジカル重合開始剤をさらに含むことができる。 The active energy ray-curable adhesive preferably contains either one or both of a cationic polymerizable curable compound and a radically polymerizable curable compound because it exhibits good adhesiveness. The active energy ray-curable adhesive can further contain a cationic polymerization initiator such as a photocationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 カチオン重合性の硬化性化合物としては、例えば、脂環式環に結合したエポキシ基を有する脂環式エポキシ化合物、2個以上のエポキシ基を有し芳香環を有さない多官能脂肪族エポキシ化合物、エポキシ基を1つ有する単官能エポキシ基(但し、脂環式エポキシ化合物に含まれるものを除く)、2個以上のエポキシ基を有し芳香環を有する多官能芳香族エポキシ化合物等のエポキシ系化合物;分子内に1個又は2個以上のオキセタン環を有するオキセタン化合物;これらの組み合わせを挙げることができる。 Examples of cationic polymerizable curable compounds include alicyclic epoxy compounds having an epoxy group bonded to an alicyclic ring, and polyfunctional aliphatic epoxy compounds having two or more epoxy groups and no aromatic ring. , monofunctional epoxy groups having one epoxy group (excluding those contained in alicyclic epoxy compounds), polyfunctional aromatic epoxy compounds having two or more epoxy groups and aromatic rings, etc. compounds; oxetane compounds having one or more oxetane rings in the molecule; and combinations thereof.
 ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。 Examples of radically polymerizable curable compounds include (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule), other radically polymerizable double bonds. vinyl-based compounds, or combinations thereof.
 活性エネルギー線硬化型接着剤は、必要に応じて、光増感助剤等の増感剤を含有することができる。増感剤を使用することにより、反応性が向上し、接着剤層の機械強度や接着強度をさらに向上させることができる。増感剤としては、公知のものを適宜適用することができる。増感剤を配合する場合、その配合量は、活性エネルギー線硬化型接着剤の総量100質量部に対し、0.1~20質量部の範囲とすることが好ましい。 The active energy ray-curable adhesive can contain a sensitizer such as a photosensitizer as needed. By using a sensitizer, the reactivity is improved, and the mechanical strength and adhesive strength of the adhesive layer can be further improved. A known sensitizer can be appropriately applied. When a sensitizer is blended, the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass as the total amount of the active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤は、必要に応じて、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶媒等の添加剤を含有することができる。 Active energy ray-curable adhesives may optionally contain ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow control agents, plasticizers, antifoaming agents, and antistatic agents. Additives such as agents, leveling agents, solvents and the like can be included.
 活性エネルギー線硬化型接着剤を用いた場合は、紫外線、可視光、電子線、X線のような活性エネルギー線を照射し、接着剤の塗布層を硬化させて接着剤層を形成することができる。活性エネルギー線としては、紫外線が好ましく、この場合の光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等を用いることができる。 When an active energy ray-curable adhesive is used, an adhesive layer can be formed by irradiating an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays to cure the adhesive coating layer. can. As the active energy ray, ultraviolet rays are preferable, and as a light source in this case, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, etc. can be used. can.
 貼合層が接着剤層である場合の厚みは、0.1μm以上であることが好ましく、0.5μm以上であってもよく、また10μm以下であることが好ましく、5μm以下であってもよい。 When the lamination layer is an adhesive layer, the thickness is preferably 0.1 µm or more, and may be 0.5 µm or more, and preferably 10 µm or less, and may be 5 µm or less. .
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 [屈折率の測定]
 高屈折率層の屈折率は、25℃環境下で多波長アッベ屈折計〔(株)アタゴ製“DR-M4”〕を用い、測定波長を589nmとして測定した。
[Measurement of refractive index]
The refractive index of the high refractive index layer was measured at 25° C. using a multi-wavelength Abbe refractometer [“DR-M4” manufactured by Atago Co., Ltd.] at a measurement wavelength of 589 nm.
 [視感度補正単体透過率Tyの測定]
 直線偏光層について、積分球付き分光光度計〔日本分光(株)製の「V7100」〕を用いて波長380~780nmの範囲におけるMD透過率及びTD透過率を測定し、下記式:
  単体透過率(%)=(MD+TD)/2
に基づいて各波長における単体透過率を算出した。
[Measurement of Visibility Correction Single Transmittance Ty]
For the linearly polarizing layer, the MD transmittance and TD transmittance in the wavelength range of 380 to 780 nm were measured using a spectrophotometer with an integrating sphere ["V7100" manufactured by JASCO Corporation], and the following formula:
Single transmittance (%) = (MD + TD) / 2
A single transmittance at each wavelength was calculated based on .
 「MD透過率」とは、グラントムソンプリズムから出る偏光の向きと直線偏光層の透過軸とを平行にしたときの透過率であり、上記式においては「MD」と表す。また、「TD透過率」とは、グラントムソンプリズムから出る偏光の向きと直線偏光層の透過軸とを直交にしたときの透過率であり、上記式においては「TD」と表す。得られた単体透過率について、JIS Z 8701:1999「色の表示方法-XYZ表色系及びX101010表色系」の2度視野(C光源)により視感度補正を行い、視感度補正単体透過率を求めた。 "MD transmittance" is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the linearly polarizing layer, and is expressed as "MD" in the above formula. The "TD transmittance" is the transmittance when the direction of the polarized light emitted from the Glan-Thompson prism is perpendicular to the transmission axis of the linearly polarizing layer, and is expressed as "TD" in the above formula. The obtained single transmittance was subjected to luminosity correction with a 2-degree field of view (C light source) of JIS Z 8701: 1999 “Color display method-XYZ color system and X 10 Y 10 Z 10 color system”. A sensitivity-corrected single transmittance was obtained.
 [面内位相差値の測定]
 第1位相差層及び第1保護フィルムの面内位相差値は、位相差測定装置(王子計測機器株式会社製 KOBRA-WPR)を用いて測定した。
[Measurement of in-plane retardation value]
The in-plane retardation values of the first retardation layer and the first protective film were measured using a retardation measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd.).
 [厚み方向位相差値の測定]
 第2位相差層の厚み方向位相差値は、位相差測定装置(王子計測機器株式会社製 KOBRA-WPR)を用いて測定した。測定においては、第2位相差層への光の入射角を変化させて、第2位相差層の正面位相差値、及び進相軸を中心に40°傾斜させたときの位相差値を測定した。各波長における平均屈折率は、日本分光株式会社製のエリプソメータM-220を用いて測定した。また、第2位相差層の厚みは浜松ホトニクス株式会社製のOptical NanoGauge膜厚計C12562-01を使用して測定した。上記で測定した正面位相差値、進相軸を中心に40°傾斜させたときの位相差値、平均屈折率、第2位相差層の厚みの値から、王子計測機器技術資料(https://oji-keisoku.co.jp/cms/uploads/kbr_shiryo04.pdf)を参考に3次元屈折率を算出した。得られた3次元屈折率から、上記した式(i)にしたがって、第2位相差層の厚み方向位相差値Rthを算出した。
[Measurement of thickness direction retardation value]
The thickness direction retardation value of the second retardation layer was measured using a retardation measuring device (KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd.). In the measurement, the incident angle of light to the second retardation layer is changed, and the front retardation value of the second retardation layer and the retardation value when tilted 40° around the fast axis are measured. did. The average refractive index at each wavelength was measured using an ellipsometer M-220 manufactured by JASCO Corporation. Further, the thickness of the second retardation layer was measured using an Optical NanoGauge film thickness gauge C12562-01 manufactured by Hamamatsu Photonics K.K. From the front retardation value measured above, the retardation value when tilted 40 ° around the fast axis, the average refractive index, and the thickness of the second retardation layer, Oji Scientific Instruments technical data (https:/ /oji-keisoku.co.jp/cms/uploads/kbr_shiryo04.pdf) to calculate the three-dimensional refractive index. From the obtained three-dimensional refractive index, the thickness direction retardation value Rth of the second retardation layer was calculated according to the above formula (i).
 [刺激値Yの測定]
 刺激値Yの測定には、分光測色計〔コニカミノルタ社製のCM2600d〕を用いた。積層体のモスアイフィルム側から分光測色計の光を入射し、その反射光の刺激値Yを測定した。なお、モスアイフィルムの反射率は非常に小さいため、分光測色計の光が空気とモスアイフィルムとの間で界面反射する影響は無視できる。測定にあたっては、分光測色計の受発光部から光進行方向1m以内に光反射性の物体がないことを確認し、外光による影響を除くため、十分に暗い環境で測定を行った。この測定環境下で測定サンプル(積層体)がない状態で分光測色計の測定を行った結果、刺激値Yが0.1%以下であることを確認した。したがって、上記測定環境下で積層体の刺激値Yを測定した場合、分光測色計が検知する光は、偏光子で一部吸収され、高屈折率層で反射した光のみとなる。
[Measurement of stimulus value Y]
A spectrophotometer [CM2600d manufactured by Konica Minolta] was used to measure the stimulus value Y. Light from a spectrophotometer was incident from the moth-eye film side of the laminate, and the stimulus value Y of the reflected light was measured. Since the reflectance of the moth-eye film is very small, the influence of interfacial reflection between the air and the moth-eye film of the spectrophotometer light can be ignored. In the measurement, it was confirmed that there was no light-reflecting object within 1 m from the light emitting/receiving part of the spectrophotometer, and the measurement was performed in a sufficiently dark environment in order to eliminate the influence of external light. As a result of performing measurement with a spectrophotometer under this measurement environment without a measurement sample (laminate), it was confirmed that the stimulus value Y was 0.1% or less. Therefore, when the stimulus value Y of the laminate is measured under the above measurement environment, light detected by the spectrophotometer is partly absorbed by the polarizer and is only light reflected by the high refractive index layer.
 〔実施例1〕
 (偏光子(1)の作製)
 厚み20μmのポリビニルアルコール系樹脂フィルム(平均重合度は約2400であり、ケン化度は99.9モル%以上である。)を乾式延伸により延伸倍率約4.5倍に縦一
軸延伸した。延伸後の緊張状態を保ったまま、温度が30℃である純水に60秒間浸漬した。引続き緊張状態を保ったまま、ヨウ素/ヨウ化カリウム/水の質量比が0.05/5/100であり、温度が28℃であるヨウ素・ヨウ化カリウム水溶液に60秒間浸漬した。引続き緊張状態を保ったまま、ヨウ化カリウム/ホウ酸/水の質量比が15/5.5/100であり、温度が64℃であるヨウ化カリウム・ホウ酸水溶液に170秒間浸漬した。引続き緊張状態を保ったまま、温度10℃の純水で5秒間水洗し、引続き緊張状態を保ったまま大気中温度80℃にて70秒間乾燥して、ポリビニルアルコール系樹脂フィルムにヨウ素が吸着配向していて、厚みが8μmである偏光子(1)(直線偏光層)を作製した。この偏光子(1)の視感度補正単体透過率Tyは、42.2±0.5%であった。
[Example 1]
(Production of polarizer (1))
A polyvinyl alcohol-based resin film having a thickness of 20 μm (average polymerization degree is about 2400 and saponification degree is 99.9 mol % or more) was longitudinally uniaxially stretched at a draw ratio of about 4.5 times by dry stretching. It was immersed in pure water at a temperature of 30° C. for 60 seconds while maintaining the stretched state. Subsequently, while maintaining the strained state, it was immersed in an iodine/potassium iodide aqueous solution having a mass ratio of iodine/potassium iodide/water of 0.05/5/100 and a temperature of 28° C. for 60 seconds. Subsequently, while maintaining the strained state, it was immersed in an aqueous potassium iodide/boric acid solution having a mass ratio of potassium iodide/boric acid/water of 15/5.5/100 and a temperature of 64° C. for 170 seconds. Subsequently, while maintaining the tension, the film was washed with pure water at a temperature of 10°C for 5 seconds, and then dried at an atmospheric temperature of 80°C for 70 seconds while maintaining the tension. A polarizer (1) (linear polarizing layer) having a thickness of 8 μm was produced. The luminous efficiency correction single transmittance Ty of this polarizer (1) was 42.2±0.5%.
 (第1位相差層(1)の準備)
 第1位相差層(1)として、ハードコート層を有する厚み25μmの環状ポリオレフィン樹脂フィルムを準備した。第1位相差層(1)の波長550nmにおける面内位相差値は、100nmであった。
(Preparation of first retardation layer (1))
A cyclic polyolefin resin film having a thickness of 25 μm and having a hard coat layer was prepared as the first retardation layer (1). The in-plane retardation value of the first retardation layer (1) at a wavelength of 550 nm was 100 nm.
 (水系接着剤の調製)
 水100質量部にカルボキシル基変性ポリビニルアルコール〔(株)クラレ製「KL-318」〕3質量部を溶解させて、ポリビニルアルコール水溶液を得、このポリビニルアルコール水溶液(水100質量部)に水溶性ポリアミドエポキシ樹脂〔田岡化学工業(株)製「スミレーズレジン650(30)」、固形分濃度30質量%〕1.5質量部(固形分は0.45質量部)を加えて、水系接着剤を得た。
(Preparation of water-based adhesive)
3 parts by mass of carboxyl group-modified polyvinyl alcohol (“KL-318” manufactured by Kuraray Co., Ltd.) is dissolved in 100 parts by mass of water to obtain an aqueous polyvinyl alcohol solution. Add 1.5 parts by mass (solid content: 0.45 parts by mass) of epoxy resin ["Sumireze Resin 650 (30)" manufactured by Taoka Chemical Co., Ltd., solid content concentration 30 mass%] to prepare a water-based adhesive. Obtained.
 (直線偏光板(1)の作製)
 第1保護フィルムとして厚み13μmの環状ポリオレフィン樹脂フィルムを準備した。また、第2保護フィルムとして、表面にケン化処理を施していないトリアセチルセルロース系樹脂フィルム〔コニカミノルタ(株)製「KC4UY」、厚み40μm〕を準備した。
(Preparation of linear polarizing plate (1))
A cyclic polyolefin resin film having a thickness of 13 μm was prepared as a first protective film. As the second protective film, a triacetyl cellulose-based resin film [“KC4UY” manufactured by Konica Minolta, Inc., thickness 40 μm] whose surface was not saponified was prepared.
 上記で得た偏光子(1)の一方の面に、上記で得た水系接着剤を介して、上記で準備した第1保護フィルム(環状ポリオレフィン樹脂フィルム)を重ね合わせ、偏光子(1)の他方の面に純水を介して、上記で準備した第2保護フィルム(トリアセチルセルリース系樹脂フィルム)を重ね合わせ、一対の貼合ロール間に通し、その後温度85℃で3分間加熱乾燥することにより、水系接着剤を硬化させて、第3貼合層としての接着剤層を形成して、第1保護フィルム/第3貼合層/偏光子(1)/第2保護フィルムの層構造を有する直線偏光板(1)を作製した。上記第1保護フィルムの波長550nmにおける面内位相差値は、0nmであった。 On one surface of the polarizer (1) obtained above, the first protective film (cyclic polyolefin resin film) prepared above is superposed via the water-based adhesive obtained above, and the polarizer (1) is The second protective film (triacetyl cellulose resin film) prepared above is overlaid on the other surface through pure water, passed between a pair of laminating rolls, and then dried by heating at a temperature of 85° C. for 3 minutes. Thereby, the water-based adhesive is cured to form an adhesive layer as a third bonding layer, and a layer structure of first protective film/third bonding layer/polarizer (1)/second protective film is formed. A linear polarizing plate (1) having The in-plane retardation value of the first protective film at a wavelength of 550 nm was 0 nm.
 (高屈折率層の作製)
 無アルカリガラス板〔コーニング社製「イーグルXG」、屈折率1.50〕の一方面に、酸化インジウムと酸化スズとの混合物であるITO(Indium Tin Oxide)を真空蒸着法により成膜して、厚み100μmのITO層を形成して、無アルカリガラス板とITO層との積層構造体である高屈折率層を得た。この高屈折率層の屈折率をITO層側から測定したところ2.00であった。
(Production of high refractive index layer)
A film of ITO (Indium Tin Oxide), which is a mixture of indium oxide and tin oxide, is formed on one surface of a non-alkali glass plate ["Eagle XG" manufactured by Corning, refractive index 1.50] by vacuum deposition. An ITO layer having a thickness of 100 μm was formed to obtain a high refractive index layer which is a laminated structure of the alkali-free glass plate and the ITO layer. When the refractive index of this high refractive index layer was measured from the ITO layer side, it was 2.00.
 (積層体(1)の作製)
 次に、直線偏光板(1)から第2保護フィルムを剥離し、露出した偏光子(1)側に、第4貼合層(厚み25μmのアクリル系粘着剤層)を介して、モスアイフィルム(ジオマテック社製g.moth)を積層し、直線偏光板(1)の第1保護フィルム側に、第2貼合層(厚み5μmのアクリル系粘着剤層)、第1位相差層(1)、第1貼合層(厚み25μmのアクリル系粘着剤層)、屈折率1.50の無アルカリガラス板(イーグルXG、屈折率1.50)と高屈折率層(ITO層)との積層構造体(屈折率2.00)、黒色アクリル板をこの順に積層して、積層体(1)を作製した。積層体(1)は高屈折率層が黒色アクリル板側となるように積層した。高屈折率層と黒色アクリル板との間は、積層前に滴下したエタノールにより満たして空気層を排除した。第1位相差層(1)は、ハードコート層側が高屈折率層側となるように積層した。積層体(1)において、第1位相差層(1)の遅相軸と直線偏光板(1)の偏光子(1)の吸収軸とのなす角は、45°であった。得られた積層体(1)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第1位相差層(1)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(1)/第4貼合層/モスアイフィルムであった。積層体(1)の刺激値Yを測定した結果を表1に示す。モスアイフィルムは、第4貼合層と空気層との間の界面反射の影響を無視して積層体(1)の評価を行えるように設けたものであり、実際の表示装置では第4貼合層の偏光子(1)とは反対側に表示ユニットが配置される。
(Production of laminate (1))
Next, the second protective film is peeled off from the linear polarizing plate (1), and the moth-eye film ( Geomatec g.moth) is laminated, and on the first protective film side of the linear polarizing plate (1), the second bonding layer (acrylic adhesive layer with a thickness of 5 μm), the first retardation layer (1), Laminated structure of first bonding layer (25 μm thick acrylic adhesive layer), alkali-free glass plate with refractive index of 1.50 (Eagle XG, refractive index of 1.50) and high refractive index layer (ITO layer) (refractive index 2.00) and a black acrylic plate were laminated in this order to prepare a laminate (1). Laminate (1) was laminated so that the high refractive index layer was on the black acrylic plate side. The space between the high refractive index layer and the black acrylic plate was filled with ethanol dropped before lamination to eliminate an air layer. The first retardation layer (1) was laminated so that the hard coat layer side was on the high refractive index layer side. In the laminate (1), the angle formed by the slow axis of the first retardation layer (1) and the absorption axis of the polarizer (1) of the linear polarizing plate (1) was 45°. The resulting laminate (1) has a layer structure of black acrylic plate/ethanol/high refractive index layer/first bonding layer/first retardation layer (1)/second bonding layer/first protective film/ It was 3rd bonding layer/polarizer (1)/4th bonding layer/moth-eye film. Table 1 shows the results of measuring the stimulus value Y of the laminate (1). The moth-eye film is provided so that the laminate (1) can be evaluated ignoring the influence of interface reflection between the fourth bonding layer and the air layer. A display unit is placed on the opposite side of the layer from the polarizer (1).
 〔実施例2〕
 (第1位相差層(2)の準備)
 第1位相差層(2)として、厚み50μmの環状ポリオレフィン樹脂フィルムを準備した。第1位相差層(2)の波長550nmにおける面内位相差値は、141nmであった。
[Example 2]
(Preparation of first retardation layer (2))
A cyclic polyolefin resin film having a thickness of 50 μm was prepared as the first retardation layer (2). The in-plane retardation value of the first retardation layer (2) at a wavelength of 550 nm was 141 nm.
 (積層体(2)の作製)
 第1位相差層(1)に代えて、第1位相差層(2)を用いたこと以外は、実施例1と同様の手順で積層体(2)を得た。得られた積層体(2)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第1位相差層(2)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(1)/第4貼合層/モスアイフィルムであった。積層体(2)の刺激値Yを測定した結果を表1に示す。
(Production of laminate (2))
A laminate (2) was obtained in the same manner as in Example 1, except that the first retardation layer (2) was used instead of the first retardation layer (1). The layer structure of the obtained laminate (2) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (2) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (1)/4th bonding layer/moth-eye film. Table 1 shows the result of measuring the stimulus value Y of the laminate (2).
 〔実施例3〕
 (水平配向膜形成用組成物の調製)
 下記構造の光配向性ポリマー(特開2013-33249号公報に記載)5質量部とシクロペンタノン(溶媒)95質量部とを混合し、温度80℃で1時間撹拌することにより、水平配向膜形成用組成物を得た。
・光配向性ポリマー(5質量部):
Figure JPOXMLDOC01-appb-C000001
・溶媒(95質量部):シクロペンタノン
[Example 3]
(Preparation of Composition for Forming Horizontal Alignment Film)
5 parts by mass of a photo-alignable polymer having the following structure (described in JP-A-2013-33249) and 95 parts by mass of cyclopentanone (solvent) were mixed and stirred at a temperature of 80° C. for 1 hour to form a horizontal alignment film. A forming composition was obtained.
- Photo-orientable polymer (5 parts by mass):
Figure JPOXMLDOC01-appb-C000001
- Solvent (95 parts by mass): cyclopentanone
 (第1位相差層(3)の形成用の重合性液晶組成物(A1)の調製)
 重合性液晶化合物(X1)及び重合性液晶化合物(X2)を質量比90:10で混合し、混合物を得た。得られた混合物100部に対して、レベリング剤「BYK-361N」(BM Chemie社製)0.1部と、光重合開始剤として2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(BASFジャパン株式会社製「イルガキュア(登録商標)369(Irg369)」)6部を添加した。さらに、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加した。この混合物を80℃で1時間撹拌することにより、第1位相差層(3)の形成用の重合性液晶組成物(A1)を得た。
(Preparation of polymerizable liquid crystal composition (A1) for forming first retardation layer (3))
The polymerizable liquid crystal compound (X1) and the polymerizable liquid crystal compound (X2) were mixed at a mass ratio of 90:10 to obtain a mixture. With respect to 100 parts of the resulting mixture, 0.1 part of the leveling agent "BYK-361N" (manufactured by BM Chemie) and 2-dimethylamino-2-benzyl-1-(4-morpholinophenyl as a photopolymerization initiator ) 6 parts of butan-1-one (“Irgacure (registered trademark) 369 (Irg369)” manufactured by BASF Japan Ltd.) was added. Furthermore, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration was 13%. The mixture was stirred at 80° C. for 1 hour to obtain a polymerizable liquid crystal composition (A1) for forming the first retardation layer (3).
 重合性液晶化合物(X1):
Figure JPOXMLDOC01-appb-C000002
Polymerizable liquid crystal compound (X1):
Figure JPOXMLDOC01-appb-C000002
 重合性液晶化合物(X2):
Figure JPOXMLDOC01-appb-C000003
Polymerizable liquid crystal compound (X2):
Figure JPOXMLDOC01-appb-C000003
 (第1位相差層(3)の作製)
 日本ゼオン株式会社製のCOP(環状オレフィン系樹脂)フィルム(ZF-14-50)上に、コロナ処理を実施した後、上記で得た水平配向膜形成用組成物をバーコーター塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmで偏光UV露光を実施し、水平配向膜を得た。得られた水平配向膜の膜厚をエリプソメータで測定したところ、200nmであった。
(Production of first retardation layer (3))
A COP (cyclic olefin resin) film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd. was subjected to corona treatment, and then the composition for forming a horizontal alignment film obtained above was applied with a bar coater at 80°C. for 1 minute, and using a polarized UV irradiation device (SPOT CURE SP-9; manufactured by Ushio Inc.), polarized UV exposure was performed at a wavelength of 313 nm with an integrated light amount of 100 mJ/cm 2 to obtain a horizontal alignment film. rice field. The film thickness of the resulting horizontal alignment film was measured with an ellipsometer and found to be 200 nm.
 続いて、水平配向膜上にバーコーターを用いて上記で得た重合性液晶組成物(A1)を塗布し、120℃で60秒間加熱した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、重合性液晶組成物(A1)を塗布した面から紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、水平配向液晶層(重合性液晶化合物の硬化物層)を形成し、COPフィルム/水平配向膜/水平配向液晶層の層構造を有する積層構造体(A1)を得た。COPフィルムに位相差がないことを確認した後、積層構造体(A1)の波長450nm及び波長550nmにおける面内位相差値Re(450)及びRe(550)を、第1位相差層(3)の面内位相差値Re(450)及びRe(550)として測定したところ、Re(550)は139nmであった。Re(450)/Re(550)を算出したところ、0.87であったことから、この積層体は逆波長分散性を示すことを確認した。 Subsequently, the polymerizable liquid crystal composition (A1) obtained above was applied using a bar coater on the horizontal alignment film, heated at 120° C. for 60 seconds, and then heated with a high-pressure mercury lamp (Unicure VB-15201BY-A, Ushio Denki Co., Ltd.), the surface coated with the polymerizable liquid crystal composition (A1) is irradiated with ultraviolet rays (in a nitrogen atmosphere, the integrated light amount at a wavelength of 365 nm: 500 mJ/cm 2 ), thereby forming a horizontally aligned liquid crystal layer ( A cured product layer of a polymerizable liquid crystal compound) was formed to obtain a laminated structure (A1) having a layer structure of COP film/horizontally aligned film/horizontally aligned liquid crystal layer. After confirming that there is no retardation in the COP film, the in-plane retardation values Re (450) and Re (550) at a wavelength of 450 nm and a wavelength of 550 nm of the laminated structure (A1) are measured in the first retardation layer (3). was measured as in-plane retardation values Re(450) and Re(550), Re(550) was 139 nm. When Re(450)/Re(550) was calculated, it was 0.87, so it was confirmed that this laminate exhibits reverse wavelength dispersion.
 積層構造体(A1)のCOPフィルムを剥離し、水平配向膜/水平配向液晶層を第1位相差層(3)とした。 The COP film of the laminated structure (A1) was peeled off, and the horizontal alignment film/horizontally aligned liquid crystal layer was used as the first retardation layer (3).
 (積層体(3)の作製)
 第1位相差層(1)に代えて、第1位相差層(3)を用いたこと以外は、実施例1と同様の手順で積層体(3)を得た。第1位相差層(3)は、水平配向膜側が高屈折率層側となるように積層した。得られた積層体(3)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第1位相差層(3)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(1)/第4貼合層/モスアイフィルムであった。積層体(3)の刺激値Yを測定した結果を表1に示す。
(Production of laminate (3))
A laminate (3) was obtained in the same manner as in Example 1, except that the first retardation layer (3) was used instead of the first retardation layer (1). The first retardation layer (3) was laminated so that the horizontal alignment film side was the high refractive index layer side. The layer structure of the obtained laminate (3) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (3) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (1)/4th bonding layer/moth-eye film. Table 1 shows the result of measuring the stimulation value Y of the laminate (3).
 〔実施例4〕
 (垂直配向膜形成用組成物の調製)
 シランカップリング剤「KBE-9103」(信越化学工業株式会社製)を、エタノールと水とを9:1(重量比)の割合で混合した混合溶媒に溶解させ、固形分濃度が1%の垂直配向膜形成用組成物を得た。
[Example 4]
(Preparation of composition for forming vertical alignment film)
The silane coupling agent "KBE-9103" (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in a mixed solvent in which ethanol and water were mixed at a ratio of 9:1 (weight ratio), and the solid content concentration was 1%. A composition for forming an alignment film was obtained.
 (第2位相差層(1)の形成用の重合性液晶組成物(A2)の調製)
 重合性液晶化合物であるPaliocolor LC242(BASF社登録商標)100部に対して、レベリング剤としてF-556を0.1部、及び重合開始剤としてイルガキュア369を3部添加した。固形分濃度が13%となるようにシクロペンタノンを添加して、重合性液晶組成物(A2)を得た。
(Preparation of polymerizable liquid crystal composition (A2) for forming second retardation layer (1))
0.1 part of F-556 as a leveling agent and 3 parts of Irgacure 369 as a polymerization initiator were added to 100 parts of Paliocolor LC242 (registered trademark of BASF), which is a polymerizable liquid crystal compound. Cyclopentanone was added so that the solid content concentration was 13% to obtain a polymerizable liquid crystal composition (A2).
 (第2位相差層(1)の作製)
 日本ゼオン株式会社製のCOP(環状オレフィン系樹脂)フィルム(ZF-14-50)上にコロナ処理を実施した後、垂直配向膜形成用組成物をバーコーター塗布し、120℃で1分間乾燥し、垂直配向膜を得た。得られた垂直配向膜の膜厚をエリプソメータで測定したところ、100nmであった。
(Production of second retardation layer (1))
After performing corona treatment on COP (cyclic olefin resin) film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd., the composition for forming a vertical alignment film was applied with a bar coater and dried at 120° C. for 1 minute. , to obtain a vertical alignment film. The film thickness of the resulting vertical alignment film was measured with an ellipsometer and found to be 100 nm.
 続いて、垂直配向膜上にバーコーターを用いて上記で得た重合性液晶組成物(A2)を、塗布し、120℃で1分間乾燥した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、重合性液晶組成物(A2)を塗布した面側から紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、垂直配向液晶層(重合性液晶化合物の硬化物層)を形成し、COPフィルム/垂直配向膜/垂直配向液晶層の層構造を有する積層構造体(A2)を得た。COPフィルムに位相差がないことを確認した後、積層構造体(A2)の波長550nmにおける厚み方向位相差値Rth(550)を、第2位相差層(1)の厚み方向位相差値Rth(550)として測定したところ、Rth(550)は-70nmであった。 Subsequently, the polymerizable liquid crystal composition (A2) obtained above was applied using a bar coater on the vertical alignment film, dried at 120° C. for 1 minute, and then dried with a high-pressure mercury lamp (Unicure VB-15201BY-A, (manufactured by Ushio Inc.) was used to irradiate ultraviolet rays from the side to which the polymerizable liquid crystal composition (A2) was applied (in a nitrogen atmosphere, integrated light intensity at a wavelength of 365 nm: 500 mJ/cm 2 ), thereby producing a vertically aligned liquid crystal. Layers (cured layer of polymerizable liquid crystal compound) were formed to obtain a laminate structure (A2) having a layer structure of COP film/vertically aligned film/vertically aligned liquid crystal layer. After confirming that there is no retardation in the COP film, the thickness direction retardation value Rth (550) of the laminated structure (A2) at a wavelength of 550 nm was calculated as the thickness direction retardation value Rth (550) of the second retardation layer (1). 550), the Rth(550) was -70 nm.
 積層構造体(A2)のCOPフィルム及び垂直配向膜を剥離し、垂直配向液晶層を第2位相差層(1)とした。 The COP film and vertical alignment film of the laminated structure (A2) were peeled off, and the vertical alignment liquid crystal layer was used as the second retardation layer (1).
 (積層体(4)の作製)
 実施例3と同様の手順で作製した第1位相差層(3)の水平配向液晶層側と第2位相差層(1)とを、紫外線硬化型接着剤を用いて貼合し、紫外線硬化型接着剤を硬化させて、第6貼合層としての接着剤層(厚み1μm)を形成し、第2位相差層(1)/第6貼合層/第1位相差層(3)の位相差積層体を作製した。
(Production of laminate (4))
The horizontally aligned liquid crystal layer side of the first retardation layer (3) and the second retardation layer (1) prepared by the same procedure as in Example 3 are bonded using an ultraviolet curing adhesive, and ultraviolet curing. The mold adhesive is cured to form an adhesive layer (thickness 1 μm) as the sixth bonding layer, and the second retardation layer (1) / sixth bonding layer / first retardation layer (3) A retardation laminate was produced.
 第1位相差層(1)に代えて、位相差積層体を用いたこと以外は、実施例1と同様の手順で積層体(4)を得た。位相差積層体は、第2位相差層(1)側が高屈折率層(1)側となるように積層した。得られた積層体(4)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第2位相差層(1)/第6貼合層/第1位相差層(3)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(1)/第4貼合層/モスアイフィルムであった。積層体(4)の刺激値Yを測定した結果を表1に示す。 A laminate (4) was obtained in the same manner as in Example 1, except that a retardation laminate was used instead of the first retardation layer (1). The retardation laminate was laminated so that the second retardation layer (1) side was on the high refractive index layer (1) side. The layer structure of the obtained laminate (4) is black acrylic plate/ethanol/high refractive index layer/first bonding layer/second retardation layer (1)/sixth bonding layer/first retardation layer (3)/second bonding layer/first protective film/third bonding layer/polarizer (1)/fourth bonding layer/moth-eye film. Table 1 shows the result of measuring the stimulation value Y of the laminate (4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 〔実施例5〕
 (偏光子(2)の作製)
 厚み20μmのポリビニルアルコール系樹脂フィルム(平均重合度は2400であり、ケン化度は99.9モル%以上である。)を乾式延伸により延伸倍率約4.5倍に縦一軸
延伸した。延伸後の緊張状態を保ったまま、温度が30℃である純水に60秒間浸漬した。引続き緊張状態を保ったまま、ヨウ素/ヨウ化カリウム/水の質量比が0.02/5/100であり、温度が28℃であるヨウ素・ヨウ化カリウム水溶液に60秒間浸漬した。引続き緊張状態を保ったまま、ヨウ化カリウム/ホウ酸/水の質量比が15/5.5/100であり、温度が64℃であるヨウ化カリウム・ホウ酸水溶液に45秒間浸漬した。引続き緊張状態を保ったまま、温度10℃の純水で5秒間水洗し、引続き緊張状態を保ったまま大気中温度80℃にて75秒間乾燥して、ポリビニルアルコール系樹脂フィルムにヨウ素が吸着配向していて、厚みが8μmである偏光子(2)(直線偏光層)を作製した。この偏光子(2)の視感度補正単体透過率Tyは、46.0±0.5%であった。
[Example 5]
(Production of polarizer (2))
A 20 μm-thick polyvinyl alcohol resin film (average polymerization degree is 2400 and saponification degree is 99.9 mol % or more) was longitudinally uniaxially stretched at a draw ratio of about 4.5 times by dry stretching. It was immersed in pure water at a temperature of 30° C. for 60 seconds while maintaining the stretched state. Subsequently, while maintaining the strained state, it was immersed for 60 seconds in an iodine/potassium iodide aqueous solution having a mass ratio of iodine/potassium iodide/water of 0.02/5/100 and a temperature of 28°C. Subsequently, while maintaining the tensioned state, it was immersed for 45 seconds in an aqueous potassium iodide/boric acid solution having a mass ratio of potassium iodide/boric acid/water of 15/5.5/100 and a temperature of 64°C. Subsequently, while maintaining the tension, the film was washed with pure water at a temperature of 10°C for 5 seconds, and then dried in the air at 80°C for 75 seconds while maintaining the tension, so that iodine was adsorbed and oriented on the polyvinyl alcohol resin film. A polarizer (2) (linear polarizing layer) having a thickness of 8 μm was produced. The luminous efficiency correction single transmittance Ty of this polarizer (2) was 46.0±0.5%.
 (積層体(5)の作製)
 偏光子(1)に代えて、偏光子(2)を用いたこと以外は、実施例1と同様の手順で積層体(5)を得た。得られた積層体(5)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第1位相差層(1)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(2)/第4貼合層/モスアイフィルムであった。積層体(5)の刺激値Yを測定した結果を表2に示す。
(Production of laminate (5))
A laminate (5) was obtained in the same manner as in Example 1, except that the polarizer (2) was used instead of the polarizer (1). The resulting laminate (5) has a layer structure of black acrylic plate/ethanol/high refractive index layer/first bonding layer/first retardation layer (1)/second bonding layer/first protective film/ It was 3rd bonding layer/polarizer (2)/4th bonding layer/moth-eye film. Table 2 shows the result of measuring the stimulus value Y of the laminate (5).
 〔実施例6〕
 偏光子(1)に代えて、偏光子(2)を用いたこと以外は、実施例2と同様の手順で積層体(6)を得た。得られた積層体(6)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第1位相差層(2)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(2)/第4貼合層/モスアイフィルムであった。積層体(6)の刺激値Yを測定した結果を表2に示す。
[Example 6]
A laminate (6) was obtained in the same manner as in Example 2, except that the polarizer (2) was used instead of the polarizer (1). The layer structure of the obtained laminate (6) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (2) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (2)/4th bonding layer/moth-eye film. Table 2 shows the result of measuring the stimulus value Y of the laminate (6).
 〔実施例7〕
 偏光子(1)に代えて、偏光子(2)を用いたこと以外は、実施例3と同様の手順で積層体(7)を得た。得られた積層体(7)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第1位相差層(3)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(2)/第4貼合層/モスアイフィルムであった。積層体(7)の刺激値Yを測定した結果を表2に示す。
[Example 7]
A laminate (7) was obtained in the same manner as in Example 3, except that the polarizer (2) was used instead of the polarizer (1). The layer structure of the obtained laminate (7) is black acrylic plate / ethanol / high refractive index layer / first bonding layer / first retardation layer (3) / second bonding layer / first protective film / It was 3rd bonding layer/polarizer (2)/4th bonding layer/moth-eye film. Table 2 shows the result of measuring the stimulus value Y of the laminate (7).
 〔実施例8〕
 偏光子(1)に代えて、偏光子(2)を用いたこと以外は、実施例4と同様の手順で積層体(8)を得た。得られた積層体(8)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第2位相差層(1)/第6貼合層/第1位相差層(3)/第2貼合層/第1保護フィルム/第3貼合層/偏光子(2)/第4貼合層/モスアイフィルムであった。積層体(8)の刺激値Yを測定した結果を表2に示す。
[Example 8]
A laminate (8) was obtained in the same manner as in Example 4, except that the polarizer (2) was used instead of the polarizer (1). The layer structure of the obtained laminate (8) is black acrylic plate/ethanol/high refractive index layer/first bonding layer/second retardation layer (1)/sixth bonding layer/first retardation layer. (3)/second bonding layer/first protective film/third bonding layer/polarizer (2)/fourth bonding layer/moth-eye film. Table 2 shows the result of measuring the stimulus value Y of the laminate (8).
 〔比較例1〕
 第1位相差層(1)及び第2貼合層を積層せず、第1保護フィルム上に第1粘着剤層を介して高屈折率層を積層したこと以外は、実施例5と同様にして積層体(9)を得た。得られた積層体(9)の層構造は、黒色アクリル板/エタノール/高屈折率層/第1貼合層/第1保護フィルム/第3貼合層/偏光子(2)/第4貼合層/モスアイフィルムであった。積層体(9)の刺激値Yを測定した結果を表2に示す。
[Comparative Example 1]
In the same manner as in Example 5, except that the first retardation layer (1) and the second bonding layer were not laminated, and the high refractive index layer was laminated on the first protective film via the first adhesive layer. to obtain a laminate (9). The layer structure of the obtained laminate (9) is black acrylic plate/ethanol/high refractive index layer/first bonding layer/first protective film/third bonding layer/polarizer (2)/fourth bonding layer. It was a laminate/moth-eye film. Table 2 shows the result of measuring the stimulation value Y of the laminate (9).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1及び表2に示す結果から、第1位相差層の面内位相差値が80nm以上170nm以下の範囲にあると、刺激値Yが小さくなり、表示ユニットの受光素子に入射する反射光を低減できることがわかる。また、積層体に含まれる偏光子の視感度補正単体透過率Tyが大きい場合であっても、刺激値Yを小さくすることができ、表示ユニットの受光素子に入射する反射光を低減できることがわかる。 From the results shown in Tables 1 and 2, when the in-plane retardation value of the first retardation layer is in the range of 80 nm or more and 170 nm or less, the stimulation value Y becomes small, and the reflected light incident on the light receiving element of the display unit is reduced. It can be seen that it can be reduced. Further, even when the luminosity correction single transmittance Ty of the polarizer included in the laminate is large, the stimulus value Y can be reduced, and the reflected light incident on the light receiving element of the display unit can be reduced. .
 1~4 表示装置、11 直線偏光層、12 第1保護フィルム、13 第3位相差層、21 第1貼合層、22 第2貼合層、23 第3貼合層、24 第4貼合層、25 第5貼合層、26 第6貼合層、31 第1位相差層、32 第2位相差層、40 表示ユニット、41 表示素子、42 受光センサ、45 高屈折率層、51~54 光学積層体。 1 to 4 display device, 11 linear polarizing layer, 12 first protective film, 13 third retardation layer, 21 first bonding layer, 22 second bonding layer, 23 third bonding layer, 24 fourth bonding layer, 25 fifth bonding layer, 26 sixth bonding layer, 31 first retardation layer, 32 second retardation layer, 40 display unit, 41 display element, 42 light receiving sensor, 45 high refractive index layer, 51 ~ 54 Optical laminate.

Claims (19)

  1.  視認側から高屈折率層、第1位相差層、直線偏光層、及び、表示ユニットをこの順に有する表示装置であって、
     前記高屈折率層の屈折率は、1.60以上であり、
     前記表示ユニットは、表示素子及び受光センサを有し、
     前記第1位相差層及び前記直線偏光層は、前記表示素子及び前記受光センサを覆うように積層されている、表示装置。
    A display device having a high refractive index layer, a first retardation layer, a linear polarization layer, and a display unit in this order from the viewing side,
    The refractive index of the high refractive index layer is 1.60 or more,
    The display unit has a display element and a light receiving sensor,
    The display device, wherein the first retardation layer and the linear polarization layer are laminated so as to cover the display element and the light receiving sensor.
  2.  前記第1位相差層は、平面視において、前記直線偏光層の視認側の全面を覆っている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the first retardation layer covers the entire surface of the linear polarizing layer on the visible side in plan view.
  3.  前記直線偏光層の視感度補正単体透過率は、42%以上である、請求項1又は2に記載の表示装置。 The display device according to claim 1 or 2, wherein the linear polarizing layer has a luminosity correction single transmittance of 42% or more.
  4.  前記第1位相差層の遅相軸と前記直線偏光層の吸収軸とがなす角は、10°以上80°以下である、請求項1又は2に記載の表示装置。 The display device according to claim 1 or 2, wherein the angle formed by the slow axis of the first retardation layer and the absorption axis of the linearly polarizing layer is 10° or more and 80° or less.
  5.  前記第1位相差層の波長550nmにおける面内位相差値は、80nm以上170nm以下である、請求項1又は2に記載の表示装置。 The display device according to claim 1 or 2, wherein the in-plane retardation value of the first retardation layer at a wavelength of 550 nm is 80 nm or more and 170 nm or less.
  6.  前記第1位相差層は、逆波長分散性を有する、請求項5に記載の表示装置。 The display device according to claim 5, wherein the first retardation layer has reverse wavelength dispersion.
  7.  さらに、前記高屈折率層と前記直線偏光層との間に第2位相差層を有し、
     前記第2位相差層は、前記表示素子及び前記受光センサを覆うように積層され、
     前記第2位相差層の波長550nmにおける厚み方向位相差値は、-140nm以上-20nm以下である、請求項5に記載の表示装置。
    Furthermore, having a second retardation layer between the high refractive index layer and the linear polarizing layer,
    The second retardation layer is laminated so as to cover the display element and the light receiving sensor,
    6. The display device according to claim 5, wherein the second retardation layer has a thickness direction retardation value of −140 nm or more and −20 nm or less at a wavelength of 550 nm.
  8.  前記表示素子からの出射光が前記高屈折率層で反射したときの反射光の刺激値Yは、3.45%以上4.54%以下である、請求項1又は2に記載の表示装置。 The display device according to claim 1 or 2, wherein the stimulus value Y of the reflected light when the light emitted from the display element is reflected by the high refractive index layer is 3.45% or more and 4.54% or less.
  9.  前記受光センサは、波長が320nm以上4000nm以下の光を検知可能である、請求項1又は2に記載の表示装置。 The display device according to claim 1 or 2, wherein the light-receiving sensor is capable of detecting light with a wavelength of 320 nm or more and 4000 nm or less.
  10.  前記表示素子からの出射光は、波長が320nm以上4000nm以下の光である、請求項1又は2に記載の表示装置。 3. The display device according to claim 1, wherein the light emitted from the display element has a wavelength of 320 nm or more and 4000 nm or less.
  11.  さらに、前記直線偏光層と前記表示ユニットとの間に第3位相差層を有する、請求項1又は2に記載の表示装置。 3. The display device according to claim 1, further comprising a third retardation layer between said linear polarizing layer and said display unit.
  12.  高屈折率層、第1位相差層及び直線偏光層をこの順に有する光学積層体であって、
     前記高屈折率層の屈折率は、1.60以上である、光学積層体。
    An optical laminate having a high refractive index layer, a first retardation layer and a linear polarizing layer in this order,
    The optical laminate, wherein the high refractive index layer has a refractive index of 1.60 or more.
  13.  前記第1位相差層は、平面視において、前記直線偏光層の視認側の全面を覆っている、請求項12に記載の光学積層体。 The optical layered body according to claim 12, wherein the first retardation layer covers the entire surface of the linear polarizing layer on the viewing side in plan view.
  14.  前記直線偏光層の視感度補正単体透過率は、42%以上である、請求項12又は13に記載の光学積層体。 14. The optical layered product according to claim 12 or 13, wherein the linear polarizing layer has a visibility correction single transmittance of 42% or more.
  15.  前記第1位相差層の遅相軸と前記直線偏光層の吸収軸とがなす角は、10°以上80°
    以下である、請求項12又は13に記載の光学積層体。
    The angle formed by the slow axis of the first retardation layer and the absorption axis of the linear polarizing layer is 10° or more and 80°
    14. The optical laminate according to claim 12 or 13, wherein:
  16.  前記第1位相差層の波長550nmにおける面内位相差値は、80nm以上170nm以下である、請求項12又は13に記載の光学積層体。 The optical laminate according to claim 12 or 13, wherein the in-plane retardation value of the first retardation layer at a wavelength of 550 nm is 80 nm or more and 170 nm or less.
  17.  前記第1位相差層は、逆波長分散性を有する、請求項12又は13に記載の光学積層体。 The optical laminate according to claim 12 or 13, wherein the first retardation layer has reverse wavelength dispersion.
  18.  さらに、前記高屈折率層と前記直線偏光層との間に第2位相差層を有し、
     前記第2位相差層の波長550nmにおける厚み方向位相差値は、-140nm以上-20nm以下である、請求項12又は13に記載の光学積層体。
    Furthermore, having a second retardation layer between the high refractive index layer and the linear polarizing layer,
    14. The optical laminate according to claim 12, wherein the thickness direction retardation value of the second retardation layer at a wavelength of 550 nm is -140 nm or more and -20 nm or less.
  19.  前記直線偏光層の前記第1位相差層側とは反対側に、さらに第3位相差層を有する、請求項12又は13に記載の光学積層体。 The optical laminate according to claim 12 or 13, further comprising a third retardation layer on the side opposite to the first retardation layer of the linearly polarizing layer.
PCT/JP2022/024116 2021-06-23 2022-06-16 Display device WO2022270402A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280021956.2A CN116997951A (en) 2021-06-23 2022-06-16 Display device
KR1020237042053A KR20240024067A (en) 2021-06-23 2022-06-16 display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-103980 2021-06-23
JP2021103980 2021-06-23
JP2022-095695 2022-06-14
JP2022095695A JP2023003395A (en) 2021-06-23 2022-06-14 Display device

Publications (1)

Publication Number Publication Date
WO2022270402A1 true WO2022270402A1 (en) 2022-12-29

Family

ID=84544278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024116 WO2022270402A1 (en) 2021-06-23 2022-06-16 Display device

Country Status (3)

Country Link
KR (1) KR20240024067A (en)
TW (1) TW202307486A (en)
WO (1) WO2022270402A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099101A1 (en) * 2013-12-25 2015-07-02 京セラ株式会社 Electronic device and light-transmitting cover substrate for electronic devices
US20190034688A1 (en) * 2017-07-27 2019-01-31 Samsung Display Co., Ltd. Fingerprint sensor, display device including the same, and method of operating fingerprint sensor
US20190102595A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. Electronic device with optical sensor
WO2020067243A1 (en) * 2018-09-28 2020-04-02 東洋紡株式会社 Image display device with fingerprint authentication sensor
CN112054044A (en) * 2020-08-13 2020-12-08 合肥维信诺科技有限公司 Display panel and display device
JP2020201510A (en) * 2015-11-30 2020-12-17 日東電工株式会社 Liquid crystal display
US20210036265A1 (en) * 2019-07-30 2021-02-04 Apple Inc. Electronic Device Having Display With Internal Light Reflection Suppression

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099101A1 (en) * 2013-12-25 2015-07-02 京セラ株式会社 Electronic device and light-transmitting cover substrate for electronic devices
JP2020201510A (en) * 2015-11-30 2020-12-17 日東電工株式会社 Liquid crystal display
US20190034688A1 (en) * 2017-07-27 2019-01-31 Samsung Display Co., Ltd. Fingerprint sensor, display device including the same, and method of operating fingerprint sensor
US20190102595A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. Electronic device with optical sensor
WO2020067243A1 (en) * 2018-09-28 2020-04-02 東洋紡株式会社 Image display device with fingerprint authentication sensor
US20210036265A1 (en) * 2019-07-30 2021-02-04 Apple Inc. Electronic Device Having Display With Internal Light Reflection Suppression
CN112054044A (en) * 2020-08-13 2020-12-08 合肥维信诺科技有限公司 Display panel and display device

Also Published As

Publication number Publication date
TW202307486A (en) 2023-02-16
KR20240024067A (en) 2024-02-23

Similar Documents

Publication Publication Date Title
TWI509297B (en) Thin type polarizer and a display used thereof
JP7300906B2 (en) Optical layered body and image display device provided with the same
TW201634260A (en) Polarizing plate, liquid crystal panel and liquid crystal display device
JP6900213B2 (en) Polarizing plate with anti-reflection layer and anti-reflection layer and its manufacturing method
WO2017170019A1 (en) Polarizing plate set and ips mode liquid crystal display using same
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP7462597B2 (en) Circularly polarizing plate, optical laminate and image display device
WO2022004137A1 (en) Polarizing plate with adhesive layer
WO2022270402A1 (en) Display device
JP7114664B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP7385380B2 (en) Manufacturing method of polarizing plate with retardation layer and hard coat layer
JP2023003395A (en) Display device
WO2020115977A1 (en) Polarizing plate with retardation layer and image display device using same
WO2023054595A1 (en) Optical laminate, and image display device
CN116997951A (en) Display device
WO2023054463A1 (en) Laminate film, optical laminate and image display device
JP7261336B1 (en) Polarizer
JP2023053913A (en) Optical laminate and image display device
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
WO2020100468A1 (en) Optical laminate and image display device provided with same
JP2023022022A (en) Circularly polarizing plate, optical laminate, and image display device
JP6724729B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP6699513B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280021956.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE