WO2022270025A1 - Method and device for diagnosing remaining service life of wind power generator - Google Patents

Method and device for diagnosing remaining service life of wind power generator Download PDF

Info

Publication number
WO2022270025A1
WO2022270025A1 PCT/JP2022/009676 JP2022009676W WO2022270025A1 WO 2022270025 A1 WO2022270025 A1 WO 2022270025A1 JP 2022009676 W JP2022009676 W JP 2022009676W WO 2022270025 A1 WO2022270025 A1 WO 2022270025A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
remaining life
wind
diagnosing
blade
Prior art date
Application number
PCT/JP2022/009676
Other languages
French (fr)
Japanese (ja)
Inventor
伸夫 苗村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022270025A1 publication Critical patent/WO2022270025A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a method for diagnosing the remaining life of a wind power generator and a device for diagnosing the remaining life.
  • a megawatt class wind power generator As a megawatt class wind power generator, it has a rotor with blades attached radially to a rotating hub, a nacelle that supports the rotor via the main shaft, and a tower that supports the nacelle from below while allowing yaw rotation. is frequently used.
  • a wind power generator uses the ever-changing wind as an energy source to generate electricity. Therefore, when the wind speed and turbulence of the wind actually flowing into the wind turbine generator are weaker than the design conditions, there is a margin for fatigue to accumulate in the wind turbine generator, and it is often possible to operate the wind turbine generator for a longer period than the design life. Such extension of life is becoming more frequent, but when extending the life, it is necessary to accurately estimate how many years the target wind turbine generator can be operated in the future.
  • Patent Document 1 As a method for estimating the life of a wind power generator, in Patent Document 1, a strain sensor is attached to a small part of the wind power generator, and the design information of the wind power generator is used to estimate the degree of fatigue damage and remaining life at unmeasured positions. A method for estimating is proposed.
  • Patent Document 2 using the fluctuating dynamic pressure, which is the product of the average value and the standard deviation of the wind speed, the frequency distribution of the fluctuating dynamic pressure in the wind turbine generator to be diagnosed and the frequency of fluctuating dynamic pressure under design conditions.
  • a method to quantify the degree of fatigue accumulation from the distribution has been proposed. Also, by multiplying the fluctuating dynamic pressure by the thrust coefficient of the rotor and the moment coefficient of the blades, the dynamic characteristics are considered.
  • Patent Document 1 requires a strain sensor that is rarely installed in commercial wind power generators, and it is difficult to obtain the necessary design information unless you are a wind power generator manufacturer.
  • Patent Document 2 Although the method described in Patent Document 2 can be easily applied, the dynamic characteristics of the wind power generator that can be considered are limited to the thrust coefficient and moment coefficient. Therefore, if the mechanical properties change greatly depending on the wind speed and turbulence intensity, and the degree of fatigue accumulation is affected, it may be difficult to estimate the life with high accuracy.
  • the present invention has been made in view of such circumstances, and wind power generators can use only information that can be easily obtained to evaluate the remaining life of a wind power generator, taking into account the mechanical characteristics of the wind power generator. It is an object of the present invention to provide a method for diagnosing the remaining life of a wind power generator and a device for diagnosing the remaining life.
  • a method for diagnosing the remaining life of a wind turbine generator is a method for diagnosing the remaining life of a wind turbine generator using a remaining life diagnosis device, wherein the remaining life diagnosis device includes a fatigue model creation unit , a design fatigue calculation unit, an actual fatigue calculation unit, and a remaining life evaluation unit, and the fatigue model creation unit models the fatigue characteristics of the wind turbine generator (for example, the fatigue equivalent load acting on the wind turbine generator),
  • the design fatigue calculation unit calculates the design fatigue from the fatigue characteristics and the design wind conditions
  • the actual fatigue calculation unit calculates the actual fatigue from the fatigue characteristics and the actual wind conditions at the construction site of the wind turbine generator
  • the remaining life evaluation unit is characterized by calculating the remaining life using the design fatigue and the actual fatigue.
  • FIG. 1 is an overall schematic configuration diagram of a wind turbine generator according to an embodiment
  • FIG. It is a figure which shows the structure of the remaining-life diagnostic apparatus which concerns on this embodiment. It is a figure for demonstrating the in-plane direction and the out-of-plane direction of a blade.
  • FIG. 4 is a diagram for explaining a method of calculating a fatigue equivalent load in the in-plane direction of the blade;
  • FIG. 4 is a diagram for explaining an example of density distribution modes of blades;
  • FIG. 4 is a diagram for explaining the bending moment distribution of the blade;
  • FIG. 4 is a diagram for explaining the fatigue equivalent load in the in-plane direction of the blade;
  • FIG. 4 is a diagram for explaining a method of calculating a fatigue equivalent load in the in-plane direction of the blade;
  • FIG. 4 is a diagram for explaining an example of density distribution modes of blades;
  • FIG. 4 is a diagram for explaining the bending moment distribution of the blade;
  • FIG. 4 is
  • FIG. 4 is a diagram for explaining a method of calculating a fatigue equivalent load in the out-of-plane direction of the blade; It is a figure for demonstrating how to obtain
  • FIG. 4 is a diagram for explaining changes in equivalent fatigue load in the out-of-plane direction of the blade due to turbulence intensity.
  • FIG. 3 is a diagram for explaining wind speed frequency distributions under design wind conditions and actual wind conditions;
  • FIG. 1 is an overall schematic configuration diagram of a wind turbine generator 1 according to this embodiment.
  • the wind turbine generator 1 includes blades 2 that rotate with wind, a hub 3 that supports the blades 2, a nacelle 4, and a tower 5 that rotatably supports the nacelle 4.
  • the nacelle 4 there are a main shaft 6 connected to the hub 3 and rotating together with the hub 3, a gearbox 7 connected to the main shaft 6 and increasing the rotational speed, and a rotor driven at the rotational speed increased by the gearbox 7.
  • It has a generator 8 that rotates to generate power.
  • a portion that transmits the rotational energy of the blades 2 to the generator 8 is called a power transmission section, and in this embodiment, the main shaft 6 and the gearbox 7 are included in the power transmission section.
  • the gearbox 7 and generator 8 are held on the main frame 9 .
  • a rotor 10 is composed of the blades 2 and the hub 3 .
  • a power converter 11 for converting the frequency of power, a switching switch and transformer (not shown) for switching current, and a control device 12 are arranged.
  • a control device 12 for example, a control panel or SCADA (Supervisory Control And Data Acquisition) is used.
  • the wind turbine generator 1 shown in FIG. 1 shows an example in which the rotor 10 is composed of three blades 2 and a hub 3, it is not limited to this, and the rotor 10 consists of a hub 3 and at least one blade 2. may be configured
  • FIG. 2 is a diagram showing the configuration of the remaining life diagnostic device 20 according to this embodiment.
  • FIG. 2 shows the configuration of the remaining life diagnostic device 20 for the blades 2 of the wind turbine generator 1 shown in FIG.
  • the remaining life diagnosis device 20 includes a processing unit, an external storage unit, an input unit, a display unit, a communication unit, etc.
  • the processing unit includes a fatigue model creation unit 21, a design fatigue calculation unit 22, and an actual fatigue calculation unit 23, a remaining life evaluation unit 24 is provided.
  • the display unit is a display or the like, and displays the execution status and execution results of the processing by the remaining life diagnosis device 20 .
  • the input unit is a device such as a keyboard and a mouse for inputting instructions to the computer, and inputs instructions such as program activation.
  • the processing unit is a central processing unit (CPU) and executes various programs stored in memory.
  • the communication unit exchanges various data and commands with other devices via a LAN or the like.
  • the external storage unit stores various data for the remaining life diagnostic device 20 to execute processing.
  • the memory holds various programs and temporary data for the remaining life assessment device 20 to execute processing.
  • the fatigue model creation unit 21 estimates the shape of the blades 2 and the operating conditions of the wind power generator 1 using catalogs and monitoring devices for wind power generators, construction drawings, and known theoretical formulas, and uses numerical simulations to Equivalent fatigue loads acting on the blade 2 in the in-plane direction and out-of-plane direction are calculated.
  • FIG. 3 is a diagram for explaining the in-plane direction and the out-of-plane direction of the blade 2.
  • FIG. FIG. 3 illustrates definitions of the in-plane and out-of-plane directions.
  • Reference numeral 100 is a rear view of the nacelle 4 as seen from the rear. In this rear view 100, the rotation direction of the blades 2 (see broken lines) is the in-plane direction.
  • reference numeral 110 is a lateral view of the nacelle 4 viewed from the lateral direction, and in this lateral view 110, the longitudinal direction of the blades 2 (see broken lines) is the out-of-plane direction.
  • the processing in the fatigue model creation unit 21 differs depending on the diagnosis target.
  • components other than the blades for example, the tower 5, the main shaft 6, the gearbox 7, the generator 8, the main frame 9, etc. can be diagnosed.
  • FIG. 4 is a diagram for explaining the method of calculating the fatigue equivalent load in the in-plane direction of the blade.
  • FIG. 4 shows one method for modeling the in-plane fatigue equivalent load.
  • a density distribution estimation formula 403 represented by (Formula 1) below is constructed.
  • r n is the dimensionless length with 0 at the root of the blade and 1 at the tip
  • m(r n ) is the density distribution per unit length in the longitudinal direction of the blade
  • ⁇ (r n ) is the density distribution mode 401
  • R is the rotor radius 402 or blade length
  • A, B are unknown correction factors.
  • Equation 1 uses the 1.3 power of the rotor radius 402 (R), it does not necessarily have to be the 1.3 power.
  • the power of 1.5 is preferable, and with future weight reduction of blades, it is possible that a value smaller than the power of 1.3 will become appropriate.
  • ⁇ (r n ) is readily obtained by dividing the publicly available blade density distribution by R to the 1.3 power.
  • FIG. 5 is a diagram for explaining an example of the density distribution mode of the blade.
  • the horizontal axis is the dimensionless length with 0 at the root of the blade and 1 at the tip, and the vertical axis is the density distribution mode.
  • the upper part of FIG. 5 shows the shape of the blade 2 .
  • the density distribution of the blade 2 (blade density distribution mode) is, for example, a density distribution as shown in FIG.
  • the correction coefficients A and B in Equation 1 are determined by solving the following simultaneous equations 406 regarding blade mass 404 (M) and blade center of gravity 405 (CG).
  • FIG. 6 is a diagram for explaining the bending moment distribution of the blade 2.
  • the horizontal axis is the non-dimensional length with 0 at the root of the blade and 1 at the tip, and the vertical axis is the bending moment distribution.
  • the upper part of FIG. 6 shows the shape of the blade 2 . It is possible to calculate the blade bending moment distribution 408 (see FIG. 4) due to its own weight when the blade 2 is horizontal as shown in FIG. 6, and calculate the in-plane blade fatigue equivalent load 411 (see FIG. 4) can be used as a weighted amplitude for
  • the blade bending moment due to the blade's own weight when the blade is horizontal corresponds to the maximum amplitude of the moment acting on the blade. It can be estimated with accuracy.
  • the calculation of the blade fatigue equivalent load 411 in the in-plane direction requires the rotor rotation speed (rotation speed characteristic 410) for each operating wind speed of the wind power generator. This can be estimated using the method of least squares or the like from the information 409 of the wind speed and rotation speed included in the SCADA data.
  • the blade fatigue equivalent load 411 in the in-plane direction at an arbitrary wind speed at an arbitrary longitudinal position of the blade can be calculated.
  • FIG. 7 is a diagram for explaining the fatigue equivalent load in the in-plane direction of the blade.
  • the horizontal axis is the average wind speed
  • the vertical axis is the fatigue equivalent load in the in-plane direction.
  • the blade fatigue equivalent load 411 in the in-plane direction obtained is due to the blade's own weight, and the effects of blade vibration and the like are not considered, so a correction factor may be introduced as necessary.
  • the blade fatigue equivalent load 411 in the in-plane direction may be calculated by numerical simulation.
  • FIG. 8 is a diagram for explaining a calculation method of the fatigue equivalent load in the out-of-plane direction of the blade 2.
  • FIG. FIG. 8 shows one method for modeling out-of-plane fatigue equivalent loads.
  • a blade shape 801 is acquired from a photograph, a drawing, or the like, and a blade chord length distribution 802 is obtained based on a known blade length, root diameter, or the like.
  • the nacelle 4 as shown in FIG.
  • An appropriate shape can be obtained by photographing the blade 2 from the direction just beside the .
  • FIG. 9 is a diagram for explaining how to obtain the optimum circumferential speed ratio.
  • the horizontal axis indicates the average wind speed, and the vertical axis indicates the rotor rotation speed.
  • the gradient in the range where the rotor rotation speed changes with respect to the wind speed as shown in Fig. 9 is calculated by the method of least squares, etc., and divided by the rotor radius.
  • Get the speed ratio 803 TSR: Tip Speed Ratio).
  • TSR Tip Speed Ratio
  • ⁇ (r) is the torsion angle
  • ⁇ (r) is the angle of attack, which is the angle between the composite velocity vector consisting of wind speed and rotational speed and the blade chord length direction.
  • the angle of attack varies depending on the airfoil that forms the cross section of the blade 2.
  • the angle of attack at the maximum lift-to-drag ratio of the airfoil is often used. It is preferable to use a value such as 8 degrees on the inner side of the position and 4 degrees on the outer side.
  • Equation 4 is an example of giving each torsional distribution, and in recent years, the blade 2 is sometimes designed not for maximizing the amount of power generation but for minimizing the power generation cost, so another equation can be used. good.
  • FIG. 10 is a diagram for explaining rotation speed and pitch angle characteristics.
  • the diagram denoted by reference numeral 200 is a rotational speed characteristic diagram 200 when the horizontal axis is the wind speed and the vertical axis is the rotor rotational speed.
  • the figure 210 is a pitch angle characteristic diagram 210 when the horizontal axis is the wind speed and the vertical axis is the pitch angle.
  • a rotation speed/pitch angle characteristic 806 as shown in FIG. 10 can be estimated from the rotation speed characteristic diagram 200 and the pitch angle characteristic diagram 210 in FIG.
  • FIG. 11 is a diagram for explaining changes in fatigue equivalent load in the out-of-plane direction of the blade 2 due to turbulence intensity.
  • the horizontal axis is the average wind speed, and the vertical axis is the fatigue equivalent load in the out-of-plane direction. Since the fatigue equivalent load in the out-of-plane direction changes greatly depending on the turbulence intensity, it is desirable to perform simulations for various turbulence intensities and calculate the fatigue equivalent load for each turbulence intensity as shown in FIG. .
  • the blade density distribution 407 (see FIG. 4) can be estimated, in addition to the hydrodynamic calculation, aeroelastic calculation can be applied, and the effect of vibration of the blade 2 can be reflected in the in-plane and out-of-plane fatigue equivalent loads. .
  • a simple method can be used to calculate the out-of-plane blade fatigue equivalent load 807 (see FIG. 8).
  • the blade element momentum theory is used to calculate the fluid force when the blade 2 is positioned directly above and below the nacelle 4, the bending moment distribution is obtained, and the difference between the bending moments when directly above and below is calculated.
  • the load amplitude is raised to the power of the slope of the SN curve for the blade material and multiplied by the number of revolutions to obtain the out-of-plane blade fatigue equivalent load 807 (see FIG. 8).
  • Design fatigue calculator 22 Using the fatigue equivalent load obtained by the fatigue model generating unit 21 and the design wind conditions as described above, the design fatigue calculation unit 22 calculates fatigue accumulation in the design wind conditions.
  • the design wind conditions are determined by the type certification of the wind power generator, and are generally defined by the annual average wind speed and the turbulence class.
  • FIG. 12 is a diagram for explaining the wind speed frequency distribution under design wind conditions and actual wind conditions.
  • the horizontal axis is the average wind speed
  • the vertical axis is the wind speed frequency distribution.
  • FIG. 12 shows an example of the wind speed frequency distribution. It is preferable to use actual wind conditions, but the measured data is not always the same every year. Therefore, the design fatigue calculation unit 22 calculates fatigue accumulation in the design wind conditions. On the other hand, the actual fatigue calculation unit 23, which will be described later, calculates the accumulation of fatigue under actual wind conditions at the construction site of the wind turbine generator 1.
  • the turbulence class is used to correct the fatigue equivalent load.
  • the turbulence class is defined by I in (Equation 5) below.
  • the value of I specified as the design wind condition may be used to multiply the fatigue equivalent load by a correction value defined as a function of I.
  • the fatigue equivalent load after correction as shown in FIG. 11 is calculated for cases where the value of I is 0.16, 0.14, and 0.12 according to the magnitude of the turbulence intensity.
  • U in and U out are the cut-in and cut-out wind speeds representing the minimum and maximum wind speeds at which the wind turbine generator 1 generates power
  • ⁇ (U) is the frequency of wind speed generation
  • DEL′(U) is the corrected wind speed.
  • the fatigue equivalent load, m is the slope of the SN curve for the blade material.
  • ⁇ (U) is determined so that the integrated value of ⁇ (U) becomes the design life of the wind turbine generator 1 .
  • the actual fatigue calculation unit 23 uses (Formula 6) to calculate the D factor under the actual wind conditions at the construction site of the wind turbine generator 1 as the actual fatigue.
  • the fatigue equivalent load is corrected as necessary.
  • the turbulence class parameter I used for correction was obtained by calculating the 90% tile value of the turbulence intensity at each wind speed using the wind speed and turbulence intensity of the SCADA data representing the actual wind conditions. It is determined using the method of least squares or the like so that (Equation 5) is closest to the curve.
  • the wind speed frequency distribution ⁇ (U) under actual wind conditions as shown in FIG. 12 is obtained from the SCADA data, and D factor representing the accumulation of fatigue under actual wind conditions is calculated using Equation (6).
  • the D factor of (Equation 6) and the L of (Equation 7) are calculated for both the out-of-plane direction and the in-plane direction.
  • L calculated in the in-plane direction the smaller one may be considered as the remaining life of the blade 2 .
  • the fatigue equivalent load is calculated for a plurality of components including components other than the blade 2, the minimum value of L calculated for each is considered to be the remaining life of the wind power generator 1. good too.
  • the method for diagnosing the remaining life of the wind turbine generator 1 of the present embodiment is a method for diagnosing the remaining life of the wind turbine generator using the remaining life diagnosis device 20.
  • the remaining life diagnosis device 20 includes a fatigue model creation unit 21, a design fatigue It has a calculation unit 22, an actual fatigue calculation unit 23, and a remaining life evaluation unit 24, and the fatigue model creation unit 21 models the fatigue characteristics of the wind power generator 1 (for example, the fatigue equivalent load acting on the wind power generator),
  • the design fatigue calculation unit 22 calculates the design fatigue from the fatigue characteristics and the design wind conditions
  • the actual fatigue calculation unit 23 calculates the actual fatigue from the fatigue characteristics and the actual wind conditions at the construction site of the wind turbine generator
  • the life evaluator 24 is characterized by calculating remaining life using design fatigue and actual fatigue. For example, the fatigue equivalent load acting on the wind power generator is modeled from easily available information, and the design wind condition ⁇ By quantifying and comparing accumulated fatigue under actual wind conditions, the remaining life can be diagnosed with high accuracy.
  • the remaining life diagnostic device 20 of the wind turbine generator 1 having the above configuration, according to the embodiment, the remaining life of the blade can be diagnosed from easily available information.
  • the fatigue equivalent load is calculated by considering the blade mechanical properties that change significantly with wind speed and turbulence intensity, and fatigue accumulation is calculated using the fatigue equivalent load and the frequency of occurrence of wind speed and turbulence intensity.
  • the fluctuating dynamic pressure which is the product of the average value and the standard deviation of the wind speed, is multiplied by a thrust coefficient or a moment coefficient representing the dynamic characteristics at the average wind speed to calculate the accumulated fatigue. , it may not be possible to take into account changes in the thrust and moment coefficients that fluctuate within the standard deviation of the wind speed corresponding to turbulence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Wind Motors (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The present invention provides a method for diagnosing the remaining service life of a wind power generator (1) using a remaining service life diagnostic device (20), wherein: the remaining service life diagnostic device (20) has a fatigue model creation unit (21), a design fatigue calculation unit (22), an actual fatigue calculation unit (23), and a remaining service life evaluation unit (24); the fatigue model creation unit (21) models the fatigue characteristics of the wind power generator 1 (e.g., a fatigue equivalent load acting on the wind power generator); the design fatigue calculation unit (22) calculates design fatigue from fatigue characteristics and design wind conditions; the actual fatigue calculation unit (23) calculates actual fatigue from the fatigue characteristics and the actual wind conditions at the site where the wind turbine generator is constructed; and the remaining service life evaluation unit (24) calculates the remaining service life using the design fatigue and the actual fatigue. For example, the remaining service life is diagnosed with high accuracy by modeling the fatigue equivalent load acting on the wind power generator from readily available information, and quantifying and comparing accumulation of fatigue under design and actual wind conditions from the obtained fatigue equivalent load and wind speed frequency distribution and turbulence intensity under the design and actual wind conditions.

Description

風力発電装置の余寿命診断方法および余寿命診断装置Remaining life diagnostic method and remaining life diagnostic device for wind turbine generator
 本発明は、風力発電装置の余寿命診断方法および余寿命診断装置に関する。 The present invention relates to a method for diagnosing the remaining life of a wind power generator and a device for diagnosing the remaining life.
 再生可能エネルギー活用への関心の高まりから、風力発電装置の世界的な市場拡大が予測されている。メガワット級の風力発電装置としては、ブレードを回転するハブに放射状に取りつけたロータと、主軸を介してロータを支持するナセルと、ナセルを下部からヨー回転を許して支持するタワーを備えているものが頻繁に用いられる。 Due to growing interest in the use of renewable energy, the global market for wind turbines is expected to expand. As a megawatt class wind power generator, it has a rotor with blades attached radially to a rotating hub, a nacelle that supports the rotor via the main shaft, and a tower that supports the nacelle from below while allowing yaw rotation. is frequently used.
 風力発電装置では、時々刻々と変化する風をエネルギー源として発電を行う。したがって、実際に風力発電装置に流入する風の風速や乱れが設計条件よりも弱い場合、風力発電装置に蓄積する疲労に余裕が生じ、設計寿命よりも長期間にわたって運転可能となることが多い。このような寿命の延長は頻繁に行われつつあるが、寿命延長の際には対象の風力発電装置が今後何年間、運転可能であるかを正確に見積もる必要がある。 A wind power generator uses the ever-changing wind as an energy source to generate electricity. Therefore, when the wind speed and turbulence of the wind actually flowing into the wind turbine generator are weaker than the design conditions, there is a margin for fatigue to accumulate in the wind turbine generator, and it is often possible to operate the wind turbine generator for a longer period than the design life. Such extension of life is becoming more frequent, but when extending the life, it is necessary to accurately estimate how many years the target wind turbine generator can be operated in the future.
 風力発電装置の寿命推定する方法として、特許文献1では風力発電装置のごく一部にひずみセンサを取り付け、風力発電装置の設計情報を用いることで、未計測位置での疲労損傷度および余寿命を推定する方法が提案されている。 As a method for estimating the life of a wind power generator, in Patent Document 1, a strain sensor is attached to a small part of the wind power generator, and the design information of the wind power generator is used to estimate the degree of fatigue damage and remaining life at unmeasured positions. A method for estimating is proposed.
 特許文献2では、風速の平均値と標準偏差の積である変動動圧を用いて、診断対象の風力発電装置での変動動圧の発生頻度分布と、設計条件での変動動圧の発生頻度分布とから疲労の蓄積度合いを定量化する方法が提案されている。また、変動動圧にロータのスラスト係数やブレードのモーメント係数を乗じることで、力学的特性を考慮する構成となっている。 In Patent Document 2, using the fluctuating dynamic pressure, which is the product of the average value and the standard deviation of the wind speed, the frequency distribution of the fluctuating dynamic pressure in the wind turbine generator to be diagnosed and the frequency of fluctuating dynamic pressure under design conditions. A method to quantify the degree of fatigue accumulation from the distribution has been proposed. Also, by multiplying the fluctuating dynamic pressure by the thrust coefficient of the rotor and the moment coefficient of the blades, the dynamic characteristics are considered.
特開2016-217133号公報JP 2016-217133 A 特開2016-188612号公報JP 2016-188612 A
 しかしながら、特許文献1に記載の方法は、商用風力発電装置では取り付けられることの少ないひずみセンサが必要であり、風力発電装置メーカでない限り必要な設計情報を入手することは困難である。 However, the method described in Patent Document 1 requires a strain sensor that is rarely installed in commercial wind power generators, and it is difficult to obtain the necessary design information unless you are a wind power generator manufacturer.
 一方、特許文献2に記載の方法は、容易に適用可能ではあるものの、考慮可能な風力発電装置の力学的特性はスラスト係数やモーメント係数に限定される。したがって、風速や乱流強度に応じて力学的特性が大きく変化し、疲労の蓄積度合いに影響を与える場合には、高精度な寿命推定が困難になる可能性がある。 On the other hand, although the method described in Patent Document 2 can be easily applied, the dynamic characteristics of the wind power generator that can be considered are limited to the thrust coefficient and moment coefficient. Therefore, if the mechanical properties change greatly depending on the wind speed and turbulence intensity, and the degree of fatigue accumulation is affected, it may be difficult to estimate the life with high accuracy.
 本発明はこのような状況を鑑みて成されたものであり、風力発電事業者であれば容易に入手可能な情報のみを用いて、風力発電装置の力学的特性を考慮した余寿命評価ができる風力発電装置の余寿命診断方法および余寿命診断装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and wind power generators can use only information that can be easily obtained to evaluate the remaining life of a wind power generator, taking into account the mechanical characteristics of the wind power generator. It is an object of the present invention to provide a method for diagnosing the remaining life of a wind power generator and a device for diagnosing the remaining life.
 前記課題を解決するため、本発明の風力発電装置の余寿命診断方法は、余寿命診断装置を用いた風力発電装置の余寿命診断方法であって、前記余寿命診断装置は、疲労モデル作成部、設計疲労演算部、実疲労演算部および余寿命評価部を有し、前記疲労モデル作成部は、風力発電装置の疲労特性(例えば、風力発電装置に作用する疲労等価荷重)をモデル化し、前記設計疲労演算部は、前記疲労特性と設計風況とから設計疲労を計算し、前記実疲労演算部は、前記疲労特性と風力発電装置の建設地における実風況とから実疲労を計算し、前記余寿命評価部は、前記設計疲労と前記実疲労を用いて余寿命を計算することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。 In order to solve the above problems, a method for diagnosing the remaining life of a wind turbine generator according to the present invention is a method for diagnosing the remaining life of a wind turbine generator using a remaining life diagnosis device, wherein the remaining life diagnosis device includes a fatigue model creation unit , a design fatigue calculation unit, an actual fatigue calculation unit, and a remaining life evaluation unit, and the fatigue model creation unit models the fatigue characteristics of the wind turbine generator (for example, the fatigue equivalent load acting on the wind turbine generator), The design fatigue calculation unit calculates the design fatigue from the fatigue characteristics and the design wind conditions, the actual fatigue calculation unit calculates the actual fatigue from the fatigue characteristics and the actual wind conditions at the construction site of the wind turbine generator, The remaining life evaluation unit is characterized by calculating the remaining life using the design fatigue and the actual fatigue. Other aspects of the present invention are described in embodiments below.
 本発明によれば、風力発電事業者であれば容易に入手可能な情報のみを用いて、風力発電装置の力学的特性を考慮した余寿命評価ができる。 According to the present invention, it is possible for a wind power generation business operator to evaluate the remaining life of a wind power generator taking into account the mechanical characteristics thereof, using only information that can be easily obtained.
本実施形態に係る風力発電装置の全体概略構成図である。1 is an overall schematic configuration diagram of a wind turbine generator according to an embodiment; FIG. 本実施形態に係る余寿命診断装置の構成を示す図である。It is a figure which shows the structure of the remaining-life diagnostic apparatus which concerns on this embodiment. ブレードの面内方向および面外方向を説明するための図である。It is a figure for demonstrating the in-plane direction and the out-of-plane direction of a blade. ブレードの面内方向の疲労等価荷重の計算方法を説明するための図である。FIG. 4 is a diagram for explaining a method of calculating a fatigue equivalent load in the in-plane direction of the blade; ブレードの密度分布モードの例を説明するための図である。FIG. 4 is a diagram for explaining an example of density distribution modes of blades; ブレードの曲げモーメント分布を説明するための図である。FIG. 4 is a diagram for explaining the bending moment distribution of the blade; ブレードの面内方向の疲労等価荷重を説明するための図である。FIG. 4 is a diagram for explaining the fatigue equivalent load in the in-plane direction of the blade; ブレードの面外方向の疲労等価荷重の計算方法を説明するための図である。FIG. 4 is a diagram for explaining a method of calculating a fatigue equivalent load in the out-of-plane direction of the blade; 最適周速比の求め方を説明するための図である。It is a figure for demonstrating how to obtain|require an optimal peripheral speed ratio. 回転数及びピッチ角特性について説明するための図である。It is a figure for demonstrating rotation speed and a pitch angle characteristic. 乱流強度によるブレードの面外方向の疲労等価荷重の変化を説明するための図である。FIG. 4 is a diagram for explaining changes in equivalent fatigue load in the out-of-plane direction of the blade due to turbulence intensity. 設計風況及び実風況での風速頻度分布を説明するための図である。FIG. 3 is a diagram for explaining wind speed frequency distributions under design wind conditions and actual wind conditions;
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
 図1は、本実施形態に係る風力発電装置1の全体概略構成図である。図1に示すように、風力発電装置1は、風を受けて回転するブレード2、ブレード2を支持するハブ3、ナセル4、及びナセル4を回動可能に支持するタワー5を備える。ナセル4内に、ハブ3に接続されハブ3と共に回転する主軸6、主軸6に接続され回転速度を増速する増速機7、及び増速機7により増速された回転速度で回転子を回転させて発電運転する発電機8を備えている。ブレード2の回転エネルギーを発電機8に伝達する部位は、動力伝達部と称され、本実施形態では、主軸6及び増速機7が動力伝達部に含まれる。そして、増速機7及び発電機8は、メインフレーム9上に保持されている。また、ブレード2及びハブ3によりロータ10が構成される。
Embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate.
FIG. 1 is an overall schematic configuration diagram of a wind turbine generator 1 according to this embodiment. As shown in FIG. 1, the wind turbine generator 1 includes blades 2 that rotate with wind, a hub 3 that supports the blades 2, a nacelle 4, and a tower 5 that rotatably supports the nacelle 4. As shown in FIG. In the nacelle 4, there are a main shaft 6 connected to the hub 3 and rotating together with the hub 3, a gearbox 7 connected to the main shaft 6 and increasing the rotational speed, and a rotor driven at the rotational speed increased by the gearbox 7. It has a generator 8 that rotates to generate power. A portion that transmits the rotational energy of the blades 2 to the generator 8 is called a power transmission section, and in this embodiment, the main shaft 6 and the gearbox 7 are included in the power transmission section. The gearbox 7 and generator 8 are held on the main frame 9 . A rotor 10 is composed of the blades 2 and the hub 3 .
 タワー5内の底部(下部)に、電力の周波数を変換する電力変換器11、電流の開閉を行うスイッチング用の開閉器及び変圧器(図示せず)、及び制御装置12などが配されている。制御装置12として、例えば、制御盤又はSCADA(Supervisory Control And Data Acquisition)が用いられる。 At the bottom (lower part) in the tower 5, a power converter 11 for converting the frequency of power, a switching switch and transformer (not shown) for switching current, and a control device 12 are arranged. . As the control device 12, for example, a control panel or SCADA (Supervisory Control And Data Acquisition) is used.
 なお、図1に示す風力発電装置1は、3枚のブレード2とハブ3にてロータ10を構成する例を示すが、これに限られず、ロータ10はハブ3と少なくとも1枚のブレード2にて構成してもよい。 Although the wind turbine generator 1 shown in FIG. 1 shows an example in which the rotor 10 is composed of three blades 2 and a hub 3, it is not limited to this, and the rotor 10 consists of a hub 3 and at least one blade 2. may be configured
 図2は、本実施形態に係る余寿命診断装置20の構成を示す図である。図2は、図1で示した風力発電装置1のブレード2に対する余寿命診断装置20の構成を示す。余寿命診断装置20は、処理部、外部記憶部、入力部、表示部、通信部などを含んで構成され、処理部には、疲労モデル作成部21、設計疲労演算部22、実疲労演算部23、余寿命評価部24を備える。表示部は、ディスプレイなどであり、余寿命診断装置20による処理の実行状況や実行結果などを表示する。入力部は、キーボードやマウスなどのコンピュータに指示を入力するための装置であり、プログラム起動などの指示を入力する。処理部は、中央演算処理装置(CPU)であり、メモリに格納される各種プログラムを実行する。通信部は、LANなどを介して、他の装置と各種データやコマンドを交換する。外部記憶部は、余寿命診断装置20が処理を実行するための各種データを保存する。メモリは、余寿命診断装置20が処理を実行する各種プログラムおよび一時的なデータを保持する。 FIG. 2 is a diagram showing the configuration of the remaining life diagnostic device 20 according to this embodiment. FIG. 2 shows the configuration of the remaining life diagnostic device 20 for the blades 2 of the wind turbine generator 1 shown in FIG. The remaining life diagnosis device 20 includes a processing unit, an external storage unit, an input unit, a display unit, a communication unit, etc. The processing unit includes a fatigue model creation unit 21, a design fatigue calculation unit 22, and an actual fatigue calculation unit 23, a remaining life evaluation unit 24 is provided. The display unit is a display or the like, and displays the execution status and execution results of the processing by the remaining life diagnosis device 20 . The input unit is a device such as a keyboard and a mouse for inputting instructions to the computer, and inputs instructions such as program activation. The processing unit is a central processing unit (CPU) and executes various programs stored in memory. The communication unit exchanges various data and commands with other devices via a LAN or the like. The external storage unit stores various data for the remaining life diagnostic device 20 to execute processing. The memory holds various programs and temporary data for the remaining life assessment device 20 to execute processing.
(疲労モデル作成部21)
 疲労モデル作成部21では、風力発電装置のカタログやモニタリング装置、施工図面や公知の理論式などを用いて、ブレード2の形状および風力発電装置1の運転条件を推定し、数値シミュレーションを用いて、ブレード2に作用する回転面内方向および面外方向の疲労等価荷重を計算する。
(Fatigue model creation unit 21)
The fatigue model creation unit 21 estimates the shape of the blades 2 and the operating conditions of the wind power generator 1 using catalogs and monitoring devices for wind power generators, construction drawings, and known theoretical formulas, and uses numerical simulations to Equivalent fatigue loads acting on the blade 2 in the in-plane direction and out-of-plane direction are calculated.
 図3は、ブレード2の面内方向および面外方向を説明するための図である。図3に回転面内と、面外方向の定義を図示する。符号100は、ナセル4を後方から見た後方図であり、この後方図100ではブレード2の回転方向(破線参照)を面内方向とする。一方、符号110は、ナセル4を横方向から見た横方向図であり、この横方向図110ではブレード2の前後方向(破線参照)を面外方向とする。 FIG. 3 is a diagram for explaining the in-plane direction and the out-of-plane direction of the blade 2. FIG. FIG. 3 illustrates definitions of the in-plane and out-of-plane directions. Reference numeral 100 is a rear view of the nacelle 4 as seen from the rear. In this rear view 100, the rotation direction of the blades 2 (see broken lines) is the in-plane direction. On the other hand, reference numeral 110 is a lateral view of the nacelle 4 viewed from the lateral direction, and in this lateral view 110, the longitudinal direction of the blades 2 (see broken lines) is the out-of-plane direction.
 図2に戻り、疲労モデル作成部21内での処理は、診断対象ごとに異なり、実施形態ではブレード2の面内方向及び面外方向の荷重を対象とするが、この一方でもよく、診断対象はブレード2以外の風力発電装置1の構成要素でもよい。ブレード以外の構成要素としては、例えば、タワー5、主軸6、増速機7、発電機8、メインフレーム9などを診断対象にできる。 Returning to FIG. 2, the processing in the fatigue model creation unit 21 differs depending on the diagnosis target. may be components of the wind turbine generator 1 other than the blades 2 . As components other than the blades, for example, the tower 5, the main shaft 6, the gearbox 7, the generator 8, the main frame 9, etc. can be diagnosed.
 図4は、ブレードの面内方向の疲労等価荷重の計算方法を説明するための図である。図4に、面内方向の疲労等価荷重をモデル化するための一つの方法を示す。まず、典型的なブレードの密度分布モード401とロータ半径402から、以下の(式1)で表される密度分布推定式403を構築する。 FIG. 4 is a diagram for explaining the method of calculating the fatigue equivalent load in the in-plane direction of the blade. FIG. 4 shows one method for modeling the in-plane fatigue equivalent load. First, from a typical blade density distribution mode 401 and a rotor radius 402, a density distribution estimation formula 403 represented by (Formula 1) below is constructed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、rはブレードの根元を0、先端を1とした無次元長さ、m(r)はブレードの長手方向の単位長さ当たり密度分布、Φ(r)は密度分布モード401、Rはロータ半径402またはブレード長さ、A、Bは未知の補正係数である。 Here, r n is the dimensionless length with 0 at the root of the blade and 1 at the tip, m(r n ) is the density distribution per unit length in the longitudinal direction of the blade, Φ(r n ) is the density distribution mode 401 , R is the rotor radius 402 or blade length, and A, B are unknown correction factors.
 発明者らの鋭意検討の結果、種々のブレードの密度分布m(r)をロータ半径402(R)の1.3乗で除した値は、おおよそ同様の分布Φ(r)を持つことが明らかになった。したがって、このΦ(r)とRから密度分布を逆算することができる。ただし、Φ(r)をそのまま用いると、ブレード質量404やブレード重心405が実物と異なる場合があるため、補正係数A,Bを用いて、ブレード質量404とブレード重心405を実物と一致させる。 As a result of diligent studies by the inventors, it was found that the values obtained by dividing the density distribution m(r n ) of various blades by the 1.3 power of the rotor radius 402 (R) have approximately the same distribution Φ(r n ). became clear. Therefore, the density distribution can be back-calculated from this Φ(r n ) and R. However, if Φ(r n ) is used as it is, the blade mass 404 and the blade center of gravity 405 may differ from the real thing.
 なお、(式1)ではロータ半径402(R)の1.3乗を用いているが、必ずしも1.3乗である必要はない。過去には1.5乗がよいとする文献があり、今後のブレードの軽量化に伴って、1.3乗よりも小さな値が妥当となることもあり得る。Φ(r)は一般に公開されているブレードの密度分布をRの1.3乗で除すことで容易に入手できる。 Although (Equation 1) uses the 1.3 power of the rotor radius 402 (R), it does not necessarily have to be the 1.3 power. In the past, there is literature that the power of 1.5 is preferable, and with future weight reduction of blades, it is possible that a value smaller than the power of 1.3 will become appropriate. Φ(r n ) is readily obtained by dividing the publicly available blade density distribution by R to the 1.3 power.
 図5は、ブレードの密度分布モードの例を説明するための図である。図5において、横軸はブレードの根元を0、先端を1とした無次元長さであり、縦軸は密度分布モードである。図5の上側にブレード2の形状を示す。ブレード2の密度分布(ブレードの密度分布モード)は、例えば図5に示すような密度分布となる。 FIG. 5 is a diagram for explaining an example of the density distribution mode of the blade. In FIG. 5, the horizontal axis is the dimensionless length with 0 at the root of the blade and 1 at the tip, and the vertical axis is the density distribution mode. The upper part of FIG. 5 shows the shape of the blade 2 . The density distribution of the blade 2 (blade density distribution mode) is, for example, a density distribution as shown in FIG.
 式1の補正係数A,Bは、ブレード質量404(M)とブレード重心405(CG)に関する下記の連立方程式406を解くことで決定される。 The correction coefficients A and B in Equation 1 are determined by solving the following simultaneous equations 406 regarding blade mass 404 (M) and blade center of gravity 405 (CG).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、rはブレードの根元からの距離、Rはロータ半径Rからハブ半径を引いたブレード長さである。(式2)、(式3)は、未知の変数である補正係数A,Bを含むため、これらを連立して解くことで補正係数A,Bの値が一意に定まり、得られた補正係数A,Bを式1に代入すると、図4に戻り、ブレード密度407が推定できる。ブレード密度407が分かれば、ブレード曲げモーメント分布408が計算できる。 where r is the distance from the root of the blade and RB is the blade length obtained by subtracting the hub radius from the rotor radius R. (Formula 2) and (Formula 3) include correction coefficients A and B, which are unknown variables. Substituting A and B into Equation 1, returning to FIG. 4, the blade density 407 can be estimated. Knowing the blade density 407, the blade bending moment distribution 408 can be calculated.
 図6は、ブレード2の曲げモーメント分布を説明するための図である。図6において、横軸はブレードの根元を0、先端を1とした無次元長さであり、縦軸は曲げモーメント分布である。図6の上側に、ブレード2の形状を示す。図6に示すようなブレード2が水平方向になった際の自重によるブレード曲げモーメント分布408(図4参照)を計算でき、これを面内方向のブレード疲労等価荷重411(図4参照)を計算するための加重振幅として使用できる。 FIG. 6 is a diagram for explaining the bending moment distribution of the blade 2. FIG. In FIG. 6, the horizontal axis is the non-dimensional length with 0 at the root of the blade and 1 at the tip, and the vertical axis is the bending moment distribution. The upper part of FIG. 6 shows the shape of the blade 2 . It is possible to calculate the blade bending moment distribution 408 (see FIG. 4) due to its own weight when the blade 2 is horizontal as shown in FIG. 6, and calculate the in-plane blade fatigue equivalent load 411 (see FIG. 4) can be used as a weighted amplitude for
 なお、面内方向では、ブレードが真横になった際の自重によるブレード曲げモーメントが、ブレードに作用するモーメントの最大振幅に対応するため、この自重によるモーメントのみを考慮すれば、疲労等価荷重を高精度に推定できる。 In the in-plane direction, the blade bending moment due to the blade's own weight when the blade is horizontal corresponds to the maximum amplitude of the moment acting on the blade. It can be estimated with accuracy.
 一方、図4に戻り、面内方向のブレード疲労等価荷重411の計算には、風力発電装置の運転風速ごとのロータ回転数(回転数特性410)が必要である。これは、SCADAデータに含まれる風速と回転数の情報409から最小二乗法などを用いて推定できる。 On the other hand, returning to FIG. 4, the calculation of the blade fatigue equivalent load 411 in the in-plane direction requires the rotor rotation speed (rotation speed characteristic 410) for each operating wind speed of the wind power generator. This can be estimated using the method of least squares or the like from the information 409 of the wind speed and rotation speed included in the SCADA data.
 このようにして得たブレード曲げモーメント分布408と回転数特性410から、ブレードの任意の長さ方向位置における任意の風速での面内方向のブレード疲労等価荷重411を計算できる。 From the blade bending moment distribution 408 and the rotation speed characteristic 410 obtained in this way, the blade fatigue equivalent load 411 in the in-plane direction at an arbitrary wind speed at an arbitrary longitudinal position of the blade can be calculated.
 図7は、ブレードの面内方向の疲労等価荷重を説明するための図である。横軸は平均風速であり、縦軸は面内方向の疲労等価荷重である。例えば、図7に示すようなブレード根元での面内方向のブレード疲労等価荷重411(図4参照)を計算する場合、ブレード曲げモーメント分布408(図4参照)から根元での値を選択し、ブレード材料のSN曲線の傾きでべき乗して、回転数特性410(図4参照)から得られる回転数を乗じると、疲労等価荷重が得られる。 FIG. 7 is a diagram for explaining the fatigue equivalent load in the in-plane direction of the blade. The horizontal axis is the average wind speed, and the vertical axis is the fatigue equivalent load in the in-plane direction. For example, when calculating the in-plane blade fatigue equivalent load 411 (see FIG. 4) at the blade root as shown in FIG. 7, select the value at the root from the blade bending moment distribution 408 (see FIG. 4), When raised to the power by the slope of the SN curve for the blade material and multiplied by the number of rotations obtained from the number of rotations characteristic 410 (see FIG. 4), the fatigue equivalent load is obtained.
 ただし、図4に戻り、得られる面内方向のブレード疲労等価荷重411はブレードの自重によるものであり、ブレードの振動などの影響は考慮されないため、必要に応じて補正係数を導入してもよい。あるいは、振動を考慮できるように、後述の面外方向の疲労等価荷重を計算する際に使用するブレード形状と、密度分布、回転数特性、回転数特性と同様の方法で取得できるピッチ角特性を用いて数値シミュレーションによって、面内方向のブレード疲労等価荷重411を計算してもよい。 However, returning to FIG. 4, the blade fatigue equivalent load 411 in the in-plane direction obtained is due to the blade's own weight, and the effects of blade vibration and the like are not considered, so a correction factor may be introduced as necessary. . Alternatively, in order to consider vibration, the blade shape used when calculating the fatigue equivalent load in the out-of-plane direction described later, the density distribution, the rotation speed characteristics, and the pitch angle characteristics that can be obtained in the same way as the rotation speed characteristics. The blade fatigue equivalent load 411 in the in-plane direction may be calculated by numerical simulation.
 図8は、ブレード2の面外方向の疲労等価荷重の計算方法を説明するための図である。図8に面外方向の疲労等価荷重をモデル化するための一つの方法を示す。まず、ブレード形状801を写真や図面などから取得し、既知のブレード長さや根元の直径などを基準として翼弦長分布802を得る。写真を用いる場合、例えば、風力発電装置1が停止しており、ブレード2が風による力を受けないフェザーとなった状態で、ブレード2が真下を向いているときに図1のようにナセル4の真横の方向から、ブレード2を撮影すると、妥当な形状を取得できる。 FIG. 8 is a diagram for explaining a calculation method of the fatigue equivalent load in the out-of-plane direction of the blade 2. FIG. FIG. 8 shows one method for modeling out-of-plane fatigue equivalent loads. First, a blade shape 801 is acquired from a photograph, a drawing, or the like, and a blade chord length distribution 802 is obtained based on a known blade length, root diameter, or the like. When using a photograph, for example, when the wind power generator 1 is stopped and the blades 2 are in a feathered state that does not receive the force of the wind, the nacelle 4 as shown in FIG. An appropriate shape can be obtained by photographing the blade 2 from the direction just beside the .
 図9は、最適周速比の求め方を説明するための図である。横軸は平均風速、縦軸はロータ回転数を示す。SCADA409のデータに含まれる風速と回転数から、図9に示すようなロータ回転数が風速に対して変化する範囲での勾配を最小二乗法などで計算し、ロータ半径で除すことで、周速比803(TSR:Tip Speed Ratio)を得る。周速比803が分かると、例えば発電量を最大化する場合のブレード2のねじり角分布804を、以下の理論式によって求めることができる。 FIG. 9 is a diagram for explaining how to obtain the optimum circumferential speed ratio. The horizontal axis indicates the average wind speed, and the vertical axis indicates the rotor rotation speed. From the wind speed and rotation speed included in the SCADA409 data, the gradient in the range where the rotor rotation speed changes with respect to the wind speed as shown in Fig. 9 is calculated by the method of least squares, etc., and divided by the rotor radius. Get the speed ratio 803 (TSR: Tip Speed Ratio). Once the peripheral speed ratio 803 is known, for example, the torsion angle distribution 804 of the blade 2 when maximizing the amount of power generation can be obtained by the following theoretical formula.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、θ(r)はねじり角、α(r)は風速と回転速度からなる合成速度ベクトルと翼弦長方向とのなす角度である迎え角を示す。迎え角はブレード2の断面を構成する翼型によって異なるが、風力発電装置1では、翼型の最大揚抗比での迎え角が用いられることが多く、例えば、ブレード2の翼弦長が最大となる位置よりも内側では8度、外側では4度といった値を用いるとよい。 Here, θ(r) is the torsion angle, and α(r) is the angle of attack, which is the angle between the composite velocity vector consisting of wind speed and rotational speed and the blade chord length direction. The angle of attack varies depending on the airfoil that forms the cross section of the blade 2. In the wind turbine generator 1, the angle of attack at the maximum lift-to-drag ratio of the airfoil is often used. It is preferable to use a value such as 8 degrees on the inner side of the position and 4 degrees on the outer side.
 (式4)はねじり各分布を与える一例であり、近年では発電量の最大化ではなく、発電コストの最小化などでブレード2が設計されることもあることから、別の式を用いてもよい。 (Equation 4) is an example of giving each torsional distribution, and in recent years, the blade 2 is sometimes designed not for maximizing the amount of power generation but for minimizing the power generation cost, so another equation can be used. good.
 最後に、面内方向の疲労等価荷重でも述べたように、SCADA805のデータに含まれる風速と回転数およびピッチ角の情報から最小二乗法による線形回帰や移動平均などを用いて、回転数・ピッチ角特性806を推定する。 Finally, as described in the in-plane direction fatigue equivalent load, the wind speed, rotation speed, and pitch angle information included in the SCADA805 data were used to calculate the rotation speed and pitch using linear regression and moving averages using the least squares method. Estimate angular properties 806 .
 図10は、回転数及びピッチ角特性について説明するための図である。図10について、符号200の図は、横軸を風速、縦軸をロータ回転数としたときの回転数特性図200である。一方、符号210の図は、横軸を風速、縦軸をピッチ角としたときのピッチ角特性図210である。図10に示すような回転数・ピッチ角特性806を、図10の回転数特性図200やピッチ角特性図210から推定することができる。 FIG. 10 is a diagram for explaining rotation speed and pitch angle characteristics. Regarding FIG. 10 , the diagram denoted by reference numeral 200 is a rotational speed characteristic diagram 200 when the horizontal axis is the wind speed and the vertical axis is the rotor rotational speed. On the other hand, the figure 210 is a pitch angle characteristic diagram 210 when the horizontal axis is the wind speed and the vertical axis is the pitch angle. A rotation speed/pitch angle characteristic 806 as shown in FIG. 10 can be estimated from the rotation speed characteristic diagram 200 and the pitch angle characteristic diagram 210 in FIG.
 これらの情報を用いると、翼素運動量理論や数値流体力学を用いたシミュレーションによって、ブレード2に作用する流体力を計算し、面外方向のブレード疲労等価荷重807を算出することができる。 Using this information, it is possible to calculate the fluid force acting on the blade 2 and calculate the blade fatigue equivalent load 807 in the out-of-plane direction through simulations using blade element momentum theory and computational fluid dynamics.
 図11は、乱流強度によるブレード2の面外方向の疲労等価荷重の変化を説明するための図である。横軸は平均風速であり、縦軸は面外方向の疲労等価荷重である。面外方向の疲労等価荷重は、乱流強度によって大きく変化するため、シミュレーションは種々の乱流強度に対して行い、図11に示すように乱流強度ごとの疲労等価荷重を算出することが望ましい。 FIG. 11 is a diagram for explaining changes in fatigue equivalent load in the out-of-plane direction of the blade 2 due to turbulence intensity. The horizontal axis is the average wind speed, and the vertical axis is the fatigue equivalent load in the out-of-plane direction. Since the fatigue equivalent load in the out-of-plane direction changes greatly depending on the turbulence intensity, it is desirable to perform simulations for various turbulence intensities and calculate the fatigue equivalent load for each turbulence intensity as shown in FIG. .
 ブレード密度分布407(図4参照)が推定できていれば、流体力の計算に加えて、空力弾性計算が適用でき、ブレード2の振動の影響を面内及び面外の疲労等価荷重に反映できる。あるいは、簡素な方法で面外方向のブレード疲労等価荷重807(図8参照)を計算することもできる。例えば、翼素運動量理論を用いてブレード2がナセル4の直上および直下に位置する際の流体力を計算し、曲げモーメント分布を求めて、直上および直下の際の曲げモーメントの差分として計算される荷重振幅を、ブレード材料のSN曲線の傾きでべき乗して、回転数を乗じると、面外方向のブレード疲労等価荷重807(図8参照)が得られる。 If the blade density distribution 407 (see FIG. 4) can be estimated, in addition to the hydrodynamic calculation, aeroelastic calculation can be applied, and the effect of vibration of the blade 2 can be reflected in the in-plane and out-of-plane fatigue equivalent loads. . Alternatively, a simple method can be used to calculate the out-of-plane blade fatigue equivalent load 807 (see FIG. 8). For example, the blade element momentum theory is used to calculate the fluid force when the blade 2 is positioned directly above and below the nacelle 4, the bending moment distribution is obtained, and the difference between the bending moments when directly above and below is calculated. The load amplitude is raised to the power of the slope of the SN curve for the blade material and multiplied by the number of revolutions to obtain the out-of-plane blade fatigue equivalent load 807 (see FIG. 8).
(設計疲労演算部22)
 以上のようにして、疲労モデル作成部21で得られた疲労等価荷重と、設計風況を用いて、設計疲労演算部22では、設計風況における疲労蓄積を計算する。設計風況は風力発電装置の型式認証などで定められており、一般的には年平均風速と乱流クラスで定義される。
(Design fatigue calculator 22)
Using the fatigue equivalent load obtained by the fatigue model generating unit 21 and the design wind conditions as described above, the design fatigue calculation unit 22 calculates fatigue accumulation in the design wind conditions. The design wind conditions are determined by the type certification of the wind power generator, and are generally defined by the annual average wind speed and the turbulence class.
 図12は、設計風況及び実風況での風速頻度分布を説明するための図である。横軸は平均風速、縦軸は風速頻度分布である。図12は、風速頻度分布の一例を示すもので、実風風況を用いるのがよいが、その測定データも毎年同じになるとは限らない。そこで、設計疲労演算部22では、設計風況における疲労蓄積を計算する。他方、後述する実疲労演算部23では、風力発電装置1の建設地における実風況での疲労蓄積を計算する。 FIG. 12 is a diagram for explaining the wind speed frequency distribution under design wind conditions and actual wind conditions. The horizontal axis is the average wind speed, and the vertical axis is the wind speed frequency distribution. FIG. 12 shows an example of the wind speed frequency distribution. It is preferable to use actual wind conditions, but the measured data is not always the same every year. Therefore, the design fatigue calculation unit 22 calculates fatigue accumulation in the design wind conditions. On the other hand, the actual fatigue calculation unit 23, which will be described later, calculates the accumulation of fatigue under actual wind conditions at the construction site of the wind turbine generator 1. FIG.
 まず、疲労等価荷重に乱流強度の影響が考慮されていない場合には、乱流クラスを用いて、疲労等価荷重を補正する。具体的には、上述の疲労等価荷重の計算方法で、面内方向の計算の際に数値シミュレーションを用いなかった場合や、面外方向の計算で簡素な方法を用いた場合、補正を施してもよい。ただし、面内方向については乱流の影響は小さいため、無視してもよい。補正の方法としては、例えば、乱流クラスを定義するパラメータを用いることが考えられる。乱流クラスは、以下の(式5)のIで定義される。 First, if the effect of turbulence intensity is not considered in the fatigue equivalent load, the turbulence class is used to correct the fatigue equivalent load. Specifically, in the calculation method of the fatigue equivalent load described above, if numerical simulation is not used for calculation in the in-plane direction, or if a simple method is used for calculation in the out-of-plane direction, correction is performed. good too. However, since the influence of turbulence in the in-plane direction is small, it can be ignored. As a correction method, for example, it is conceivable to use parameters that define the turbulence class. The turbulence class is defined by I in (Equation 5) below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、Uは風速、TIは乱流強度の90%タイル値である。補正では、設計風況として指定されているIの値を用いて、疲労等価荷重にIの関数として定義される補正値を乗じたりすればよい。例えば、乱流強度の大小に応じて、Iの値が0.16、0.14、0.12の場合に対して、図11のような補正後の疲労等価荷重を計算する。このようにして得た補正後の疲労等価荷重と図12に示すような年平均風速で定まるレイリー分布の風速頻度分布を用いて、下記の(式6)で定義されるDfactorによって設計疲労を定量化する。 where U is the wind speed and TI is the 90% tile value of the turbulence intensity. For correction, the value of I specified as the design wind condition may be used to multiply the fatigue equivalent load by a correction value defined as a function of I. For example, the fatigue equivalent load after correction as shown in FIG. 11 is calculated for cases where the value of I is 0.16, 0.14, and 0.12 according to the magnitude of the turbulence intensity. Using the corrected fatigue equivalent load obtained in this way and the wind speed frequency distribution of the Rayleigh distribution determined by the annual average wind speed as shown in FIG. Quantify.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、Uin、Uoutは風力発電装置1が発電を行う最小風速と最大風速を表すカットイン、カットアウト風速、φ(U)は風速の発生頻度、DEL′(U)は補正後の疲労等価荷重、mはブレード材料のSN曲線の傾きである。設計疲労の計算では、φ(U)に設計風況の年平均風速で定義されるレイリー分布に従う風速頻度分布を用いるとよい。このとき、φ(U)の積分値が風力発電装置1の設計寿命となるように、φ(U)を定めておく。 Here, U in and U out are the cut-in and cut-out wind speeds representing the minimum and maximum wind speeds at which the wind turbine generator 1 generates power, φ(U) is the frequency of wind speed generation, and DEL′(U) is the corrected wind speed. The fatigue equivalent load, m, is the slope of the SN curve for the blade material. In calculating the design fatigue, it is preferable to use the wind speed frequency distribution according to the Rayleigh distribution defined by the annual average wind speed of the design wind condition for φ(U). At this time, φ(U) is determined so that the integrated value of φ(U) becomes the design life of the wind turbine generator 1 .
(実疲労演算部23)
 実疲労演算部23では、(式6)を用いて、風力発電装置1の建設地における実風況でのDfactorを実疲労として計算する。まず、設計疲労演算部22と同様に、必要に応じて疲労等価荷重に補正を施す。このとき、補正に用いる乱流クラスのパラメータIは、実風況を表すSCADAデータの風速、乱流強度を用いて、各風速での乱流強度の90%タイル値を計算し、得られた曲線に(式5)が最接近するように最小二乗法などを用いて決定する。次に、SCADAデータから図12に示すような実風況での風速頻度分布φ(U)を求め、式6を用いて実風況での疲労蓄積を表すDfactorを計算する。
(Actual fatigue calculator 23)
The actual fatigue calculation unit 23 uses (Formula 6) to calculate the D factor under the actual wind conditions at the construction site of the wind turbine generator 1 as the actual fatigue. First, similarly to the design fatigue calculation unit 22, the fatigue equivalent load is corrected as necessary. At this time, the turbulence class parameter I used for correction was obtained by calculating the 90% tile value of the turbulence intensity at each wind speed using the wind speed and turbulence intensity of the SCADA data representing the actual wind conditions. It is determined using the method of least squares or the like so that (Equation 5) is closest to the curve. Next, the wind speed frequency distribution φ(U) under actual wind conditions as shown in FIG. 12 is obtained from the SCADA data, and D factor representing the accumulation of fatigue under actual wind conditions is calculated using Equation (6).
(余寿命評価部24)
 最後に、余寿命評価部24では、設計疲労演算部22および実疲労演算部23で計算された、設計風況でのDfactor(Dd)と実風況でのDfactor(Dr)から、余寿命を計算する。診断対象である風力発電装置1のこれまでの運転期間をT0、Drの計算時に使用した風速頻度分布の基となるSCADAデータの取得期間をT1とすると、風力発電装置1のブレード2の余寿命Lは下記の(式7)で計算できる。
(Remaining life evaluation unit 24)
Finally , in the remaining life evaluation unit 24, the remaining Calculate lifespan. Assuming that the operating period of the wind power generator 1 to be diagnosed is T0 and the acquisition period of the SCADA data that is the basis of the wind speed frequency distribution used when calculating Dr is T1, the remaining life of the blade 2 of the wind power generator 1 is L can be calculated by the following (Equation 7).
 L=T1/(Dr/Dd)-T0  ・・・(式7)  L=T1/(Dr/Dd)-T0...(Formula 7)
 また、風力発電装置1のブレード2の現時点での疲労損傷度Dは、
 D=(Dr×T0)/(Dd×T1)・・・(式8)
となる。T0=T1のときは、DrとDdの比Dr/Ddが疲労損傷度となる。なお、面外方向、面内方向の両方の疲労等価荷重を計算している場合には、(式6)のDfactorや(式7)のLを両方に対して計算し、面外方向と面内方向に対して計算したLのうち、小さい方をブレード2の余寿命と考えればよい。同様に、疲労等価荷重をブレード2以外の構成要素を含む複数の構成要素に対しても計算した場合には、各々に対して計算したLの最小値を風力発電装置1の余寿命と考えてもよい。
Further, the fatigue damage degree D of the blades 2 of the wind power generator 1 at the present time is
D=(Dr×T0)/(Dd×T1) (Formula 8)
becomes. When T0=T1, the ratio Dr/Dd between Dr and Dd is the degree of fatigue damage. In addition, when calculating the fatigue equivalent load in both the out-of-plane direction and the in-plane direction, the D factor of (Equation 6) and the L of (Equation 7) are calculated for both the out-of-plane direction and the in-plane direction. Among L calculated in the in-plane direction, the smaller one may be considered as the remaining life of the blade 2 . Similarly, when the fatigue equivalent load is calculated for a plurality of components including components other than the blade 2, the minimum value of L calculated for each is considered to be the remaining life of the wind power generator 1. good too.
 本実施形態の風力発電装置1の余寿命診断方法は、余寿命診断装置20を用いた風力発電装置の余寿命診断方法であって、余寿命診断装置20は、疲労モデル作成部21、設計疲労演算部22、実疲労演算部23および余寿命評価部24を有し、疲労モデル作成部21は、風力発電装置1の疲労特性(例えば、風力発電装置に作用する疲労等価荷重)をモデル化し、設計疲労演算部22は、疲労特性と設計風況とから設計疲労を計算し、実疲労演算部23は、疲労特性と風力発電装置の建設地における実風況とから実疲労を計算し、余寿命評価部24は、設計疲労と実疲労を用いて余寿命を計算することが特徴である。例えば、容易に入手可能な情報から風力発電装置に作用する疲労等価荷重をモデル化し、得られた疲労等価荷重と設計風況・実風況での風速頻度分布および乱流強度から、設計風況・実風況での疲労蓄積を定量化・比較することで、高精度に余寿命を診断することができる。 The method for diagnosing the remaining life of the wind turbine generator 1 of the present embodiment is a method for diagnosing the remaining life of the wind turbine generator using the remaining life diagnosis device 20. The remaining life diagnosis device 20 includes a fatigue model creation unit 21, a design fatigue It has a calculation unit 22, an actual fatigue calculation unit 23, and a remaining life evaluation unit 24, and the fatigue model creation unit 21 models the fatigue characteristics of the wind power generator 1 (for example, the fatigue equivalent load acting on the wind power generator), The design fatigue calculation unit 22 calculates the design fatigue from the fatigue characteristics and the design wind conditions, the actual fatigue calculation unit 23 calculates the actual fatigue from the fatigue characteristics and the actual wind conditions at the construction site of the wind turbine generator, The life evaluator 24 is characterized by calculating remaining life using design fatigue and actual fatigue. For example, the fatigue equivalent load acting on the wind power generator is modeled from easily available information, and the design wind condition・By quantifying and comparing accumulated fatigue under actual wind conditions, the remaining life can be diagnosed with high accuracy.
 以上の構成を有する風力発電装置1の余寿命診断装置20を用いることで、実施形態によれば、容易に入手可能な情報からブレードの余寿命を診断することができる。この実施形態では、風速と乱流強度に伴って大きく変化するブレードの力学的特性を考慮して疲労等価荷重を計算し、疲労等価荷重と風速及び乱流強度の発生頻度を用いて疲労蓄積を評価することで、高精度な余寿命診断が可能となる。一方、前述の特許文献2の方法では、風速の平均値と標準偏差の積である変動動圧に、平均風速での力学的特性を表すスラスト係数またはモーメント係数を乗じて疲労蓄積を計算するため、乱流に相当する風速の標準偏差の範囲で変動するスラスト係数やモーメント係数の変化を考慮できない可能性がある。 By using the remaining life diagnostic device 20 of the wind turbine generator 1 having the above configuration, according to the embodiment, the remaining life of the blade can be diagnosed from easily available information. In this embodiment, the fatigue equivalent load is calculated by considering the blade mechanical properties that change significantly with wind speed and turbulence intensity, and fatigue accumulation is calculated using the fatigue equivalent load and the frequency of occurrence of wind speed and turbulence intensity. By evaluating, highly accurate remaining life diagnosis becomes possible. On the other hand, in the method of Patent Document 2 described above, the fluctuating dynamic pressure, which is the product of the average value and the standard deviation of the wind speed, is multiplied by a thrust coefficient or a moment coefficient representing the dynamic characteristics at the average wind speed to calculate the accumulated fatigue. , it may not be possible to take into account changes in the thrust and moment coefficients that fluctuate within the standard deviation of the wind speed corresponding to turbulence.
 1  風力発電装置
 2  ブレード
 3  ハブ
 4  ナセル
 5  タワー
 6  主軸
 7  増速機
 8  発電機
 9  メインフレーム
 10  ロータ
 11  電力変換器
 12  制御装置
 20  余寿命診断装置
 21  疲労モデル作成部
 22  設計疲労演算部
 23  実疲労演算部
 24  余寿命評価部
 401  密度分布モード
 402  ロータ半径
 403  密度分布推定式
 404  ブレード質量
 405  ブレード重心
 406  質量・重心の連立方程式
 407  ブレード密度分布
 408  ブレード曲げモーメント分布
 409  SCADA(風速、回転数)
 410  回転数特性
 411  面内方向のブレード疲労等価荷重
 801  ブレード形状
 802  翼弦長分布
 803  周速比
 804  ねじり角分布
 805  SCADA(風速、ピッチ角)
 806  回転数・ピッチ角特性
 807  面外方向のブレード疲労等価荷重
1 wind turbine generator 2 blade 3 hub 4 nacelle 5 tower 6 main shaft 7 gearbox 8 power generator 9 main frame 10 rotor 11 power converter 12 control device 20 remaining life diagnosis device 21 fatigue model creation unit 22 design fatigue calculation unit 23 actual Fatigue calculation unit 24 Remaining life evaluation unit 401 Density distribution mode 402 Rotor radius 403 Density distribution estimation formula 404 Blade mass 405 Blade center of gravity 406 Simultaneous equation of mass and center of gravity 407 Blade density distribution 408 Blade bending moment distribution 409 SCADA (wind speed, rotation speed)
410 Rotation speed characteristics 411 Blade fatigue equivalent load in the in-plane direction 801 Blade shape 802 Blade chord length distribution 803 Peripheral speed ratio 804 Torsion angle distribution 805 SCADA (wind speed, pitch angle)
806 Rotation speed/pitch angle characteristics 807 Out-of-plane blade fatigue equivalent load

Claims (13)

  1.  余寿命診断装置を用いた風力発電装置の余寿命診断方法であって、
     前記余寿命診断装置は、疲労モデル作成部、設計疲労演算部、実疲労演算部および余寿命評価部を有し、
     前記疲労モデル作成部は、風力発電装置の疲労特性をモデル化し、
     前記設計疲労演算部は、前記疲労特性と設計風況とから設計疲労を計算し、
     前記実疲労演算部は、前記疲労特性と風力発電装置の建設地における実風況とから実疲労を計算し、
     前記余寿命評価部は、前記設計疲労と前記実疲労を用いて余寿命を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    A method for diagnosing the remaining life of a wind power generator using a remaining life diagnosis device,
    The remaining life diagnosis device has a fatigue model creation unit, a design fatigue calculation unit, an actual fatigue calculation unit, and a remaining life evaluation unit,
    The fatigue model creation unit models the fatigue characteristics of the wind turbine generator,
    The design fatigue calculation unit calculates design fatigue from the fatigue characteristics and design wind conditions,
    The actual fatigue calculation unit calculates the actual fatigue from the fatigue characteristics and the actual wind conditions at the construction site of the wind turbine generator,
    A method for diagnosing the remaining life of a wind power generator, wherein the remaining life evaluation unit calculates the remaining life using the design fatigue and the actual fatigue.
  2.  請求項1に記載の風力発電装置の余寿命診断方法において、
     前記設計疲労演算部に用いられる前記設計風況が、年平均風速と乱流クラスによって定義される
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 1,
    A method for diagnosing the remaining life of a wind power generator, wherein the design wind condition used in the design fatigue calculation unit is defined by an annual average wind speed and a turbulence class.
  3.  請求項2に記載の風力発電装置の余寿命診断方法において、
     前記実疲労演算部に用いられる前記実風況が、前記風力発電装置で計測された風速および乱流強度である
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 2,
    A method for diagnosing the remaining life of a wind turbine generator, wherein the actual wind conditions used in the actual fatigue calculation unit are wind speed and turbulence intensity measured by the wind turbine generator.
  4.  請求項1に記載の風力発電装置の余寿命診断方法において、
     前記余寿命評価部は、前記実疲労を前記設計疲労で除した疲労損傷度を用いて、前記余寿命を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 1,
    The remaining life assessment method for a wind power generator, wherein the remaining life evaluation unit calculates the remaining life using a fatigue damage degree obtained by dividing the actual fatigue by the design fatigue.
  5.  請求項1から4のいずれかに記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部は、前記風力発電装置の構成要素の疲労等価荷重を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to any one of claims 1 to 4,
    A method for diagnosing the remaining life of a wind power generator, wherein the fatigue model creation unit calculates a fatigue equivalent load of a component of the wind power generator.
  6.  請求項5に記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部は、前記風力発電装置のブレードの疲労等価荷重を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 5,
    A method for diagnosing the remaining life of a wind power generator, wherein the fatigue model creation unit calculates a fatigue equivalent load of a blade of the wind power generator.
  7.  請求項6に記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部は、前記風力発電装置で計測された風速と回転数を使用して前記ブレードの前記疲労等価荷重を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 6,
    A method for diagnosing a remaining life of a wind power generator, wherein the fatigue model creation unit calculates the fatigue equivalent load of the blade using wind speed and rotation speed measured by the wind power generator.
  8.  請求項7に記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部は、前記風力発電装置のロータ直径、ブレード質量、ブレード重心からロータ面内方向の前記ブレードの前記疲労等価荷重を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 7,
    The fatigue model creation unit calculates the fatigue equivalent load of the blade in the in-plane direction of the rotor from the rotor diameter, the blade mass, and the center of gravity of the blade of the wind turbine generator.
  9.  請求項7に記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部は、前記風力発電装置のブレード形状およびねじり角の理論式からロータ面外方向の前記ブレードの前記疲労等価荷重を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 7,
    A method for diagnosing a remaining life of a wind power generator, wherein the fatigue model creation unit calculates the fatigue equivalent load of the blade in the out-of-plane direction of the rotor from a theoretical formula of blade shape and torsion angle of the wind power generator.
  10.  請求項9に記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部で用いる前記ねじり角の理論式において、前記風力発電装置で計測された風速と回転数の関係から算出した最適周速比を用いる
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 9,
    Remaining life diagnosis of a wind power generator, characterized in that an optimum circumferential speed ratio calculated from a relationship between wind speed and rotation speed measured by the wind power generator is used in the theoretical formula of the torsion angle used in the fatigue model creation unit. Method.
  11.  請求項9に記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部で用いる前記ブレード形状には、前記ブレードの写真を用いる
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 9,
    A method for diagnosing the remaining life of a wind power generator, wherein a photograph of the blade is used as the shape of the blade used in the fatigue model creation unit.
  12.  請求項1に記載の風力発電装置の余寿命診断方法において、
     前記疲労モデル作成部は、ブレードの形状および風力発電装置の運転条件を推定し、数値シミュレーションを用いて、ブレードに作用する回転面内方向および面外方向の疲労等価荷重を計算する
     ことを特徴とする風力発電装置の余寿命診断方法。
    In the method for diagnosing the remaining life of a wind turbine generator according to claim 1,
    The fatigue model creation unit estimates the shape of the blade and the operating conditions of the wind power generator, and uses numerical simulation to calculate the equivalent fatigue load acting on the blade in the in-plane direction and out-of-plane direction. A method for diagnosing the remaining life of a wind turbine generator.
  13.  風力発電装置の疲労特性をモデル化する疲労モデル作成部と、
     前記疲労特性と設計風況とから設計疲労を計算する設計疲労演算部と、
     前記疲労特性と風力発電装置の建設地における実風況とから実疲労を計算する実疲労演算部と、
     前記設計疲労と前記実疲労を用いて余寿命を計算する余寿命評価部とを備える
     ことを特徴とする風力発電装置の余寿命診断装置。
    a fatigue model creation unit that models the fatigue characteristics of the wind power generator;
    a design fatigue calculation unit that calculates design fatigue from the fatigue characteristics and design wind conditions;
    an actual fatigue calculation unit that calculates actual fatigue from the fatigue characteristics and the actual wind conditions at the construction site of the wind turbine generator;
    A remaining life assessment device for a wind power generator, comprising: a remaining life evaluation unit that calculates a remaining life using the design fatigue and the actual fatigue.
PCT/JP2022/009676 2021-06-22 2022-03-07 Method and device for diagnosing remaining service life of wind power generator WO2022270025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103015A JP2023002029A (en) 2021-06-22 2021-06-22 Method and device for diagnosing remaining service life of wind power generator
JP2021-103015 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270025A1 true WO2022270025A1 (en) 2022-12-29

Family

ID=84544870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009676 WO2022270025A1 (en) 2021-06-22 2022-03-07 Method and device for diagnosing remaining service life of wind power generator

Country Status (2)

Country Link
JP (1) JP2023002029A (en)
WO (1) WO2022270025A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048239A (en) * 2008-08-25 2010-03-04 Mitsubishi Heavy Ind Ltd Device, method, and program for adjusting operation limit of wind turbin
JP2015117682A (en) * 2013-12-20 2015-06-25 三菱重工業株式会社 Wind generator monitoring system and wind generator monitoring method
JP2016188612A (en) * 2015-03-30 2016-11-04 三菱重工業株式会社 Fatigue evaluation system, wind power generation device mounted with the same and fatigue evaluation method for wind power generation device
JP2018091328A (en) * 2016-11-28 2018-06-14 株式会社リアムコンパクト Disturbance evaluation device, disturbance evaluation method and program
JP2018185171A (en) * 2017-04-24 2018-11-22 株式会社東芝 Fatigue life analysis apparatus for windmill power generator, wind power generation system, and fatigue life analysis method for windmill power generator
CN109340062A (en) * 2018-12-18 2019-02-15 国电联合动力技术有限公司 A kind of fatigue damage prediction technique of low wind speed Wind turbines number twins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048239A (en) * 2008-08-25 2010-03-04 Mitsubishi Heavy Ind Ltd Device, method, and program for adjusting operation limit of wind turbin
JP2015117682A (en) * 2013-12-20 2015-06-25 三菱重工業株式会社 Wind generator monitoring system and wind generator monitoring method
JP2016188612A (en) * 2015-03-30 2016-11-04 三菱重工業株式会社 Fatigue evaluation system, wind power generation device mounted with the same and fatigue evaluation method for wind power generation device
JP2018091328A (en) * 2016-11-28 2018-06-14 株式会社リアムコンパクト Disturbance evaluation device, disturbance evaluation method and program
JP2018185171A (en) * 2017-04-24 2018-11-22 株式会社東芝 Fatigue life analysis apparatus for windmill power generator, wind power generation system, and fatigue life analysis method for windmill power generator
CN109340062A (en) * 2018-12-18 2019-02-15 国电联合动力技术有限公司 A kind of fatigue damage prediction technique of low wind speed Wind turbines number twins

Also Published As

Publication number Publication date
JP2023002029A (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP6906354B2 (en) Wind turbine generator fatigue damage calculation device, wind power generation system, and wind turbine generator fatigue damage calculation method
JP6674031B2 (en) State monitoring apparatus for wind power generator, state monitoring system having the same, and method for monitoring state of wind power generator
JP5984791B2 (en) Wind power generator monitoring system and monitoring method
US11713747B2 (en) Wind turbine control method
US9863402B2 (en) System and method for operating a wind turbine based on rotor blade margin
US20130302161A1 (en) Controller of wind turbine and wind turbine
US11300102B2 (en) System and method for augmenting control of a wind turbine assembly
Scarlett et al. Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions
JP6309911B2 (en) Fatigue evaluation system, wind turbine generator including the same, and fatigue assessment method for wind turbine generator
JP2020502424A (en) Wind turbine power station level load management control strategy
JP7263096B2 (en) Maintenance method for wind power generation system and wind power generation device
TWI729349B (en) Wind power generation device and wind power generation system
EP2853730A1 (en) Monitoring mechanical load of a wind turbine component
WO2022270025A1 (en) Method and device for diagnosing remaining service life of wind power generator
Knudsen et al. Multi-rotor wind turbine control challenge-a benchmark for advanced control development
Smolka et al. Are sea state measurements required for fatigue load monitoring of offshore wind turbines?
Gambuzza et al. Model-scale experiments of passive pitch control for tidal turbines
Plumley The smart rotor wind turbine
Shi Model-based detection for ice on wind turbine blades
Muto et al. Model-based load estimation for wind turbine blade with Kalman filter
CN115111115A (en) System and method for operating power generation assets
Perez-Becker et al. Investigations on the Fatigue Load Reduction Potential of Advanced Control Strategies for Multi-MW Wind Turbines using a Free Vortex Wake Model
Namura et al. Model-based blade load monitoring of floating wind turbine enhanced by data assimilation
Myrent et al. Pitch error and shear web disbond detection on wind turbine blades for offshore structural health and prognostics management
Noppe et al. High frequent scada-based thrust load modeling of wind turbines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827946

Country of ref document: EP

Kind code of ref document: A1