WO2022270124A1 - Learning device, inference device, learning method, and inference method - Google Patents

Learning device, inference device, learning method, and inference method Download PDF

Info

Publication number
WO2022270124A1
WO2022270124A1 PCT/JP2022/017153 JP2022017153W WO2022270124A1 WO 2022270124 A1 WO2022270124 A1 WO 2022270124A1 JP 2022017153 W JP2022017153 W JP 2022017153W WO 2022270124 A1 WO2022270124 A1 WO 2022270124A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
time
range
normal
feature difference
Prior art date
Application number
PCT/JP2022/017153
Other languages
French (fr)
Japanese (ja)
Inventor
友実 堀
孝 吉岡
隆彦 増▲崎▼
道康 日下
堅也 杉原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023529633A priority Critical patent/JPWO2022270124A1/ja
Publication of WO2022270124A1 publication Critical patent/WO2022270124A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present disclosure relates to a learning device, an inference device, a learning method, and an inference method.
  • Patent Document 1 discloses a method for judging the state of a prime mover. According to this method, the state of the prime mover can be determined by reducing the amount of data while retaining the characteristics of the original data.
  • An object of the present disclosure is to provide a learning device, an inference device, a learning method, and an inference method that can accurately detect anomalies even from data acquired under poor conditions.
  • a learning device includes a data acquisition unit that acquires normal time-series data, and a time-frequency and an analysis unit, and feature difference enhancement for extracting signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large from the data analyzed by the time-frequency analysis unit.
  • the range extracting unit and the signal intensity data in the range of the specific frequency band and the specific time band extracted by the feature difference emphasizing range extracting unit, the learned for inferring the similarity with the normal data and a model generator for generating a model.
  • Another learning device includes a data acquisition unit that acquires normal time-series data, and analyzes temporal changes in frequency characteristics for the normal time-series data acquired by the data acquisition unit.
  • a difference emphasizing range extracting unit a statistic calculating unit that calculates a statistic from signal strength data in a specific frequency band and a specific time band extracted by the feature difference emphasizing range extracting unit; a model generation unit that generates a trained model for inferring the degree of similarity with normal data from the statistics calculated by the model generation unit; a normalization parameter derivation unit for inputting all and deriving normalization parameters.
  • An inference device includes a data acquisition unit that acquires time-series data of an object under test, and analyzes temporal changes in frequency characteristics of the time-series data of the object under test acquired by the data acquisition unit.
  • the range of a specific frequency band and a specific time zone extracted by the feature difference-enhancement range extraction unit and an inference unit for inferring the degree of similarity between the signal strength data and the normal data is a difference-enhancement range extraction unit and a trained model for inferring the degree of similarity with normal data.
  • Another inference device includes a data acquisition unit that acquires time-series data of an object to be inspected; From the time-frequency analysis unit to be analyzed and the data analyzed by the time-frequency analysis unit, extract signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large.
  • a statistic calculation unit for calculating a statistic from the signal strength data in a specific frequency band and a specific time range extracted by the feature difference emphasis range extraction unit; an inference unit for inferring the degree of similarity between the statistic calculated by the statistic calculation unit and normal data using a trained model for inferring the degree of similarity with the data; a dissimilarity deriving unit that converts the obtained similarity into a dissimilarity using the normalization parameter stored in the storage device and normalizes the similarity.
  • the learning method includes a data acquisition step of acquiring normal time-series data using a learning device, and a normal time-series data acquired by the data acquisition step using the learning device.
  • a time-frequency analysis step of analyzing temporal changes in frequency characteristics, and using the learning device, from the data analyzed by the time-frequency analysis step, a feature difference between normal and abnormal times is specified.
  • a feature difference emphasis range extraction step for extracting signal strength data in a frequency band and a specific time zone range, and a specific frequency band and specific frequency band extracted by the feature difference emphasis range extraction step using the learning device and a model generation step of generating a trained model for inferring similarity with normal data, using the signal intensity data within the time range.
  • Another learning method includes a data acquisition step of acquiring normal time series data using a learning device, and a normal time series data acquired by the data acquisition step using the learning device.
  • a feature difference emphasis range extraction step of extracting signal strength data in a specific frequency band and a specific time range, and a specific frequency band extracted in the feature difference emphasis range extraction step and A statistic calculation step of calculating a statistic of signal strength data in a range of a specific time period; a model generating step of generating a trained model for inferring the similarity; using the learning device, inputting part or all of learning data into the trained model generated by the model generating step; and a normalization parameter derivation step for deriving a normalization parameter.
  • An inference method includes a data acquisition step of acquiring time-series data of a subject using an inference device, and a time-series data of the subject acquired by the data acquisition step using the inference device.
  • Another inference method includes a data acquisition step of acquiring time-series data of an object to be inspected using an inference device; A time-frequency analysis step of analyzing temporal changes in frequency characteristics of time-series data; and using the inference device, from the data analyzed by the time-frequency analysis step, a feature difference between normal and abnormal conditions.
  • data within a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large is used. Therefore, anomalies can be accurately detected even from data acquired under poor conditions.
  • FIG. 1 is a configuration diagram of a learning device according to Embodiment 1;
  • FIG. 4 is a diagram showing time-series data acquired by the learning device according to Embodiment 1.
  • FIG. 4 is a diagram showing a mother wavelet function used for wavelet transform by the learning device according to Embodiment 1;
  • FIG. 4 is a diagram showing a mother wavelet function used for wavelet transform by the learning device according to Embodiment 1;
  • FIG. 4 is a first example of a feature difference emphasis range of a rope tester using the learning device according to Embodiment 1.
  • FIG. FIG. 10 is a second example of a feature difference emphasis range of a rope tester using the learning device according to Embodiment 1;
  • FIG. 10 is a third example of a feature difference emphasis range of a rope tester using the learning device according to Embodiment 1;
  • FIG. 4 is a flowchart for explaining learning processing of the learning device according to Embodiment 1; 1 is a configuration diagram of an inference device according to Embodiment 1;
  • FIG. 4 is a flowchart for explaining inference processing of the inference device according to Embodiment 1; 2 is a hardware configuration diagram of a learning device according to Embodiment 1.
  • FIG. FIG. 10 is a third example of a feature difference emphasis range of a rope tester using the learning device according to Embodiment 1;
  • FIG. 4 is a flowchart for explaining learning processing of the learning device according to Embodiment 1; 1 is a configuration diagram of an inference device according to Embodiment 1;
  • FIG. 4 is a flowchart for explaining inference processing of the inference device according to Embodiment 1;
  • 2 is a hardware configuration diagram of a learning device according to Em
  • FIG. FIG. 11 is a configuration diagram of an inference device according to Embodiment 3; 14 is a flowchart for explaining inference processing of an inference device according to Embodiment 3;
  • FIG. 1 is a block diagram of a learning device according to Embodiment 1.
  • FIG. 1 is a block diagram of a learning device according to Embodiment 1.
  • the learning device 1 in FIG. 1 is used to detect abnormalities in equipment and members.
  • the learning device 1 is used to detect rope abnormalities using a rope tester, which is a device for detecting wire rope breakage.
  • the learning device 1 includes a data acquisition unit 2, a time-frequency analysis unit 3, a feature difference emphasis range extraction unit 4, and a model generation unit 5.
  • the data acquisition unit 2 captures the time series of the voltage signal generated when the magnetic flux (leakage magnetic flux) leaking from the surface of the wire rope (leakage magnetic flux) passes through the coil when magnetizing a normal wire rope that is sent out in the longitudinal direction without disconnection. Get data.
  • the time-frequency analysis unit 3 performs time-frequency analysis for analyzing temporal changes in frequency characteristics for time-series data. For example, the time-frequency analysis unit 3 performs analysis using a short-time Fourier transform as the time-frequency analysis. For example, the time-frequency analysis unit 3 performs analysis using wavelet transform using a general mother wavelet function such as Biorthogonal 3.3 as the time-frequency analysis. For example, the time-frequency analysis unit 3 performs analysis using wavelet transform using a mother wavelet function similar to the voltage waveform at the time of wire rope disconnection.
  • the feature difference enhancement range extracting unit 4 extracts a specific frequency band and a specific frequency band in which the feature difference between normal and abnormal is large from the data after the time-frequency analysis for each time in the data of all the times to be inspected. Sequentially extract signal strength data for a range of time periods.
  • the feature difference between the normal state and the abnormal state becomes large.
  • the data range to a bilaterally symmetrical data range a little away from the time of interest, the feature difference between the normal state and the abnormal state becomes large.
  • the model generation unit 5 uses learning data in the range extracted by the feature difference emphasis range extraction unit 4 to learn normal data. Specifically, the model generation unit 5 generates a trained model for inferring the degree of similarity between normal data and normal data when a normal wire rope without disconnection is measured by a rope tester. .
  • the model generator 5 uses a known algorithm for unsupervised learning. Specifically, the model generation unit 5 learns the features in the learning data from the learning data that does not contain the result (label).
  • the model generation unit 5 uses One Class Supported Vector Machine (One class SVM), which is unsupervised learning.
  • One class SVM One Class Supported Vector Machine
  • the model generation unit 5 learns normal data by unsupervised learning according to the grouping method by One Class SVM.
  • the model generation unit 5 is an algorithm applied to a one-class classification problem in One class SVM, and detects outliers by learning one class and determining a discrimination boundary.
  • the model generation unit 5 uses kernel tricks to map the learning data xi to cluster "1" and the origin to cluster "-1" in the feature space of the high-dimensional space. After that, the model generator 5 determines a discriminant plane from the support vectors on the boundary between the origin and the learning data.
  • the storage device 6 stores the learned model output from the model generation unit 5.
  • FIG. 2 is a diagram showing time-series data acquired by the learning device according to Embodiment 1.
  • FIG. 2 is a diagram showing time-series data acquired by the learning device according to Embodiment 1.
  • the time-series data is obtained by measuring the leakage magnetic flux from the wire rope with one coil.
  • the time-series data in the normal state is measured by a plurality of coils connected in series after the leakage magnetic flux from the wire rope is arranged with some distance in the longitudinal direction of the wire rope.
  • FIG. 3 and 4 are diagrams showing mother wavelet functions used for wavelet transform by the learning device according to Embodiment 1.
  • FIG. 3 and 4 are diagrams showing mother wavelet functions used for wavelet transform by the learning device according to Embodiment 1.
  • the time-frequency analysis unit 3 uses wavelet transform using a general mother wavelet function such as Biorthogonal 3.3.
  • the time-frequency analysis unit 3 uses wavelet transform using a mother wavelet function similar to the voltage waveform Vw when the wire rope Wr is disconnected.
  • FIG. 5 shows a first example of the feature difference enhancement range of the rope tester using the learning device according to the first embodiment.
  • FIG. 6 shows a second example of the feature difference enhancement range of the rope tester using the learning device according to the first embodiment.
  • FIG. 7 shows an example of the feature difference emphasis range when there is a break in the rope in the rope tester using the learning device according to the first embodiment.
  • the feature difference enhancement range extracting unit 4 extracts a specific frequency band in which the feature difference between the normal state and the abnormal state becomes large and in the positive direction around the time of interest Tf.
  • Signal strength data of specific time ranges Rp1, Rp2, Rm1, Rm2 symmetrical in the negative direction are extracted as feature difference emphasis ranges.
  • this range corresponds to ranges Rp2 and Rm1 where the signal strength is higher than the surrounding area and ranges Rp1 and Rm2 where the signal strength is lower than the surrounding area when the wire rope is disconnected.
  • the feature difference emphasis range extraction unit 4 may process using the numerical values inside the ranges Rp1, Rp2, Rm1, and Rm2.
  • the feature difference emphasis range extracting unit 4 may take the difference between data symmetrical with respect to the time of interest Tf within the ranges Rp1, Rp2, Rm1 and Rm2 shown in FIG. 5 or 6 .
  • the difference between all data values within the ranges Rp1, Rp2, Rm1, and Rm2 may be taken.
  • differences in values may be obtained at regular intervals.
  • the difference between the average values of the data ranges Rp1, Rp2, Rm1, and Rm2 of data symmetrical with respect to the time of interest Tf may be taken.
  • FIG. 8 shows a third example of the feature difference enhancement range of the rope tester using the learning device according to the first embodiment.
  • the data after the time-frequency analysis shows the strength and weakness of the signal like a pattern Pt in which a number of mountains overlap.
  • the signal strengths of the ranges Rf and Rb of a specific frequency band and a specific time band before and after the pattern Pt from the overlapping portion Op of the two peaks closest to the target time Tf are calculated. You may take the difference with the average value of data.
  • the range where the feature difference between normal and abnormal is large.
  • a range in which the difference between the data of the normal part of the wire rope and the data of the broken part of the wire rope is large may be extracted.
  • the correlation coefficient between the data of the normal part of the wire rope and the data of the disconnected part may be obtained, and the range with low correlation may be extracted.
  • FIG. 9 is a flowchart for explaining learning processing of the learning device according to Embodiment 1.
  • FIG. 9 is a flowchart for explaining learning processing of the learning device according to Embodiment 1.
  • step S11 the data acquisition unit 2 acquires time-series data of the normal state when a normal wire rope without disconnection is measured with a rope tester.
  • step S12 the time-frequency analysis unit 3 performs time-frequency analysis on the normal time-series data.
  • the feature difference enhancement range extracting unit 4 extracts signal strength data in a range of a specific frequency band and a specific time zone in which the feature difference between normal and abnormal conditions is large from the data after the time-frequency analysis. Extract.
  • step S14 the model generation unit 5 uses the range data extracted by the feature difference emphasis range extraction unit 4 to generate a learned model.
  • step S15 the model generation unit 5 stores the learned model in the storage device 6.
  • FIG. 10 is a configuration diagram of an inference apparatus according to Embodiment 1.
  • FIG. 10 is a configuration diagram of an inference apparatus according to Embodiment 1.
  • the inference device 7 includes a data acquisition unit 8, a time-frequency analysis unit 9, a feature difference emphasis range extraction unit 10, and an inference unit 11.
  • the data acquisition unit 8 acquires a time series of voltage signals generated when the magnetic flux (leakage magnetic flux) leaking from the surface of the wire rope (leakage magnetic flux) passes through the coil when the wire rope, which is the object to be inspected, is magnetized and sent out in the longitudinal direction. Get data.
  • the method of data acquisition must be the same as during learning.
  • the time-frequency analysis unit 9 performs time-frequency analysis for analyzing temporal changes in frequency characteristics for time-series data. However, the method of time-frequency analysis must be the same as during learning.
  • the feature difference enhancement range extracting unit 10 extracts signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large from the data after the time-frequency analysis. However, it is necessary to match the range to be extracted with that at the time of learning.
  • the inference unit 11 uses the learned model stored in the storage device 6 to infer the degree of similarity with normal data. Specifically, the inference unit 11 inputs the data of the range extracted by the feature difference emphasis range extraction unit to the learned model, thereby determining whether the data of the object to be inspected belongs to the normal data. infer. The inference unit 11 outputs an inference result as to whether or not the data of the object to be inspected belongs to the normal data to the determination device 12 as a degree of similarity with the normal data.
  • the inference unit 11 may output the degree of similarity with normal data based on a learned model acquired from the outside such as another rope tester.
  • the determination device 12 determines normality or abnormality using the degree of similarity from the inference unit 11 as a score.
  • FIG. 11 is a flowchart for explaining the inference processing of the inference device according to Embodiment 1.
  • FIG. 11 is a flowchart for explaining the inference processing of the inference device according to Embodiment 1.
  • step S21 the data acquisition unit 8 acquires time-series data of the subject.
  • step S22 the time-frequency analysis unit 9 performs time-frequency analysis for analyzing temporal changes in the frequency characteristics of the time-series data during measurement of the object to be inspected.
  • the feature difference enhancement range extracting unit 10 extracts signal strength data in a range of a specific frequency band and a specific time range in which the feature difference between normal and abnormal conditions is large, from the data after the time-frequency analysis. Extract.
  • step S24 the inference unit 11 inputs the data of the object to be inspected output from the feature difference emphasis range extraction unit 10 to the learned model stored in the storage device 6, and calculates the degree of similarity with the normal data. infer.
  • step S25 the inference unit 11 outputs to the determination device 12 the degree of similarity with the normal data obtained from the learned model.
  • the determination device 12 uses the degree of similarity to identify the disconnection point in the wire rope to be inspected.
  • the determination device 12 notifies the operator by display and buzzer sound.
  • the determination device 12 may store information that associates the wire rope feeding amount with the degree of similarity to the normal data. Based on the information, a disconnection point of the wire rope may be detected.
  • the learning device 1 uses the signal strength data in the range of the specific frequency band and the specific time band in which the feature difference between normal and abnormal conditions is large, Generate a trained model for inferring the similarity with the data of For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the learning device 1 uses wavelet transform as a method of analyzing temporal changes in frequency characteristics. For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the learning device 1 uses a waveform similar to the waveform at the time of abnormality as a mother wavelet. For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the learning device 1 extracts signal intensity data in a range of a specific frequency band and a specific time band, which have a low correlation with the data of the abnormal part with respect to the data of the normal part, as the feature difference emphasis range. For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the learning device 1 generates a trained model using the One class SVM. Therefore, even if the distribution of normal features is non-linear, it is possible to appropriately obtain the degree of similarity with the normal time. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • unsupervised learning when unsupervised learning is realized in the learning device 1, other known methods capable of clustering may be applied. For example, a kernel density estimation method, an MT method, or the like may be applied. By applying an appropriate method according to the distribution of normal features, the degree of similarity or dissimilarity with the normal state can be obtained appropriately.
  • the inference device 7 uses a trained model for inferring the degree of similarity with the data in the normal state, and the degree of similarity between the data in the range where the feature difference between the normal state and the abnormal state becomes large and the data in the normal state. to infer For this reason, the difference in similarity between the normal state and the abnormal state increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the inference device 7 uses the normalization parameters stored in the storage device 6 to convert into dissimilarity and normalize. This normalization enables uniform processing in the post-processing. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the inference device 7 uses wavelet transform as a method of analyzing temporal changes in frequency characteristics. As a result, the amount of information about the features increases, and the feature differences between the normal state and the abnormal state partially increase. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the inference device 7 may use a general mother wavelet function such as Biorthogonal 3.3, or may use a waveform similar to the waveform at the time of abnormality as the mother wavelet function. For this reason, the feature difference between the normal state and the abnormal state partially increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the inference device 7 infers the degree of similarity with normal data using a trained model using the One class SVM. For this reason, the difference in similarity between the normal state and the abnormal state increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • the degree of similarity to the normal data may be inferred using a trained model by the kernel density estimation method, the MT method, or the like. Also in this case, the difference in the similarity between the normal state and the abnormal state becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • an algorithm such as reinforcement learning, supervised learning, or semi-supervised learning may be applied.
  • a deep learning algorithm that learns to extract the feature quantity itself may be applied.
  • the learning device 1 and the reasoning device 7 may be connected to the rope tester via a network separately from the rope tester.
  • the learning device 1 and the reasoning device 7 may be built in the rope tester.
  • the learning device 1 and the reasoning device 7 may exist on a cloud server.
  • model generation unit 5 may learn normal data according to learning data created for a plurality of rope testers.
  • the model generator 5 may acquire learning data from a plurality of rope testers used in the same area.
  • the model generator 5 may acquire learning data collected from a plurality of rope testers operating independently in different areas.
  • a rope tester that collects learning data may be added or removed from the target on the way.
  • the learning device 1 that has learned the normal data for the rope tester may be applied to another rope tester, and the normal data for the other rope tester may be re-learned and updated.
  • FIG. 12 is a hardware configuration diagram of the learning device according to the first embodiment.
  • Each function of the learning device 1 can be realized by a processing circuit.
  • the processing circuitry comprises at least one processor 100a and at least one memory 100b.
  • the processing circuitry comprises at least one piece of dedicated hardware 200 .
  • each function of the learning device 1 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a implements each function of learning device 1 by reading and executing a program stored in at least one memory 100b.
  • the at least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP.
  • the at least one memory 100b is a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, or the like.
  • the processing circuitry comprises at least one piece of dedicated hardware 200
  • the processing circuitry may be implemented, for example, in single circuits, multiple circuits, programmed processors, parallel programmed processors, ASICs, FPGAs, or combinations thereof.
  • each function of the learning device 1 is implemented by a processing circuit.
  • each function of the learning device 1 is collectively realized by a processing circuit.
  • a part of each function of the learning device 1 may be realized by dedicated hardware 200, and the other part may be realized by software or firmware.
  • the function of the model generation unit 5 is implemented by a processing circuit as dedicated hardware 200, and the functions other than the function of the model generation unit 5 are implemented by at least one processor 100a and a program stored in at least one memory 100b. may be implemented by reading and executing
  • the processing circuit implements each function of the learning device 1 with hardware 200, software, firmware, or a combination thereof.
  • each function of the inference device 7 can be implemented by a processing circuit equivalent to the processing circuit that implements each function of the learning device 1.
  • FIG. 13 is a configuration diagram of a learning device according to the second embodiment.
  • the same reference numerals are given to the same or corresponding parts as those of the first embodiment. Description of this part is omitted.
  • the learning device 1 of the second embodiment is a device in which a normalization parameter derivation unit 13 is added to the learning device 1 of the first embodiment.
  • the normalization parameter derivation unit 13 inputs part or all of the learning data to the trained model generated by the model generation unit 5, and derives normalization parameters.
  • the normalization parameter is the maximum score derived using the One class SVM classifier.
  • the storage device 6 stores the normalization parameters output from the normalization parameter derivation unit 13 .
  • FIG. 14 is a flow chart for explaining learning processing of the learning device according to the second embodiment.
  • Steps S31 to S34 are the same as steps S11 to S14 in FIG.
  • step S35 the normalization parameter derivation unit 13 inputs part or all of the learning data to the trained model generated by the model generation unit 5, and derives normalization parameters.
  • step S36 the model generation unit 5 stores the learned model in the storage device 6.
  • the normalization parameter derivation unit 13 causes the storage device 6 to store the normalization parameter.
  • the trained model and the normalized parameter are stored in association with each other.
  • FIG. 15 is a configuration diagram of an inference device according to Embodiment 2.
  • FIG. 15 is a configuration diagram of an inference device according to Embodiment 2.
  • the inference device 7 of the second embodiment is a device in which a dissimilarity derivation unit 14 is added to the inference device 7 of the first embodiment.
  • the dissimilarity deriving unit 14 converts the similarity between the normal data derived by the inference unit 11 into a dissimilarity using the normalization parameter stored in the storage device 6 and normalizes it. .
  • the dissimilarity derivation unit 14 outputs the normalized dissimilarity to the determination device 12 .
  • the determination device 12 determines normality or abnormality using the normalized dissimilarity from the dissimilarity derivation unit 14 as a score.
  • FIG. 16 is a flowchart for explaining the inference processing of the inference device according to Embodiment 2.
  • FIG. 16 is a flowchart for explaining the inference processing of the inference device according to Embodiment 2.
  • Steps S41 to S44 are the same as steps S21 to S24 in FIG.
  • step S45 the non-similarity derivation unit 14 uses the normalization parameter stored in the storage device 6 to calculate the similarity between the normal data derived by the inference unit 11 and the non-similarity derivation unit 14. Convert to similarity and normalize.
  • step S46 the dissimilarity derivation unit 14 outputs the normalized dissimilarity to the determination device 12.
  • the learning device 1 inputs part or all of the learning data to the trained model and derives the normalization parameter.
  • the inference device 7 uses the normalization parameters stored in the storage device 6 to convert into dissimilarity and normalize. Therefore, the difference in dissimilarity between normal and abnormal cases increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
  • Embodiment 3. 17 is a configuration diagram of a learning device according to Embodiment 3.
  • FIG. The learning device 1 of FIG. 17 is used to detect an insulation abnormality of a circuit breaker.
  • the learning device 1 is used to detect insulation faults in circuit breakers using a partial discharge tester.
  • the learning device 1 includes a data acquisition unit 2, a time-frequency analysis unit 3, a feature difference enhancement range extraction unit 4, a statistic calculation unit 15, a model generation unit 5, a storage device 6, and a normalization parameter derivation unit. 13 and.
  • the learning device 1 according to the third embodiment is a device obtained by adding a statistic calculation unit 15 to the learning device 1 according to the second embodiment.
  • the feature difference enhancement range extraction unit 4 extracts a specific frequency band and a specific to extract signal strength data for a range of time periods.
  • the statistic calculation unit 15 calculates the minimum value, maximum value, median value, mode value, average value, Calculate statistics such as variance and standard deviation.
  • the model generation unit 5 generates a trained model from the statistics output from the statistics calculation unit 15 using unsupervised learning such as One Class SVM or kernel density estimation method.
  • FIG. 18 is a flow chart for explaining the learning process of the learning device 1 according to the third embodiment.
  • Steps S51 to S53 are the same as steps S31 to S33 in FIG.
  • Steps S55 to S57 are the same as steps S34 to S36 in FIG.
  • step S53 as in the first and second embodiments, the feature difference enhancement range extracting unit 4 extracts data from the data after the time-frequency analysis in a specific frequency band and at a specific time in which the feature difference between the normal state and the abnormal state increases. Extract signal strength data for a range of bands.
  • step S54 the statistic calculation unit 15 calculates the minimum value, maximum value, median value, maximum Calculate statistics such as frequency, mean, variance and standard deviation.
  • step S55 the model generation unit 5 generates a trained model from the statistics output from the statistics calculation unit 15 using unsupervised learning such as One Class SVM or kernel density estimation method.
  • FIG. 19 is a configuration diagram of an inference device according to Embodiment 3.
  • FIG. 19 is a configuration diagram of an inference device according to Embodiment 3.
  • the inference device 7 of the third embodiment is a device in which a statistic calculation unit 16 is added to the inference device 7 of the second embodiment.
  • feature difference enhancement range extraction section 10 extracts a specific frequency band and Extract signal strength data for a specific time range.
  • the statistic calculation unit 16 calculates the minimum value, maximum value, median value, mode value, average value, Calculate statistics such as variance and standard deviation.
  • the inference unit 11 uses the learned model stored in the storage device 6 to infer the degree of similarity between the statistic output from the statistic calculation unit 16 and the normal data.
  • FIG. 20 is a flowchart for explaining the inference processing of the inference device 7 according to the third embodiment.
  • Steps S61 to S63 are the same as steps S41 to S43 in FIG.
  • Steps S65 to S67 are the same as steps S44 to S46 in FIG.
  • step S64 the statistic calculation unit 16 calculates the minimum value, maximum value, median value, mode value, average value, variance, standard deviation, etc. of the data extracted by the feature difference emphasis range extraction unit 10. Calculate the statistic of
  • step S65 the inference unit 11 uses the learned model stored in the storage device 6 to infer the degree of similarity to normal data from the statistic output from the statistic calculation unit 16.
  • the learning device 1 uses the statistics of the signal strength data in the range of the specific frequency band and the specific time band where the feature difference between the normal state and the abnormal state is large. to generate
  • the inference device 7 uses a learned model from statistics of signal strength data in a range of a specific frequency band and a specific time period where the feature difference between normal and abnormal conditions is large, and compares the data with the data during normal conditions. Infer similarity. As a result, the difference in dissimilarity between the normal state and the abnormal state becomes large, and the number of data to be input to the model generation unit and the inference unit is reduced. As a result, anomalies can be accurately detected in a short time even from data acquired under poor conditions.
  • Embodiment 1 an output signal from a sensor that senses sound, vibration, pressure, temperature, magnetic flux, light, etc. is sampled by an A/D converter and quantized. Then you can process the data.
  • 1 learning device 2 data acquisition unit, 3 time-frequency analysis unit, 4 feature difference enhancement range extraction unit, 5 model generation unit, 6 storage device, 7 reasoning device, 8 data acquisition unit, 9 time-frequency analysis unit, 10 feature difference Emphasis range extraction unit, 11 reasoning unit, 12 determination device, 13 normalization parameter derivation unit, 14 dissimilarity derivation unit, 15 statistics calculation unit, 16 statistics calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

A learning device includes: a data acquisition unit that acquires time-series data of a normal time; a time frequency analysis unit that analyzes a chronical change of a frequency feature to the time-series data of the normal time acquired by the data acquisition unit; a feature difference emphasis range extraction unit that extracts, from the data that has been analyzed by the time frequency analysis unit, a signal intensity data in a range of a specified frequency band and a specified time period where a feature difference between the normal time and an abnormal time increases; and a model generation unit that uses the signal intensity data extracted by the feature difference emphasis range extraction unit in the range of the specified frequency band and the specified time period to generate a learned model for inferring similarity with the data of the normal time.

Description

学習装置、推論装置、学習方法および推論方法Learning device, reasoning device, learning method and reasoning method
 本開示は、学習装置、推論装置、学習方法および推論方法に関する。 The present disclosure relates to a learning device, an inference device, a learning method, and an inference method.
 特許文献1は、原動機の状態判断方法を開示する。当該方法によれば、元のデータの特徴を保持したままデータ量を削減して、原動機の状態を判断し得る。 Patent Document 1 discloses a method for judging the state of a prime mover. According to this method, the state of the prime mover can be determined by reducing the amount of data while retaining the characteristics of the original data.
特開2020-165330号公報JP 2020-165330 A
 しかしながら、特許文献1に記載の状態判断方法において、条件の悪い状態でデータが取得されることもある。この場合、正確に異常を検出できない。 However, in the state determination method described in Patent Document 1, data may be acquired under poor conditions. In this case, anomalies cannot be detected accurately.
 本開示は、上述の課題を解決するためになされた。本開示の目的は、条件の悪い状態で取得されたデータからでも正確に異常を検出できる学習装置、推論装置、学習方法および推論方法を提供することである。 The present disclosure was made to solve the above problems. An object of the present disclosure is to provide a learning device, an inference device, a learning method, and an inference method that can accurately detect anomalies even from data acquired under poor conditions.
 本開示に係る学習装置は、正常時の時系列データを取得するデータ取得部と、前記データ取得部により取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データを用いて、正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成部と、を備えた。 A learning device according to the present disclosure includes a data acquisition unit that acquires normal time-series data, and a time-frequency and an analysis unit, and feature difference enhancement for extracting signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large from the data analyzed by the time-frequency analysis unit. Using the range extracting unit and the signal intensity data in the range of the specific frequency band and the specific time band extracted by the feature difference emphasizing range extracting unit, the learned for inferring the similarity with the normal data and a model generator for generating a model.
 本開示に係る他の学習装置は、正常時の時系列データを取得するデータ取得部と、前記データ取得部により取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データから統計量を算出する統計量算出部と、前記統計量算出部により算出された統計量から正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成部と、前記モデル生成部により生成された学習済モデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する正規化パラメータ導出部と、を備えた。 Another learning device according to the present disclosure includes a data acquisition unit that acquires normal time-series data, and analyzes temporal changes in frequency characteristics for the normal time-series data acquired by the data acquisition unit. A feature of extracting signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large from the time-frequency analysis unit and the data analyzed by the time-frequency analysis unit. a difference emphasizing range extracting unit; a statistic calculating unit that calculates a statistic from signal strength data in a specific frequency band and a specific time band extracted by the feature difference emphasizing range extracting unit; a model generation unit that generates a trained model for inferring the degree of similarity with normal data from the statistics calculated by the model generation unit; a normalization parameter derivation unit for inputting all and deriving normalization parameters.
 本開示に係る推論装置は、被検査体の時系列データを取得するデータ取得部と、前記データ取得部により取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、正常時のデータとの類似度を推論するための学習済モデルを用いて、前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データと正常時のデータとの類似度を推論する推論部と、を備えた。 An inference device according to the present disclosure includes a data acquisition unit that acquires time-series data of an object under test, and analyzes temporal changes in frequency characteristics of the time-series data of the object under test acquired by the data acquisition unit. A feature of extracting signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large from the time-frequency analysis unit and the data analyzed by the time-frequency analysis unit. Using a difference-enhancement range extraction unit and a trained model for inferring the degree of similarity with normal data, the range of a specific frequency band and a specific time zone extracted by the feature difference-enhancement range extraction unit and an inference unit for inferring the degree of similarity between the signal strength data and the normal data.
 本開示に係る他の推論装置は、被検査体の時系列データを取得するデータ取得部と、前記データ取得部により取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データから統計量を算出する統計量算出部と、正常時のデータとの類似度を推論するための学習済モデルを用いて、前記統計量算出部により算出された統計量と正常時のデータとの類似度を推論する推論部と、前記推論部により推論された類似度に対して、記憶装置に記憶された正規化パラメータを用いて、非類似度に変換して正規化する非類似度導出部と、を備えた。 Another inference device according to the present disclosure includes a data acquisition unit that acquires time-series data of an object to be inspected; From the time-frequency analysis unit to be analyzed and the data analyzed by the time-frequency analysis unit, extract signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large. a statistic calculation unit for calculating a statistic from the signal strength data in a specific frequency band and a specific time range extracted by the feature difference emphasis range extraction unit; an inference unit for inferring the degree of similarity between the statistic calculated by the statistic calculation unit and normal data using a trained model for inferring the degree of similarity with the data; a dissimilarity deriving unit that converts the obtained similarity into a dissimilarity using the normalization parameter stored in the storage device and normalizes the similarity.
 本開示に係る学習方法は、学習装置を用いて、正常時の時系列データを取得するデータ取得ステップと、前記学習装置を用いて、前記データ取得ステップにより取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、前記学習装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、前記学習装置を用いて、前記特徴差強調範囲抽出ステップにより抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データを用いて、正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成ステップと、を備えた。 The learning method according to the present disclosure includes a data acquisition step of acquiring normal time-series data using a learning device, and a normal time-series data acquired by the data acquisition step using the learning device. On the other hand, a time-frequency analysis step of analyzing temporal changes in frequency characteristics, and using the learning device, from the data analyzed by the time-frequency analysis step, a feature difference between normal and abnormal times is specified. A feature difference emphasis range extraction step for extracting signal strength data in a frequency band and a specific time zone range, and a specific frequency band and specific frequency band extracted by the feature difference emphasis range extraction step using the learning device and a model generation step of generating a trained model for inferring similarity with normal data, using the signal intensity data within the time range.
 本開示に係る他の学習方法は、学習装置を用いて、正常時の時系列データを取得するデータ取得ステップと、前記学習装置を用いて、前記データ取得ステップにより取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、前記学習装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、前記学習装置を用いて、前記特徴差強調範囲抽出ステップで抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データの統計量を算出する統計量算出ステップと、前記学習装置を用いて、前記統計量算出ステップにより算出された統計量を用いて、正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成ステップと、前記学習装置を用いて、前記モデル生成ステップにより生成された学習済みモデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する正規化パラメータ導出ステップと、を備えた。 Another learning method according to the present disclosure includes a data acquisition step of acquiring normal time series data using a learning device, and a normal time series data acquired by the data acquisition step using the learning device. A time-frequency analysis step of analyzing temporal changes in frequency characteristics of data, and from the data analyzed by the time-frequency analysis step using the learning device, the feature difference between normal and abnormal is large. a feature difference emphasis range extraction step of extracting signal strength data in a specific frequency band and a specific time range, and a specific frequency band extracted in the feature difference emphasis range extraction step and A statistic calculation step of calculating a statistic of signal strength data in a range of a specific time period; a model generating step of generating a trained model for inferring the similarity; using the learning device, inputting part or all of learning data into the trained model generated by the model generating step; and a normalization parameter derivation step for deriving a normalization parameter.
 本開示に係る推論方法は、推論装置を用いて、被検査体の時系列データを取得するデータ取得ステップと、前記推論装置を用いて、前記データ取得ステップにより取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、前記推論装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、前記推論装置を用いて、正常時のデータとの類似度を推論するための学習済モデルを用いて、前記特徴差強調範囲抽出ステップにより抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データと正常時のデータとの類似度を推論する推論ステップと、を備えた。 An inference method according to the present disclosure includes a data acquisition step of acquiring time-series data of a subject using an inference device, and a time-series data of the subject acquired by the data acquisition step using the inference device. A time-frequency analysis step of analyzing temporal changes in frequency characteristics of the data, and the data analyzed by the time-frequency analysis step using the inference device, the feature difference between normal and abnormal is large. A feature difference enhancement range extraction step of extracting signal intensity data in a specific frequency band and a specific time range, and a trained model for inferring similarity to normal data using the inference device and an inference step of inferring the degree of similarity between the signal intensity data in the range of the specific frequency band and the specific time band extracted by the feature difference enhancement range extraction step and the normal data, using
 本開示に係る他の推論方法は、推論装置を用いて、被検査体の時系列データを取得するデータ取得ステップと、前記推論装置を用いて、前記データ取得ステップにより取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、前記推論装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、前記推論装置を用いて、前記特徴差強調範囲抽出ステップで抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データの統計量を算出する統計量算出ステップと、前記推論装置を用いて、正常時のデータとの類似度を推論するための学習済モデルを用いて、前記統計量算出ステップにより算出された統計量を用いて、正常時のデータとの類似度を推論する推論ステップと、前記推論装置を用いて、前記推論ステップにより推論された類似度に対して、記憶装置で記憶された正規化パラメータを用いて、非類似度に変換して正規化する非類似度導出ステップと、を備えた。 Another inference method according to the present disclosure includes a data acquisition step of acquiring time-series data of an object to be inspected using an inference device; A time-frequency analysis step of analyzing temporal changes in frequency characteristics of time-series data; and using the inference device, from the data analyzed by the time-frequency analysis step, a feature difference between normal and abnormal conditions. a feature difference emphasis range extracting step of extracting signal strength data in a specific frequency band and a specific time band range where the A statistic calculation step of calculating the statistic of the signal strength data in the range of the time period and the specific time period; , an inference step of inferring the degree of similarity with normal data using the statistics calculated in the statistic calculation step; and a dissimilarity derivation step of converting to dissimilarity and normalizing using the normalization parameter stored in the storage device.
 本開示によれば、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲のデータが用いられる。このため、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 According to the present disclosure, data within a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large is used. Therefore, anomalies can be accurately detected even from data acquired under poor conditions.
実施の形態1における学習装置の構成図である。1 is a configuration diagram of a learning device according to Embodiment 1; FIG. 実施の形態1における学習装置に取得される時系列データを示す図である。4 is a diagram showing time-series data acquired by the learning device according to Embodiment 1. FIG. 実施の形態1における学習装置によるウェーブレット変換に使用されるマザーウェーブレット関数を示す図である。4 is a diagram showing a mother wavelet function used for wavelet transform by the learning device according to Embodiment 1; FIG. 実施の形態1における学習装置によるウェーブレット変換に使用されるマザーウェーブレット関数を示す図である。4 is a diagram showing a mother wavelet function used for wavelet transform by the learning device according to Embodiment 1; FIG. 実施の形態1における学習装置が用いられるロープテスタの特徴差強調範囲の第1例である。4 is a first example of a feature difference emphasis range of a rope tester using the learning device according to Embodiment 1. FIG. 実施の形態1における学習装置が用いられるロープテスタの特徴差強調範囲の第2例である。FIG. 10 is a second example of a feature difference emphasis range of a rope tester using the learning device according to Embodiment 1; FIG. 実施の形態1における学習装置が用いられるロープテスタにおいてロープの断線があった場合の特徴差強調範囲の例である。It is an example of the feature difference emphasis range when there is a break in the rope in the rope tester using the learning device according to Embodiment 1. FIG. 実施の形態1における学習装置が用いられるロープテスタの特徴差強調範囲の第3例である。FIG. 10 is a third example of a feature difference emphasis range of a rope tester using the learning device according to Embodiment 1; FIG. 実施の形態1における学習装置の学習処理を説明するためのフローチャートである。4 is a flowchart for explaining learning processing of the learning device according to Embodiment 1; 実施の形態1における推論装置の構成図である。1 is a configuration diagram of an inference device according to Embodiment 1; FIG. 実施の形態1における推論装置の推論処理を説明するためのフローチャートである。4 is a flowchart for explaining inference processing of the inference device according to Embodiment 1; 実施の形態1における学習装置のハードウェア構成図である。2 is a hardware configuration diagram of a learning device according to Embodiment 1. FIG. 実施の形態2における学習装置の構成図である。FIG. 10 is a configuration diagram of a learning device according to Embodiment 2; 実施の形態2における学習装置の学習処理を説明するためのフローチャートである。10 is a flowchart for explaining learning processing of the learning device according to Embodiment 2; 実施の形態2における推論装置の構成図である。FIG. 11 is a configuration diagram of an inference device according to Embodiment 2; 実施の形態2における推論装置の推論処理を説明するためのフローチャートである。10 is a flowchart for explaining inference processing of the inference device according to Embodiment 2; 実施の形態3における学習装置の構成図である。FIG. 11 is a configuration diagram of a learning device according to Embodiment 3; 実施の形態3における学習装置の学習処理を説明するためのフローチャートである。14 is a flow chart for explaining learning processing of the learning device according to Embodiment 3. FIG. 実施の形態3における推論装置の構成図である。FIG. 11 is a configuration diagram of an inference device according to Embodiment 3; 実施の形態3における推論装置の推論処理を説明するためのフローチャートである。14 is a flowchart for explaining inference processing of an inference device according to Embodiment 3;
 実施の形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 An embodiment will be described according to the attached drawings. In addition, the same code|symbol is attached|subjected to the part which is the same or corresponds in each figure. Redundant description of the relevant part will be simplified or omitted as appropriate.
実施の形態1.
 図1は実施の形態1における学習装置の構成図である。
Embodiment 1.
FIG. 1 is a block diagram of a learning device according to Embodiment 1. FIG.
 図1の学習装置1は、設備、部材の異常の検出するために用いられる。例えば、学習装置1は、ワイヤーロープの断線を検出するための装置であるロープテスタを使用してロープの異常を検出するために用いられる。 The learning device 1 in FIG. 1 is used to detect abnormalities in equipment and members. For example, the learning device 1 is used to detect rope abnormalities using a rope tester, which is a device for detecting wire rope breakage.
 学習装置1は、データ取得部2と時間周波数解析部3と特徴差強調範囲抽出部4とモデル生成部5とを備える。 The learning device 1 includes a data acquisition unit 2, a time-frequency analysis unit 3, a feature difference emphasis range extraction unit 4, and a model generation unit 5.
 データ取得部2は、長手方向に送り出している断線のない正常なワイヤーロープを磁化した際にワイヤーロープの表面から漏れ出す磁束(漏洩磁束)がコイルを通過した際に発生する電圧信号の時系列データを取得する。 The data acquisition unit 2 captures the time series of the voltage signal generated when the magnetic flux (leakage magnetic flux) leaking from the surface of the wire rope (leakage magnetic flux) passes through the coil when magnetizing a normal wire rope that is sent out in the longitudinal direction without disconnection. Get data.
 時間周波数解析部3は、時系列データに対して周波数特性の時間的変化を解析する時間周波数解析を行う。例えば、時間周波数解析部3は、時間周波数解析として、短時間フーリエ変換を用いた解析を行う。例えば、時間周波数解析部3は、時間周波数解析として、Biorthogonal3.3等の一般的なマザーウェーブレット関数を使用するウェーブレット変換を用いた解析を行う。例えば、時間周波数解析部3は、ワイヤーロープ断線時の電圧波形と類似したマザーウェーブレット関数を使用するウェーブレット変換を用いた解析を行う。 The time-frequency analysis unit 3 performs time-frequency analysis for analyzing temporal changes in frequency characteristics for time-series data. For example, the time-frequency analysis unit 3 performs analysis using a short-time Fourier transform as the time-frequency analysis. For example, the time-frequency analysis unit 3 performs analysis using wavelet transform using a general mother wavelet function such as Biorthogonal 3.3 as the time-frequency analysis. For example, the time-frequency analysis unit 3 performs analysis using wavelet transform using a mother wavelet function similar to the voltage waveform at the time of wire rope disconnection.
 特徴差強調範囲抽出部4は、検査対象となる全ての時刻のデータにおける各時刻に対して時間周波数解析後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを順次抽出する。ロープテスタにおいては、周波数軸方向のデータ範囲を高周波数側に限定することで正常時と異常時の特徴差が大きくなる。さらに、注目時刻から少し離れた左右対称なデータ範囲に限定することで正常時と異常時の特徴差が大きくなる。 The feature difference enhancement range extracting unit 4 extracts a specific frequency band and a specific frequency band in which the feature difference between normal and abnormal is large from the data after the time-frequency analysis for each time in the data of all the times to be inspected. Sequentially extract signal strength data for a range of time periods. In the rope tester, by limiting the data range in the frequency axis direction to the high frequency side, the feature difference between the normal state and the abnormal state becomes large. Furthermore, by limiting the data range to a bilaterally symmetrical data range a little away from the time of interest, the feature difference between the normal state and the abnormal state becomes large.
 モデル生成部5は、特徴差強調範囲抽出部4により抽出された範囲の学習用データを用いて、正常時のデータを学習する。具体的には、モデル生成部5は、断線のない正常なワイヤーロープをロープテスタで測定したときの正常時のデータから正常時のデータとの類似度を推論するための学習済モデルを生成する。 The model generation unit 5 uses learning data in the range extracted by the feature difference emphasis range extraction unit 4 to learn normal data. Specifically, the model generation unit 5 generates a trained model for inferring the degree of similarity between normal data and normal data when a normal wire rope without disconnection is measured by a rope tester. .
 例えば、モデル生成部5は、教師なし学習の公知のアルゴリズムを用いる。具体的には、モデル生成部5は、結果(ラベル)を含まない学習用データから学習用データにある特徴を学習する。 For example, the model generator 5 uses a known algorithm for unsupervised learning. Specifically, the model generation unit 5 learns the features in the learning data from the learning data that does not contain the result (label).
 例えば、モデル生成部5は、教師なし学習であるOne Class Support Vector Machine(One class SVM)を用いる。例えば、モデル生成部5は、One Class SVMによるグループ分け手法に従って教師なし学習により正常時のデータを学習する。具体的には、モデル生成部5は、One class SVMにおいて、1クラスの分類問題に適用するアルゴリズムであり、1つのクラスを学習させ、識別境界を決定することで、外れ値を検出する。 For example, the model generation unit 5 uses One Class Supported Vector Machine (One class SVM), which is unsupervised learning. For example, the model generation unit 5 learns normal data by unsupervised learning according to the grouping method by One Class SVM. Specifically, the model generation unit 5 is an algorithm applied to a one-class classification problem in One class SVM, and detects outliers by learning one class and determining a discrimination boundary.
 より具体的には、モデル生成部5は、学習用データxiがクラスタ「1」、原点がクラスタ「-1」となるように、カーネルトリックを用いて高次元空間の特徴空間に写像する。その後、モデル生成部5は、原点と学習用データとの境界にあるサポートベクターから識別平面を決定する。 More specifically, the model generation unit 5 uses kernel tricks to map the learning data xi to cluster "1" and the origin to cluster "-1" in the feature space of the high-dimensional space. After that, the model generator 5 determines a discriminant plane from the support vectors on the boundary between the origin and the learning data.
 記憶装置6は、モデル生成部5から出力された学習済モデルを記憶する。 The storage device 6 stores the learned model output from the model generation unit 5.
 次に、図2を用いて、時系列データを説明する。図2は実施の形態1における学習装置に取得される時系列データを示す図である。 Next, the time-series data will be explained using FIG. 2 is a diagram showing time-series data acquired by the learning device according to Embodiment 1. FIG.
 例えば、時系列データは、ワイヤーロープからの漏洩磁束を1つのコイルで測定される。例えば、正常時の時系列データは、ワイヤーロープからの漏洩磁束を複数のコイルをワイヤーロープの長手方向に少し離して配置したうえで直列に接続された複数のコイルで測定される。 For example, the time-series data is obtained by measuring the leakage magnetic flux from the wire rope with one coil. For example, the time-series data in the normal state is measured by a plurality of coils connected in series after the leakage magnetic flux from the wire rope is arranged with some distance in the longitudinal direction of the wire rope.
 例えば、図2に示すように2つのコイルCo1,Co2が用いられる場合、ワイヤーロープWrの断線部BsがコイルCo1,Co2の付近を通過すると、2つのスパイクがある電圧波形Vwが得られる。その結果、ワイヤーロープWrの断線部Bsが強調され時系列データが得られる。 For example, when two coils Co1 and Co2 are used as shown in FIG. 2, a voltage waveform Vw with two spikes is obtained when the broken portion Bs of the wire rope Wr passes near the coils Co1 and Co2. As a result, the broken portion Bs of the wire rope Wr is emphasized to obtain time-series data.
 次に、図3と図4とを用いて、ウェーブレット変換を説明する。図3と図4とは実施の形態1における学習装置によるウェーブレット変換に使用されるマザーウェーブレット関数を示す図である。 Next, wavelet transform will be explained using FIGS. 3 and 4. FIG. 3 and 4 are diagrams showing mother wavelet functions used for wavelet transform by the learning device according to Embodiment 1. FIG.
 例えば、図3に示されるように、学習装置1において、時間周波数解析部3は、Biorthogonal3.3等の一般的なマザーウェーブレット関数を使用するウェーブレット変換を用いる。例えば、図4に示されるように、学習装置1において、時間周波数解析部3は、ワイヤーロープWrが断線した時の電圧波形Vwと類似したマザーウェーブレット関数を使用するウェーブレット変換を用いる。 For example, as shown in FIG. 3, in the learning device 1, the time-frequency analysis unit 3 uses wavelet transform using a general mother wavelet function such as Biorthogonal 3.3. For example, as shown in FIG. 4, in the learning device 1, the time-frequency analysis unit 3 uses wavelet transform using a mother wavelet function similar to the voltage waveform Vw when the wire rope Wr is disconnected.
 次に、図5から図7を用いて、特徴差強調範囲の第1例および第2例を説明する。図5は実施の形態1における学習装置が用いられるロープテスタの特徴差強調範囲の第1例である。図6は実施の形態1における学習装置が用いられるロープテスタの特徴差強調範囲の第2例である。図7は実施の形態1における学習装置が用いられるロープテスタにおいてロープの断線があった場合の特徴差強調範囲の例である。 Next, using FIGS. 5 to 7, a first example and a second example of the feature difference emphasis range will be described. FIG. 5 shows a first example of the feature difference enhancement range of the rope tester using the learning device according to the first embodiment. FIG. 6 shows a second example of the feature difference enhancement range of the rope tester using the learning device according to the first embodiment. FIG. 7 shows an example of the feature difference emphasis range when there is a break in the rope in the rope tester using the learning device according to the first embodiment.
 図5または図6に示されるように、学習装置1において、特徴差強調範囲抽出部4は、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻Tfを中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲Rp1,Rp2,Rm1,Rm2の信号強度データを特徴差強調範囲として抽出する。図7に示されるように、当該範囲は、ワイヤーロープが断線している場合において信号の強度が周辺よりも高くなる範囲Rp2,Rm1と低くなる範囲Rp1,Rm2に該当する。 As shown in FIG. 5 or FIG. 6, in the learning device 1, the feature difference enhancement range extracting unit 4 extracts a specific frequency band in which the feature difference between the normal state and the abnormal state becomes large and in the positive direction around the time of interest Tf. Signal strength data of specific time ranges Rp1, Rp2, Rm1, Rm2 symmetrical in the negative direction are extracted as feature difference emphasis ranges. As shown in FIG. 7, this range corresponds to ranges Rp2 and Rm1 where the signal strength is higher than the surrounding area and ranges Rp1 and Rm2 where the signal strength is lower than the surrounding area when the wire rope is disconnected.
 なお、特徴差強調範囲抽出部4において、当該範囲Rp1,Rp2,Rm1,Rm2の内部における数値を用いて加工してもよい。例えば、特徴差強調範囲抽出部4において、図5または図6で示された範囲Rp1,Rp2,Rm1,Rm2の内部の注目時刻Tfに対して左右対称なデータ同士の差分を取ってもよい。例えば、当該範囲Rp1,Rp2,Rm1,Rm2の内部の全データの値の差分を取ってもよい。例えば、当該範囲Rp1,Rp2,Rm1,Rm2の内部において一定間隔おきに値の差分を取ってもよい。例えば、注目時刻Tfに対して左右対称なデータの範囲Rp1,Rp2,Rm1,Rm2それぞれのデータの平均値の差分を取ってもよい。 Note that the feature difference emphasis range extraction unit 4 may process using the numerical values inside the ranges Rp1, Rp2, Rm1, and Rm2. For example, the feature difference emphasis range extracting unit 4 may take the difference between data symmetrical with respect to the time of interest Tf within the ranges Rp1, Rp2, Rm1 and Rm2 shown in FIG. 5 or 6 . For example, the difference between all data values within the ranges Rp1, Rp2, Rm1, and Rm2 may be taken. For example, within the ranges Rp1, Rp2, Rm1, and Rm2, differences in values may be obtained at regular intervals. For example, the difference between the average values of the data ranges Rp1, Rp2, Rm1, and Rm2 of data symmetrical with respect to the time of interest Tf may be taken.
 次に、図8を用いて、特徴差強調範囲の第3例を説明する。図8は実施の形態1における学習装置が用いられるロープテスタの特徴差強調範囲の第3例である。 Next, using FIG. 8, a third example of the feature difference emphasis range will be described. FIG. 8 shows a third example of the feature difference enhancement range of the rope tester using the learning device according to the first embodiment.
 図8に示されるように、時間周波数解析後のデータには、いくつもの山が重なった模様Ptのような信号の強弱が表れる。このため、特徴差強調範囲抽出部4において、注目時刻Tfに最も近い2つの山が重なり合う部分Opから模様Ptに沿った前後の特定の周波数帯かつ特定の時間帯の範囲Rf,Rbの信号強度データの平均値との差分を取ってもよい。 As shown in FIG. 8, the data after the time-frequency analysis shows the strength and weakness of the signal like a pattern Pt in which a number of mountains overlap. For this reason, in the feature difference emphasis range extracting unit 4, the signal strengths of the ranges Rf and Rb of a specific frequency band and a specific time band before and after the pattern Pt from the overlapping portion Op of the two peaks closest to the target time Tf are calculated. You may take the difference with the average value of data.
 なお、ワイヤーロープの正常部のデータと異常部のデータを比較して、特徴差が大きく表れている部分を探索することで、正常時と異常時の特徴差が大きくなる範囲を抽出してもよい。例えば、ワイヤーロープの正常部のデータと断線部のデータの差分が大きくなる範囲を抽出してもよい。例えば、ワイヤーロープの正常部のデータに対する断線部のデータとの相関係数を求め、相関性が低い範囲を抽出してもよい。 In addition, by comparing the data of the normal part of the wire rope and the data of the abnormal part and searching for the part where the feature difference is large, it is possible to extract the range where the feature difference between normal and abnormal is large. good. For example, a range in which the difference between the data of the normal part of the wire rope and the data of the broken part of the wire rope is large may be extracted. For example, the correlation coefficient between the data of the normal part of the wire rope and the data of the disconnected part may be obtained, and the range with low correlation may be extracted.
 次に、図9を用いて、学習装置1の学習処理を説明する。図9は実施の形態1における学習装置の学習処理を説明するためのフローチャートである。 Next, the learning process of the learning device 1 will be explained using FIG. FIG. 9 is a flowchart for explaining learning processing of the learning device according to Embodiment 1. FIG.
 ステップS11において、データ取得部2は、断線のない正常なワイヤーロープをロープテスタで測定したときの正常時の時系列データを取得する。 In step S11, the data acquisition unit 2 acquires time-series data of the normal state when a normal wire rope without disconnection is measured with a rope tester.
 その後、ステップS12において、時間周波数解析部3は、正常時の時系列データに対して時間周波数解析を行う。 After that, in step S12, the time-frequency analysis unit 3 performs time-frequency analysis on the normal time-series data.
 その後、ステップS13において、特徴差強調範囲抽出部4は、時間周波数解析後のデータから正常時と異常時との特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する。 After that, in step S13, the feature difference enhancement range extracting unit 4 extracts signal strength data in a range of a specific frequency band and a specific time zone in which the feature difference between normal and abnormal conditions is large from the data after the time-frequency analysis. Extract.
 その後、ステップS14において、モデル生成部5は、特徴差強調範囲抽出部4により抽出された範囲のデータを用いて学習済モデルを生成する。 After that, in step S14, the model generation unit 5 uses the range data extracted by the feature difference emphasis range extraction unit 4 to generate a learned model.
 ステップS15において、モデル生成部5は、学習済モデルを記憶装置6に記憶させる。 In step S15, the model generation unit 5 stores the learned model in the storage device 6.
 次に、図10を用いて、推論装置7を説明する。図10は実施の形態1における推論装置の構成図である。 Next, the inference device 7 will be explained using FIG. 10 is a configuration diagram of an inference apparatus according to Embodiment 1. FIG.
 推論装置7は、データ取得部8と時間周波数解析部9と特徴差強調範囲抽出部10と推論部11とを備える。 The inference device 7 includes a data acquisition unit 8, a time-frequency analysis unit 9, a feature difference emphasis range extraction unit 10, and an inference unit 11.
 データ取得部8は、長手方向に送り出している被検査体であるワイヤーロープを磁化した際にワイヤーロープの表面から漏れ出す磁束(漏洩磁束)がコイルを通過した際に発生する電圧信号の時系列データを取得する。ただし、データ取得の方式は学習時と一致させる必要がある。 The data acquisition unit 8 acquires a time series of voltage signals generated when the magnetic flux (leakage magnetic flux) leaking from the surface of the wire rope (leakage magnetic flux) passes through the coil when the wire rope, which is the object to be inspected, is magnetized and sent out in the longitudinal direction. Get data. However, the method of data acquisition must be the same as during learning.
 時間周波数解析部9は、時系列データに対して周波数特性の時間的変化を解析する時間周波数解析を行う。ただし、時間周波数解析の方式は学習時と一致させる必要がある。 The time-frequency analysis unit 9 performs time-frequency analysis for analyzing temporal changes in frequency characteristics for time-series data. However, the method of time-frequency analysis must be the same as during learning.
 特徴差強調範囲抽出部10は、時間周波数解析後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する。ただし、抽出する範囲は学習時と一致させる必要がある。 The feature difference enhancement range extracting unit 10 extracts signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large from the data after the time-frequency analysis. However, it is necessary to match the range to be extracted with that at the time of learning.
 推論部11は、記憶装置6に記憶された学習済モデルを用いて正常時のデータとの類似度を推論する。具体的には、推論部11は、前記特徴差強調範囲抽出部により抽出された範囲のデータを学習済モデルに入力することで、被検査体のデータが正常時のデータに属するか否かを推論する。推論部11は、被検査体のデータが正常時のデータに属するか否の推論結果を正常時のデータとの類似度として判定装置12に出力する。 The inference unit 11 uses the learned model stored in the storage device 6 to infer the degree of similarity with normal data. Specifically, the inference unit 11 inputs the data of the range extracted by the feature difference emphasis range extraction unit to the learned model, thereby determining whether the data of the object to be inspected belongs to the normal data. infer. The inference unit 11 outputs an inference result as to whether or not the data of the object to be inspected belongs to the normal data to the determination device 12 as a degree of similarity with the normal data.
 なお、推論部11において、他のロープテスタ等の外部から取得した学習済モデルに基づいた正常時のデータとの類似度を出力してもよい。 It should be noted that the inference unit 11 may output the degree of similarity with normal data based on a learned model acquired from the outside such as another rope tester.
 判定装置12は、推論部11からの類似度をスコアとして正常または異常を判定する。 The determination device 12 determines normality or abnormality using the degree of similarity from the inference unit 11 as a score.
 次に、図11を用いて、推論装置7の推論処理を説明する。図11は実施の形態1における推論装置の推論処理を説明するためのフローチャートである。 Next, the inference processing of the inference device 7 will be explained using FIG. 11 is a flowchart for explaining the inference processing of the inference device according to Embodiment 1. FIG.
 ステップS21において、データ取得部8は、被検査体の時系列データを取得する。 In step S21, the data acquisition unit 8 acquires time-series data of the subject.
 その後、ステップS22において、時間周波数解析部9は、被検査体測定時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析を行う。 After that, in step S22, the time-frequency analysis unit 9 performs time-frequency analysis for analyzing temporal changes in the frequency characteristics of the time-series data during measurement of the object to be inspected.
 その後、ステップS23において、特徴差強調範囲抽出部10は、時間周波数解析後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する。 After that, in step S23, the feature difference enhancement range extracting unit 10 extracts signal strength data in a range of a specific frequency band and a specific time range in which the feature difference between normal and abnormal conditions is large, from the data after the time-frequency analysis. Extract.
 その後、ステップS24において、推論部11は記憶装置6に記憶された学習済モデルに特徴差強調範囲抽出部10から出力される被検査体のデータを入力し、正常時のデータとの類似度を推論する。 Thereafter, in step S24, the inference unit 11 inputs the data of the object to be inspected output from the feature difference emphasis range extraction unit 10 to the learned model stored in the storage device 6, and calculates the degree of similarity with the normal data. infer.
 その後、ステップS25において、推論部11は、学習済モデルにより得られた正常時のデータとの類似度を判定装置12に出力する。 After that, in step S25, the inference unit 11 outputs to the determination device 12 the degree of similarity with the normal data obtained from the learned model.
 その後、判定装置12は、類似度を用いて、被検査体となるワイヤーロープにおける断線箇所を特定する。ワイヤーロープにおける断線箇所が特定された場合、判定装置12は、表示およびブザー音によって作業者に報知する。この際、判定装置12において、ワイヤーロープの送り出し量と正常時のデータとの類似度とを対応付けた情報を記憶してもよい。当該情報に基づいて、ワイヤーロープの断線箇所を検出してもよい。 After that, the determination device 12 uses the degree of similarity to identify the disconnection point in the wire rope to be inspected. When the disconnection point in the wire rope is identified, the determination device 12 notifies the operator by display and buzzer sound. At this time, the determination device 12 may store information that associates the wire rope feeding amount with the degree of similarity to the normal data. Based on the information, a disconnection point of the wire rope may be detected.
 以上で説明された実施の形態1によれば、学習装置1は、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを用いて、正常時のデータとの類似度を推論するための学習済モデルを生成する。このため、正常時と異常時との特徴差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 According to the first embodiment described above, the learning device 1 uses the signal strength data in the range of the specific frequency band and the specific time band in which the feature difference between normal and abnormal conditions is large, Generate a trained model for inferring the similarity with the data of For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、学習装置1は、周波数特性の時間的変化を解析する方法として、ウェーブレット変換を用いる。このため、正常時と異常時との特徴差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, the learning device 1 uses wavelet transform as a method of analyzing temporal changes in frequency characteristics. For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、学習装置1は、ウェーブレット変換において、異常時の波形と類似した波形をマザーウェーブレットとして用いる。このため、正常時と異常時との特徴差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 Also, in the wavelet transform, the learning device 1 uses a waveform similar to the waveform at the time of abnormality as a mother wavelet. For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、学習装置1は、正常部のデータに対する異常部のデータとの相関性が低い特定の周波数帯かつ特定の時間帯の範囲の信号強度データを特徴差強調範囲として抽出する。このため、正常時と異常時との特徴差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, the learning device 1 extracts signal intensity data in a range of a specific frequency band and a specific time band, which have a low correlation with the data of the abnormal part with respect to the data of the normal part, as the feature difference emphasis range. For this reason, the characteristic difference between normal and abnormal conditions becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、学習装置1は、One class SVMを用いて学習済モデルを生成する。このため、正常な特徴の分布が非線形であっても、適切に正常時との類似度を得ることができる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 Also, the learning device 1 generates a trained model using the One class SVM. Therefore, even if the distribution of normal features is non-linear, it is possible to appropriately obtain the degree of similarity with the normal time. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 なお、学習装置1において、教師なし学習を実現する場合、クラスタリング可能な他の公知の方法を適用してもよい。例えば、カーネル密度推定法、MT法等を適用してもよい。正常な特徴の分布に応じて、適切な方法を適用することで、適切に正常時との類似度または非類似度を得ることができる。 It should be noted that when unsupervised learning is realized in the learning device 1, other known methods capable of clustering may be applied. For example, a kernel density estimation method, an MT method, or the like may be applied. By applying an appropriate method according to the distribution of normal features, the degree of similarity or dissimilarity with the normal state can be obtained appropriately.
 また、推論装置7は、正常時のデータとの類似度を推論するための学習済モデルを用いて、正常時と異常時の特徴差が大きくなる範囲のデータと正常時のデータとの類似度を推論する。このため、正常時と異常時との類似度の差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, the inference device 7 uses a trained model for inferring the degree of similarity with the data in the normal state, and the degree of similarity between the data in the range where the feature difference between the normal state and the abnormal state becomes large and the data in the normal state. to infer For this reason, the difference in similarity between the normal state and the abnormal state increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、推論装置7は、記憶装置6で記憶された正規化パラメータを用いて、非類似度に変換して正規化する。この正規化により、後段処理において統一的に処理できる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, the inference device 7 uses the normalization parameters stored in the storage device 6 to convert into dissimilarity and normalize. This normalization enables uniform processing in the post-processing. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、推論装置7は、周波数特性の時間的変化を解析する方法として、ウェーブレット変換を用いる。このため、特徴に関する情報量が多くなるうえ、正常時と異常時との特徴差が部分的に大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, the inference device 7 uses wavelet transform as a method of analyzing temporal changes in frequency characteristics. As a result, the amount of information about the features increases, and the feature differences between the normal state and the abnormal state partially increase. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、推論装置7は、ウェーブレット変換において、Biorthogonal3.3等の一般的なマザーウェーブレット関数を用いてもよいし、異常時の波形と類似した波形をマザーウェーブレット関数として用いてもよい。このため、正常時と異常時との特徴差が部分的に大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In wavelet transform, the inference device 7 may use a general mother wavelet function such as Biorthogonal 3.3, or may use a waveform similar to the waveform at the time of abnormality as the mother wavelet function. For this reason, the feature difference between the normal state and the abnormal state partially increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、推論装置7は、One class SVMを用いた学習済モデルを用いて正常時のデータとの類似度を推論する。このため、正常時と異常時との類似度の差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, the inference device 7 infers the degree of similarity with normal data using a trained model using the One class SVM. For this reason, the difference in similarity between the normal state and the abnormal state increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 なお、推論装置7において、カーネル密度推定法、MT法等による学習済モデルを用いて正常時のデータとの類似度を推論してもよい。この場合も、正常時と異常時との類似度の差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, in the inference device 7, the degree of similarity to the normal data may be inferred using a trained model by the kernel density estimation method, the MT method, or the like. Also in this case, the difference in the similarity between the normal state and the abnormal state becomes large. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
 また、学習アルゴリズムとして、強化学習、教師あり学習、または半教師あり学習等のアルゴリズムを適用してもよい。 Also, as a learning algorithm, an algorithm such as reinforcement learning, supervised learning, or semi-supervised learning may be applied.
 また、学習アルゴリズムとしては、特徴量そのものの抽出を学習する深層学習(Deep Learning)のアルゴリズムを適用してもよい。 Also, as a learning algorithm, a deep learning algorithm that learns to extract the feature quantity itself may be applied.
 また、学習装置1と推論装置7とは、ロープテスタとは別個でネットワークを介してロープテスタに接続されてもよい。学習装置1と推論装置7とは、ロープテスタに内蔵されていてもよい。学習装置1と推論装置7とは、クラウドサーバ上に存在してもよい。 Also, the learning device 1 and the reasoning device 7 may be connected to the rope tester via a network separately from the rope tester. The learning device 1 and the reasoning device 7 may be built in the rope tester. The learning device 1 and the reasoning device 7 may exist on a cloud server.
 また、モデル生成部5は、複数のロープテスタに対して作成される学習用データに従って、正常時のデータを学習してもよい。モデル生成部5は、同一のエリアで使用される複数のロープテスタから学習用データを取得してもよい。モデル生成部5は、異なるエリアで独立して動作する複数のロープテスタから収集される学習用データを取得してもよい。 In addition, the model generation unit 5 may learn normal data according to learning data created for a plurality of rope testers. The model generator 5 may acquire learning data from a plurality of rope testers used in the same area. The model generator 5 may acquire learning data collected from a plurality of rope testers operating independently in different areas.
 また、学習用データを収集するロープテスタを途中で対象に追加したり、対象から除去したりしてもよい。 Also, a rope tester that collects learning data may be added or removed from the target on the way.
 ロープテスタに関して正常時のデータを学習した学習装置1を、別のロープテスタに適用し、当該別のロープテスタに関して正常時のデータを再学習して更新してもよい。 The learning device 1 that has learned the normal data for the rope tester may be applied to another rope tester, and the normal data for the other rope tester may be re-learned and updated.
 次に、図12を用いて、学習装置1の例を説明する。図12は実施の形態1における学習装置のハードウェア構成図である。 Next, an example of the learning device 1 will be described using FIG. FIG. 12 is a hardware configuration diagram of the learning device according to the first embodiment.
 学習装置1の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。 Each function of the learning device 1 can be realized by a processing circuit. For example, the processing circuitry comprises at least one processor 100a and at least one memory 100b. For example, the processing circuitry comprises at least one piece of dedicated hardware 200 .
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、学習装置1の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、学習装置1の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。 When the processing circuit includes at least one processor 100a and at least one memory 100b, each function of the learning device 1 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a implements each function of learning device 1 by reading and executing a program stored in at least one memory 100b. The at least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP. For example, the at least one memory 100b is a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, or the like.
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、学習装置1の各機能は、それぞれ処理回路で実現される。例えば、学習装置1の各機能は、まとめて処理回路で実現される。 Where the processing circuitry comprises at least one piece of dedicated hardware 200, the processing circuitry may be implemented, for example, in single circuits, multiple circuits, programmed processors, parallel programmed processors, ASICs, FPGAs, or combinations thereof. be. For example, each function of the learning device 1 is implemented by a processing circuit. For example, each function of the learning device 1 is collectively realized by a processing circuit.
 学習装置1の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、モデル生成部5の機能については専用のハードウェア200としての処理回路で実現し、モデル生成部5の機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。 A part of each function of the learning device 1 may be realized by dedicated hardware 200, and the other part may be realized by software or firmware. For example, the function of the model generation unit 5 is implemented by a processing circuit as dedicated hardware 200, and the functions other than the function of the model generation unit 5 are implemented by at least one processor 100a and a program stored in at least one memory 100b. may be implemented by reading and executing
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで学習装置1の各機能を実現する。 Thus, the processing circuit implements each function of the learning device 1 with hardware 200, software, firmware, or a combination thereof.
 図示されないが、推論装置7の各機能は、学習装置1の各機能を実現する処理回路と同等の処理回路により実現され得る。 Although not shown, each function of the inference device 7 can be implemented by a processing circuit equivalent to the processing circuit that implements each function of the learning device 1.
実施の形態2.
 図13は実施の形態2における学習装置の構成図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 2.
FIG. 13 is a configuration diagram of a learning device according to the second embodiment. The same reference numerals are given to the same or corresponding parts as those of the first embodiment. Description of this part is omitted.
 実施の形態2の学習装置1は、実施の形態1の学習装置1に対して正規化パラメータ導出部13が付加された装置である。 The learning device 1 of the second embodiment is a device in which a normalization parameter derivation unit 13 is added to the learning device 1 of the first embodiment.
 正規化パラメータ導出部13は、モデル生成部5により生成された学習済モデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する。 The normalization parameter derivation unit 13 inputs part or all of the learning data to the trained model generated by the model generation unit 5, and derives normalization parameters.
 例えば、正規化パラメータは、One class SVMの分類器を用いて導出されたスコアの最大値である。 For example, the normalization parameter is the maximum score derived using the One class SVM classifier.
 記憶装置6は、正規化パラメータ導出部13から出力された正規化パラメータを記憶する。 The storage device 6 stores the normalization parameters output from the normalization parameter derivation unit 13 .
 次に、図14を用いて、学習装置1の学習処理を説明する。図14は実施の形態2における学習装置の学習処理を説明するためのフローチャートである。 Next, the learning process of the learning device 1 will be described using FIG. FIG. 14 is a flow chart for explaining learning processing of the learning device according to the second embodiment.
 ステップS31からステップS34は、図9のステップS11からステップS14と同じである。 Steps S31 to S34 are the same as steps S11 to S14 in FIG.
 ステップS34の後、ステップS35において、正規化パラメータ導出部13は、モデル生成部5により生成された学習済モデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する。 After step S34, in step S35, the normalization parameter derivation unit 13 inputs part or all of the learning data to the trained model generated by the model generation unit 5, and derives normalization parameters.
 その後、ステップS36において、モデル生成部5は、学習済モデルを記憶装置6に記憶させる。正規化パラメータ導出部13は、正規化パラメータを記憶装置6に記憶させる。この際、学習済モデルと正規化パラメータとは対応付けて記憶される。 After that, in step S36, the model generation unit 5 stores the learned model in the storage device 6. The normalization parameter derivation unit 13 causes the storage device 6 to store the normalization parameter. At this time, the trained model and the normalized parameter are stored in association with each other.
 次に、図15を用いて、推論装置7を説明する。図15は実施の形態2における推論装置の構成図である。 Next, the inference device 7 will be explained using FIG. FIG. 15 is a configuration diagram of an inference device according to Embodiment 2. FIG.
 実施の形態2の推論装置7は、実施の形態1の推論装置7に対して非類似度導出部14が付加された装置である。 The inference device 7 of the second embodiment is a device in which a dissimilarity derivation unit 14 is added to the inference device 7 of the first embodiment.
 非類似度導出部14は、推論部11で導出した正常時のデータとの類似度に対して、記憶装置6に記憶された正規化パラメータを用いて、非類似度に変換して正規化する。非類似度導出部14は、正規化された非類似度を判定装置12に出力する。 The dissimilarity deriving unit 14 converts the similarity between the normal data derived by the inference unit 11 into a dissimilarity using the normalization parameter stored in the storage device 6 and normalizes it. . The dissimilarity derivation unit 14 outputs the normalized dissimilarity to the determination device 12 .
 判定装置12は、非類似度導出部14からの正規化された非類似度をスコアとして正常または異常を判定する。 The determination device 12 determines normality or abnormality using the normalized dissimilarity from the dissimilarity derivation unit 14 as a score.
 次に、図16を用いて、推論装置7の推論処理を説明する。図16は実施の形態2における推論装置の推論処理を説明するためのフローチャートである。 Next, the inference processing of the inference device 7 will be explained using FIG. 16 is a flowchart for explaining the inference processing of the inference device according to Embodiment 2. FIG.
 ステップS41からステップS44は、図11のステップS21からステップS24と同じである。 Steps S41 to S44 are the same as steps S21 to S24 in FIG.
 ステップS44の後、ステップS45において、非類似度導出部14は、推論部11で導出した正常時のデータとの類似度に対して、記憶装置6に記憶された正規化パラメータを用いて、非類似度に変換して正規化する。 After step S44, in step S45, the non-similarity derivation unit 14 uses the normalization parameter stored in the storage device 6 to calculate the similarity between the normal data derived by the inference unit 11 and the non-similarity derivation unit 14. Convert to similarity and normalize.
 その後、ステップS46において、非類似度導出部14は、正規化された非類似度を判定装置12に出力する。 After that, in step S46, the dissimilarity derivation unit 14 outputs the normalized dissimilarity to the determination device 12.
 以上で説明した実施の形態2によれば、学習装置1は、学習済モデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する。 According to the second embodiment described above, the learning device 1 inputs part or all of the learning data to the trained model and derives the normalization parameter.
 また、推論装置7は、記憶装置6に記憶された正規化パラメータを用いて、非類似度に変換して正規化する。このため、正常時と異常時との非類似度の差が大きくなる。その結果、条件の悪い状態で取得されたデータからでも正確に異常を検出できる。 In addition, the inference device 7 uses the normalization parameters stored in the storage device 6 to convert into dissimilarity and normalize. Therefore, the difference in dissimilarity between normal and abnormal cases increases. As a result, anomalies can be accurately detected even from data acquired under poor conditions.
実施の形態3.
 図17は、実施の形態3における学習装置の構成図である。図17の学習装置1は、遮断器の絶縁異常を検出するために用いられる。例えば、学習装置1は、部分放電試験機を使用して遮断器の絶縁異常を検出するために用いられる。
Embodiment 3.
17 is a configuration diagram of a learning device according to Embodiment 3. FIG. The learning device 1 of FIG. 17 is used to detect an insulation abnormality of a circuit breaker. For example, the learning device 1 is used to detect insulation faults in circuit breakers using a partial discharge tester.
 学習装置1は、データ取得部2と、時間周波数解析部3と、特徴差強調範囲抽出部4と、統計量算出部15と、モデル生成部5と、記憶装置6と、正規化パラメータ導出部13と、を備える。実施の形態3の学習装置1は、実施の形態2の学習装置1に対して統計量算出部15が付加された装置である。本実施形態においても、実施の形態1および2と同様に、特徴差強調範囲抽出部4は、時間周波数解析後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する。 The learning device 1 includes a data acquisition unit 2, a time-frequency analysis unit 3, a feature difference enhancement range extraction unit 4, a statistic calculation unit 15, a model generation unit 5, a storage device 6, and a normalization parameter derivation unit. 13 and. The learning device 1 according to the third embodiment is a device obtained by adding a statistic calculation unit 15 to the learning device 1 according to the second embodiment. In this embodiment, as in Embodiments 1 and 2, the feature difference enhancement range extraction unit 4 extracts a specific frequency band and a specific to extract signal strength data for a range of time periods.
 統計量算出部15は、特徴差強調範囲抽出部4で抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データの最小値、最大値、中央値、最頻値、平均値、分散および標準偏差などの統計量を算出する。 The statistic calculation unit 15 calculates the minimum value, maximum value, median value, mode value, average value, Calculate statistics such as variance and standard deviation.
 モデル生成部5は、統計量算出部15から出力された統計量から、One Class SVMやカーネル密度推定法などの教師なし学習を用いて、学習済モデルを生成する。 The model generation unit 5 generates a trained model from the statistics output from the statistics calculation unit 15 using unsupervised learning such as One Class SVM or kernel density estimation method.
 次に、図18を用いて、学習装置1が学習処理を説明する。図18は、実施の形態3における学習装置1の学習処理を説明するためのフローチャートである。 Next, the learning process of the learning device 1 will be explained using FIG. FIG. 18 is a flow chart for explaining the learning process of the learning device 1 according to the third embodiment.
 ステップS51からステップS53は、図14のステップS31からステップS33と同じである。また、ステップS55からステップS57は、図14のステップS34からステップS36と同じである。 Steps S51 to S53 are the same as steps S31 to S33 in FIG. Steps S55 to S57 are the same as steps S34 to S36 in FIG.
 ステップS53において、特徴差強調範囲抽出部4は、実施の形態1および2と同様に、時間周波数解析後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する。その後、ステップS54において、統計量算出部15は、特徴差強調範囲抽出部4で抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データの最小値、最大値、中央値、最頻値、平均値、分散および標準偏差などの統計量を算出する。 In step S53, as in the first and second embodiments, the feature difference enhancement range extracting unit 4 extracts data from the data after the time-frequency analysis in a specific frequency band and at a specific time in which the feature difference between the normal state and the abnormal state increases. Extract signal strength data for a range of bands. After that, in step S54, the statistic calculation unit 15 calculates the minimum value, maximum value, median value, maximum Calculate statistics such as frequency, mean, variance and standard deviation.
 その後、ステップS55において、モデル生成部5は、統計量算出部15から出力された統計量から、One Class SVMやカーネル密度推定法などの教師なし学習を用いて、学習済モデルを生成する。 After that, in step S55, the model generation unit 5 generates a trained model from the statistics output from the statistics calculation unit 15 using unsupervised learning such as One Class SVM or kernel density estimation method.
 次に、図19を用いて、推論装置7を説明する。図19は実施の形態3における推論装置の構成図である。 Next, the inference device 7 will be explained using FIG. FIG. 19 is a configuration diagram of an inference device according to Embodiment 3. FIG.
 実施の形態3の推論装置7は、実施の形態2の推論装置7に対して統計量算出部16が付加された装置である。本実施の形態においても、実施の形態1および2と同様に、特徴差強調範囲抽出部10は、時間周波数解析後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する。 The inference device 7 of the third embodiment is a device in which a statistic calculation unit 16 is added to the inference device 7 of the second embodiment. In the present embodiment, as in Embodiments 1 and 2, feature difference enhancement range extraction section 10 extracts a specific frequency band and Extract signal strength data for a specific time range.
 統計量算出部16は、特徴差強調範囲抽出部10で抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データの最小値、最大値、中央値、最頻値、平均値、分散および標準偏差などの統計量を算出する。推論部11は、統計量算出部16から出力された統計量から、記憶装置6に記憶された学習済モデルを用いて、正常時のデータとの類似度を推論する。 The statistic calculation unit 16 calculates the minimum value, maximum value, median value, mode value, average value, Calculate statistics such as variance and standard deviation. The inference unit 11 uses the learned model stored in the storage device 6 to infer the degree of similarity between the statistic output from the statistic calculation unit 16 and the normal data.
 次に、図20を用いて、推論装置7の推論処理を説明する。図20は、実施の形態3における推論装置7の推論処理を説明するためのフローチャートである。 Next, the inference processing of the inference device 7 will be explained using FIG. FIG. 20 is a flowchart for explaining the inference processing of the inference device 7 according to the third embodiment.
 ステップS61からステップS63は、図16のステップS41からステップS43と同じである。また、ステップS65からステップS67は、図16のステップS44からステップS46と同じである。 Steps S61 to S63 are the same as steps S41 to S43 in FIG. Steps S65 to S67 are the same as steps S44 to S46 in FIG.
 ステップS63の後、ステップS64において、統計量算出部16は、特徴差強調範囲抽出部10で抽出されたデータの最小値、最大値、中央値、最頻値、平均値、分散および標準偏差などの統計量を算出する。 After step S63, in step S64, the statistic calculation unit 16 calculates the minimum value, maximum value, median value, mode value, average value, variance, standard deviation, etc. of the data extracted by the feature difference emphasis range extraction unit 10. Calculate the statistic of
 その後、ステップS65において、推論部11は、統計量算出部16から出力された統計量から、記憶装置6に記憶された学習済モデルを用いて、正常時のデータとの類似度を推論する。 After that, in step S65, the inference unit 11 uses the learned model stored in the storage device 6 to infer the degree of similarity to normal data from the statistic output from the statistic calculation unit 16.
 以上で説明した実施の形態3によれば、学習装置1は、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データの統計量から学習済モデルを生成する。 According to the third embodiment described above, the learning device 1 uses the statistics of the signal strength data in the range of the specific frequency band and the specific time band where the feature difference between the normal state and the abnormal state is large. to generate
 また、推論装置7は、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データの統計量から学習済モデルを用いて、正常時のデータとの類似度を推論する。このため、正常時と異常時との非類似度の差が大きくなるうえ、モデル生成部と推論部に入力するデータ数が低減する。その結果、条件の悪い状態で取得されたデータからでも短時間で正確に異常を検出できる。 In addition, the inference device 7 uses a learned model from statistics of signal strength data in a range of a specific frequency band and a specific time period where the feature difference between normal and abnormal conditions is large, and compares the data with the data during normal conditions. Infer similarity. As a result, the difference in dissimilarity between the normal state and the abnormal state becomes large, and the number of data to be input to the model generation unit and the inference unit is reduced. As a result, anomalies can be accurately detected in a short time even from data acquired under poor conditions.
 なお、実施の形態1、実施の形態2または実施の形態3において、音、振動、圧力、温度、磁束、光等を感知するセンサからの出力信号をA/D変換器によりサンプリングして量子化したうえでデータを処理すればよい。 In Embodiment 1, Embodiment 2, or Embodiment 3, an output signal from a sensor that senses sound, vibration, pressure, temperature, magnetic flux, light, etc. is sampled by an A/D converter and quantized. Then you can process the data.
 1 学習装置、 2 データ取得部、 3 時間周波数解析部、 4 特徴差強調範囲抽出部、 5 モデル生成部、 6 記憶装置、 7 推論装置、 8 データ取得部、 9 時間周波数解析部、 10 特徴差強調範囲抽出部、 11 推論部、 12 判定装置、 13 正規化パラメータ導出部、 14 非類似度導出部、15 統計量算出部、16 統計量算出部 1 learning device, 2 data acquisition unit, 3 time-frequency analysis unit, 4 feature difference enhancement range extraction unit, 5 model generation unit, 6 storage device, 7 reasoning device, 8 data acquisition unit, 9 time-frequency analysis unit, 10 feature difference Emphasis range extraction unit, 11 reasoning unit, 12 determination device, 13 normalization parameter derivation unit, 14 dissimilarity derivation unit, 15 statistics calculation unit, 16 statistics calculation unit

Claims (42)

  1.  正常時の時系列データを取得するデータ取得部と、
     前記データ取得部により取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、
     前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、
     前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データを用いて、正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成部と、
    を備えた学習装置。
    a data acquisition unit that acquires normal time-series data;
    a time-frequency analysis unit that analyzes temporal changes in frequency characteristics of the normal time-series data acquired by the data acquisition unit;
    a feature difference enhancement range extracting unit for extracting signal intensity data in a range of a specific frequency band and a specific time band in which the feature difference between normal and abnormal conditions is large, from the data analyzed by the time-frequency analysis unit; ,
    A model for generating a trained model for inferring the degree of similarity to normal data using signal intensity data in a specific frequency band and a specific time range extracted by the feature difference emphasis range extracting unit. a generator;
    A learning device with
  2.  前記モデル生成部により生成された学習済モデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する正規化パラメータ導出部、
     を備えた請求項1に記載の学習装置。
    a normalization parameter derivation unit that inputs a part or all of the learning data to the trained model generated by the model generation unit and derives a normalization parameter;
    The learning device according to claim 1, comprising:
  3.  正常時の時系列データを取得するデータ取得部と、
     前記データ取得部により取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、
     前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、
     前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データから統計量を算出する統計量算出部と、
     前記統計量算出部により算出された統計量から正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成部と、
     前記モデル生成部により生成された学習済モデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する正規化パラメータ導出部と、
    を備えた学習装置。
    a data acquisition unit that acquires normal time-series data;
    a time-frequency analysis unit that analyzes temporal changes in frequency characteristics of the normal time-series data acquired by the data acquisition unit;
    a feature difference enhancement range extracting unit for extracting signal intensity data in a range of a specific frequency band and a specific time band in which the feature difference between normal and abnormal conditions is large, from the data analyzed by the time-frequency analysis unit; ,
    a statistic calculation unit that calculates a statistic from the signal intensity data in the specific frequency band and the specific time range extracted by the feature difference emphasis range extraction unit;
    a model generation unit that generates a trained model for inferring the degree of similarity between the statistics calculated by the statistics calculation unit and the normal data;
    a normalization parameter derivation unit that inputs a part or all of the learning data to the trained model generated by the model generation unit and derives a normalization parameter;
    A learning device with
  4.  前記特徴差強調範囲抽出部は、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データを抽出する請求項1から請求項3のいずれか一項に記載の学習装置。 The feature difference enhancement range extracting unit extracts the data analyzed by the time-frequency analysis unit in a positive direction and a negative direction centering on a specific frequency band where the feature difference between the normal state and the abnormal state increases and the time of interest. 4. The learning device according to any one of claims 1 to 3, which extracts signal strength data in a symmetrical specific time range.
  5.  前記特徴差強調範囲抽出部は、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データの差分を抽出する請求項1から請求項3のいずれか一項に記載の学習装置。 The feature difference enhancement range extracting unit extracts the data analyzed by the time-frequency analysis unit in a positive direction and a negative direction centering on a specific frequency band where the feature difference between the normal state and the abnormal state increases and the time of interest. 4. The learning device according to any one of claims 1 to 3, which extracts a difference in signal strength data within a specific symmetric time zone.
  6.  前記特徴差強調範囲抽出部は、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データから周辺の範囲の信号強度データの平均値との差分を抽出する請求項1から請求項3のいずれか一項に記載の学習装置。 The feature difference enhancement range extracting unit extracts signal strength data in a range of a specific frequency band and a specific time band in which the feature difference between normal and abnormal conditions is large, from the data analyzed by the time-frequency analysis unit. 4. The learning device according to any one of claims 1 to 3, wherein a difference from an average value of signal intensity data in a surrounding range is extracted.
  7.  前記時間周波数解析部は、周波数特性の時間的変化を解析する方法として、ウェーブレット変換を用いる請求項1から請求項6のいずれか一項に記載の学習装置。 The learning device according to any one of claims 1 to 6, wherein the time-frequency analysis unit uses wavelet transform as a method of analyzing temporal changes in frequency characteristics.
  8.  前記時間周波数解析部は、前記ウェーブレット変換において、異常時の波形と類似した波形をマザーウェーブレット関数として用いる請求項7に記載の学習装置。 The learning device according to claim 7, wherein the time-frequency analysis unit uses a waveform similar to the waveform at the time of abnormality as a mother wavelet function in the wavelet transform.
  9.  前記特徴差強調範囲抽出部は、正常部のデータに対する異常部のデータとの相関性が低い範囲を特徴差強調範囲として抽出する請求項1から請求項8のいずれか一項に記載の学習装置。 The learning device according to any one of claims 1 to 8, wherein the feature difference emphasis range extracting unit extracts a range having a low correlation between the data of the normal section and the data of the abnormal section as the range of feature difference emphasis. .
  10.  前記モデル生成部は、One class SVMを用いて学習済モデルを生成する請求項1から請求項9のいずれか一項に記載の学習装置。 The learning device according to any one of claims 1 to 9, wherein the model generation unit generates a trained model using One class SVM.
  11.  前記モデル生成部は、カーネル密度推定法を用いて学習済モデルを生成する請求項1から請求項9のいずれか一項に記載の学習装置。 The learning device according to any one of claims 1 to 9, wherein the model generation unit generates a trained model using a kernel density estimation method.
  12.  被検査体の時系列データを取得するデータ取得部と、
     前記データ取得部により取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、
     前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、
     正常時のデータとの類似度を推論するための学習済モデルを用いて、前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データと正常時のデータとの類似度を推論する推論部と、
    を備えた推論装置。
    a data acquisition unit that acquires time-series data of an object to be inspected;
    a time-frequency analysis unit that analyzes temporal changes in frequency characteristics of the time-series data of the object to be inspected acquired by the data acquisition unit;
    a feature difference enhancement range extracting unit for extracting signal intensity data in a range of a specific frequency band and a specific time band in which the feature difference between normal and abnormal conditions is large, from the data analyzed by the time-frequency analysis unit; ,
    Signal strength data in a specific frequency band and a specific time range extracted by the feature difference emphasis range extracting unit using a trained model for inferring similarity with normal data and normal time an inference unit that infers similarity with data;
    A reasoning device with
  13.  前記推論部により推論された類似度に対して、記憶装置に記憶された正規化パラメータを用いて、非類似度に変換して正規化する非類似度導出部、
    を備えた請求項12に記載の推論装置。
    a dissimilarity deriving unit that converts the similarity inferred by the inference unit into a dissimilarity and normalizes it using a normalization parameter stored in a storage device;
    13. A reasoning apparatus according to claim 12, comprising:
  14.  被検査体の時系列データを取得するデータ取得部と、
     前記データ取得部により取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析部と、
     前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出部と、
     前記特徴差強調範囲抽出部により抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データから統計量を算出する統計量算出部と、
     正常時のデータとの類似度を推論するための学習済モデルを用いて、前記統計量算出部により算出された統計量と正常時のデータとの類似度を推論する推論部と、
     前記推論部により推論された類似度に対して、記憶装置に記憶された正規化パラメータを用いて、非類似度に変換して正規化する非類似度導出部と、
    を備えた推論装置。
    a data acquisition unit that acquires time-series data of an object to be inspected;
    a time-frequency analysis unit that analyzes temporal changes in frequency characteristics of the time-series data of the object to be inspected acquired by the data acquisition unit;
    a feature difference enhancement range extracting unit for extracting signal intensity data in a range of a specific frequency band and a specific time band in which the feature difference between normal and abnormal conditions is large, from the data analyzed by the time-frequency analysis unit; ,
    a statistic calculation unit that calculates a statistic from the signal intensity data in the specific frequency band and the specific time range extracted by the feature difference emphasis range extraction unit;
    an inference unit that infers the degree of similarity between the statistic calculated by the statistic calculation unit and the data in the normal state using a trained model for inferring the degree of similarity with the data in the normal state;
    a dissimilarity derivation unit that converts the similarity inferred by the inference unit into a dissimilarity and normalizes it using a normalization parameter stored in a storage device;
    A reasoning device with
  15.  前記特徴差強調範囲抽出部は、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データを抽出する請求項12から請求項14のいずれか一項に記載の推論装置。 The feature difference enhancement range extracting unit extracts the data analyzed by the time-frequency analysis unit in a positive direction and a negative direction centering on a specific frequency band where the feature difference between the normal state and the abnormal state increases and the time of interest. 15. A reasoning apparatus according to any one of claims 12 to 14 for extracting signal strength data for a symmetrical specific time range.
  16.  前記特徴差強調範囲抽出部は、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データの差分を抽出する請求項12から請求項14のいずれか一項に記載の推論装置。 The feature difference enhancement range extracting unit extracts the data analyzed by the time-frequency analysis unit in a positive direction and a negative direction centering on a specific frequency band where the feature difference between the normal state and the abnormal state increases and the time of interest. 15. The reasoning apparatus according to any one of claims 12 to 14, wherein the difference of signal strength data in a specific symmetrical range of time is extracted.
  17.  前記特徴差強調範囲抽出部として、前記時間周波数解析部により解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データから周辺の範囲の信号強度データの平均値との差分を抽出する請求項12から請求項14のいずれか一項に記載の推論装置。 As the feature difference enhancement range extraction unit, from the data analyzed by the time-frequency analysis unit, from the signal strength data in the range of the specific frequency band and the specific time band where the feature difference between normal and abnormal is large 15. The reasoning apparatus according to claim 12, wherein a difference from an average value of signal strength data in a surrounding range is extracted.
  18.  前記時間周波数解析部は、周波数特性の時間的変化を解析する方法として、ウェーブレット変換を用いる請求項12から請求項17のいずれか一項に記載の推論装置。 The inference device according to any one of claims 12 to 17, wherein the time-frequency analysis unit uses wavelet transform as a method of analyzing temporal changes in frequency characteristics.
  19.  前記時間周波数解析部は、前記ウェーブレット変換において、異常時の波形と類似した波形をマザーウェーブレット関数として用いる請求項18に記載の推論装置。 19. The inference device according to claim 18, wherein the time-frequency analysis unit uses a waveform similar to an abnormal waveform as a mother wavelet function in the wavelet transform.
  20.  前記推論部は、One class SVMを用いた学習済モデルを用いて正常時のデータとの類似度を推論する請求項12から請求項19のいずれか一項に記載の推論装置。 20. The inference device according to any one of claims 12 to 19, wherein the inference unit infers the degree of similarity with normal data using a trained model using One class SVM.
  21.  前記推論部は、カーネル密度推定法を用いた学習済モデルを用いて正常時のデータとの類似度を推論する請求項12から請求項19のいずれか一項に記載の推論装置。 The inference device according to any one of claims 12 to 19, wherein the inference unit infers the degree of similarity with normal data using a trained model using a kernel density estimation method.
  22.  学習装置を用いて、正常時の時系列データを取得するデータ取得ステップと、
     前記学習装置を用いて、前記データ取得ステップにより取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、
     前記学習装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、
     前記学習装置を用いて、前記特徴差強調範囲抽出ステップにより抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データを用いて、正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成ステップと、
    を備えた学習方法。
    A data acquisition step of acquiring normal time-series data using a learning device;
    a time-frequency analysis step of using the learning device to analyze temporal changes in frequency characteristics of the normal time-series data acquired in the data acquisition step;
    Using the learning device, from the data analyzed by the time-frequency analysis step, signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal is large is extracted. a feature difference enhancement range extraction step;
    Using the learning device, using the signal intensity data of the specific frequency band and the specific time range extracted by the feature difference emphasis range extraction step, for inferring the similarity with normal data a model generation step for generating a trained model;
    A learning method with
  23.  前記学習装置を用いて、前記モデル生成ステップにより生成された学習済モデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する正規化パラメータ導出ステップ、
     を備えた請求項22に記載の学習方法。
    A normalization parameter derivation step of inputting part or all of the learning data to the trained model generated in the model generation step using the learning device and deriving a normalization parameter;
    23. The learning method of claim 22, comprising:
  24.  学習装置を用いて、正常時の時系列データを取得するデータ取得ステップと、
     前記学習装置を用いて、前記データ取得ステップにより取得された正常時の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、
     前記学習装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、
     前記学習装置を用いて、前記特徴差強調範囲抽出ステップで抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データの統計量を算出する統計量算出ステップと、
     前記学習装置を用いて、前記統計量算出ステップにより算出された統計量を用いて、正常時のデータとの類似度を推論するための学習済モデルを生成するモデル生成ステップと、
     前記学習装置を用いて、前記モデル生成ステップにより生成された学習済みモデルに学習用データの一部もしくは全てを入力し、正規化パラメータを導出する正規化パラメータ導出ステップと、
    を備えた学習方法。
    A data acquisition step of acquiring normal time-series data using a learning device;
    a time-frequency analysis step of using the learning device to analyze temporal changes in frequency characteristics of the normal time-series data acquired in the data acquisition step;
    Using the learning device, from the data analyzed by the time-frequency analysis step, signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal is large is extracted. a feature difference enhancement range extraction step;
    a statistic calculation step of calculating, using the learning device, the statistic of the signal strength data in the specific frequency band and the specific time range extracted in the feature difference emphasis range extraction step;
    A model generation step of generating a trained model for inferring the similarity to normal data using the statistic calculated by the statistic calculation step using the learning device;
    a normalization parameter derivation step of inputting part or all of the learning data to the trained model generated in the model generation step using the learning device and deriving a normalization parameter;
    A learning method with
  25.  前記特徴差強調範囲抽出ステップとして、前記時間周波数解析ステップで解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データを抽出する請求項22から請求項24のいずれか一項に記載の学習方法。 In the feature difference enhancement range extraction step, from the data analyzed in the time-frequency analysis step, a specific frequency band in which the feature difference between normal and abnormal becomes large and in the positive and negative directions centering on the time of interest. 25. A learning method according to any one of claims 22 to 24, wherein the signal strength data for a range of symmetrical specific time periods is extracted.
  26.  前記特徴差強調範囲抽出ステップとして、前記時間周波数解析ステップで解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データの差分を抽出する請求項22から請求項24のいずれか一項に記載の学習方法。 In the feature difference enhancement range extraction step, from the data analyzed in the time-frequency analysis step, a specific frequency band in which the feature difference between normal and abnormal becomes large and in the positive and negative directions centering on the time of interest. 25. The learning method according to any one of claims 22 to 24, wherein a difference of signal strength data in a symmetrical specific time range is extracted.
  27.  前記特徴差強調範囲抽出ステップとして、前記時間周波数解析ステップで解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データから周辺の範囲の信号強度データの平均値との差分を抽出する請求項22から請求項24のいずれか一項に記載の学習方法。 As the feature difference enhancement range extraction step, from the data analyzed in the time-frequency analysis step, from signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal is large. 25. The learning method according to any one of claims 22 to 24, wherein a difference from an average value of signal intensity data in the surrounding range is extracted.
  28.  前記時間周波数解析ステップは、周波数特性の時間的変化を解析する方法として、ウェーブレット変換を用いる請求項22から請求項27のいずれか一項に記載の学習方法。 28. The learning method according to any one of claims 22 to 27, wherein the time-frequency analysis step uses wavelet transform as a method of analyzing temporal changes in frequency characteristics.
  29.  前記時間周波数解析ステップは、前記ウェーブレット変換において、異常時の波形と類似した波形をマザーウェーブレット関数として用いる請求項28に記載の学習方法。 29. The learning method according to claim 28, wherein the time-frequency analysis step uses a waveform similar to a waveform at the time of abnormality as a mother wavelet function in the wavelet transform.
  30.  前記特徴差強調範囲抽出ステップは、正常部のデータに対する異常部のデータとの相関性が低い範囲を特徴差強調範囲として抽出する請求項22から請求項29のいずれか一項に記載の学習方法。 30. The learning method according to any one of claims 22 to 29, wherein the feature difference-enhanced range extracting step extracts, as a feature difference-enhanced range, a range having a low correlation between normal-area data and abnormal-area data. .
  31.  前記モデル生成ステップは、One class SVMを用いて学習済モデルを生成する請求項22から請求項30のいずれか一項に記載の学習方法。 31. The learning method according to any one of claims 22 to 30, wherein the model generation step generates a trained model using One class SVM.
  32.  前記モデル生成ステップは、カーネル密度推定法を用いて学習済モデルを生成する請求項22から請求項30のいずれか一項に記載の学習方法。 The learning method according to any one of claims 22 to 30, wherein the model generation step uses a kernel density estimation method to generate a learned model.
  33.  推論装置を用いて、被検査体の時系列データを取得するデータ取得ステップと、
     前記推論装置を用いて、前記データ取得ステップにより取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、
     前記推論装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、
     前記推論装置を用いて、正常時のデータとの類似度を推論するための学習済モデルを用いて、前記特徴差強調範囲抽出ステップにより抽出された特定の周波数帯かつ特定の時間帯の範囲の信号強度データと正常時のデータとの類似度を推論する推論ステップと、
    を備えた推論方法。
    a data acquisition step of acquiring time-series data of an object to be inspected using an inference device;
    a time-frequency analysis step of using the inference device to analyze temporal changes in frequency characteristics of the time-series data of the subject acquired in the data acquisition step;
    Using the inference device, from the data analyzed by the time-frequency analysis step, signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large is extracted. a feature difference enhancement range extraction step;
    Using the inference device, using a trained model for inferring the degree of similarity with normal data, the range of the specific frequency band and the specific time zone extracted by the feature difference emphasis range extraction step an inference step of inferring similarities between the signal strength data and normal data;
    An inference method with
  34.  前記推論ステップにより推論された類似度に対して、記憶装置で記憶された正規化パラメータを用いて、非類似度に変換して正規化する非類似度導出ステップ、
    を備えた請求項33に記載の推論方法。
    A dissimilarity derivation step of converting the similarity inferred by the inference step into a dissimilarity and normalizing it using a normalization parameter stored in a storage device;
    34. The reasoning method of claim 33, comprising:
  35.  推論装置を用いて、被検査体の時系列データを取得するデータ取得ステップと、
     前記推論装置を用いて、前記データ取得ステップにより取得された被検査体の時系列データに対して周波数特性の時間的変化を解析する時間周波数解析ステップと、
     前記推論装置を用いて、前記時間周波数解析ステップにより解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データを抽出する特徴差強調範囲抽出ステップと、
     前記推論装置を用いて、前記特徴差強調範囲抽出ステップで抽出された範囲のデータの統計量を算出する統計量算出ステップと、
     前記推論装置を用いて、正常時のデータとの類似度を推論するための学習済モデルを用いて、前記統計量算出ステップにより算出された統計量を用いて、正常時のデータとの類似度を推論する推論ステップと、
     前記推論装置を用いて、前記推論ステップにより推論された類似度に対して、記憶装置で記憶された正規化パラメータを用いて、非類似度に変換して正規化する非類似度導出ステップと、
    を備えた推論方法。
    a data acquisition step of acquiring time-series data of an object to be inspected using an inference device;
    a time-frequency analysis step of using the inference device to analyze temporal changes in frequency characteristics of the time-series data of the subject acquired in the data acquisition step;
    Using the inference device, from the data analyzed by the time-frequency analysis step, signal strength data in a specific frequency band and a specific time range where the feature difference between normal and abnormal conditions is large is extracted. a feature difference enhancement range extraction step;
    a statistic calculation step of calculating a statistic of data in the range extracted in the feature difference emphasized range extraction step using the inference device;
    Using the inference device, using a learned model for inferring the similarity with normal data, using the statistic calculated by the statistic calculation step, the similarity with normal data an inference step of inferring
    a dissimilarity deriving step of converting the similarity inferred by the inference step using the inference device into a dissimilarity and normalizing it using a normalization parameter stored in a storage device;
    An inference method with
  36.  前記特徴差強調範囲抽出ステップは、前記時間周波数解析ステップで解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データを抽出する請求項33から請求項35のいずれか一項に記載の推論方法。 The feature difference enhancement range extracting step extracts from the data analyzed in the time-frequency analysis step, a specific frequency band in which the feature difference between normal and abnormal is large, and in the positive and negative directions centering on the time of interest. 36. A reasoning method according to any one of claims 33 to 35, wherein signal strength data for a range of symmetrical specific time periods are extracted.
  37.  前記特徴差強調範囲抽出ステップは、前記時間周波数解析ステップで解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ注目時刻を中心にプラス方向とマイナス方向に対称な特定の時間帯の範囲の信号強度データの差分を抽出する請求項33から請求項35のいずれか一項に記載の推論方法。 The feature difference enhancement range extracting step extracts from the data analyzed in the time-frequency analysis step, a specific frequency band in which the feature difference between normal and abnormal is large, and in the positive and negative directions centering on the time of interest. 36. A reasoning method according to any one of claims 33 to 35, wherein the difference of signal strength data for a range of symmetrical specific time periods is extracted.
  38.  前記特徴差強調範囲抽出ステップは、前記時間周波数解析ステップで解析された後のデータから、正常時と異常時の特徴差が大きくなる特定の周波数帯かつ特定の時間帯の範囲の信号強度データから周辺の範囲の信号強度データの平均値との差分を抽出する請求項33から請求項35のいずれか一項に記載の推論方法。 The feature difference enhancement range extracting step extracts from the data analyzed in the time-frequency analysis step signal strength data in a range of a specific frequency band and a specific time range in which the feature difference between normal and abnormal conditions is large. 36. A reasoning method according to any one of claims 33 to 35, wherein a difference from an average value of signal strength data in a surrounding range is extracted.
  39.  前記時間周波数解析ステップは、周波数特性の時間的変化を解析する方法として、ウェーブレット変換を用いる請求項33から請求項38のいずれか一項に記載の推論方法。 39. The inference method according to any one of claims 33 to 38, wherein the time-frequency analysis step uses wavelet transform as a method of analyzing temporal changes in frequency characteristics.
  40.  前記時間周波数解析ステップは、前記ウェーブレット変換において、異常時の波形と類似した波形をマザーウェーブレット関数として用いる請求項39に記載の推論方法。 40. The inference method according to claim 39, wherein the time-frequency analysis step uses a waveform similar to a waveform at the time of abnormality as a mother wavelet function in the wavelet transform.
  41.  前記推論ステップは、One class SVMを用いた学習済モデルを用いて正常時のデータとの類似度を推論する請求項33から請求項40のいずれか一項に記載の推論方法。 41. The inference method according to any one of claims 33 to 40, wherein the inference step infers the degree of similarity with normal data using a trained model using One class SVM.
  42.  前記推論ステップは、カーネル密度推定法を用いた学習済モデルを用いて正常時のデータとの類似度を推論する請求項33から請求項40のいずれか一項に記載の推論方法。 41. The inference method according to any one of claims 33 to 40, wherein the inference step infers the degree of similarity with normal data using a trained model using a kernel density estimation method.
PCT/JP2022/017153 2021-06-22 2022-04-06 Learning device, inference device, learning method, and inference method WO2022270124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529633A JPWO2022270124A1 (en) 2021-06-22 2022-04-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103435 2021-06-22
JP2021-103435 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270124A1 true WO2022270124A1 (en) 2022-12-29

Family

ID=84545439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017153 WO2022270124A1 (en) 2021-06-22 2022-04-06 Learning device, inference device, learning method, and inference method

Country Status (2)

Country Link
JP (1) JPWO2022270124A1 (en)
WO (1) WO2022270124A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069699A (en) * 2004-08-31 2006-03-16 Mitsubishi Electric Corp Method and device for diagnosing elevator system
JP2008033532A (en) * 2006-07-27 2008-02-14 Denso Corp Method and apparatus for detecting abnormality in equipment provided with movable part
JP2012166935A (en) * 2011-02-16 2012-09-06 Mitsubishi Electric Building Techno Service Co Ltd Abnormal sound detection device for elevator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069699A (en) * 2004-08-31 2006-03-16 Mitsubishi Electric Corp Method and device for diagnosing elevator system
JP2008033532A (en) * 2006-07-27 2008-02-14 Denso Corp Method and apparatus for detecting abnormality in equipment provided with movable part
JP2012166935A (en) * 2011-02-16 2012-09-06 Mitsubishi Electric Building Techno Service Co Ltd Abnormal sound detection device for elevator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUMA KOIZUMI; SHOICHIRO SAITO; HISASHI UEMATSUM YUTA KAWACHI; NOBORU HARADA: "Unsupervised Detection of Anomalous Sound based on Deep Learning and the Neyman-Pearson Lemma", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 22 October 2018 (2018-10-22), 201 Olin Library Cornell University Ithaca, NY 14853 , XP080926321, DOI: 10.1109/TASLP.2018.2877258 *

Also Published As

Publication number Publication date
JPWO2022270124A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
Bazan et al. Stator short-circuit diagnosis in induction motors using mutual information and intelligent systems
Georgoulas et al. Principal Component Analysis of the start-up transient and Hidden Markov Modeling for broken rotor bar fault diagnosis in asynchronous machines
Strangas et al. Time–frequency analysis for efficient fault diagnosis and failure prognosis for interior permanent-magnet AC motors
CN108985279B (en) Fault diagnosis method and device for MVB waveform of multifunctional vehicle bus
Ahmad et al. Autoencoder-based condition monitoring and anomaly detection method for rotating machines
Bazan et al. Information theoretical measurements from induction motors under several load and voltage conditions for bearing faults classification
Liu et al. A two-stage approach for predicting the remaining useful life of tools using bidirectional long short-term memory
Hwang et al. Support vector machine based bearing fault diagnosis for induction motors using vibration signals
Himeur et al. Appliance identification using a histogram post-processing of 2d local binary patterns for smart grid applications
Yang et al. Enhanced hierarchical symbolic dynamic entropy and maximum mean and covariance discrepancy-based transfer joint matching with Welsh loss for intelligent cross-domain bearing health monitoring
CN116552306B (en) Monitoring system and method for direct current pile
CN114118219A (en) Data-driven real-time abnormal detection method for health state of long-term power-on equipment
CN115758200A (en) Vibration signal fault identification method and system based on similarity measurement
WO2022270124A1 (en) Learning device, inference device, learning method, and inference method
CN115878992A (en) Monitoring method and monitoring system for comprehensive pipe rack power supply system
CN117538710A (en) Intelligent early warning method and system for local dynamic discharge monitoring
CN116699400A (en) Generator rotor short-circuit fault monitoring system, method and readable storage medium
JP5178471B2 (en) Optimal partial waveform data generation apparatus and method, and rope state determination apparatus and method
Liu et al. Bearing performance degradation assessment using linear discriminant analysis and coupled HMM
Tavakoli et al. A Machine Learning approach to fault detection in transformers by using vibration data
CN112731208B (en) Low-voltage line fault and abnormity on-line monitoring method, equipment and medium
Senanayaka et al. Online fault diagnosis system for electric powertrains using advanced signal processing and machine learning
Bórnea et al. Classification of Bearing Faults in Induction Motors with the Hilbert-Huang Transform and Feature Selection
Hasnat et al. Learning power system’s graph signals for cyber and physical stress classification
Al Iqbal et al. A generalized method for fault detection and diagnosis in SCADA sensor data via classification with uncertain labels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529633

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE