WO2022269837A1 - Solid-state image capturing device - Google Patents

Solid-state image capturing device Download PDF

Info

Publication number
WO2022269837A1
WO2022269837A1 PCT/JP2021/023865 JP2021023865W WO2022269837A1 WO 2022269837 A1 WO2022269837 A1 WO 2022269837A1 JP 2021023865 W JP2021023865 W JP 2021023865W WO 2022269837 A1 WO2022269837 A1 WO 2022269837A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
photoelectric conversion
voltage
section
discharge
Prior art date
Application number
PCT/JP2021/023865
Other languages
French (fr)
Japanese (ja)
Inventor
遥之 中川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to PCT/JP2021/023865 priority Critical patent/WO2022269837A1/en
Publication of WO2022269837A1 publication Critical patent/WO2022269837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • An embodiment according to the present disclosure relates to a solid-state imaging device.
  • a compound semiconductor such as InGaAs is sometimes used as a photoelectric conversion unit of a solid-state imaging device.
  • readout of signal charges that have been photoelectrically converted and accumulated is performed. (See Patent Document 1).
  • the present disclosure provides a solid-state imaging device capable of reducing noise.
  • a photoelectric conversion unit that generates an electric charge according to the amount of light received; a first charge storage unit that is electrically connected to one end of the photoelectric conversion unit and that stores the charge; a discharging portion having one end electrically connected to the first charge accumulating portion for discharging the charges accumulated in the first charge accumulating portion;
  • the other terminal of the photoelectric conversion unit is arranged so that the voltage level of the other end of the photoelectric conversion unit and the voltage level of the other end of the discharge unit are substantially the same at the discharge timing when the discharge unit discharges the charge. and a voltage control section that controls the voltage level of at least one of the end and the other end of the discharge section.
  • the voltage control section restores substantially the same voltage levels of the other end of the photoelectric conversion section and the other end of the discharge section while the charge is being discharged by the discharge section.
  • a voltage level of at least one of the other end and the other end of the discharge section may be controlled.
  • the photoelectric conversion part may contain a compound semiconductor material.
  • the voltage control section may control the voltage level of the other end of the photoelectric conversion section so as to be substantially the same as the substantially constant voltage level of the other end of the discharge section at the discharge timing.
  • the voltage control section may control the voltage level of the other end of the discharge section so that it becomes substantially the same as the substantially constant voltage level of the other end of the photoelectric conversion section at the discharge timing.
  • the voltage control section adjusts the photoelectric conversion section to a predetermined voltage level between the voltage level of the other end of the photoelectric conversion section and the voltage level of the other end of the discharge section at the discharge timing.
  • the voltage level of both the other end and the other end of the drain may be controlled.
  • An electrode may be further provided which is electrically connected to the other end of the photoelectric conversion section and to which a voltage is applied from the voltage control section.
  • the electrodes are arranged across the plurality of pixels and spaced apart from each other by a predetermined distance so that the voltage control section can control the voltage level of the other end of the photoelectric conversion section for the plurality of pixels. It may be divided into a plurality of parts and arranged so as to be separated from each other.
  • the electrodes may be divided and arranged in a matrix.
  • the electrodes may be arranged in a plurality of rows or divided into a plurality of rows.
  • the voltage control section may control the voltage level of at least one of the other end of the photoelectric conversion section and the other end of the discharge section, and may control discharge of the charge by the discharge section.
  • a first semiconductor chip on which the photoelectric conversion unit is arranged A second semiconductor chip stacked with the first semiconductor chip and having the first charge storage portion and the discharge portion disposed thereon may further be provided.
  • the voltage control section may simultaneously control the voltage level of at least one of the other end of the photoelectric conversion section and the other end of the discharge section for a plurality of pixels that are exposed at the same time.
  • FIG. 3 is a diagram showing an example of a pixel circuit of each pixel of the solid-state imaging device according to the first embodiment
  • FIG. 2 is a cross-sectional view showing an example of a pixel structure according to the first embodiment
  • FIG. 4 is a schematic diagram showing an example of potentials of a first charge storage section and a second charge storage section according to the first embodiment
  • FIG. 3 is a schematic diagram showing an example of potential distribution of a photoelectric conversion unit, a first charge storage unit, and an ejection transistor according to the first embodiment
  • 4 is a top view showing an example of the configuration of electrodes according to the first embodiment
  • FIG. 11 is a top view showing an example of the configuration of electrodes according to a second modified example; It is a figure which shows an example of the pixel circuit of each pixel of the solid-state imaging device by 2nd Embodiment.
  • FIG. 10 is a top view showing an example of the configuration of electrodes according to a first modified example
  • FIG. 11 is a top view showing an example of the configuration of electrodes according to a second modified example
  • It is a figure which shows an example of the pixel circuit of each pixel of the solid-state imaging device by 2nd Embodiment.
  • FIG. 11 is a schematic diagram showing an example of potential distributions of a photoelectric conversion unit, a first charge storage unit, and an ejection transistor according to a second embodiment; 9 is a timing chart showing an example of the operation of the solid-state imaging device according to the second embodiment; It is a figure which shows an example of the pixel circuit of each pixel of the solid-state imaging device by 3rd Embodiment.
  • FIG. 11 is a schematic diagram showing an example of potential distributions of a photoelectric conversion unit, a first charge storage unit, and an ejection transistor according to a second embodiment
  • 9 is a timing chart showing an example of the operation of the solid-state imaging device according to the second embodiment
  • It is a figure which shows an example of the pixel circuit of each pixel of the solid-state imaging device by 3rd Embodiment.
  • FIG. 11 is a schematic diagram showing an example of potential distribution of a photoelectric conversion unit, a first charge storage unit, and an ejection transistor according to a third embodiment; 9 is a timing chart showing an example of the operation of the solid-state imaging device according to the third embodiment; It is a block diagram showing a configuration example of an imaging device as an electronic device to which the present technology is applied.
  • FIG. 3 is a block diagram showing an example of functional configurations of a camera head and a CCU;
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
  • solid-state imaging devices will be described with reference to the drawings.
  • the following description will focus on main components of the solid-state imaging device, but the solid-state imaging device may have components and functions that are not illustrated or described.
  • the following description does not exclude components or features not shown or described.
  • FIG. 1 shows an example of a schematic configuration of a solid-state imaging device to which the present technology is applied.
  • the solid-state imaging device 1 of FIG. 1 includes a semiconductor substrate 12 using, for example, single crystal silicon (Si) as a semiconductor, a pixel array region 3 in which pixels 2 are two-dimensionally arranged in a matrix, and a peripheral circuit region therearound. is configured with The peripheral circuit area includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, a control circuit 8, and the like.
  • Si single crystal silicon
  • the pixel 2 has a photoelectric conversion section made of a semiconductor thin film and a plurality of pixel transistors.
  • a plurality of pixel transistors are composed of, for example, a plurality of MOS transistors such as a reset transistor, an amplification transistor, and a selection transistor.
  • the control circuit 8 receives an input clock and data instructing the operation mode, etc., and outputs data such as internal information of the solid-state imaging device 1 . That is, the control circuit 8 generates a clock signal and a control signal that serve as a reference for the operation of the vertical driving circuit 4, the column signal processing circuit 5, the horizontal driving circuit 6, etc. based on the vertical synchronizing signal, the horizontal synchronizing signal, and the master clock. do. The control circuit 8 then outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • the vertical drive circuit 4 is composed of, for example, a shift register, selects a predetermined pixel drive wiring 10, supplies a pulse for driving the pixels 2 to the selected pixel drive wiring 10, and drives the pixels 2 row by row. do. That is, the vertical drive circuit 4 sequentially selectively scans each pixel 2 in the pixel array region 3 in the vertical direction on a row-by-row basis. is supplied to the column signal processing circuit 5 through the vertical signal line 9 .
  • the column signal processing circuit 5 is arranged for each column of the pixels 2, and performs signal processing such as noise removal on the signals output from the pixels 2 of one row for each column.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) for removing pixel-specific fixed pattern noise and AD conversion.
  • the horizontal driving circuit 6 is composed of, for example, a shift register, and sequentially outputs horizontal scanning pulses to select each of the column signal processing circuits 5 in turn, and outputs pixel signals from each of the column signal processing circuits 5 to the horizontal signal line. 11 to output.
  • the output circuit 7 performs signal processing on the signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 11 and outputs the processed signals.
  • the output circuit 7 may, for example, perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
  • the input/output terminal 13 exchanges signals with the outside.
  • the solid-state imaging device 1 configured as described above is a CMOS image sensor called a column AD system in which column signal processing circuits 5 that perform CDS processing and AD conversion processing are arranged for each column.
  • FIG. 2 shows an example of a pixel circuit of each pixel 2 of the solid-state imaging device 1 according to the first embodiment.
  • Each pixel 2 has a photoelectric conversion section 21, a first charge storage section 22, a discharge transistor 23, a transfer transistor 24, a second charge storage section 25, a reset transistor 26, an amplification transistor 27, and a selection transistor 28.
  • the discharge transistor 23, the transfer transistor 24, and the reset transistor 26 are, for example, P-type MOS transistors.
  • the amplification transistor 27 and the selection transistor 28 are, for example, N-type MOS transistors.
  • the photoelectric conversion unit 21 is made of a semiconductor thin film using a compound semiconductor such as InGaAs, and generates charges (signal charges) according to the amount of received light.
  • a cathode of the photoelectric conversion section 21 is electrically connected to the vertical drive circuit (voltage control section) 4 via the pixel drive wiring 10 .
  • the photoelectric conversion section 21 has a first end portion 21A (the other end) and a second end portion 21B (one end).
  • the first end portion 21A is electrically connected to the vertical drive circuit 4 .
  • the second end portion 21B is electrically connected to the first charge storage portion 22 .
  • the voltage level of the first end portion 21A is also called a film voltage VA of the photoelectric conversion portion 21, which is a photoelectric conversion film.
  • the membrane voltage VA is controlled by the vertical drive circuit 4 . Details of the vertical driving circuit 4 will be described later with reference to FIGS. 5 and 8. FIG.
  • the first charge storage unit (SN) 22 stores charges generated by the photoelectric conversion unit 21 .
  • the first charge storage unit 22 is, for example, a capacitive element including at least one of PN junction capacitance, MOS capacitance, and wiring capacitance.
  • the discharge transistor 23 When the discharge transistor 23 is turned on by the discharge signal OFG, the electric charge accumulated in the first charge accumulation section 22 is discharged to the drain, thereby resetting the potential of the first charge accumulation section 22 .
  • the drain of the discharge transistor 23 is connected to the reference voltage node of the reset power supply voltage.
  • the discharge transistor (discharge part) 23 has a third end 23A (one end) and a fourth end 23B (other end).
  • the third end portion 23A is electrically connected to the first charge storage portion 22 .
  • the fourth end 23B is electrically connected to the reference voltage node of the reset power supply voltage.
  • the voltage level of the fourth end 23B is also called reset voltage VB.
  • the reset voltage VB is fixed at the reset power supply voltage.
  • the transfer transistor 24 transfers the charge accumulated in the first charge accumulation section 22 to the second charge accumulation section 25 when turned on by the transfer signal TRG.
  • a second charge accumulation unit (FD, Floating Diffusion) 25 accumulates charges transferred from the transfer transistor 24 .
  • the second charge storage unit 25 is, for example, a capacitive element including at least one of PN junction capacitance, MOS capacitance, and wiring capacitance.
  • the reset transistor 26 When the reset transistor 26 is turned on by the reset signal RST, the electric charge accumulated in the second charge accumulation section 25 is discharged to the source (reference voltage node VDD), thereby reducing the potential of the second charge accumulation section 25 to Reset.
  • the amplification transistor 27 outputs a pixel signal corresponding to the accumulated potential of the second charge accumulation section 25 . That is, the amplification transistor 27 constitutes a source follower circuit together with a load MOS (not shown) as a constant current source connected via the vertical signal line 9, and the charge accumulated in the second charge accumulation section 25 is A pixel signal indicating the corresponding level is output from the amplification transistor 27 to the column signal processing circuit 5 via the selection transistor 28 .
  • the selection transistor 28 is turned on when the pixel 2 is selected by the selection signal SEL, and outputs the pixel signal of the pixel 2 to the column signal processing circuit 5 via the vertical signal line 9 .
  • Each signal line through which the discharge signal OFG, the transfer signal TRG, the selection signal SEL, and the reset signal RST are transmitted corresponds to the pixel drive wiring 10 in FIG.
  • FIG. 3 is a cross-sectional view showing an example of the pixel structure according to the first embodiment.
  • the solid-state imaging device 1 further includes a first semiconductor chip 12A and a second semiconductor chip 12B.
  • the first semiconductor chip 12A and the second semiconductor chip 12B are bonded together at a bonding surface S.
  • the first semiconductor chip 12A and the second semiconductor chip 12B are, for example, Cu--Cu connected.
  • the photoelectric conversion unit 21 of each pixel 2 described with reference to FIG. 2 is arranged for each pixel on the first semiconductor chip 12A.
  • the readout circuit including the first charge storage section 22 and discharge transistor 23 of each pixel 2 described with reference to FIG. are placed for each. Note that in the cross-sectional view of FIG. 3, the first charge storage unit 22, the discharge transistor 23, the transfer transistor 24, the second charge storage unit 25, the reset transistor 26, the amplification transistor 27, which are arranged in the second semiconductor chip 12B. Also, the illustration of the selection transistor 28 is omitted.
  • An N-type semiconductor thin film 41 serving as a photoelectric conversion section 21 is formed over the entire surface of the pixel array region 3 on the upper side, which is the light incident side, of the first semiconductor chip 12A.
  • the N-type semiconductor thin film 41 InGaP, InAlP, InGaAs, InAlAs, or a compound semiconductor having a chalcopyrite structure is used.
  • a compound semiconductor with a chalcopyrite structure is a material that provides a high light absorption coefficient and high sensitivity over a wide wavelength range, and is preferably used as the N-type semiconductor thin film 41 for photoelectric conversion.
  • Such chalcopyrite structure compound semiconductors are composed of elements surrounding IV group elements such as Cu, Al, Ga, In, S, and Se, and are A mixed crystal etc. are illustrated.
  • an InGaAs compound semiconductor is used as an example of the N-type semiconductor thin film 41 .
  • a high-concentration P-type layer 42 that constitutes a pixel electrode is formed for each pixel.
  • an N-type layer 43 as a pixel separation region for separating each pixel 2 is formed of a compound semiconductor such as InP, for example.
  • This N-type layer 43 has a role of preventing dark current in addition to functioning as a pixel separation region.
  • an N-type layer 44 having a higher concentration than the N-type semiconductor thin film 41 is also formed on the upper side of the N-type semiconductor thin film 41, which is the light incident side, using a compound semiconductor such as InP used as a pixel separation region. It is This high-concentration N-type layer 44 functions as a barrier layer that prevents backflow of charges generated in the N-type semiconductor thin film 41 .
  • Compound semiconductors such as InGaAs, InP, and InAlAs can be used as the material of the high-concentration N-type layer 44, for example.
  • An anti-reflection coating (ARC, Anti-Reflective Coating) 45 is formed on the high-concentration N-type layer 44 as a barrier layer.
  • Materials for the antireflection film 45 include, for example, silicon nitride (SiN), hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), oxide Titanium (TiO 2 ) or the like can be used.
  • Electrode 48 is a transparent electrode.
  • ITO Indium Tin Oxide
  • a voltage is applied to the electrode 48 from the vertical driving circuit 4 .
  • a passivation layer 51 and an insulating layer 52 are formed below the high-concentration P-type layer 42 constituting the pixel electrode and the N-type layer 43 as the pixel separation region.
  • a connection electrode 53A of the first semiconductor chip 12A is formed so as to penetrate the passivation layer 51 and the insulating layer 52A.
  • the connection electrodes 53B of the second semiconductor chip 12B are formed so as to penetrate the insulating layer 52B.
  • the connection electrodes 53A and 53B electrically connect the high-concentration P-type layer 42 that constitutes the pixel electrode and the first charge storage section 22 that stores charges.
  • the material of the connection electrodes 53A and 53B is, for example, copper (Cu).
  • FIG. 4 is a schematic diagram showing an example of potentials of the first charge storage section 22 and the second charge storage section 25 according to the first embodiment.
  • the first charge storage section 22 and the second charge storage section 25 are formed of, for example, diffusion layers of a silicon substrate (second semiconductor chip 12B).
  • the first charge storage section 22 is electrically connected to the connection electrode 53B. Therefore, the charges generated by the photoelectric conversion section 21 pass through the connection electrodes 53A and 53B and are accumulated in the first charge accumulation section 22 .
  • the potential of the discharge transistor 23 is lowered by turning on the discharge transistor 23 before exposure is performed. After that, the discharge transistor 23 is turned off. As a result, the charges accumulated in the first charge accumulation section 22 are discharged, and the first charge accumulation section 22 is reset.
  • the potential of the transfer transistor 24 is lowered by turning on the transfer transistor 24 .
  • the first charge storage section 22 and the second charge storage section 25 are coupled, and the charge stored in the first charge storage section 22 by exposure is divided and moved to the second charge storage section 25 .
  • the charge accumulated in the second charge accumulation section 25 is read as a pixel signal through the amplification transistor 27, the selection transistor 28 and the vertical signal line 9, as shown in FIG.
  • FIG. 5 is a schematic diagram showing an example of potential distribution of the photoelectric conversion section 21, the first charge storage section 22, and the discharge transistor 23 according to the first embodiment.
  • FIG. 5 shows part of the cross-sectional view of the pixel 2 and part of the readout circuit. Further, in FIG. 5, a diffusion layer 49 is further provided. Diffusion layer 49 is electrically connected to P-type layer 42, which is an anode. In the example shown in FIG. 5, one diffusion layer 49 is provided for each pixel 2, forming a pn junction between the diffusion layer 49 and the N-type semiconductor thin film 41. In the example shown in FIG. The diffusion layer 49 is formed by diffusing Zn, for example.
  • photoelectrically converted charges are accumulated across part of the photoelectric conversion section 21 and the first charge accumulation section 22 .
  • the discharge transistor 23 Since the discharge transistor 23 is off, the amount of charges (holes) accumulated in the first charge accumulation unit 22 increases as the signal amount increases. Therefore, the potential of the first charge storage section 22 rises as indicated by the solid line. On the other hand, the smaller the signal amount, the smaller the amount of charges (holes) accumulated in the first charge accumulation unit 22 . Therefore, the potential of the first charge storage section 22 is lowered as indicated by the dotted line.
  • the discharge transistor 23 When the discharge transistor 23 is turned on, the charge in the first charge storage section 22 is reset. That is, part of the photoelectric conversion unit 21 and the charge accumulated in the first charge accumulation unit 22 are discharged to the drain of the discharge transistor 23 .
  • the amount of charge that is not discharged by the barrier may fluctuate depending on the amount of signal. For example, the more intense the light that the pixel 2 is exposed to, the greater the amount of charge remaining in the photoelectric conversion film 21 after the reset of the first charge storage unit 22 .
  • the amount of charge stored in the first charge storage unit 22 changes depending on the amount of charge remaining in the photoelectric conversion unit 21 . For example, if the signal amount in a certain frame is large, signal charges larger than the original signal amount will be read out in the next frame. For example, this leads to noise such as an afterimage that occurs when the light source, which is the subject, moves at high speed. That is, noise is generated under the influence of the signal amount of the previous frame.
  • the vertical drive circuit 4 controls the film voltage VA of the photoelectric conversion unit 21 so that the film voltage VA and the reset voltage VB are substantially the same at the timing of resetting the charges in the first charge storage unit 22 .
  • the vertical driving circuit 4 maintains the voltage level of the first end 21A of the photoelectric conversion unit 21 so that the voltage level of the fourth end 23B of the discharge transistor 23 and the voltage level of the fourth end 23B of the discharge transistor 23 are substantially the same while the charge is discharged by the discharge transistor 23. Control the voltage level (membrane voltage VA). Further, the vertical driving circuit 4 lowers the film voltage VA to the reset voltage VB and returns it to the reset voltage VB while the discharge transistor 23 is discharging electric charges.
  • the discharge transistor 23 Since the discharge transistor 23 is in the ON state, when the voltage level (film voltage VA) of the first end portion 21A of the photoelectric conversion section 21 decreases, the N-type semiconductor of the photoelectric conversion section 21 is discharged from the reference voltage node side of the reset power supply voltage. Holes flow in the thin film 41 . Therefore, regardless of the amount of signal in the previous frame, the N-type semiconductor thin film 41 is charged.
  • the amount of charge remaining in the photoelectric conversion unit 21 is determined by the barrier regardless of the signal amount of the previous frame. Thereby, the amount of charge remaining in the photoelectric conversion unit 21 can be made substantially constant by the barrier. As a result, it is possible to suppress the influence of variations in the amount of residual charge when resetting the first charge storage section 22, and to suppress noise such as afterimages.
  • the influence of variations in the amount of residual charge for each pixel 2 can be suppressed. That is, regardless of the amount of signal in the previous frame (state before resetting), the charges can be uniformly reset among the pixels 2, and the resetting of the charges in the first charge storage section 22 can be performed more appropriately. can.
  • FIG. 6 is a top view showing an example of the configuration of the electrodes 48 according to the first embodiment.
  • the electrode 48 is electrically connected to the first end portion 21A of the photoelectric conversion portion 21 and is applied with voltage from the vertical drive circuit 4 .
  • the electrodes 48 are divided into a plurality of parts and arranged so as to be separated from each other by a predetermined distance PD. More specifically, the electrodes 48 are divided and arranged in a matrix. Further, the electrodes 48 are arranged over the plurality of pixels 2 so that the vertical drive circuit 4 can control the voltage level of the first end portion 21A of the photoelectric conversion section 21 for the plurality of pixels 2 .
  • FIG. 7 is a top view showing an example of the configuration of the electrode 48 according to the comparative example.
  • the electrode 48 is provided over the entire surface of the pixel array region 3 .
  • the parasitic capacitance and resistance of the electrode 48 are increased, resulting in increased RC delay.
  • the vertical driving circuit 4 changes the voltage level of the first end portion 21A by changing the voltage applied to the electrode 48 . If there is a delay in changing the voltage applied to the electrode 48, it may become difficult to appropriately control the voltage level of the first end 21A.
  • the RC delay of the electrode 48 can be suppressed by providing an interval so as to divide it into a plurality of parts.
  • the membrane voltage VA can be changed at a higher speed, and the frame rate can be improved.
  • the predetermined distance PD is determined within a range in which appropriate voltage control is possible.
  • FIG. 8 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the first embodiment.
  • FIG. 8 shows a timing chart of the discharge signal OFG, reset signal RST and transfer signal TRG. That is, FIG. 8 shows a timing chart for turning on or off the discharge transistor 23, reset transistor 26 and transfer transistor 24.
  • FIG. 8 shows a timing chart for turning on or off the discharge transistor 23, reset transistor 26 and transfer transistor 24.
  • FIG. 8 shows a timing chart of the membrane voltage VA, which is the voltage level of the first end portion 21A.
  • the vertical drive circuit 4 controls the membrane voltage VA to the membrane applied voltage or the reset power supply voltage.
  • the membrane applied voltage is higher than the reset power supply voltage.
  • the voltage applied to the membrane is, for example, 2.2V.
  • the reset power supply voltage is, for example, 1.2V.
  • the film applied voltage is, for example, a bias voltage (fixed voltage) normally applied to the first end portion 21A of the photoelectric conversion section 21 .
  • a period of one frame is from time t1 to time t8.
  • the period from time t1 to time t4 is an accumulation time (exposure period).
  • the period from time t5 to time t8 is the timing for resetting the charge in the first charge storage section 22 by the discharge transistor 23 .
  • the discharge transistor 23 is turned off. As a result, the resetting of the charges in the first charge accumulating section 22 is completed, and the accumulation time is started.
  • the reset transistor 26 is turned on. This connects the second charge storage unit 25 to the reference voltage node VDD.
  • the transfer transistor 24 is turned on. Thereby, the capacities of the first charge storage section 22 and the second charge storage section 25 are coupled. Therefore, after the accumulation time ends, the charges accumulated in the first charge accumulation section 22 are divided and transferred to the second charge accumulation section 25 .
  • the transfer transistor 24 is turned off. Thereby, the capacities of the first charge accumulation section 22 and the second charge accumulation section 25 are divided. The charge accumulated in the second charge accumulation section 25 after time t5 is read out as a pixel signal.
  • the discharge transistor 23 is turned on. Also, at time t6, the vertical drive circuit 4 lowers the membrane voltage VA from the membrane applied voltage to the reset power supply voltage. As a result, the membrane voltage VA becomes substantially the same as the reset voltage VB. As a result, as described with reference to FIG. 5, the N-type semiconductor thin film 41 is filled with charges.
  • the timing at which the film voltage VA is changed to the reset power supply voltage does not necessarily have to be the same as the timing at which the discharge transistor 23 is turned on. Either timing may come first.
  • the vertical drive circuit 4 should set the film voltage VA to the reset power supply voltage after the transfer transistor 24 is turned off and before the ejection transistor 23 is turned off.
  • the vertical driving circuit 4 returns the membrane voltage VA from the reset power supply voltage to the membrane applied voltage. That is, the vertical driving circuit 4 restores (increases) the lowered voltage level of the first end portion 21A of the photoelectric conversion portion 21 while the discharge transistor 23 is discharging the electric charge. 21A voltage level.
  • the charge in the first charge storage section 22 can be reset by turning off the discharge transistor 23 .
  • the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made independent of the signal amount during the accumulation time. That is, the charge in the first charge storage section 22 can be reset more appropriately regardless of the signal amount during the storage time.
  • the vertical drive circuit 4 can make the amount of charge remaining in the photoelectric conversion unit 21 uniform among the pixels 2 due to the barrier by performing the above voltage control for all the pixels 2 .
  • the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made uniform among the pixels 2 regardless of the amount of charge photoelectrically converted in the previous frame (state before reset).
  • noise such as afterimages in the next frame can be suppressed.
  • the timing at which the film voltage VA is changed to the film applied voltage is before the timing at which the discharge transistor 23 is turned off. This is because, if the drain transistor 23 is turned off while the film voltage VA remains at the reset power supply voltage, charge accumulation is started in the next frame in a state in which charges remain in the N-type semiconductor thin film 41 without being reset. .
  • the solid-state imaging device 1 is driven by, for example, a global shutter. Therefore, in all pixels 2, exposure starts and ends substantially simultaneously.
  • the vertical drive circuit 4 controls the film voltage VA in all the pixels 2 substantially simultaneously.
  • FIG. 9 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the comparative example.
  • the vertical drive circuit 4 does not control the film voltage VA. That is, the comparative example is the same as the state in which the first end portion 21A is electrically connected to the fixed power supply for the membrane applied voltage.
  • the membrane voltage VA is substantially constant. Therefore, the amount of charge remaining in the photoelectric conversion unit 21 may fluctuate depending on the signal amount during the accumulation time. As a result, there is a possibility that the signal read in the next frame will change for each pixel 2 depending on the amount of signal in the previous frame.
  • the amount of charge remaining in the photoelectric conversion unit 21 can be made uniform among the pixels 2 by the barrier, without depending on the accumulated signal amount. Thereby, the reset of the 1st charge storage part 22 can be performed more appropriately.
  • the vertical driving circuit 4 sets the substantially constant reset voltage VB (reset power supply voltage) and
  • the membrane voltage VA is controlled so as to be substantially the same. "Substantially the same” indicates that the membrane voltage VA does not necessarily have to be the same as the reset power supply voltage.
  • the membrane voltage VA may, for example, be lowered to a voltage level at which charge sufficiently flows across the barrier.
  • the vertical drive circuit 4 may lower the film voltage VA to a voltage lower than the reset power supply voltage. In this case as well, charges flow from the reset power supply voltage side to the N-type semiconductor thin film 41 .
  • the signal charges are not limited to holes, and may be electrons.
  • the conductivity types of the semiconductor substrate 12, the semiconductor thin film 41, etc. are reversed, or the polarity of the applied bias voltage is reversed.
  • an ADC Analog to Digital Converter
  • the voltage control unit that controls the film voltage VA is the vertical drive circuit 4 . That is, the vertical drive circuit 4 controls the voltage level of the first end portion 21A, and also controls the MOS transistors such as the discharge transistor 23 and the like.
  • the voltage control unit is not limited to the vertical driving circuit 4, and may be any configuration that can control the voltage.
  • the electrode 48 is not limited to the example shown in FIG. 6, and may be provided over the entire surface of the pixel array region 3 as shown in FIG.
  • FIG. 10 is a top view showing an example of the configuration of the electrodes 48 according to the first modified example.
  • the first modification differs from the first embodiment in the arrangement of the electrodes 48 .
  • the electrodes 48 are divided into a plurality of rows separated by a predetermined distance PD.
  • the arrangement of the electrodes 48 may be changed as in the first modified example of the first embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 11 is a top view showing an example of the configuration of the electrode 48 according to the second modified example.
  • the second modification differs from the first embodiment in the arrangement of the electrodes 48 .
  • the electrodes 48 are divided into a plurality of rows separated by a predetermined distance PD.
  • the arrangement of the electrodes 48 may be changed as in the second modification of the first embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 12 is a diagram showing an example of a pixel circuit of each pixel 2 of the solid-state imaging device 1 according to the second embodiment.
  • the second embodiment differs from the first embodiment in that the vertical drive circuit 4 controls the voltage level of the fourth end 23B of the ejection transistor 23.
  • FIG. 12 is a diagram showing an example of a pixel circuit of each pixel 2 of the solid-state imaging device 1 according to the second embodiment.
  • the second embodiment differs from the first embodiment in that the vertical drive circuit 4 controls the voltage level of the fourth end 23B of the ejection transistor 23.
  • the first end 21A of the photoelectric conversion unit 21 is electrically connected to the reference voltage node of the voltage applied to the membrane. Therefore, the voltage of the first end 21A is fixed.
  • a fourth end portion 23B of the ejection transistor 23 is electrically connected to the vertical drive circuit 4 . Therefore, the vertical drive circuit 4 controls the voltage level of the fourth end 23B of the ejection transistor 23.
  • FIG. 1 A fourth end portion 23B of the ejection transistor 23 is electrically connected to the vertical drive circuit 4 . Therefore, the vertical drive circuit 4 controls the voltage level of the fourth end 23B of the ejection transistor 23.
  • FIG. 13 is a schematic diagram showing an example of potential distribution of the photoelectric conversion section 21, the first charge accumulation section 22, and the discharge transistor 23 according to the second embodiment.
  • the vertical driving circuit 4 controls the reset voltage VB of the discharge transistor 23 so that the film voltage VA and the reset voltage VB are substantially the same at the timing of resetting the first charge storage section 22 . More specifically, the vertical drive circuit 4 controls the first voltage level of the discharge transistor 23 to be substantially the same as the substantially constant voltage level of the first end 21A of the photoelectric conversion section 21 during discharge of the charges by the discharge transistor 23 . It controls the voltage level (reset voltage VB) of the 4-terminal portion 23B. Further, the vertical driving circuit 4 raises the reset voltage VB to the film voltage VA and returns it to the film voltage VA while the discharge transistor 23 is discharging electric charges.
  • FIG. 14 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the second embodiment.
  • the operations of the discharge transistor 23, the reset transistor 26, and the transfer transistor 24 shown in FIG. 14 are the same as those in FIG. 8 described in the first embodiment.
  • FIG. 14 shows a timing chart of the reset voltage VB, which is the voltage level of the fourth end portion 23B.
  • the vertical drive circuit 4 controls the reset voltage VB to be the film applied voltage or the reset power supply voltage.
  • time t1 to time t6 is the same as in FIG. 8 described in the first embodiment.
  • the discharge transistor 23 is turned on. Also, at time t6, the vertical driving circuit 4 raises the reset voltage VB from the reset power supply voltage to the applied film voltage. As a result, the reset voltage VB becomes substantially the same as the membrane voltage VA. As a result, the N-type semiconductor thin film 41 is filled with charges.
  • the vertical driving circuit 4 returns the reset voltage VB from the membrane applied voltage to the reset power supply voltage. That is, the vertical driving circuit 4 causes the fourth end 23B of the discharge transistor 23 to return (lower) the raised voltage level of the fourth end 23B of the discharge transistor 23 while the charge is being discharged by the discharge transistor 23. Control voltage levels.
  • the charge in the first charge storage section 22 can be reset by turning off the discharge transistor 23 .
  • the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made independent of the signal amount during the accumulation time. That is, the charge in the first charge storage section 22 can be reset more appropriately regardless of the signal amount during the storage time.
  • the reset voltage VB may be controlled as in the second embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained. Also, the solid-state imaging device 1 according to the second embodiment may be combined with the first modified example or the second modified example.
  • FIG. 15 is a diagram showing an example of a pixel circuit of each pixel 2 of the solid-state imaging device 1 according to the third embodiment.
  • the third embodiment differs from the first embodiment in that the vertical drive circuit 4 controls the voltage levels of both the first end 21A of the photoelectric conversion section 21 and the fourth end 23B of the discharge transistor 23. is different.
  • the first end portion 21A of the photoelectric conversion portion 21 is electrically connected to the vertical driving circuit 4.
  • a fourth end portion 23B of the discharge transistor 23 is electrically connected to the vertical drive circuit 4 . Therefore, the vertical drive circuit 4 controls the voltage levels of both the first end 21A of the photoelectric conversion section 21 and the fourth end 23B of the discharge transistor 23 .
  • FIG. 16 is a schematic diagram showing an example of potential distribution of the photoelectric conversion section 21, the first charge accumulation section 22, and the discharge transistor 23 according to the third embodiment.
  • the vertical driving circuit 4 controls both the film voltage VA and the reset voltage VB so that the film voltage VA and the reset voltage VB are substantially the same at the timing of resetting the first charge storage section 22 . More specifically, the vertical drive circuit 4 controls the voltage level of the first end 21A of the photoelectric conversion unit 21, the voltage level of the fourth end 23B of the discharge transistor 23, and The voltage levels of both the first end portion 21A of the photoelectric conversion portion 21 and the fourth end portion 23B of the discharge transistor 23 are controlled so as to have a predetermined voltage level VP between. In addition, the vertical drive circuit 4 lowers the film voltage VA back to the predetermined voltage level VP and raises the reset voltage VB back to the predetermined voltage level VP during the discharge of charges by the discharge transistor 23 .
  • FIG. 17 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the third embodiment.
  • the operations of the discharge transistor 23, the reset transistor 26, and the transfer transistor 24 shown in FIG. 17 are the same as those in FIG. 8 described in the first embodiment.
  • FIG. 17 shows a timing chart of the membrane voltage VA and the reset voltage VB.
  • time t1 to time t6 is the same as in FIG. 8 described in the first embodiment.
  • the discharge transistor 23 is turned on.
  • the vertical driving circuit 4 lowers the film voltage VA to the predetermined voltage level VP and raises the reset voltage VB to the predetermined voltage level VP.
  • the membrane voltage VA and the reset voltage VB become substantially the same.
  • the N-type semiconductor thin film 41 is filled with charges.
  • the vertical drive circuit 4 restores the membrane voltage VA and reset voltage VB to the membrane applied voltage and reset power supply voltage, respectively. That is, the vertical driving circuit 4 restores the substantially same voltage levels of the first end 21A of the photoelectric conversion unit 21 and the fourth end 23B of the discharge transistor 23 while the discharge transistor 23 discharges the electric charge.
  • the voltage levels (membrane voltage VA and reset voltage VB) of both the first end portion 21A of the photoelectric conversion portion 21 and the fourth end portion 23B of the discharge transistor 23 are controlled.
  • the charge in the first charge storage section 22 can be reset by turning off the discharge transistor 23 .
  • the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made independent of the signal amount during the accumulation time. That is, the charge in the first charge storage section 22 can be reset more appropriately regardless of the signal amount during the storage time.
  • Both the membrane voltage VA and the reset voltage VB may be controlled as in the third embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained. Further, the solid-state imaging device 1 according to the third embodiment may be combined with the first modified example or the second modified example.
  • the present technology is not limited to application to solid-state imaging devices. That is, the present technology can be applied to an image capture unit (photoelectric conversion unit) such as an imaging device such as a digital still camera or a video camera, a mobile terminal device having an imaging function, or a copying machine using a solid-state imaging device as an image reading unit. It is applicable to general electronic equipment using a solid-state imaging device.
  • the solid-state imaging device may be formed as a single chip, or may be in the form of a module having an imaging function in which an imaging section and a signal processing section or an optical system are packaged together.
  • FIG. 18 is a block diagram showing a configuration example of an imaging device as an electronic device to which the present technology is applied.
  • An imaging device 300 in FIG. 18 includes an optical unit 301 including a lens group, a solid-state imaging device (imaging device) 302 adopting the configuration of the solid-state imaging device 1 in FIG. Processor) circuit 303 .
  • the imaging device 300 also includes a frame memory 304 , a display unit 305 , a recording unit 306 , an operation unit 307 and a power supply unit 308 .
  • DSP circuit 303 , frame memory 304 , display unit 305 , recording unit 306 , operation unit 307 and power supply unit 308 are interconnected via bus line 309 .
  • the optical unit 301 captures incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 302 .
  • the solid-state imaging device 302 converts the amount of incident light imaged on the imaging surface by the optical unit 301 into an electric signal for each pixel, and outputs the electric signal as a pixel signal.
  • the solid-state imaging device 302 the solid-state imaging device 1 shown in FIG. 1, for example, a solid-state imaging device that suppresses deterioration in image quality due to discharge of charge from the processed end surface of the photoelectric conversion section 21 can be used.
  • the display unit 305 is, for example, a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays moving images or still images captured by the solid-state imaging device 302 .
  • a recording unit 306 records a moving image or still image captured by the solid-state imaging device 302 in a recording medium such as a hard disk or a semiconductor memory.
  • the operation unit 307 issues operation commands for various functions of the imaging device 300 under the user's operation.
  • a power supply unit 308 appropriately supplies various power supplies as operating power supplies for the DSP circuit 303, the frame memory 304, the display unit 305, the recording unit 306, and the operation unit 307 to these supply targets.
  • the solid-state imaging device 1 As described above, by using the solid-state imaging device 1 to which each of the above-described embodiments is applied as the solid-state imaging device 302, for example, deterioration in image quality due to discharge of electric charge from the end surface of the processed portion of the photoelectric conversion unit 21 can be suppressed. can do. Also, it is possible to improve the S/N ratio and achieve a high dynamic range. Therefore, even in the imaging device 300 such as a video camera, a digital still camera, and a camera module for a mobile device such as a mobile phone, it is possible to improve the quality of the captured image.
  • the imaging device 300 such as a video camera, a digital still camera, and a camera module for a mobile device such as a mobile phone
  • FIG. 19 is a diagram showing a usage example of an image sensor using the solid-state imaging device 1 described above.
  • An image sensor using the solid-state imaging device 1 described above can be used, for example, in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
  • ⁇ Devices that capture images for viewing purposes, such as digital cameras and mobile devices with camera functions.
  • Devices used for transportation such as in-vehicle sensors that capture images behind, around, and inside the vehicle, surveillance cameras that monitor running vehicles and roads, and ranging sensors that measure the distance between vehicles.
  • Devices used in home appliances such as TVs, refrigerators, air conditioners, etc., to take pictures and operate devices according to gestures ⁇ Endoscopes, devices that perform angiography by receiving infrared light, etc.
  • Equipment used for medical and healthcare purposes such as surveillance cameras for crime prevention and cameras for personal authentication
  • microscopes used for beauty such as microscopes used for beauty
  • Sports such as action cameras and wearable cameras for use in sports ⁇ Cameras, etc. for monitoring the condition of fields and crops , agricultural equipment
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 20 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (this technology) can be applied.
  • FIG. 20 shows an operator (doctor) 11131 performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 .
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 .
  • an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
  • the tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 .
  • the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
  • An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system.
  • the imaging element photoelectrically converts the observation light to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light for photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light for photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 .
  • the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in.
  • the recorder 11207 is a device capable of recording various types of information regarding surgery.
  • the printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the observation target is irradiated with laser light from each of the RGB laser light sources in a time-division manner, and by controlling the drive of the imaging element of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging element.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time.
  • the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, the wavelength dependence of light absorption in body tissues is used to irradiate a narrower band of light than the irradiation light (i.e., white light) used during normal observation, thereby observing the mucosal surface layer.
  • narrow band imaging in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light.
  • the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is A fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
  • FIG. 21 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 .
  • the camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
  • a lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 .
  • a lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 is composed of an imaging element.
  • the imaging device constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 .
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 .
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 .
  • the communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 .
  • Image signals and control signals can be transmitted by electric communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 .
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize.
  • the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
  • a transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to the imaging unit 11402 of the camera head 11102 among the configurations described above.
  • the solid-state imaging device 1 to which each embodiment described above is applied can be applied to the imaging unit 10402 .
  • the technology according to the present disclosure it is possible to suppress deterioration of the image quality of the operation site image obtained by the imaging unit 10402, improve the S/N ratio, and achieve a high dynamic range. A clear image of the surgical site can be obtained, and the operator can reliably confirm the surgical site.
  • the technology according to the present disclosure may also be applied to, for example, a microsurgery system.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 22 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 .
  • integrated control unit 12050 As the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 23 is a diagram showing an example of the installation position of the imaging unit 12031. As shown in FIG.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • Forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 23 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the solid-state imaging device 1 to which each embodiment described above is applied can be applied to the imaging unit 12031 .
  • the present technology can also be applied to a solid-state imaging device that uses electrons as signal charges.
  • the conductivity types of the semiconductor substrate 12, the semiconductor thin film 41, etc. are reversed, or the polarity of the applied bias voltage is reversed.
  • the present technology is not limited to application to solid-state imaging devices that detect the distribution of the amount of incident visible light and capture an image.
  • solid-state imaging devices physical quantity distribution detectors
  • fingerprint detection sensors that detect the distribution of other physical quantities such as pressure and capacitance and capture images.
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present technology.
  • this technique can take the following structures. (1) a photoelectric conversion unit that generates an electric charge according to the amount of light received; a first charge storage unit that is electrically connected to one end of the photoelectric conversion unit and that stores the charge; a discharging portion having one end electrically connected to the first charge accumulating portion for discharging the charges accumulated in the first charge accumulating portion; The other terminal of the photoelectric conversion unit is arranged so that the voltage level of the other end of the photoelectric conversion unit and the voltage level of the other end of the discharge unit are substantially the same at the discharge timing when the discharge unit discharges the charge. and a voltage control section that controls the voltage level of at least one of the end and the other end of the discharge section.
  • the voltage control unit controls the photoelectric conversion unit so as to restore substantially the same voltage levels of the other end of the photoelectric conversion unit and the other end of the discharge unit while the charge is discharged by the discharge unit.
  • the solid-state imaging device according to (1) wherein the voltage level of at least one of the other end of the conversion section and the other end of the discharge section is controlled.
  • the voltage control section controls the voltage level of the other end of the photoelectric conversion section so as to be substantially the same as the substantially constant voltage level of the other end of the discharge section at the discharge timing. ) to (3).
  • the voltage control section controls the voltage level of the other end of the discharge section so as to be substantially the same as the substantially constant voltage level of the other end of the photoelectric conversion section at the discharge timing. ) to (3).
  • the voltage control section adjusts the photoelectric conversion section to a predetermined voltage level between the voltage level of the other end of the photoelectric conversion section and the voltage level of the other end of the discharge section at the discharge timing.
  • the solid-state imaging device according to any one of (1) to (3), wherein voltage levels of both the other end of the conversion section and the other end of the discharge section are controlled.
  • the electrodes are arranged over the plurality of pixels and are spaced apart from each other by a predetermined distance so that the voltage control section can control the voltage level of the other end of the photoelectric conversion section for the plurality of pixels.
  • the solid-state imaging device according to (7) wherein the solid-state imaging device according to (7) is divided into a plurality of parts so as to be spaced apart from each other.
  • the voltage control unit controls the voltage level of at least one of the other end of the photoelectric conversion unit and the other end of the discharge unit, and controls discharge of the charge by the discharge unit. ) to (10).
  • the voltage control section simultaneously controls the voltage level of at least one of the other end of the photoelectric conversion section and the other end of the discharge section for a plurality of pixels exposed at the same time.
  • the solid-state imaging device according to any one of (12) to (12).
  • 1 solid-state imaging device 2 pixels, 4 vertical drive circuit, 12A first semiconductor chip, 12B second semiconductor chip, 21 photoelectric conversion unit, 21A first end, 21B second end, 22 first charge storage unit, 23 Discharge transistor, 23A third end, 23B fourth end, 48 electrode, PD predetermined distance, VA membrane voltage, VB reset voltage

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[Problem] To reduce noise. [Solution] This solid-state image capturing device comprises: a photoelectric conversion unit that generates charge in accordance with a light reception amount; a first charge storage unit that is electrically connected to one end of the photoelectric conversion unit and that stores the charge; a drain unit one end of which is electrically connected to the first charge storage unit and which drains the charge stored in the first charge storage unit; and a voltage control unit that controls the voltage level at one or both of the other end of the photoelectric conversion unit and the other end of the drain unit such that the voltage level at the other end of the photoelectric conversion unit is substantially the same as the voltage level at the other end of the drain unit at a drain timing when the drain unit drains the charge.

Description

固体撮像装置Solid-state imaging device
 本開示による実施形態は、固体撮像装置に関する。 An embodiment according to the present disclosure relates to a solid-state imaging device.
 固体撮像装置の光電変換部として、InGaAsなどの化合物半導体が用いられる場合がある。また、固体撮像装置では、光電変換されて蓄積された信号電荷の読み出しが行われる。(特許文献1参照)。 A compound semiconductor such as InGaAs is sometimes used as a photoelectric conversion unit of a solid-state imaging device. In addition, in the solid-state imaging device, readout of signal charges that have been photoelectrically converted and accumulated is performed. (See Patent Document 1).
国際公開第2017/150167号WO2017/150167 特開2011-187544号公報JP 2011-187544 A
 しかしながら、例えば、前フレームの信号量が大きくなるほど、光電変換部(InGaAs)に蓄積される電荷のリセットを適切に行うことが難しくなる場合がある。リセットされずに残る電荷は、次のフレームにおいて残像等のノイズの原因となる可能性がある。 However, for example, as the amount of signal in the previous frame increases, it may become more difficult to appropriately reset the charge accumulated in the photoelectric conversion unit (InGaAs). Charges remaining without being reset may cause noise such as afterimages in the next frame.
 そこで、本開示では、ノイズを低減することができる固体撮像装置を提供するものである。 Therefore, the present disclosure provides a solid-state imaging device capable of reducing noise.
 上記の課題を解決するために、本開示によれば、
 受光量に応じた電荷を生成する光電変換部と、
 前記光電変換部の一端と電気的に接続され、前記電荷を蓄積する第1電荷蓄積部と、
 一端が前記第1電荷蓄積部と電気的に接続され、前記第1電荷蓄積部に蓄積される前記電荷を排出する排出部と、
 前記排出部が前記電荷を排出する排出タイミングで、前記光電変換部の他端の電圧レベルと、前記排出部の他端の電圧レベルと、が略同じになるように、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御する電圧制御部と、を備える、固体撮像装置が提供される。
In order to solve the above problems, according to the present disclosure,
a photoelectric conversion unit that generates an electric charge according to the amount of light received;
a first charge storage unit that is electrically connected to one end of the photoelectric conversion unit and that stores the charge;
a discharging portion having one end electrically connected to the first charge accumulating portion for discharging the charges accumulated in the first charge accumulating portion;
The other terminal of the photoelectric conversion unit is arranged so that the voltage level of the other end of the photoelectric conversion unit and the voltage level of the other end of the discharge unit are substantially the same at the discharge timing when the discharge unit discharges the charge. and a voltage control section that controls the voltage level of at least one of the end and the other end of the discharge section.
 前記電圧制御部は、前記排出部による前記電荷の排出中に、略同じにした前記光電変換部の他端、及び、前記排出部の他端の電圧レベルを戻すように、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御してもよい。 The voltage control section restores substantially the same voltage levels of the other end of the photoelectric conversion section and the other end of the discharge section while the charge is being discharged by the discharge section. A voltage level of at least one of the other end and the other end of the discharge section may be controlled.
 前記光電変換部は、化合物半導体材料を含んでもよい。 The photoelectric conversion part may contain a compound semiconductor material.
 前記電圧制御部は、前記排出タイミングで、前記排出部の他端の略一定の電圧レベルと略同じになるように、前記光電変換部の他端の電圧レベルを制御してもよい。 The voltage control section may control the voltage level of the other end of the photoelectric conversion section so as to be substantially the same as the substantially constant voltage level of the other end of the discharge section at the discharge timing.
 前記電圧制御部は、前記排出タイミングで、前記光電変換部の他端の略一定の電圧レベルと略同じになるように、前記排出部の他端の電圧レベルを制御してもよい。 The voltage control section may control the voltage level of the other end of the discharge section so that it becomes substantially the same as the substantially constant voltage level of the other end of the photoelectric conversion section at the discharge timing.
 前記電圧制御部は、前記排出タイミングで、前記光電変換部の他端の電圧レベルと、前記排出部の他端の電圧レベルと、の間の所定電圧レベルになるように、前記光電変換部の他端、及び、前記排出部の他端の両方の電圧レベルを制御してもよい。 The voltage control section adjusts the photoelectric conversion section to a predetermined voltage level between the voltage level of the other end of the photoelectric conversion section and the voltage level of the other end of the discharge section at the discharge timing. The voltage level of both the other end and the other end of the drain may be controlled.
 前記光電変換部の他端と電気的に接続され、前記電圧制御部から電圧が印加される電極をさらに備えてもよい。 An electrode may be further provided which is electrically connected to the other end of the photoelectric conversion section and to which a voltage is applied from the voltage control section.
 前記電極は、前記電圧制御部が複数の画素に対して前記光電変換部の他端の電圧レベルを制御可能なように、複数の前記画素に渡って配置されるとともに、互いに所定距離を空けて離間するように、複数に分割して配置されてもよい。 The electrodes are arranged across the plurality of pixels and spaced apart from each other by a predetermined distance so that the voltage control section can control the voltage level of the other end of the photoelectric conversion section for the plurality of pixels. It may be divided into a plurality of parts and arranged so as to be separated from each other.
 前記電極は、行列状に分割して配置されてもよい。 The electrodes may be divided and arranged in a matrix.
 前記電極は、複数の列、又は、複数の列に分割して配置されてもよい。 The electrodes may be arranged in a plurality of rows or divided into a plurality of rows.
 前記電圧制御部は、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御するとともに、前記排出部による前記電荷の排出を制御してもよい。 The voltage control section may control the voltage level of at least one of the other end of the photoelectric conversion section and the other end of the discharge section, and may control discharge of the charge by the discharge section.
 前記光電変換部が配置される第1半導体チップと、
 前記第1半導体チップと積層され、前記第1電荷蓄積部及び前記排出部が配置される第2半導体チップをさらに備えてもよい。
a first semiconductor chip on which the photoelectric conversion unit is arranged;
A second semiconductor chip stacked with the first semiconductor chip and having the first charge storage portion and the discharge portion disposed thereon may further be provided.
 前記電圧制御部は、同時に露光される複数の画素に対して同時に、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御してもよい。 The voltage control section may simultaneously control the voltage level of at least one of the other end of the photoelectric conversion section and the other end of the discharge section for a plurality of pixels that are exposed at the same time.
本技術を適用した固体撮像装置の概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the solid-state imaging device to which this technique is applied. 第1実施形態による固体撮像装置の各画素の画素回路の一例を示す図である。3 is a diagram showing an example of a pixel circuit of each pixel of the solid-state imaging device according to the first embodiment; FIG. 第1実施形態による画素構造の一例を示す断面図である。2 is a cross-sectional view showing an example of a pixel structure according to the first embodiment; FIG. 第1実施形態による第1電荷蓄積部及び第2電荷蓄積部のポテンシャルの一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of potentials of a first charge storage section and a second charge storage section according to the first embodiment; 第1実施形態による光電変換部、第1電荷蓄積部及び排出トランジスタのポテンシャル分布の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of potential distribution of a photoelectric conversion unit, a first charge storage unit, and an ejection transistor according to the first embodiment; 第1実施形態による電極の構成の一例を示す上面図である。4 is a top view showing an example of the configuration of electrodes according to the first embodiment; FIG. 比較例による電極の構成の一例を示す上面図である。FIG. 4 is a top view showing an example of the configuration of electrodes according to a comparative example; 第1実施形態による固体撮像装置の動作の一例を示すタイミングチャートである。4 is a timing chart showing an example of the operation of the solid-state imaging device according to the first embodiment; 比較例による固体撮像装置の動作の一例を示すタイミングチャートである。4 is a timing chart showing an example of operation of a solid-state imaging device according to a comparative example; 第1変形例による電極の構成の一例を示す上面図である。FIG. 10 is a top view showing an example of the configuration of electrodes according to a first modified example; 第2変形例による電極の構成の一例を示す上面図である。FIG. 11 is a top view showing an example of the configuration of electrodes according to a second modified example; 第2実施形態による固体撮像装置の各画素の画素回路の一例を示す図である。It is a figure which shows an example of the pixel circuit of each pixel of the solid-state imaging device by 2nd Embodiment. 第2実施形態による光電変換部、第1電荷蓄積部及び排出トランジスタのポテンシャル分布の一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of potential distributions of a photoelectric conversion unit, a first charge storage unit, and an ejection transistor according to a second embodiment; 第2実施形態による固体撮像装置の動作の一例を示すタイミングチャートである。9 is a timing chart showing an example of the operation of the solid-state imaging device according to the second embodiment; 第3実施形態による固体撮像装置の各画素の画素回路の一例を示す図である。It is a figure which shows an example of the pixel circuit of each pixel of the solid-state imaging device by 3rd Embodiment. 第3実施形態による光電変換部、第1電荷蓄積部及び排出トランジスタのポテンシャル分布の一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of potential distribution of a photoelectric conversion unit, a first charge storage unit, and an ejection transistor according to a third embodiment; 第3実施形態による固体撮像装置の動作の一例を示すタイミングチャートである。9 is a timing chart showing an example of the operation of the solid-state imaging device according to the third embodiment; 本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。It is a block diagram showing a configuration example of an imaging device as an electronic device to which the present technology is applied. 図1の固体撮像装置の使用例を説明する図である。FIG. 2 is a diagram illustrating a usage example of the solid-state imaging device of FIG. 1; 内視鏡手術システムの概略的な構成の一例を示す図である。1 is a diagram showing an example of a schematic configuration of an endoscopic surgery system; FIG. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。3 is a block diagram showing an example of functional configurations of a camera head and a CCU; FIG. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; FIG. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
 以下、図面を参照して、固体撮像装置の実施形態について説明する。以下では、固体撮像装置の主要な構成部分を中心に説明するが、固体撮像装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 Hereinafter, embodiments of solid-state imaging devices will be described with reference to the drawings. The following description will focus on main components of the solid-state imaging device, but the solid-state imaging device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
<第1実施形態>
 図1は、本技術を適用した固体撮像装置の概略構成の一例を示している。
<First Embodiment>
FIG. 1 shows an example of a schematic configuration of a solid-state imaging device to which the present technology is applied.
 図1の固体撮像装置1は、半導体として例えば単結晶シリコン(Si)を用いた半導体基板12に、画素2が行列状に2次元配置された画素アレイ領域3と、その周辺の周辺回路領域とを有して構成される。周辺回路領域には、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7、制御回路8などが含まれる。 The solid-state imaging device 1 of FIG. 1 includes a semiconductor substrate 12 using, for example, single crystal silicon (Si) as a semiconductor, a pixel array region 3 in which pixels 2 are two-dimensionally arranged in a matrix, and a peripheral circuit region therearound. is configured with The peripheral circuit area includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, a control circuit 8, and the like.
 画素2は、半導体薄膜からなる光電変換部と、複数の画素トランジスタを有する。複数の画素トランジスタは、例えば、リセットトランジスタ、増幅トランジスタ、及び、選択トランジスタ等の複数のMOSトランジスタで構成される。 The pixel 2 has a photoelectric conversion section made of a semiconductor thin film and a plurality of pixel transistors. A plurality of pixel transistors are composed of, for example, a plurality of MOS transistors such as a reset transistor, an amplification transistor, and a selection transistor.
 制御回路8は、入力クロックと、動作モードなどを指令するデータを受け取り、また固体撮像装置1の内部情報などのデータを出力する。すなわち、制御回路8は、垂直同期信号、水平同期信号及びマスタクロックに基づいて、垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6などの動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6等に出力する。 The control circuit 8 receives an input clock and data instructing the operation mode, etc., and outputs data such as internal information of the solid-state imaging device 1 . That is, the control circuit 8 generates a clock signal and a control signal that serve as a reference for the operation of the vertical driving circuit 4, the column signal processing circuit 5, the horizontal driving circuit 6, etc. based on the vertical synchronizing signal, the horizontal synchronizing signal, and the master clock. do. The control circuit 8 then outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
 垂直駆動回路4は、例えばシフトレジスタによって構成され、所定の画素駆動配線10を選択し、選択された画素駆動配線10に画素2を駆動するためのパルスを供給し、行単位で画素2を駆動する。すなわち、垂直駆動回路4は、画素アレイ領域3の各画素2を行単位で順次垂直方向に選択走査し、各画素2の光電変換部において受光量に応じて生成された信号電荷に基づく画素信号を、垂直信号線9を通してカラム信号処理回路5に供給させる。 The vertical drive circuit 4 is composed of, for example, a shift register, selects a predetermined pixel drive wiring 10, supplies a pulse for driving the pixels 2 to the selected pixel drive wiring 10, and drives the pixels 2 row by row. do. That is, the vertical drive circuit 4 sequentially selectively scans each pixel 2 in the pixel array region 3 in the vertical direction on a row-by-row basis. is supplied to the column signal processing circuit 5 through the vertical signal line 9 .
 カラム信号処理回路5は、画素2の列ごとに配置されており、1行分の画素2から出力される信号を列ごとにノイズ除去などの信号処理を行う。例えば、カラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)およびAD変換等の信号処理を行う。 The column signal processing circuit 5 is arranged for each column of the pixels 2, and performs signal processing such as noise removal on the signals output from the pixels 2 of one row for each column. For example, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) for removing pixel-specific fixed pattern noise and AD conversion.
 水平駆動回路6は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から画素信号を水平信号線11に出力させる。 The horizontal driving circuit 6 is composed of, for example, a shift register, and sequentially outputs horizontal scanning pulses to select each of the column signal processing circuits 5 in turn, and outputs pixel signals from each of the column signal processing circuits 5 to the horizontal signal line. 11 to output.
 出力回路7は、カラム信号処理回路5の各々から水平信号線11を通して順次に供給される信号に対し、信号処理を行って出力する。出力回路7は、例えば、バファリングだけする場合もあるし、黒レベル調整、列ばらつき補正、各種デジタル信号処理などが行われる場合もある。入出力端子13は、外部と信号のやりとりをする。 The output circuit 7 performs signal processing on the signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 11 and outputs the processed signals. The output circuit 7 may, for example, perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like. The input/output terminal 13 exchanges signals with the outside.
 以上のように構成される固体撮像装置1は、CDS処理とAD変換処理を行うカラム信号処理回路5が列ごとに配置されたカラムAD方式と呼ばれるCMOSイメージセンサである。 The solid-state imaging device 1 configured as described above is a CMOS image sensor called a column AD system in which column signal processing circuits 5 that perform CDS processing and AD conversion processing are arranged for each column.
<画素回路>
 図2は、第1実施形態による固体撮像装置1の各画素2の画素回路の一例を示している。
<Pixel circuit>
FIG. 2 shows an example of a pixel circuit of each pixel 2 of the solid-state imaging device 1 according to the first embodiment.
 各画素2は、光電変換部21、第1電荷蓄積部22、排出トランジスタ23、転送トランジスタ24、第2電荷蓄積部25、リセットトランジスタ26、増幅トランジスタ27、及び、選択トランジスタ28を有する。排出トランジスタ23、転送トランジスタ24及びリセットトランジスタ26は、例えば、P型のMOSトランジスタである。増幅トランジスタ27及び選択トランジスタ28は、例えば、N型のMOSトランジスタである。 Each pixel 2 has a photoelectric conversion section 21, a first charge storage section 22, a discharge transistor 23, a transfer transistor 24, a second charge storage section 25, a reset transistor 26, an amplification transistor 27, and a selection transistor 28. The discharge transistor 23, the transfer transistor 24, and the reset transistor 26 are, for example, P-type MOS transistors. The amplification transistor 27 and the selection transistor 28 are, for example, N-type MOS transistors.
 光電変換部21は、InGaAsなどの化合物半導体を用いた半導体薄膜からなり、受光した光量に応じた電荷(信号電荷)を生成する。光電変換部21のカソードは、画素駆動配線10を介して、垂直駆動回路(電圧制御部)4と電気的に接続されている。 The photoelectric conversion unit 21 is made of a semiconductor thin film using a compound semiconductor such as InGaAs, and generates charges (signal charges) according to the amount of received light. A cathode of the photoelectric conversion section 21 is electrically connected to the vertical drive circuit (voltage control section) 4 via the pixel drive wiring 10 .
 また、光電変換部21は、第1端部21A(他端)と、第2端部21B(一端)と、有する。第1端部21Aは、垂直駆動回路4と電気的に接続される。第2端部21Bは、第1電荷蓄積部22と電気的に接続される。第1端部21Aの電圧レベルは、光電変換膜である光電変換部21の膜電圧VAとも呼ばれる。膜電圧VAは、垂直駆動回路4によって制御される。なお、垂直駆動回路4の詳細については、図5及び図8を参照して、後で詳細に説明する。 Further, the photoelectric conversion section 21 has a first end portion 21A (the other end) and a second end portion 21B (one end). The first end portion 21A is electrically connected to the vertical drive circuit 4 . The second end portion 21B is electrically connected to the first charge storage portion 22 . The voltage level of the first end portion 21A is also called a film voltage VA of the photoelectric conversion portion 21, which is a photoelectric conversion film. The membrane voltage VA is controlled by the vertical drive circuit 4 . Details of the vertical driving circuit 4 will be described later with reference to FIGS. 5 and 8. FIG.
 第1電荷蓄積部(SN)22は、光電変換部21で生成された電荷を蓄積する。第1電荷蓄積部22は、例えば、PN接合容量、MOS容量、または配線容量のいずれか1つを少なくとも含む容量素子である。 The first charge storage unit (SN) 22 stores charges generated by the photoelectric conversion unit 21 . The first charge storage unit 22 is, for example, a capacitive element including at least one of PN junction capacitance, MOS capacitance, and wiring capacitance.
 排出トランジスタ23は、排出信号OFGによりオンされたとき、第1電荷蓄積部22に蓄積されている電荷がドレインに排出されることで、第1電荷蓄積部22の電位をリセットする。排出トランジスタ23のドレインは、リセット電源電圧の基準電圧ノードと接続されている。 When the discharge transistor 23 is turned on by the discharge signal OFG, the electric charge accumulated in the first charge accumulation section 22 is discharged to the drain, thereby resetting the potential of the first charge accumulation section 22 . The drain of the discharge transistor 23 is connected to the reference voltage node of the reset power supply voltage.
 また、排出トランジスタ(排出部)23は、第3端部23A(一端)と、第4端部23B(他端)と、有する。第3端部23Aは、第1電荷蓄積部22と電気的に接続される。第4端部23Bは、リセット電源電圧の基準電圧ノードと電気的に接続される。第4端部23Bの電圧レベルは、リセット電圧VBとも呼ばれる。リセット電圧VBは、リセット電源電圧に固定されている。 Also, the discharge transistor (discharge part) 23 has a third end 23A (one end) and a fourth end 23B (other end). The third end portion 23A is electrically connected to the first charge storage portion 22 . The fourth end 23B is electrically connected to the reference voltage node of the reset power supply voltage. The voltage level of the fourth end 23B is also called reset voltage VB. The reset voltage VB is fixed at the reset power supply voltage.
 転送トランジスタ24は、転送信号TRGによりオンされたとき、第1電荷蓄積部22に蓄積されている電荷を第2電荷蓄積部25に転送する。 The transfer transistor 24 transfers the charge accumulated in the first charge accumulation section 22 to the second charge accumulation section 25 when turned on by the transfer signal TRG.
 第2電荷蓄積部(FD、Floating Diffusion)25は、転送トランジスタ24から転送された電荷を蓄積する。第2電荷蓄積部25は、例えば、PN接合容量、MOS容量、または配線容量のいずれか1つを少なくとも含む容量素子である。 A second charge accumulation unit (FD, Floating Diffusion) 25 accumulates charges transferred from the transfer transistor 24 . The second charge storage unit 25 is, for example, a capacitive element including at least one of PN junction capacitance, MOS capacitance, and wiring capacitance.
 リセットトランジスタ26は、リセット信号RSTによりオンされたとき、第2電荷蓄積部25に蓄積されている電荷がソース(基準電圧ノードVDD)に排出されることで、第2電荷蓄積部25の電位をリセットする。 When the reset transistor 26 is turned on by the reset signal RST, the electric charge accumulated in the second charge accumulation section 25 is discharged to the source (reference voltage node VDD), thereby reducing the potential of the second charge accumulation section 25 to Reset.
 増幅トランジスタ27は、第2電荷蓄積部25の蓄積電位に応じた画素信号を出力する。すなわち、増幅トランジスタ27は、垂直信号線9を介して接続されている定電流源としての負荷MOS(不図示)とソースフォロワ回路を構成し、第2電荷蓄積部25に蓄積されている電荷に応じたレベルを示す画素信号が、増幅トランジスタ27から選択トランジスタ28を介してカラム信号処理回路5に出力される。 The amplification transistor 27 outputs a pixel signal corresponding to the accumulated potential of the second charge accumulation section 25 . That is, the amplification transistor 27 constitutes a source follower circuit together with a load MOS (not shown) as a constant current source connected via the vertical signal line 9, and the charge accumulated in the second charge accumulation section 25 is A pixel signal indicating the corresponding level is output from the amplification transistor 27 to the column signal processing circuit 5 via the selection transistor 28 .
 選択トランジスタ28は、選択信号SELにより画素2が選択されたときオンされ、画素2の画素信号を、垂直信号線9を介してカラム信号処理回路5に出力する。排出信号OFG、転送信号TRG、選択信号SEL、及びリセット信号RSTが伝送される各信号線は、図1の画素駆動配線10に対応する。 The selection transistor 28 is turned on when the pixel 2 is selected by the selection signal SEL, and outputs the pixel signal of the pixel 2 to the column signal processing circuit 5 via the vertical signal line 9 . Each signal line through which the discharge signal OFG, the transfer signal TRG, the selection signal SEL, and the reset signal RST are transmitted corresponds to the pixel drive wiring 10 in FIG.
<画素構造>
 次に、固体撮像装置1の第1実施形態の画素構造について説明する。
<Pixel structure>
Next, the pixel structure of the first embodiment of the solid-state imaging device 1 will be described.
 図3は、第1実施形態による画素構造の一例を示す断面図である。 FIG. 3 is a cross-sectional view showing an example of the pixel structure according to the first embodiment.
 固体撮像装置1は、第1半導体チップ12Aと、第2半導体チップ12Bと、をさらに備える。第1半導体チップ12A及び第2半導体チップ12Bは、接合面Sにおいて接合されている。第1半導体チップ12A及び第2半導体チップ12Bは、例えば、Cu-Cu接続されている。 The solid-state imaging device 1 further includes a first semiconductor chip 12A and a second semiconductor chip 12B. The first semiconductor chip 12A and the second semiconductor chip 12B are bonded together at a bonding surface S. The first semiconductor chip 12A and the second semiconductor chip 12B are, for example, Cu--Cu connected.
 図2を参照して説明した各画素2の光電変換部21が、第1半導体チップ12Aに画素ごとに配置されている。図2を参照して説明した各画素2の第1電荷蓄積部22及び排出トランジスタ23等を含む読み出し回路が、例えば単結晶シリコン(Si)などの単結晶材料を含む第2半導体チップ12Bに画素ごとに配置されている。なお、図3の断面図では、第2半導体チップ12Bに配置されている、第1電荷蓄積部22、排出トランジスタ23、転送トランジスタ24、第2電荷蓄積部25、リセットトランジスタ26、増幅トランジスタ27、及び、選択トランジスタ28の図示が省略されている。 The photoelectric conversion unit 21 of each pixel 2 described with reference to FIG. 2 is arranged for each pixel on the first semiconductor chip 12A. The readout circuit including the first charge storage section 22 and discharge transistor 23 of each pixel 2 described with reference to FIG. are placed for each. Note that in the cross-sectional view of FIG. 3, the first charge storage unit 22, the discharge transistor 23, the transfer transistor 24, the second charge storage unit 25, the reset transistor 26, the amplification transistor 27, which are arranged in the second semiconductor chip 12B. Also, the illustration of the selection transistor 28 is omitted.
 第1半導体チップ12Aの光入射側である上側には、光電変換部21となるN型の半導体薄膜41が、画素アレイ領域3の全面に形成されている。N型の半導体薄膜41は、InGaP、InAlP、InGaAs、InAlAs、さらにはカルコパイライト構造の化合物半導体が用いられる。カルコパイライト構造の化合物半導体は、高い光吸収係数と、広い波長域に渡る高い感度が得られる材料であり、光電変換用のN型の半導体薄膜41として好ましく用いられる。このようなカルコパイライト構造の化合物半導体は、Cu、Al、Ga、In、S、Seなど、IV族元素の周囲の元素を用いて構成され、CuGaInS系混晶、CuAlGaInS系混晶、およびCuAlGaInSSe系混晶等が例示される。 An N-type semiconductor thin film 41 serving as a photoelectric conversion section 21 is formed over the entire surface of the pixel array region 3 on the upper side, which is the light incident side, of the first semiconductor chip 12A. For the N-type semiconductor thin film 41, InGaP, InAlP, InGaAs, InAlAs, or a compound semiconductor having a chalcopyrite structure is used. A compound semiconductor with a chalcopyrite structure is a material that provides a high light absorption coefficient and high sensitivity over a wide wavelength range, and is preferably used as the N-type semiconductor thin film 41 for photoelectric conversion. Such chalcopyrite structure compound semiconductors are composed of elements surrounding IV group elements such as Cu, Al, Ga, In, S, and Se, and are A mixed crystal etc. are illustrated.
 本実施の形態では、N型の半導体薄膜41の一例として、InGaAsの化合物半導体が用いられているものとする。 In the present embodiment, an InGaAs compound semiconductor is used as an example of the N-type semiconductor thin film 41 .
 N型の半導体薄膜41の第2半導体チップ12B(回路)側である下側には、画素電極を構成する高濃度のP型層42が、画素ごとに形成されている。そして、画素ごとに形成された高濃度のP型層42の間には、各画素2を分離する画素分離領域としてのN型層43が、例えば、InP等の化合物半導体で形成されている。このN型層43は、画素分離領域としての機能の他、暗電流を防止する役割も有する。 On the lower side of the N-type semiconductor thin film 41, which is the second semiconductor chip 12B (circuit) side, a high-concentration P-type layer 42 that constitutes a pixel electrode is formed for each pixel. Between the high-concentration P-type layers 42 formed for each pixel, an N-type layer 43 as a pixel separation region for separating each pixel 2 is formed of a compound semiconductor such as InP, for example. This N-type layer 43 has a role of preventing dark current in addition to functioning as a pixel separation region.
 一方、N型の半導体薄膜41の光入射側である上側にも、画素分離領域として用いたInP等の化合物半導体を用いて、N型の半導体薄膜41よりも高濃度のN型層44が形成されている。この高濃度のN型層44は、N型の半導体薄膜41で生成された電荷の逆流を防止するバリア層として機能する。高濃度のN型層44の材料には、例えば、InGaAs、InP、InAlAsなどの化合物半導体を用いることができる。 On the other hand, an N-type layer 44 having a higher concentration than the N-type semiconductor thin film 41 is also formed on the upper side of the N-type semiconductor thin film 41, which is the light incident side, using a compound semiconductor such as InP used as a pixel separation region. It is This high-concentration N-type layer 44 functions as a barrier layer that prevents backflow of charges generated in the N-type semiconductor thin film 41 . Compound semiconductors such as InGaAs, InP, and InAlAs can be used as the material of the high-concentration N-type layer 44, for example.
 バリア層としての高濃度のN型層44の上には、反射防止膜(ARC、Anti-Reflective Coating)45が形成されている。反射防止膜45の材料には、例えば、窒化シリコン(SiN)、酸化ハフニウム(HfO)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化タンタル(Ta)、酸化チタン(TiO)などを用いることができる。 An anti-reflection coating (ARC, Anti-Reflective Coating) 45 is formed on the high-concentration N-type layer 44 as a barrier layer. Materials for the antireflection film 45 include, for example, silicon nitride (SiN), hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), oxide Titanium (TiO 2 ) or the like can be used.
 反射防止膜45の上には、N型の半導体薄膜41を上下に挟む電極のうちの上側の電極48が設けられる。電極48は、透明電極である。電極48の材料には、例えば、ITO(Indium Tin Oxide)などを用いることができる。電極48には、垂直駆動回路4から電圧が印加される。 On the antireflection film 45, an upper electrode 48 of the electrodes sandwiching the N-type semiconductor thin film 41 is provided. Electrode 48 is a transparent electrode. For example, ITO (Indium Tin Oxide) or the like can be used as the material of the electrode 48 . A voltage is applied to the electrode 48 from the vertical driving circuit 4 .
 画素電極を構成する高濃度のP型層42と、画素分離領域としてのN型層43の下側には、パッシベーション層51および絶縁層52が形成されている。そして、第1半導体チップ12Aの接続電極53Aが、パッシベーション層51および絶縁層52Aを貫通するように形成されている。第2半導体チップ12Bの接続電極53Bは、絶縁層52Bを貫通するように形成されている。接続電極53A及び53Bは、画素電極を構成する高濃度のP型層42と、電荷を蓄積する第1電荷蓄積部22とを電気的に接続する。接続電極53A、53Bの材料は、例えば、銅(Cu)である。 A passivation layer 51 and an insulating layer 52 are formed below the high-concentration P-type layer 42 constituting the pixel electrode and the N-type layer 43 as the pixel separation region. A connection electrode 53A of the first semiconductor chip 12A is formed so as to penetrate the passivation layer 51 and the insulating layer 52A. The connection electrodes 53B of the second semiconductor chip 12B are formed so as to penetrate the insulating layer 52B. The connection electrodes 53A and 53B electrically connect the high-concentration P-type layer 42 that constitutes the pixel electrode and the first charge storage section 22 that stores charges. The material of the connection electrodes 53A and 53B is, for example, copper (Cu).
 図4は、第1実施形態による第1電荷蓄積部22及び第2電荷蓄積部25のポテンシャルの一例を示す模式図である。 FIG. 4 is a schematic diagram showing an example of potentials of the first charge storage section 22 and the second charge storage section 25 according to the first embodiment.
 第1電荷蓄積部22及び第2電荷蓄積部25は、例えば、シリコン基板(第2半導体チップ12B)の拡散層で形成されている。 The first charge storage section 22 and the second charge storage section 25 are formed of, for example, diffusion layers of a silicon substrate (second semiconductor chip 12B).
 第1電荷蓄積部22は、接続電極53Bと電気的に接続されている。したがって、光電変換部21で生成された電荷は、接続電極53A、53Bを通過して第1電荷蓄積部22に蓄積される。 The first charge storage section 22 is electrically connected to the connection electrode 53B. Therefore, the charges generated by the photoelectric conversion section 21 pass through the connection electrodes 53A and 53B and are accumulated in the first charge accumulation section 22 .
 露光が行われる前に、排出トランジスタ23がオンすることにより排出トランジスタ23のポテンシャルが下がる。その後、排出トランジスタ23はオフする。これにより、第1電荷蓄積部22に蓄積された電荷は排出され、第1電荷蓄積部22はリセットされる。 The potential of the discharge transistor 23 is lowered by turning on the discharge transistor 23 before exposure is performed. After that, the discharge transistor 23 is turned off. As a result, the charges accumulated in the first charge accumulation section 22 are discharged, and the first charge accumulation section 22 is reset.
 露光終了後、転送トランジスタ24がオンすることにより、転送トランジスタ24のポテンシャルが下がる。これにより、第1電荷蓄積部22と第2電荷蓄積部25とが結合され、露光により第1電荷蓄積部22に蓄積された電荷は、分割されて第2電荷蓄積部25に移動する。第2電荷蓄積部25に蓄積された電荷は、図2に示すように、増幅トランジスタ27、選択トランジスタ28及び垂直信号線9を介して、画素信号として読み出される。 After the exposure is completed, the potential of the transfer transistor 24 is lowered by turning on the transfer transistor 24 . As a result, the first charge storage section 22 and the second charge storage section 25 are coupled, and the charge stored in the first charge storage section 22 by exposure is divided and moved to the second charge storage section 25 . The charge accumulated in the second charge accumulation section 25 is read as a pixel signal through the amplification transistor 27, the selection transistor 28 and the vertical signal line 9, as shown in FIG.
<第1電荷蓄積部のリセットとポテンシャル>
 次に、排出トランジスタ23による第1電荷蓄積部22のリセットについて説明する。
<Reset and Potential of First Charge Accumulator>
Next, resetting of the first charge storage section 22 by the discharge transistor 23 will be described.
 図5は、第1実施形態による光電変換部21、第1電荷蓄積部22及び排出トランジスタ23のポテンシャル分布の一例を示す模式図である。 FIG. 5 is a schematic diagram showing an example of potential distribution of the photoelectric conversion section 21, the first charge storage section 22, and the discharge transistor 23 according to the first embodiment.
 図5では、画素2の断面図の一部、及び、読み出し回路の一部が示されている。また、図5では、拡散層49がさらに設けられている。拡散層49は、アノードであるP型層42と電気的に接続される。図5に示す例では、1つの画素2につき1つの拡散層49により、拡散層49とN型の半導体薄膜41とによるpn接合が形成されている。拡散層49は、例えば、Znが拡散して形成される。 FIG. 5 shows part of the cross-sectional view of the pixel 2 and part of the readout circuit. Further, in FIG. 5, a diffusion layer 49 is further provided. Diffusion layer 49 is electrically connected to P-type layer 42, which is an anode. In the example shown in FIG. 5, one diffusion layer 49 is provided for each pixel 2, forming a pn junction between the diffusion layer 49 and the N-type semiconductor thin film 41. In the example shown in FIG. The diffusion layer 49 is formed by diffusing Zn, for example.
 蓄積時間において、光電変換された電荷(正孔)は、光電変換部21の一部、及び、第1電荷蓄積部22に跨がって蓄積される。 During the accumulation time, photoelectrically converted charges (holes) are accumulated across part of the photoelectric conversion section 21 and the first charge accumulation section 22 .
 排出トランジスタ23がオフであるため、信号量が大きいほど、第1電荷蓄積部22に蓄積される電荷(正孔)の蓄積量が増加する。したがって、第1電荷蓄積部22のポテンシャルは、実線で示すように持ち上がる。一方、信号量が小さいほど、第1電荷蓄積部22に蓄積される電荷(正孔)の蓄積量が減少する。したがって、第1電荷蓄積部22のポテンシャルは、点線で示すように低くなる。 Since the discharge transistor 23 is off, the amount of charges (holes) accumulated in the first charge accumulation unit 22 increases as the signal amount increases. Therefore, the potential of the first charge storage section 22 rises as indicated by the solid line. On the other hand, the smaller the signal amount, the smaller the amount of charges (holes) accumulated in the first charge accumulation unit 22 . Therefore, the potential of the first charge storage section 22 is lowered as indicated by the dotted line.
 排出トランジスタ23がオンすると、第1電荷蓄積部22の電荷はリセットされる。すなわち、光電変換部21の一部、及び、第1電荷蓄積部22に蓄積される電荷は、排出トランジスタ23のドレインに捨てられる。 When the discharge transistor 23 is turned on, the charge in the first charge storage section 22 is reset. That is, part of the photoelectric conversion unit 21 and the charge accumulated in the first charge accumulation unit 22 are discharged to the drain of the discharge transistor 23 .
 ここで、電荷の移動を制限する何らかのバリアが存在する場合、完全に電荷をリセットすることが困難な可能性がある。すなわち、一部の電荷は、排出トランジスタ23がオン状態であっても排出されずに光電変換膜21中に残ってしまう可能性がある。 Here, if there is some kind of barrier that restricts the movement of charges, it may be difficult to completely reset the charges. That is, there is a possibility that some charges remain in the photoelectric conversion film 21 without being discharged even when the discharge transistor 23 is in the ON state.
 バリアによって排出されない電荷の量は、信号量によって変動する可能性がある。例えば、画素2に強い光が露光されるほど、第1電荷蓄積部22のリセット後に光電変換膜21中に残る電荷の量も大きくなってしまう。光電変換部21に残った電荷の量によって、第1電荷蓄積部22に蓄積される電荷の量が変化する。例えば、或るフレームにおける信号量が大きいと、次のフレームで本来の信号量よりも大きい信号電荷が読み出されてしまう。これは、例えば、被写体である光源が高速で移動する際に生じる残像等のノイズにつながる。すなわち、前のフレームの信号量の影響を受けて、ノイズが発生してしまう。 The amount of charge that is not discharged by the barrier may fluctuate depending on the amount of signal. For example, the more intense the light that the pixel 2 is exposed to, the greater the amount of charge remaining in the photoelectric conversion film 21 after the reset of the first charge storage unit 22 . The amount of charge stored in the first charge storage unit 22 changes depending on the amount of charge remaining in the photoelectric conversion unit 21 . For example, if the signal amount in a certain frame is large, signal charges larger than the original signal amount will be read out in the next frame. For example, this leads to noise such as an afterimage that occurs when the light source, which is the subject, moves at high speed. That is, noise is generated under the influence of the signal amount of the previous frame.
 そこで、垂直駆動回路4は、第1電荷蓄積部22の電荷のリセットのタイミングで、膜電圧VAとリセット電圧VBとが略同じになるように、光電変換部21の膜電圧VAを制御する。垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、排出トランジスタ23の第4端部23Bの略一定の電圧レベルと略同じになるように、光電変換部21の第1端部21Aの電圧レベル(膜電圧VA)を制御する。また、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、膜電圧VAを、リセット電圧VBまで下げて、戻す。 Therefore, the vertical drive circuit 4 controls the film voltage VA of the photoelectric conversion unit 21 so that the film voltage VA and the reset voltage VB are substantially the same at the timing of resetting the charges in the first charge storage unit 22 . The vertical driving circuit 4 maintains the voltage level of the first end 21A of the photoelectric conversion unit 21 so that the voltage level of the fourth end 23B of the discharge transistor 23 and the voltage level of the fourth end 23B of the discharge transistor 23 are substantially the same while the charge is discharged by the discharge transistor 23. Control the voltage level (membrane voltage VA). Further, the vertical driving circuit 4 lowers the film voltage VA to the reset voltage VB and returns it to the reset voltage VB while the discharge transistor 23 is discharging electric charges.
 排出トランジスタ23がオン状態であるため、光電変換部21の第1端部21Aの電圧レベル(膜電圧VA)が低下すると、リセット電源電圧の基準電圧ノード側から光電変換部21のN型の半導体薄膜41内に正孔が流れる。したがって、前のフレームの信号量によらず、N型の半導体薄膜41に電荷が満たされた状態になる。 Since the discharge transistor 23 is in the ON state, when the voltage level (film voltage VA) of the first end portion 21A of the photoelectric conversion section 21 decreases, the N-type semiconductor of the photoelectric conversion section 21 is discharged from the reference voltage node side of the reset power supply voltage. Holes flow in the thin film 41 . Therefore, regardless of the amount of signal in the previous frame, the N-type semiconductor thin film 41 is charged.
 その後、膜電圧VAが元に戻ると、前のフレームの信号量によらず、バリアによって光電変換部21に残る電荷の量が決定される。これにより、バリアによって光電変換部21に残る電荷の量を略一定にすることができる。この結果、第1電荷蓄積部22のリセットの際の残存電荷量のばらつきによる影響を抑制することができ、残像等のノイズを抑制することができる。また、複数の画素2に対して上記の電圧制御を行うことにより、画素2ごとにおける残存電荷量のばらつきによる影響を抑制することができる。すなわち、前のフレームの信号量(リセット前の状態)によらず、画素2間で一様に電荷をリセットすることができ、第1電荷蓄積部22の電荷のリセットをより適切に行うことができる。 After that, when the film voltage VA returns to its original state, the amount of charge remaining in the photoelectric conversion unit 21 is determined by the barrier regardless of the signal amount of the previous frame. Thereby, the amount of charge remaining in the photoelectric conversion unit 21 can be made substantially constant by the barrier. As a result, it is possible to suppress the influence of variations in the amount of residual charge when resetting the first charge storage section 22, and to suppress noise such as afterimages. In addition, by performing the above voltage control on a plurality of pixels 2, the influence of variations in the amount of residual charge for each pixel 2 can be suppressed. That is, regardless of the amount of signal in the previous frame (state before resetting), the charges can be uniformly reset among the pixels 2, and the resetting of the charges in the first charge storage section 22 can be performed more appropriately. can.
<電極>
 図6は、第1実施形態による電極48の構成の一例を示す上面図である。
<Electrode>
FIG. 6 is a top view showing an example of the configuration of the electrodes 48 according to the first embodiment.
 電極48は、光電変換部21の第1端部21Aと電気的に接続され、垂直駆動回路4から電圧が印加される。 The electrode 48 is electrically connected to the first end portion 21A of the photoelectric conversion portion 21 and is applied with voltage from the vertical drive circuit 4 .
 図6に示すように、電極48は、互いに所定距離PDを空けて離間するように、複数に分割して配置される。より詳細には、電極48は、行列状に分割して配置される。また、電極48は、垂直駆動回路4が複数の画素2に対して光電変換部21の第1端部21Aの電圧レベルを制御可能なように、複数の画素2に渡って配置される。 As shown in FIG. 6, the electrodes 48 are divided into a plurality of parts and arranged so as to be separated from each other by a predetermined distance PD. More specifically, the electrodes 48 are divided and arranged in a matrix. Further, the electrodes 48 are arranged over the plurality of pixels 2 so that the vertical drive circuit 4 can control the voltage level of the first end portion 21A of the photoelectric conversion section 21 for the plurality of pixels 2 .
 図7は、比較例による電極48の構成の一例を示す上面図である。 FIG. 7 is a top view showing an example of the configuration of the electrode 48 according to the comparative example.
 図7に示す例では、画素アレイ領域3の全面に電極48が設けられている。しかし、この場合、電極48の寄生容量及び抵抗が高くなるため、RC遅延が大きくなってしまう。垂直駆動回路4は、電極48への印加電圧を変更することにより、第1端部21Aの電圧レベルを変更する。電極48への印加電圧の変更に遅延が発生すると、第1端部21Aの電圧レベルを適切に制御することが困難になってしまう可能性がある。 In the example shown in FIG. 7, the electrode 48 is provided over the entire surface of the pixel array region 3 . However, in this case, the parasitic capacitance and resistance of the electrode 48 are increased, resulting in increased RC delay. The vertical driving circuit 4 changes the voltage level of the first end portion 21A by changing the voltage applied to the electrode 48 . If there is a delay in changing the voltage applied to the electrode 48, it may become difficult to appropriately control the voltage level of the first end 21A.
 これに対して、第1実施形態では、複数に分割するように間隔を空けることにより、電極48のRC遅延を抑制することができる。これにより、膜電圧VAをより高速で変化させることができ、フレームレートを向上させることができる。 On the other hand, in the first embodiment, the RC delay of the electrode 48 can be suppressed by providing an interval so as to divide it into a plurality of parts. Thereby, the membrane voltage VA can be changed at a higher speed, and the frame rate can be improved.
 また、所定距離PDが広すぎる場合、全ての画素2に対して第1端部21Aの電圧制御を適切に行うことが困難になる可能性がある。一方、所定距離PDが狭すぎる場合、比較例のように、電圧制御の遅延が発生する可能性がある。所定距離PDは、適切な電圧制御が可能な範囲内で決定される。 Also, if the predetermined distance PD is too wide, it may be difficult to appropriately control the voltage of the first end portion 21A for all the pixels 2 . On the other hand, if the predetermined distance PD is too narrow, voltage control may be delayed as in the comparative example. The predetermined distance PD is determined within a range in which appropriate voltage control is possible.
<動作>
 次に、固体撮像装置1の動作について説明する。
<Action>
Next, operation of the solid-state imaging device 1 will be described.
 図8は、第1実施形態による固体撮像装置1の動作の一例を示すタイミングチャートである。図8は、排出信号OFG、リセット信号RST及び転送信号TRGのタイミングチャートを示す。すなわち、図8は、排出トランジスタ23、リセットトランジスタ26及び転送トランジスタ24のオン又はオフのタイミングチャートを示す。 FIG. 8 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the first embodiment. FIG. 8 shows a timing chart of the discharge signal OFG, reset signal RST and transfer signal TRG. That is, FIG. 8 shows a timing chart for turning on or off the discharge transistor 23, reset transistor 26 and transfer transistor 24. FIG.
 また、図8は、第1端部21Aの電圧レベルである膜電圧VAのタイミングチャートを示す。垂直駆動回路4は、膜電圧VAを、膜印加電圧、又は、リセット電源電圧に制御する。膜印加電圧は、リセット電源電圧よりも高い。膜印加電圧は、例えば、2.2Vである。リセット電源電圧は、例えば、1.2Vである。膜印加電圧は、例えば、通常、光電変換部21の第1端部21Aに印加されるバイアス電圧(固定電圧)である。 Also, FIG. 8 shows a timing chart of the membrane voltage VA, which is the voltage level of the first end portion 21A. The vertical drive circuit 4 controls the membrane voltage VA to the membrane applied voltage or the reset power supply voltage. The membrane applied voltage is higher than the reset power supply voltage. The voltage applied to the membrane is, for example, 2.2V. The reset power supply voltage is, for example, 1.2V. The film applied voltage is, for example, a bias voltage (fixed voltage) normally applied to the first end portion 21A of the photoelectric conversion section 21 .
 時刻t1から時刻t8までは、1フレームの期間である。時刻t1から時刻t4までは、蓄積時間(露光期間)である。時刻t5から時刻t8までは、排出トランジスタ23による第1電荷蓄積部22の電荷のリセットを行うタイミングである。 A period of one frame is from time t1 to time t8. The period from time t1 to time t4 is an accumulation time (exposure period). The period from time t5 to time t8 is the timing for resetting the charge in the first charge storage section 22 by the discharge transistor 23 .
 まず、時刻t1において、排出トランジスタ23はオフする。これにより、第1電荷蓄積部22の電荷のリセットが終了し、蓄積時間が開始される。 First, at time t1, the discharge transistor 23 is turned off. As a result, the resetting of the charges in the first charge accumulating section 22 is completed, and the accumulation time is started.
 次に、時刻t2において、リセットトランジスタ26はオンする。これにより、第2電荷蓄積部25が基準電圧ノードVDDと接続される。 Next, at time t2, the reset transistor 26 is turned on. This connects the second charge storage unit 25 to the reference voltage node VDD.
 次に、時刻t3において、リセットトランジスタ26はオフする。これにより、第2電荷蓄積部25の電荷のリセットが終了する。 Next, at time t3, the reset transistor 26 is turned off. As a result, resetting of the charges in the second charge storage section 25 is completed.
 次に、時刻t4において、転送トランジスタ24はオンする。これにより、第1電荷蓄積部22及び第2電荷蓄積部25の容量が結合される。したがって、蓄積時間の終了後、第1電荷蓄積部22に蓄積された電荷は、第2電荷蓄積部25に分割されて移動する。 Next, at time t4, the transfer transistor 24 is turned on. Thereby, the capacities of the first charge storage section 22 and the second charge storage section 25 are coupled. Therefore, after the accumulation time ends, the charges accumulated in the first charge accumulation section 22 are divided and transferred to the second charge accumulation section 25 .
 次に、時刻t5において、転送トランジスタ24はオフする。これにより、第1電荷蓄積部22及び第2電荷蓄積部25の容量が分割される。時刻t5の後において第2電荷蓄積部25に蓄積された電荷は、画素信号として読み出される。 Next, at time t5, the transfer transistor 24 is turned off. Thereby, the capacities of the first charge accumulation section 22 and the second charge accumulation section 25 are divided. The charge accumulated in the second charge accumulation section 25 after time t5 is read out as a pixel signal.
 次に、時刻t6において、排出トランジスタ23はオンする。また、時刻t6において、垂直駆動回路4は、膜電圧VAを、膜印加電圧からリセット電源電圧に下げる。これにより、膜電圧VAがリセット電圧VBと略同じになる。この結果、図5を参照して説明したように、N型の半導体薄膜41に電荷が満たされる。 Next, at time t6, the discharge transistor 23 is turned on. Also, at time t6, the vertical drive circuit 4 lowers the membrane voltage VA from the membrane applied voltage to the reset power supply voltage. As a result, the membrane voltage VA becomes substantially the same as the reset voltage VB. As a result, as described with reference to FIG. 5, the N-type semiconductor thin film 41 is filled with charges.
 なお、膜電圧VAをリセット電源電圧にするタイミングは、排出トランジスタ23がオンするタイミングと必ずしも同じでなくてもよい。いずれのタイミングが先であってもよい。垂直駆動回路4は、転送トランジスタ24をオフしてから、排出トランジスタ23がオフするまで間に、膜電圧VAをリセット電源電圧にすればよい。 It should be noted that the timing at which the film voltage VA is changed to the reset power supply voltage does not necessarily have to be the same as the timing at which the discharge transistor 23 is turned on. Either timing may come first. The vertical drive circuit 4 should set the film voltage VA to the reset power supply voltage after the transfer transistor 24 is turned off and before the ejection transistor 23 is turned off.
 次に、時刻t7において、垂直駆動回路4は、膜電圧VAを、リセット電源電圧から膜印加電圧に戻す。すなわち、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、下げた光電変換部21の第1端部21Aの電圧レベルを戻す(上げる)ように、光電変換部21の第1端部21Aの電圧レベルを制御する。これにより、膜電圧VAとリセット電圧VBとを略同じにした後に、排出トランジスタ23をオフすることにより第1電荷蓄積部22の電荷をリセットすることができる。この結果、バリアによって光電変換部21に残る電荷の量を、蓄積時間における信号量に依存しないようにすることができる。すなわち、蓄積時間における信号量によらず、第1電荷蓄積部22の電荷をより適切にリセットすることができる。 Next, at time t7, the vertical driving circuit 4 returns the membrane voltage VA from the reset power supply voltage to the membrane applied voltage. That is, the vertical driving circuit 4 restores (increases) the lowered voltage level of the first end portion 21A of the photoelectric conversion portion 21 while the discharge transistor 23 is discharging the electric charge. 21A voltage level. As a result, after the film voltage VA and the reset voltage VB are made substantially equal, the charge in the first charge storage section 22 can be reset by turning off the discharge transistor 23 . As a result, the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made independent of the signal amount during the accumulation time. That is, the charge in the first charge storage section 22 can be reset more appropriately regardless of the signal amount during the storage time.
 また、垂直駆動回路4は、全ての画素2に対して上記の電圧制御を行うことにより、バリアによって光電変換部21に残る電荷の量を、画素2間で一様にすることができる。この結果、前のフレームにおいて光電変換された電荷の量(リセット前の状態)によらず、バリアによって光電変換部21に残る電荷の量を、画素2間で一様にすることができる。この結果、次のフレームにおける残像等のノイズを抑制することができる。 In addition, the vertical drive circuit 4 can make the amount of charge remaining in the photoelectric conversion unit 21 uniform among the pixels 2 due to the barrier by performing the above voltage control for all the pixels 2 . As a result, the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made uniform among the pixels 2 regardless of the amount of charge photoelectrically converted in the previous frame (state before reset). As a result, noise such as afterimages in the next frame can be suppressed.
 なお、膜電圧VAを膜印加電圧にするタイミングは、排出トランジスタ23がオフするタイミングよりも前である。膜電圧VAがリセット電源電圧のまま排出トランジスタ23がオフする場合、電荷がリセットされることなくN型の半導体薄膜41に残った状態で次のフレームにおける電荷の蓄積が開始されてしまうためである。 It should be noted that the timing at which the film voltage VA is changed to the film applied voltage is before the timing at which the discharge transistor 23 is turned off. This is because, if the drain transistor 23 is turned off while the film voltage VA remains at the reset power supply voltage, charge accumulation is started in the next frame in a state in which charges remain in the N-type semiconductor thin film 41 without being reset. .
 次に、時刻t8において、排出トランジスタ23はオフする。したがって、次のフレームの蓄積時間が開始される。 Next, at time t8, the discharge transistor 23 is turned off. Therefore, the accumulation time for the next frame is started.
 また、固体撮像装置1は、例えば、グローバルシャッタで駆動する。したがって、全画素2において、略同時に露光が開始及び終了する。また、垂直駆動回路4は、全画素2において、略同時に膜電圧VAを制御する。 Also, the solid-state imaging device 1 is driven by, for example, a global shutter. Therefore, in all pixels 2, exposure starts and ends substantially simultaneously. In addition, the vertical drive circuit 4 controls the film voltage VA in all the pixels 2 substantially simultaneously.
 図9は、比較例による固体撮像装置1の動作の一例を示すタイミングチャートである。比較例では、垂直駆動回路4は、膜電圧VAを制御しない。すなわち、比較例は、第1端部21Aが膜印加電圧の固定電源と電気的に接続されている状態と同じである。 FIG. 9 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the comparative example. In the comparative example, the vertical drive circuit 4 does not control the film voltage VA. That is, the comparative example is the same as the state in which the first end portion 21A is electrically connected to the fixed power supply for the membrane applied voltage.
 図9に示す例では、膜電圧VAが略一定である。したがって、光電変換部21に残る電荷の量が、蓄積時間における信号量によって変動してしまう可能性がある。この結果、前のフレームにおける信号量によって、画素2ごとに次のフレームで読み出される信号が変化してしまう可能性がある。 In the example shown in FIG. 9, the membrane voltage VA is substantially constant. Therefore, the amount of charge remaining in the photoelectric conversion unit 21 may fluctuate depending on the signal amount during the accumulation time. As a result, there is a possibility that the signal read in the next frame will change for each pixel 2 depending on the amount of signal in the previous frame.
 これに対して、第1実施形態では、バリアによって光電変換部21に残る電荷の量を、蓄積信号量に依存せずに、画素2間で一様にすることができる。これにより、第1電荷蓄積部22のリセットをより適切に行うことができる。 On the other hand, in the first embodiment, the amount of charge remaining in the photoelectric conversion unit 21 can be made uniform among the pixels 2 by the barrier, without depending on the accumulated signal amount. Thereby, the reset of the 1st charge storage part 22 can be performed more appropriately.
 以上のように、第1実施形態によれば、垂直駆動回路4は、排出トランジスタ23が第1電荷蓄積部22の電荷を排出する排出タイミングで、略一定のリセット電圧VB(リセット電源電圧)と略同じになるように、膜電圧VAを制御する。「略同じ」は、膜電圧VAが必ずしもリセット電源電圧と同じである必要が無いことを示す。膜電圧VAは、例えば、電荷がバリアを越えて十分に流れる電圧レベルまで下がればよい。 As described above, according to the first embodiment, the vertical driving circuit 4 sets the substantially constant reset voltage VB (reset power supply voltage) and The membrane voltage VA is controlled so as to be substantially the same. "Substantially the same" indicates that the membrane voltage VA does not necessarily have to be the same as the reset power supply voltage. The membrane voltage VA may, for example, be lowered to a voltage level at which charge sufficiently flows across the barrier.
 なお、垂直駆動回路4は、膜電圧VAを、リセット電源電圧よりも低い電圧に下げてもよい。この場合も、電荷は、リセット電源電圧側からN型の半導体薄膜41に流れる。 Note that the vertical drive circuit 4 may lower the film voltage VA to a voltage lower than the reset power supply voltage. In this case as well, charges flow from the reset power supply voltage side to the N-type semiconductor thin film 41 .
 また、信号電荷は、正孔に限られず、電子であってもよい。この場合、半導体基板12や半導体薄膜41等の各導電型を逆の導電型としたり、印加するバイアス電圧の正負が逆となる。 Also, the signal charges are not limited to holes, and may be electrons. In this case, the conductivity types of the semiconductor substrate 12, the semiconductor thin film 41, etc. are reversed, or the polarity of the applied bias voltage is reversed.
 また、カラムAD方式に限られず、画素2ごとにADC(Analog to Digital Converter)が設けられてもよい。 Also, an ADC (Analog to Digital Converter) may be provided for each pixel 2 without being limited to the column AD method.
 また、第1実施形態では、膜電圧VAを制御する電圧制御部は、垂直駆動回路4である。すなわち、垂直駆動回路4は、第1端部21Aの電圧レベルを制御するとともに、排出トランジスタ23等のMOSトランジスタを制御する。しかし、電圧制御部は、垂直駆動回路4に限られず、電圧を制御可能な構成であればよい。 Also, in the first embodiment, the voltage control unit that controls the film voltage VA is the vertical drive circuit 4 . That is, the vertical drive circuit 4 controls the voltage level of the first end portion 21A, and also controls the MOS transistors such as the discharge transistor 23 and the like. However, the voltage control unit is not limited to the vertical driving circuit 4, and may be any configuration that can control the voltage.
 また、電極48は、図6に示す例に限られず、図7に示すように、画素アレイ領域3の全面に設けられてもよい。 Further, the electrode 48 is not limited to the example shown in FIG. 6, and may be provided over the entire surface of the pixel array region 3 as shown in FIG.
<電極の第1変形例> 
 図10は、第1変形例による電極48の構成の一例を示す上面図である。第1変形例は、第1実施形態と比較して、電極48の配置が異なっている。
<First Modification of Electrode>
FIG. 10 is a top view showing an example of the configuration of the electrodes 48 according to the first modified example. The first modification differs from the first embodiment in the arrangement of the electrodes 48 .
 図10に示す例では、電極48は、所定距離PDを空けた複数の列に分割して配置される。 In the example shown in FIG. 10, the electrodes 48 are divided into a plurality of rows separated by a predetermined distance PD.
 第1実施形態の第1変形例のように、電極48の配置が変更されてもよい。この場合にも、第1実施形態と同等の効果を得ることができる。 The arrangement of the electrodes 48 may be changed as in the first modified example of the first embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained.
<電極の第2変形例>
 図11は、第2変形例による電極48の構成の一例を示す上面図である。第2変形例は、第1実施形態と比較して、電極48の配置が異なっている。
<Second Modification of Electrode>
FIG. 11 is a top view showing an example of the configuration of the electrode 48 according to the second modified example. The second modification differs from the first embodiment in the arrangement of the electrodes 48 .
 図11に示す例では、電極48は、所定距離PDを空けた複数の行に分割して配置される。 In the example shown in FIG. 11, the electrodes 48 are divided into a plurality of rows separated by a predetermined distance PD.
 第1実施形態の第2変形例のように、電極48の配置が変更されてもよい。この場合にも、第1実施形態と同等の効果を得ることができる。 The arrangement of the electrodes 48 may be changed as in the second modification of the first embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained.
<第2実施形態>
 図12は、第2実施形態による固体撮像装置1の各画素2の画素回路の一例を示す図である。第2実施形態は、垂直駆動回路4が排出トランジスタ23の第4端部23Bの電圧レベルを制御する点で、第1実施形態とは異なっている。
<Second embodiment>
FIG. 12 is a diagram showing an example of a pixel circuit of each pixel 2 of the solid-state imaging device 1 according to the second embodiment. The second embodiment differs from the first embodiment in that the vertical drive circuit 4 controls the voltage level of the fourth end 23B of the ejection transistor 23. FIG.
 図12に示す例では、光電変換部21の第1端部21Aは、膜印加電圧の基準電圧ノードと電気的に接続される。したがって、第1端部21Aの電圧は、固定されている。 In the example shown in FIG. 12, the first end 21A of the photoelectric conversion unit 21 is electrically connected to the reference voltage node of the voltage applied to the membrane. Therefore, the voltage of the first end 21A is fixed.
 排出トランジスタ23の第4端部23Bは、垂直駆動回路4と電気的に接続される。したがって、垂直駆動回路4は、排出トランジスタ23の第4端部23Bの電圧レベルを制御する。 A fourth end portion 23B of the ejection transistor 23 is electrically connected to the vertical drive circuit 4 . Therefore, the vertical drive circuit 4 controls the voltage level of the fourth end 23B of the ejection transistor 23. FIG.
 図13は、第2実施形態による光電変換部21、第1電荷蓄積部22及び排出トランジスタ23のポテンシャル分布の一例を示す模式図である。 FIG. 13 is a schematic diagram showing an example of potential distribution of the photoelectric conversion section 21, the first charge accumulation section 22, and the discharge transistor 23 according to the second embodiment.
 垂直駆動回路4は、第1電荷蓄積部22のリセットのタイミングで、膜電圧VAとリセット電圧VBとが略同じになるように、排出トランジスタ23のリセット電圧VBを制御する。より詳細には、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、光電変換部21の第1端部21Aの略一定の電圧レベルと略同じになるように、排出トランジスタ23の第4端部23Bの電圧レベル(リセット電圧VB)を制御する。また、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、リセット電圧VBを、膜電圧VAまで上げて、戻す。 The vertical driving circuit 4 controls the reset voltage VB of the discharge transistor 23 so that the film voltage VA and the reset voltage VB are substantially the same at the timing of resetting the first charge storage section 22 . More specifically, the vertical drive circuit 4 controls the first voltage level of the discharge transistor 23 to be substantially the same as the substantially constant voltage level of the first end 21A of the photoelectric conversion section 21 during discharge of the charges by the discharge transistor 23 . It controls the voltage level (reset voltage VB) of the 4-terminal portion 23B. Further, the vertical driving circuit 4 raises the reset voltage VB to the film voltage VA and returns it to the film voltage VA while the discharge transistor 23 is discharging electric charges.
 図14は、第2実施形態による固体撮像装置1の動作の一例を示すタイミングチャートである。図14に示す排出トランジスタ23、リセットトランジスタ26及び転送トランジスタ24の動作は、第1実施形態で説明した図8と同じである。 FIG. 14 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the second embodiment. The operations of the discharge transistor 23, the reset transistor 26, and the transfer transistor 24 shown in FIG. 14 are the same as those in FIG. 8 described in the first embodiment.
 また、図14は、第4端部23Bの電圧レベルであるリセット電圧VBのタイミングチャートを示す。垂直駆動回路4は、リセット電圧VBを、膜印加電圧、又は、リセット電源電圧に制御する。 Also, FIG. 14 shows a timing chart of the reset voltage VB, which is the voltage level of the fourth end portion 23B. The vertical drive circuit 4 controls the reset voltage VB to be the film applied voltage or the reset power supply voltage.
 時刻t1から時刻t6までは、第1実施形態で説明した図8と同じである。 The time from time t1 to time t6 is the same as in FIG. 8 described in the first embodiment.
 次に、時刻t6において、排出トランジスタ23はオンする。また、時刻t6において、垂直駆動回路4は、リセット電圧VBを、リセット電源電圧から膜印加電圧上げる。これにより、リセット電圧VBが膜電圧VAと略同じになる。この結果、N型の半導体薄膜41に電荷が満たされる。 Next, at time t6, the discharge transistor 23 is turned on. Also, at time t6, the vertical driving circuit 4 raises the reset voltage VB from the reset power supply voltage to the applied film voltage. As a result, the reset voltage VB becomes substantially the same as the membrane voltage VA. As a result, the N-type semiconductor thin film 41 is filled with charges.
 次に、時刻t7において、垂直駆動回路4は、リセット電圧VBを、膜印加電圧からリセット電源電圧に戻す。すなわち、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、上げた排出トランジスタ23の第4端部23Bの電圧レベルを戻す(下げる)ように、排出トランジスタ23の第4端部23Bの電圧レベルを制御する。これにより、膜電圧VAとリセット電圧VBとを略同じにした後に、排出トランジスタ23をオフすることにより第1電荷蓄積部22の電荷をリセットすることができる。この結果、バリアによって光電変換部21に残る電荷の量を、蓄積時間における信号量に依存しないようにすることができる。すなわち、蓄積時間における信号量によらず、第1電荷蓄積部22の電荷をより適切にリセットすることができる。 Next, at time t7, the vertical driving circuit 4 returns the reset voltage VB from the membrane applied voltage to the reset power supply voltage. That is, the vertical driving circuit 4 causes the fourth end 23B of the discharge transistor 23 to return (lower) the raised voltage level of the fourth end 23B of the discharge transistor 23 while the charge is being discharged by the discharge transistor 23. Control voltage levels. As a result, after the film voltage VA and the reset voltage VB are made substantially equal, the charge in the first charge storage section 22 can be reset by turning off the discharge transistor 23 . As a result, the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made independent of the signal amount during the accumulation time. That is, the charge in the first charge storage section 22 can be reset more appropriately regardless of the signal amount during the storage time.
 第2実施形態のように、リセット電圧VBが制御されてもよい。この場合にも、第1実施形態と同等の効果を得ることができる。また、第2実施形態による固体撮像装置1に第1変形例又は第2変形例を組み合わせてもよい。 The reset voltage VB may be controlled as in the second embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained. Also, the solid-state imaging device 1 according to the second embodiment may be combined with the first modified example or the second modified example.
<第3実施形態>
 図15は、第3実施形態による固体撮像装置1の各画素2の画素回路の一例を示す図である。第3実施形態は、垂直駆動回路4が光電変換部21の第1端部21Aと、排出トランジスタ23の第4端部23Bと、の両方の電圧レベルを制御する点で、第1実施形態とは異なっている。
<Third Embodiment>
FIG. 15 is a diagram showing an example of a pixel circuit of each pixel 2 of the solid-state imaging device 1 according to the third embodiment. The third embodiment differs from the first embodiment in that the vertical drive circuit 4 controls the voltage levels of both the first end 21A of the photoelectric conversion section 21 and the fourth end 23B of the discharge transistor 23. is different.
 図15に示す例では、光電変換部21の第1端部21Aは、垂直駆動回路4と電気的に接続される。また、排出トランジスタ23の第4端部23Bは、垂直駆動回路4と電気的に接続される。したがって、垂直駆動回路4は、光電変換部21の第1端部21A、及び、排出トランジスタ23の第4端部23Bの両方の電圧レベルを制御する。 In the example shown in FIG. 15, the first end portion 21A of the photoelectric conversion portion 21 is electrically connected to the vertical driving circuit 4. A fourth end portion 23B of the discharge transistor 23 is electrically connected to the vertical drive circuit 4 . Therefore, the vertical drive circuit 4 controls the voltage levels of both the first end 21A of the photoelectric conversion section 21 and the fourth end 23B of the discharge transistor 23 .
 図16は、第3実施形態による光電変換部21、第1電荷蓄積部22及び排出トランジスタ23のポテンシャル分布の一例を示す模式図である。 FIG. 16 is a schematic diagram showing an example of potential distribution of the photoelectric conversion section 21, the first charge accumulation section 22, and the discharge transistor 23 according to the third embodiment.
 垂直駆動回路4は、第1電荷蓄積部22のリセットのタイミングで、膜電圧VAとリセット電圧VBとが略同じになるように、膜電圧VA及びリセット電圧VBの両方を制御する。より詳細には、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、光電変換部21の第1端部21Aの電圧レベルと、排出トランジスタ23の第4端部23Bの電圧レベルと、の間の所定電圧レベルVPになるように、光電変換部21の第1端部21A、及び、排出トランジスタ23の第4端部23Bの両方の電圧レベルを制御する。また、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、膜電圧VAを所定電圧レベルVPまで下げて戻すとともに、リセット電圧VBを所定電圧レベルVPまで上げて戻す。 The vertical driving circuit 4 controls both the film voltage VA and the reset voltage VB so that the film voltage VA and the reset voltage VB are substantially the same at the timing of resetting the first charge storage section 22 . More specifically, the vertical drive circuit 4 controls the voltage level of the first end 21A of the photoelectric conversion unit 21, the voltage level of the fourth end 23B of the discharge transistor 23, and The voltage levels of both the first end portion 21A of the photoelectric conversion portion 21 and the fourth end portion 23B of the discharge transistor 23 are controlled so as to have a predetermined voltage level VP between. In addition, the vertical drive circuit 4 lowers the film voltage VA back to the predetermined voltage level VP and raises the reset voltage VB back to the predetermined voltage level VP during the discharge of charges by the discharge transistor 23 .
 図17は、第3実施形態による固体撮像装置1の動作の一例を示すタイミングチャートである。図17に示す排出トランジスタ23、リセットトランジスタ26及び転送トランジスタ24の動作は、第1実施形態で説明した図8と同じである。 FIG. 17 is a timing chart showing an example of the operation of the solid-state imaging device 1 according to the third embodiment. The operations of the discharge transistor 23, the reset transistor 26, and the transfer transistor 24 shown in FIG. 17 are the same as those in FIG. 8 described in the first embodiment.
 また、図17は、膜電圧VA及びリセット電圧VBのタイミングチャートを示す。 Also, FIG. 17 shows a timing chart of the membrane voltage VA and the reset voltage VB.
 時刻t1から時刻t6までは、第1実施形態で説明した図8と同じである。 The time from time t1 to time t6 is the same as in FIG. 8 described in the first embodiment.
 次に、時刻t6において、排出トランジスタ23はオンする。また、時刻t6において、垂直駆動回路4は、膜電圧VAを所定電圧レベルVPに下げ、リセット電圧VBを所定電圧レベルVPに上げる。これにより、膜電圧VA及びリセット電圧VBは、互いに略同じになる。この結果、N型の半導体薄膜41に電荷が満たされる。 Next, at time t6, the discharge transistor 23 is turned on. At time t6, the vertical driving circuit 4 lowers the film voltage VA to the predetermined voltage level VP and raises the reset voltage VB to the predetermined voltage level VP. As a result, the membrane voltage VA and the reset voltage VB become substantially the same. As a result, the N-type semiconductor thin film 41 is filled with charges.
 次に、時刻t7において、垂直駆動回路4は、膜電圧VA及びリセット電圧VBを、それぞれ膜印加電圧及びリセット電源電圧に戻す。すなわち、垂直駆動回路4は、排出トランジスタ23による電荷の排出中に、略同じにした光電変換部21の第1端部21A、及び、排出トランジスタ23の第4端部23Bの電圧レベルを戻すように、光電変換部21の第1端部21A、及び、排出トランジスタ23の第4端部23Bの両方の電圧レベル(膜電圧VA及びリセット電圧VB)を制御する。これにより、膜電圧VAとリセット電圧VBとを略同じにした後に、排出トランジスタ23をオフすることにより第1電荷蓄積部22の電荷をリセットすることができる。この結果、バリアによって光電変換部21に残る電荷の量を、蓄積時間における信号量に依存しないようにすることができる。すなわち、蓄積時間における信号量によらず、第1電荷蓄積部22の電荷をより適切にリセットすることができる。 Next, at time t7, the vertical drive circuit 4 restores the membrane voltage VA and reset voltage VB to the membrane applied voltage and reset power supply voltage, respectively. That is, the vertical driving circuit 4 restores the substantially same voltage levels of the first end 21A of the photoelectric conversion unit 21 and the fourth end 23B of the discharge transistor 23 while the discharge transistor 23 discharges the electric charge. In addition, the voltage levels (membrane voltage VA and reset voltage VB) of both the first end portion 21A of the photoelectric conversion portion 21 and the fourth end portion 23B of the discharge transistor 23 are controlled. As a result, after the film voltage VA and the reset voltage VB are made substantially equal, the charge in the first charge storage section 22 can be reset by turning off the discharge transistor 23 . As a result, the amount of charge remaining in the photoelectric conversion unit 21 due to the barrier can be made independent of the signal amount during the accumulation time. That is, the charge in the first charge storage section 22 can be reset more appropriately regardless of the signal amount during the storage time.
 第3実施形態のように、膜電圧VA及びリセット電圧VBの両方が制御されてもよい。この場合にも、第1実施形態と同等の効果を得ることができる。また、第3実施形態による固体撮像装置1に第1変形例又は第2変形例を組み合わせてもよい。 Both the membrane voltage VA and the reset voltage VB may be controlled as in the third embodiment. Also in this case, an effect equivalent to that of the first embodiment can be obtained. Further, the solid-state imaging device 1 according to the third embodiment may be combined with the first modified example or the second modified example.
<電子機器への適用例>
 本技術は、固体撮像素子への適用に限られるものではない。即ち、本技術は、デジタルスチルカメラやビデオカメラ等の撮像装置や、撮像機能を有する携帯端末装置や、画像読取部に固体撮像素子を用いる複写機など、画像取込部(光電変換部)に固体撮像素子を用いる電子機器全般に対して適用可能である。固体撮像素子は、ワンチップとして形成された形態であってもよいし、撮像部と信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。
<Example of application to electronic equipment>
The present technology is not limited to application to solid-state imaging devices. That is, the present technology can be applied to an image capture unit (photoelectric conversion unit) such as an imaging device such as a digital still camera or a video camera, a mobile terminal device having an imaging function, or a copying machine using a solid-state imaging device as an image reading unit. It is applicable to general electronic equipment using a solid-state imaging device. The solid-state imaging device may be formed as a single chip, or may be in the form of a module having an imaging function in which an imaging section and a signal processing section or an optical system are packaged together.
 図18は、本技術を適用した電子機器としての、撮像装置の構成例を示すブロック図である。 FIG. 18 is a block diagram showing a configuration example of an imaging device as an electronic device to which the present technology is applied.
 図18の撮像装置300は、レンズ群などからなる光学部301、図1の固体撮像装置1の構成が採用される固体撮像素子(撮像デバイス)302、およびカメラ信号処理回路であるDSP(Digital Signal Processor)回路303を備える。また、撮像装置300は、フレームメモリ304、表示部305、記録部306、操作部307、および電源部308も備える。DSP回路303、フレームメモリ304、表示部305、記録部306、操作部307および電源部308は、バスライン309を介して相互に接続されている。 An imaging device 300 in FIG. 18 includes an optical unit 301 including a lens group, a solid-state imaging device (imaging device) 302 adopting the configuration of the solid-state imaging device 1 in FIG. Processor) circuit 303 . The imaging device 300 also includes a frame memory 304 , a display unit 305 , a recording unit 306 , an operation unit 307 and a power supply unit 308 . DSP circuit 303 , frame memory 304 , display unit 305 , recording unit 306 , operation unit 307 and power supply unit 308 are interconnected via bus line 309 .
 光学部301は、被写体からの入射光(像光)を取り込んで固体撮像素子302の撮像面上に結像する。固体撮像素子302は、光学部301によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。この固体撮像素子302として、図1の固体撮像装置1、例えば、光電変換部21の加工部端面からの電荷の湧き出しによる画質劣化を抑制した固体撮像素子を用いることができる。 The optical unit 301 captures incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 302 . The solid-state imaging device 302 converts the amount of incident light imaged on the imaging surface by the optical unit 301 into an electric signal for each pixel, and outputs the electric signal as a pixel signal. As the solid-state imaging device 302, the solid-state imaging device 1 shown in FIG. 1, for example, a solid-state imaging device that suppresses deterioration in image quality due to discharge of charge from the processed end surface of the photoelectric conversion section 21 can be used.
 表示部305は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、固体撮像素子302で撮像された動画または静止画を表示する。記録部306は、固体撮像素子302で撮像された動画または静止画を、ハードディスクや半導体メモリ等の記録媒体に記録する。 The display unit 305 is, for example, a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays moving images or still images captured by the solid-state imaging device 302 . A recording unit 306 records a moving image or still image captured by the solid-state imaging device 302 in a recording medium such as a hard disk or a semiconductor memory.
 操作部307は、ユーザによる操作の下に、撮像装置300が持つ様々な機能について操作指令を発する。電源部308は、DSP回路303、フレームメモリ304、表示部305、記録部306および操作部307の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。 The operation unit 307 issues operation commands for various functions of the imaging device 300 under the user's operation. A power supply unit 308 appropriately supplies various power supplies as operating power supplies for the DSP circuit 303, the frame memory 304, the display unit 305, the recording unit 306, and the operation unit 307 to these supply targets.
 上述したように、固体撮像素子302として、上述した各実施の形態を適用した固体撮像装置1を用いることで、例えば、光電変換部21の加工部端面からの電荷の湧き出しによる画質劣化を抑制することができる。また、S/N比の向上と高ダイナミックレンジを実現することができる。従って、ビデオカメラやデジタルスチルカメラ、さらには携帯電話機等のモバイル機器向けカメラモジュールなどの撮像装置300においても、撮像画像の高画質化を図ることができる。 As described above, by using the solid-state imaging device 1 to which each of the above-described embodiments is applied as the solid-state imaging device 302, for example, deterioration in image quality due to discharge of electric charge from the end surface of the processed portion of the photoelectric conversion unit 21 can be suppressed. can do. Also, it is possible to improve the S/N ratio and achieve a high dynamic range. Therefore, even in the imaging device 300 such as a video camera, a digital still camera, and a camera module for a mobile device such as a mobile phone, it is possible to improve the quality of the captured image.
<イメージセンサの使用例>
 図19は、上述の固体撮像装置1を用いたイメージセンサの使用例を示す図である。
<Usage example of image sensor>
FIG. 19 is a diagram showing a usage example of an image sensor using the solid-state imaging device 1 described above.
 上述の固体撮像装置1を用いたイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 An image sensor using the solid-state imaging device 1 described above can be used, for example, in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・Devices that capture images for viewing purposes, such as digital cameras and mobile devices with camera functions. Devices used for transportation, such as in-vehicle sensors that capture images behind, around, and inside the vehicle, surveillance cameras that monitor running vehicles and roads, and ranging sensors that measure the distance between vehicles. Devices used in home appliances such as TVs, refrigerators, air conditioners, etc., to take pictures and operate devices according to gestures ・Endoscopes, devices that perform angiography by receiving infrared light, etc. equipment used for medical and healthcare purposes ・Equipment used for security purposes, such as surveillance cameras for crime prevention and cameras for personal authentication ・Skin measuring instruments for photographing the skin and photographing the scalp Equipment used for beauty, such as microscopes used for beauty ・Equipment used for sports, such as action cameras and wearable cameras for use in sports ・Cameras, etc. for monitoring the condition of fields and crops , agricultural equipment
<内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<Example of application to an endoscopic surgery system>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図20は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 20 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (this technology) can be applied.
 図20では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 20 shows an operator (doctor) 11131 performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 . As illustrated, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 . In the illustrated example, an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 The tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 . Note that the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system. The imaging element photoelectrically converts the observation light to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light for photographing a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 . For example, the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like. The pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in. The recorder 11207 is a device capable of recording various types of information regarding surgery. The printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 It should be noted that the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out. Further, in this case, the observation target is irradiated with laser light from each of the RGB laser light sources in a time-division manner, and by controlling the drive of the imaging element of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging element.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. By controlling the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Also, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, the wavelength dependence of light absorption in body tissues is used to irradiate a narrower band of light than the irradiation light (i.e., white light) used during normal observation, thereby observing the mucosal surface layer. So-called narrow band imaging, in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is A fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
 図21は、図20に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 21 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405. The CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 . The camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 A lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 . A lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 is composed of an imaging element. The imaging device constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type). When the image pickup unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals. Alternatively, the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. The 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site. Note that when the imaging unit 11402 is configured as a multi-plate type, a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Also, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 . For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Also, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 . The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good. In the latter case, the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 . The communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Also, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 . Image signals and control signals can be transmitted by electric communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像によ
り得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
The control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 In addition, the control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 . At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize. When displaying the captured image on the display device 11202, the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 A transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、カメラヘッド11102の撮像部11402に適用され得る。具体的には、上述した各実施の形態を適用した固体撮像装置1を、撮像部10402に適用することができる。撮像部10402に本開示に係る技術を適用することにより、撮像部10402により得られる術部画像の画質劣化を抑制し、S/N比の向上と高ダイナミックレンジを実現することができるため、より鮮明な術部画像を得ることができ、術者が術部を確実に確認することが可能になる。 An example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to the imaging unit 11402 of the camera head 11102 among the configurations described above. Specifically, the solid-state imaging device 1 to which each embodiment described above is applied can be applied to the imaging unit 10402 . By applying the technology according to the present disclosure to the imaging unit 10402, it is possible to suppress deterioration of the image quality of the operation site image obtained by the imaging unit 10402, improve the S/N ratio, and achieve a high dynamic range. A clear image of the surgical site can be obtained, and the operator can reliably confirm the surgical site.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Although the endoscopic surgery system has been described as an example here, the technology according to the present disclosure may also be applied to, for example, a microsurgery system.
<移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Example of application to a moving body>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
 図22は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 22 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図22に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 22 , vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 . Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図22の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 22, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  図23は、撮像部12031の設置位置の例を示す図である。 FIG. 23 is a diagram showing an example of the installation position of the imaging unit 12031. As shown in FIG.
 図23では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 23, the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . Forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図23には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 23 shows an example of the imaging range of the imaging units 12101 to 12104. FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上述した各実施の形態を適用した固体撮像装置1を、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減したり、ドライバや車両の安全度を高めることが可能になる。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, the solid-state imaging device 1 to which each embodiment described above is applied can be applied to the imaging unit 12031 . By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to obtain a captured image that is easier to see, so it is possible to reduce driver fatigue and improve the safety of the driver and the vehicle.
 上述した例では、光電変換部21において信号として扱う電荷(信号電荷)が正孔である場合について説明したが、本技術は電子を信号電荷とする固体撮像装置にも適用することができる。この場合、半導体基板12や半導体薄膜41等の各導電型を逆の導電型としたり、印加するバイアス電圧の正負が逆となる。 In the above example, the case where the charge (signal charge) handled as a signal in the photoelectric conversion unit 21 is a hole has been described, but the present technology can also be applied to a solid-state imaging device that uses electrons as signal charges. In this case, the conductivity types of the semiconductor substrate 12, the semiconductor thin film 41, etc. are reversed, or the polarity of the applied bias voltage is reversed.
 また、本技術は、可視光の入射光量の分布を検知して画像として撮像する固体撮像装置への適用に限らず、赤外線やX線、あるいは粒子等の入射量の分布を画像として撮像する固体撮像装置や、広義の意味として、圧力や静電容量など、他の物理量の分布を検知して画像として撮像する指紋検出センサ等の固体撮像装置(物理量分布検知装置)全般に対して適用可能である。 In addition, the present technology is not limited to application to solid-state imaging devices that detect the distribution of the amount of incident visible light and capture an image. In a broad sense, it can be applied to solid-state imaging devices (physical quantity distribution detectors) such as fingerprint detection sensors that detect the distribution of other physical quantities such as pressure and capacitance and capture images. be.
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Embodiments of the present technology are not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present technology.
 例えば、上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することができる。 For example, a form obtained by combining all or part of the multiple embodiments described above can be adopted.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。 It should be noted that the effects described in this specification are merely examples and are not limited, and there may be effects other than those described in this specification.
 なお、本技術は以下のような構成を取ることができる。
 (1)受光量に応じた電荷を生成する光電変換部と、
 前記光電変換部の一端と電気的に接続され、前記電荷を蓄積する第1電荷蓄積部と、
 一端が前記第1電荷蓄積部と電気的に接続され、前記第1電荷蓄積部に蓄積される前記電荷を排出する排出部と、
 前記排出部が前記電荷を排出する排出タイミングで、前記光電変換部の他端の電圧レベルと、前記排出部の他端の電圧レベルと、が略同じになるように、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御する電圧制御部と、を備える、固体撮像装置。
 (2)前記電圧制御部は、前記排出部による前記電荷の排出中に、略同じにした前記光電変換部の他端、及び、前記排出部の他端の電圧レベルを戻すように、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御する、(1)に記載の固体撮像装置。
 (3)前記光電変換部は、化合物半導体材料を含む、(1)又は(2)に記載の固体撮像装置。
 (4)前記電圧制御部は、前記排出タイミングで、前記排出部の他端の略一定の電圧レベルと略同じになるように、前記光電変換部の他端の電圧レベルを制御する、(1)乃至(3)のいずれか一項に記載の固体撮像装置。
 (5)前記電圧制御部は、前記排出タイミングで、前記光電変換部の他端の略一定の電圧レベルと略同じになるように、前記排出部の他端の電圧レベルを制御する、(1)乃至(3)のいずれか一項に記載の固体撮像装置。
 (6)前記電圧制御部は、前記排出タイミングで、前記光電変換部の他端の電圧レベルと、前記排出部の他端の電圧レベルと、の間の所定電圧レベルになるように、前記光電変換部の他端、及び、前記排出部の他端の両方の電圧レベルを制御する、(1)乃至(3)のいずれか一項に記載の固体撮像装置。
 (7)前記光電変換部の他端と電気的に接続され、前記電圧制御部から電圧が印加される電極をさらに備える、(1)乃至(6)のいずれか一項に記載の固体撮像装置。
 (8)前記電極は、前記電圧制御部が複数の画素に対して前記光電変換部の他端の電圧レベルを制御可能なように、複数の前記画素に渡って配置されるとともに、互いに所定距離を空けて離間するように、複数に分割して配置される、(7)に記載の固体撮像装置。
 (9)前記電極は、行列状に分割して配置される、(8)に記載の固体撮像装置。
 (10)前記電極は、複数の列、又は、複数の列に分割して配置される、(8)に記載の固体撮像装置。
 (11)前記電圧制御部は、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御するとともに、前記排出部による前記電荷の排出を制御する、(1)乃至(10)のいずれか一項に記載の固体撮像装置。
 (12)前記光電変換部が配置される第1半導体チップと、
 前記第1半導体チップと積層され、前記第1電荷蓄積部及び前記排出部が配置される第2半導体チップをさらに備える、(1)乃至(11)のいずれか一項に記載の固体撮像装置。
 (13)前記電圧制御部は、同時に露光される複数の画素に対して同時に、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御する、(1)乃至(12)のいずれか一項に記載の固体撮像装置。
In addition, this technique can take the following structures.
(1) a photoelectric conversion unit that generates an electric charge according to the amount of light received;
a first charge storage unit that is electrically connected to one end of the photoelectric conversion unit and that stores the charge;
a discharging portion having one end electrically connected to the first charge accumulating portion for discharging the charges accumulated in the first charge accumulating portion;
The other terminal of the photoelectric conversion unit is arranged so that the voltage level of the other end of the photoelectric conversion unit and the voltage level of the other end of the discharge unit are substantially the same at the discharge timing when the discharge unit discharges the charge. and a voltage control section that controls the voltage level of at least one of the end and the other end of the discharge section.
(2) The voltage control unit controls the photoelectric conversion unit so as to restore substantially the same voltage levels of the other end of the photoelectric conversion unit and the other end of the discharge unit while the charge is discharged by the discharge unit. The solid-state imaging device according to (1), wherein the voltage level of at least one of the other end of the conversion section and the other end of the discharge section is controlled.
(3) The solid-state imaging device according to (1) or (2), wherein the photoelectric conversion section includes a compound semiconductor material.
(4) The voltage control section controls the voltage level of the other end of the photoelectric conversion section so as to be substantially the same as the substantially constant voltage level of the other end of the discharge section at the discharge timing. ) to (3).
(5) The voltage control section controls the voltage level of the other end of the discharge section so as to be substantially the same as the substantially constant voltage level of the other end of the photoelectric conversion section at the discharge timing. ) to (3).
(6) The voltage control section adjusts the photoelectric conversion section to a predetermined voltage level between the voltage level of the other end of the photoelectric conversion section and the voltage level of the other end of the discharge section at the discharge timing. The solid-state imaging device according to any one of (1) to (3), wherein voltage levels of both the other end of the conversion section and the other end of the discharge section are controlled.
(7) The solid-state imaging device according to any one of (1) to (6), further comprising an electrode electrically connected to the other end of the photoelectric conversion section and to which a voltage is applied from the voltage control section. .
(8) The electrodes are arranged over the plurality of pixels and are spaced apart from each other by a predetermined distance so that the voltage control section can control the voltage level of the other end of the photoelectric conversion section for the plurality of pixels. The solid-state imaging device according to (7), wherein the solid-state imaging device according to (7) is divided into a plurality of parts so as to be spaced apart from each other.
(9) The solid-state imaging device according to (8), wherein the electrodes are divided and arranged in a matrix.
(10) The solid-state imaging device according to (8), wherein the electrodes are arranged in a plurality of rows or divided into a plurality of rows.
(11) The voltage control unit controls the voltage level of at least one of the other end of the photoelectric conversion unit and the other end of the discharge unit, and controls discharge of the charge by the discharge unit. ) to (10).
(12) a first semiconductor chip on which the photoelectric conversion unit is arranged;
The solid-state imaging device according to any one of (1) to (11), further comprising a second semiconductor chip stacked with the first semiconductor chip and having the first charge storage section and the discharging section arranged thereon.
(13) The voltage control section simultaneously controls the voltage level of at least one of the other end of the photoelectric conversion section and the other end of the discharge section for a plurality of pixels exposed at the same time. The solid-state imaging device according to any one of (12) to (12).
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Aspects of the present disclosure are not limited to the individual embodiments described above, but include various modifications that can be conceived by those skilled in the art, and the effects of the present disclosure are not limited to the above-described contents. That is, various additions, changes, and partial deletions are possible without departing from the conceptual idea and spirit of the present disclosure derived from the content defined in the claims and equivalents thereof.
1 固体撮像装置、2 画素、4 垂直駆動回路、12A 第1半導体チップ、12B 第2半導体チップ、21 光電変換部、21A 第1端部、21B 第2端部、22 第1電荷蓄積部、23 排出トランジスタ、23A 第3端部、23B 第4端部、48 電極、PD 所定距離、VA 膜電圧、VB リセット電圧 1 solid-state imaging device, 2 pixels, 4 vertical drive circuit, 12A first semiconductor chip, 12B second semiconductor chip, 21 photoelectric conversion unit, 21A first end, 21B second end, 22 first charge storage unit, 23 Discharge transistor, 23A third end, 23B fourth end, 48 electrode, PD predetermined distance, VA membrane voltage, VB reset voltage

Claims (13)

  1.  受光量に応じた電荷を生成する光電変換部と、
     前記光電変換部の一端と電気的に接続され、前記電荷を蓄積する第1電荷蓄積部と、
     一端が前記第1電荷蓄積部と電気的に接続され、前記第1電荷蓄積部に蓄積される前記電荷を排出する排出部と、
     前記排出部が前記第1電荷蓄積部の電荷を排出する排出タイミングで、前記光電変換部の他端の電圧レベルと、前記排出部の他端の電圧レベルと、が略同じになるように、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御する電圧制御部と、を備える、固体撮像装置。
    a photoelectric conversion unit that generates an electric charge according to the amount of light received;
    a first charge storage unit that is electrically connected to one end of the photoelectric conversion unit and that stores the charge;
    a discharging portion having one end electrically connected to the first charge accumulating portion for discharging the charges accumulated in the first charge accumulating portion;
    so that the voltage level of the other end of the photoelectric conversion unit and the voltage level of the other end of the discharge unit are substantially the same at the discharge timing when the discharge unit discharges the charges of the first charge storage unit; A solid-state imaging device, comprising: a voltage control section that controls a voltage level of at least one of the other end of the photoelectric conversion section and the other end of the discharge section.
  2.  前記電圧制御部は、前記排出部による前記電荷の排出中に、略同じにした前記光電変換部の他端、及び、前記排出部の他端の電圧レベルを戻すように、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御する、請求項1に記載の固体撮像装置。 The voltage control section restores substantially the same voltage levels of the other end of the photoelectric conversion section and the other end of the discharge section while the charge is being discharged by the discharge section. 2. The solid-state imaging device according to claim 1, wherein the voltage level of at least one of the other end and the other end of said discharge section is controlled.
  3.  前記光電変換部は、化合物半導体材料を含む、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the photoelectric conversion section contains a compound semiconductor material.
  4.  前記電圧制御部は、前記排出タイミングで、前記排出部の他端の略一定の電圧レベルと略同じになるように、前記光電変換部の他端の電圧レベルを制御する、請求項1に記載の固体撮像装置。 2. The voltage control unit according to claim 1, wherein the voltage control unit controls the voltage level of the other end of the photoelectric conversion unit so as to be substantially the same as the substantially constant voltage level of the other end of the discharge unit at the discharge timing. solid-state imaging device.
  5.  前記電圧制御部は、前記排出タイミングで、前記光電変換部の他端の略一定の電圧レベルと略同じになるように、前記排出部の他端の電圧レベルを制御する、請求項1に記載の固体撮像装置。 2. The voltage control unit according to claim 1, wherein the voltage control unit controls the voltage level of the other end of the discharge unit so that the voltage level of the other end of the photoelectric conversion unit is substantially the same as the substantially constant voltage level of the other end of the photoelectric conversion unit at the discharge timing. solid-state imaging device.
  6.  前記電圧制御部は、前記排出タイミングで、前記光電変換部の他端の電圧レベルと、前記排出部の他端の電圧レベルと、の間の所定電圧レベルになるように、前記光電変換部の他端、及び、前記排出部の他端の両方の電圧レベルを制御する、請求項1に記載の固体撮像装置。 The voltage control section adjusts the photoelectric conversion section to a predetermined voltage level between the voltage level of the other end of the photoelectric conversion section and the voltage level of the other end of the discharge section at the discharge timing. 2. The solid-state imaging device according to claim 1, wherein voltage levels of both the other end and the other end of said discharge section are controlled.
  7.  前記光電変換部の他端と電気的に接続され、前記電圧制御部から電圧が印加される電極をさらに備える、請求項1に記載の固体撮像装置。 2. The solid-state imaging device according to claim 1, further comprising an electrode electrically connected to the other end of said photoelectric conversion section and to which a voltage is applied from said voltage control section.
  8.  前記電極は、前記電圧制御部が複数の画素に対して前記光電変換部の他端の電圧レベルを制御可能なように、複数の前記画素に渡って配置されるとともに、互いに所定距離を空けて離間するように、複数に分割して配置される、請求項7に記載の固体撮像装置。 The electrodes are arranged across the plurality of pixels and spaced apart from each other by a predetermined distance so that the voltage control section can control the voltage level of the other end of the photoelectric conversion section for the plurality of pixels. 8. The solid-state imaging device according to claim 7, which is divided into a plurality of parts and arranged so as to be separated from each other.
  9.  前記電極は、行列状に分割して配置される、請求項8に記載の固体撮像装置。 The solid-state imaging device according to claim 8, wherein the electrodes are divided and arranged in a matrix.
  10.  前記電極は、複数の列、又は、複数の列に分割して配置される、請求項8に記載の固体撮像装置。 The solid-state imaging device according to claim 8, wherein the electrodes are arranged in a plurality of rows or divided into a plurality of rows.
  11.  前記電圧制御部は、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御するとともに、前記排出部による前記電荷の排出を制御する、請求項1に記載の固体撮像装置。 2. The voltage control unit according to claim 1, wherein the voltage control unit controls the voltage level of at least one of the other end of the photoelectric conversion unit and the other end of the discharge unit, and controls discharge of the charge by the discharge unit. solid-state imaging device.
  12.  前記光電変換部が配置される第1半導体チップと、
     前記第1半導体チップと積層され、前記第1電荷蓄積部及び前記排出部が配置される第2半導体チップをさらに備える、請求項1に記載の固体撮像装置。
    a first semiconductor chip on which the photoelectric conversion unit is arranged;
    2. The solid-state imaging device according to claim 1, further comprising a second semiconductor chip stacked with said first semiconductor chip and having said first charge storage section and said discharging section arranged thereon.
  13.  前記電圧制御部は、同時に露光される複数の画素に対して同時に、前記光電変換部の他端、及び、前記排出部の他端の少なくとも一方の電圧レベルを制御する、請求項1に記載の固体撮像装置。 2. The voltage control unit according to claim 1, wherein the voltage control unit simultaneously controls the voltage level of at least one of the other end of the photoelectric conversion unit and the other end of the discharge unit for a plurality of pixels that are exposed at the same time. Solid-state imaging device.
PCT/JP2021/023865 2021-06-23 2021-06-23 Solid-state image capturing device WO2022269837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023865 WO2022269837A1 (en) 2021-06-23 2021-06-23 Solid-state image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023865 WO2022269837A1 (en) 2021-06-23 2021-06-23 Solid-state image capturing device

Publications (1)

Publication Number Publication Date
WO2022269837A1 true WO2022269837A1 (en) 2022-12-29

Family

ID=84545423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023865 WO2022269837A1 (en) 2021-06-23 2021-06-23 Solid-state image capturing device

Country Status (1)

Country Link
WO (1) WO2022269837A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150116A (en) * 2012-01-18 2013-08-01 Canon Inc Imaging apparatus and driving method of imaging apparatus
JP2018082295A (en) * 2016-11-16 2018-05-24 キヤノン株式会社 Imaging device and imaging system
JP2021064722A (en) * 2019-10-16 2021-04-22 ソニーセミコンダクタソリューションズ株式会社 Solid-state image pickup device and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150116A (en) * 2012-01-18 2013-08-01 Canon Inc Imaging apparatus and driving method of imaging apparatus
JP2018082295A (en) * 2016-11-16 2018-05-24 キヤノン株式会社 Imaging device and imaging system
JP2021064722A (en) * 2019-10-16 2021-04-22 ソニーセミコンダクタソリューションズ株式会社 Solid-state image pickup device and electronic apparatus

Similar Documents

Publication Publication Date Title
US20220320165A1 (en) Solid-state image pickup device
KR102396499B1 (en) Solid-state imaging devices and electronic devices
US20200186732A1 (en) Solid-state imaging device and electronic device
US11895415B2 (en) Solid-state image device and imaging apparatus
WO2021235101A1 (en) Solid-state imaging device
CN114631187A (en) Solid-state imaging device and electronic apparatus
US20240006443A1 (en) Solid-state imaging device, imaging device, and electronic apparatus
CN113906566A (en) Image pickup apparatus
WO2022172711A1 (en) Photoelectric conversion element and electronic device
WO2022269837A1 (en) Solid-state image capturing device
US11838670B2 (en) Imaging element and imaging apparatus
WO2023153086A1 (en) Imaging element and method for driving imaging element
WO2022230292A1 (en) Solid-state imaging device, electronic equipment, and moving body
WO2023058352A1 (en) Solid-state imaging device
US11069739B2 (en) Imaging device and electronic apparatus
JP2022172951A (en) Solid-state imaging element
JP2019022020A (en) Solid state imaging device, driving method of solid state imaging device and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE