WO2022270321A1 - Layered body, and wrapping paper or container using such layered body - Google Patents

Layered body, and wrapping paper or container using such layered body Download PDF

Info

Publication number
WO2022270321A1
WO2022270321A1 PCT/JP2022/023221 JP2022023221W WO2022270321A1 WO 2022270321 A1 WO2022270321 A1 WO 2022270321A1 JP 2022023221 W JP2022023221 W JP 2022023221W WO 2022270321 A1 WO2022270321 A1 WO 2022270321A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
acrylate
meth
styrene
wax
Prior art date
Application number
PCT/JP2022/023221
Other languages
French (fr)
Japanese (ja)
Inventor
浩 菊池
肇 榎本
Original Assignee
Dicグラフィックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dicグラフィックス株式会社 filed Critical Dicグラフィックス株式会社
Priority to JP2023512751A priority Critical patent/JP7317262B2/en
Publication of WO2022270321A1 publication Critical patent/WO2022270321A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/22Polyalkenes, e.g. polystyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a laminate and a wrapping paper or container using the laminate.
  • Paper packaging materials such as paper bags, paper boxes, and paper cups have traditionally been used for various purposes and purposes.
  • marine plastic litter such as microplastics
  • functions such as “reusable” and “biodegradable” as an alternative to plastic materials.
  • paper made from “wood” which is a possible resource.
  • paper cups used for beverages, ice cream, yogurt, etc.
  • paper cups are made of paper, water resistance is imparted by using a polyethylene film as part of the raw material.
  • Such paper cups are obtained by laminating a polyethylene film, a polypropylene film, or the like, which is obtained by extruding a polyethylene resin, a polypropylene resin, or the like melted with heat, onto a paper substrate.
  • the polyethylene film When the polyethylene film is molded into a paper cup, it acts as an adhesive by being melted by indirect heating such as a burner or hot air, and since the polyethylene film exists inside the paper cup, the paper base does not come into direct contact with the contents and is waterproof. properties, moisture resistance and strength.
  • water-based heat sealing agents are known to serve as adhesives when molding bags, boxes, paper cups, and the like.
  • Patent Document 1 an ethylene-based resin aqueous dispersion obtained by mixing and dispersing an olefin- ⁇ , ⁇ -unsaturated carboxylic acid copolymer neutralized with ammonia or an amine and an olefin-based thermoplastic resin other than this at a specific ratio It is disclosed that the liquid can be applied as a heat sealing agent.
  • an aqueous dispersion containing a polyolefin resin composed of an unsaturated carboxylic acid unit, an ethylene-based hydrocarbon, and an acrylic acid ester or a methacrylic acid ester, a natural wax, and an aqueous medium in a specific ratio can be applied as a heat sealing agent.
  • the present invention has at least a paper substrate, a first layer provided on at least a part of the paper substrate, and a second layer provided on the first layer, and the first layer
  • one of the second layers is a coating layer containing a resin containing a styrene acrylic copolymer of styrene, ⁇ -methylstyrene and (meth)acrylate
  • the other is a coating layer containing a heat sealing agent. It is a laminate.
  • the present invention also provides a package or container using the laminate.
  • the laminate of the present invention is a laminate of paper having excellent water resistance, oil resistance, and heat sealability, it is useful as a substitute for paper laminated with a plastic film, and is useful for various purposes. Moreover, it can contribute to paper recycling efficiency.
  • the laminate of the present invention can easily obtain a laminate having excellent water resistance, oil resistance, and heat sealability to paper simply by coating, and furthermore, a mold is used. Since it is possible to prevent the heat sealing agent from adhering to the mold even when heat sealing is performed using the heat sealing agent, it is possible to improve the productivity and the quality of the product after heat sealing.
  • the laminate of the present invention has at least a paper substrate, a first layer provided on at least part of the paper substrate, and a second layer provided on the first layer.
  • one of the first layer and the second layer is a coat layer containing a resin containing a styrene-acrylic copolymer of styrene, ⁇ -methylstyrene, and (meth)acrylate (hereinafter referred to as "
  • the other is a coat layer containing a heat-sealing agent (hereinafter referred to as a "heat-sealable coat layer"). That is, the laminate of the present invention has a layer in which an oil- and water-resistant coat layer and a heat-sealable coat layer are laminated, but the order of these layers is not particularly limited.
  • the laminate of the present invention has an oil- and water-resistant coating layer as either the first layer or the second layer on the paper substrate.
  • the oil- and water-resistant coating layer is formed from a coating composition (CS) containing an emulsion containing a styrene-acrylic copolymer (A) of styrene, ⁇ -methylstyrene, and (meth)acrylate, and an aqueous medium. is preferred.
  • ⁇ -methylstyrene in the styrene-acrylic copolymer (A) represents either o-methylstyrene, m-methylstyrene, p-methylstyrene or a mixture thereof.
  • the styrene-acrylic copolymer (A) includes styrene and styrene derivatives other than ⁇ -methylstyrene (p-dimethylsilylstyxystyrene, p-tert-butyldimethylsiloxystyrene, p-tert-butylstyrene), vinyl Naphthalene, vinylanthracene, 1,1-diphenylethylene, etc. may be partially used within the scope of the present invention.
  • the (meth)acrylate is not particularly limited, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, iso-propyl (meth)acrylate, allyl (meth)acrylate, n-(meth)acrylate, Butyl, iso-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, n-amyl (meth)acrylate, iso-amyl (meth)acrylate, (meth)acrylate n-hexyl acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-lauryl (meth)acrylate, n-tridecyl (meth)acrylate, n-stearyl (meth)acrylate , phenyl (meth)acrylate, benzyl (meth)acrylate, cyclo
  • Acrylates can be used. Among them, a homopolymer having an acrylate is preferable because it exhibits a lower glass transition temperature, and it is preferable that the main component is an acrylate having an alkyl group having 1 to 20 carbon atoms, and an alkyl group having 1 to 12 carbon atoms.
  • the main component is an acrylate having a
  • acrylates having an alkyl group having 1 to 12 carbon atoms include methyl acrylate, ethyl acrylate, iso-propyl acrylate, allyl acrylate, n-butyl acrylate, iso-butyl acrylate, ( meth)sec-butyl acrylate, tert-butyl acrylate, n-amyl acrylate, iso-amyl acrylate, n-hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, (meth)acrylic acid n - includes lauryl and the like.
  • the (meth)acrylate used as a constituent component of the styrene-acrylic copolymer (A) of the present invention may be one type or two or more types, but two or more types of (meth)acrylates may be used. Among them, it is preferable to use two or more acrylates having an alkyl group having 1 to 12 carbon atoms as main components.
  • the emulsion containing the styrene-acrylic copolymer (A) preferably further contains a copolymer of (meth)acrylic acid and (meth)acrylate.
  • a copolymer of (meth)acrylic acid and (meth)acrylate is a copolymer of (meth)acrylic acid and the (meth)acrylate (hereinafter sometimes referred to as acrylic copolymer (B)).
  • the (meth)acrylate is not particularly limited, but is preferably an acrylate having an alkyl group having 1 to 20 carbon atoms.
  • the main component is preferably an acrylate having an alkyl group of 1 to 20 atoms, and preferably an acrylate having an alkyl group of 1 to 12 carbon atoms.
  • acrylates having an alkyl group having 1 to 12 carbon atoms include methyl acrylate, ethyl acrylate, iso-propyl acrylate, allyl acrylate, n-butyl acrylate, iso-butyl acrylate, ( meth)sec-butyl acrylate, tert-butyl acrylate, n-amyl acrylate, iso-amyl acrylate, n-hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, (meth)acrylic acid n - includes lauryl and the like.
  • the emulsion containing the styrene-acrylic copolymer (A) preferably contains the styrene-acrylic copolymer (A) and the acrylic copolymer (B).
  • the "resin containing the styrene-acrylic copolymer (A)” may be a resin composed of the styrene-acrylic copolymer (A), or a resin containing the styrene-acrylic copolymer (A) and the acrylic copolymer (A). It may be a resin that forms a core-shell structure with coalescing (B).
  • the core-shell structure is formed by having a region in which the "styrene-acrylic copolymer (A)" is abundant and a region in which the "acrylic copolymer (B)" is abundant. be.
  • "acrylic copolymer (B)” may be present in a region where "styrene-acrylic copolymer (A)" is abundant, or these copolymers may It may be polymerized.
  • the emulsion containing the styrene-acrylic copolymer (A) preferably contains a resin containing at least the styrene-acrylic copolymer (A) and has a minimum film-forming temperature in the range of -30°C to 30°C.
  • the range of 10 to 25°C is more preferred, and the range of -5 to 20°C is even more preferred.
  • the minimum film-forming temperature is the minimum temperature required to form a continuous film when the synthetic rubber latex evaporates and dries, and is obtained by the temperature gradient plate method.
  • the glass transition temperature (hereinafter sometimes referred to as Tg) of the emulsion containing the styrene-acrylic copolymer (A) is preferably in the range of -40°C to 30°C, especially in the range of -35°C to 25°C. It is preferably in the range of -30 to 23°C.
  • the glass transition temperature is obtained by measurement with a differential scanning calorimeter.
  • the acid value of the emulsion is preferably in the range of 30-80 mgKOH/g, more preferably in the range of 40-75 mgKOH/g, more preferably in the range of 50-70 mgKOH/g.
  • the acid value is obtained by a measuring method based on JIS test method K 0070-1992.
  • the coating composition (CS) containing the emulsion of the styrene-acrylic copolymer (A) has fine film-forming properties without defects such as pinholes, and is therefore excellent in water resistance and oil resistance. Therefore, the water resistance and oil resistance of the laminate can be improved.
  • the coating composition (CS) also has adhesiveness, it is excellent in adhesiveness to the heat-sealable coat layer and/or the paper substrate, and does not impair the function of the heat-sealable coat layer. Excellent compatibility when used in combination with a heat-sealable coating layer.
  • composition of the present invention contains the styrene-acrylic copolymer (A), the heat resistance is improved. Therefore, it is applicable even when the contents are at high temperature such as heated food.
  • the emulsion can be obtained by polymerization using a known aqueous medium, such as known emulsion polymerization or transfer emulsification, without any particular limitation.
  • a known aqueous medium such as known emulsion polymerization or transfer emulsification
  • emulsion dispersion, suspension, etc.
  • emulsion is unified in the present invention.
  • a monomer mixture is supplied in an aqueous medium, and the monomer mixture is polymerized in the presence of an initiator to polymerize an emulsion.
  • a step (1) of supplying a monomer mixture forming a core polymer and polymerizing the monomer mixture in the presence of an initiator to form a core polymer; to the core polymer of step (1) and polymerizing the monomer mixture in the presence of an initiator to form a shell on the core polymer step (2).
  • the initiator is not particularly limited, and peroxides, persulfates, azo compounds, redox compounds, or mixtures thereof used in the emulsion polymerization method may be used.
  • Peroxides include, for example, hydrogen peroxide, ammonium peroxide, sodium or potassium peroxide, t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, and benzene peroxide.
  • Persulfates include, for example, ammonium persulfate, sodium persulfate, or potassium persulfate.
  • azo compounds include 2,2-azobisisobutyronitrile and 4,4'-(4-cyanovaleric acid).
  • the redox system also consists of an oxidizing agent and a reducing agent, the oxidizing agent being, for example, one of the peroxides, persulfates or azo compounds listed above, or sodium chloride or potassium chloride, or sodium bromide or Potassium bromide may be mentioned.
  • reducing agents include ascorbic acid, glucose, or ammonium, sodium or potassium hydrogen sulfate, sodium or potassium hydrogen sulfite, sodium thiosulfate or potassium thiosulfate, or sodium or potassium sulfide, or iron (II ) ammonium sulfate.
  • persulfates more preferably ammonium persulfate, are preferred.
  • the polymerization of the monomer mixture can be carried out in the presence of additives such as surfactants, chain transfer agents and chelating agents, for example in the presence of surfactants and chain transfer agents.
  • additives such as surfactants, chain transfer agents and chelating agents, for example in the presence of surfactants and chain transfer agents.
  • the surfactant is not particularly limited, but includes, for example, disodium dodecyldiphenyl oxide, disulfonate, and the like.
  • the chain transfer agent is not particularly limited, examples thereof include ⁇ -methylstyrene dimer, thioglycolic acid, sodium hydrogen phosphite, 2-mercaptoethanol, N-dodecylmercaptan, and t-dodecylmercaptan.
  • the chelating agent is not particularly limited, but includes, for example, ethylenediaminetetraacetic acid.
  • the acrylic copolymer (B) having an acidic group serves as the shell. There is no problem even if the emulsion has a structure in which (B) does not form a shell and part of the styrene-acrylic copolymer (A) forms a shell.
  • bases such as ammonia, triethylamine, aminomethylpropanol, monoethanolamine, diethylaminoethanol, sodium hydroxide, and potassium hydroxide can be used as neutralizing agents.
  • the coating composition (CS) of the present invention may contain resins other than the styrene-acrylic copolymer (A) and the acrylic copolymer (B).
  • Materials for other resins are not particularly limited, but in order not to impair the properties of the coating composition (CS) of the present invention, such as oil resistance and heat resistance, it is preferably a styrene-acrylic copolymer. More preferably, it is the same material as the resin containing the styrene-acrylic copolymer (A).
  • the content of other resins can be appropriately adjusted within a range that does not impair the effects of the present invention, but the weight ratio of the resin containing the styrene-acrylic copolymer (A) to the other resins (the styrene-acrylic copolymer (A)/other resin) is preferably 100/0 to 50/50, preferably 100/0 to 60/40.
  • the coating composition (CS) contains water.
  • water pure water such as ion-exchanged water, ultrafiltrated water, reverse osmosis water, distilled water, or ultrapure water can be used.
  • water it is preferable to use water that has been sterilized by ultraviolet irradiation, addition of hydrogen peroxide, or the like, because it can prevent the generation of mold or bacteria when the composition is stored for a long period of time. Among them, it is most preferable to use water.
  • a water-soluble organic solvent such as an alcohol that dissolves in water may be mixed and used.
  • alcohols examples include methanol, ethanol, isopropyl alcohol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, butyl alcohol and pentyl alcohol. These alcohols can be used alone or in combination of two or more.
  • the coating composition (CS) may also contain silica, alumina, polyethylene wax, antifoaming agents, leveling agents, tackifiers, preservatives, antibacterial agents, antirust agents, and the like.
  • the coating composition (CS) may contain wax.
  • Waxes include waxes such as fatty acid amide wax, carnauba wax, polyolefin wax, paraffin wax, Fischer-Tropsch wax, beeswax, microcrystalline wax, polyethylene oxide-wax, amide wax, and the like. These may be used alone or in combination.
  • fatty acid amide wax carnauba wax, Fischer-Tropsch wax, polyolefin wax, and paraffin wax
  • fatty acid amide waxes include pelargonic acid amide, capric acid amide, undecylic acid amide, lauric acid amide, tridecylic acid amide, myristic acid amide, pentadecylic acid amide, palmitic acid amide, heptadecylic acid amide, and stearic acid amide.
  • nonadecanic acid amide arachidic acid amide, behenic acid amide, lignoceric acid amide, oleic acid amide, cetreic acid amide, linoleic acid amide, linoleic acid amide, mixtures thereof and animal and vegetable oil fatty acid amides.
  • carnauba wax examples include MICROK LEAR 418 (manufactured by Micro Powders, Inc.) and refined carnauba wax No. 1 powder (Nippon Wax Co., Ltd.).
  • olefin wax examples include polyethylene wax and polypropylene wax, such as MPP-635VF (Micro Powders, Inc.) and MP-620VF XF (Micro Powders, Inc.).
  • paraffin wax examples include MP-28C, MP-22XF and MP-28C (Micro Powders, Inc.).
  • the blending amount of the wax is preferably 1.5 to 20% by mass with respect to the total amount of 100% by mass of the solid content in the coating composition (CS). If the total amount of wax is 3% by mass or more with respect to the total solid content of 100% in the coating composition (CS), the blocking resistance tends to be maintained, and the total amount of wax is the total amount of 100% solid content of the coating composition (CS). If it is 15% by mass or less, the heat-sealing property tends to be maintained.
  • the melting point of the wax is preferably in the range of 80° C. to 130° C. from the viewpoint of oil resistance and heat resistance.
  • the wax may be directly added to the resin emulsion containing the styrene-acrylic copolymer (A) and mixed and dispersed, or a wax dispersion may be prepared and then mixed with the emulsion.
  • a dispersion method a known method such as a dispersion device using media such as a paint shaker, a ball mill, an attritor, a basket mill, a sand mill, a sand grinder, a Dyno mill, a Dispermat, an SC mill, a spike mill, and an agitator mill is used.
  • Dispersion can be carried out by an ultrasonic homogenizer, a high-pressure homogenizer, a nanomizer, a dissolver, a disper, a high-speed impeller disperser, or the like, which does not use media.
  • kneading When powdered wax is used, it is preferable to perform kneading using a media or mix after preparing a dispersion of wax in order to uniformly disperse the wax.
  • the kneading method can be performed by a known method.
  • the multiple types of waxes may be added at the same time, or may be added in multiple steps.
  • the coating composition (CS) preferably uses a polymer-based antifoaming agent, a silicon-based antifoaming agent, or a fluorine-based antifoaming agent in order to prevent foaming of the composition during coating using various coaters. be done.
  • these antifoaming agents both emulsifying and dispersing types and solubilizing types can be used. Among them, polymer antifoaming agents are preferred.
  • the amount of the antifoaming agent added is preferably 0.005% to 0.1% by weight of the total amount of the coating composition (CS).
  • the laminate of the present invention has a heat-sealable coating layer as either the first layer or the second layer on the paper substrate.
  • a known heat-seal coating agent can be used for the heat-sealable coating layer. Composition examples of the heat sealing agent are described below.
  • heat sealing agents are vinyl chloride vinyl acetate copolymer resins, (meth)acrylate resins, olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer resins, and polyolefin resins.
  • it preferably contains at least one selected from polyester resins, and at least one selected from vinyl chloride vinyl acetate copolymer resins, (meth)acrylate resins, and olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer resins. It is more preferable to include
  • the vinyl chloride-vinyl acetate copolymer resin is not particularly limited as long as it is a copolymer of vinyl chloride and vinyl acetate. From the viewpoint of improving the heat-sealing property, it is preferably a vinyl chloride-vinyl acetate copolymer containing an acid group, and more preferably an acid-modified vinyl chloride-vinyl acetate copolymer-based resin.
  • the acid group those using maleic acid or fumaric acid are preferred.
  • the (meth)acrylate resin is not particularly limited as long as it is a homopolymer or copolymer of (meth)acrylate. and copolymers. Further, when an aqueous solvent is used, it is preferably a copolymer having an acid value for the purpose of imparting water dispersibility and water solubility.
  • the (meth)acrylate used as a constituent component of the (meth)acrylate homopolymer or copolymer is not particularly limited, and is similar to the (meth)acrylate used in the styrene-acrylic copolymer (A) described above. is used.
  • Examples of (meth)acrylates and vinyl monomers copolymerizable with (meth)acrylates include aromatic (meth)acrylates such as benzyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 2- hydroxyl group-containing monomers such as hydroxypropyl (meth)acrylate; alkylpolyalkylene glycol mono(meth)acrylates such as methoxypolyethylene glycol mono(meth)acrylate and methoxypolypropylene glycol mono(meth)acrylate; perfluoroalkylethyl (meth)acrylate, etc.
  • aromatic (meth)acrylates such as benzyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 2- hydroxyl group-containing monomers such as hydroxypropyl (meth)acrylate
  • alkylpolyalkylene glycol mono(meth)acrylates such as methoxypolyethylene glycol mono(meth)acrylate and methoxypolyprop
  • fluorine-based (meth)acrylate fluorine-based (meth)acrylate; styrene, styrene derivatives (p-dimethylsilylstyrene, (p-vinylphenyl) methylsulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyldimethylsiloxystyrene, o- methylstyrene, p-methylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, etc.), aromatic vinyl compounds such as vinylnaphthalene, vinylanthracene, 1,1-diphenylethylene; glycidyl (meth)acrylate, epoxy (meth ) acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)
  • (Meth)acrylates vinylpyridine compounds such as 2-vinylpyridine, 4-vinylpyridine and naphthylvinylpyridine; 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3- conjugated dienes such as butadiene, 1,3-pentadiene, 1,3-hexadiene and 1,3-cyclohexadiene; These monomers can be used singly or in combination of two or more.
  • the (meth)acrylate homopolymer or copolymer can be produced, for example, by polymerizing one or more monomers in the presence of a polymerization initiator in a temperature range of 50°C to 180°C. , 80° C. to 150° C. is more preferable.
  • Polymerization methods include, for example, bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • the polymerization mode includes, for example, random copolymers, block copolymers, graft copolymers, and the like.
  • the copolymer may also be of the core-shell type.
  • the olefin- ⁇ , ⁇ -unsaturated carboxylic acid copolymer resin includes an olefin, an ⁇ , ⁇ -unsaturated carboxylic acid, a metal salt of an ⁇ , ⁇ -unsaturated carboxylic acid, and an ⁇ , ⁇ -unsaturated carboxylic acid.
  • Examples thereof include copolymers with at least one monomer selected from the group consisting of esters.
  • it is a copolymer of an ⁇ , ⁇ -unsaturated carboxylic acid, a metal salt of an ⁇ , ⁇ -unsaturated carboxylic acid or an ⁇ , ⁇ -unsaturated carboxylic acid ester and an olefin, and an olefin- ⁇ , ⁇ Unsaturated carboxylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-acrylic acid-maleic anhydride copolymer, ethylene-acrylic acid Ester-maleic anhydride copolymers, ethylene-methacrylic acid-maleic anhydride copolymers, ethylene-methacrylic acid ester-maleic anhydride copolymers, metal salts thereof and the like can be mentioned.
  • copolymers may be used alone or as a mixture of two or more. Among them, an olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer is preferred. Olefin- ⁇ , ⁇ -unsaturated carboxylic acid copolymers include random copolymers or block copolymers of ethylene- and ⁇ , ⁇ -unsaturated carboxylic acids.
  • olefin examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, butadiene, dicyclopentadiene, 5-ethylidene-2- and norbornene.
  • ethylene is preferred.
  • ⁇ , ⁇ -unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. Among these, acrylic acid and methacrylic acid are preferably used. These ⁇ , ⁇ -unsaturated carboxylic acids may be used alone or in combination of two or more.
  • ⁇ , ⁇ -unsaturated carboxylic acid ester known alkyl esters, hydroxyalkyl esters, alkoxyalkyl esters, etc. of acrylic acid or methacrylic acid can be used without particular limitation.
  • the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer can be produced by a known method such as radical copolymerization at high temperature and high pressure.
  • the content of ⁇ , ⁇ -unsaturated carboxylic acid in the olefin- ⁇ , ⁇ -unsaturated carboxylic acid copolymer is desirably 8 to 24% by weight, preferably 18 to 23% by weight.
  • the content of the ⁇ , ⁇ -unsaturated carboxylic acid is less than 8% by weight, the dispersibility in the aqueous dispersion medium is inferior due to the non-polar nature derived from the ethylene unit, and the olefin- ⁇ , ⁇ -unsaturation is excellent. It may become difficult to obtain a carboxylic acid copolymer resin aqueous dispersion.
  • the content of the ⁇ , ⁇ -unsaturated carboxylic acid exceeds 24% by weight, the anti-blocking property of the resulting film may deteriorate.
  • the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer used in the heat sealing agent is preferably used as an aqueous dispersion dispersed in an aqueous solvent.
  • the method for dispersing in the aqueous solvent is not particularly limited, and any known method may be used. Examples include a method of emulsifying with a surfactant and dispersing it in an aqueous solvent, and a method of neutralizing an olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer with a basic compound and then dispersing it in an aqueous solvent.
  • surfactant used for the emulsification various known anionic, cationic, nonionic surfactants, or various water-soluble polymers can be appropriately used in combination.
  • Examples of basic compounds used for neutralization include organic amines such as ammonia, methylamine, ethylamine, diethylamine, dimethylethanolamine, diethanolamine and triethanolamine, sodium hydroxide, potassium hydroxide and lithium hydroxide. and other alkali metal hydroxides. These basic compounds may be used alone or in combination of two or more.
  • the degree of neutralization by the basic compound should be such that the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer is stably present in the aqueous solvent.
  • it may be 30 to 100 mol %, more preferably 40 to 90 mol %, of the carboxyl groups in the copolymer.
  • dispersing method examples include known methods such as a dispersing device using media such as a paint shaker, ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill, dispermat, SC mill, spike mill, and agitator mill.
  • Dispersion can be carried out using an ultrasonic homogenizer, a high-pressure homogenizer, a nanomizer, a dissolver, a disper, a high-speed impeller disperser, or the like, which does not use media.
  • the solid content of the aqueous dispersion of the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer used in the present invention is not particularly limited. It may be appropriately determined depending on the drying conditions, the film thickness of the film, and the like. In general, the solid content concentration is often applied in the range of 10 to 40% by mass.
  • the heat sealing agent (HS) is preferably used by dissolving the above-described resin in various organic solvents or aqueous solvents in order to improve coating performance.
  • HS heat sealing agent
  • organic solvent for example, when vinyl chloride-vinyl acetate copolymer system resin, (meth)acrylate system resin, polyolefin system resin or polyester system resin is used, it is preferable to use an organic solvent.
  • the organic solvent is not particularly limited, and examples include aromatic hydrocarbons such as toluene, xylene, Solvesso #100 and Solvesso #150, aliphatic hydrocarbons such as hexane, heptane, octane, and decane, methyl acetate, and acetic acid.
  • aromatic hydrocarbons such as toluene, xylene, Solvesso #100 and Solvesso #150
  • aliphatic hydrocarbons such as hexane, heptane, octane, and decane, methyl acetate, and acetic acid.
  • Various ester-based organic solvents such as ethyl, isopropyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate can be used.
  • alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and cyclohaxanone, ethylene glycol (mono, di)methyl ether, ethylene glycol (mono, di)ethyl ether, ethylene glycol monopropyl ether, Ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di)methyl ether, diethylene glycol (mono, di)ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di)methyl ether, propylene glycol ( Glycol ethers such as mono, di)methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether, organic solvents with good solubility,
  • aqueous solvent the same aqueous solvent as used in the coating composition (CS) can be used. Among them, it is preferable to use water.
  • the heat sealing agent (HS) preferably contains wax. Blocking resistance can be maintained by containing wax.
  • wax examples include waxes such as fatty acid amide wax, carnauba wax, polyolefin wax, paraffin wax, Fischer-Tropsch wax, beeswax, microcrystalline wax, polyethylene oxide wax, amide wax, coconut oil fatty acid and soybean oil fatty acid. be able to. These may be used alone or in combination.
  • fatty acid amide wax carnauba wax, Fischer-Tropsch wax, polyolefin wax, and paraffin wax
  • fatty acid amide wax and carnauba wax it is preferable to use fatty acid amide wax, carnauba wax, Fischer-Tropsch wax, polyolefin wax, and paraffin wax
  • fatty acid amide wax and carnauba wax it is preferable to use fatty acid amide wax and carnauba wax.
  • fatty acid amide waxes include pelargonic acid amide, capric acid amide, undecylic acid amide, lauric acid amide, tridecylic acid amide, myristic acid amide, pentadecylic acid amide, palmitic acid amide, heptadecylic acid amide, and stearic acid amide.
  • nonadecanic acid amide arachidic acid amide, behenic acid amide, lignoceric acid amide, oleic acid amide, cetreic acid amide, linoleic acid amide, linoleic acid amide, mixtures thereof and animal and vegetable oil fatty acid amides.
  • specific examples of the carnauba wax include MICROKLEAR 418 (manufactured by Micro Powders, Inc.) and purified carnauba wax No. 1 powder (Nippon Wax Co., Ltd.).
  • the total amount of wax is preferably 1.5 to 20% by mass with respect to the total solid content of 100% by mass of the heat sealing agent (HS). If the total amount of wax is 3% by mass or more with respect to the solid content of 100% of the heat sealing agent (HS), the blocking resistance tends to be maintained, and the total amount of wax is 100% of the solid content of the heat sealing agent (HS). If it is 15% by mass or less with respect to the total amount, there is a tendency that the heat-sealing property can be maintained.
  • the combined use of the fatty acid amide wax and the carnauba wax is more preferable because the blocking resistance is further improved.
  • the ratio is not particularly limited, but the ratio of fatty acid amide wax to the carnaval wax is preferably in the range of 1:1 to 1:10, more preferably 1:1 to 1:5.
  • the ratio is not particularly limited, but the polyolefin wax:paraffin wax ratio is preferably in the range of 1:1 to 10:1, more preferably in the range of 1:1 to 5:1.
  • the wax may be added directly to the aqueous dispersion of the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer or (meth)acrylic resin and mixed and dispersed, or the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer It may be added and mixed and dispersed at the same time as the polymer or (meth)acrylic resin is dispersed in the aqueous solvent.
  • a dispersing method the method used for dispersing the above-described olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer in an aqueous solvent can be appropriately used.
  • the multiple types of waxes may be added at the same time, or may be added in multiple steps. For example, after the first wax is added when dispersing the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer or (meth)acrylic resin in an aqueous solvent, the second wax is added to the obtained first wax. and the olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer or (meth)acrylic resin are further added to an aqueous dispersion to obtain a heat sealing agent (HS).
  • HS heat sealing agent
  • the heat sealing agent (HS) contains silica, alumina, antifoaming agent, viscosity modifier, leveling agent, tackifier, antiseptic agent, antibacterial agent, antibacterial agent, antiseptic agent, silica, alumina, antifoaming agent, viscosity modifier, antiseptic agent, antibacterial agent, antiseptic agent, antiseptic agent, antiseptic agent Additives such as rust agents, antioxidants and silicone oils may be added.
  • polymer antifoaming agents silicon antifoaming agents, and fluorine antifoaming agents are preferably used in order to prevent foaming during coating using various coaters.
  • these antifoaming agents both emulsifying and dispersing types and solubilizing types can be used.
  • polymer antifoaming agents are preferred.
  • the amount of the antifoaming agent to be added is preferably 0.005% by weight to 0.1% by weight based on the total amount of the water-based heat sealing agent.
  • the heat sealing agent (HS) can be used as a heat sealing agent when manufacturing paper packaging materials such as bags and boxes, and paper containers. Lamination with the polymer coat layer can further improve the water resistance of the laminate. By laminating the heat-sealed portion, various packaging materials such as bags, boxes, containers, etc. can be produced according to the application, and the workability is excellent.
  • the laminate of the present invention has at least a first layer on a paper substrate and a second layer provided on the first layer.
  • natural fibers for papermaking such as wood pulp are used and manufactured by a known papermaking machine, but the papermaking conditions are not particularly specified.
  • natural fibers for papermaking include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as Manila hemp pulp, sisal pulp and flax pulp, and pulp obtained by chemically modifying these pulps.
  • the types of pulp that can be used include chemical pulp, ground pulp, chemi-grand pulp, thermomechanical pulp, and the like prepared by sulfate cooking, acid/neutral/alkaline sulfite cooking, soda salt cooking, and the like.
  • various types of commercially available fine paper, coated paper, lined paper, impregnated paper, cardboard, paperboard, etc. can also be used.
  • the type, thickness, etc. of the paper can be successively selected according to the purpose.
  • a burger wrap corresponds to a basis weight of about 20 g/m 2
  • a paper cup corresponds to a basis weight of 200 to 300 g/m 2
  • a paper plate, paper spoon, paper muddler, etc. corresponds to a basis weight of 50 to 500 g/m 2 .
  • Food base papers such as gram/m 2 cup base paper are preferred. From the viewpoint of recycling efficiency and cost reduction, it is preferable that these papers are not laminated with a polyethylene film, aluminum, or the like.
  • the paper substrate may have a printed layer.
  • the printed layer may be provided on the surface of the paper substrate on which the first layer is provided, or on the surface opposite to the surface on which the first layer is provided.
  • the printing layer (E) is a layer for forming a desired pattern with a liquid printing ink in order to impart cosmetic properties, various information regarding contents, and functionality to the printed material.
  • the printing layer is printed with gravure printing ink or flexographic printing ink (hereinafter referred to as liquid printing ink) containing a binder resin and a colorant.
  • the printed layer (E) used in the present invention may be a single layer or may have multiple printed layers.
  • the liquid printing ink used for each printing layer may be the same, may have the same composition with a different colorant, or may have a different composition. Also good.
  • Liquid printing inks used in the present invention are used as gravure printing inks and flexographic printing inks, and are broadly classified into organic solvent-based liquid printing inks whose main solvent is an organic solvent and water-based liquid printing inks whose main solvent is water. However, either one may be used in the present invention. In addition, there are so-called surface printing ink and reverse printing ink which is premised on lamination, but either one may be used in the present invention. Here, the mainstream organic solvent type liquid printing ink will be explained.
  • the binder resin (A) used in the liquid printing ink used in the present invention includes cellulose resins such as nitrocellulose, cellulose acetate propionate (CAP) and cellulose acetate butyronate (CAB).
  • Vinyl chloride resins such as polyamide resins, urethane resins, acrylic resins, vinyl chloride-vinyl acetate copolymer resins, chlorinated polypropylene resins, ethylene-vinyl acetate copolymer resins, vinyl acetate resins, polyvinyl chloride resins, etc.
  • Polyester resins, alkyd resins, rosin-based resins, rosin-modified maleic acid resins, ketone resins, cyclized rubbers, chlorinated rubbers, butyral, petroleum resins and the like can be mentioned.
  • binder resin (A) As the curing agent, general-purpose curing agents for organic solvent-based gravure printing inks may be used, but isocyanate-based curing agents are most frequently used.
  • the amount of the isocyanate compound added is preferably in the range of 0.3% by mass to 10.0% by mass based on the solid content of the liquid printing ink from the viewpoint of curing efficiency, and if it is 1.0% by mass to 7.0% by mass. more preferred.
  • the binder resin (A) is preferably used in the range of 0.15 to 50% by weight, most preferably in the range of 1 to 40% by weight, based on the liquid printing ink.
  • the solvent used for the liquid printing ink used in the present invention is not particularly limited, but examples include water, toluene, xylene, aromatic hydrocarbon organic solvents such as Solvesso #100 and Solvesso #150, hexane, methylcyclohexane, Aliphatic hydrocarbon organic solvents such as heptane, octane, and decane, and various ester organic solvents such as methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate. be done.
  • Water-miscible organic solvents include alcohols such as methanol, ethanol, propanol, butanol and isopropyl alcohol, ketones such as acetone, methyl ethyl ketone and cyclohaxanone, ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl.
  • Ether ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, Di)methyl ether, propylene glycol (mono, di)methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol (mono, di)methyl ether, and other glycol ether organic solvents can be used. These may be used alone or in combination of two or more.
  • the liquid printing ink used in the present invention contains a coloring agent, and can be used as a liquid printing ink containing a coloring agent for use in design printing and the like for the purpose of imparting cosmetic properties and the like.
  • the coloring agent include inorganic pigments, organic pigments, and dyes used in general inks, paints, recording agents, and the like, with pigments being preferred.
  • organic pigments examples include soluble azo, insoluble azo, azo, phthalocyanine, halogenated phthalocyanine, anthraquinone, anthanthrone, dianthraquinonyl, anthrapyrimidine, perylene, perinone, quinacridone, Pigments such as thioindigo, dioxazine, isoindolinone, quinophthalone, azomethineazo, flavanthrone, diketopyrrolopyrrole, isoindoline, indanthrone, and carbon black pigments can be used.
  • Carmine 6B Lake Red C, Permanent Red 2B, Disazo Yellow, Pyrazolone Orange
  • Carmine FB Chromophtal Yellow, Chromophtal Red, Phthalocyanine Blue, Phthalocyanine Green, Dioxazine Violet, Quinacridone Magenta, Quinacridone Red, Indance Ron blue, pyrimidine yellow, thioindigo bordeaux, thioindigo magenta, perylene red, perinone orange, isoindolinone yellow, aniline black, diketopyrrolopyrrole red, daylight fluorescent pigments, and the like. Both non-acid-treated pigments and acid-treated pigments can be used.
  • inorganic pigments examples include white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, litbon, antimony white, and gypsum.
  • white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, litbon, antimony white, and gypsum.
  • titanium oxide exhibits a white color and is preferable from the viewpoint of coloring power, hiding power, chemical resistance, and weather resistance. From the viewpoint of printing performance, the titanium oxide is preferably treated with silica and/or alumina.
  • non-white inorganic pigments examples include aluminum particles, mica (mica), bronze powder, chrome vermilion, yellow lead, cadmium yellow, cadmium red, ultramarine blue, Prussian blue, red iron oxide, yellow iron oxide, iron black, and zircon.
  • the aluminum is in the form of powder or paste, it is preferable to use it in the form of paste from the standpoint of handling and safety, and whether to use leafing or non-leafing is appropriately selected from the viewpoint of brightness and density.
  • the amount of the pigment is sufficient to ensure the concentration and coloring strength of the liquid printing ink, that is, 1 to 60% by mass relative to the total mass of the liquid printing ink, and the solid content weight ratio in the liquid printing ink is 10 to 90 mass. %. Moreover, these pigments can be used individually or in combination of 2 or more types.
  • Organic solvent-based liquid printing inks may also contain waxes, chelate cross-linking agents, extender pigments, leveling agents, antifoaming agents, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants, etc. can also be used.
  • biomass liquid printing ink In the liquid printing ink used in the present invention, it is preferable to use a liquid printing ink using a plant-derived raw material in consideration of the construction (sustainability) of a recycling-oriented society that should be sustainably developed.
  • plant-derived raw materials include cellulose-based resins such as cellulose acetate propionate resin and nitrocellulose, and polyamides using dimer acid or polymerized fatty acid derived from natural oils such as soybean oil, palm oil, and rice bran oil.
  • Resins and polycarboxylic acids such as succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dimer acid, glutaric acid, and malic acid
  • polyols such as ethylene glycol, 1,2-propanediol, 1,3 - Propanediol, 1,4-butanediol, neopentyl glycol, pentylene glycol, 1,10-dodecanediol, dimer diol, isosorbide, etc.
  • Plant-derived polyisocyanates such as 1,5-pentamethylene diisocyanate, dimer diisocyanate, etc. Examples include biomass polyurethane synthesized from raw materials and rosin resin.
  • UV cut ink In the liquid printing ink used in the present invention, it is also preferable to use a UV cut ink having an ultraviolet shielding effect.
  • the UV cut ink is not particularly limited as long as it contains zinc oxide or the like and has a high ultraviolet shielding effect, and commercially available UV cut inks can be used.
  • the first layer is a layer provided between the paper substrate and the second layer.
  • the first layer is composed of either the oil- and water-resistant coating layer or the heat-sealable coating layer described above.
  • the coating amount of the first layer is 0.5 to 10.0 g/m 2 , more preferably 1.0 to 5.0 g/m 2 .
  • the second layer is a layer provided on top of the first layer.
  • the second layer is formed of a layer different from the first layer, out of the oil- and water-resistant coating layer or the heat-sealable coating layer described above. That is, when the first layer is formed of the oil- and water-resistant coating layer, the second layer is formed of the heat-sealable coating layer, and when the first layer is formed of the heat-sealable coating layer, the second layer is formed of the heat-sealable coating layer.
  • the second layer is formed by an oil- and water-resistant coating layer.
  • the coating amount of the second layer is preferably 0.5 to 8.0 g/m 2 , more preferably 1.0 to 5.0 g/m 2 .
  • the sealing function of the first layer can reduce the coating amount of the heat sealing agent for the second layer.
  • the laminate may further have a third layer on the side of the paper substrate on which the first layer and the second layer are not provided.
  • a third layer it is preferable to appropriately select and use various coating agents depending on the performance desired to be imparted to the laminate.
  • the styrene-acrylic copolymer coating layer described above may be provided as the third layer.
  • a water-resistant coating layer containing at least a styrene-acrylic copolymer and wax.
  • the water-resistant coating layer provided as the third layer is preferably formed from a water-resistant coating composition containing at least an aqueous solvent, a styrene-acrylic copolymer, and wax.
  • the thickness of the waterproof coating layer depends on the application, but is preferably in the range of 1 to 10 g/m 2 , more preferably in the range of 1 to 5 g/m 2 .
  • water-based solvent As the water-based solvent, the same water-based solvent as that used for the heat sealing agent (HS) can be used.
  • Styrene-acrylic copolymers are preferably copolymers of styrenes and (meth)acrylates forming a core-shell structure, and copolymers of styrenes and (meth)acrylates, and styrenes and (meth) ) More preferably, a copolymer of acrylate and (meth)acrylic acid forms a core-shell structure.
  • the styrenes and (meth)acrylates used as constituents of the styrene-acrylic copolymer may be the same as those used in the styrene-acrylic copolymer (A) of the styrene-acrylic copolymer coating layer described above. can.
  • styrene-acrylic copolymer As a constituent component of the styrene-acrylic copolymer, other known polymerizable compounds other than styrenes, (meth)acrylates, and (meth)acrylic acid may be contained.
  • the styrene-acrylic copolymer (A) may contain a wax, which will be described later. Water resistance can be further improved by containing wax in the styrene-acrylic copolymer (A). Wax may be present in the core portion or in the shell portion. It may exist on the surface of the styrene-acrylic copolymer.
  • the ratio of the "copolymer of styrenes and (meth)acrylate” and the “copolymer of styrenes, (meth)acrylate and (meth)acrylic acid” is The mass ratio is preferably in the range of 20:80 to 95:5, more preferably in the range of 30:70 to 92:8, and most preferably in the range of 40:60 to 90:10.
  • the ratio of styrenes and (meth)acrylate is preferably in the range of 20:80 to 80:20, more preferably in the range of 30:70 to 70:30. More preferably, the range of 40:60 to 60:40 is most preferred.
  • the proportion of styrenes is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and 30 to 70% by weight is most preferred. Further, in the copolymer of styrenes, (meth)acrylate and (meth)acrylic acid, the proportion of (meth)acrylate is preferably 10 to 80% by mass, more preferably 15 to 70% by mass. Preferably, 20 to 60% by mass is most preferred.
  • the proportion of (meth)acrylic acid is preferably 10 to 70% by mass, more preferably 15 to 60% by mass. More preferably, it is most preferably 20 to 50% by mass.
  • the styrene-acrylic copolymer (A) contains other known polymerizable compounds other than styrenes, (meth)acrylates, and (meth)acrylic acid, other polymerization in the styrene-acrylic copolymer (A)
  • the ratio of the organic compound is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the glass transition temperature (hereinafter sometimes referred to as Tg) of the styrene-acrylic copolymer (A) is in the range of -30°C to 10°C, preferably in the range of -25°C to 5°C, more preferably It ranges from -20°C to 0°C.
  • the glass transition temperature is obtained by measurement with a differential scanning calorimeter.
  • a styrene-acrylic copolymer can be produced by a known method. Among them, it is preferable to polymerize the monomer mixture in the presence of wax for the styrene-acrylic copolymer. That is, by adding the wax to the aqueous medium in advance or mixing it with the monomer mixture, a core-shell structure in which the wax is incorporated into the styrene-acrylic copolymer can be formed.
  • the waterproof coating composition can further improve the water resistance by containing a wax.
  • the wax is preferably at least one wax selected from paraffin wax, microcrystalline wax, polyethylene oxide wax, and amide wax, more preferably paraffin wax or microcrystalline wax. These may be used alone or in combination.
  • the melting point of wax is preferably in the range of 30°C to 130°C, more preferably in the range of 50°C to 100°C.
  • the blending amount of the wax is preferably 0.5 to 20% by mass, preferably 1 to 15% by mass, based on 100% by mass of the styrene-acrylic copolymer.
  • the wax may be dispersed in the water-resistant coating layer, but as described above, the presence of the wax in the core and/or shell of the styrene-acrylic copolymer allows the wax to be integrated with the styrene-acrylic copolymer. It is preferable to exist in a modified form.
  • the wax may be present in the form of being contained in the styrene-acrylic copolymer and may be present without being contained in the styrene-acrylic copolymer.
  • the waterproof coating composition may further contain silica, alumina, wax, antifoaming agent, leveling agent, tackifier, antiseptic agent, antibacterial agent, antirust agent, as long as the object of the present invention is not impaired.
  • Additives such as may be blended.
  • other resins than the styrene-acrylic copolymer may be blended. Among them, it is preferable that a leveling agent and/or wax are further blended.
  • the laminate of the present invention is prepared by sequentially applying the composition for forming the first layer and the composition for forming the second layer on the paper substrate, and if necessary, the composition for forming the third layer. Obtained by applying a substance.
  • Examples of methods for applying a coating composition onto a paper substrate include comma coaters, roll coaters, reverse roll coaters, direct gravure coaters, reverse gravure coaters, offset gravure coaters, roll kiss coaters, reverse kiss coaters, Kiss Gravure Coater, Reverse Kiss Gravure Coater, Air Doctor Coater, Knife Coater, Bar Coater, Wire Bar Coater, Die Coater, Lip Coater, Dip Coater, Blade Coater, Brush Coater, Curtain Coater, Die Slot Coater, Flexo Coater, Impregnation Coater , a cast coater, a spray coater, an offset printer, a screen printer, or the like, or a combination of two or more coating methods.
  • a resin layer may be provided on the paper substrate by impregnating the paper substrate with the composition.
  • a drying step may be provided in an oven or the like after coating.
  • the water-resistant coating layer formed as described above has a first layer and a second layer. , the oil resistance can be further improved.
  • the laminate of the present invention Since the laminate of the present invention has a heat-sealable coat layer on either the first layer or the second layer, it can be used as a box or a bag by heat-sealing using the heat-sealable coat layer. , containers, etc.
  • packaging examples include packaging bags, paper bags, paper boxes, cardboard, wrapping paper, envelopes, cup sleeves, lids, and the like.
  • containers include paper containers, paper plates, trays, cup holders, and paper cups. Due to the excellent water resistance and oil resistance of the present invention, it is preferably used for packaging materials for foods, fertilizers, and the like that require water resistance and oil resistance. For example, cups or lids for desserts such as cup noodles, ice cream, pudding, jelly, etc., bags or boxes for confectionery, grains, beans, powders, pet food, fertilizers, etc.
  • the first layer and the second layer are provided on the inner surface of the container and the bonding portion when assembling the container, and the bonding portion is the first layer and the second layer. It can be manufactured by stacking and adhering via a second layer. That is, the paper cup consists of a body member (1) in which the laminated paper substrate of the laminate of the present invention is rolled and overlapped and the bonding surfaces of both ends are adhered, and a plate adhered to the lower end of the body member (1).
  • the first layer and the second layer provided in the bonding portion are bonded by a heat sealing function, and the first layer and the second layer provided in the portion other than the bonding portion
  • the second layer can exhibit the functions of water resistance and oil resistance.
  • first layer and the second layer provided on the portion other than the adhesive portion are highly safe to the human body and the environment, they can be accommodated in direct contact with food. Furthermore, by providing a water-resistant coating layer as a third layer on the outer side of the paper cup, excellent water resistance can be obtained even when used for a long time.
  • paper boxes, paper bags, etc. can be manufactured by heat-sealing using the laminate of the present invention.
  • a specific method of heat sealing is to apply the first layer and the second layer to at least one of the two parts of the paper substrate (both parts may be applied), and then apply two layers.
  • the two parts are overlapped and softened by heating.
  • Heat sealing agents can be easily softened by heating with a burner or hot air, and can bond paper to paper or paper to other materials, and then cool to solidify the bonded portion, thereby bonding paper to paper or paper to other materials. It can be tightly sealed.
  • heating method conventionally known means such as a heat source such as a burner, hot air, electric heat, infrared rays, and electron beams can be used.
  • a heat welding sealing method, an ultrasonic sealing method, or a high frequency sealing method is preferable.
  • the heating temperature at this time is preferably 200 to 500° C., and the heating time is preferably 0.1 to 3 seconds.
  • the heat sealing agent can be easily heated and softened even by non-contact heating, and can be softened to some extent even if it is separated from the heat source, in addition to the method of melting by contacting it directly with a heat source such as a heat sealing bar.
  • the heat seal function lasts for hours.
  • the base material is paper
  • the paper may be scorched if it is brought into direct contact with a heat source. It is particularly useful as a heat sealing agent for industrial production of paper containers that require high line speed.
  • a heat sealing agent can be used as a heat sealing agent by applying a heat sealing agent (HS) and heating and softening the coated portion, and then pressing the coated portion and another portion in a superimposed state.
  • HS heat sealing agent
  • the crimping method is not particularly limited, and a hot plate method, ultrasonic sealing, or high-frequency sealing can be used.
  • the laminate of the present invention can prevent the first layer or the second layer including the heat-seal layer from adhering to the mold during heat-sealing in the manufacture of paper cups.
  • Parts in the following examples represent “parts by mass”, and “%” represents “% by mass”.
  • the temperature was lowered to 40° C., and dimethylethanolamine and ion-exchanged water were added. Thereafter, the temperature of the reaction flask was raised to 80-82° C. and stripping was carried out to finally obtain a water-soluble resin with a solid content of 30%.
  • the acrylic emulsion (resin 1) thus obtained had a solid content of 40%, a minimum film-forming temperature of 1°C, a glass transition point of -27°C, and an acid value of the solid content of 64 mgKOH/g. .
  • Adjustment of heat sealing agent 38 parts of an acrylic resin (83 parts of methyl methacrylate/11 parts of butyl acrylate/1 part of 2-ethylhexyl acrylate/5 parts of methacrylic acid) and a neutralization rate of 100% with respect to the acid value of the copolymer Ammonia, water as an aqueous solvent, and 1.5 parts of polyethylene wax and 0.5 parts of paraffin wax as waxes were charged and stirred to prepare an acrylic resin heat sealing agent (HS2).
  • an acrylic resin 83 parts of methyl methacrylate/11 parts of butyl acrylate/1 part of 2-ethylhexyl acrylate/5 parts of methacrylic acid
  • HS3 Adjustment of heat sealing agent 30 parts of an ethylene ethyl acrylate copolymer (77.8 parts of ethylene/11.1 parts of ethyl acrylate/11.2 parts of acrylic acid) and a neutralization rate of 100% with respect to the acid value of the copolymer.
  • Ammonia, water as an aqueous solvent, and 1.5 parts of a fatty acid amide wax as a wax were charged, and isopropyl alcohol was further mixed and stirred so that the mixing ratio of water/isopropyl alcohol in the composition was 67/3. , an olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer heat sealing agent (HS3) was obtained.
  • Examples 1 to 11, Comparative Examples 1 to 5 Prepare a paper base material (pure white roll paper with a basis weight of 45 g / m 2 (Kinshachi manufactured by Daio Paper Co., Ltd.), and on one side (rough surface side) of the paper base material for the first layer described in Table 1 A first layer was formed by applying and drying the composition to the film thickness shown in Table 1. Subsequently, the second layer for the second layer shown in Table 1 was formed on the first layer. The composition was applied to the film thickness shown in Table 1 and dried at 100° C. for 30 seconds using a dryer to prepare laminates of Examples 5 to 11.
  • each layer when CS1 or AOP1 is applied, it is dried for 20 seconds at 150°C using a dryer after application, and when HS1 to HS3 are applied, it is dried for 20 seconds at 150°C using a dryer after application. dried for a second.
  • Oil repellency JAPAN TAPPI paper pulp test method No. using the laminates of the produced examples and comparative examples. Oil repellency was evaluated using the 41 kit method. In the evaluation, when the oil repellency was 7 or more, it was accepted (excellent), when it was 5 or more, it was acceptable, and when it was less than 4, it was not acceptable. The maximum oil repellency is 16.
  • the laminate having the first layer and the second layer of the present invention has excellent oil resistance and water resistance while having heat sealability. Further, as shown in Comparative Examples 1 to 3, it is not necessary to thickly apply the heat-sealing agent, and sufficient heat-sealing properties can be obtained.
  • the second layer is a heat-sealable coating layer as shown in Examples 1 to 3, water resistance is higher than in Example 1 using HS3 (olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer system resin). Improved.
  • HS3 olefin- ⁇ , ⁇ unsaturated carboxylic acid copolymer system resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention is a layered body that at least includes: a paper base material; a first layer disposed on at least a section of the paper base material, and a second layer disposed on top of the first layer. One of the first layer and the second layer is a coating layer that contains a resin containing a styrene-acrylic copolymer comprising styrene, α-methylstyrene, and (meth)acrylate; and the other thereof is a coating layer that contains a heat-sealing agent. According to the present invention, it is possible to provide: a paper-based layered body having excellent water resistance and oil resistance and having a heat-sealing property; and also a wrapping body and a container using such layered body.

Description

積層体、及び該積層体を用いた包装紙又は容器Laminate and wrapping paper or container using the laminate
 本発明は、積層体、及び該積層体を用いた包装紙又は容器に関する。 The present invention relates to a laminate and a wrapping paper or container using the laminate.
 紙袋、紙箱、紙カップ等の紙包装材は、各種の用途・目的に応じて従来より使用されてきた。近年では、マイクロプラスチックを始めとする海洋プラスチックごみ問題がクローズアップされる中で、「再利用可能」「生分解性を有する」などの機能を持つ素材の一つとして、プラスチック材料に代わり、再生可能な資源である「木」を原料とする「紙」を使用する動きが高まってきている。 Paper packaging materials such as paper bags, paper boxes, and paper cups have traditionally been used for various purposes and purposes. In recent years, as the problem of marine plastic litter such as microplastics has been drawing attention, it has become one of the materials with functions such as "reusable" and "biodegradable" as an alternative to plastic materials. There is a growing movement to use "paper" made from "wood" which is a possible resource.
 現在広く普及している紙製容器の1つとして、飲料用やアイスクリーム、ヨーグルト等の容器として使用される紙カップ類がある。紙カップ類は、紙であるものの原料の一部にポリエチレンフィルムを使用することにより耐水性が付与されている。このような紙カップ類は、熱で溶かしたポリエチレン樹脂やポリプロピレン樹脂等をフィルム状に押し出したポリエチレンフィルムやポリプロピレンフィルム等を紙基材に貼り合わせて得る。ポリエチレンフィルムが紙カップ成型時には、バーナーや熱風等の間接加熱下による熱溶融で接着剤の役目を果たし、且つ、ポリエチレンフィルムが紙カップ内側に存在するので紙基材が直接内容物と接触する事なく防水性、防湿性や強度が付与される。 One of the paper containers that are currently in widespread use are paper cups used for beverages, ice cream, yogurt, etc. Although paper cups are made of paper, water resistance is imparted by using a polyethylene film as part of the raw material. Such paper cups are obtained by laminating a polyethylene film, a polypropylene film, or the like, which is obtained by extruding a polyethylene resin, a polypropylene resin, or the like melted with heat, onto a paper substrate. When the polyethylene film is molded into a paper cup, it acts as an adhesive by being melted by indirect heating such as a burner or hot air, and since the polyethylene film exists inside the paper cup, the paper base does not come into direct contact with the contents and is waterproof. properties, moisture resistance and strength.
 しかしながら貼り合わされたポリエチレンフィルムは、紙リサイクル時に紙リサイクル処理で使用するアルカリ溶液に溶解しないため物理的に除去する必要があり、リサイクル効率の低下につながる。またプラスチックごみの海洋への流出による海洋汚染が世界的に問題となっている。持続可能な開発目標(SDGs)のターゲットとして「2025年までに、海洋ごみや富栄養化を含む、特に陸上活動による汚染など、あらゆる種類の海洋汚染を防止し、大幅に削減する」という目標が掲げられ、サミット(主要国首脳会議)でも取り組み強化が合意されるなど世界的な重要テーマとなっている。従って、これらの用途に適用可能で且つ紙リサイクル効率を低下させない、ポリエチレンフィルム代替品が求められている。 However, since the laminated polyethylene film does not dissolve in the alkaline solution used in the paper recycling process, it must be physically removed, leading to a decrease in recycling efficiency. In addition, marine pollution due to the outflow of plastic waste into the ocean has become a global problem. One of the Sustainable Development Goals (SDGs) is to "By 2025 prevent and significantly reduce marine pollution of all kinds, especially pollution from land-based activities, including marine debris and eutrophication." It has become an important global theme, with agreements to strengthen efforts at summits (summer meetings of major countries). Therefore, there is a need for polyethylene film substitutes that are applicable to these uses and that do not reduce paper recycling efficiency.
 一方で、袋、箱、紙カップ等の成型時に接着剤の役目を果たすものとして、水性のヒートシール剤が知られている。例えば、特許文献1ではアンモニアまたはアミンで中和されたオレフィン-α,β不飽和カルボン酸共重合体と、これ以外のオレフィン系熱可塑性樹脂とを特定比率で混合分散したエチレン-系樹脂水性分散液がヒートシール剤として適用できる旨の開示がなされている。 On the other hand, water-based heat sealing agents are known to serve as adhesives when molding bags, boxes, paper cups, and the like. For example, in Patent Document 1, an ethylene-based resin aqueous dispersion obtained by mixing and dispersing an olefin-α,β-unsaturated carboxylic acid copolymer neutralized with ammonia or an amine and an olefin-based thermoplastic resin other than this at a specific ratio It is disclosed that the liquid can be applied as a heat sealing agent.
 また特許文献2では、不飽和カルボン酸単位、エチレン-系炭化水素、およびアクリル酸エステルまたはメタクリル酸エステルとから構成されるポリオレフィン樹脂と、天然ワックス、および水性媒体を特定比率で含有する水性分散体がヒートシール剤として適用できる旨の開示がなされている。 Further, in Patent Document 2, an aqueous dispersion containing a polyolefin resin composed of an unsaturated carboxylic acid unit, an ethylene-based hydrocarbon, and an acrylic acid ester or a methacrylic acid ester, a natural wax, and an aqueous medium in a specific ratio can be applied as a heat sealing agent.
特開2000-7860号公報JP-A-2000-7860 特開2006-45313号公報JP-A-2006-45313
 しかし、ヒートシールが可能で包材設計に優れており、且つ耐油・耐水性にも優れているプラスチック包装材の代替として、紙包装材を使用するには、まだ課題が多い。特許文献1や特許文献2のような紙用のヒートシール剤はこれまでに存在していたが、これらの文献には、ヒートシール強度や耐ブロッキング性といったいわゆるヒートシール剤としての性能しか開示されておらず、ポリエチレンフィルムの代替として所望される耐水性及び耐油性については何ら記載されていない。つまり、耐油性、耐水性を備えたヒートシール剤は無いことから、ビロー形態等の種々のプラスチック包装材を紙包装材へ転換する際には、耐油、耐水性の向上が求められる。 However, there are still many problems in using paper packaging as an alternative to plastic packaging, which is heat-sealable, has excellent packaging design, and has excellent oil and water resistance. Although heat sealing agents for paper such as those disclosed in Patent Document 1 and Patent Document 2 have existed so far, these documents only disclose performance as a so-called heat sealing agent such as heat sealing strength and blocking resistance. There is no description of the water resistance and oil resistance desired as a substitute for polyethylene films. In other words, since there is no heat sealing agent with oil resistance and water resistance, improvement of oil resistance and water resistance is required when converting various plastic packaging materials such as billows to paper packaging materials.
 即ち本発明は、紙基材と、紙基材の少なくとも一部に設けられた第一の層と、第一の層の上に設けられた第二の層を少なくとも有し、第一の層又は第二の層のうち一方は、スチレンとαメチルスチレンと(メタ)アクリレートとのスチレンアクリル共重合体を含む樹脂を含有するコート層であり、他方はヒートシール剤を含有するコート層である積層体である。 That is, the present invention has at least a paper substrate, a first layer provided on at least a part of the paper substrate, and a second layer provided on the first layer, and the first layer Alternatively, one of the second layers is a coating layer containing a resin containing a styrene acrylic copolymer of styrene, α-methylstyrene and (meth)acrylate, and the other is a coating layer containing a heat sealing agent. It is a laminate.
 また、本発明は、上記積層体を用いた包装体又は容器を提供する。 The present invention also provides a package or container using the laminate.
 本発明の積層体は、優れた耐水性、耐油性を有し、且つヒートシール性を有する紙の積層体であることから、プラスチックフィルムをラミネートした紙の代替として有用であり、各種用途に有用な上、紙リサイクル効率に貢献できる。また、本発明の積層体は、本発明の積層体は、塗工するだけで紙に対し優れた耐水性、耐油性、ヒートシール性を有する積層体を容易に得られ、更に、金型を用いてヒートシールする際にも、金型にヒートシール剤が付着してしまうことを防止できるので、生産性の向上及びヒートシール後の製品の品質向上が可能である。 Since the laminate of the present invention is a laminate of paper having excellent water resistance, oil resistance, and heat sealability, it is useful as a substitute for paper laminated with a plastic film, and is useful for various purposes. Moreover, it can contribute to paper recycling efficiency. In addition, the laminate of the present invention can easily obtain a laminate having excellent water resistance, oil resistance, and heat sealability to paper simply by coating, and furthermore, a mold is used. Since it is possible to prevent the heat sealing agent from adhering to the mold even when heat sealing is performed using the heat sealing agent, it is possible to improve the productivity and the quality of the product after heat sealing.
 本発明の積層体は、紙基材と、紙基材の少なくとも一部に設けられた第一の層と、第一の層の上に設けられた第二の層を少なくとも有するものである。本発明の積層体において、第一の層又は第二の層のうち一方は、スチレンとαメチルスチレンと(メタ)アクリレートとのスチレンアクリル共重合体を含む樹脂を含有するコート層(以下、「耐油耐水コート層」と称する)であり、他方はヒートシール剤を含有するコート層(以下、「ヒートシール性コート層」と称する)である。すなわち、本発明の積層体は、耐油耐水コート層とヒートシール性コート層が積層された層を有するが、これらの層の順序は特に限定されるものではない。 The laminate of the present invention has at least a paper substrate, a first layer provided on at least part of the paper substrate, and a second layer provided on the first layer. In the laminate of the present invention, one of the first layer and the second layer is a coat layer containing a resin containing a styrene-acrylic copolymer of styrene, α-methylstyrene, and (meth)acrylate (hereinafter referred to as " The other is a coat layer containing a heat-sealing agent (hereinafter referred to as a "heat-sealable coat layer"). That is, the laminate of the present invention has a layer in which an oil- and water-resistant coat layer and a heat-sealable coat layer are laminated, but the order of these layers is not particularly limited.
[耐油耐水コート層]
 本発明の積層体は、紙基材上の第一の層又は第二の層のいずれか一方として、耐油耐水コート層を有する。該耐油耐水コート層は、スチレンとαメチルスチレンと(メタ)アクリレートとのスチレンアクリル共重合体(A)を含有するエマルジョンと、水性媒体とを含有するコーティング組成物(CS)により形成されることが好ましい。
[Oil and water resistant coating layer]
The laminate of the present invention has an oil- and water-resistant coating layer as either the first layer or the second layer on the paper substrate. The oil- and water-resistant coating layer is formed from a coating composition (CS) containing an emulsion containing a styrene-acrylic copolymer (A) of styrene, α-methylstyrene, and (meth)acrylate, and an aqueous medium. is preferred.
<スチレンアクリル共重合体(A)を含有するコーティング組成物(CS)>
(スチレンアクリル共重合体(A)を含有するエマルジョン)
 まず、スチレンとαメチルスチレンと(メタ)アクリレートとのスチレンアクリル共重合体(A)を含有するエマルジョンについて説明する。尚、本発明において(メタ)アクリレートは、アクリレートとメタクリレートの総称を表し、(メタ)アクリル酸はアクリル酸とメタクリル酸の総称を表す。
<Coating composition (CS) containing styrene acrylic copolymer (A)>
(Emulsion containing styrene acrylic copolymer (A))
First, an emulsion containing a styrene-acrylic copolymer (A) of styrene, α-methylstyrene and (meth)acrylate will be described. In the present invention, (meth)acrylate is a generic term for acrylate and methacrylate, and (meth)acrylic acid is a generic term for acrylic acid and methacrylic acid.
 本発明において、スチレンアクリル共重合体(A)中のαメチルスチレンは、o-メチルスチレン、m-メチルスチレン、p-メチルスチレンのいずれかまたは混合物を表す。 In the present invention, α-methylstyrene in the styrene-acrylic copolymer (A) represents either o-methylstyrene, m-methylstyrene, p-methylstyrene or a mixture thereof.
 また、スチレンアクリル共重合体(A)は、前記スチレンや前記αメチルスチレン以外のスチレン誘導体(p-ジメチルシリルスチキシスチレン、p-tert-ブチルジメチルシロキシスチレン、p-tert-ブチルスチレン)、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレンらを本発明の範囲を損なわない範囲において一部使用してもよい。 In addition, the styrene-acrylic copolymer (A) includes styrene and styrene derivatives other than α-methylstyrene (p-dimethylsilylstyxystyrene, p-tert-butyldimethylsiloxystyrene, p-tert-butylstyrene), vinyl Naphthalene, vinylanthracene, 1,1-diphenylethylene, etc. may be partially used within the scope of the present invention.
 (メタ)アクリレートとしては特に限定はなく、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸iso-プロピル、(メタ)アクリル酸アリル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸iso-アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ラウリル、(メタ)アクリル酸n-トリデシル、(メタ)アクリル酸n-ステアリル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸4-tert-ブチルシクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンタジエニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、メタクリル酸トリフルオロエチル、メタクリル酸テトラフルオロプロピル、メタクリル酸ペンタフルオロプロピル、メタクリル酸オクタフルオロペンチル、メタクリル酸ペンタデカフルオロオクチル、メタクリル酸ヘプタデカフルオロデシル、N,N-ジメチル(メタ)アクリルアミド、アクリロイルモルホリン、(メタ)アクリロニトリル、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリブチレングリコール(メタ)アクリレート、ポリプロピレングリコール-ポリブチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、ブトキシポリエチレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール(メタ)アクリレート、ラウロキシポリエチレングリコール(メタ)アクリレート、ステアロキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレートなどのポリアルキレンオキサイド基含有(メタ)アクリル単量体等、汎用の(メタ)アクリレートを使用することが出来る。中でも、アクリレートを有するホモポリマーがより低いガラス転移温度を呈することから好ましく、炭素原子数1~20のアルキル基を有するアクリレートを主成分とすることが好ましく、炭素原子数1~12のアルキル基を有するアクリレートを主成分とすることが好ましい。このような炭素原子数1~12のアルキル基を有するアクリレートとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸iso-プロピル、アクリル酸アリル、アクリル酸n-ブチル、アクリル酸iso-ブチル、(メタ)アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-アミル、アクリル酸iso-アミル、アクリル酸n-ヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ラウリル等が挙げられる。 The (meth)acrylate is not particularly limited, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, iso-propyl (meth)acrylate, allyl (meth)acrylate, n-(meth)acrylate, Butyl, iso-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, n-amyl (meth)acrylate, iso-amyl (meth)acrylate, (meth)acrylate n-hexyl acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-lauryl (meth)acrylate, n-tridecyl (meth)acrylate, n-stearyl (meth)acrylate , phenyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, tricyclodecanyl (meth)acrylate , dicyclopentadienyl (meth)acrylate, adamantyl (meth)acrylate, glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 2-methoxyethyl (meth)acrylate, (meth)acrylic acid 2-ethoxyethyl, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, trifluoroethyl methacrylate, tetrafluoropropyl methacrylate, pentafluoropropyl methacrylate, octafluoropentyl methacrylate, pentadeca methacrylate fluorooctyl, heptadecafluorodecyl methacrylate, N,N-dimethyl(meth)acrylamide, acryloylmorpholine, (meth)acrylonitrile, polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, polyethylene glycol-polypropylene glycol (meth) Acrylate, polyethylene glycol-polybutylene glycol (meth)acrylate, polypropylene glycol-polybutylene glycol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, ethoxypolyethyleneglycol (meth)acrylate, butoxypolyethyleneglycol (meth)acrylate, octoxy Polyethylene glycol (meth)acrylate, lauroxypolyethyleneglycol (meth)acrylate, stearoxypolyethyleneglycol (meth)acrylate General-purpose (meth)acrylic monomers containing polyalkylene oxide groups such as lylate, phenoxypolyethyleneglycol (meth)acrylate, methoxypolypropyleneglycol (meth)acrylate, octoxypolyethyleneglycol-polypropyleneglycol (meth)acrylate, etc. Acrylates can be used. Among them, a homopolymer having an acrylate is preferable because it exhibits a lower glass transition temperature, and it is preferable that the main component is an acrylate having an alkyl group having 1 to 20 carbon atoms, and an alkyl group having 1 to 12 carbon atoms. It is preferable that the main component is an acrylate having a Examples of such acrylates having an alkyl group having 1 to 12 carbon atoms include methyl acrylate, ethyl acrylate, iso-propyl acrylate, allyl acrylate, n-butyl acrylate, iso-butyl acrylate, ( meth)sec-butyl acrylate, tert-butyl acrylate, n-amyl acrylate, iso-amyl acrylate, n-hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, (meth)acrylic acid n - includes lauryl and the like.
 本発明のスチレンアクリル共重合体(A)の構成成分として用いられる(メタ)アクリレートは、1種類であっても2種類以上であってもよいが、2種類以上の(メタ)アクリレートを用いることが好ましく、中でも、炭素原子数1~12のアルキル基を有するアクリレート2種類以上を主成分として用いることが好ましい。 The (meth)acrylate used as a constituent component of the styrene-acrylic copolymer (A) of the present invention may be one type or two or more types, but two or more types of (meth)acrylates may be used. Among them, it is preferable to use two or more acrylates having an alkyl group having 1 to 12 carbon atoms as main components.
 スチレンアクリル共重合体(A)を含有するエマルジョンは、(メタ)アクリル酸と(メタ)アクリレートとの共重合体を更に含有することが好ましい。(メタ)アクリル酸と(メタ)アクリレートとの共重合体は、(メタ)アクリル酸と前記(メタ)アクリレートとの共重合体である(以下アクリル共重合体(B)と称する場合がある)。前記(メタ)アクリレートとしては特に限定はないが、中でも炭素原子数1~20のアルキル基を有するアクリレートであることが好ましく、アクリレートを有するホモポリマーがより低いガラス転移温度を呈することから好ましく、炭素原子数1~20のアルキル基を有するアクリレートを主成分とすることが好ましく、炭素原子数1~12のアルキル基を有するアクリレートを主成分とすることが好ましい。このような炭素原子数1~12のアルキル基を有するアクリレートとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸iso-プロピル、アクリル酸アリル、アクリル酸n-ブチル、アクリル酸iso-ブチル、(メタ)アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-アミル、アクリル酸iso-アミル、アクリル酸n-ヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ラウリル等が挙げられる。 The emulsion containing the styrene-acrylic copolymer (A) preferably further contains a copolymer of (meth)acrylic acid and (meth)acrylate. A copolymer of (meth)acrylic acid and (meth)acrylate is a copolymer of (meth)acrylic acid and the (meth)acrylate (hereinafter sometimes referred to as acrylic copolymer (B)). . The (meth)acrylate is not particularly limited, but is preferably an acrylate having an alkyl group having 1 to 20 carbon atoms. The main component is preferably an acrylate having an alkyl group of 1 to 20 atoms, and preferably an acrylate having an alkyl group of 1 to 12 carbon atoms. Examples of such acrylates having an alkyl group having 1 to 12 carbon atoms include methyl acrylate, ethyl acrylate, iso-propyl acrylate, allyl acrylate, n-butyl acrylate, iso-butyl acrylate, ( meth)sec-butyl acrylate, tert-butyl acrylate, n-amyl acrylate, iso-amyl acrylate, n-hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, (meth)acrylic acid n - includes lauryl and the like.
 スチレンアクリル共重合体(A)を含有するエマルジョンは、前記スチレンアクリル共重合体(A)と前記アクリル共重合体(B)とを含有することが好ましいが、これは、乳化重合や転送乳化等の公知の水性媒体を使用する重合法で重合した前記スチレンアクリル共重合体(A)のエマルジョンと、乳化重合や転送乳化等の公知の水性媒体を使用する重合法で重合した前記アクリル共重合体(B)のエマルジョンとを適宜混合したエマルジョンであってもよいし、前記スチレンアクリル共重合体(A)と前記アクリル共重合体(B)とがコアシェル構造を形成する樹脂のエマルジョンであってもよい。なお、「スチレンアクリル共重合体(A)を含む樹脂」とは、スチレンアクリル共重合体(A)からなる樹脂であってもよいし、前記スチレンアクリル共重合体(A)と前記アクリル共重合体(B)とがコアシェル構造を形成する樹脂であってもよい。 The emulsion containing the styrene-acrylic copolymer (A) preferably contains the styrene-acrylic copolymer (A) and the acrylic copolymer (B). The emulsion of the styrene-acrylic copolymer (A) polymerized by a known polymerization method using an aqueous medium, and the acrylic copolymer polymerized by a known polymerization method using an aqueous medium such as emulsion polymerization or transfer emulsification It may be an emulsion obtained by appropriately mixing the emulsion of (B), or an emulsion of a resin in which the styrene-acrylic copolymer (A) and the acrylic copolymer (B) form a core-shell structure. good. The "resin containing the styrene-acrylic copolymer (A)" may be a resin composed of the styrene-acrylic copolymer (A), or a resin containing the styrene-acrylic copolymer (A) and the acrylic copolymer (A). It may be a resin that forms a core-shell structure with coalescing (B).
 なお、コアシェル構造とは、「スチレンアクリル共重合体(A)」が多く存在する領域と、「アクリル共重合体(B)」が多く存在する領域を有することにより、コアシェル構造を形成するものである。該コアシェル構造において、例えば、「スチレンアクリル共重合体(A)」が多く存在する領域に「アクリル共重合体(B)」が存在していてもよいし、また、これらの共重合体が互いに重合していてもよい。 The core-shell structure is formed by having a region in which the "styrene-acrylic copolymer (A)" is abundant and a region in which the "acrylic copolymer (B)" is abundant. be. In the core-shell structure, for example, "acrylic copolymer (B)" may be present in a region where "styrene-acrylic copolymer (A)" is abundant, or these copolymers may It may be polymerized.
 スチレンアクリル共重合体(A)を含有するエマルジョンは、スチレンアクリル共重合体(A)を少なくとも含む樹脂を含有し、最低造膜温度が-30℃~30℃の範囲であることが好ましく、-10~25℃の範囲がより好ましく、-5~20℃の範囲が更に好ましい。本発明において最低造膜温度は、合成ゴムラテックスの水分が蒸発して乾燥するとき、連続したフィルムが形成されるのに必要な最低の温度であり、温度勾配板法により得られるものである。 The emulsion containing the styrene-acrylic copolymer (A) preferably contains a resin containing at least the styrene-acrylic copolymer (A) and has a minimum film-forming temperature in the range of -30°C to 30°C. The range of 10 to 25°C is more preferred, and the range of -5 to 20°C is even more preferred. In the present invention, the minimum film-forming temperature is the minimum temperature required to form a continuous film when the synthetic rubber latex evaporates and dries, and is obtained by the temperature gradient plate method.
 スチレンアクリル共重合体(A)を含有するエマルジョンのガラス転移温度(以下Tgと称する場合がある)は、-40℃~30℃の範囲であることが好ましく、中でも-35~25℃の範囲が好ましく、-30~23℃の範囲がより好ましい。本発明においてガラス転移温度は、示差走査熱量計による測定により得られるものである。 The glass transition temperature (hereinafter sometimes referred to as Tg) of the emulsion containing the styrene-acrylic copolymer (A) is preferably in the range of -40°C to 30°C, especially in the range of -35°C to 25°C. It is preferably in the range of -30 to 23°C. In the present invention, the glass transition temperature is obtained by measurement with a differential scanning calorimeter.
 また前記エマルジョンの酸価は30~80mgKOH/gの範囲であることが好ましく、中でも40~75mgKOH/gの範囲が好ましく、50~70mgKOH/gの範囲がより好ましい。本発明において酸価は、JIS試験方法K 0070-1992に準拠した測定方法により得られるものである。 The acid value of the emulsion is preferably in the range of 30-80 mgKOH/g, more preferably in the range of 40-75 mgKOH/g, more preferably in the range of 50-70 mgKOH/g. In the present invention, the acid value is obtained by a measuring method based on JIS test method K 0070-1992.
 スチレンアクリル共重合体(A)のエマルジョンを含むコーティング組成物(CS)は、ピンホール等の欠陥の無い緻密な造膜性を有するため、耐水性、耐油性に優れる。そのため、積層体の耐水性、耐油性を向上させることができる。また、コーティング組成物(CS)は接着性も有するため、ヒートシール性コート層及び/又は紙基材との接着性に優れ、また、ヒートシール性コート層の機能を損なうこともないことから、ヒートシール性コート層と組み合わせて用いた場合の相性に優れている。 The coating composition (CS) containing the emulsion of the styrene-acrylic copolymer (A) has fine film-forming properties without defects such as pinholes, and is therefore excellent in water resistance and oil resistance. Therefore, the water resistance and oil resistance of the laminate can be improved. In addition, since the coating composition (CS) also has adhesiveness, it is excellent in adhesiveness to the heat-sealable coat layer and/or the paper substrate, and does not impair the function of the heat-sealable coat layer. Excellent compatibility when used in combination with a heat-sealable coating layer.
 また、本発明の組成物はスチレンアクリル共重合体(A)を含むため、耐熱性が向上する。そのため、収容物が加熱食品などの高温の場合にも適応可能である。 In addition, since the composition of the present invention contains the styrene-acrylic copolymer (A), the heat resistance is improved. Therefore, it is applicable even when the contents are at high temperature such as heated food.
(スチレンアクリル共重合体(A)を含有するエマルジョンの製造方法)
 本発明においてエマルジョンは特に限定なく公知の乳化重合や転送乳化等の公知の水性媒体を使用する重合法で重合して得ることができる。また水性媒体にポリマーが分散した形態にはエマルジョンやディスパージョン、懸濁液等様々な表現があるが本発明においてはエマルジョンに統一する。
(Method for producing emulsion containing styrene-acrylic copolymer (A))
In the present invention, the emulsion can be obtained by polymerization using a known aqueous medium, such as known emulsion polymerization or transfer emulsification, without any particular limitation. Although there are various expressions such as emulsion, dispersion, suspension, etc. for the form in which a polymer is dispersed in an aqueous medium, the term "emulsion" is unified in the present invention.
 例えば水性媒体中にモノマー混合物を供給して、開始剤の存在下、このモノマー混合物を重合させてエマルジョンを重合する。 For example, a monomer mixture is supplied in an aqueous medium, and the monomer mixture is polymerized in the presence of an initiator to polymerize an emulsion.
 前記スチレンアクリル共重合体(A)のエマルジョンと、前記アクリル共重合体(B)のエマルジョンとを適宜混合したエマルジョンの場合は、それぞれのモノマー混合物を重合させたエマルジョンを混合させることで得られる。 In the case of an emulsion obtained by appropriately mixing the emulsion of the styrene-acrylic copolymer (A) and the emulsion of the acrylic copolymer (B), it is obtained by mixing emulsions obtained by polymerizing the respective monomer mixtures.
 また、コアシェル構造を形成するエマルジョンの場合は、コアポリマーを形成するモノマー混合物を供給して、開始剤の存在下、このモノマー混合物を重合させてコアポリマーを形成する工程(1)と、シェルポリマーを形成するモノマー混合物を工程(1)のコアポリマーに供給し、開始剤の存在下、このモノマー混合物を重合させてコアポリマーにシェルを形成する工程(2)により得られる。また、シェルポリマーを形成するモノマー混合物を供給して、開始剤の存在下、このモノマー混合物を重合させてシェルポリマーを形成する工程(i)と、コアポリマーを形成するモノマー混合物を工程(i)のシェルポリマーに供給し、開始剤の存在下、このモノマー混合物を重合させてコアポリマーにシェルを形成する工程(ii)により得られる。 In the case of an emulsion forming a core-shell structure, a step (1) of supplying a monomer mixture forming a core polymer and polymerizing the monomer mixture in the presence of an initiator to form a core polymer; to the core polymer of step (1) and polymerizing the monomer mixture in the presence of an initiator to form a shell on the core polymer (step (2)). In addition, step (i) of supplying a monomer mixture that forms a shell polymer and polymerizing the monomer mixture in the presence of an initiator to form a shell polymer; and polymerizing this monomer mixture in the presence of an initiator to form a shell on the core polymer (ii).
 開始剤としては特に限定なく、乳化重合法等で使用される過酸化物、過硫酸塩、アゾ化合物、又はレドックス系、或いはこれらの混合物を使用すればよい。過酸化物としては例えば、過酸化水素、過酸化アンモニウム、過酸化ナトリウム、又は過酸化カリウム、t-ブチルペルオキシド、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、及びベンゼンペルオキシドが挙げられる。また過硫酸塩としては例えば、過硫酸アンモニウム、過硫酸ナトリウム、又は過硫酸カリウムが挙げられる。またアゾ化合物としては例えば、2,2-アゾビスイソブチロニトリル、及び4,4’-(4-シアノバレリン酸)が挙げられる。またレドックス系は酸化剤と還元剤とから成り、酸化剤としては例えば先に挙げたうちの1の過酸化物、過硫酸塩、若しくはアゾ化合物、又は塩化ナトリウム若しくは塩化カリウム、又は臭化ナトリウム若しくは臭化カリウムが挙げられる。還元剤としては例えばアスコルビン酸、グルコース、又はアンモニウム、硫酸水素ナトリウム若しくは硫酸水素カリウム、亜硫酸水素ナトリウム若しくは亜硫酸水素カリウム、ナトリウムチオスルフェート若しくはカリウムチオスルフェート、又は硫化ナトリウム若しくは硫化カリウム、又は鉄(II)アンモニウムスルフェートが挙げられる。中でも過硫酸塩、より好ましくは過硫酸アンモニウムが好ましい。 The initiator is not particularly limited, and peroxides, persulfates, azo compounds, redox compounds, or mixtures thereof used in the emulsion polymerization method may be used. Peroxides include, for example, hydrogen peroxide, ammonium peroxide, sodium or potassium peroxide, t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, and benzene peroxide. Persulfates include, for example, ammonium persulfate, sodium persulfate, or potassium persulfate. Examples of azo compounds include 2,2-azobisisobutyronitrile and 4,4'-(4-cyanovaleric acid). The redox system also consists of an oxidizing agent and a reducing agent, the oxidizing agent being, for example, one of the peroxides, persulfates or azo compounds listed above, or sodium chloride or potassium chloride, or sodium bromide or Potassium bromide may be mentioned. Examples of reducing agents include ascorbic acid, glucose, or ammonium, sodium or potassium hydrogen sulfate, sodium or potassium hydrogen sulfite, sodium thiosulfate or potassium thiosulfate, or sodium or potassium sulfide, or iron (II ) ammonium sulfate. Among them, persulfates, more preferably ammonium persulfate, are preferred.
 前記モノマー混合物の重合は、例えば界面活性剤、連鎖移動剤、キレート剤等の添加剤の存在下で、例えば界面活性剤及び連鎖移動剤の存在下で行うことができる。これらの添加剤は、工程(1)で使用する水性媒体に予め添加させておいてもよいし、工程(1)あるいは工程(2)で供給するモノマー混合物と混合させておいてもよい。 The polymerization of the monomer mixture can be carried out in the presence of additives such as surfactants, chain transfer agents and chelating agents, for example in the presence of surfactants and chain transfer agents. These additives may be added in advance to the aqueous medium used in step (1), or may be mixed with the monomer mixture supplied in step (1) or step (2).
 界面活性剤としては特に限定されないが、例えば二ナトリウムドデシルジフェニルオキシド、ジスルホン酸塩等が挙げられる。また連鎖移動剤としても特に限定されないが、例えばα-メチルスチレン二量体、チオグリコール酸、亜リン酸水素ナトリウム、2-メルカプトエタノール、N-ドデシルメルカプタン、及びt-ドデシルメルカプタン等が挙げられる。キレート剤としては特に限定されないが、例えばエチレンジアミン四酢酸が挙げられる。 The surfactant is not particularly limited, but includes, for example, disodium dodecyldiphenyl oxide, disulfonate, and the like. Although the chain transfer agent is not particularly limited, examples thereof include α-methylstyrene dimer, thioglycolic acid, sodium hydrogen phosphite, 2-mercaptoethanol, N-dodecylmercaptan, and t-dodecylmercaptan. The chelating agent is not particularly limited, but includes, for example, ethylenediaminetetraacetic acid.
 コアシェル構造を形成する場合、水媒体中での安定性を高めるためには、酸性基を有する前記アクリル共重合体(B)がシェルとなることが好ましいが合成中に全ての前記アクリル共重合体(B)がシェルとなっておらず一部前記スチレンアクリル共重合体(A)がシェルとなっている構造を有するエマルジョンであっても問題ない。 When forming a core-shell structure, in order to increase the stability in an aqueous medium, it is preferable that the acrylic copolymer (B) having an acidic group serves as the shell. There is no problem even if the emulsion has a structure in which (B) does not form a shell and part of the styrene-acrylic copolymer (A) forms a shell.
 また中和が必要な場合は、中和剤としてアンモニア、トリエチルアミン、アミノメチルプロパノール、モノエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム,水酸化カリウム等の塩基類等を使用することができる。 Also, when neutralization is required, bases such as ammonia, triethylamine, aminomethylpropanol, monoethanolamine, diethylaminoethanol, sodium hydroxide, and potassium hydroxide can be used as neutralizing agents.
(その他の樹脂)
 本発明のコーティング組成物(CS)は、スチレンアクリル共重合体(A)やアクリル共重合体(B)以外のその他の樹脂を含有してもよい。その他の樹脂の材料は特に限定されるものではないが、本発明のコーティング組成物(CS)の耐油性、耐熱性等の特性を損なわないために、スチレンアクリル共重合体であることが好ましく、前記スチレンアクリル共重合体(A)を含む樹脂と同様の材料であることがより好ましい。また、その他の樹脂の含有量は本発明の効果を損なわない範囲で適宜調節可能であるが、スチレンアクリル共重合体(A)を含む樹脂とその他の樹脂との重量比(スチレンアクリル共重合体(A)/その他の樹脂)が100/0~50/50であることが好ましく、100/0~60/40であることが好ましい。
(Other resins)
The coating composition (CS) of the present invention may contain resins other than the styrene-acrylic copolymer (A) and the acrylic copolymer (B). Materials for other resins are not particularly limited, but in order not to impair the properties of the coating composition (CS) of the present invention, such as oil resistance and heat resistance, it is preferably a styrene-acrylic copolymer. More preferably, it is the same material as the resin containing the styrene-acrylic copolymer (A). In addition, the content of other resins can be appropriately adjusted within a range that does not impair the effects of the present invention, but the weight ratio of the resin containing the styrene-acrylic copolymer (A) to the other resins (the styrene-acrylic copolymer (A)/other resin) is preferably 100/0 to 50/50, preferably 100/0 to 60/40.
(水性溶剤)
コーティング組成物(CS)は、水を含有する。水としては、イオン交換水、限外濾過水、逆浸透水、蒸留水等の純水、または超純水を用いることができる。また、前記水としては、紫外線照射または過酸化水素添加等によって滅菌された水を用いることが、組成物を長期保存する場合に、カビまたはバクテリアの発生を防止することができるため好適である。中でも水を用いることが最も好ましい。
水に溶解するアルコール類等の水溶性有機溶剤等を混合して用いてもよい。アルコール類としては、メタノール、エタノール、イソプロピルアルコール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、ブチルアルコール、ペンチルアルコールなどを挙げることができる。これらのアルコール類は、単独または2種以上組み合わせて使用することができる。
(Aqueous solvent)
The coating composition (CS) contains water. As water, pure water such as ion-exchanged water, ultrafiltrated water, reverse osmosis water, distilled water, or ultrapure water can be used. As the water, it is preferable to use water that has been sterilized by ultraviolet irradiation, addition of hydrogen peroxide, or the like, because it can prevent the generation of mold or bacteria when the composition is stored for a long period of time. Among them, it is most preferable to use water.
A water-soluble organic solvent such as an alcohol that dissolves in water may be mixed and used. Examples of alcohols include methanol, ethanol, isopropyl alcohol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, butyl alcohol and pentyl alcohol. These alcohols can be used alone or in combination of two or more.
(その他の添加剤)
 コーティング組成物(CS)は、その他シリカ、アルミナ、ポリエチレンワックス、消泡剤、レベリング剤、粘着性付与剤、防腐剤、抗菌剤、防錆剤等も配合することができる。
(Other additives)
The coating composition (CS) may also contain silica, alumina, polyethylene wax, antifoaming agents, leveling agents, tackifiers, preservatives, antibacterial agents, antirust agents, and the like.
 コーティング組成物(CS)は、ワックスを含有してもよい。ワックスとしては、脂肪酸アミドワックス、カルナバワックス、ポリオレフィンワックス、パラフィンワックス、フィッシャー・トロプシュワックス、みつろう、マイクロクリスタリンワックス、酸化ポリエチレン-ワックス、アマイドワックスなどのワックスを挙げることができる。これらは単独で使用してもよいし併用してもよい。 The coating composition (CS) may contain wax. Waxes include waxes such as fatty acid amide wax, carnauba wax, polyolefin wax, paraffin wax, Fischer-Tropsch wax, beeswax, microcrystalline wax, polyethylene oxide-wax, amide wax, and the like. These may be used alone or in combination.
 中でも脂肪酸アミドワックス、カルナバワックス、フィッシャー・トロプシュワックス、ポリオレフィンワックス、パラフィンワックスを使用することが好ましく、特にカルナバワックス、ポリオレフィンワックス、パラフィンワックスを使用することが好ましい。 Among them, it is preferable to use fatty acid amide wax, carnauba wax, Fischer-Tropsch wax, polyolefin wax, and paraffin wax, and it is particularly preferable to use carnauba wax, polyolefin wax, and paraffin wax.
 脂肪酸アミドワックスの具体例としては、例えば、ペラルゴン酸アミド、カプリン酸アミド、ウンデシル酸アミド、ラウリン酸アミド、トリデシル酸アミド、ミリスチン酸アミド、ペンタデシル酸アミド、パルミチン酸アミド、ヘプタデシル酸アミド、ステアリン酸アミド、ノナデカン酸アミド、アラキン酸アミド、ベヘン酸アミド、リグノセリン酸アミド、オレイン酸アミド、セトレイン酸アミド、リノール酸アミド、リノレン酸アミド、これらの混合物及び動植物油脂脂肪酸アミド等が挙げられる。 Specific examples of fatty acid amide waxes include pelargonic acid amide, capric acid amide, undecylic acid amide, lauric acid amide, tridecylic acid amide, myristic acid amide, pentadecylic acid amide, palmitic acid amide, heptadecylic acid amide, and stearic acid amide. , nonadecanic acid amide, arachidic acid amide, behenic acid amide, lignoceric acid amide, oleic acid amide, cetreic acid amide, linoleic acid amide, linoleic acid amide, mixtures thereof and animal and vegetable oil fatty acid amides.
 前記カルナバワックスの具体例としてはMICROKLEAR 418(Micro Powders,Inc.社製)、精製カルナバワックス1号粉末(日本ワックス株式会社)等が挙げられる。 Specific examples of the carnauba wax include MICROK LEAR 418 (manufactured by Micro Powders, Inc.) and refined carnauba wax No. 1 powder (Nippon Wax Co., Ltd.).
 前記オレフィンワックスの具体例としては、ポリエチレンワックス、ポリプロピレンワックスが挙げられ、例えばMPP-635VF(MicroPowders,Inc.)、MP-620VF XF(Micro Powders,Inc)等が挙げられる。 Specific examples of the olefin wax include polyethylene wax and polypropylene wax, such as MPP-635VF (Micro Powders, Inc.) and MP-620VF XF (Micro Powders, Inc.).
 前記パラフィンワックスの具体例としては、例えばMP-28C、MP-22XF、MP-28C(Micro Powders,Inc.)等が挙げられる。 Specific examples of the paraffin wax include MP-28C, MP-22XF and MP-28C (Micro Powders, Inc.).
 前記ワックスの配合量は、ワックス総量がコーティング組成物(CS)中の固形分100質量%全量に対し1.5~20質量%であることが好ましい。ワックス総量がコーティング組成物(CS)中の固形分100%全量に対し3質量%以上であれば耐ブロッキング性を保持できる傾向にあり、ワックス総量がコーティング組成物(CS)の固形分100%全量に対し15質量%以下であればヒートシール性が保持できる傾向にある。 The blending amount of the wax is preferably 1.5 to 20% by mass with respect to the total amount of 100% by mass of the solid content in the coating composition (CS). If the total amount of wax is 3% by mass or more with respect to the total solid content of 100% in the coating composition (CS), the blocking resistance tends to be maintained, and the total amount of wax is the total amount of 100% solid content of the coating composition (CS). If it is 15% by mass or less, the heat-sealing property tends to be maintained.
 また、ワックスの融点は、耐油性、耐熱性の観点から、80℃~130℃の範囲であることが好ましい。前記ワックスは、スチレンアクリル共重合体(A)を含む樹脂のエマルジョンに直接添加し混合分散させてもよいし、ワックスの分散体を作製した後、エマルジョンと混合させてもよい。分散方法としては、公知の方法、例えばメディアを用いた分散装置として、ペイントシェーカー、ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル、アジテーターミル等を使用することができ、メディアを用いないものとして超音波ホモジナイザー、高圧ホモジナイザー、ナノマイザー、デゾルバー、ディスパー、高速イン
ペラー分散機等で分散することができる。
Also, the melting point of the wax is preferably in the range of 80° C. to 130° C. from the viewpoint of oil resistance and heat resistance. The wax may be directly added to the resin emulsion containing the styrene-acrylic copolymer (A) and mixed and dispersed, or a wax dispersion may be prepared and then mixed with the emulsion. As a dispersion method, a known method such as a dispersion device using media such as a paint shaker, a ball mill, an attritor, a basket mill, a sand mill, a sand grinder, a Dyno mill, a Dispermat, an SC mill, a spike mill, and an agitator mill is used. Dispersion can be carried out by an ultrasonic homogenizer, a high-pressure homogenizer, a nanomizer, a dissolver, a disper, a high-speed impeller disperser, or the like, which does not use media.
 粉体のワックスを使用する場合は、ワックスを均一分散させるために、メディアを用いて練肉を行ったり、ワックスの分散体を作製した後配合を行ったりすることが好ましい。練肉方法は公知の方法で行うことができる。 When powdered wax is used, it is preferable to perform kneading using a media or mix after preparing a dispersion of wax in order to uniformly disperse the wax. The kneading method can be performed by a known method.
 また複数種のワックスを併用する際には、複数種のワックスを同時に添加してもよいし、複数の工程に分けて添加してもよい。 When using multiple types of waxes together, the multiple types of waxes may be added at the same time, or may be added in multiple steps.
 また、コーティング組成物(CS)は、各種コーターを使用してコーティングする際に組成物が泡立つことを防止するため、ポリマー系消泡剤、シリコン系消泡剤、フッ素系消泡剤が好ましく使用される。これら消泡剤としては乳化分散型及び可溶化型などいずれも使用できる。中でもポリマー系消泡剤が好ましい。 In addition, the coating composition (CS) preferably uses a polymer-based antifoaming agent, a silicon-based antifoaming agent, or a fluorine-based antifoaming agent in order to prevent foaming of the composition during coating using various coaters. be done. As these antifoaming agents, both emulsifying and dispersing types and solubilizing types can be used. Among them, polymer antifoaming agents are preferred.
 前記消泡剤の添加量としては、コーティング組成物(CS)は全量の0.005重量%~0.1重量%が好ましい。 The amount of the antifoaming agent added is preferably 0.005% to 0.1% by weight of the total amount of the coating composition (CS).
[ヒートシール性コート層]
 本発明の積層体は、紙基材上の第一の層又は第二の層のいずれか一方として、ヒートシール性コート層を有する。該ヒートシール性コート層は、公知のヒートシール塗工剤を用いることができる。以下、ヒートシール剤の組成例を説明する。
[Heat-sealable coating layer]
The laminate of the present invention has a heat-sealable coating layer as either the first layer or the second layer on the paper substrate. A known heat-seal coating agent can be used for the heat-sealable coating layer. Composition examples of the heat sealing agent are described below.
<ヒートシール剤(HS)>
 ヒートシール剤(HS)は、耐水性を向上させるために、塩化ビニル酢酸ビニル系共重合体系樹脂、(メタ)アクリレート系樹脂、オレフィン-α,β不飽和カルボン酸共重合体系樹脂、ポリオレフィン系樹脂またはポリエステル系樹脂から選ばれる少なくとも一種を含むことが好ましく、塩化ビニル酢酸ビニル系共重合体系樹脂、(メタ)アクリレート系樹脂、オレフィン-α,β不飽和カルボン酸共重合体系樹脂から選ばれる少なくとも一種を含むことがより好ましい。
<Heat sealing agent (HS)>
In order to improve water resistance, heat sealing agents (HS) are vinyl chloride vinyl acetate copolymer resins, (meth)acrylate resins, olefin-α,β unsaturated carboxylic acid copolymer resins, and polyolefin resins. Alternatively, it preferably contains at least one selected from polyester resins, and at least one selected from vinyl chloride vinyl acetate copolymer resins, (meth)acrylate resins, and olefin-α,β unsaturated carboxylic acid copolymer resins. It is more preferable to include
 塩化ビニル酢酸ビニル系共重合体系樹脂としては、塩化ビニルと酢酸ビニルが共重合したものであれば、特段限定されない。ヒートシール性を向上させる観点から、酸基を含む塩化ビニル酢酸ビニル共重合体であることが好ましく、酸変性された塩化ビニル酢酸ビニル系共重合体系樹脂がより好ましい。酸基としてはマレイン酸、もしくはフマル酸を使用したものが好ましい。 The vinyl chloride-vinyl acetate copolymer resin is not particularly limited as long as it is a copolymer of vinyl chloride and vinyl acetate. From the viewpoint of improving the heat-sealing property, it is preferably a vinyl chloride-vinyl acetate copolymer containing an acid group, and more preferably an acid-modified vinyl chloride-vinyl acetate copolymer-based resin. As the acid group, those using maleic acid or fumaric acid are preferred.
 (メタ)アクリレート系樹脂としては、(メタ)アクリレートの単独重合体もしくは共重合体であれば特に制限は無く、共重合体としては(メタ)アクリレートと共重合しうるビニルモノマーとを共重合させた共重合体があげられる。また、水性溶剤を用いる場合は水分散性や水溶性を付与する目的から酸価を有する共重合体であることが好ましい。 The (meth)acrylate resin is not particularly limited as long as it is a homopolymer or copolymer of (meth)acrylate. and copolymers. Further, when an aqueous solvent is used, it is preferably a copolymer having an acid value for the purpose of imparting water dispersibility and water solubility.
 (メタ)アクリレートの単独重合体もしくは共重合体の構成成分として用いられる(メタ)アクリレートとしては特に限定はなく、上述したスチレンアクリル共重合体(A)において用いられる(メタ)アクリレートと同様のものが用いられる。 The (meth)acrylate used as a constituent component of the (meth)acrylate homopolymer or copolymer is not particularly limited, and is similar to the (meth)acrylate used in the styrene-acrylic copolymer (A) described above. is used.
 また、(メタ)アクリレートや(メタ)アクリレートと共重合しうるビニルモノマーの例としては、ベンジル(メタ)アクリレート等の芳香族(メタ)アクリレート;2-ヒドロドキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;メトキシポリエチレングリコールモノ(メタ)アクリレート、メトキシポリプロピレングリコールモノ(メタ)アクリレート等のアルキルポリアルキレングリコールモノ(メタ)アクリレート;パーフルオロアルキルエチル(メタ)アクリレート等のフッ素系(メタ)アクリレート;スチレン、スチレン誘導体(p-ジメチルシリルスチレン、(p-ビニルフェニル)メチルスルフィド、p-ヘキシニルスチレン、p-メトキシスチレン、p-tert-ブチルジメチルシロキシスチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン等)、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレン等の芳香族ビニル化合物;グリシジル(メタ)アクリレート、エポキシ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチレングリコールテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレートトリシクロデカニル(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート等の(メタ)アクリレート化合物;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート等のアルキルアミノ基を有する(メタ)アクリレート;2-ビニルピリジン、4-ビニルピリジン、ナフチルビニルピリジン等のビニルピリジン化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエン等の共役ジエンなどが挙げられる。これらのモノマーは、1種で用いることも2種以上併用することもできる。 Examples of (meth)acrylates and vinyl monomers copolymerizable with (meth)acrylates include aromatic (meth)acrylates such as benzyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 2- hydroxyl group-containing monomers such as hydroxypropyl (meth)acrylate; alkylpolyalkylene glycol mono(meth)acrylates such as methoxypolyethylene glycol mono(meth)acrylate and methoxypolypropylene glycol mono(meth)acrylate; perfluoroalkylethyl (meth)acrylate, etc. fluorine-based (meth)acrylate; styrene, styrene derivatives (p-dimethylsilylstyrene, (p-vinylphenyl) methylsulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyldimethylsiloxystyrene, o- methylstyrene, p-methylstyrene, p-tert-butylstyrene, α-methylstyrene, etc.), aromatic vinyl compounds such as vinylnaphthalene, vinylanthracene, 1,1-diphenylethylene; glycidyl (meth)acrylate, epoxy (meth ) acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylene glycol tetra(meth)acrylate, 2-hydroxy-1,3-diacryloxypropane, 2 , 2-bis[4-(acryloxymethoxy)phenyl]propane, 2,2-bis[4-(acryloxyethoxy)phenyl]propane, dicyclopentenyl (meth)acrylate tricyclodecanyl (meth)acrylate, tris (Acryloxyethyl)isocyanurate, (meth)acrylate compounds such as urethane (meth)acrylate; having an alkylamino group such as dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, etc. (Meth)acrylates; vinylpyridine compounds such as 2-vinylpyridine, 4-vinylpyridine and naphthylvinylpyridine; 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3- conjugated dienes such as butadiene, 1,3-pentadiene, 1,3-hexadiene and 1,3-cyclohexadiene; These monomers can be used singly or in combination of two or more.
 また、カルボキシル基及びカルボキシル基が塩基性化合物によって中和されたカルボキシレート基からなる群より選ばれる1種以上の酸性基を導入することを目的として、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、β-(メタ)アクリロイルオキシエチルハイドロゲンサクシネート、β-(メタ)アクリロイルオキシエチルハイドロゲンフタレート等のカルボキシル基を有する(メタ)アクリルモノマーを共重合させることで、酸価を有するコポリマーを得ることができる。 In addition, for the purpose of introducing one or more acidic groups selected from the group consisting of carboxyl groups and carboxylate groups in which the carboxyl groups are neutralized with a basic compound, (meth)acrylic acid, crotonic acid, itaconic acid, , Maleic acid, fumaric acid, β-(meth)acryloyloxyethyl hydrogen succinate, β-(meth)acryloyloxyethyl hydrogen phthalate, etc.) It is possible to obtain a copolymer having
 酸性基を導入する場合は、酸価が所望の範囲となるようにモノマー量を適宜調整することが好ましい。 When introducing an acidic group, it is preferable to appropriately adjust the monomer amount so that the acid value is within the desired range.
 (メタ)アクリレートの単独重合体もしくは共重合体は、例えば、重合開始剤の存在下、50℃~180℃の温度領域で1種又は2種以上のモノマーを重合させることにより製造することができ、80℃~150℃の温度領域であればより好ましい。重合の方法は、例えば、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が挙げられる。また、重合様式は、例えば、ランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。また、コポリマーはコアシェル型であってもよい。 The (meth)acrylate homopolymer or copolymer can be produced, for example, by polymerizing one or more monomers in the presence of a polymerization initiator in a temperature range of 50°C to 180°C. , 80° C. to 150° C. is more preferable. Polymerization methods include, for example, bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Moreover, the polymerization mode includes, for example, random copolymers, block copolymers, graft copolymers, and the like. The copolymer may also be of the core-shell type.
 オレフィン-α,β不飽和カルボン酸共重合体系樹脂としては、オレフィンと、α,β-不飽和カルボン酸、α,β-不飽和カルボン酸の金属塩、及び、α,β-不飽和カルボン酸エステルからなる群から選択される少なくとも1種のモノマーとの共重合体等が挙げられる。具体的には、α,β-不飽和カルボン酸、α,β-不飽和カルボン酸の金属塩又はα,β-不飽和カルボン酸エステルとオレフィンとの共重合体であり、オレフィン-α,β不飽和カルボン酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-アクリル酸-無水マレイン酸共重合体、エチレン-アクリル酸エステル-無水マレイン酸共重合体、エチレン-メタクリル酸-無水マレイン酸共重合体、エチレン-メタクリル酸エステル-無水マレイン酸共重合体、及びこれらの金属塩等が挙げられる。これらの共重合体は、単独であっても2種以上の混合物であってもよい。
中でも、オレフィン-α,β不飽和カルボン酸共重合体が好ましい。オレフィン-α,β不飽和カルボン酸共重合体としては、エチレン-とα,β-不飽和カルボン酸のランダム共重合体またはブロック共重合体が挙げられる。
The olefin-α,β-unsaturated carboxylic acid copolymer resin includes an olefin, an α,β-unsaturated carboxylic acid, a metal salt of an α,β-unsaturated carboxylic acid, and an α,β-unsaturated carboxylic acid. Examples thereof include copolymers with at least one monomer selected from the group consisting of esters. Specifically, it is a copolymer of an α,β-unsaturated carboxylic acid, a metal salt of an α,β-unsaturated carboxylic acid or an α,β-unsaturated carboxylic acid ester and an olefin, and an olefin-α,β Unsaturated carboxylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-acrylic acid-maleic anhydride copolymer, ethylene-acrylic acid Ester-maleic anhydride copolymers, ethylene-methacrylic acid-maleic anhydride copolymers, ethylene-methacrylic acid ester-maleic anhydride copolymers, metal salts thereof and the like can be mentioned. These copolymers may be used alone or as a mixture of two or more.
Among them, an olefin-α,β unsaturated carboxylic acid copolymer is preferred. Olefin-α,β-unsaturated carboxylic acid copolymers include random copolymers or block copolymers of ethylene- and α,β-unsaturated carboxylic acids.
 前記オレフィンとしては、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、4-メチル-1-ペンテン、ブタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどが挙げられる。中でもエチレンが好ましい。  Examples of the olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, butadiene, dicyclopentadiene, 5-ethylidene-2- and norbornene. Among them, ethylene is preferred. 
 前記α,β-不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等が挙げられる。これらの中でも、アクリル酸、メタクリル酸が好適に用いられる。これらのα,β-不飽和カルボン酸は、単独あるいは2種以上混合して用いてもよい。 Examples of the α,β-unsaturated carboxylic acid include acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. Among these, acrylic acid and methacrylic acid are preferably used. These α,β-unsaturated carboxylic acids may be used alone or in combination of two or more.
 前記α,β-不飽和カルボン酸エステルとしては、特に限定なく公知のアクリル酸又はメタクリル酸のアルキルエステル、ヒドロキシアルキルエステル、アルコキシアルキルエステル等を使用することができる。例えば具体的にはアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸nプロピル、アクリル酸nブチル、アクリル酸イソブチル、アクリル酸-2-エチルヘキシル、アクリル酸イソオクチル、アクリル酸nオクチル、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-メトキシエチルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸nプロピル、メタクリル酸nブチル、メタクリル酸イソブチル、メタクリル酸nへキシル、メタクリル酸-2-エチルヘキシル、メタクリル酸nラウリル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-エトキシエチルなどのメタクリル酸エステルを例示することができる。これらは1種又は2種以上組合せて使用することができる。 As the α,β-unsaturated carboxylic acid ester, known alkyl esters, hydroxyalkyl esters, alkoxyalkyl esters, etc. of acrylic acid or methacrylic acid can be used without particular limitation. For example, specifically, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, n-octyl acrylate, acrylate- acrylic esters such as 2-hydroxyethyl and 2-methoxyethyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, Methacrylic acid esters such as 2-ethylhexyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate, and 2-ethoxyethyl methacrylate can be exemplified. These can be used singly or in combination of two or more.
 前記オレフィン-α,β不飽和カルボン酸共重合体の製造方法としては、公知の方法、例えば高温、高圧下のラジカル共重合により得ることができる。 The olefin-α,β unsaturated carboxylic acid copolymer can be produced by a known method such as radical copolymerization at high temperature and high pressure.
 上記オレフィン-α,β不飽和カルボン酸共重合体中のα,β-不飽和カルボン酸の含有量は、8~24重量%、好ましくは18~23重量%であることが望ましい。α,β-不飽和カルボン酸の含有量が8重量%未満の場合、エチレン-単位に由来する非極性な性質のために水系分散媒に対する分散性に劣り、優れたオレフィン-α,β不飽和カルボン酸共重合体樹脂水性分散液を得ることが難しくなるおそれがある。また、α,β-不飽和カルボン酸の含有量が24重量%を超える場合、得られた皮膜の耐ブロッキング性が悪くなるおそれがある。 The content of α,β-unsaturated carboxylic acid in the olefin-α,β-unsaturated carboxylic acid copolymer is desirably 8 to 24% by weight, preferably 18 to 23% by weight. When the content of the α,β-unsaturated carboxylic acid is less than 8% by weight, the dispersibility in the aqueous dispersion medium is inferior due to the non-polar nature derived from the ethylene unit, and the olefin-α,β-unsaturation is excellent. It may become difficult to obtain a carboxylic acid copolymer resin aqueous dispersion. On the other hand, if the content of the α,β-unsaturated carboxylic acid exceeds 24% by weight, the anti-blocking property of the resulting film may deteriorate.
 ヒートシール剤において使用するオレフィン-α,β不飽和カルボン酸共重合体は、水性溶剤に分散させた水分散体として使用することが好ましい。水性溶剤に分散させる方法としては特に限定されず公知の方法で行えばよい。例えば界面活性剤で乳化し水性溶剤中に分散させる方法や、オレフィン-α,β不飽和カルボン酸共重合体を塩基性化合物で中和したのち水性溶剤中に分散させる方法等が挙げられる。 The olefin-α,β unsaturated carboxylic acid copolymer used in the heat sealing agent is preferably used as an aqueous dispersion dispersed in an aqueous solvent. The method for dispersing in the aqueous solvent is not particularly limited, and any known method may be used. Examples include a method of emulsifying with a surfactant and dispersing it in an aqueous solvent, and a method of neutralizing an olefin-α,β unsaturated carboxylic acid copolymer with a basic compound and then dispersing it in an aqueous solvent.
 前記乳化させる際に使用する界面活性剤としては、公知の各種アニオン性、カチオン性、ノニオン性界面活性剤、もしくは各種水溶性高分子を適宜併用して使用することができる。 As the surfactant used for the emulsification, various known anionic, cationic, nonionic surfactants, or various water-soluble polymers can be appropriately used in combination.
 また前記中和する際に使用する塩基性化合物としては、例えばアンモニア、メチルアミン、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機アミン、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物が挙げられる。これらの塩基性化合物は単独、あるいは2種以上併用して用いてもよい。 Examples of basic compounds used for neutralization include organic amines such as ammonia, methylamine, ethylamine, diethylamine, dimethylethanolamine, diethanolamine and triethanolamine, sodium hydroxide, potassium hydroxide and lithium hydroxide. and other alkali metal hydroxides. These basic compounds may be used alone or in combination of two or more.
 塩基性化合物による中和度は、オレフィン-α,β不飽和カルボン酸共重合体が水性溶媒中で安定に存在する中和度であればよい。例えば該共重合体のカルボキシル基の30~100モル%であればよく、より好ましくは40~90モル%であることが望ましい。 The degree of neutralization by the basic compound should be such that the olefin-α,β unsaturated carboxylic acid copolymer is stably present in the aqueous solvent. For example, it may be 30 to 100 mol %, more preferably 40 to 90 mol %, of the carboxyl groups in the copolymer.
 前記分散方法としては、公知の方法、例えばメディアを用いた分散装置として、ペイントシェーカー、ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル、アジテーターミル等を使用することができ、メディアを用いないものとして超音波ホモジナイザー、高圧ホモジナイザー、ナノマイザー、デゾルバー、ディスパー、高速インペラー分散機等で分散することができる。 Examples of the dispersing method include known methods such as a dispersing device using media such as a paint shaker, ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill, dispermat, SC mill, spike mill, and agitator mill. Dispersion can be carried out using an ultrasonic homogenizer, a high-pressure homogenizer, a nanomizer, a dissolver, a disper, a high-speed impeller disperser, or the like, which does not use media.
 本発明で使用するオレフィン-α,β不飽和カルボン酸共重合体の水分散体の固形分は特に限定はなく、ヒートシール剤として適用させる際の所望される粘度や、ヒートシール剤適用後の乾燥条件、皮膜の膜厚等により適宜決定すればよい。一般には、固形分濃度が10~40質量%の範囲で適用することが多い。 The solid content of the aqueous dispersion of the olefin-α,β unsaturated carboxylic acid copolymer used in the present invention is not particularly limited. It may be appropriately determined depending on the drying conditions, the film thickness of the film, and the like. In general, the solid content concentration is often applied in the range of 10 to 40% by mass.
(溶剤)
 ヒートシール剤(HS)は、塗布性能をあげるために、上述した樹脂を各種有機溶剤又は水性溶剤に溶解して使用することが好ましい。例えば、塩化ビニル酢酸ビニル系共重合体系樹脂、(メタ)アクリレート系樹脂、ポリオレフィン系樹脂またはポリエステル系樹脂を使用する場合は、有機溶剤を用いることが好ましい。
(solvent)
The heat sealing agent (HS) is preferably used by dissolving the above-described resin in various organic solvents or aqueous solvents in order to improve coating performance. For example, when vinyl chloride-vinyl acetate copolymer system resin, (meth)acrylate system resin, polyolefin system resin or polyester system resin is used, it is preferable to use an organic solvent.
 有機溶剤としては、特に制限はないが、たとえばトルエン、キシレン、ソルベッソ#100、ソルベッソ#150等の芳香族炭化水素系、ヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素系、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸アミル、ギ酸エチル、プロピオン酸ブチル等のエステル系の各種有機溶剤が挙げられる。また、メタノール、エタノール、プロパノール、ブタノール等のアルコール系、アセトン、メチルエチルケトン、シクロハキサノン等のケトン系、エチレングリコール(モノ,ジ)メチルエーテル、エチレングリコール(モノ,ジ)エチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、モノブチルエーテル、ジエチレングリコール(モノ,ジ)メチルエーテル、ジエチレングリコール(モノ,ジ)エチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール(モノ,ジ)メチルエーテル、プロピレングリコール(モノ,ジ)メチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール(モノ,ジ)メチルエーテル等のグリコールエーテル系、溶解性の良好な有機溶剤として、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶剤の各種有機溶剤が挙げられる。これらのうち通常は乾燥速度が速いトルエン、メチルエチルケトン、酢酸エチルや、これらの混合物を使用するのが好ましい。 The organic solvent is not particularly limited, and examples include aromatic hydrocarbons such as toluene, xylene, Solvesso #100 and Solvesso #150, aliphatic hydrocarbons such as hexane, heptane, octane, and decane, methyl acetate, and acetic acid. Various ester-based organic solvents such as ethyl, isopropyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate can be used. In addition, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and cyclohaxanone, ethylene glycol (mono, di)methyl ether, ethylene glycol (mono, di)ethyl ether, ethylene glycol monopropyl ether, Ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di)methyl ether, diethylene glycol (mono, di)ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, di)methyl ether, propylene glycol ( Glycol ethers such as mono, di)methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and dipropylene glycol (mono, di) methyl ether, organic solvents with good solubility such as N,N-dimethylformamide, Examples include various organic solvents such as N,N-diethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and other amide solvents. Among these, it is preferable to use toluene, methyl ethyl ketone, ethyl acetate, or a mixture thereof, which usually has a high drying speed.
 (メタ)アクリレート系樹脂、ポリオレフィン系樹脂を用いる場合は、水性溶剤を用いることが好ましい。水性溶剤としては、上述のコーティング組成物(CS)において用いられる水性溶剤と同様のものを用いることができる。中でも、水を用いることが好ましい。 When using a (meth)acrylate resin or a polyolefin resin, it is preferable to use an aqueous solvent. As the aqueous solvent, the same aqueous solvent as used in the coating composition (CS) can be used. Among them, it is preferable to use water.
(ワックス)
 ヒートシール剤(HS)は、ワックスを含有することが好ましい。ワックスを含有することで耐ブロッキング性を保つ事ができる。前記ワックスとしては、脂肪酸アミドワックス、カルナバワックス、ポリオレフィンワックス、パラフィンワックス、フィッシャー・トロプシュワックス、みつろう、マイクロクリスタリンワックス、酸化ポリエチレン-ワックス、アマイドワックスなどのワックス、ヤシ油脂肪酸や大豆油脂肪酸などを挙げることができる。これらは単独で使用してもよいし併用してもよい。
(wax)
The heat sealing agent (HS) preferably contains wax. Blocking resistance can be maintained by containing wax. Examples of the wax include waxes such as fatty acid amide wax, carnauba wax, polyolefin wax, paraffin wax, Fischer-Tropsch wax, beeswax, microcrystalline wax, polyethylene oxide wax, amide wax, coconut oil fatty acid and soybean oil fatty acid. be able to. These may be used alone or in combination.
 中でも脂肪酸アミドワックス、カルナバワックス、フィッシャー・トロプシュワックス、ポリオレフィンワックス、パラフィンワックスを使用することが好ましく、特に脂肪酸アミドワックス、カルナバワックスを使用することが好ましい。 Among them, it is preferable to use fatty acid amide wax, carnauba wax, Fischer-Tropsch wax, polyolefin wax, and paraffin wax, and it is particularly preferable to use fatty acid amide wax and carnauba wax.
 脂肪酸アミドワックスの具体例としては、例えば、ペラルゴン酸アミド、カプリン酸アミド、ウンデシル酸アミド、ラウリン酸アミド、トリデシル酸アミド、ミリスチン酸アミド、ペンタデシル酸アミド、パルミチン酸アミド、ヘプタデシル酸アミド、ステアリン酸アミド、ノナデカン酸アミド、アラキン酸アミド、ベヘン酸アミド、リグノセリン酸アミド、オレイン酸アミド、セトレイン酸アミド、リノール酸アミド、リノレン酸アミド、これらの混合物及び動植物油脂脂肪酸アミド等が挙げられる。 
前記カルバナワックスの具体例としてはMICROKLEAR 418(Micro Powders,Inc.社製)、精製カルナバワックス1号粉末(日本ワックス株式会社)等が挙げられる。
Specific examples of fatty acid amide waxes include pelargonic acid amide, capric acid amide, undecylic acid amide, lauric acid amide, tridecylic acid amide, myristic acid amide, pentadecylic acid amide, palmitic acid amide, heptadecylic acid amide, and stearic acid amide. , nonadecanic acid amide, arachidic acid amide, behenic acid amide, lignoceric acid amide, oleic acid amide, cetreic acid amide, linoleic acid amide, linoleic acid amide, mixtures thereof and animal and vegetable oil fatty acid amides.
Specific examples of the carnauba wax include MICROKLEAR 418 (manufactured by Micro Powders, Inc.) and purified carnauba wax No. 1 powder (Nippon Wax Co., Ltd.).
 前記ワックスの配合量は、ワックスの総量がヒートシール剤(HS)の固形分100質量%全量に対し1.5~20質量%であることが好ましい。ワックスの総量がヒートシール剤(HS)の固形分100%全量に対し3質量%以上であれば耐ブロッキング性を保持できる傾向にあり、ワックスの総量がヒートシール剤(HS)の固形分100%全量に対し15質量%以下であればヒートシール性が保持できる傾向にある。 As for the blending amount of the wax, the total amount of wax is preferably 1.5 to 20% by mass with respect to the total solid content of 100% by mass of the heat sealing agent (HS). If the total amount of wax is 3% by mass or more with respect to the solid content of 100% of the heat sealing agent (HS), the blocking resistance tends to be maintained, and the total amount of wax is 100% of the solid content of the heat sealing agent (HS). If it is 15% by mass or less with respect to the total amount, there is a tendency that the heat-sealing property can be maintained.
 前記ワックスのうち、前記脂肪酸アミドワックスと前記カルナバワックスとを併用すると、耐ブロッキング性が更に向上しより好ましい。併用する場合、その比率には特に限定はないが好ましくは、脂肪酸アミドワックス:前記カルバナワックス=1:1~1:10の範囲が好ましく、1:1~1:5の範囲がなお好ましい。 Of the waxes, the combined use of the fatty acid amide wax and the carnauba wax is more preferable because the blocking resistance is further improved. When used in combination, the ratio is not particularly limited, but the ratio of fatty acid amide wax to the carnaval wax is preferably in the range of 1:1 to 1:10, more preferably 1:1 to 1:5.
 また、前記ワックスのうち、ポリオレフィンワックスとパラフィンワックスとを併用すると、耐ブロッキング性が更に向上しより好ましい。併用する場合、その比率には特に限定はないが好ましくは、ポリオレフィンワックス:パラフィンワックス=1:1~10:1の範囲が好ましく、1:1~5:1の範囲がなお好ましい。 Further, among the above waxes, it is more preferable to use a polyolefin wax and a paraffin wax in combination, since the anti-blocking property is further improved. When used in combination, the ratio is not particularly limited, but the polyolefin wax:paraffin wax ratio is preferably in the range of 1:1 to 10:1, more preferably in the range of 1:1 to 5:1.
 水性溶剤を使用する場合にワックスを更に用いることが好ましく、中でも、前記オレフィン-α,β不飽和カルボン酸共重合体、又は(メタ)アクリル系樹脂と組み合わせて用いることが好ましい。この場合、ワックスはオレフィン-α,β不飽和カルボン酸共重合体又は(メタ)アクリル樹脂の水分散体に直接添加し混合分散させてもよいし、前記オレフィン-α,β不飽和カルボン酸共重合体又は(メタ)アクリル樹脂を水性溶剤に分散させる際に同時に添加し混合分散させてもよい。分散方法は前述の前記オレフィン-α,β不飽和カルボン酸共重合体の水性溶剤への分散方法で使用する方法を適宜用いることができる。 When using a water-based solvent, it is preferable to further use wax, and it is particularly preferable to use it in combination with the olefin-α,β unsaturated carboxylic acid copolymer or (meth)acrylic resin. In this case, the wax may be added directly to the aqueous dispersion of the olefin-α,β unsaturated carboxylic acid copolymer or (meth)acrylic resin and mixed and dispersed, or the olefin-α,β unsaturated carboxylic acid copolymer It may be added and mixed and dispersed at the same time as the polymer or (meth)acrylic resin is dispersed in the aqueous solvent. As a dispersing method, the method used for dispersing the above-described olefin-α,β unsaturated carboxylic acid copolymer in an aqueous solvent can be appropriately used.
 また複数種のワックスを併用する際には、複数種のワックスを同時に添加してもよいし、複数の工程に分けて添加してもよい。例えば第一のワックスを前記オレフィン-α,β不飽和カルボン酸共重合体又は(メタ)アクリル樹脂の水性溶剤に分散させる際に加えた後、第二のワックスを、得られた第一のワックスと前記オレフィン-α,β不飽和カルボン酸共重合体又は(メタ)アクリル樹脂との水性分散液に更に追加する方法で、ヒートシール剤(HS)を得ることができる。 When using multiple types of waxes together, the multiple types of waxes may be added at the same time, or may be added in multiple steps. For example, after the first wax is added when dispersing the olefin-α,β unsaturated carboxylic acid copolymer or (meth)acrylic resin in an aqueous solvent, the second wax is added to the obtained first wax. and the olefin-α,β unsaturated carboxylic acid copolymer or (meth)acrylic resin are further added to an aqueous dispersion to obtain a heat sealing agent (HS).
 ヒートシール剤(HS)は、本発明の目的を阻害しない範囲において前記成分の他に、シリカ、アルミナ、消泡剤、粘度調整剤、レベリング剤、粘着性付与剤、防腐剤、抗菌剤、防錆剤、酸化防止剤、シリコーンオイル等の添加剤が配合されていてもよい。 The heat sealing agent (HS) contains silica, alumina, antifoaming agent, viscosity modifier, leveling agent, tackifier, antiseptic agent, antibacterial agent, antibacterial agent, antiseptic agent, silica, alumina, antifoaming agent, viscosity modifier, antiseptic agent, antibacterial agent, antiseptic agent, antiseptic agent, antiseptic agent Additives such as rust agents, antioxidants and silicone oils may be added.
 また、ヒートシール剤(HS)では、各種コーターを使用してコーティングする際に泡立つことを防止するため、ポリマー系消泡剤、シリコン系消泡剤、フッ素系消泡剤が好ましく使用される。これら消泡剤としては乳化分散型及び可溶化型などいずれも使用できる。中でもポリマー系消泡剤が好ましい。前記消泡剤の添加量としては、水性ヒートシール剤全量の0.005重量%~0.1重量%が好ましい。 In addition, for the heat sealing agent (HS), polymer antifoaming agents, silicon antifoaming agents, and fluorine antifoaming agents are preferably used in order to prevent foaming during coating using various coaters. As these antifoaming agents, both emulsifying and dispersing types and solubilizing types can be used. Among them, polymer antifoaming agents are preferred. The amount of the antifoaming agent to be added is preferably 0.005% by weight to 0.1% by weight based on the total amount of the water-based heat sealing agent.
 ヒートシール剤(HS)は、袋、箱等の紙包装材や紙容器を製造する際のヒートシール剤として使用することができるし、シール(接着)部位以外の塗工部分は、スチレンアクリル共重合体コート層との積層により、積層体の耐水性をより向上させることができる。ヒートシール部分を貼り合わせることにより、袋、箱、容器等の種々の包装材を用途に合わせて作製でき、加工性に優れている。 The heat sealing agent (HS) can be used as a heat sealing agent when manufacturing paper packaging materials such as bags and boxes, and paper containers. Lamination with the polymer coat layer can further improve the water resistance of the laminate. By laminating the heat-sealed portion, various packaging materials such as bags, boxes, containers, etc. can be produced according to the application, and the workability is excellent.
[積層体]
 本発明の積層体は、紙基材上に第一の層と、第一の層の上に設けられた第二の層を少なくとも有する。
[Laminate]
The laminate of the present invention has at least a first layer on a paper substrate and a second layer provided on the first layer.
 紙基材としては、木材パルプ等の製紙用天然繊維を用いて公知の抄紙機にて製造されるが、その抄紙条件は特に規定されるものではない。製紙用天然繊維としては、針葉樹パルプ、広葉樹パルプ等の木材パルプ、マニラ麻パルプ、サイザル麻パルプ、亜麻パルプ等の非木材パルプ、およびそれらのパルプに化学変性を施したパルプ等が挙げられる。パルプの種類としては、硫酸塩蒸解法、酸性・中性・アルカリ性亜硫酸塩蒸解法、ソーダ塩蒸解法等による化学パルプ、グランドパルプ、ケミグランドパルプ、サーモメカニカルパルプ等を使用することができる。また、市販の各種上質紙やコート紙、裏打ち紙、含浸紙、ボール紙や板紙などを用いることもできる。 As the paper base material, natural fibers for papermaking such as wood pulp are used and manufactured by a known papermaking machine, but the papermaking conditions are not particularly specified. Examples of natural fibers for papermaking include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as Manila hemp pulp, sisal pulp and flax pulp, and pulp obtained by chemically modifying these pulps. The types of pulp that can be used include chemical pulp, ground pulp, chemi-grand pulp, thermomechanical pulp, and the like prepared by sulfate cooking, acid/neutral/alkaline sulfite cooking, soda salt cooking, and the like. Moreover, various types of commercially available fine paper, coated paper, lined paper, impregnated paper, cardboard, paperboard, etc. can also be used.
 前記紙基材は、目的に応じ紙の種類、厚み等を逐次選択する事ができる。例えばバーガーラップであれば米坪対応20グラム/m程度、紙コップであれば米坪対応200~300グラム/m、紙皿、紙スプーン、紙マドラー等であれば米坪対応50~500グラム/mのカップ原紙等の食品用原紙が好ましい。これらの用紙は、リサイクル効率やコスト低減の観点から、ポリエチレン-フィルムやアルミ等をラミネートされていない事が好ましい。紙基材は、印刷層を有していてもよい。印刷層は、紙基材の第一の層が設けられる面に設けても、第一の層が設けられる面と反対側の面に設けてもよい。
 印刷層(E)は、被印刷体に美粧性、内容物に関する様々な情報、及び機能性を付与するために、リキッド印刷インキにより所望の図柄を形成する層である。当該印刷層は、バインダー樹脂と着色剤とを含有グラビア印刷インキやフレキソ印刷インキ(以後リキッド印刷インキと称する)を印刷してなる。
As for the paper substrate, the type, thickness, etc. of the paper can be successively selected according to the purpose. For example, a burger wrap corresponds to a basis weight of about 20 g/m 2 , a paper cup corresponds to a basis weight of 200 to 300 g/m 2 , and a paper plate, paper spoon, paper muddler, etc. corresponds to a basis weight of 50 to 500 g/m 2 . Food base papers such as gram/m 2 cup base paper are preferred. From the viewpoint of recycling efficiency and cost reduction, it is preferable that these papers are not laminated with a polyethylene film, aluminum, or the like. The paper substrate may have a printed layer. The printed layer may be provided on the surface of the paper substrate on which the first layer is provided, or on the surface opposite to the surface on which the first layer is provided.
The printing layer (E) is a layer for forming a desired pattern with a liquid printing ink in order to impart cosmetic properties, various information regarding contents, and functionality to the printed material. The printing layer is printed with gravure printing ink or flexographic printing ink (hereinafter referred to as liquid printing ink) containing a binder resin and a colorant.
 本発明に使用する印刷層(E)は、単層であってもよいし、複数の印刷層があってもよい。印刷層が複数ある場合は、各印刷層に使用するリキッド印刷インキは同一のものであっても良いし、同一の組成で着色剤のみが違うものであっても良いし、異なる組成であっても良い。 The printed layer (E) used in the present invention may be a single layer or may have multiple printed layers. When there are a plurality of printing layers, the liquid printing ink used for each printing layer may be the same, may have the same composition with a different colorant, or may have a different composition. Also good.
 (リキッド印刷インキ)
 本発明に使用するリキッド印刷インキは、グラビア印刷インキやフレキソ印刷インキとして使用され、有機溶剤を主溶媒とする有機溶剤型リキッド印刷インキと、水を主溶媒とする水性リキッド印刷インキとに大別されるが、本発明においてはどちらを使用しても構わない。また、いわゆる表刷りインキと、ラミネートが前提の裏刷りインキとがあるが、本発明においてはどちらを使用しても構わない。
ここでは主流である有機溶剤型リキッド印刷インキについて説明する。
(liquid printing ink)
Liquid printing inks used in the present invention are used as gravure printing inks and flexographic printing inks, and are broadly classified into organic solvent-based liquid printing inks whose main solvent is an organic solvent and water-based liquid printing inks whose main solvent is water. However, either one may be used in the present invention. In addition, there are so-called surface printing ink and reverse printing ink which is premised on lamination, but either one may be used in the present invention.
Here, the mainstream organic solvent type liquid printing ink will be explained.
 本発明に使用するリキッド印刷インキに使用するバインダー樹脂(A)としては、硝化綿、セルロースアセテートプロピオネート(CAP)やセルロースアセテートブチロネート(CAB)等セルロース系樹脂等の繊維素系樹脂、ポリアミド系樹脂、ウレタン系樹脂、アクリル系樹脂、塩化ビニル-酢酸ビニル共重合樹脂、塩素化ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、ポリ塩化ビニル樹脂等の塩化ビニル系樹脂、ポリエステル樹脂、アルキッド樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂、環化ゴム、塩化ゴム、ブチラール、石油樹脂等を挙げることができる。 The binder resin (A) used in the liquid printing ink used in the present invention includes cellulose resins such as nitrocellulose, cellulose acetate propionate (CAP) and cellulose acetate butyronate (CAB). Vinyl chloride resins such as polyamide resins, urethane resins, acrylic resins, vinyl chloride-vinyl acetate copolymer resins, chlorinated polypropylene resins, ethylene-vinyl acetate copolymer resins, vinyl acetate resins, polyvinyl chloride resins, etc. Polyester resins, alkyd resins, rosin-based resins, rosin-modified maleic acid resins, ketone resins, cyclized rubbers, chlorinated rubbers, butyral, petroleum resins and the like can be mentioned.
 また、バインダー樹脂(A)に硬化剤を併用してもよい。硬化剤としては有機溶剤系のグラビア印刷インキで汎用の硬化剤を使用すればよいが、最もよく使用されるのはイソシアネート系の硬化剤である。
 イソシアネート化合物の添加量としては、硬化効率の観点からリキッド印刷インキ固形分に対し0.3質量%~10.0質量%の範囲が好ましく、1.0質量%~7.0質量%であればより好ましい。
 バインダー樹脂(A)は、リキッド印刷インキに対して0.15~50質量%の範囲であることが好ましく、1~40質量%の範囲で使用することが最も好ましい。
Moreover, you may use a hardening|curing agent together with binder resin (A). As the curing agent, general-purpose curing agents for organic solvent-based gravure printing inks may be used, but isocyanate-based curing agents are most frequently used.
The amount of the isocyanate compound added is preferably in the range of 0.3% by mass to 10.0% by mass based on the solid content of the liquid printing ink from the viewpoint of curing efficiency, and if it is 1.0% by mass to 7.0% by mass. more preferred.
The binder resin (A) is preferably used in the range of 0.15 to 50% by weight, most preferably in the range of 1 to 40% by weight, based on the liquid printing ink.
 (溶媒)
 本発明に使用するリキッド印刷インキに使用する溶媒としては、特に制限はないが、たとえば水、トルエン、キシレン、ソルベッソ#100、ソルベッソ#150等の芳香族炭化水素系有機溶剤、ヘキサン、メチルシクロヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ノルマルプロピル、酢酸ブチル、酢酸アミル、ギ酸エチル、プロピオン酸ブチル等のエステル系の各種有機溶剤が挙げられる。また水混和性有機溶剤としてメタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等のアルコール系、アセトン、メチルエチルケトン、シクロハキサノン等のケトン系、エチレングリコール(モノ,ジ)メチルエーテル、エチレングリコール(モノ,ジ)エチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、モノブチルエーテル、ジエチレングリコール(モノ,ジ)メチルエーテル、ジエチレングリコール(モノ,ジ)エチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール(モノ,ジ)メチルエーテル、プロピレングリコール(モノ,ジ)メチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール(モノ,ジ)メチルエーテル等のグリコールエーテル系の各種有機溶剤が挙げられる。これらを単独又は2種以上を混合しても用いることができる。
(solvent)
The solvent used for the liquid printing ink used in the present invention is not particularly limited, but examples include water, toluene, xylene, aromatic hydrocarbon organic solvents such as Solvesso #100 and Solvesso #150, hexane, methylcyclohexane, Aliphatic hydrocarbon organic solvents such as heptane, octane, and decane, and various ester organic solvents such as methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, butyl acetate, amyl acetate, ethyl formate, and butyl propionate. be done. Water-miscible organic solvents include alcohols such as methanol, ethanol, propanol, butanol and isopropyl alcohol, ketones such as acetone, methyl ethyl ketone and cyclohaxanone, ethylene glycol (mono, di) methyl ether, and ethylene glycol (mono, di) ethyl. Ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol (mono, di) methyl ether, diethylene glycol (mono, di) ethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol (mono, Di)methyl ether, propylene glycol (mono, di)methyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol (mono, di)methyl ether, and other glycol ether organic solvents can be used. These may be used alone or in combination of two or more.
 (着色剤)
 本発明に使用するリキッド印刷インキは着色剤を含み、美粧性等を付与する目的でデザイン印刷等に用いる着色剤を含むリキッド印刷インキとして使用することができる。着色剤としては、一般のインキ、塗料、及び記録剤等に使用されている無機顔料、有機顔料及び染料を挙げることができ、顔料が好ましい。有機顔料としては、溶性アゾ系、不溶性アゾ系、アゾ系、フタロシアニン系、ハロゲン化フタロシアニン系、アントラキノン系、アンサンスロン系、ジアンスラキノニル系、アンスラピリミジン系、ペリレン系、ペリノン系、キナクリドン系、チオインジゴ系、ジオキサジン系、イソインドリノン系、キノフタロン系、アゾメチンアゾ系、フラバンスロン系、ジケトピロロピロール系、イソインドリン系、インダンスロン系、カーボンブラック系等の顔料が挙げられる。また、例えば、カーミン6B、レーキレッドC、パーマネントレッド2B、ジスアゾイエロー、ピラゾロンオレンジ、カーミンFB、クロモフタルイエロー、クロモフタルレッド、フタロシアニンブルー、フタロシアニングリーン、ジオキサジンバイオレット、キナクリドンマゼンタ、キナクリドンレッド、インダンスロンブルー、ピリミジンイエロー、チオインジゴボルドー、チオインジゴマゼンタ、ペリレンレッド、ペリノンオレンジ、イソインドリノンイエロー、アニリンブラック、ジケトピロロピロールレッド、昼光蛍光顔料等が挙げられる。また未酸性処理顔料、酸性処理顔料のいずれも使用することができる。
 無機顔料としては、酸化チタン、酸化亜鉛、硫化亜鉛、硫酸バリウム、炭酸カルシウム、酸化クロム、シリカ、リトボン、アンチモンホワイト、石膏等の白色無機顔料が挙げられる。無機顔料の中では酸化チタンの使用が特に好ましい。酸化チタンは白色を呈し、着色力、隠ぺい力、耐薬品性、耐候性の点から好ましく、印刷性能の観点から該酸化チタンはシリカ及び/又はアルミナ処理を施されているものが好ましい。  
 白色以外の無機顔料としては、例えば、アルミニウム粒子、マイカ(雲母)、ブロンズ粉、クロムバーミリオン、黄鉛、カドミウムイエロー、カドミウムレッド、群青、紺青、ベンガラ、黄色酸化鉄、鉄黒、ジルコンが挙げられ、アルミニウムは粉末又はペースト状であるが、取扱い性及び安全性の面からペースト状で使用するのが好ましく、リーフィング又はノンリーフィングを使用するかは輝度感及び濃度の点から適宜選択される。
(coloring agent)
The liquid printing ink used in the present invention contains a coloring agent, and can be used as a liquid printing ink containing a coloring agent for use in design printing and the like for the purpose of imparting cosmetic properties and the like. Examples of the coloring agent include inorganic pigments, organic pigments, and dyes used in general inks, paints, recording agents, and the like, with pigments being preferred. Examples of organic pigments include soluble azo, insoluble azo, azo, phthalocyanine, halogenated phthalocyanine, anthraquinone, anthanthrone, dianthraquinonyl, anthrapyrimidine, perylene, perinone, quinacridone, Pigments such as thioindigo, dioxazine, isoindolinone, quinophthalone, azomethineazo, flavanthrone, diketopyrrolopyrrole, isoindoline, indanthrone, and carbon black pigments can be used. Also, for example, Carmine 6B, Lake Red C, Permanent Red 2B, Disazo Yellow, Pyrazolone Orange, Carmine FB, Chromophtal Yellow, Chromophtal Red, Phthalocyanine Blue, Phthalocyanine Green, Dioxazine Violet, Quinacridone Magenta, Quinacridone Red, Indance Ron blue, pyrimidine yellow, thioindigo bordeaux, thioindigo magenta, perylene red, perinone orange, isoindolinone yellow, aniline black, diketopyrrolopyrrole red, daylight fluorescent pigments, and the like. Both non-acid-treated pigments and acid-treated pigments can be used.
Examples of inorganic pigments include white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, litbon, antimony white, and gypsum. Among inorganic pigments, the use of titanium oxide is particularly preferred. Titanium oxide exhibits a white color and is preferable from the viewpoint of coloring power, hiding power, chemical resistance, and weather resistance. From the viewpoint of printing performance, the titanium oxide is preferably treated with silica and/or alumina.
Examples of non-white inorganic pigments include aluminum particles, mica (mica), bronze powder, chrome vermilion, yellow lead, cadmium yellow, cadmium red, ultramarine blue, Prussian blue, red iron oxide, yellow iron oxide, iron black, and zircon. Although the aluminum is in the form of powder or paste, it is preferable to use it in the form of paste from the standpoint of handling and safety, and whether to use leafing or non-leafing is appropriately selected from the viewpoint of brightness and density.
 上記顔料は、リキッド印刷インキの濃度・着色力を確保するのに充分な量、すなわちリキッド印刷インキ総質量に対して1~60質量%、リキッド印刷インキ中の固形分重量比では10~90質量%の割合で含まれることが好ましい。また、これらの顔料は単独で、又は2種以上を併用して用いることができる。 The amount of the pigment is sufficient to ensure the concentration and coloring strength of the liquid printing ink, that is, 1 to 60% by mass relative to the total mass of the liquid printing ink, and the solid content weight ratio in the liquid printing ink is 10 to 90 mass. %. Moreover, these pigments can be used individually or in combination of 2 or more types.
 有機溶剤型リキッド印刷インキでは更に必要に応じて、ワックス、キレート系架橋剤、体質顔料、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤等も含むこともできる。 Organic solvent-based liquid printing inks may also contain waxes, chelate cross-linking agents, extender pigments, leveling agents, antifoaming agents, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants, etc. can also
(バイオマスリキッド印刷インキ)
 本発明に使用するリキッド印刷インキにおいて、持続的に発展すべき循環型社会の構築(サステナビリティ)を考慮し、植物由来原料を使用したリキッド印刷インキを使用することが好ましい。
 植物由来原料としては例えば、セルロースアセテートプロピオネート樹脂や硝化綿等の繊維素系樹脂や、大豆油由来、パーム油由来、米糠油由来等天然油に由来するダイマー酸あるいは重合脂肪酸を使用したポリアミド樹脂や、ポリカルボン酸として、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、グルタル酸、リンゴ酸等、ポリオールとして、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンチレングリコール、1,10-ドデカンジオール、ダイマージオール、イソソルビド等、ポリイソシアネートとして、1,5-ペンタメチレンジイソシアネート、ダイマージイソシアネート等の植物由来原料から合成したバイオマスポリウレタンや、ロジン樹脂等が挙げられる。
(biomass liquid printing ink)
In the liquid printing ink used in the present invention, it is preferable to use a liquid printing ink using a plant-derived raw material in consideration of the construction (sustainability) of a recycling-oriented society that should be sustainably developed.
Examples of plant-derived raw materials include cellulose-based resins such as cellulose acetate propionate resin and nitrocellulose, and polyamides using dimer acid or polymerized fatty acid derived from natural oils such as soybean oil, palm oil, and rice bran oil. Resins and polycarboxylic acids such as succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dimer acid, glutaric acid, and malic acid, and polyols such as ethylene glycol, 1,2-propanediol, 1,3 - Propanediol, 1,4-butanediol, neopentyl glycol, pentylene glycol, 1,10-dodecanediol, dimer diol, isosorbide, etc. Plant-derived polyisocyanates such as 1,5-pentamethylene diisocyanate, dimer diisocyanate, etc. Examples include biomass polyurethane synthesized from raw materials and rosin resin.
 バイオマスリキッド印刷インキとしては市販品を利用することもできる。市販品としては、一般社団法人日本有機資源協会に記載のインキ等が使用できる。 Commercial products can also be used as biomass liquid printing inks. As commercially available products, inks listed by the Japan Organic Resources Association can be used.
(UVカットインキ)
 本発明に使用するリキッド印刷インキにおいて、紫外線遮蔽効果を有するUVカットインキを使用することも好ましい。UVカットインキとしては、酸化亜鉛等を含有する紫外線遮蔽効果の高いインキであれば特に限定されず市販のUVカットインキを使用することができる。
(UV cut ink)
In the liquid printing ink used in the present invention, it is also preferable to use a UV cut ink having an ultraviolet shielding effect. The UV cut ink is not particularly limited as long as it contains zinc oxide or the like and has a high ultraviolet shielding effect, and commercially available UV cut inks can be used.
 第一の層は、紙基材と第二の層との間に設けられる層である。第一の層は、前述した耐油耐水コート層又はヒートシール性コート層のいずれかにより構成される。第一の層の塗布量は、0.5~10.0g/mであり、1.0~5.0g/mであることがより好ましい。 The first layer is a layer provided between the paper substrate and the second layer. The first layer is composed of either the oil- and water-resistant coating layer or the heat-sealable coating layer described above. The coating amount of the first layer is 0.5 to 10.0 g/m 2 , more preferably 1.0 to 5.0 g/m 2 .
 第二の層は、第一の層の上に設けられる層である。第二の層は、前述した耐油耐水コート層又はヒートシール性コート層のうち、第一の層と異なる層により形成される。すなわち、第一の層が耐油耐水コート層で形成された場合は、第二の層はヒートシール性コート層で形成され、第一の層がヒートシール性コート層で形成された場合は、第二の層は耐油耐水コート層で形成される。 The second layer is a layer provided on top of the first layer. The second layer is formed of a layer different from the first layer, out of the oil- and water-resistant coating layer or the heat-sealable coating layer described above. That is, when the first layer is formed of the oil- and water-resistant coating layer, the second layer is formed of the heat-sealable coating layer, and when the first layer is formed of the heat-sealable coating layer, the second layer is formed of the heat-sealable coating layer. The second layer is formed by an oil- and water-resistant coating layer.
 第二の層の塗布量は、0.5~8.0g/mであることが好ましく、1.0~5.0g/mであることがより好ましい。第一の層が耐油耐水コート層の場合、該第一の層の目止め機能により、第二の層のヒートシール剤の塗布量を少なくすることができる。 The coating amount of the second layer is preferably 0.5 to 8.0 g/m 2 , more preferably 1.0 to 5.0 g/m 2 . When the first layer is an oil- and water-resistant coating layer, the sealing function of the first layer can reduce the coating amount of the heat sealing agent for the second layer.
 積層体は、紙基材の前記第一の層及び第二の層が設けられていない側の面に第三の層を更に有していてもよい。第三の層は、積層体に付与したい性能に応じて各種コート剤を適宜選択して用いることが好ましい。例えば、第三の層として、前述したスチレンアクリル共重合体コート層を設けてもよい。また、耐水性をより向上させたい場合は、スチレンアクリル系共重合体とワックスを少なくとも含有する耐水コート層を用いることがより好ましい。 The laminate may further have a third layer on the side of the paper substrate on which the first layer and the second layer are not provided. For the third layer, it is preferable to appropriately select and use various coating agents depending on the performance desired to be imparted to the laminate. For example, the styrene-acrylic copolymer coating layer described above may be provided as the third layer. Moreover, when it is desired to further improve water resistance, it is more preferable to use a water-resistant coating layer containing at least a styrene-acrylic copolymer and wax.
〔耐水コート層〕
 第三の層として設けられる耐水コート層は、水性溶剤と、スチレンアクリル系共重合体とワックスを少なくとも含有する耐水コート組成物により形成されることが好ましい。耐水コート層の膜厚は、用途によるが、例えば1~10g/mの範囲であれあることが好ましく、1~5g/mの範囲であることがより好ましい。
[Water resistant coating layer]
The water-resistant coating layer provided as the third layer is preferably formed from a water-resistant coating composition containing at least an aqueous solvent, a styrene-acrylic copolymer, and wax. The thickness of the waterproof coating layer depends on the application, but is preferably in the range of 1 to 10 g/m 2 , more preferably in the range of 1 to 5 g/m 2 .
(水性溶剤)
 水性溶剤としては、上述のヒートシール剤(HS)に用いられる水性溶剤と同様のものを用いることができる。
(Aqueous solvent)
As the water-based solvent, the same water-based solvent as that used for the heat sealing agent (HS) can be used.
(スチレンアクリル系共重合体)
 スチレンアクリル系共重合体は、スチレン類と(メタ)アクリレートの共重合体がコアシェル構造を形成していることが好ましく、スチレン類と(メタ)アクリレートとの共重合体、及びスチレン類と(メタ)アクリレートと(メタ)アクリル酸との共重合体がコアシェル構造を形成していることがより好ましい。
(Styrene-acrylic copolymer)
Styrene-acrylic copolymers are preferably copolymers of styrenes and (meth)acrylates forming a core-shell structure, and copolymers of styrenes and (meth)acrylates, and styrenes and (meth) ) More preferably, a copolymer of acrylate and (meth)acrylic acid forms a core-shell structure.
 スチレンアクリル共重合体の構成成分として用いられるスチレン類及び(メタ)アクリレートは、前述したスチレンアクリル共重合体コート層のスチレンアクリル共重合体(A)に用いられるものと同様のものを用いることができる。 The styrenes and (meth)acrylates used as constituents of the styrene-acrylic copolymer may be the same as those used in the styrene-acrylic copolymer (A) of the styrene-acrylic copolymer coating layer described above. can.
 スチレンアクリル共重合体の構成成分として、スチレン類、(メタ)アクリレート、(メタ)アクリル酸以外の他の公知の重合性化合物を含有していてもよい。 As a constituent component of the styrene-acrylic copolymer, other known polymerizable compounds other than styrenes, (meth)acrylates, and (meth)acrylic acid may be contained.
 スチレンアクリル系共重合体(A)中に後述するワックスを含有していてもよい。スチレンアクリル系共重合体(A)中にワックスを含有することにより、耐水性をより向上させることができる。ワックスは、コア部に存在していてもシェル部に存在していてもよい。スチレンアクリル系共重合体の表面に存在していてもよい。 The styrene-acrylic copolymer (A) may contain a wax, which will be described later. Water resistance can be further improved by containing wax in the styrene-acrylic copolymer (A). Wax may be present in the core portion or in the shell portion. It may exist on the surface of the styrene-acrylic copolymer.
 スチレンアクリル系共重合体(A)において、「スチレン類と(メタ)アクリレートとの共重合体」と「スチレン類と(メタ)アクリレートと(メタ)アクリル酸との共重合体」の割合は、質量比で20:80~95:5の範囲が好ましく、30:70~92:8の範囲がより好ましく、40:60~90:10の範囲が最も好ましい。 In the styrene-acrylic copolymer (A), the ratio of the "copolymer of styrenes and (meth)acrylate" and the "copolymer of styrenes, (meth)acrylate and (meth)acrylic acid" is The mass ratio is preferably in the range of 20:80 to 95:5, more preferably in the range of 30:70 to 92:8, and most preferably in the range of 40:60 to 90:10.
 スチレン類と(メタ)アクリレートとの共重合体において、スチレン類と(メタ)アクリレートの割合は、質量比で20:80~80:20の範囲が好ましく、30:70~70:30の範囲がより好ましく、40:60~60:40の範囲が最も好ましい。 In the copolymer of styrenes and (meth)acrylate, the ratio of styrenes and (meth)acrylate is preferably in the range of 20:80 to 80:20, more preferably in the range of 30:70 to 70:30. More preferably, the range of 40:60 to 60:40 is most preferred.
 スチレン類と(メタ)アクリレートと(メタ)アクリル酸との共重合体において、スチレン類の割合は10~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であること最もが好ましい。また、スチレン類と(メタ)アクリレートと(メタ)アクリル酸との共重合体において、(メタ)アクリレートの割合は10~80質量%であることが好ましく、15~70質量%であることがより好ましく、20~60質量%であることが最も好ましい。また、スチレン類と(メタ)アクリレートと(メタ)アクリル酸との共重合体において、(メタ)アクリル酸の割合は10~70質量%であることが好ましく、15~60質量%であることがより好ましく、20~50質量%であることが最も好ましい。 In the copolymer of styrenes, (meth)acrylate and (meth)acrylic acid, the proportion of styrenes is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and 30 to 70% by weight is most preferred. Further, in the copolymer of styrenes, (meth)acrylate and (meth)acrylic acid, the proportion of (meth)acrylate is preferably 10 to 80% by mass, more preferably 15 to 70% by mass. Preferably, 20 to 60% by mass is most preferred. Further, in the copolymer of styrenes, (meth)acrylate and (meth)acrylic acid, the proportion of (meth)acrylic acid is preferably 10 to 70% by mass, more preferably 15 to 60% by mass. More preferably, it is most preferably 20 to 50% by mass.
 スチレンアクリル共重合体(A)において、スチレン類、(メタ)アクリレート、(メタ)アクリル酸以外の他の公知の重合性化合物を含有する場合は、スチレンアクリル共重合体(A)における他の重合性化合物の割合は、10質量%以下であることが好ましく、5質量%以下であることが好ましい。 When the styrene-acrylic copolymer (A) contains other known polymerizable compounds other than styrenes, (meth)acrylates, and (meth)acrylic acid, other polymerization in the styrene-acrylic copolymer (A) The ratio of the organic compound is preferably 10% by mass or less, more preferably 5% by mass or less.
 スチレンアクリル共重合体(A)のガラス転移温度(以下Tgと称する場合がある)は、-30℃~10℃の範囲であり、好ましくは-25℃~5℃の範囲であり、より好ましくは-20℃~0℃の範囲である。本発明においてガラス転移温度は、示差走査熱量計による測定により得られるものである。 The glass transition temperature (hereinafter sometimes referred to as Tg) of the styrene-acrylic copolymer (A) is in the range of -30°C to 10°C, preferably in the range of -25°C to 5°C, more preferably It ranges from -20°C to 0°C. In the present invention, the glass transition temperature is obtained by measurement with a differential scanning calorimeter.
 スチレンアクリル共重合体は公知の方法により製造することができる。中でも、スチレンアクリル共重合体は、モノマー混合物の重合をワックスの存在下で行うことが好ましい。つまり、ワックスを水性媒体に予め添加させておくか、又はモノマー混合物と混合させておくことにより、スチレンアクリル共重合体中にワックスがとりこまれた状態のコアシェル構造が形成できる。 A styrene-acrylic copolymer can be produced by a known method. Among them, it is preferable to polymerize the monomer mixture in the presence of wax for the styrene-acrylic copolymer. That is, by adding the wax to the aqueous medium in advance or mixing it with the monomer mixture, a core-shell structure in which the wax is incorporated into the styrene-acrylic copolymer can be formed.
(ワックス)
 耐水コート組成物は、ワックスを含有することにより、耐水性をより向上させることができる。ワックスは、パラフィンワックス、マイクロクリスタリンワックス、酸化ポリエチレン-ワックス、アマイドワックスから選ばれる少なくとも一つ以上のワックスが好ましく、パラフィンワックス又はマイクロクリスタリンワックスがより好ましい。これらは単独で使用してもよいし併用してもよい。
(wax)
The waterproof coating composition can further improve the water resistance by containing a wax. The wax is preferably at least one wax selected from paraffin wax, microcrystalline wax, polyethylene oxide wax, and amide wax, more preferably paraffin wax or microcrystalline wax. These may be used alone or in combination.
 ワックスの融点は、30℃~130℃の範囲であることが好ましく、50℃~100℃の範囲であることがより好ましい。ワックスの配合量は、スチレンアクリル共重合体100質量%に対して0.5~20質量%であることが好ましく、1~15質量%であることが好ましい。 The melting point of wax is preferably in the range of 30°C to 130°C, more preferably in the range of 50°C to 100°C. The blending amount of the wax is preferably 0.5 to 20% by mass, preferably 1 to 15% by mass, based on 100% by mass of the styrene-acrylic copolymer.
 ワックスは、耐水コート層中に分散して存在していればよいが、上述のように、スチレンアクリル共重合体のコア部及び/又はシェル部に存在することにより、スチレンアクリル共重合体と一体化して存在することが好ましい。耐水コート層において、ワックスが、スチレンアクリル共重合体中に含まれる形で存在するものと、スチレンアクリル共重合体中に含まれずに存在するものとが混在していてもよい。 The wax may be dispersed in the water-resistant coating layer, but as described above, the presence of the wax in the core and/or shell of the styrene-acrylic copolymer allows the wax to be integrated with the styrene-acrylic copolymer. It is preferable to exist in a modified form. In the water-resistant coating layer, the wax may be present in the form of being contained in the styrene-acrylic copolymer and may be present without being contained in the styrene-acrylic copolymer.
(その他の添加剤)
 耐水コート組成物は、本発明の目的を阻害しない範囲において前記成分の他に、更に、シリカ、アルミナ、ワックス、消泡剤、レベリング剤、粘着性付与剤、防腐剤、抗菌剤、防錆剤等の添加剤が配合されていてもよい。また、スチレンアクリル系共重合体以外の他の樹脂が配合されていてもよい。中でも、レベリング剤及び/又はワックスが更に配合されていることが好ましい。
(Other additives)
In addition to the above components, the waterproof coating composition may further contain silica, alumina, wax, antifoaming agent, leveling agent, tackifier, antiseptic agent, antibacterial agent, antirust agent, as long as the object of the present invention is not impaired. Additives such as may be blended. Moreover, other resins than the styrene-acrylic copolymer may be blended. Among them, it is preferable that a leveling agent and/or wax are further blended.
[積層体の製造方法]
 本発明の積層体は、紙基材上に、第一の層を形成する組成物、第二の層を形成する組成物を順次塗布し、更に必要に応じて第三の層を形成する組成物を塗布することにより得られる。
[Laminate production method]
The laminate of the present invention is prepared by sequentially applying the composition for forming the first layer and the composition for forming the second layer on the paper substrate, and if necessary, the composition for forming the third layer. Obtained by applying a substance.
 塗工用の組成物を紙基材上に塗布する場合の方法としては、コンマコーター、ロールコーター、リバースロールコーター、ダイレクトグラビアコーター、リバースグラビアコーター、オフセットグラビアコーター、ロールキスコーター、リバースキスコーター、キスグラビアコーター、リバースキスグラビアコーター、エアドクターコーター、ナイフコーター、バーコーター、ワイヤーバーコーター、ダイコーター、リップコーター、ディップコーター、ブレードコーター、ブラシコーター、カーテンコーター、ダイスロットコー
ター、フレキソコーター、含浸コーター、キャストコーター、スプレイコーター、オフセット印刷機、スクリーン印刷機等のいずれかもしくは二つ以上の塗工方法を組み合わせて用いることができる。
Examples of methods for applying a coating composition onto a paper substrate include comma coaters, roll coaters, reverse roll coaters, direct gravure coaters, reverse gravure coaters, offset gravure coaters, roll kiss coaters, reverse kiss coaters, Kiss Gravure Coater, Reverse Kiss Gravure Coater, Air Doctor Coater, Knife Coater, Bar Coater, Wire Bar Coater, Die Coater, Lip Coater, Dip Coater, Blade Coater, Brush Coater, Curtain Coater, Die Slot Coater, Flexo Coater, Impregnation Coater , a cast coater, a spray coater, an offset printer, a screen printer, or the like, or a combination of two or more coating methods.
 また、紙基材を組成物中に含浸させることにより、紙基材上に樹脂層を設けてもよい。また塗工後オーブン等で乾燥工程を設けてもよい。 Alternatively, a resin layer may be provided on the paper substrate by impregnating the paper substrate with the composition. A drying step may be provided in an oven or the like after coating.
 上記のようにして形成された耐水コート層は、第一の層及び第二の層を有し、第一の層又は第一の層のいずれかに耐油耐水コート層を有することにより、耐水性、耐油性をより向上させることができる。 The water-resistant coating layer formed as described above has a first layer and a second layer. , the oil resistance can be further improved.
[包装体又は容器]
 本発明の積層体は、第一の層又は第二の層のいずれか一方にヒートシール性コート層を有することから、該ヒートシール性コート層を利用してヒートシールすることにより、箱、袋、容器等に加工することができる。
[Package or container]
Since the laminate of the present invention has a heat-sealable coat layer on either the first layer or the second layer, it can be used as a box or a bag by heat-sealing using the heat-sealable coat layer. , containers, etc.
 包装体は、例えば、パッケージ用の袋、紙袋、紙箱、段ボール、ラップ紙、封筒、カップスリーブ、蓋等が挙げられる。容器としては、紙容器、紙皿、トレイ、カップホルダー、紙コップ等が挙げられる。本発明の耐水性、耐油性に優れていることから、耐水性・耐油性を必要とする食品、肥料等の包装材に利用することが好ましい。例えば、カップ麺、アイスクリーム、プリン、ゼリー等のデザート用のカップ又は蓋、菓子、穀類、豆類、粉体、ペット用のフード、肥料等を収容する袋又は箱、ハンバーガーやホットドックのラップ紙、ピザ等の持ち帰り用容器、から揚げやポテト等のホットスナック用容器、納豆等の総菜を対象とするカップ類等の食品用紙容器又包装材や、洗剤、サニタリー用品をはじめとする衛生品用の袋又は箱等が挙げられる。 Examples of packaging include packaging bags, paper bags, paper boxes, cardboard, wrapping paper, envelopes, cup sleeves, lids, and the like. Examples of containers include paper containers, paper plates, trays, cup holders, and paper cups. Due to the excellent water resistance and oil resistance of the present invention, it is preferably used for packaging materials for foods, fertilizers, and the like that require water resistance and oil resistance. For example, cups or lids for desserts such as cup noodles, ice cream, pudding, jelly, etc., bags or boxes for confectionery, grains, beans, powders, pet food, fertilizers, etc. Wrapping paper for hamburgers and hot dogs , pizza and other take-out containers, containers for hot snacks such as fried chicken and potatoes, food paper containers and packaging materials such as cups for side dishes such as natto, and hygiene products such as detergents and sanitary products and a bag or box.
 例えば、本発明の積層体を用いて紙コップを作製する場合、容器内面及び容器を組み立てる際の貼り合わせ部に第一の層及び第二の層を設けて、張り合わせ部を第一の層及び第二の層を介して重ね合わせて接着することにより製造できる。すなわち、紙コップは、本発明の積層体の紙基材を丸めて重ね合わせた両端部の貼り合わせ面を接着した胴部材(1)と、前記胴部材(1)の下端に接着された板状の底部材(2)とを有し、接着部に設けられた第一の層及び第二の層はヒートシール機能により接着し、接着部以外の部分に設けられた第一の層及び第二の層は耐水性、耐油性の機能を発揮できる。接着部以外の部分に設けられた第一の層及び第二の層は、人体及び環境安全性が高いことから、食品と直接接して収容することも可能である。更に、紙コップの外側に第三の層として耐水コート層を設けることにより、長時間使用した場合にも優れた耐水性を得られる。 For example, when producing a paper cup using the laminate of the present invention, the first layer and the second layer are provided on the inner surface of the container and the bonding portion when assembling the container, and the bonding portion is the first layer and the second layer. It can be manufactured by stacking and adhering via a second layer. That is, the paper cup consists of a body member (1) in which the laminated paper substrate of the laminate of the present invention is rolled and overlapped and the bonding surfaces of both ends are adhered, and a plate adhered to the lower end of the body member (1). The first layer and the second layer provided in the bonding portion are bonded by a heat sealing function, and the first layer and the second layer provided in the portion other than the bonding portion The second layer can exhibit the functions of water resistance and oil resistance. Since the first layer and the second layer provided on the portion other than the adhesive portion are highly safe to the human body and the environment, they can be accommodated in direct contact with food. Furthermore, by providing a water-resistant coating layer as a third layer on the outer side of the paper cup, excellent water resistance can be obtained even when used for a long time.
 同様に、紙箱、紙袋等も本発明の積層体を用いてヒートシールすることにより製造できる。 Similarly, paper boxes, paper bags, etc. can be manufactured by heat-sealing using the laminate of the present invention.
 ヒートシールの具体的な方法は、紙基材の2つの部位のうち、少なくとも片方の部位(両方の部位であってもよい)に、第一の層及び第二の層を塗工後、2つの部位を重ね合わせて加熱により軟化させる。ヒートシール剤はバーナーや熱風で加熱することにより容易に軟化し紙同士または紙と他素材とを接着させることができ、その後冷却することで接着部分が固化し紙同士または紙と他素材とを強固にシールすることができる。 A specific method of heat sealing is to apply the first layer and the second layer to at least one of the two parts of the paper substrate (both parts may be applied), and then apply two layers. The two parts are overlapped and softened by heating. Heat sealing agents can be easily softened by heating with a burner or hot air, and can bond paper to paper or paper to other materials, and then cool to solidify the bonded portion, thereby bonding paper to paper or paper to other materials. It can be tightly sealed.
 前記加熱方法としては、バーナー等の熱源、熱風、電熱、赤外線、電子線等の従来公知の手段を用いる事ができるが、具体的にはバーナーや熱風で加熱する方法や、成形の形によっては熱溶着シール法や超音波シール法、あるいは高周波シール法が好ましい。この時の加熱温度は200~500℃、加熱時間は0.1~3秒が好ましい。 As the heating method, conventionally known means such as a heat source such as a burner, hot air, electric heat, infrared rays, and electron beams can be used. A heat welding sealing method, an ultrasonic sealing method, or a high frequency sealing method is preferable. The heating temperature at this time is preferably 200 to 500° C., and the heating time is preferably 0.1 to 3 seconds.
 また、ヒートシール剤(HS)は、ヒートシールバー等の直接熱源と接触させて溶融化させる方法以外に、非接触の加熱であっても容易に加熱軟化し、且つ、熱源から離れてもある程度の時間ヒートシール機能が持続する。基材が紙の場合、直接熱源と接触させると紙が焦げる可能性があるが本発明のヒートシール剤は非接触の加熱でヒートシール機能が発現し且つその機能が持続することから、高速のラインスピードが要求される紙容器の工業生産向けヒートシール剤として特に有用である。 In addition, the heat sealing agent (HS) can be easily heated and softened even by non-contact heating, and can be softened to some extent even if it is separated from the heat source, in addition to the method of melting by contacting it directly with a heat source such as a heat sealing bar. The heat seal function lasts for hours. When the base material is paper, the paper may be scorched if it is brought into direct contact with a heat source. It is particularly useful as a heat sealing agent for industrial production of paper containers that require high line speed.
 ヒートシール剤(HS)を塗工し該塗工部位を加熱軟化させた後、該塗工部位と、もう1つの部位とを重ね合わせた状態で圧着させることにより、ヒートシール剤として使用できる。圧着方法としては特に限定なく、熱板方式、超音波シール、高周波シールの方法で行うことができる。 It can be used as a heat sealing agent by applying a heat sealing agent (HS) and heating and softening the coated portion, and then pressing the coated portion and another portion in a superimposed state. The crimping method is not particularly limited, and a hot plate method, ultrasonic sealing, or high-frequency sealing can be used.
 本発明の積層体は、紙コップの製造においてヒートシール時にヒートシール層を含む第一の層又は第二の層が金型に付着することを防止することができる。 The laminate of the present invention can prevent the first layer or the second layer including the heat-seal layer from adhering to the mold during heat-sealing in the manufacture of paper cups.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明の技術範囲はこれらの実施形態に限定されるものではない。 Although the present invention will be described in detail below based on examples, the technical scope of the present invention is not limited to these embodiments.
 以下の実施例中の「部」は「質量部」を表し、「%」は「質量%」を表す。 "Parts" in the following examples represent "parts by mass", and "%" represents "% by mass".
(スチレンアクリル共重合体(A)を含有するコーティング組成物(CS)の調整)
 窒素ガス置換した四つ口フラスコに、イソプロピルアルコールを100部仕込み、温度を80~82℃に上げた後、滴下ロートに仕込んだミリスチルアクリレート1部、スチレン30部、アクリル酸10部、メチルメタクリレート5部、過酸化ベンゾイル1部の混合物を2時間かけて滴下した。滴下終了後、過酸化ベンゾイル0.5部を追加し、更に2時間反応させた。温度を40℃に下げ、ジメチルエタノールアミン、イオン交換水を添加した。その後、反応フラスコの温度を80~82℃に上げ、ストリッピングを行ない、最終的に固形分30%の水溶性樹脂を得た。
(Preparation of coating composition (CS) containing styrene acrylic copolymer (A))
100 parts of isopropyl alcohol was charged into a four-necked flask purged with nitrogen gas, the temperature was raised to 80 to 82° C., and then 1 part of myristyl acrylate, 30 parts of styrene, 10 parts of acrylic acid, and 5 parts of methyl methacrylate were charged to the dropping funnel. A mixture of 1 part of benzoyl peroxide and 1 part of benzoyl peroxide was added dropwise over 2 hours. After the dropwise addition, 0.5 part of benzoyl peroxide was added, and the reaction was further continued for 2 hours. The temperature was lowered to 40° C., and dimethylethanolamine and ion-exchanged water were added. Thereafter, the temperature of the reaction flask was raised to 80-82° C. and stripping was carried out to finally obtain a water-soluble resin with a solid content of 30%.
 上記で得た水溶性樹脂に、イオン交換水10部を反応フラスコに仕込み、温度を80℃~82℃に上げた後、過硫酸カリウムを2部添加し、スチレン15部、αメチルスチレン5部、2-エチルヘキシルアクリレート24部、ブチルアクリレート10部の混合物を2時間かけて滴下した。滴下終了後、過硫酸カリウム0.2部を添加し、2時間反応させた。このようにして得られたアクリルエマルジョン(樹脂1)の固形分は40%であり、最低造膜温度は1℃、ガラス転移点は-27℃、固形分の酸価は64mgKOH/gであった。 To the water-soluble resin obtained above, 10 parts of ion-exchanged water was charged in a reaction flask, the temperature was raised to 80 ° C. to 82 ° C., 2 parts of potassium persulfate were added, 15 parts of styrene and 5 parts of α-methylstyrene were added. , 24 parts of 2-ethylhexyl acrylate and 10 parts of butyl acrylate were added dropwise over 2 hours. After completion of dropping, 0.2 part of potassium persulfate was added and reacted for 2 hours. The acrylic emulsion (resin 1) thus obtained had a solid content of 40%, a minimum film-forming temperature of 1°C, a glass transition point of -27°C, and an acid value of the solid content of 64 mgKOH/g. .
 前記アクリルエマルジョン(樹脂1)を85部、ポリマー系消泡剤0.03部、及びイオン交換水14.97部の合計100部を25℃にて15分間、ディスパーにて十分攪拌しコーティング組成物(CS1)を作製した。 A total of 100 parts of 85 parts of the acrylic emulsion (resin 1), 0.03 parts of a polymer-based antifoaming agent, and 14.97 parts of ion-exchanged water were thoroughly stirred at 25°C for 15 minutes with a disper to form a coating composition. (CS1) was produced.
(ヒートシール剤(HS1)の調整)
 マレイン酸変性塩化ビニル/酢酸ビニル共重合体(マレイン酸1部/塩化ビニル84部/酢酸ビニル15部)を25部に対し、メチルエチルケトン/酢酸エチルの混合比率が1:1の溶剤75部を用いて、分散攪拌機を用いて25℃の温度下、3000rmpの回転数で撹拌しながら溶剤中に固形分を少しずつ投入し、10分間撹拌して塩化ビニル酢酸ビニル系共重合体系樹脂のヒートシール剤(HS1)を作製した。
(Adjustment of heat sealing agent (HS1))
Maleic acid-modified vinyl chloride/vinyl acetate copolymer (1 part of maleic acid/84 parts of vinyl chloride/15 parts of vinyl acetate) was mixed with 75 parts of a solvent having a mixing ratio of methyl ethyl ketone/ethyl acetate of 1:1. Then, using a dispersion stirrer, the solid content was gradually added to the solvent while stirring at a temperature of 25 ° C. and a rotation speed of 3000 rpm, and stirred for 10 minutes to obtain a vinyl chloride vinyl acetate copolymer resin heat sealant. (HS1) was produced.
(ヒートシール剤(HS2)の調整)
 アクリル樹脂(メタクリル酸メチル83部/アクリル酸ブチル11部/アクリル酸-2-エチルへキシル1部/メタクリル酸5部)を38部と、共重合体の酸価に対し中和率100%となるアンモニア、水性溶剤として水、及びワックスとしてポリエチレンワックス1.5部及びパラフィンワックス0.5部を仕込み、攪拌してアクリル系樹脂のヒートシール剤(HS2)を作製した。
(Adjustment of heat sealing agent (HS2))
38 parts of an acrylic resin (83 parts of methyl methacrylate/11 parts of butyl acrylate/1 part of 2-ethylhexyl acrylate/5 parts of methacrylic acid) and a neutralization rate of 100% with respect to the acid value of the copolymer Ammonia, water as an aqueous solvent, and 1.5 parts of polyethylene wax and 0.5 parts of paraffin wax as waxes were charged and stirred to prepare an acrylic resin heat sealing agent (HS2).
(ヒートシール剤(HS3)の調整)
 エチレンアクリル酸エチルアクリル酸共重合体(エチレン77.8部/アクリル酸エチル11.1部/アクリル酸11.2部)を30部と、共重合体の酸価に対し中和率100%となるアンモニア、水性溶剤として水、及びワックスとして脂肪酸アミドワックス1.5部を仕込み、更に、組成物中の水/イソプロピルアルコールの混合比率が67/3になるようにイソプロピルアルコールを混合して攪拌し、オレフィン-α,β不飽和カルボン酸共重合体のヒートシール剤(HS3)を得た。
(Adjustment of heat sealing agent (HS3))
30 parts of an ethylene ethyl acrylate copolymer (77.8 parts of ethylene/11.1 parts of ethyl acrylate/11.2 parts of acrylic acid) and a neutralization rate of 100% with respect to the acid value of the copolymer. Ammonia, water as an aqueous solvent, and 1.5 parts of a fatty acid amide wax as a wax were charged, and isopropyl alcohol was further mixed and stirred so that the mixing ratio of water/isopropyl alcohol in the composition was 67/3. , an olefin-α,β unsaturated carboxylic acid copolymer heat sealing agent (HS3) was obtained.
(アクリル系OPニス(AOP1)の調整)
 水性アクリルエマルジョン(DIC株式会社製 ディックセーフC-HP)を、固形分30%になるように水と混合して攪拌し、アクリル系OPニス(AOP1)を得た。
(Adjustment of acrylic OP varnish (AOP1))
An aqueous acrylic emulsion (Dicksafe C-HP manufactured by DIC Corporation) was mixed with water and stirred to give an acrylic OP varnish (AOP1) so that the solid content was 30%.
<積層体の作成>
(実施例1~11、比較例1~5)
 紙基材(坪量45g/mの純白ロール紙(大王製紙株式会社製 金鯱)を準備し、紙基材の一方の面(ザラ面側)に表1に記載した第一の層用の組成物を表1に記載の膜厚になるように塗布し乾燥させて、第一の層を形成した。続いて、第一の層の上に表1に記載した第二の層用の組成物を表1に記載の膜厚になるように塗布し、乾燥機を用いて100℃にて30秒乾燥させ、実施例5~11の積層体を作製した。
<Creation of laminate>
(Examples 1 to 11, Comparative Examples 1 to 5)
Prepare a paper base material (pure white roll paper with a basis weight of 45 g / m 2 (Kinshachi manufactured by Daio Paper Co., Ltd.), and on one side (rough surface side) of the paper base material for the first layer described in Table 1 A first layer was formed by applying and drying the composition to the film thickness shown in Table 1. Subsequently, the second layer for the second layer shown in Table 1 was formed on the first layer. The composition was applied to the film thickness shown in Table 1 and dried at 100° C. for 30 seconds using a dryer to prepare laminates of Examples 5 to 11.
 なお、各層において、CS1又はAOP1を塗布した場合は、塗布後乾燥機を用いて150℃にて20秒乾燥させ、HS1~HS3を塗布した場合は塗布後乾燥機を用いて150℃にて20秒乾燥させた。 In each layer, when CS1 or AOP1 is applied, it is dried for 20 seconds at 150°C using a dryer after application, and when HS1 to HS3 are applied, it is dried for 20 seconds at 150°C using a dryer after application. dried for a second.
<評価>
(ヒートシール性)
 作製した実施例及び比較例の積層体において、第一の層及び第二の層の塗工面と未塗工面を重ね、温度100℃~200℃の範囲で加熱後、直ちに0.2MPa加圧、1秒密着条件下のヒートシール機を用いることにより、ヒートシール部を設けた。密着状況は、ヒートシール部を剥がすことにより、紙剥け、紙切れの基材破壊の発生状況から密着強度を評価した。表中に記載の温度は、基材破壊が生じた最低温度である。
<Evaluation>
(Heat sealability)
In the prepared laminates of Examples and Comparative Examples, the coated surface and the uncoated surface of the first layer and the second layer are overlapped, heated at a temperature in the range of 100 ° C. to 200 ° C., and immediately pressurized at 0.2 MPa, A heat-sealed portion was provided by using a heat-sealing machine under close contact conditions for 1 second. As for the state of adhesion, the strength of adhesion was evaluated from the state of occurrence of substrate damage such as paper peeling and paper tearing when the heat-sealed portion was peeled off. The temperature listed in the table is the lowest temperature at which substrate failure occurred.
(耐油性)
 作製した実施例及び比較例の積層体を用いJAPAN TAPPI 紙パルプ試験法No.41キット法を用いて、撥油性の評価を行った。尚、評価の際、撥油度が7以上である場合を合格(優良)、5以上である場合を可、4未満の場合を不可とした。なお、撥油度の最大値は16である。
(Oil resistance)
JAPAN TAPPI paper pulp test method No. using the laminates of the produced examples and comparative examples. Oil repellency was evaluated using the 41 kit method. In the evaluation, when the oil repellency was 7 or more, it was accepted (excellent), when it was 5 or more, it was acceptable, and when it was less than 4, it was not acceptable. The maximum oil repellency is 16.
(耐水性)
 水道水をスポイトに採取し、0.1mlを評価用の塗工紙試験片の第一の層及び第二の層を設けた面に滴下する。滴下後25℃にて放置し、裏面への浸透が認められるまでの時間を評価した。
(water resistant)
Tap water is collected with a dropper, and 0.1 ml is dropped onto the surface of the coated paper test piece for evaluation provided with the first layer and the second layer. After dropping, the sample was allowed to stand at 25° C., and the time until permeation to the back surface was observed was evaluated.
(金型剥離性)
 作製した実施例及び比較例の積層体の印刷面にアルミニウムを当ててヒートシーラーにてシールを行った(0.2Mpa、時間1秒、25mm幅)。ヒートシール後、アルミニウム面と剥がしたときの剥離抵抗、ニスの取られを観察し、ニスがアルミニウムに取られた温度を評価する。なお、表中の温度はニスがアルミニウムに取られた温度であるが、「100℃<」は100℃以下の温度でニスがアルミニウムに取られたことを意味する。
(mold peelability)
Aluminum was applied to the printed surface of the produced laminates of Examples and Comparative Examples, and sealing was performed with a heat sealer (0.2 Mpa, time of 1 second, width of 25 mm). After heat-sealing, the peel resistance when peeled off from the aluminum surface and the removal of the varnish are observed, and the temperature at which the varnish is removed by the aluminum is evaluated. The temperature in the table is the temperature at which the varnish was removed from the aluminum, but "100°C<" means that the varnish was removed from the aluminum at a temperature of 100°C or less.
 評価結果を以下の表に示す。 The evaluation results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例より、本発明の第一の層及び第二の層を有する積層体は、ヒートシール性を有しつつ、優れた耐油性及び耐水性を兼ね備えることがわかった。また、比較例1~3に示すようにヒートシール剤を厚塗りする必要なく、十分なヒートシール性が得られる。 From the examples and comparative examples, it was found that the laminate having the first layer and the second layer of the present invention has excellent oil resistance and water resistance while having heat sealability. Further, as shown in Comparative Examples 1 to 3, it is not necessary to thickly apply the heat-sealing agent, and sufficient heat-sealing properties can be obtained.
 実施例1~3に示すように第二の層をヒートシール性コート層とした場合、HS3(オレフィン-α,β不飽和カルボン酸共重合体系樹脂)を用いた実施例1においてより耐水性が向上した。 When the second layer is a heat-sealable coating layer as shown in Examples 1 to 3, water resistance is higher than in Example 1 using HS3 (olefin-α, β unsaturated carboxylic acid copolymer system resin). Improved.
 実施例1~6より、ヒートシール性は、HS2(ポリオレフィン系樹脂)及びHS3(オレフィン-α,β不飽和カルボン酸共重合体系樹脂)を用いた実施例1,3,4,6でより優れていた。また、実施例7~9に示すように紙へのコート量が少ない方がより低温での密着性に優れていた結果となった。これは、ヒートシール剤の紙への浸透度合いの影響と推測される。 From Examples 1 to 6, the heat-sealing property was superior in Examples 1, 3, 4, and 6 using HS2 (polyolefin resin) and HS3 (olefin-α,β unsaturated carboxylic acid copolymer resin). was Further, as shown in Examples 7 to 9, the smaller the amount of coating on the paper, the better the adhesion at low temperatures. This is presumed to be due to the degree of penetration of the heat sealant into the paper.
 金型剥離性は、ヒートシール性の温度が高い方が金型剥離性は良いことを確認できた。第二の層を耐油耐水コート層を実施例4及び4で金型剥離性が良好な傾向が見られた。 We were able to confirm that the higher the heat seal temperature, the better the mold releasability. In Examples 4 and 4 in which the second layer was an oil- and water-resistant coating layer, there was a tendency for good mold releasability.

Claims (8)

  1.  紙基材と、
     前記紙基材の少なくとも一部に設けられた第一の層と、
     前記第一の層の上に設けられた第二の層を少なくとも有し、
     前記第一の層又は第二の層のうち一方は、スチレンとαメチルスチレンと(メタ)アクリレートとのスチレンアクリル共重合体を含む樹脂を含有するコート層であり、他方はヒートシール剤を含有するコート層であることを特徴とする積層体。
    a paper substrate;
    a first layer provided on at least a portion of the paper substrate;
    Having at least a second layer provided on the first layer,
    One of the first layer and the second layer is a coat layer containing a resin containing a styrene-acrylic copolymer of styrene, α-methylstyrene and (meth)acrylate, and the other contains a heat sealing agent. A laminate, characterized in that it is a coat layer that
  2.  前記スチレンアクリル共重合体は、スチレンとαメチルスチレンと(メタ)アクリレートとのスチレンアクリル共重合体と、(メタ)アクリル酸と(メタ)アクリレートとの共重合体とがコアシェル構造を形成することを特徴とする請求項1に記載の積層体。 In the styrene-acrylic copolymer, a styrene-acrylic copolymer of styrene, α-methylstyrene and (meth)acrylate and a copolymer of (meth)acrylic acid and (meth)acrylate form a core-shell structure. The laminate according to claim 1, characterized by:
  3.  前記ヒートシール剤は、塩化ビニル酢酸ビニル系共重合体系樹脂、(メタ)アクリレート系樹脂、オレフィン-α,β不飽和カルボン酸共重合体系樹脂、ポリオレフィン系樹脂またはポリエステル系樹脂から選ばれることを特徴とする請求項1又は2に記載の積層体。 The heat sealing agent is selected from vinyl chloride-vinyl acetate copolymer resin, (meth)acrylate resin, olefin-α,β unsaturated carboxylic acid copolymer resin, polyolefin resin and polyester resin. The laminate according to claim 1 or 2.
  4.  前記第一の層の量が0.5~10.0g/mである請求項1~3のいずれか一項に記載の積層体。 Laminate according to any one of the preceding claims, wherein the amount of said first layer is between 0.5 and 10.0 g/m 2 .
  5.  前記第二の層の量が0.5~8.0g/mである請求項1~4のいずれか一項に記載の積層体。 Laminate according to any one of the preceding claims, wherein the amount of said second layer is between 0.5 and 8.0 g/m 2 .
  6.  前記紙基材の前記第一の層及び第二の層が設けられていない側の面に第三の層を更に有し、該第三の層が耐水コート層である請求項1~5のいずれか一項に記載の積層体。 6. The method according to any one of claims 1 to 5, further comprising a third layer on the side of the paper base on which the first layer and the second layer are not provided, wherein the third layer is a waterproof coating layer. The laminate according to any one of the items.
  7.  請求項1~6に記載の積層体を用い、第一の層及び第二の層の塗工部分の少なくとも一部が貼り合わされた包装体又は容器。 A package or container in which at least a part of the coated portions of the first layer and the second layer is bonded using the laminate according to claims 1 to 6.
  8.  第一の層及び第二の層の塗工部分が包装体又は容器の内面側に設けられ、収容物と直接接触することを特徴とする請求項7に記載の包装体又は容器。 The package or container according to claim 7, wherein the coated portions of the first layer and the second layer are provided on the inner surface side of the package or container and are in direct contact with the contents.
PCT/JP2022/023221 2021-06-24 2022-06-09 Layered body, and wrapping paper or container using such layered body WO2022270321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023512751A JP7317262B2 (en) 2021-06-24 2022-06-09 Laminate and wrapping paper or container using the laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104733 2021-06-24
JP2021104733 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022270321A1 true WO2022270321A1 (en) 2022-12-29

Family

ID=84543804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023221 WO2022270321A1 (en) 2021-06-24 2022-06-09 Layered body, and wrapping paper or container using such layered body

Country Status (2)

Country Link
JP (1) JP7317262B2 (en)
WO (1) WO2022270321A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116948468B (en) * 2023-07-05 2024-03-12 浙江榕荫新材料科技股份有限公司 Highlight antifouling high-performance film and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08501042A (en) * 1992-05-27 1996-02-06 コナグラ インコーポレイテッド Food trays, etc. with pressure applied coating
JP2014214250A (en) * 2013-04-26 2014-11-17 東洋インキScホールディングス株式会社 Food packaging sheet coating material, and food packaging sheet
WO2020203346A1 (en) * 2019-04-01 2020-10-08 Dicグラフィックス株式会社 Composition for overcoating and for adhesive agent that are used on paper, and coated article, water-resistant oil-resistant paper laminate, paper straw, and paper tableware in which composition is used
WO2021095780A1 (en) * 2019-11-14 2021-05-20 王子ホールディングス株式会社 Paper laminate
WO2022071261A1 (en) * 2020-10-01 2022-04-07 Dicグラフィックス株式会社 Waterproof paper, and wrapping paper or container using said waterproof paper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231937A (en) * 1986-10-06 1988-09-28 東洋アルミニウム株式会社 Cover material for sealed package
JP6610347B2 (en) * 2016-03-10 2019-11-27 王子ホールディングス株式会社 Heat seal sheet and press-through packaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08501042A (en) * 1992-05-27 1996-02-06 コナグラ インコーポレイテッド Food trays, etc. with pressure applied coating
JP2014214250A (en) * 2013-04-26 2014-11-17 東洋インキScホールディングス株式会社 Food packaging sheet coating material, and food packaging sheet
WO2020203346A1 (en) * 2019-04-01 2020-10-08 Dicグラフィックス株式会社 Composition for overcoating and for adhesive agent that are used on paper, and coated article, water-resistant oil-resistant paper laminate, paper straw, and paper tableware in which composition is used
WO2021095780A1 (en) * 2019-11-14 2021-05-20 王子ホールディングス株式会社 Paper laminate
WO2022071261A1 (en) * 2020-10-01 2022-04-07 Dicグラフィックス株式会社 Waterproof paper, and wrapping paper or container using said waterproof paper

Also Published As

Publication number Publication date
JPWO2022270321A1 (en) 2022-12-29
JP7317262B2 (en) 2023-07-28

Similar Documents

Publication Publication Date Title
CN113597372B (en) Composition for paper exterior coating and adhesive, and coated article, water-and oil-resistant paper laminate, paper straw, and paper tableware using the same
JP7105250B2 (en) Heat-sealable barrier coating
JP7130168B1 (en) Water-resistant paper, and wrapping paper or container using the water-resistant paper
JP7317262B2 (en) Laminate and wrapping paper or container using the laminate
JP2010047670A (en) Composition for printing liquid, and printing liquid using the same
JP2022043123A (en) Aqueous heat seal agent, paper substrate for paper container, paper container, and method of producing paper container
JP7122482B1 (en) BINDER COMPONENT, EMULSION, METHOD FOR MAKING EMULSION, AND AQUEOUS INK
JP6972911B2 (en) Gravure ink, laminate using it
JP2022096161A (en) Aqueous solution ink, printed material having been printed with the aqueous solution ink, and oilproof paper
JP6732150B1 (en) Gravure printing ink composition for styrene film for thermal lamination
JP2023094001A (en) Coating agent for paper, coated paper using the coating agent for paper, bonded body, and packaging material for food products
JP2023028340A (en) Laminate, and packaging paper or container using the laminate
JP6255123B1 (en) Liquid ink composition
JP2023096902A (en) Coated paper, and package or container including the coated paper
JP2023091508A (en) Coated paper and package or container using the coated paper
JP6828978B1 (en) Aqueous liquid ink and laminate
JP2023085741A (en) Varnish for paper, paper coated with the varnish for paper, and package
JP7220836B2 (en) Laminate and package using laminate
JP6684948B1 (en) Gravure printing ink composition for styrene substrate, laminate and packaging container
JP7406034B1 (en) Gravure ink compositions, coated products, laminates, steam release packaging bags, lids, labels
JP2007314682A (en) Ink composition having high luminance feeling and degradation-preventing capability for retort product
JP7150577B2 (en) SOLVENT-BASED GRAVURE PRINTING INK COMPOSITION FOR CONTAINER AND CONTAINER
JP6732151B1 (en) Non-laminating printing ink composition, non-laminating packaging printed material and non-laminating packaging printed material manufacturing method
WO2024004665A1 (en) Moisture-proof paper and package
JP2023047455A (en) Water-based heat sealant and printed article using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512751

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2301007958

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828238

Country of ref document: EP

Kind code of ref document: A1