WO2022269853A1 - Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method - Google Patents

Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method Download PDF

Info

Publication number
WO2022269853A1
WO2022269853A1 PCT/JP2021/023944 JP2021023944W WO2022269853A1 WO 2022269853 A1 WO2022269853 A1 WO 2022269853A1 JP 2021023944 W JP2021023944 W JP 2021023944W WO 2022269853 A1 WO2022269853 A1 WO 2022269853A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
uplink data
subscriber line
amount
onu
Prior art date
Application number
PCT/JP2021/023944
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 喜多
真良 関口
智暁 吉田
聡志 嶌津
隆義 田代
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/023944 priority Critical patent/WO2022269853A1/en
Priority to JP2023529362A priority patent/JPWO2022269853A1/ja
Publication of WO2022269853A1 publication Critical patent/WO2022269853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks

Definitions

  • the present invention relates to a band allocation device, a subscriber line terminal device, and a band allocation method.
  • FTTH Fiber To The Home
  • Mainstay FTTH services in Japan include, for example, GE-PON (Gigabit Ethernet PON) and 10G-EPON (10 Gigabit Ethernet PON), which realize gigabit-class transmission speeds.
  • TDMA Time Division Multiple Access
  • TDMA Time Division Multiple Access
  • one of the functions required to operate GE-PON and 10G-EPON as a system is a DBA (Dynamic Bandwidth Allocation) function.
  • the DBA function is a bandwidth control function that dynamically allocates bandwidth in upstream communication according to traffic volume.
  • the DBA function realizes efficient upstream bandwidth without generating unused bandwidth by appropriately switching the allocated bandwidth according to the status of upstream communication traffic flowing through each ONU.
  • the OLT indicates the transmission start time and transmission amount of uplink data using a GATE frame so that each ONU can transmit uplink data without time collision.
  • each ONU notifies the OLT of the amount of uplink data waiting for transmission stored in its own ONU buffer by means of a REPORT frame.
  • the DBA function is realized by exchanging data using the GATE frame and the REPORT frame.
  • the ONU In upstream communication, when the interval from data transmission to the REPORT frame transmission start time is short, the ONU waits for the transmission permitted upstream data until the transmission start time. It is necessary to calculate the amount of data. However, there may be ONUs that do not have transmission reservation queues. ONUs that do not have a reserved transmission queue calculate the amount of data reserved for transmission permitted by the OLT, and the remaining amount of accumulated data after excluding the reserved data amount The amount of data (that is, the amount of uplink data waiting for a transmission request) is calculated.
  • the present invention provides a bandwidth allocation device, a subscriber line terminal device, and a subscriber line terminal device capable of enabling transmission of uplink data even if ONUs having no transmission reservation queue are included in a PON system.
  • An object of the present invention is to provide a bandwidth allocation method.
  • a detection unit that detects that a subscriber line terminating device that does not have a transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time is connected to a passive optical network; , during an operation period of upstream band control between the subscriber line terminating equipment and the subscriber line terminal equipment, the amount of uplink data permitted to be transmitted in the subscriber line terminating equipment is transmitted;
  • a bandwidth allocation device comprising: a setting unit that provides a calculation time that is a time required for calculation of the data amount of data and calculation of the data amount of uplink data to be requested for transmission.
  • an acquisition unit acquires identification information identifying a subscriber line terminating device connected to a passive optical network; a judgment unit for judging whether or not a transmission reservation queue for waiting data transmission start time is provided; and a setting change unit that provides a predetermined calculation time between operation cycles of upstream bandwidth control.
  • a detection unit that detects that a subscriber line terminating device that does not have a transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time is connected to a passive optical network; , an amount of uplink data to be transmitted out of the amount of uplink data permitted to be transmitted in said subscriber line terminating apparatus during an operation cycle of uplink band control between said subscriber line terminating apparatus and its own apparatus; and the amount of uplink data to be requested for transmission; subscriber line terminal equipment.
  • an acquisition unit acquires identification information identifying a subscriber line terminating device connected to a passive optical network; a judgment unit for judging whether or not a transmission reservation queue for waiting data transmission start time is provided;
  • the subscriber line terminal equipment includes a setting changing unit that provides a predetermined calculation time between operation cycles of upstream band control, and a transmitting/receiving unit that transmits/receives data to/from the subscriber line terminating equipment.
  • An aspect of the present invention is a detection step of detecting that a subscriber line terminating equipment that does not have a transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time is connected to the passive optical network; , during an operation period of upstream band control between the subscriber line terminating equipment and the subscriber line terminal equipment, the amount of uplink data permitted to be transmitted in the subscriber line terminating equipment is transmitted;
  • a bandwidth allocation method comprising a setting step of setting a calculation time, which is the time required for calculating the data amount of data and calculating the data amount of uplink data to be requested for transmission.
  • the present invention even if an ONU that does not have a transmission reservation queue is included in the PON system, it is possible to transmit upstream data and improve the efficiency of using the band.
  • FIG. 1 is a block diagram showing the configuration of a general PON
  • FIG. FIG. 4 is a diagram showing the flow of transmission of uplink data when there is only one ONU 20
  • FIG. 4 is a diagram showing the flow of transmission of uplink data when there are two ONUs 20
  • FIG. 4 is a schematic diagram for explaining changes in the amount of accumulated uplink data
  • FIG. 4 is a schematic diagram showing an example of the configuration of a granted queue
  • It is a figure which shows the flow of transmission of uplink data by PON1 in embodiment of this invention.
  • FIG. 2 is a diagram showing a flow of transmission of uplink data by a conventional PON
  • 3 is a block diagram showing the functional configuration of OLT 10 in the embodiment of the present invention
  • FIG. 3 is a diagram showing an example of the configuration of a pre-report GAP database 105.
  • FIG. 4 is a flow chart showing the operation of OLT 1 in the embodiment of the present invention
  • PON Passive Optical Network
  • a PON does not perform optical-to-electrical conversion, but uses low-cost passive optical splitters to split an optical signal into multiple parts.
  • the PON can realize an economical network by sharing one optical fiber with a plurality of users.
  • Mainstay FTTH services in Japan include, for example, GE-PON, which achieves gigabit-class transmission speeds, and 10G-EPON, which has ten times the bandwidth of GE-PON.
  • FIG. 1 is a block diagram showing the configuration of a general PON.
  • the PON 1 includes an OLT (Optical Line Terminal) 10 and a plurality of (n in FIG. 1) ONUs (Optical Network Units). 20 , an optical fiber 30 and an optical splitter 40 .
  • OLT Optical Line Terminal
  • ONUs Optical Network Units
  • the OLT 10 is installed in the communication carrier's office, and the ONU 20 is installed in the user's home or premises.
  • the optical fiber 30 is laid between the office of the telecommunications carrier and the home or premises of the user, and the optical splitter 40 branches the optical fiber 30 .
  • a plurality of ONUs 20 are connected to one OLT 10 by installing an optical splitter 40 that multiplexes and demultiplexes optical signals between the OLT 10 and the ONUs 20 .
  • the ONU 20 converts an optical signal from the OLT 10 into an electrical signal, and converts an electrical signal from a user's terminal device (for example, a PC, etc.) into an optical signal and transfers the optical signal to the OLT 10 .
  • the OLT 10 plays a role of transferring an optical signal from the ONU 20 to a host device/network (for example, the Internet), transferring a signal from the host device/network to the ONU 20, and controlling and monitoring the PON section and the ONU 20.
  • TDM Time Division Multiplexing
  • downlink communication is a technique for multiplexing and transmitting signals of a plurality of users so that they do not overlap in time.
  • downstream signal In downstream communication, the same signal (hereinafter referred to as “downstream signal") is split by the optical splitter 40 and transferred to all ONUs 20 connected to the same OLT 10 . Therefore, each ONU 20 is also transferred with data other than the data addressed to its own ONU 20 . Therefore, each ONU 20 extracts only the data addressed to its own ONU 20 from the transferred data, and discards the other data (addressed to other ONUs 20).
  • uplink communication signals from a plurality of ONUs 20 (hereinafter referred to as “upstream signals”) are multiplexed by the optical splitter 40 . Therefore, if the upstream signals from the ONUs 20 are randomly transmitted, there is a possibility that they will collide on the transmission path. Therefore, TDMA controls the transmission timing of upstream signals from the ONUs 20 and the transmission amount of upstream data so that the upstream signals from each ONU 20 are multiplexed without colliding on the transmission line.
  • a DBA function is one of the functions required to operate GE-PON and 10G-EPON as a system.
  • the DBA function is a bandwidth control function that dynamically allocates bandwidth in upstream communication (hereinafter referred to as "upstream bandwidth") according to traffic volume.
  • upstream bandwidth bandwidth in upstream communication
  • the DBA function can flexibly allocate an upstream bandwidth according to the traffic of upstream communication from each ONU 20 (hereinafter referred to as "upstream traffic"). Since the DBA function allocates the upstream bandwidth only to the ONUs 20 in which upstream traffic is flowing, the upstream bandwidth can be used without waste.
  • the DBA function appropriately switches the bandwidth to be allocated according to the status of upstream traffic flowing through each ONU 20, thereby realizing efficient upstream bandwidth without generating unused bandwidth.
  • the GE-PON and 10G-EPON implement upstream signal control using a protocol called MPCP (Multi Point Control Protocol).
  • MPCP Multi Point Control Protocol
  • the OLT 10 instructs each ONU 20 of the transmission start time and transmission amount using the GATE frame so that each ONU 20 can transmit upstream signals without time collision.
  • each ONU 20 notifies the OLT 10 of the amount of uplink data waiting for transmission accumulated in the buffer of its own ONU 20 by means of a REPORT frame.
  • the DBA function is realized by using the GATE frame and the REPORT frame.
  • the ONU 20 When the ONU 20 receives the upstream data, it stores the upstream data in the buffer for the time being. The ONU 20 writes the amount of accumulated upstream data in a REPORT frame and transmits the REPORT frame to the OLT 10 .
  • the OLT 10 grasps the amount of upstream data accumulated in the ONU 20 from the received REPORT frame.
  • the OLT 10 calculates the upstream bandwidth to be allocated to the ONU 20 based on the accumulated data amount of the ONU 20 and the usage bandwidth of the other ONUs 20 .
  • the OLT 10 calculates the transmission start time and transmission amount of the upstream data of the ONU 20 .
  • the OLT 10 writes the calculated value in the GATE frame and transmits the GATE frame to the ONU 20 .
  • the ONU 20 transmits upstream data at the designated transmission time according to the instructions written in the received GATE frame. At this time, the ONU 20 may notify the amount of uplink data accumulated in the buffer again for the next uplink bandwidth allocation.
  • the OLT 10 can know the status of upstream traffic in each ONU 20, and can appropriately allocate an upstream bandwidth according to the status.
  • the ONU 20 In such uplink communication, if the interval from the transmission of uplink data to the start time of REPORT frame transmission is short, it is desirable that the ONU 20 be provided with a transmission reservation queue (hereinafter referred to as "granted queue"). For example, in this case, the ONU 20 can concurrently calculate the amount of data to be described in the REPORT frame (hereinafter referred to as "report calculation") during data transmission of the granted queue.
  • a transmission reservation queue hereinafter referred to as "granted queue”
  • the PON 1 may accommodate both ONUs 20 with a granted queue and ONUs 20 without a granted queue.
  • the ONU 20 that does not have a granted queue calculates the amount of uplink data reserved for transmission (granted) based on the DATA grant of the GATE frame transmitted from the OLT 10 in a normal queue (for example, a priority queue), and Calculation (report calculation) of the remaining uplink data amount (that is, uplink data amount waiting for a transmission request) excluding the reserved uplink data amount (granted) is performed.
  • Data grant indicates the amount of uplink data permitted to be transmitted by the OLT 10 .
  • the sequential processing means sequentially processing data transmission, calculation of the amount of data reserved for transmission, and calculation of the amount of data waiting for a transmission request.
  • the ONU 20 cannot inform the OLT 10 of the amount of upstream data accumulated.
  • the OLT 10 cannot give permission to transmit uplink data to the ONU 20, so the ONU 20 may not be able to transmit uplink data.
  • the OLT 10 in this embodiment described below secures the time required for the ONU 20 to calculate the reserved transmission of DATA grant and the amount of uplink data waiting for a transmission request between the operation cycles of upstream band control.
  • a vacant time hereinafter referred to as "pre-REPORT GAP" is provided.
  • pre-REPORT GAP A vacant time
  • the OLT 10 in this embodiment can complete these calculations before the transmission start time of the REPORT frame.
  • FIG. 2 is a diagram showing the flow of transmission of uplink data when there is only one ONU 20.
  • the OLT 10 transmits a GATE frame g1 as shown in FIG. 2 to the ONU 20, for example.
  • a GATE frame g1 includes a Report block and a Data block.
  • the Report block of the GATE frame g1 describes "Grant length: ⁇ 1 TQ". This means that the OLT 10 instructs the ONU 20 to allow time for transmission of the REPORT frame to be 1 TQ.
  • the ONU 20 transmits the REPORT frame to the OLT 10 during the transmission permission time .tangle - solidup.1TQ according to the instruction written in the GATE frame g1.
  • Grant length: 0 1 TQ is described in the Data block of the GATE frame g1.
  • the ONU 20 transmits DATA (uplink data) to the OLT 10 during the transmission permission time 0 1 TQ according to the instruction written in the GATE frame g1.
  • the OLT 10 transmits the GATE frame g2 to the ONU 20 while DATA (up data) is being transmitted from the ONU 20 to the OLT 10 based on the instruction of the GATE frame g1, as shown in FIG. 2, for example.
  • the GATE frame g2 also includes a Report block and a Data block.
  • the Report block of the GATE frame g2 describes "Grant length: 2 TQ". This means that the OLT 10 instructs the ONU 20 to allow the transmission of the REPORT frame by 2 TQ.
  • the ONU 20 transmits the REPORT frame to the OLT 10 during the transmission permission time .tangle - solidup.2TQ according to the instruction written in the GATE frame g2.
  • Grant length: 0 2 TQ is described in the Data block of the GATE frame g2.
  • the ONU 20 transmits DATA (uplink data) to the OLT 10 during the transmission permission time 0 2 TQ according to the instruction written in the GATE frame g2.
  • FIG. 3 is a diagram showing the flow of transmission of upstream data when there are two ONUs 20.
  • the flow of transmission of uplink data when there are three or more ONUs 20 is basically the same as the flow of transmission of uplink data shown in FIG.
  • the OLT 10 collectively receives the transmission request message (REPORT frame) transmitted from ONU#1 and the transmission request message (REPORT frame) transmitted from ONU#2 ((1) in FIG. 3).
  • the OLT 10 When the OLT 10 receives the transmission request messages (REPORT frames) from ONU#1 and ONU#2, it collectively transmits transmission permission messages (GATE frames) to ONU#1 and ONU#2 (Fig. 3 (2)).
  • REPORT frames transmission request messages
  • GATE frames transmission permission messages
  • the OLT 10 grasps the amount of upstream data accumulated in ONU#1 from the transmission request message (REPORT frame) received from ONU#1.
  • the OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#1 in the next operation cycle based on the grasped data amount.
  • the OLT 10 writes the transmission start time and the amount of transmission of the determined uplink data in ONU#1 in a transmission permission message (GATE frame).
  • GATE frame transmission permission message
  • the OLT 10 grasps the amount of upstream data accumulated in ONU#2 from the transmission request message (REPORT frame) received from ONU#2.
  • the OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#2 in the next operation cycle based on the grasped data amount.
  • the OLT 10 writes the transmission start time and the amount of transmission of the determined uplink data in ONU#2 in a transmission permission message (GATE frame).
  • GATE frame transmission permission message
  • the OLT 10 collectively transmits the generated transmission permission message (GATE frame) to ONU#1 and ONU#2.
  • ONU#1 and ONU#2 receive the transmission permission message (GATE frame) transmitted from OLT 10 respectively.
  • ONU#1 and ONU#2 recognize the value of the transmission start time and transmission amount of uplink data specified for their own ONU 20 from the contents described in the transmission permission message (GATE frame). ONU#1 and ONU#2 each transmit the amount of uplink data specified by the transmission permission message (GATE frame) to the OLT 10 at the transmission start time of the uplink data specified by the transmission permission message (GATE frame). ((3) in FIG. 3).
  • FIG. 4 is a schematic diagram for explaining changes in the amount of accumulated uplink data.
  • FIG. 5 is a schematic diagram showing an example of the configuration of the granted queue. As shown in FIG. 5, for example, uplink data accumulated in queue #p and uplink data accumulated in queue #q are sequentially transferred to the granted queue (reserved transmission queue) under appropriate control by the scheduler. be transferred.
  • the ONU 20 does not have a granted queue (transmission reservation queue)
  • the ONU 20 cannot simultaneously process the transmission of the granted DATA and the above two calculations (that is, the data grant transmission reservation calculation and the REPORT calculation). Therefore, sequential processing is performed.
  • the REPORT calculation will not be completed in time for the transmission start time of the transmission request message (REPORT frame) specified by the Report grant of the transmission permission message (GATE frame).
  • the transmission request message (REPORT frame) will not be transmitted from the ONU 20 to the OLT 10, so the next transmission from the OLT 10 to the ONU 20 In the permission message (GATE frame), no Data grant is assigned. As a result, the ONU 20 may become unable to transmit uplink data.
  • FIG. 4 shows the amount of upstream data accumulated in the ONU 20 queue at six points in time from point (a) to point (f). As shown in FIG. 4, it is assumed here that the ONU 20 has two queues ("queue#p" and "queue#q"). Here, queue #p is a queue in which high-priority uplink data is accumulated, and queue #q is a queue in which low-priority uplink data is accumulated.
  • queue #p indicates the amount of uplink data for which the transmission request has been reported (reported) and the amount of uplink data for which transmission has been reserved (granted).
  • the queue #q also indicates the amount of uplink data for which transmission requests have been reported (reported) and the amount of uplink data for which transmission has been reserved (granted).
  • the amount of uplink data (reported) for which the transmission request has been reported is the amount of uplink data that the ONU 20 has already reported to the OLT 10 with the transmission request message (REPORT frame).
  • the amount of uplink data reserved for transmission (granted) here means that transmission is permitted by a transmission permission message (GATE frame) transmitted from the OLT 10 to the ONU 20 in response to the above transmission request message (REPORT frame). This is the data amount of uplink data corresponding to minutes.
  • the ONU 20 transmits the amount of upstream data (granted DATA) reserved for transmission to the OLT 10 at the transmission timing specified by the received transmission permission message (GATE frame). After that, the amount of uplink data accumulated in queue #p and queue #q changes from the state at time (a) shown in FIG. 4 to the state at time (b).
  • the queue #p contains the amount of uplink data for which a transmission request has been reported (reported) and the amount of uplink data for which a transmission request has not yet been made (that is, the newly added Data amount of uplink data) and are shown. Also, in queue #q, the amount of uplink data for which a transmission request has been reported (reported), the amount of uplink data for which transmission has not been requested (that is, the amount of newly added uplink data), It is shown.
  • the data amount of unsent requested upstream data is the data amount of newly generated upstream data after the previous REPORT calculation was performed.
  • the data amount (granted) of the upstream data reserved for transmission at time (a) is reduced to , queue #p and queue #q.
  • the ONU 20 Based on the data amount (Data grant) of the uplink data permitted to be transmitted described in the received transmission permission message (GATE frame), the ONU 20 determines the amount of uplink data that can be transmitted in the corresponding cycle in queue #p and queue #q. Calculate the amount (granted) and reserve it for transmission.
  • the amount of uplink data accumulated in queue #p and queue #q changes from the state at time (b) shown in FIG. 4 to the state at time (c).
  • the queue #p contains the data amount of uplink data reserved for transmission (granted) and the data amount of uplink data not yet requested to be transmitted (that is, the newly added uplink data amount). Data volume of data) and are shown.
  • queue #q the amount of uplink data for which a transmission request has already been reported (reported), the amount of uplink data for which transmission has been reserved (granted), and the amount of uplink data for which transmission has not been requested are stored. amount (that is, the data amount of the newly added uplink data) is shown.
  • the queue #p in the column of time (b) is changed to the amount of uplink data reserved for transmission (granted).
  • queue #q a part of the data amount (reported) of the uplink data for which the transmission request shown in the column of time (b) has been reported is changed to the data amount (granted) for the uplink data for which transmission is reserved. It is shown that
  • queue #p which is a high-priority queue
  • queue #q which is a low-priority queue
  • the ONU 20 determines the amount of accumulated upstream data (that is, the amount of upstream data to be requested for transmission) to be written in the next transmission request message (REPORT frame). data volume of data).
  • the amount of uplink data accumulated in queue #p and queue #q changes from the state at time (c) shown in FIG. 4 to the state at time (d).
  • queue #p contains the amount of uplink data reserved for transmission (granted) and the amount of uplink data to be requested for transmission (that is, uplink data waiting for transmission request). amount) and are indicated.
  • the queue #q also indicates the amount of uplink data for which transmission has been reserved (granted) and the amount of uplink data to be requested for transmission (that is, the amount of uplink data waiting for a transmission request). .
  • the amount of uplink data to be requested for transmission contained in queue #p is (ie, the data amount of the newly added uplink data).
  • the amount of uplink data to be requested for transmission contained in queue #q is the amount of uplink data for which transmission has not been requested at time (c) (that is, the amount of uplink data newly added). data amount) and the data amount obtained by subtracting the data amount of uplink data reserved for transmission (granted) from the newly added uplink data amount (reported) for which the transmission request has been reported. This is the total amount of data.
  • the ONU 20 generates a transmission request message (REPORT frame) describing the total amount of uplink data to be requested for transmission (for report in FIG. 4) contained in queue #p and queue #q calculated above. ONU 20 transmits the generated transmission request message (REPORT frame) to OLT 10 .
  • the amount of uplink data accumulated in queue #p and queue #q changes from the state at time (d) shown in FIG. 4 to the state at time (e).
  • the queue #p contains the amount of uplink data for which a transmission request has been reported (reported) and the amount of uplink data for which transmission is reserved (granted). ,It is shown.
  • the queue #q also indicates the amount of uplink data for which a transmission request has been reported (reported) and the amount of uplink data for which transmission has been reserved (granted).
  • the amount of uplink data reserved for transmission is determined from the data amount (reported) of uplink data for which a transmission request has been reported, which is included in queue #p and queue #q shown in the column of time (e) in FIG.
  • the amount of data excluding the amount of data (granted) corresponds to the amount of uplink data (for report in FIG. 4) to be requested for transmission contained in queue #p and queue #q shown in the column of time (d).
  • REPORT frame transmission request message
  • the ONU 20 transmits the amount of upstream data (granted DATA) reserved for transmission to the OLT 10 at the transmission timing specified by the received transmission permission message (GATE frame). After that, the amount of upstream data accumulated in queue #p and queue #q changes from the state at time (e) shown in FIG. 4 to the state at time (f).
  • GATE frame the transmission permission message
  • queue #p indicates the amount of uplink data (reported) for which the transmission request has already been reported.
  • the queue #q also indicates the amount of uplink data (reported) for which the transmission request has been reported.
  • the data amount (granted) of the upstream data reserved for transmission at time (d) is reduced to Removed from queue #p and queue #q.
  • the upstream data accumulated in the ONU 20 queue is sequentially transmitted to the OLT 10 .
  • the ONU 20 receives a transmission permission message (GATE frame) and transmits a transmission request message (REPORT frame) (that is, between time (b) and time (d) in FIG. 4). 2), it is necessary to calculate the data amount (granted) of uplink data reserved for transmission contained in queue #p and queue #q and to calculate the data amount of uplink data to be requested for transmission (that is, REPORT calculation).
  • the OLT 10 in this embodiment provides a time (pre-REPORT GAP) for performing data grant transmission reservation calculation and REPORT calculation between the operation cycles of upstream band control.
  • pre-REPORT GAP a time for performing data grant transmission reservation calculation and REPORT calculation between the operation cycles of upstream band control.
  • the above configuration is a configuration in which the operation cycle is changed by providing a pre-REPORT GAP between operation cycles, but it is not limited to this configuration.
  • the configuration may be such that the time corresponding to the operating cycle-pre-REPORT GAP is changed to the new operating cycle.
  • FIG. 6 is a diagram showing the flow of transmission of uplink data by PON1 in the embodiment of the present invention.
  • FIG. 6 shows the flow of upstream data transmission when there are two ONUs 20 .
  • the flow of transmission of uplink data when there are three or more ONUs 20 is basically the same as the flow of transmission of uplink data shown in FIG.
  • the OLT 10 collectively receives the transmission request message (REPORT frame) transmitted from ONU#1 and the transmission request message (REPORT frame) transmitted from ONU#2 ((1) in FIG. 6).
  • the OLT 10 When the OLT 10 receives the transmission request messages (REPORT frames) from ONU#1 and ONU#2, it collectively transmits transmission permission messages (GATE frames) to ONU#1 and ONU#2 (Fig. 6 (2)).
  • REPORT frames transmission request messages
  • GATE frames transmission permission messages
  • the OLT 10 grasps the amount of upstream data accumulated in ONU#1 from the transmission request message (REPORT frame) received from ONU#1.
  • the OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#1 in the next operation cycle based on the grasped data amount.
  • the OLT 10 writes the determined transmission start time and transmission amount of uplink data in a transmission permission message (GATE frame).
  • GATE frame transmission permission message
  • the OLT 10 grasps the amount of upstream data accumulated in ONU#2 from the transmission request message (REPORT frame) received from ONU#2.
  • the OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#2 in the next operation cycle based on the grasped data amount.
  • the OLT 10 writes the determined transmission start time and transmission amount of uplink data in a transmission permission message (GATE frame).
  • the OLT 10 writes the transmission start time in consideration of the pre-REPORT GAP shown in FIG. 6 in the transmission permission message (GATE frame). Specifically, the OLT 10 writes the transmission start time of the REPORT frame and the transmission start time of the uplink data delayed by the pre-REPORT GAP in the transmission permission message (GATE frame).
  • the OLT 10 collectively transmits the generated transmission permission message (GATE frame) to ONU#1 and ONU#2.
  • ONU#1 and ONU#2 receive the transmission permission message (GATE frame) transmitted from OLT 10 respectively.
  • ONU#1 and ONU#2 recognize the transmission start time and the amount of transmission of uplink data designated for their own ONU 20 from the contents described in the transmission permission message (GATE frame).
  • ONU#1 and ONU#2 transmit a transmission permission message (REPORT frame) at the transmission start time specified by the transmission permission message (GATE frame).
  • the transmission start time specified by the transmission permission message (GATE frame) takes into consideration the pre-REPORT GAP. Before the transmission start time of (REPORT frame) arrives, the data grant transmission reservation calculation and the REPORT calculation can be completed.
  • ONU#1 and ONU#2 each transmit the amount of uplink data specified by the transmission permission message (GATE frame) to the OLT 10 at the transmission start time of the uplink data specified by the transmission permission message (GATE frame). ((3) in FIG. 6).
  • FIG. 7 is a diagram showing the flow of transmission of uplink data by a conventional PON.
  • the conventional PON does not consider the pre-REPORT GAP. Therefore, in FIG. 7, for example, in ONU#2, the time from the reception of the transmission permission message (GATE frame) to the transmission start time of the transmission request message (REPORT frame) is considerably shorter than in FIG. It's becoming
  • REPORT frame the transmission start time of the transmission request message (REPORT frame) specified by the Report Grant of the transmission permission message (GATE frame)
  • REPORT calculation will not be done in time.
  • Report grant indicates the transmission start time of the transmission request message (REPORT frame) permitted by the OLT 10 . If the REPORT calculation cannot be completed by the transmission start time, ONU#2 will not be able to transmit upstream data to the OLT 10 in the next operation cycle.
  • FIG. 8 is a block diagram showing the functional configuration of the OLT 10 according to the embodiment of the invention.
  • the OLT 10 includes a signal transmission/reception unit 101, a MAC (Media Access Control) processing unit 102, an OAM (Operations, Administration, Maintenance) processing unit 103, and an ONU (Optical Network Unit) identification determination unit. 104, a pre-REPORT GAP database 105, a dynamic band allocation operation unit 106, an MPCP (Multi-Point Control Protocol) processing unit 107, and a signal transmission/reception unit .
  • MAC Media Access Control
  • OAM Operations, Administration, Maintenance
  • ONU Optical Network Unit
  • the signal transmission/reception unit 101 transmits and receives signals between each ONU and its own OLT 10 .
  • the MAC processing unit 102 performs priority control, transfer processing, and the like.
  • the OAM processing unit 103 executes maintenance/operation management functions. Also, the OAM processing unit 103 acquires ONU information.
  • the ONU identification determination unit 104 determines whether or not the pre-REPORT GAP is required based on the ONU identifier indicated by the ONU information. If the ONU identification determination unit 104 determines that the pre-REPORT GAP is necessary, it acquires the value of the pre-REPORT GAP corresponding to the ONU identifier from the pre-REPORT GAP database 105, and sends it to the dynamic bandwidth allocation operation unit 106. Output.
  • FIG. 9 is a diagram showing an example of the configuration of the pre-REPORT GAP database 105.
  • the pre-REPORT GAP database 105 is data in which ONU identifiers and pre-REPORT GAP values are associated with each other.
  • the ONU 20 whose ONU identifier is A does not require a pre-REPORT GAP
  • the ONU 20 whose ONU identifier is B requires a pre-REPORT GAP of 10 [ ⁇ s]
  • the ONU identifier is C. It indicates that a certain ONU 20 requires a pre-REPORT GAP of 15 [ ⁇ s].
  • the dynamic bandwidth allocation operation unit 106 changes the setting of the operation cycle so that the pre-REPORT GAP based on the acquired value is provided between the operation cycles of upstream bandwidth control.
  • the MPCP processing unit 107 recognizes a plurality of ONUs 20 connected to the PON 1, and calculates the RTT (Round Trip Time: round-trip delay time from the OLT 10 to the ONU 20) required for communication between each ONU 20 and its own OLT 10.
  • RTT Red Trip Time: round-trip delay time from the OLT 10 to the ONU 20
  • the signal transmission/reception unit 108 transmits and receives signals between the service network and its own OLT 10 via an SNI (Service Node Interface) port.
  • SNI Service Node Interface
  • FIG. 10 is a flow chart showing the operation of the OLT 10 according to the embodiment of the invention.
  • the OAM processing unit 103 monitors connection of a new ONU 20 to the PON1 (step S01). When the OAM processing unit 103 detects that a new ONU 20 is connected to the PON 1 (step S ⁇ b>01 ), it outputs the ONU information of the newly connected ONU 20 to the ONU identification determination unit 104 .
  • the ONU identification determination section 104 acquires ONU information output from the OAM processing section 103 .
  • the ONU identification determination unit 104 identifies the newly connected ONU 20 by specifying the ONU identifier from the acquired ONU information (step S02).
  • the ONU identification determination unit 104 determines whether or not the identified ONU 20 requires the pre-REPORT GAP (step S03). Specifically, the ONU identification determination unit 104 determines whether the identified ONU 20 is an ONU 20 with a granted queue (transmission reservation queue). Information for identifying whether or not the identified ONU 20 requires the pre-REPORT GAP is pre-stored in a storage medium (not shown) of the OLT 10 or the like. Alternatively, the information for identifying whether the identified ONU 20 requires the pre-REPORT GAP may be stored in the pre-REPORT GAP database 105 shown in FIG. 9, for example.
  • step S03 NO
  • the process returns to step S01, and the OAM processing unit 103 starts connecting the new ONU 20 to the PON1. Continue monitoring.
  • the ONU identification determination unit 104 refers to the pre-REPORT GAP database 105 and identifies the ONU 20 identified in step S02. acquires the pre-REPORT GAP value corresponding to the ONU identifier of .
  • the ONU identification determination unit 104 compares the acquired pre-REPORT GAP value with the currently set pre-REPORT GAP value (step S04).
  • step S04 NO
  • the process returns to step S01, and the OAM processing unit 103 continues to monitor new ONU 20 connections to PON1.
  • the ONU identification determination unit 104 determines that the identified ONU 20 output to the dynamic band allocation operation unit 106 the value of the pre-REPORT GAP corresponding to the ONU identifier of .
  • the dynamic band allocation operation unit 106 acquires the pre-REPORT GAP value output from the ONU identification determination unit 104 .
  • the dynamic band allocation operation unit 106 changes the setting of the operation cycle so that the pre-REPORT GAP is suitable for the connected ONU 20 .
  • the dynamic bandwidth allocation operation unit 106 changes the setting of the pre-REPORT GAP during the operation cycle of the upstream bandwidth control to the value obtained above (step S05).
  • the OAM processing unit 103 continues to monitor the connection of the new ONU 20 to the PON1. Note that the operation of the OLT 10 shown in the flowchart of FIG. 10 ends when, for example, the PON 1 stops functioning.
  • the OLT 10 in this embodiment provides sufficient time (pre-REPORT GAP) to perform data grant transmission reservation calculation and REPORT calculation between the operation cycles of upstream band control. Change the setting of the operation cycle so that it is provided.
  • the OLT 10 in this embodiment can, even if the ONU 20 does not have a granted queue (reserved transmission queue), It becomes possible to complete the calculations necessary for transmitting uplink data. This improves the upstream throughput.
  • the calculations necessary for transmitting uplink data are, as described above, the calculation of the amount of uplink data reserved for transmission (granted) and the calculation of the amount of uplink data to be requested for transmission (that is, REPORT calculation).
  • the OLT 10 in this embodiment can perform upstream communication even in a PON 1 in which both ONUs 20 with a granted queue and ONUs 20 without a granted queue are accommodated. can be made possible.
  • the bandwidth allocation device includes the detection unit and the setting unit.
  • the bandwidth allocation device is the OLT 1 in the embodiment
  • the detection unit is the OAM processing unit 103 in the embodiment
  • the setting unit is the dynamic bandwidth allocation operation unit in the embodiment.
  • the detection unit detects that a subscriber line terminating device that does not have a transmission reservation queue that waits for transmission-permitted uplink data until the transmission start time is connected to the passive optical network.
  • the passive optical network is PON1 in the embodiment
  • the upstream data permitted to be transmitted is the granted DATA in the embodiment
  • the transmission reservation queue is the granted queue in the embodiment
  • the subscriber line terminating equipment is It is ONU20 in embodiment.
  • the setting unit determines the amount of uplink data permitted to be transmitted in the subscriber line terminating equipment during an operation cycle of uplink band control between the subscriber line terminating equipment and the subscriber line terminating equipment.
  • a calculation time which is the time required for calculation of the data amount of data and calculation of the data amount of uplink data to be requested for transmission, is provided.
  • the subscriber line terminal equipment is the OLT 10 in the embodiment
  • the calculation time is the pre-REPORT GAP in the embodiment.
  • the bandwidth allocation device includes the acquisition unit, the determination unit, and the setting change unit.
  • the bandwidth allocation device is the OLT 1 in the embodiment
  • the acquisition unit is the OAM processing unit 103 in the embodiment
  • the determination unit is the ONU identification determination unit 104 in the embodiment
  • the setting change unit is the is the dynamic bandwidth allocation operation unit 106 in .
  • the acquisition unit acquires identification information that identifies the subscriber line terminal equipment connected to the passive optical network.
  • the passive optical network is PON1 in the embodiment
  • the subscriber line terminal is ONU2 in the embodiment
  • the identification information is the ONU identifier in the embodiment.
  • the determining unit determines whether or not the subscriber line terminating equipment has a transmission reservation queue for waiting uplink data permitted to be transmitted until the transmission start time.
  • the uplink data permitted to be transmitted is the granted DATA in the embodiment
  • the transmission reservation queue is the granted queue in the embodiment.
  • the setting change unit When it is determined that the subscriber line terminating equipment does not have a transmission reservation queue, the setting change unit provides a predetermined calculation time between operation cycles of upstream bandwidth control in the passive optical network.
  • the setting change unit calculates the amount of uplink data to be transmitted out of the amount of uplink data permitted to be transmitted and the amount of uplink data to be requested to be transmitted in the subscriber line terminating equipment.
  • the operation cycle may be changed so as to include the required calculation time.
  • the calculation time is the pre-REPORT GAP in the embodiment.
  • the bandwidth allocation device may further include a storage unit.
  • the storage unit is the pre-REPORT GAP database 105 in the embodiment.
  • the storage unit stores calculation time information in which identification information and calculation time are associated with each other.
  • the setting change unit may change the operating cycle so that the calculation time specified based on the identification information and the calculation time information is included.
  • a part or all of the OLT 10 in each of the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array

Abstract

According to the present invention, a bandwidth allocation device comprises a detection unit and a setting unit. The detection unit detects connection to a passive optical network by a subscriber line terminal device that does not have a transmission reservation queue for making uplink data that has been cleared to be transmitted stand by until a transmission start time. The setting unit sets a calculation time for the subscriber line terminal device within an operation period for uplink bandwidth control between the subscriber line terminal device and a subscriber line termination device, the calculation time being the time needed for calculation of the amount of uplink data that is to be transmitted of the amount of uplink data that has been cleared to be transmitted and calculation of the amount of uplink data that is to be requested to be transmitted.

Description

帯域割り当て装置、加入者線端局装置、及び帯域割り当て方法Bandwidth allocation device, subscriber line terminal device, and band allocation method
 本発明は、帯域割り当て装置、加入者線端局装置、及び帯域割り当て方法に関する。 The present invention relates to a band allocation device, a subscriber line terminal device, and a band allocation method.
 アクセスサービスの高速化に対するニーズの高まりに応じて、FTTH(Fiber To The Home)が世界的に普及している。日本で主力となるFTTHサービスとして、例えば、ギガビット級の伝送速度を実現するGE-PON(Gigabit Ethernet PON)、及び10G-EPON(10Gigabit Ethernet PON)等がある。 FTTH (Fiber To The Home) is spreading worldwide in response to the growing need for faster access services. Mainstay FTTH services in Japan include, for example, GE-PON (Gigabit Ethernet PON) and 10G-EPON (10 Gigabit Ethernet PON), which realize gigabit-class transmission speeds.
 GE-PON及び10G-EPONでは、ONUからOLTへの方向の上り通信においては、TDMA(Time Division Multiple Access;時分割多元接続)技術が用いられる。また、GE-PON及び10G-EPONをシステムとして動作させるために必要な機能の1つとしてDBA(Dynamic Bandwidth Allocation;動的帯域割当)機能がある。DBA機能は、上り通信における帯域を、トラヒック量に応じて動的に割り当てる帯域制御機能である。DBA機能は、各ONUに流れる上り通信のトラヒックの状況に応じて、割り当てる帯域を適切に切り替えることで、未使用帯域を発生させることなく、効率的な上り帯域を実現する。 In GE-PON and 10G-EPON, TDMA (Time Division Multiple Access) technology is used in upstream communication from ONUs to OLTs. Also, one of the functions required to operate GE-PON and 10G-EPON as a system is a DBA (Dynamic Bandwidth Allocation) function. The DBA function is a bandwidth control function that dynamically allocates bandwidth in upstream communication according to traffic volume. The DBA function realizes efficient upstream bandwidth without generating unused bandwidth by appropriately switching the allocated bandwidth according to the status of upstream communication traffic flowing through each ONU.
特開2003-087283号公報JP-A-2003-087283
 DBA機能では、OLTは、それぞれのONUが時間的に衝突することなく上りデータを送信することができるように、上りデータの送信開始時刻及び送信量をGATEフレームによって指示する。一方、各ONUは、自己のONUのバッファに蓄積されている送信待ちの上りデータのデータ量をREPORTフレームによってOLTに伝える。このGATEフレームとREPORTフレームとを用いたやりとりによって、DBA機能が実現される。 In the DBA function, the OLT indicates the transmission start time and transmission amount of uplink data using a GATE frame so that each ONU can transmit uplink data without time collision. On the other hand, each ONU notifies the OLT of the amount of uplink data waiting for transmission stored in its own ONU buffer by means of a REPORT frame. The DBA function is realized by exchanging data using the GATE frame and the REPORT frame.
 上り通信において、ONUは、データ送信後からREPORTフレーム送信開始時刻までの間隔が短い場合には、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューのデータ送信中にREPORTフレームに記すデータ量の計算を行う必要がある。しかしながら、送信予約キューを持たないONUも存在する場合がある。送信予約キューを持たないONUは、通常のキューの中で、OLTから送信許可された送信予約済みのデータ量の計算と、蓄積されたデータ量のうち送信予約済みのデータ量を除いた残りのデータ量(すなわち、送信要求待ちの上りデータ量)の計算とを行うことになる。 In upstream communication, when the interval from data transmission to the REPORT frame transmission start time is short, the ONU waits for the transmission permitted upstream data until the transmission start time. It is necessary to calculate the amount of data. However, there may be ONUs that do not have transmission reservation queues. ONUs that do not have a reserved transmission queue calculate the amount of data reserved for transmission permitted by the OLT, and the remaining amount of accumulated data after excluding the reserved data amount The amount of data (that is, the amount of uplink data waiting for a transmission request) is calculated.
 しかしながら、送信予約キューを持たないONUでは、データ送信と、上記2つの計算(すなわち、送信予約済みのデータ量の計算及び送信要求待ちのデータ量の計算)とを、逐次的に処理する必要があるため、計算の完了までに時間を要し、当該計算がREPORTフレームの送信開始時刻までに間に合わなくなる可能性がある。この場合、ONUからREPORTフレームが送信されないことから、OLTは、上りデータの送信許可を与えることができない。これにより、ONUは、上りデータの送信を行うことができなくなる場合があるという課題があった。 However, in an ONU that does not have a transmission reservation queue, it is necessary to sequentially process data transmission and the above two calculations (that is, calculation of the amount of data reserved for transmission and calculation of the amount of data waiting for a transmission request). Therefore, it takes time to complete the calculation, and there is a possibility that the calculation will not be completed before the transmission start time of the REPORT frame. In this case, since the ONU does not send a REPORT frame, the OLT cannot give permission to send uplink data. As a result, there is a problem that the ONU may not be able to transmit uplink data.
 上記事情に鑑み、本発明は、PONシステムにおいて、送信予約キューを持たないONUが含まれていても、上りデータの送信を可能にすることができる帯域割り当て装置、加入者線端局装置、及び帯域割り当て方法を提供することを目的とする。 In view of the above circumstances, the present invention provides a bandwidth allocation device, a subscriber line terminal device, and a subscriber line terminal device capable of enabling transmission of uplink data even if ONUs having no transmission reservation queue are included in a PON system. An object of the present invention is to provide a bandwidth allocation method.
 本発明の一態様は、受動光ネットワークに対して、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えていない加入者線終端装置が接続されたことを検出する検出部と、前記加入者線終端装置と加入者線端局装置との間の上り帯域制御の動作周期間に、前記加入者線終端装置における、前記送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間を設ける設定部と、を備える帯域割り当て装置である。 According to one aspect of the present invention, a detection unit that detects that a subscriber line terminating device that does not have a transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time is connected to a passive optical network; , during an operation period of upstream band control between the subscriber line terminating equipment and the subscriber line terminal equipment, the amount of uplink data permitted to be transmitted in the subscriber line terminating equipment is transmitted; A bandwidth allocation device comprising: a setting unit that provides a calculation time that is a time required for calculation of the data amount of data and calculation of the data amount of uplink data to be requested for transmission.
 本発明の一態様は、受動光ネットワークに接続された加入者線終端装置を識別する識別情報を取得する取得部と、前記識別情報に基づいて、前記加入者線終端装置が送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えているか否かを判定する判定部と、前記加入者線終端装置が前記送信予約キューを備えていないと判定された場合、前記受動光ネットワークにおける上り帯域制御の動作周期間に所定の計算時間を設ける設定変更部と、を備える帯域割り当て装置である。 According to one aspect of the present invention, an acquisition unit acquires identification information identifying a subscriber line terminating device connected to a passive optical network; a judgment unit for judging whether or not a transmission reservation queue for waiting data transmission start time is provided; and a setting change unit that provides a predetermined calculation time between operation cycles of upstream bandwidth control.
 本発明の一態様は、受動光ネットワークに対して、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えていない加入者線終端装置が接続されたことを検出する検出部と、前記加入者線終端装置と自装置との間の上り帯域制御の動作周期間に、前記加入者線終端装置における、前記送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間を設ける設定部と、前記加入者線終端装置とのデータの送受信を行う送受信部と、を備える加入者線端局装置である。 According to one aspect of the present invention, a detection unit that detects that a subscriber line terminating device that does not have a transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time is connected to a passive optical network; , an amount of uplink data to be transmitted out of the amount of uplink data permitted to be transmitted in said subscriber line terminating apparatus during an operation cycle of uplink band control between said subscriber line terminating apparatus and its own apparatus; and the amount of uplink data to be requested for transmission; subscriber line terminal equipment.
 本発明の一態様は、受動光ネットワークに接続された加入者線終端装置を識別する識別情報を取得する取得部と、前記識別情報に基づいて、前記加入者線終端装置が送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えているか否かを判定する判定部と、前記加入者線終端装置が前記送信予約キューを備えていないと判定された場合、前記受動光ネットワークにおける上り帯域制御の動作周期間に所定の計算時間を設ける設定変更部と、前記加入者線終端装置とのデータの送受信を行う送受信部と、を備える加入者線端局装置である。 According to one aspect of the present invention, an acquisition unit acquires identification information identifying a subscriber line terminating device connected to a passive optical network; a judgment unit for judging whether or not a transmission reservation queue for waiting data transmission start time is provided; The subscriber line terminal equipment includes a setting changing unit that provides a predetermined calculation time between operation cycles of upstream band control, and a transmitting/receiving unit that transmits/receives data to/from the subscriber line terminating equipment.
 本発明の一態様は、受動光ネットワークに対して、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えていない加入者線終端装置が接続されたことを検出する検出ステップと、前記加入者線終端装置と加入者線端局装置との間の上り帯域制御の動作周期間に、前記加入者線終端装置における、前記送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間を設ける設定ステップと、を有する帯域割り当て方法である。 An aspect of the present invention is a detection step of detecting that a subscriber line terminating equipment that does not have a transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time is connected to the passive optical network; , during an operation period of upstream band control between the subscriber line terminating equipment and the subscriber line terminal equipment, the amount of uplink data permitted to be transmitted in the subscriber line terminating equipment is transmitted; A bandwidth allocation method comprising a setting step of setting a calculation time, which is the time required for calculating the data amount of data and calculating the data amount of uplink data to be requested for transmission.
 本発明の一態様は、受動光ネットワークに接続された加入者線終端装置を識別する識別情報を取得する取得ステップと、前記識別情報に基づいて、前記加入者線終端装置が送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えているか否かを判定する判定ステップと、前記加入者線終端装置が前記送信予約キューを備えていないと判定された場合、前記受動光ネットワークにおける上り帯域制御の動作周期間に所定の計算時間を設ける設定変更ステップと、を有する帯域割り当て方法である。 According to one aspect of the present invention, an acquiring step of acquiring identification information that identifies a subscriber line terminating device connected to a passive optical network; a determination step of determining whether or not a transmission reservation queue for waiting data to be transmitted until a transmission start time is provided; and a setting change step of providing a predetermined calculation time between operation cycles of upstream bandwidth control.
 本発明により、PONシステムにおいて、送信予約キューを持たないONUが含まれていても、上りデータの送信を可能にし、帯域の利用効率を向上させることができる。 According to the present invention, even if an ONU that does not have a transmission reservation queue is included in the PON system, it is possible to transmit upstream data and improve the efficiency of using the band.
一般的なPONの構成を示すブロック図である。1 is a block diagram showing the configuration of a general PON; FIG. ONU20が1台のみである場合における上りデータの送信の流れを示す図である。FIG. 4 is a diagram showing the flow of transmission of uplink data when there is only one ONU 20; ONU20が2台である場合における上りデータの送信の流れを示す図である。FIG. 4 is a diagram showing the flow of transmission of uplink data when there are two ONUs 20; 蓄積された上りデータのデータ量の変化を説明するための模式図である。FIG. 4 is a schematic diagram for explaining changes in the amount of accumulated uplink data; granted queueの構成の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the configuration of a granted queue; 本発明の実施形態におけるPON1による上りデータの送信の流れを示す図である。It is a figure which shows the flow of transmission of uplink data by PON1 in embodiment of this invention. 従来のPONによる上りデータの送信の流れを示す図である。FIG. 2 is a diagram showing a flow of transmission of uplink data by a conventional PON; 本発明の実施形態におけるOLT10の機能構成を示すブロック図である。3 is a block diagram showing the functional configuration of OLT 10 in the embodiment of the present invention; FIG. REPORT前GAPデータベース105の構成の一例を示す図である。3 is a diagram showing an example of the configuration of a pre-report GAP database 105. FIG. 本発明の実施形態におけるOLT1の動作を示すフローチャートである。4 is a flow chart showing the operation of OLT 1 in the embodiment of the present invention;
 以下、図面を参照しながら本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 FTTHサービスを高速かつ安価に提供する光アクセスシステムとしてPON(Passive Optical Network;受動光ネットワーク)がある。PONは、光-電気変換を行わず、低コストの受動素子である光スプリッタを用いて光信号を複数に分岐する。これにより、PONは、一心の光ファイバを複数ユーザで共有することによって、経済的なネットワークを実現することができる。日本において主力となるFTTHサービスとして、例えば、ギガビット級の伝送速度を実現するGE-PON及びGE-PONのさらに10倍の帯域を持つ10G-EPON等がある。 PON (Passive Optical Network) is an optical access system that provides FTTH services at high speed and at low cost. A PON does not perform optical-to-electrical conversion, but uses low-cost passive optical splitters to split an optical signal into multiple parts. As a result, the PON can realize an economical network by sharing one optical fiber with a plurality of users. Mainstay FTTH services in Japan include, for example, GE-PON, which achieves gigabit-class transmission speeds, and 10G-EPON, which has ten times the bandwidth of GE-PON.
 図1は、一般的なPONの構成を示すブロック図である。図1に示されるように、PON1は、OLT(Optical Line Terminal;加入者線端局装置)10と、複数の(図1においてはn台の)ONU(Optical Network Unit;加入者線終端装置)20と、光ファイバ30と、光スプリッタ40と、を含んで構成される。 FIG. 1 is a block diagram showing the configuration of a general PON. As shown in FIG. 1, the PON 1 includes an OLT (Optical Line Terminal) 10 and a plurality of (n in FIG. 1) ONUs (Optical Network Units). 20 , an optical fiber 30 and an optical splitter 40 .
 OLT10は、通信事業者の局舎に設置され、ONU20は、ユーザの宅内又は構内に設置される。光ファイバ30は、通信事業者の局舎とユーザの宅内又は構内との間に敷設され、光スプリッタ40は、光ファイバ30を分岐する。OLT10とONU20との間に光信号を合分波する光スプリッタ40が設置されることによって、1つのOLT10に複数のONU20が接続される。 The OLT 10 is installed in the communication carrier's office, and the ONU 20 is installed in the user's home or premises. The optical fiber 30 is laid between the office of the telecommunications carrier and the home or premises of the user, and the optical splitter 40 branches the optical fiber 30 . A plurality of ONUs 20 are connected to one OLT 10 by installing an optical splitter 40 that multiplexes and demultiplexes optical signals between the OLT 10 and the ONUs 20 .
 ONU20は、OLT10からの光信号を電気信号に変換するとともに、ユーザの端末装置(例えば、PC等)からの電気信号を光信号に変換してOLT10へ転送する役割を担う。OLT10は、ONU20からの光信号の上位装置/ネットワーク(例えば、インターネット等)への転送、上位装置/ネットワークからの信号のONU20への転送、及びPON区間やONU20の制御監視をする役割を担う。 The ONU 20 converts an optical signal from the OLT 10 into an electrical signal, and converts an electrical signal from a user's terminal device (for example, a PC, etc.) into an optical signal and transfers the optical signal to the OLT 10 . The OLT 10 plays a role of transferring an optical signal from the ONU 20 to a host device/network (for example, the Internet), transferring a signal from the host device/network to the ONU 20, and controlling and monitoring the PON section and the ONU 20.
 PON1では、OLT10からONU20への方向の通信(以下、「下り通信」という。)においては、TDM(Time Division Multiplexing;時分割多重化)技術が用いられる。TDMは、複数のユーザの信号を、時間的に重ならないように多重化して伝送する技術である。 In the PON 1, TDM (Time Division Multiplexing) technology is used in communication from the OLT 10 to the ONU 20 (hereinafter referred to as "downlink communication"). TDM is a technique for multiplexing and transmitting signals of a plurality of users so that they do not overlap in time.
 なお、下り通信では、同一のOLT10につながる全てのONU20へ、同一の信号(以下、「下り信号」という。)が光スプリッタ40で分岐されて転送される。そのため、各ONU20には、自己のONU20宛のデータ以外のデータも転送される。そのため、各ONU20は、転送されたデータから自己のONU20宛のデータだけを抽出し、それ以外の(他のONU20宛の)データを廃棄する。 In downstream communication, the same signal (hereinafter referred to as "downstream signal") is split by the optical splitter 40 and transferred to all ONUs 20 connected to the same OLT 10 . Therefore, each ONU 20 is also transferred with data other than the data addressed to its own ONU 20 . Therefore, each ONU 20 extracts only the data addressed to its own ONU 20 from the transferred data, and discards the other data (addressed to other ONUs 20).
 また、PON1では、ONU20からOLT10への方向の通信(以下、「上り通信」という。)においては、TDMA技術が用いられる。上り通信では、光スプリッタ40によって複数のONU20からの信号(以下、「上り信号」という。)が合波される。そのため、各ONU20からの上り信号が無秩序に送信された場合、伝送路上で衝突を起こしてしまう可能性がある。そこで、TDMAは、ONU20からの上り信号の送信タイミングと上りデータの送信量とを制御することによって、各ONU20からの上り信号が伝送路上で衝突することになく多重化されるように制御する。 Also, in the PON 1, TDMA technology is used in communication from the ONU 20 to the OLT 10 (hereinafter referred to as "uplink communication"). In upstream communication, signals from a plurality of ONUs 20 (hereinafter referred to as “upstream signals”) are multiplexed by the optical splitter 40 . Therefore, if the upstream signals from the ONUs 20 are randomly transmitted, there is a possibility that they will collide on the transmission path. Therefore, TDMA controls the transmission timing of upstream signals from the ONUs 20 and the transmission amount of upstream data so that the upstream signals from each ONU 20 are multiplexed without colliding on the transmission line.
 GE-PON及び10G-EPONをシステムとして動作させるために必要な機能の1つとしてDBA機能がある。DBA機能は、上り通信における帯域(以下、「上り帯域」という。)を、トラヒック量に応じて動的に割り当てる帯域制御機能である。DBA機能は、各ONU20からの上り通信のトラヒック(以下、「上りトラヒック」という。)に応じて、柔軟に上り帯域を割り当てることができる。DBA機能は、上りトラヒックが流れているONU20だけに上り帯域を割り当てるため、無駄なく上り帯域を使用することができる。DBA機能は、各ONU20に流れる上りトラヒックの状況に応じて、割り当てる帯域を適切に切り替えることで、未使用帯域を発生させることなく、効率的な上り帯域を実現する。 A DBA function is one of the functions required to operate GE-PON and 10G-EPON as a system. The DBA function is a bandwidth control function that dynamically allocates bandwidth in upstream communication (hereinafter referred to as "upstream bandwidth") according to traffic volume. The DBA function can flexibly allocate an upstream bandwidth according to the traffic of upstream communication from each ONU 20 (hereinafter referred to as "upstream traffic"). Since the DBA function allocates the upstream bandwidth only to the ONUs 20 in which upstream traffic is flowing, the upstream bandwidth can be used without waste. The DBA function appropriately switches the bandwidth to be allocated according to the status of upstream traffic flowing through each ONU 20, thereby realizing efficient upstream bandwidth without generating unused bandwidth.
 GE-PON及び10G-EPONは、MPCP(Multi Point Control Protocol)というプロトコルを使用して上り信号制御を実現する。OLT10は、それぞれのONU20が時間的に衝突することなく上り信号を送信することができるように、それぞれのONU20に対して送信開始時刻及び送信量を、GATEフレームによって指示する。  GE-PON and 10G-EPON implement upstream signal control using a protocol called MPCP (Multi Point Control Protocol). The OLT 10 instructs each ONU 20 of the transmission start time and transmission amount using the GATE frame so that each ONU 20 can transmit upstream signals without time collision.
 一方、各ONU20は、自己のONU20のバッファに蓄積されている送信待ちの上りデータのデータ量を、REPORTフレームによってOLT10に伝える。このGATEフレームとREPORTフレームとが用いられることによって、DBA機能が実現される。 On the other hand, each ONU 20 notifies the OLT 10 of the amount of uplink data waiting for transmission accumulated in the buffer of its own ONU 20 by means of a REPORT frame. The DBA function is realized by using the GATE frame and the REPORT frame.
 以下、DBA機能の仕組みを簡単に説明する。ONU20は、上りデータを受信すると、ひとまずバッファに上りデータを蓄積する。ONU20は、蓄積している上りデータのデータ量をREPORTフレームに記し、当該REPORTフレームをOLT10へ送信する。 The mechanism of the DBA function will be briefly explained below. When the ONU 20 receives the upstream data, it stores the upstream data in the buffer for the time being. The ONU 20 writes the amount of accumulated upstream data in a REPORT frame and transmits the REPORT frame to the OLT 10 .
 OLT10は、受信したREPORTフレームから、ONU20に蓄積されている上りデータの量を把握する。OLT10は、ONU20に割り当てるべき上り帯域を、当該ONU20の蓄積データ量及び他のONU20の使用帯域に基づいて計算する。具体的には、OLT10は、ONU20の上りデータの送信開始時刻と送信量とを算出する。OLT10は、算出した値をGATEフレームに記し、当該GATEフレームをONU20へ送信する。 The OLT 10 grasps the amount of upstream data accumulated in the ONU 20 from the received REPORT frame. The OLT 10 calculates the upstream bandwidth to be allocated to the ONU 20 based on the accumulated data amount of the ONU 20 and the usage bandwidth of the other ONUs 20 . Specifically, the OLT 10 calculates the transmission start time and transmission amount of the upstream data of the ONU 20 . The OLT 10 writes the calculated value in the GATE frame and transmits the GATE frame to the ONU 20 .
 ONU20は、受信したGATEフレームに記された指示に従って、指定された送信時刻に上りデータを送信する。このとき、ONU20は、次回の上り帯域の割当のために、再度バッファに蓄積している上りデータのデータ量を通知する場合もある。 The ONU 20 transmits upstream data at the designated transmission time according to the instructions written in the received GATE frame. At this time, the ONU 20 may notify the amount of uplink data accumulated in the buffer again for the next uplink bandwidth allocation.
 上記の手順が繰り返されることで、OLT10は、各ONU20における上りトラヒックの状況を知ることができ、当該状況に応じて適切に上り帯域を割り当てることができる。 By repeating the above procedure, the OLT 10 can know the status of upstream traffic in each ONU 20, and can appropriately allocate an upstream bandwidth according to the status.
 このような上り通信において、上りデータの送信後からREPORTフレーム送信開始時刻までの間隔が短い場合、ONU20は、送信予約キュー(以下、「granted queue」という。)を備えていることが望ましい、なぜならば、この場合、ONU20は、granted queueのデータ送信中にREPORTフレームに記すデータ量の計算(以下、「REPORT計算」という。)を並行して行えるからである。 In such uplink communication, if the interval from the transmission of uplink data to the start time of REPORT frame transmission is short, it is desirable that the ONU 20 be provided with a transmission reservation queue (hereinafter referred to as "granted queue"). For example, in this case, the ONU 20 can concurrently calculate the amount of data to be described in the REPORT frame (hereinafter referred to as "report calculation") during data transmission of the granted queue.
 しかしながら、granted queueを持たないONU20も存在する場合がある。例えば、PON1が、granted queueを持つONU20と、granted queueを持たないONU20とを、混在して収容していることがある。 However, there may be ONUs 20 that do not have a granted queue. For example, the PON 1 may accommodate both ONUs 20 with a granted queue and ONUs 20 without a granted queue.
 granted queueを持たないONU20は、通常のqueue(例えば、優先度queue)の中で、OLT10から送信されたGATEフレームのDATA grantに基づく送信予約済みの上りデータ量(granted)の計算と、当該送信予約済みの上りデータ量(granted)を除いた残りの上りデータ量(すなわち、送信要求待ちの上りデータ量)の計算(REPORT計算)を行うことになる。Data grantは、OLT10によって送信許可された上りデータのデータ量を示す。 The ONU 20 that does not have a granted queue calculates the amount of uplink data reserved for transmission (granted) based on the DATA grant of the GATE frame transmitted from the OLT 10 in a normal queue (for example, a priority queue), and Calculation (report calculation) of the remaining uplink data amount (that is, uplink data amount waiting for a transmission request) excluding the reserved uplink data amount (granted) is performed. Data grant indicates the amount of uplink data permitted to be transmitted by the OLT 10 .
 しかしながら、granted queueを持たないONU20では、逐次処理のため上記のREPORT計算等の完了までに時間を要し、REPORT計算がREPORTフレームの送信開始時刻までに間に合わなくなる可能性がある。ここでいう逐次処理とは、データ送信と、送信予約済みのデータ量の計算及び送信要求待ちのデータ量の計算とを、逐次的に処理することである。この場合、ONU20は、OLT10へ蓄積された上りデータ量を伝えることができない。これにより、OLT10は、ONU20に対して上りデータの送信許可を与えることができないため、ONU20は、上りデータの送信を行うことができなくなることがある。 However, in an ONU 20 that does not have a granted queue, it takes time to complete the above-mentioned REPORT calculations and the like due to sequential processing, and there is a possibility that the REPORT calculations will not be completed in time for the REPORT frame transmission start time. Here, the sequential processing means sequentially processing data transmission, calculation of the amount of data reserved for transmission, and calculation of the amount of data waiting for a transmission request. In this case, the ONU 20 cannot inform the OLT 10 of the amount of upstream data accumulated. As a result, the OLT 10 cannot give permission to transmit uplink data to the ONU 20, so the ONU 20 may not be able to transmit uplink data.
 以下に説明する本実施形態におけるOLT10は、上り帯域制御の動作周期と動作周期との間に、ONU20がDATA grantの送信予約計算と送信要求待ちの上りデータ量の計算とに要する時間を確保するための空き時間(以下、「REPORT前GAP」という。)を設ける。これにより、本実施形態におけるOLT10は、これらの計算の完了がREPORTフレームの送信開始時刻までに間に合うようにすることができる。 The OLT 10 in this embodiment described below secures the time required for the ONU 20 to calculate the reserved transmission of DATA grant and the amount of uplink data waiting for a transmission request between the operation cycles of upstream band control. A vacant time (hereinafter referred to as "pre-REPORT GAP") is provided. As a result, the OLT 10 in this embodiment can complete these calculations before the transmission start time of the REPORT frame.
 このようにREPORT前GAPが設けられることで、granted queueを持たないONU20であってもREPORT計算等の完了がREPORTフレームの送信タイミングまで間に合うようになる。そのため、上り通信が可能になる。また、本実施形態におけるOLT10によれば、granted queueを備えるONU20と、granted queueを備えていないONU20とが混在していても、上り通信が可能になる。 By providing the pre-REPORT GAP in this way, even an ONU 20 that does not have a granted queue can complete REPORT calculations and the like in time for the transmission timing of the REPORT frame. Therefore, upstream communication becomes possible. Further, according to the OLT 10 of the present embodiment, upstream communication is possible even if the ONU 20 with a granted queue and the ONU 20 without a granted queue coexist.
 以下、上りデータの送信の流れについて説明する。説明を分かり易くするため、まずはONU20が仮に1台のみであった場合について説明する。図2は、ONU20が1台のみである場合における上りデータの送信の流れを示す図である。 The following describes the flow of transmission of uplink data. In order to make the explanation easier to understand, first, a case where there is only one ONU 20 will be explained. FIG. 2 is a diagram showing the flow of transmission of uplink data when there is only one ONU 20. In FIG.
 OLT10は、例えば図2に示されるようなGATEフレームg1をONU20へ送信する。GATEフレームg1には、ReportブロックとDataブロックとが含まれる。 The OLT 10 transmits a GATE frame g1 as shown in FIG. 2 to the ONU 20, for example. A GATE frame g1 includes a Report block and a Data block.
 図2に示されるように、例えば、GATEフレームg1のReportブロックには、「Grant length:▲TQ」と記述されている。これは、OLT10がONU20に対して、REPORTフレームの送信許可時間として▲TQの時間を指示することを意味する。ONU20は、GATEフレームg1に記された指示に従って、送信許可時間▲TQの間にREPORTフレームをOLT10へ送信する。 As shown in FIG. 2, for example, the Report block of the GATE frame g1 describes "Grant length: ▲ 1 TQ". This means that the OLT 10 instructs the ONU 20 to allow time for transmission of the REPORT frame to be 1 TQ. The ONU 20 transmits the REPORT frame to the OLT 10 during the transmission permission time .tangle - solidup.1TQ according to the instruction written in the GATE frame g1.
 また、図2に示されるように、例えば、GATEフレームg1のDataブロックには、「Grant length:〇TQ」と記述されている。これは、OLT10がONU20に対して、DATA(上りデータ)の送信許可時間として〇TQの時間を指示することを意味する。ONU20は、GATEフレームg1に記された指示に従って、送信許可時間〇TQの間にDATA(上りデータ)をOLT10へ送信する。 Also, as shown in FIG. 2, for example, "Grant length: 0 1 TQ" is described in the Data block of the GATE frame g1. This means that the OLT 10 instructs the ONU 20 to allow 0 1 TQ as the transmission permission time for DATA (uplink data). The ONU 20 transmits DATA (uplink data) to the OLT 10 during the transmission permission time 0 1 TQ according to the instruction written in the GATE frame g1.
 次に、OLT10は、例えば図2に示されるように、GATEフレームg1による指示に基づいてONU20からOLT10へDATA(上りデータ)が送信されている間に、GATEフレームg2をONU20へ送信する。GATEフレームg2にも、ReportブロックとDataブロックとが含まれる。 Next, the OLT 10 transmits the GATE frame g2 to the ONU 20 while DATA (up data) is being transmitted from the ONU 20 to the OLT 10 based on the instruction of the GATE frame g1, as shown in FIG. 2, for example. The GATE frame g2 also includes a Report block and a Data block.
 図2に示されるように、例えば、GATEフレームg2のReportブロックには、「Grant length:▲TQ」と記述されている。これは、OLT10がONU20に対して、REPORTフレームの送信許可時間として▲TQの時間を指示することを意味する。ONU20は、GATEフレームg2に記された指示に従って、送信許可時間▲TQの間にREPORTフレームをOLT10へ送信する。 As shown in FIG. 2, for example, the Report block of the GATE frame g2 describes "Grant length: 2 TQ". This means that the OLT 10 instructs the ONU 20 to allow the transmission of the REPORT frame by 2 TQ. The ONU 20 transmits the REPORT frame to the OLT 10 during the transmission permission time .tangle - solidup.2TQ according to the instruction written in the GATE frame g2.
 また、図2に示されるように、例えば、GATEフレームg2のDataブロックには、「Grant length:〇TQ」と記述されている。これは、OLT10がONU20に対して、DATA(上りデータ)の送信許可時間として〇TQの時間を指示することを意味する。ONU20は、GATEフレームg2に記された指示に従って、送信許可時間〇TQの間にDATA(上りデータ)をOLT10へ送信する。 Also, as shown in FIG. 2, for example, "Grant length: 0 2 TQ" is described in the Data block of the GATE frame g2. This means that the OLT 10 instructs the ONU 20 to allow the transmission of DATA (uplink data) for 0 2 TQ. The ONU 20 transmits DATA (uplink data) to the OLT 10 during the transmission permission time 0 2 TQ according to the instruction written in the GATE frame g2.
 次に、ONU20が2台である場合の上りデータの送信の流れについて説明する。図3は、ONU20が2台である場合における上りデータの送信の流れを示す図である。なお、ONU20が3台以上である場合の上りデータの送信の流れについても、基本的には図3に示される上りデータの送信の流れと同様である。 Next, the flow of upstream data transmission when there are two ONUs 20 will be described. FIG. 3 is a diagram showing the flow of transmission of upstream data when there are two ONUs 20. In FIG. The flow of transmission of uplink data when there are three or more ONUs 20 is basically the same as the flow of transmission of uplink data shown in FIG.
 図3に示されるように、ここではOLT10に対し2台のONU20(「ONU#1」及び「ONU#2」)が接続されているものとする。OLT10は、ONU#1から送信される送信要求メッセージ(REPORTフレーム)とONU#2から送信される送信要求メッセージ(REPORTフレーム)とを一括して受信する(図3の(1))。 As shown in FIG. 3, it is assumed that two ONUs 20 ("ONU#1" and "ONU#2") are connected to the OLT 10 here. The OLT 10 collectively receives the transmission request message (REPORT frame) transmitted from ONU#1 and the transmission request message (REPORT frame) transmitted from ONU#2 ((1) in FIG. 3).
 OLT10は、ONU#1及びONU#2から送信要求メッセージ(REPORTフレーム)をそれぞれ受信したことに応じて、送信許可メッセージ(GATEフレーム)を一括してONU#1及びONU#2へ送信する(図3の(2))。 When the OLT 10 receives the transmission request messages (REPORT frames) from ONU#1 and ONU#2, it collectively transmits transmission permission messages (GATE frames) to ONU#1 and ONU#2 (Fig. 3 (2)).
 具体的には、OLT10は、ONU#1から受信した送信要求メッセージ(REPORTフレーム)によって、ONU#1に蓄積されている上りデータのデータ量を把握する。OLT10は、把握したデータ量に基づいて、次回の動作周期においてONU#1が送信する上りデータの送信開始時刻と送信量とを決定する。OLT10は、決定されたONU#1における上りデータの送信開始時刻と送信量の値とを送信許可メッセージ(GATEフレーム)に記す。 Specifically, the OLT 10 grasps the amount of upstream data accumulated in ONU#1 from the transmission request message (REPORT frame) received from ONU#1. The OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#1 in the next operation cycle based on the grasped data amount. The OLT 10 writes the transmission start time and the amount of transmission of the determined uplink data in ONU#1 in a transmission permission message (GATE frame).
 また、OLT10は、ONU#2から受信した送信要求メッセージ(REPORTフレーム)によって、ONU#2に蓄積されている上りデータのデータ量を把握する。OLT10は、把握したデータ量に基づいて、次回の動作周期においてONU#2が送信する上りデータの送信開始時刻と送信量とを決定する。OLT10は、決定されたONU#2における上りデータの送信開始時刻と送信量の値とを送信許可メッセージ(GATEフレーム)に記す。 Also, the OLT 10 grasps the amount of upstream data accumulated in ONU#2 from the transmission request message (REPORT frame) received from ONU#2. The OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#2 in the next operation cycle based on the grasped data amount. The OLT 10 writes the transmission start time and the amount of transmission of the determined uplink data in ONU#2 in a transmission permission message (GATE frame).
 図3に示されるように、OLT10は、上記生成された送信許可メッセージ(GATEフレーム)を一括してONU#1及びONU#2へ送信する。ONU#1及びONU#2は、OLT10から送信された送信許可メッセージ(GATEフレーム)をそれぞれ受信する。 As shown in FIG. 3, the OLT 10 collectively transmits the generated transmission permission message (GATE frame) to ONU#1 and ONU#2. ONU#1 and ONU#2 receive the transmission permission message (GATE frame) transmitted from OLT 10 respectively.
 ONU#1及びONU#2は、送信許可メッセージ(GATEフレーム)に記述された内容から、自己のONU20に対して指定された上りデータの送信開始時刻と送信量の値を認識する。ONU#1及びONU#2は、送信許可メッセージ(GATEフレーム)によって指定された上りデータの送信開始時刻に、送信許可メッセージ(GATEフレーム)によって指定された送信量の上りデータをOLT10へそれぞれ送信する(図3の(3))。 ONU#1 and ONU#2 recognize the value of the transmission start time and transmission amount of uplink data specified for their own ONU 20 from the contents described in the transmission permission message (GATE frame). ONU#1 and ONU#2 each transmit the amount of uplink data specified by the transmission permission message (GATE frame) to the OLT 10 at the transmission start time of the uplink data specified by the transmission permission message (GATE frame). ((3) in FIG. 3).
 以下、ONU20のキューに蓄積された上りデータのデータ量の変化について説明する。図4は、蓄積された上りデータのデータ量の変化を説明するための模式図である。 Changes in the amount of upstream data accumulated in the ONU 20 queue will be described below. FIG. 4 is a schematic diagram for explaining changes in the amount of accumulated uplink data.
 なお、以下に説明する図4のように、ONU20がgranted queue(送信予約キュー)を備えていない場合がある。なお、図5は、granted queueの構成の一例を示す模式図である。図5に示されるように、例えば、queue#pに蓄積された上りデータと、queue#qに蓄積された上りデータとが、スケジューラによる適切な制御の下でgranted queue(送信予約キュー)へ順次移される。 It should be noted that there are cases where the ONU 20 does not have a granted queue (transmission reservation queue), as shown in FIG. 4 described below. FIG. 5 is a schematic diagram showing an example of the configuration of the granted queue. As shown in FIG. 5, for example, uplink data accumulated in queue #p and uplink data accumulated in queue #q are sequentially transferred to the granted queue (reserved transmission queue) under appropriate control by the scheduler. be transferred.
 ONU20がgranted queue(送信予約キュー)を備えていない場合には、ONU20は、granted DATAの送信と上記2つの計算(すなわち、Data grantの送信予約計算とREPORT計算)とを同時処理することができないため、逐次処理を行う。これにより、送信許可メッセージ(GATEフレーム)のReport grantによって指定された送信要求メッセージ(REPORTフレーム)の送信開始時刻までに、REPORT計算が間に合わない可能性がある。 If the ONU 20 does not have a granted queue (transmission reservation queue), the ONU 20 cannot simultaneously process the transmission of the granted DATA and the above two calculations (that is, the data grant transmission reservation calculation and the REPORT calculation). Therefore, sequential processing is performed. As a result, there is a possibility that the REPORT calculation will not be completed in time for the transmission start time of the transmission request message (REPORT frame) specified by the Report grant of the transmission permission message (GATE frame).
 送信要求メッセージ(REPORTフレーム)の送信開始時刻までに、REPORT計算が間に合わなかった場合、送信要求メッセージ(REPORTフレーム)がONU20からOLT10へ送信されなくなることから、OLT10からONU20へ送信される次の送信許可メッセージ(GATEフレーム)において、Data grantの割り当てが無しとなる。これにより、ONU20が、上りデータの送信を行うことができなくなることがある。 If the REPORT calculation is not completed by the transmission start time of the transmission request message (REPORT frame), the transmission request message (REPORT frame) will not be transmitted from the ONU 20 to the OLT 10, so the next transmission from the OLT 10 to the ONU 20 In the permission message (GATE frame), no Data grant is assigned. As a result, the ONU 20 may become unable to transmit uplink data.
 図4には、時点(a)から時点(f)までの6つの時点における、ONU20のキューに蓄積された上りデータのデータ量が示されている。図4に示されるように、ここでは、ONU20が、2つのキュー(「queue#p」及び「queue#q」)を備えているものとする。ここで、queue#pは、高優先度の上りデータが蓄積されるキューであり、queue#qは、低優先度の上りデータが蓄積されるキューである。 FIG. 4 shows the amount of upstream data accumulated in the ONU 20 queue at six points in time from point (a) to point (f). As shown in FIG. 4, it is assumed here that the ONU 20 has two queues ("queue#p" and "queue#q"). Here, queue #p is a queue in which high-priority uplink data is accumulated, and queue #q is a queue in which low-priority uplink data is accumulated.
 まず、時点(a)の欄において、queue#pには、送信要求を報告済みである上りデータ量(reported)と、そのうち、送信予約済みである上りデータ量(granted)と、が示されている。また、queue#qにも、送信要求を報告済みである上りデータ量(reported)と、そのうち、送信予約済みである上りデータ量(granted)と、が示されている。 First, in the column of point (a), queue #p indicates the amount of uplink data for which the transmission request has been reported (reported) and the amount of uplink data for which transmission has been reserved (granted). there is The queue #q also indicates the amount of uplink data for which transmission requests have been reported (reported) and the amount of uplink data for which transmission has been reserved (granted).
 ここでいう送信要求を報告済みである上りデータ量(reported)とは、ONU20が送信要求メッセージ(REPORTフレーム)によって既にOLT10へ報告した分に相当する上りデータのデータ量である。また、ここでいう送信予約済みである上りデータ量(granted)とは、上記の送信要求メッセージ(REPORTフレーム)に応じてOLT10からONU20へ送信される送信許可メッセージ(GATEフレーム)によって送信許可された分に相当する上りデータのデータ量である。 Here, the amount of uplink data (reported) for which the transmission request has been reported is the amount of uplink data that the ONU 20 has already reported to the OLT 10 with the transmission request message (REPORT frame). Further, the amount of uplink data reserved for transmission (granted) here means that transmission is permitted by a transmission permission message (GATE frame) transmitted from the OLT 10 to the ONU 20 in response to the above transmission request message (REPORT frame). This is the data amount of uplink data corresponding to minutes.
 ONU20は、送信予約済みであるデータ量の上りデータ(granted DATA)を、受信した送信許可メッセージ(GATEフレーム)によって指定された送信タイミングでOLT10へ送信する。その後、queue#p及びqueue#qに蓄積された上りデータのデータ量は、図4に示される時点(a)の状態から時点(b)の状態へと変化する。 The ONU 20 transmits the amount of upstream data (granted DATA) reserved for transmission to the OLT 10 at the transmission timing specified by the received transmission permission message (GATE frame). After that, the amount of uplink data accumulated in queue #p and queue #q changes from the state at time (a) shown in FIG. 4 to the state at time (b).
 次に、時点(b)の欄において、queue#pには、送信要求を報告済みである上りデータのデータ量(reported)と、未送信要求の上りデータのデータ量(すなわち、新たに追加された上りデータのデータ量)と、が示されている。また、queue#qにも、送信要求を報告済みである上りデータのデータ量(reported)と、未送信要求の上りデータのデータ量(すなわち、新たに追加された上りデータのデータ量)と、が示されている。 Next, in the column of point (b), the queue #p contains the amount of uplink data for which a transmission request has been reported (reported) and the amount of uplink data for which a transmission request has not yet been made (that is, the newly added Data amount of uplink data) and are shown. Also, in queue #q, the amount of uplink data for which a transmission request has been reported (reported), the amount of uplink data for which transmission has not been requested (that is, the amount of newly added uplink data), It is shown.
 ここでいう未送信要求の上りデータのデータ量とは、前回のREPORT計算が行われた時点以降に新たに発生した上りデータのデータ量である。 The data amount of unsent requested upstream data here is the data amount of newly generated upstream data after the previous REPORT calculation was performed.
 なお、図4の時点(b)の欄に示されるように、時点(a)において送信予約済みであった上りデータのデータ量(granted)は、OLT10への上りデータの送信が完了したことによって、queue#p及びqueue#qから除かれている。 As shown in the column of time (b) in FIG. 4, the data amount (granted) of the upstream data reserved for transmission at time (a) is reduced to , queue #p and queue #q.
 ONU20は、受信した送信許可メッセージ(GATEフレーム)に記された、送信許可された上りデータのデータ量(Data grant)から、queue#p及びqueue#qにおける当該周期で送信可能な上りデータのデータ量(granted)を計算し、送信予約済みにする。queue#p及びqueue#qに蓄積された上りデータのデータ量は、図4に示される時点(b)の状態から時点(c)の状態へと変化する。 Based on the data amount (Data grant) of the uplink data permitted to be transmitted described in the received transmission permission message (GATE frame), the ONU 20 determines the amount of uplink data that can be transmitted in the corresponding cycle in queue #p and queue #q. Calculate the amount (granted) and reserve it for transmission. The amount of uplink data accumulated in queue #p and queue #q changes from the state at time (b) shown in FIG. 4 to the state at time (c).
 次に、時点(c)の欄において、queue#pには、送信予約済みである上りデータのデータ量(granted)と、未送信要求の上りデータのデータ量(すなわち、新たに追加された上りデータのデータ量)と、が示されている。また、queue#qには、送信要求を報告済みである上りデータのデータ量(reported)と、そのうち、送信予約済みである上りデータのデータ量(granted)と、未送信要求の上りデータのデータ量(すなわち、新たに追加された上りデータのデータ量)と、が示されている。 Next, in the column of time point (c), the queue #p contains the data amount of uplink data reserved for transmission (granted) and the data amount of uplink data not yet requested to be transmitted (that is, the newly added uplink data amount). Data volume of data) and are shown. In queue #q, the amount of uplink data for which a transmission request has already been reported (reported), the amount of uplink data for which transmission has been reserved (granted), and the amount of uplink data for which transmission has not been requested are stored. amount (that is, the data amount of the newly added uplink data) is shown.
 なお、時点(c)の欄では、送信許可メッセージ(GATEフレーム)に記された、送信許可された上りデータのデータ量(Data grant)に基づいて、queue#pについては時点(b)の欄に示される送信要求を報告済みである上りデータのデータ量(reported)の全てが、送信予約済みである上りデータのデータ量(granted)に変わったことが示されている。一方、queue#qについては時点(b)の欄に示される送信要求を報告済みである上りデータのデータ量(reported)の一部が送信予約済みである上りデータのデータ量(granted)に変わったことが示されている。 In addition, in the column of time (c), based on the data amount (Data grant) of the uplink data whose transmission is permitted, which is described in the transmission permission message (GATE frame), the queue #p in the column of time (b) is changed to the amount of uplink data reserved for transmission (granted). On the other hand, for queue #q, a part of the data amount (reported) of the uplink data for which the transmission request shown in the column of time (b) has been reported is changed to the data amount (granted) for the uplink data for which transmission is reserved. It is shown that
 すなわち、時点(c)の欄では、高優先のキューであるqueue#pについては、送信要求済みの上りデータの全てが送信予約済みの状態となったが、低優先のキューであるqueue#qについては、送信要求済みの上りデータの一部は送信予約がなされなかったことが示されている。これは、送信許可メッセージ(GATEフレーム)に記された、送信許可された上りデータのデータ量(Data grant)より、queue#pに含まれる送信要求を報告済みの上りデータのデータ量(reported)とqueue#qに含まれる送信要求を報告済みの上りデータのデータ量(reported)との合計のデータ量のほうが多いことを示している。 That is, in the column of point (c), for queue #p, which is a high-priority queue, all of the uplink data whose transmission has been requested has been reserved for transmission, but queue #q, which is a low-priority queue , it is indicated that transmission reservation was not made for some of the requested uplink data. This is the data amount (reported) of the uplink data for which the transmission request included in queue #p has been reported, based on the data amount (Data grant) of the uplink data that is permitted to be transmitted described in the transmission permission message (GATE frame). and the data amount (reported) of the uplink data for which the transmission request included in queue #q has already been reported is greater.
 ONU20は、送信予約済みである上りデータのデータ量(granted)が決まると、次の送信要求メッセージ(REPORTフレーム)に記すための、蓄積された上りデータのデータ量(すなわち、送信要求すべき上りデータのデータ量)を計算する。queue#p及びqueue#qに蓄積された上りデータのデータ量は、図4に示される時点(c)の状態から時点(d)の状態へと変化する。 When the amount of upstream data reserved for transmission (granted) is determined, the ONU 20 determines the amount of accumulated upstream data (that is, the amount of upstream data to be requested for transmission) to be written in the next transmission request message (REPORT frame). data volume of data). The amount of uplink data accumulated in queue #p and queue #q changes from the state at time (c) shown in FIG. 4 to the state at time (d).
 次に、時点(d)の欄において、queue#pには、送信予約済みである上りデータのデータ量(granted)と、送信要求すべき上りデータのデータ量(すなわち、送信要求待ちの上りデータ量)と、が示されている。また、queue#qにも、送信予約済みである上りデータのデータ量(granted)と、送信要求すべき上りデータのデータ量(すなわち、送信要求待ちの上りデータ量)と、が示されている。 Next, in the column of time (d), queue #p contains the amount of uplink data reserved for transmission (granted) and the amount of uplink data to be requested for transmission (that is, uplink data waiting for transmission request). amount) and are indicated. The queue #q also indicates the amount of uplink data for which transmission has been reserved (granted) and the amount of uplink data to be requested for transmission (that is, the amount of uplink data waiting for a transmission request). .
 なお、図4の時点(d)の欄に示されるように、queue#pに含まれる送信要求すべき上りデータのデータ量(図4のreport用)は、時点(c)における、未送信要求の上りデータのデータ量(すなわち、新たに追加された上りデータのデータ量)に相当するデータ量である。 As shown in the column for time (d) in FIG. 4, the amount of uplink data to be requested for transmission contained in queue #p (for report in FIG. 4) is (ie, the data amount of the newly added uplink data).
 一方、queue#qに含まれる送信要求すべき上りデータのデータ量(図4のreport用)は、時点(c)における、未送信要求の上りデータのデータ量(すなわち、新たに追加された上りデータのデータ量)に相当するデータ量と、送信要求を報告済みの上り新たに追加されたデータ量(reported)のうち送信予約済みの上りデータのデータ量(granted)を除いたデータ量との合計のデータ量である。 On the other hand, the amount of uplink data to be requested for transmission contained in queue #q (for report in FIG. 4) is the amount of uplink data for which transmission has not been requested at time (c) (that is, the amount of uplink data newly added). data amount) and the data amount obtained by subtracting the data amount of uplink data reserved for transmission (granted) from the newly added uplink data amount (reported) for which the transmission request has been reported. This is the total amount of data.
 ONU20は、上記計算されたqueue#p及びqueue#qに含まれる送信要求すべき上りデータのデータ量(図4のreport用)の合計を記した送信要求メッセージ(REPORTフレーム)を生成する。ONU20は、生成された送信要求メッセージ(REPORTフレーム)をOLT10へ送信する。queue#p及びqueue#qに蓄積された上りデータのデータ量は、図4に示される時点(d)の状態から時点(e)の状態へと変化する。 The ONU 20 generates a transmission request message (REPORT frame) describing the total amount of uplink data to be requested for transmission (for report in FIG. 4) contained in queue #p and queue #q calculated above. ONU 20 transmits the generated transmission request message (REPORT frame) to OLT 10 . The amount of uplink data accumulated in queue #p and queue #q changes from the state at time (d) shown in FIG. 4 to the state at time (e).
 次に、時点(e)の欄において、queue#pには、送信要求を報告済みである上りデータのデータ量(reported)と、そのうち、送信予約済みである上りデータのデータ量(granted)と、が示されている。また、queue#qにも、送信要求を報告済みである上りデータのデータ量(reported)と、そのうち、送信予約済みである上りデータのデータ量(granted)と、が示されている。 Next, in the column of time point (e), the queue #p contains the amount of uplink data for which a transmission request has been reported (reported) and the amount of uplink data for which transmission is reserved (granted). ,It is shown. The queue #q also indicates the amount of uplink data for which a transmission request has been reported (reported) and the amount of uplink data for which transmission has been reserved (granted).
 なお、図4の時点(e)の欄に示されるqueue#p及びqueue#qにそれぞれ含まれる、送信要求を報告済みである上りデータのデータ量(reported)から送信予約済みである上りデータのデータ量(granted)を除いたデータ量は、時点(d)の欄に示されるqueue#p及びqueue#qにそれぞれ含まれる送信要求すべき上りデータのデータ量(図4のreport用)に相当し、ONU20からOLT10へ送信要求メッセージ(REPORTフレーム)が送信されたことによって状態が変化した上りデータのデータ量である。 Note that the amount of uplink data reserved for transmission is determined from the data amount (reported) of uplink data for which a transmission request has been reported, which is included in queue #p and queue #q shown in the column of time (e) in FIG. The amount of data excluding the amount of data (granted) corresponds to the amount of uplink data (for report in FIG. 4) to be requested for transmission contained in queue #p and queue #q shown in the column of time (d). , and is the data amount of uplink data whose state has changed due to transmission of a transmission request message (REPORT frame) from the ONU 20 to the OLT 10 .
 ONU20は、送信予約済みであるデータ量の上りデータ(granted DATA)を、受信した送信許可メッセージ(GATEフレーム)によって指定された送信タイミングでOLT10へ送信する。その後、queue#p及びqueue#qに蓄積された上りデータのデータ量は、図4に示される時点(e)の状態から時点(f)の状態へと変化する。 The ONU 20 transmits the amount of upstream data (granted DATA) reserved for transmission to the OLT 10 at the transmission timing specified by the received transmission permission message (GATE frame). After that, the amount of upstream data accumulated in queue #p and queue #q changes from the state at time (e) shown in FIG. 4 to the state at time (f).
 次に、時点(f)の欄において、queue#pには、送信要求を報告済みである上りデータのデータ量(reported)が示されている。また、queue#qにも、送信要求を報告済みである上りデータのデータ量(reported)が示されている。 Next, in the column of time (f), queue #p indicates the amount of uplink data (reported) for which the transmission request has already been reported. The queue #q also indicates the amount of uplink data (reported) for which the transmission request has been reported.
 なお、図4の時点(f)の欄に示されるように、時点(d)において送信予約済みであった上りデータのデータ量(granted)は、OLT10への上りデータの送信が完了したことによってqueue#p及びqueue#qから除かれている。 As shown in the column for time (f) in FIG. 4, the data amount (granted) of the upstream data reserved for transmission at time (d) is reduced to Removed from queue #p and queue #q.
 以上のような手順で、ONU20のキューに蓄積された上りデータは、順次OLT10へ送信される。 Through the procedure described above, the upstream data accumulated in the ONU 20 queue is sequentially transmitted to the OLT 10 .
 前述の通り、ONU20は、送信許可メッセージ(GATEフレーム)を受信してから送信要求メッセージ(REPORTフレーム)を送信するまでの間に(すなわち、図4の時点(b)から時点(d)の間に)、queue#p及びqueue#qに含まれる送信予約済みの上りデータのデータ量(granted)の計算と、送信要求すべき上りデータのデータ量の計算(すなわち、REPORT計算)とを行う必要がある。 As described above, the ONU 20 receives a transmission permission message (GATE frame) and transmits a transmission request message (REPORT frame) (that is, between time (b) and time (d) in FIG. 4). 2), it is necessary to calculate the data amount (granted) of uplink data reserved for transmission contained in queue #p and queue #q and to calculate the data amount of uplink data to be requested for transmission (that is, REPORT calculation). There is
 本実施形態におけるOLT10は、上り帯域制御の動作周期と動作周期との間に、Data grantの送信予約計算とREPORT計算とを行うための時間(REPORT前GAP)を設ける。これにより、granted queue(送信予約キュー)を備えていないONU20であっても、送信要求メッセージ(REPORTフレーム)の送信開始時刻になる前にREPORT計算等を完了させることができるようになる。 The OLT 10 in this embodiment provides a time (pre-REPORT GAP) for performing data grant transmission reservation calculation and REPORT calculation between the operation cycles of upstream band control. As a result, even an ONU 20 that does not have a granted queue (reserved transmission queue) can complete the REPORT calculation and the like before the transmission start time of the transmission request message (REPORT frame).
 なお、上記の構成は、動作周期と動作周期との間にREPORT前GAPを設けることで動作周期を変更させる構成であるが、この構成に限られるものではない。例えば、動作周期を変更させたくない場合には、動作周期-REPORT前GAPに相当する時間が新たな動作周期であるように変更されるような構成であってもよい。 Note that the above configuration is a configuration in which the operation cycle is changed by providing a pre-REPORT GAP between operation cycles, but it is not limited to this configuration. For example, if it is not desired to change the operating cycle, the configuration may be such that the time corresponding to the operating cycle-pre-REPORT GAP is changed to the new operating cycle.
 図6は、本発明の実施形態におけるPON1による上りデータの送信の流れを示す図である。図6には、ONU20が2台である場合における上りデータの送信の流れが示されている。なお、ONU20が3台以上である場合の上りデータの送信の流れについても、基本的には図3に示される上りデータの送信の流れと同様である。 FIG. 6 is a diagram showing the flow of transmission of uplink data by PON1 in the embodiment of the present invention. FIG. 6 shows the flow of upstream data transmission when there are two ONUs 20 . The flow of transmission of uplink data when there are three or more ONUs 20 is basically the same as the flow of transmission of uplink data shown in FIG.
 図6に示されるように、ここではOLT10に対し2台のONU20(「ONU#1」及び「ONU#2」)が接続されているものとする。OLT10は、ONU#1から送信される送信要求メッセージ(REPORTフレーム)とONU#2から送信される送信要求メッセージ(REPORTフレーム)とを一括して受信する(図6の(1))。 As shown in FIG. 6, it is assumed that two ONUs 20 ("ONU#1" and "ONU#2") are connected to the OLT 10 here. The OLT 10 collectively receives the transmission request message (REPORT frame) transmitted from ONU#1 and the transmission request message (REPORT frame) transmitted from ONU#2 ((1) in FIG. 6).
 OLT10は、ONU#1及びONU#2から送信要求メッセージ(REPORTフレーム)をそれぞれ受信したことに応じて、送信許可メッセージ(GATEフレーム)を一括してONU#1及びONU#2へ送信する(図6の(2))。 When the OLT 10 receives the transmission request messages (REPORT frames) from ONU#1 and ONU#2, it collectively transmits transmission permission messages (GATE frames) to ONU#1 and ONU#2 (Fig. 6 (2)).
 具体的には、OLT10は、ONU#1から受信した送信要求メッセージ(REPORTフレーム)によって、ONU#1に蓄積されている上りデータのデータ量を把握する。OLT10は、把握したデータ量に基づいて、次回の動作周期においてONU#1が送信する上りデータの送信開始時刻と送信量とを決定する。OLT10は、決定された上りデータの送信開始時刻と送信量の値とを送信許可メッセージ(GATEフレーム)に記す。 Specifically, the OLT 10 grasps the amount of upstream data accumulated in ONU#1 from the transmission request message (REPORT frame) received from ONU#1. The OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#1 in the next operation cycle based on the grasped data amount. The OLT 10 writes the determined transmission start time and transmission amount of uplink data in a transmission permission message (GATE frame).
 また、OLT10は、ONU#2から受信した送信要求メッセージ(REPORTフレーム)によって、ONU#2に蓄積されている上りデータのデータ量を把握する。OLT10は、把握したデータ量に基づいて、次回の動作周期においてONU#2が送信する上りデータの送信開始時刻と送信量とを決定する。OLT10は、決定された上りデータの送信開始時刻と送信量の値とを送信許可メッセージ(GATEフレーム)に記す。 Also, the OLT 10 grasps the amount of upstream data accumulated in ONU#2 from the transmission request message (REPORT frame) received from ONU#2. The OLT 10 determines the transmission start time and transmission amount of uplink data to be transmitted by the ONU#2 in the next operation cycle based on the grasped data amount. The OLT 10 writes the determined transmission start time and transmission amount of uplink data in a transmission permission message (GATE frame).
 また、このときOLT10は、図6に示されるREPORT前GAPを考慮した送信開始時刻を、送信許可メッセージ(GATEフレーム)に記す。具体的には、OLT10は、REPORT前GAPの分だけ時刻を遅らせた、REPORTフレームの送信開始時刻と、上りデータの送信開始時刻とを、送信許可メッセージ(GATEフレーム)に記す。 Also, at this time, the OLT 10 writes the transmission start time in consideration of the pre-REPORT GAP shown in FIG. 6 in the transmission permission message (GATE frame). Specifically, the OLT 10 writes the transmission start time of the REPORT frame and the transmission start time of the uplink data delayed by the pre-REPORT GAP in the transmission permission message (GATE frame).
 図6に示されるように、OLT10は、上記生成された送信許可メッセージ(GATEフレーム)を一括してONU#1及びONU#2へ送信する。ONU#1及びONU#2は、OLT10から送信された送信許可メッセージ(GATEフレーム)をそれぞれ受信する。ONU#1及びONU#2は、送信許可メッセージ(GATEフレーム)に記述された内容から、自己のONU20に対して指定された上りデータの送信開始時刻と送信量の値とを認識する。 As shown in FIG. 6, the OLT 10 collectively transmits the generated transmission permission message (GATE frame) to ONU#1 and ONU#2. ONU#1 and ONU#2 receive the transmission permission message (GATE frame) transmitted from OLT 10 respectively. ONU#1 and ONU#2 recognize the transmission start time and the amount of transmission of uplink data designated for their own ONU 20 from the contents described in the transmission permission message (GATE frame).
 ONU#1及びONU#2は、送信許可メッセージ(GATEフレーム)によって指定された送信開始時刻に、送信許可メッセージ(REPORTフレーム)を送信する。前述の通り、送信許可メッセージ(GATEフレーム)によって指定された送信開始時刻にはREPORT前GAPが考慮されているため、granted queueを備えないONU#1及びONU#2であっても、送信要求メッセージ(REPORTフレーム)の送信開始時刻になる前に、Data grantの送信予約計算とREPORT計算とを完了させることができる。 ONU#1 and ONU#2 transmit a transmission permission message (REPORT frame) at the transmission start time specified by the transmission permission message (GATE frame). As described above, the transmission start time specified by the transmission permission message (GATE frame) takes into consideration the pre-REPORT GAP. Before the transmission start time of (REPORT frame) arrives, the data grant transmission reservation calculation and the REPORT calculation can be completed.
 ONU#1及びONU#2は、送信許可メッセージ(GATEフレーム)によって指定された上りデータの送信開始時刻に、送信許可メッセージ(GATEフレーム)によって指定された送信量の上りデータを、OLT10へそれぞれ送信する(図6の(3))。 ONU#1 and ONU#2 each transmit the amount of uplink data specified by the transmission permission message (GATE frame) to the OLT 10 at the transmission start time of the uplink data specified by the transmission permission message (GATE frame). ((3) in FIG. 6).
 なお、図7は、従来のPONによる上りデータの送信の流れを示す図である。図7に示されるように、従来のPONではREPORT前GAPが考慮されない。そのため、例えば図7では、ONU#2において、送信許可メッセージ(GATEフレーム)が受信されてから、送信要求メッセージ(REPORTフレーム)の送信開始時刻までの時間が、前述の図6と比べてかなり短くなっている。 Note that FIG. 7 is a diagram showing the flow of transmission of uplink data by a conventional PON. As shown in FIG. 7, the conventional PON does not consider the pre-REPORT GAP. Therefore, in FIG. 7, for example, in ONU#2, the time from the reception of the transmission permission message (GATE frame) to the transmission start time of the transmission request message (REPORT frame) is considerably shorter than in FIG. It's becoming
 これにより、ONU#2がgranted queue(送信予約キュー)を備えていない場合には、送信許可メッセージ(GATEフレーム)のReport grantによって指定された送信要求メッセージ(REPORTフレーム)の送信開始時刻までに、REPORT計算が間に合わなくなる。Report grantは、OLT10によって送信許可された送信要求メッセージ(REPORTフレーム)の送信開始時刻を示す。送信開始時刻までにREPORT計算が間に合わなくなると、ONU#2は、次の動作周期においてOLT10への上りデータの送信ができなくなる。 As a result, if ONU#2 does not have a granted queue (reserved transmission queue), by the transmission start time of the transmission request message (REPORT frame) specified by the Report Grant of the transmission permission message (GATE frame), REPORT calculation will not be done in time. Report grant indicates the transmission start time of the transmission request message (REPORT frame) permitted by the OLT 10 . If the REPORT calculation cannot be completed by the transmission start time, ONU#2 will not be able to transmit upstream data to the OLT 10 in the next operation cycle.
[OLTの構成]
 以下、OLT10の機能構成の一例について説明する。図8は、本発明の実施形態におけるOLT10の機能構成を示すブロック図である。
[Configuration of OLT]
An example of the functional configuration of the OLT 10 will be described below. FIG. 8 is a block diagram showing the functional configuration of the OLT 10 according to the embodiment of the invention.
 図8に示されるように、OLT10は、信号送受信部101と、MAC(Media Access Control)処理部102と、OAM(Operations, Administration, Maintenance)処理部103と、ONU(Optical Network Unit)識別判定部104と、REPORT前GAPデータベース105と、動的帯域割当動作部106と、MPCP(Multi-Point Control Protocol)処理部107と、信号送受信部108と、を備える。 As shown in FIG. 8, the OLT 10 includes a signal transmission/reception unit 101, a MAC (Media Access Control) processing unit 102, an OAM (Operations, Administration, Maintenance) processing unit 103, and an ONU (Optical Network Unit) identification determination unit. 104, a pre-REPORT GAP database 105, a dynamic band allocation operation unit 106, an MPCP (Multi-Point Control Protocol) processing unit 107, and a signal transmission/reception unit .
 信号送受信部101は、各ONUと自己のOLT10との間における信号の送受信を行う。MAC処理部102は、優先制御及び転送処理等を行う。OAM処理部103は、保守・運用管理機能を実行する。また、OAM処理部103は、ONU情報を取得する。 The signal transmission/reception unit 101 transmits and receives signals between each ONU and its own OLT 10 . The MAC processing unit 102 performs priority control, transfer processing, and the like. The OAM processing unit 103 executes maintenance/operation management functions. Also, the OAM processing unit 103 acquires ONU information.
 ONU識別判定部104は、ONU情報が示すONU識別子に基づきREPORT前GAPの要否を判定する。また、ONU識別判定部104は、REPORT前GAPが必要であると判定した場合、REPORT前GAPデータベース105から、ONU識別子に対応するREPORT前GAPの値を取得し、動的帯域割当動作部106へ出力する。 The ONU identification determination unit 104 determines whether or not the pre-REPORT GAP is required based on the ONU identifier indicated by the ONU information. If the ONU identification determination unit 104 determines that the pre-REPORT GAP is necessary, it acquires the value of the pre-REPORT GAP corresponding to the ONU identifier from the pre-REPORT GAP database 105, and sends it to the dynamic bandwidth allocation operation unit 106. Output.
 図9は、REPORT前GAPデータベース105の構成の一例を示す図である。図9に示されるように、例えば、REPORT前GAPデータベース105は、ONU識別子と、REPORT前GAPの値とが対応付けられたデータである。例えば、ONU識別子がAであるONU20に対してはREPORT前GAPが不要であり、ONU識別子がBであるONU20に対しては10[μs]のREPORT前GAPが必要であり、ONU識別子がCであるONU20に対しては15[μs]のREPORT前GAPが必要であることを示している。 FIG. 9 is a diagram showing an example of the configuration of the pre-REPORT GAP database 105. FIG. As shown in FIG. 9, for example, the pre-REPORT GAP database 105 is data in which ONU identifiers and pre-REPORT GAP values are associated with each other. For example, the ONU 20 whose ONU identifier is A does not require a pre-REPORT GAP, the ONU 20 whose ONU identifier is B requires a pre-REPORT GAP of 10 [μs], and the ONU identifier is C. It indicates that a certain ONU 20 requires a pre-REPORT GAP of 15 [μs].
 動的帯域割当動作部106は、上り帯域制御の動作周期と動作周期との間に、上記取得された値に基づくREPORT前GAPを設けるように、動作周期の設定変更を行う。 The dynamic bandwidth allocation operation unit 106 changes the setting of the operation cycle so that the pre-REPORT GAP based on the acquired value is provided between the operation cycles of upstream bandwidth control.
 MPCP処理部107は、PON1に接続された複数のONU20を認識し、各ONU20と自己のOLT10との間で通信するために必要なRTT(Round Trip Time:OLT10からONU20までの往復遅延時間)を測定する機能、LLID(Logical Link ID)の付与等を行う機能、各ONU20にタイムスロットを割り当て、各ONU20からの上りバースト信号を時間軸上に多重する多重制御機能、及び、ONU10と自己のOLT10との間の時刻同期機能等を実現する。 The MPCP processing unit 107 recognizes a plurality of ONUs 20 connected to the PON 1, and calculates the RTT (Round Trip Time: round-trip delay time from the OLT 10 to the ONU 20) required for communication between each ONU 20 and its own OLT 10. A measurement function, a function of assigning LLID (Logical Link ID), etc., a multiplexing control function of assigning a time slot to each ONU 20 and multiplexing the upstream burst signal from each ONU 20 on the time axis, and ONU 10 and its own OLT 10 Realize the time synchronization function etc. between
 信号送受信部108は、SNI(Service Node Interface)ポートを介してサービス網と自己のOLT10との間における信号の送受信を行う。 The signal transmission/reception unit 108 transmits and receives signals between the service network and its own OLT 10 via an SNI (Service Node Interface) port.
[OLTの動作]
 以下、OLT10の動作の一例について説明する。図10は、本発明の実施形態におけるOLT10の動作を示すフローチャートである。
[Operation of OLT]
An example of the operation of the OLT 10 will be described below. FIG. 10 is a flow chart showing the operation of the OLT 10 according to the embodiment of the invention.
 OAM処理部103は、PON1への新たなONU20の接続を監視する(ステップS01)。OAM処理部103は、新たなONU20がPON1に接続されたことを検出した場合(ステップS01)、新たに接続されたONU20のONU情報をONU識別判定部104へ出力する。 The OAM processing unit 103 monitors connection of a new ONU 20 to the PON1 (step S01). When the OAM processing unit 103 detects that a new ONU 20 is connected to the PON 1 (step S<b>01 ), it outputs the ONU information of the newly connected ONU 20 to the ONU identification determination unit 104 .
 ONU識別判定部104は、OAM処理部103から出力されたONU情報を取得する。ONU識別判定部104は、取得されたONU情報からONU識別子を特定することで、新たに接続されたONU20を識別する(ステップS02)。 The ONU identification determination section 104 acquires ONU information output from the OAM processing section 103 . The ONU identification determination unit 104 identifies the newly connected ONU 20 by specifying the ONU identifier from the acquired ONU information (step S02).
 ONU識別判定部104は、識別されたONU20がREPORT前GAPを必要とするONU20であるか否かを判定する(ステップS03)。具体的には、ONU識別判定部104は、識別されたONU20がgranted queue(送信予約キュー)を備えたONU20であるか否かを判定する。なお、識別されたONU20がREPORT前GAPを必要とするONU20であるか否かを特定するための情報は、予めOLT10が有する記憶媒体(不図示)等に記憶されている。または、識別されたONU20がREPORT前GAPを必要とするONU20であるか否かを特定するための情報は、例えば図9に示される、REPORT前GAPデータベース105に記憶されていてもよい。 The ONU identification determination unit 104 determines whether or not the identified ONU 20 requires the pre-REPORT GAP (step S03). Specifically, the ONU identification determination unit 104 determines whether the identified ONU 20 is an ONU 20 with a granted queue (transmission reservation queue). Information for identifying whether or not the identified ONU 20 requires the pre-REPORT GAP is pre-stored in a storage medium (not shown) of the OLT 10 or the like. Alternatively, the information for identifying whether the identified ONU 20 requires the pre-REPORT GAP may be stored in the pre-REPORT GAP database 105 shown in FIG. 9, for example.
 識別されたONU20がREPORT前GAPを必要とするONU20ではないと判定された場合(ステップS03・NO)、上記ステップS01の処理に戻り、OAM処理部103は、PON1への新たなONU20の接続の監視を継続する。 If it is determined that the identified ONU 20 is not the ONU 20 that requires the pre-REPORT GAP (step S03: NO), the process returns to step S01, and the OAM processing unit 103 starts connecting the new ONU 20 to the PON1. Continue monitoring.
 識別されたONU20がREPORT前GAPを必要とするONU20であると判定された場合(ステップS03・YES)、ONU識別判定部104は、REPORT前GAPデータベース105を参照し、ステップS02において識別されたONU20のONU識別子に対応するREPORT前GAPの値を取得する。ONU識別判定部104は、取得されたREPORT前GAPの値と、現在設定されているREPORT前GAPの値とを大小比較する(ステップS04)。 If it is determined that the identified ONU 20 requires the pre-REPORT GAP (step S03: YES), the ONU identification determination unit 104 refers to the pre-REPORT GAP database 105 and identifies the ONU 20 identified in step S02. acquires the pre-REPORT GAP value corresponding to the ONU identifier of . The ONU identification determination unit 104 compares the acquired pre-REPORT GAP value with the currently set pre-REPORT GAP value (step S04).
 現在設定されているREPORT前GAPの値より、識別されたONU20のONU識別子に対応するREPORT前GAPの値の方が小さい場合(ステップS04・NO)、上記ステップS01の処理に戻り、OAM処理部103は、PON1への新たなONU20の接続の監視を継続する。 If the pre-report gap value corresponding to the ONU identifier of the identified ONU 20 is smaller than the currently set pre-report gap value (step S04: NO), the process returns to step S01, and the OAM processing unit 103 continues to monitor new ONU 20 connections to PON1.
 現在設定されているREPORT前GAPの値より、識別されたONU20のONU識別子に対応するREPORT前GAPの値の方が大きい場合(ステップS04・YES)、ONU識別判定部104は、識別されたONU20のONU識別子に対応するREPORT前GAPの値を動的帯域割当動作部106へ出力する。 If the pre-report GAP value corresponding to the ONU identifier of the identified ONU 20 is larger than the currently set pre-report GAP value (step S04: YES), the ONU identification determination unit 104 determines that the identified ONU 20 output to the dynamic band allocation operation unit 106 the value of the pre-REPORT GAP corresponding to the ONU identifier of .
 動的帯域割当動作部106は、ONU識別判定部104から出力された、REPORT前GAPの値を取得する。動的帯域割当動作部106は、接続されたONU20に適したREPORT前GAPとなるように動作周期を設定変更する。具体的には、動的帯域割当動作部106は、上り帯域制御の動作周期間のREPORT前GAPを、上記取得された値となるように設定変更する(ステップS05)。 The dynamic band allocation operation unit 106 acquires the pre-REPORT GAP value output from the ONU identification determination unit 104 . The dynamic band allocation operation unit 106 changes the setting of the operation cycle so that the pre-REPORT GAP is suitable for the connected ONU 20 . Specifically, the dynamic bandwidth allocation operation unit 106 changes the setting of the pre-REPORT GAP during the operation cycle of the upstream bandwidth control to the value obtained above (step S05).
 その後、再び上記ステップS01の処理に戻り、OAM処理部103は、PON1への新たなONU20の接続の監視を継続する。なお、図10のフローチャートに示されるOLT10の動作は、例えばPON1が機能停止する場合等に終了する。 After that, returning to the process of step S01, the OAM processing unit 103 continues to monitor the connection of the new ONU 20 to the PON1. Note that the operation of the OLT 10 shown in the flowchart of FIG. 10 ends when, for example, the PON 1 stops functioning.
 以上説明したように、本実施形態におけるOLT10は、上り帯域制御の動作周期と動作周期との間に、Data grantの送信予約計算とREPORT計算とを行うために十分な時間(REPORT前GAP)を設けるように動作周期の設定変更を行う。 As described above, the OLT 10 in this embodiment provides sufficient time (pre-REPORT GAP) to perform data grant transmission reservation calculation and REPORT calculation between the operation cycles of upstream band control. Change the setting of the operation cycle so that it is provided.
 上記のような構成を備えることにより、本実施形態におけるOLT10は、granted queue(送信予約キュー)を備えていないONU20であっても、送信要求メッセージ(REPORTフレーム)の送信開始時刻になる前に、上りデータの送信を行うために必要な計算を完了させることができるようになる。これにより、上りスループットが向上する。 With the configuration as described above, the OLT 10 in this embodiment can, even if the ONU 20 does not have a granted queue (reserved transmission queue), It becomes possible to complete the calculations necessary for transmitting uplink data. This improves the upstream throughput.
 なお、ここでいう上りデータの送信を行うために必要な計算とは、前述の通り、送信予約済みの上りデータ量(granted)の計算と、送信要求すべき上りデータ量の計算(すなわち、REPORT計算)である。 Here, the calculations necessary for transmitting uplink data are, as described above, the calculation of the amount of uplink data reserved for transmission (granted) and the calculation of the amount of uplink data to be requested for transmission (that is, REPORT calculation).
 また、上記のような構成を備えることにより、本実施形態におけるOLT10は、granted queueを備えたONU20とgranted queueを備えていないONU20とが混在して収容されたPON1であっても、上り通信を可能にすることができる。 In addition, with the configuration as described above, the OLT 10 in this embodiment can perform upstream communication even in a PON 1 in which both ONUs 20 with a granted queue and ONUs 20 without a granted queue are accommodated. can be made possible.
 上述した実施形態によれば、帯域割り当て装置は、検出部と、設定部と、を備える。例えば、帯域割り当て装置は、実施形態におけるOLT1であり、検出部は、実施形態におけるOAM処理部103であり、設定部は、実施形態における動的帯域割当動作部である。 According to the above-described embodiment, the bandwidth allocation device includes the detection unit and the setting unit. For example, the bandwidth allocation device is the OLT 1 in the embodiment, the detection unit is the OAM processing unit 103 in the embodiment, and the setting unit is the dynamic bandwidth allocation operation unit in the embodiment.
 検出部は、受動光ネットワークに対して、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えていない加入者線終端装置が接続されたことを検出する。例えば、受動光ネットワークは、実施形態におけるPON1であり、送信許可された上りデータは、実施形態におけるgranted DATAであり、送信予約キューは、実施形態におけるgranted queueであり、加入者線終端装置は、実施形態におけるONU20である。 The detection unit detects that a subscriber line terminating device that does not have a transmission reservation queue that waits for transmission-permitted uplink data until the transmission start time is connected to the passive optical network. For example, the passive optical network is PON1 in the embodiment, the upstream data permitted to be transmitted is the granted DATA in the embodiment, the transmission reservation queue is the granted queue in the embodiment, and the subscriber line terminating equipment is It is ONU20 in embodiment.
 設定部は、加入者線終端装置と加入者線端局装置との間の上り帯域制御の動作周期間に、加入者線終端装置における、送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間を設ける。例えば、加入者線端局装置は、実施形態におけるOLT10であり、計算時間は、実施形態におけるREPORT前GAPである。 The setting unit determines the amount of uplink data permitted to be transmitted in the subscriber line terminating equipment during an operation cycle of uplink band control between the subscriber line terminating equipment and the subscriber line terminating equipment. A calculation time, which is the time required for calculation of the data amount of data and calculation of the data amount of uplink data to be requested for transmission, is provided. For example, the subscriber line terminal equipment is the OLT 10 in the embodiment, and the calculation time is the pre-REPORT GAP in the embodiment.
 また、上述した実施形態によれば、帯域割り当て装置は、取得部と、判定部と、設定変更部と、を備える。例えば、帯域割り当て装置は、実施形態におけるOLT1であり、取得部は、実施形態におけるOAM処理部103であり、判定部は、実施形態におけるONU識別判定部104であり、設定変更部は、実施形態における動的帯域割当動作部106である。 Also, according to the above-described embodiment, the bandwidth allocation device includes the acquisition unit, the determination unit, and the setting change unit. For example, the bandwidth allocation device is the OLT 1 in the embodiment, the acquisition unit is the OAM processing unit 103 in the embodiment, the determination unit is the ONU identification determination unit 104 in the embodiment, and the setting change unit is the is the dynamic bandwidth allocation operation unit 106 in .
 取得部は、受動光ネットワークに接続された加入者線終端装置を識別する識別情報を取得する。例えば、受動光ネットワークは、実施形態におけるPON1であり、加入者線終端装置は、実施形態におけるONU2であり、識別情報は、実施形態におけるONU識別子である。 The acquisition unit acquires identification information that identifies the subscriber line terminal equipment connected to the passive optical network. For example, the passive optical network is PON1 in the embodiment, the subscriber line terminal is ONU2 in the embodiment, and the identification information is the ONU identifier in the embodiment.
 判定部は、識別情報に基づいて、加入者線終端装置が送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えているか否かを判定する。例えば、送信許可された上りデータは、実施形態におけるgranted DATAであり、送信予約キューは、実施形態におけるgranted queueである。 Based on the identification information, the determining unit determines whether or not the subscriber line terminating equipment has a transmission reservation queue for waiting uplink data permitted to be transmitted until the transmission start time. For example, the uplink data permitted to be transmitted is the granted DATA in the embodiment, and the transmission reservation queue is the granted queue in the embodiment.
 設定変更部は、加入者線終端装置が送信予約キューを備えていないと判定された場合、受動光ネットワークにおける上り帯域制御の動作周期間に所定の計算時間を設ける。 When it is determined that the subscriber line terminating equipment does not have a transmission reservation queue, the setting change unit provides a predetermined calculation time between operation cycles of upstream bandwidth control in the passive optical network.
 なお、設定変更部は、加入者線終端装置における、送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間が含まれるように動作周期を変更させるようにしてもよい。例えば、計算時間は、実施形態におけるREPORT前GAPである。 The setting change unit calculates the amount of uplink data to be transmitted out of the amount of uplink data permitted to be transmitted and the amount of uplink data to be requested to be transmitted in the subscriber line terminating equipment. The operation cycle may be changed so as to include the required calculation time. For example, the calculation time is the pre-REPORT GAP in the embodiment.
 なお、帯域割り当て装置は、記憶部をさらに備えていてもよい。例えば、記憶部は、実施形態におけるREPORT前GAPデータベース105である。記憶部は、識別情報と計算時間とが対応付けられた計算時間情報を記憶する。設定変更部は、識別情報と計算時間情報とに基づいて特定された計算時間が含まれるように、動作周期を変更させるようにしてもよい。 Note that the bandwidth allocation device may further include a storage unit. For example, the storage unit is the pre-REPORT GAP database 105 in the embodiment. The storage unit stores calculation time information in which identification information and calculation time are associated with each other. The setting change unit may change the operating cycle so that the calculation time specified based on the identification information and the calculation time information is included.
 上述した各実施形態におけるOLT10の一部又は全部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 A part or all of the OLT 10 in each of the above-described embodiments may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design within the scope of the gist of the present invention.
1…PON,30…光ファイバ,40…光スプリッタ,101…信号送受信部,102…MAC処理部,103…OAM処理部,104…ONU識別判定部,105…REPORT前GAPデータベース,106…動的帯域割当動作部,107…MPCP処理部,108…信号送受信部 Reference Signs List 1 PON 30 Optical fiber 40 Optical splitter 101 Signal transmission/reception unit 102 MAC processing unit 103 OAM processing unit 104 ONU identification determination unit 105 Pre-REPORT GAP database 106 Dynamic Band allocation operation unit, 107 MPCP processing unit, 108 signal transmission/reception unit

Claims (8)

  1.  受動光ネットワークに対して、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えていない加入者線終端装置が接続されたことを検出する検出部と、
     前記加入者線終端装置と加入者線端局装置との間の上り帯域制御の動作周期間に、前記加入者線終端装置における、前記送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間を設ける設定部と、
     を備える帯域割り当て装置。
    a detection unit for detecting that a subscriber line terminating device that does not have a transmission reservation queue that waits until a transmission start time for uplink data permitted to be transmitted is connected to the passive optical network;
    Uplink data to be transmitted out of the data amount of the uplink data permitted to be transmitted in the subscriber line terminating equipment during an operation cycle of uplink band control between the subscriber line terminating equipment and the subscriber line terminating equipment a setting unit that provides a calculation time, which is the time required for calculating the amount of data in and calculating the amount of uplink data to be requested for transmission;
    A bandwidth allocation device comprising:
  2.  受動光ネットワークに接続された加入者線終端装置を識別する識別情報を取得する取得部と、
     前記識別情報に基づいて、前記加入者線終端装置が送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えているか否かを判定する判定部と、
     前記加入者線終端装置が前記送信予約キューを備えていないと判定された場合、前記受動光ネットワークにおける上り帯域制御の動作周期間に所定の計算時間を設ける設定変更部と、
     を備える帯域割り当て装置。
    an acquisition unit that acquires identification information that identifies a subscriber line terminating device connected to a passive optical network;
    a determination unit that determines whether or not the subscriber line terminal device has a transmission reservation queue that waits for transmission-permitted uplink data until a transmission start time, based on the identification information;
    a setting change unit that sets a predetermined calculation time between operation cycles of upstream band control in the passive optical network when it is determined that the subscriber line terminating equipment does not have the transmission reservation queue;
    A bandwidth allocation device comprising:
  3.  前記設定変更部は、前記加入者線終端装置における、前記送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である前記計算時間が含まれるように前記動作周期を変更させる
     請求項2に記載の帯域割り当て装置。
    The setting change unit calculates an amount of uplink data to be transmitted out of the amount of uplink data permitted to be transmitted, calculates an amount of uplink data to be requested to be transmitted, and 3. The bandwidth allocation device according to claim 2, wherein said operation period is changed so as to include said calculation time which is the time required for the calculation.
  4.  前記識別情報と前記計算時間とが対応付けられた計算時間情報を記憶する記憶部
     をさらに備え、
     前記設定変更部は、前記識別情報と前記計算時間情報とに基づいて特定された前記計算時間が含まれるように前記動作周期を変更させる
     請求項3に記載の帯域割り当て装置。
    A storage unit that stores calculation time information in which the identification information and the calculation time are associated,
    4. The bandwidth allocation device according to claim 3, wherein said setting change unit changes said operation period so as to include said calculation time specified based on said identification information and said calculation time information.
  5.  受動光ネットワークに対して、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えていない加入者線終端装置が接続されたことを検出する検出部と、
     前記加入者線終端装置と自装置との間の上り帯域制御の動作周期間に、前記加入者線終端装置における、前記送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間を設ける設定部と、
     前記加入者線終端装置とのデータの送受信を行う送受信部と、
     を備える加入者線端局装置。
    a detection unit for detecting that a subscriber line terminating device that does not have a transmission reservation queue that waits until a transmission start time for uplink data permitted to be transmitted is connected to the passive optical network;
    a data amount of uplink data to be transmitted out of the data amount of uplink data permitted to be transmitted in the subscriber line terminating apparatus during an operation cycle of uplink band control between the subscriber line terminating apparatus and its own apparatus; a setting unit that provides a calculation time that is the time required for the calculation and the calculation of the amount of uplink data to be requested for transmission;
    a transmitting/receiving unit that transmits/receives data to/from the subscriber line terminal device;
    subscriber line terminal equipment.
  6.  受動光ネットワークに接続された加入者線終端装置を識別する識別情報を取得する取得部と、
     前記識別情報に基づいて、前記加入者線終端装置が送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えているか否かを判定する判定部と、
     前記加入者線終端装置が前記送信予約キューを備えていないと判定された場合、前記受動光ネットワークにおける上り帯域制御の動作周期間に所定の計算時間を設ける設定変更部と、
     前記加入者線終端装置とのデータの送受信を行う送受信部と、
     を備える加入者線端局装置。
    an acquisition unit that acquires identification information that identifies a subscriber line terminating device connected to a passive optical network;
    a determination unit that determines whether or not the subscriber line terminal device has a transmission reservation queue that waits for transmission-permitted uplink data until a transmission start time, based on the identification information;
    a setting change unit that sets a predetermined calculation time between operation cycles of upstream band control in the passive optical network when it is determined that the subscriber line terminating equipment does not have the transmission reservation queue;
    a transmitting/receiving unit that transmits/receives data to/from the subscriber line terminal device;
    subscriber line terminal equipment.
  7.  受動光ネットワークに対して、送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えていない加入者線終端装置が接続されたことを検出する検出ステップと、
     前記加入者線終端装置と加入者線端局装置との間の上り帯域制御の動作周期間に、前記加入者線終端装置における、前記送信許可された上りデータのデータ量のうち送信する上りデータのデータ量の計算と、送信要求すべき上りデータのデータ量の計算と、に必要となる時間である計算時間を設ける設定ステップと、
     を有する帯域割り当て方法。
    a detection step of detecting that a subscriber line terminating equipment having no transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time is connected to the passive optical network;
    Uplink data to be transmitted out of the data amount of the uplink data permitted to be transmitted in the subscriber line terminating equipment during an operation cycle of uplink band control between the subscriber line terminating equipment and the subscriber line terminating equipment a setting step of providing a calculation time, which is the time required for calculating the amount of data of and calculating the amount of uplink data to be requested for transmission;
    band allocation method.
  8.  受動光ネットワークに接続された加入者線終端装置を識別する識別情報を取得する取得ステップと、
     前記識別情報に基づいて、前記加入者線終端装置が送信許可された上りデータを送信開始時刻まで待機させる送信予約キューを備えているか否かを判定する判定ステップと、
     前記加入者線終端装置が前記送信予約キューを備えていないと判定された場合、前記受動光ネットワークにおける上り帯域制御の動作周期間に所定の計算時間を設ける設定変更ステップと、
     を有する帯域割り当て方法。
    a obtaining step of obtaining identification information identifying a subscriber line terminating unit connected to a passive optical network;
    a determination step of determining whether or not the subscriber line terminating equipment has a transmission reservation queue for waiting uplink data permitted to be transmitted until a transmission start time based on the identification information;
    a setting change step of providing a predetermined calculation time between operation cycles of upstream bandwidth control in the passive optical network when it is determined that the subscriber line terminating equipment does not have the transmission reservation queue;
    band allocation method.
PCT/JP2021/023944 2021-06-24 2021-06-24 Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method WO2022269853A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023944 WO2022269853A1 (en) 2021-06-24 2021-06-24 Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method
JP2023529362A JPWO2022269853A1 (en) 2021-06-24 2021-06-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023944 WO2022269853A1 (en) 2021-06-24 2021-06-24 Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method

Publications (1)

Publication Number Publication Date
WO2022269853A1 true WO2022269853A1 (en) 2022-12-29

Family

ID=84545397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023944 WO2022269853A1 (en) 2021-06-24 2021-06-24 Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method

Country Status (2)

Country Link
JP (1) JPWO2022269853A1 (en)
WO (1) WO2022269853A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538645A (en) * 2002-09-13 2005-12-15 パッセイヴ リミテッド Method for dynamic bandwidth allocation and queue management in an Ethernet passive optical network
JP2007097112A (en) * 2005-09-28 2007-04-12 Korea Electronics Telecommun Bandwidth allocation device and method for guaranteeing qos in ethernet passive optical access network (epon)
JP2009182440A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538645A (en) * 2002-09-13 2005-12-15 パッセイヴ リミテッド Method for dynamic bandwidth allocation and queue management in an Ethernet passive optical network
JP2007097112A (en) * 2005-09-28 2007-04-12 Korea Electronics Telecommun Bandwidth allocation device and method for guaranteeing qos in ethernet passive optical access network (epon)
JP2009182440A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Communication device

Also Published As

Publication number Publication date
JPWO2022269853A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
KR100547705B1 (en) Bandwidth Allocation Method for Voice Service of Gigabit Ethernet Passive Optical Subscriber Network
KR100415584B1 (en) Dynamic bw allocation method in atm passive optical network
JP4888515B2 (en) Dynamic bandwidth allocating apparatus and method and station apparatus of PON system
US7362975B2 (en) Bandwidth allocation device and dynamic bandwidth allocation method based on class of service in Ethernet Passive Optical Network
US8184977B2 (en) Optical line terminal capable of active bandwidth allocation for passive optical network system
US8548327B2 (en) Dynamic management of polling rates in an ethernet passive optical network (EPON)
US8184976B2 (en) Passive optical network system and operating method thereof
JP5285766B2 (en) Optical multiple terminator, passive optical network system, wavelength allocation method
JP2007074234A (en) Transmission apparatus
EP1489877A2 (en) Dynamic bandwidth allocation method considering multiple services in ethernet passive optical network system
JP6841919B2 (en) Data communication system, optical network unit, and baseband device
JP2009188901A (en) Passive optical network system, optical line terminator, and communication method for the passive optical network system
CA2469142A1 (en) Optical network communication system
JP2007074740A (en) Transmission apparatus
KR100566294B1 (en) Dynamic bandwidth allocation method for gigabit ethernet passive optical network
JP3643016B2 (en) Optical burst transmission / reception control system, master station apparatus, slave station apparatus and optical burst transmission / reception control method used therefor
JP2008289202A (en) Transmitter and network system
KR100584420B1 (en) Dynamic bandwidth allocation method for gigabit ethernet passive optical network
JP2016149609A (en) Access control system, access control method, master station device, and slave station device
WO2022269853A1 (en) Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method
JP2018078407A (en) Optical concentration network system and signal transmission method
KR100758784B1 (en) MAC scheduling apparatus and method of OLT in PON
KR100503417B1 (en) QoS guaranteed scheduling system in ethernet passive optical networks and method thereof
WO2023162026A1 (en) Optical line terminal and bandwidth allocation method
KR102274590B1 (en) Apparatus and method for quality of service in passive optical network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529362

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE