WO2022269833A1 - Charge control circuit - Google Patents

Charge control circuit Download PDF

Info

Publication number
WO2022269833A1
WO2022269833A1 PCT/JP2021/023857 JP2021023857W WO2022269833A1 WO 2022269833 A1 WO2022269833 A1 WO 2022269833A1 JP 2021023857 W JP2021023857 W JP 2021023857W WO 2022269833 A1 WO2022269833 A1 WO 2022269833A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
current
control circuit
battery modules
Prior art date
Application number
PCT/JP2021/023857
Other languages
French (fr)
Japanese (ja)
Inventor
和征 榊原
Original Assignee
株式会社EViP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社EViP filed Critical 株式会社EViP
Priority to JP2023529346A priority Critical patent/JP7412055B2/en
Priority to PCT/JP2021/023857 priority patent/WO2022269833A1/en
Publication of WO2022269833A1 publication Critical patent/WO2022269833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging control circuit.
  • lithium ion secondary batteries with high energy density are often used as battery power sources for driving motors.
  • the present invention has been made in view of this background, and aims to provide technology that allows safe charging.
  • a main aspect of the present invention for solving the above problems is a charging control circuit, comprising a charging circuit and a plurality of battery modules connected to the charging circuit, wherein the battery module includes battery cells, a first conduction/interruption element for reversibly conducting or interrupting a charging current to the battery cell, and a second conduction/interruption element for irreversibly conducting or interrupting the charging current to the battery cell;
  • the charging current is cut off using the first current cutoff element of the overcharged battery module, and cutoff by the first cutoff element fails. In this case, the charging current is cut off using the second cut-off elements of all the battery modules.
  • FIG. 2 is a circuit block diagram showing an outline of the configuration of a battery module 2 according to this embodiment
  • FIG. 1 is a circuit block diagram showing an outline of a configuration of a charge/discharge control circuit 100 according to this embodiment
  • FIG. 2 is a circuit block diagram showing an outline of the configuration of a battery module 3 according to this embodiment
  • FIG. 2 is a circuit block diagram showing an outline of the configuration of a discharge control circuit 103 according to this embodiment
  • FIG. 4 is a flow chart diagram showing an outline of control of the main controller 9 of the discharge control circuit 103 according to the present embodiment.
  • FIG. 1 is a circuit block diagram showing an outline of a configuration of a charge/discharge control circuit 100 according to this embodiment
  • FIG. 2 is a circuit block diagram showing an outline of the configuration of a battery module 3 according to this embodiment
  • FIG. 2 is a circuit block diagram showing an outline of the configuration of a discharge control circuit 103 according to this embodiment
  • FIG. 4 is a flow chart diagram showing an outline of control of
  • the battery module 2 reversibly inputs a high voltage rated battery cell group 1H in which a plurality of lithium ion secondary battery cells are connected in series, and a charging current input to the battery cell group 1H.
  • the battery module controller that is, the primary protection IC 4 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns on the FET 4 according to the detection result. Alternatively, it is turned off to control the input or stop of the charging current input from the terminal 5 .
  • the charging control circuit 100 connects a plurality of battery modules 2 in series to form a battery module 2 group, and connects the battery module 2 group to the charging circuit 11 .
  • a charging circuit 11 connects a power supply input cable 10 to a commercial power supply, inputs an AC voltage, converts it to a desired DC voltage, applies the DC voltage to a second group of battery modules, and inputs a charging current to the second group of battery modules.
  • the battery cell group 1H in the battery module 2 is charged.
  • the battery module 3 reversibly inputs a high-voltage rated battery cell group 1H in which a plurality of lithium ion secondary battery cells are connected in series, and a charging current input to the battery cell group 1H.
  • a semiconductor conduction breaking element FET6 as a first conduction breaking element to be stopped and a self blowing fuse SCP7 as a second conduction breaking element to be irreversibly input or interrupted are connected to the terminal 8 in series.
  • the module controller that is, the primary protection IC 4 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns on the FET 6 according to the detection result.
  • the secondary protection IC 5 is driven independently of the primary protection IC 4, detects the voltage of the battery cell group 1H, and turns on the FET 10 according to the detection result or an instruction signal 9 from the primary protection IC 4.
  • the heater in the SCP 7 is energized and heated, and the fuse element in the SCP 7 self-fuses to cut off the charging current irreversibly.
  • the voltage threshold that triggers the interruption of the charging current by the SCP7 in the secondary protection IC5 is set to a higher value than the voltage threshold that triggers the interruption of the charging current by the FET6 of the primary protection IC4, thereby providing double protection against overcharging. To establish.
  • the voltage detection target may be either the battery cell group 1H or at least one battery cell in the battery cell group 1H.
  • the charge/discharge control circuit 103 connects a plurality of battery modules 3 in series to form a group of battery modules 3 , and connects the group of battery modules 3 to the charging circuit 11 .
  • a charging circuit 11 connects a commercial power supply input cable 10 to a commercial power supply, inputs the AC voltage of the commercial power supply, converts it into a desired DC voltage, applies the DC voltage to the second group of battery modules, and charges the third group of battery modules.
  • a current is input to charge the battery cell group 1H in the battery module 3 .
  • the main controller 9 performs control according to a flow chart to be described later to realize double protection against overcharging.
  • Step 1 the main controller 12 of the charging control circuit 103 communicates with the battery module 3 groups using the communication signal 4 to control the battery cell group 1H in at least one battery module 3 among the battery module 3 groups. It is detected whether the voltage exceeds the predetermined voltage 1 or not. When it is determined that the voltage of the battery cell group 1H has exceeded the predetermined voltage 1, the process proceeds to Step 2, in which all the battery modules 3 are instructed to turn off the FETs 6, thereby stopping the supply of charging current to all the battery module groups. do.
  • Step 3 the main controller 9 communicates with the battery module 3 group using the communication signal 4, and the voltage of the battery cell group 1H in at least one battery module 3 out of the battery module 3 group reaches the predetermined voltage 1 It is detected whether or not a predetermined voltage 2 higher than is exceeded.
  • the communication signal 4 is used to turn on the FETs 10 of all the battery modules 3 to irreversibly cut off the SCP 7. to cut off the supply of charging current to all the battery modules 3.
  • the state leading to Step 4 described above is a state in which the primary protection IC 4 of at least one battery module 3 in the battery module 3 group failed to detect overvoltage in the battery cell group 1H in Step 1, or a state in which the battery Even if the FETs 6 of all the battery modules 3 in the group of modules 3 are turned off, the interruption of the charging current fails due to a short failure of the FETs 6 or the like, and charging continues.
  • the control plays a role of double protection to compensate for the failure of the primary protection against overcharging in Step 1 to Step 2, and although the probability of occurrence of failure of the primary protection is generally low, the damage in the event of ignition is enormous. It is possible to realize effective safety from the viewpoint of risk assessment.
  • control for irreversibly shutting down the SCP 7 in Steps 3 to 4 is performed by the secondary protection IC 5 receiving an instruction by the communication signal 4 from the main controller 9 within the battery module 3 via the primary protection IC 4 and the communication signal 9. It is preferable to execute in parallel the control executed by the secondary protection IC 5 itself and the control executed independently by the secondary protection IC 5 for the purpose of ensuring higher reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)

Abstract

[Problem] To make it possible to safely perform charging. [Solution] A charge control circuit comprising a charging circuit and a plurality of battery modules connected to the charging circuit, wherein: the battery modules are each provided with battery cells, a first current applying/interrupting element that reversibly applies or interrupts charge current to the battery cells, and a second current applying/interrupting element that irreversibly applies or interrupts charge current to the battery cells; in cases in which at least one of the battery modules has been overcharged, the charge current is interrupted using the first current applying/interrupting element of the battery module that has been overcharged; and in cases in which interruption by the first current applying/interrupting element has failed, the charge current is interrupted using the second current applying/interrupting elements of all of the battery modules.

Description

充電制御回路charge control circuit
 本発明は、充電制御回路に関する。 The present invention relates to a charging control circuit.
 近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動するエンジン駆動式自動車がモータで駆動する電気自動車に置き換わりつつある。特に、モータを駆動するための電池電源にエネルギー密度の高いリチウムイオン二次電池が多く使用されている。 In recent years, in consideration of the global environment, internal combustion engines, that is, engine-driven vehicles are being replaced by motor-driven electric vehicles. In particular, lithium ion secondary batteries with high energy density are often used as battery power sources for driving motors.
特開2017-225241号公報JP 2017-225241 A
 多数のリチウムイオン二次電池セルを収容する複数個の電池モジュールを搭載する気自動車の充電制御回路において、過充電防止の対策を施すことが重要な課題である。 It is an important issue to take measures to prevent overcharging in the charging control circuit of electric vehicles that are equipped with multiple battery modules that accommodate a large number of lithium-ion secondary battery cells.
 本発明はこのような背景を鑑みてなされたものであり、安全に充電することができる技術を提供することを目的とする。 The present invention has been made in view of this background, and aims to provide technology that allows safe charging.
 上記課題を解決するための本発明の主たる発明は、充電制御回路であって、充電回路と、前記充電回路に接続される複数の電池モジュールと、を備え、前記電池モジュールは、電池セルと、前記電池セルへの充電電流を可逆的に通電または遮断する第1通電遮断素子と、前記電池セルへの前記充電電流を不可逆的に通電または遮断する第2通電遮断素子と、を備え、前記電池モジュールのうちの少なくとも1つが過充電になった場合に、過充電となった前記電池モジュールの前記第1通電遮断素子を用いて前記充電電流を遮断し、前記第1通電遮断素子による遮断に失敗した場合、全ての前記電池モジュールの前記第2通電遮断素子を用いて充電電流を遮断する。 A main aspect of the present invention for solving the above problems is a charging control circuit, comprising a charging circuit and a plurality of battery modules connected to the charging circuit, wherein the battery module includes battery cells, a first conduction/interruption element for reversibly conducting or interrupting a charging current to the battery cell, and a second conduction/interruption element for irreversibly conducting or interrupting the charging current to the battery cell; When at least one of the modules is overcharged, the charging current is cut off using the first current cutoff element of the overcharged battery module, and cutoff by the first cutoff element fails. In this case, the charging current is cut off using the second cut-off elements of all the battery modules.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、安全に充電することができる。 According to the present invention, it is possible to charge safely.
本実施形態に係る電池モジュール2の構成の概略を示す回路ブロック図である。2 is a circuit block diagram showing an outline of the configuration of a battery module 2 according to this embodiment; FIG. 本実施形態に係る充電放電制御回路100の構成の概略を示す回路ブロック図である。1 is a circuit block diagram showing an outline of a configuration of a charge/discharge control circuit 100 according to this embodiment; FIG. 本実施形態に係る電池モジュール3の構成の概略を示す回路ブロック図である。2 is a circuit block diagram showing an outline of the configuration of a battery module 3 according to this embodiment; FIG. 本実施形態に係る放電制御回路103の構成の概略を示す回路ブロック図である。2 is a circuit block diagram showing an outline of the configuration of a discharge control circuit 103 according to this embodiment; FIG. 本実施形態に係る放電制御回路103のメインコントローラ9の制御の概略を示すフローチャート図である。4 is a flow chart diagram showing an outline of control of the main controller 9 of the discharge control circuit 103 according to the present embodiment. FIG.
 図1に示すように、電池モジュール2は、複数のリチウムイオン二次電池セルが直列接続された高電圧定格の電池セル群1Hを、その電池セル群1Hへの充電電流入力を可逆的に入力または停止する通電遮断素子としての半導体通電遮断素子FET4を介して端子5に接続する。モジュールコントローラすなわち一次保護IC4は、前記電池セル群1Hの電圧、または、前記電池セル群1Hの電流、すなわち、シャント抵抗6の両端に現れる電圧を検知して、その検知結果に応じてFET4をオンまたはオフに操作し端子5からの充電電流入力の入力または停止を制御する。 As shown in FIG. 1, the battery module 2 reversibly inputs a high voltage rated battery cell group 1H in which a plurality of lithium ion secondary battery cells are connected in series, and a charging current input to the battery cell group 1H. Alternatively, it is connected to the terminal 5 via the semiconductor current-breaking element FET4 as the current-breaking element to be stopped. The module controller, that is, the primary protection IC 4 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns on the FET 4 according to the detection result. Alternatively, it is turned off to control the input or stop of the charging current input from the terminal 5 .
 図2に示すように、充電制御回路100は、複数の電池モジュール2を直列接続して電池モジュール2群を構成し、前記電池モジュール2群を充電回路11へ接続する。充電回路11は電源入力ケーブル10を商用電源に接続して交流電圧を入力し所望の直流電圧へ変換し電池モジュール2群へ前記直流電圧を印加しその電池モジュール2群へ充電電流を入力して前記電池モジュール2内の電池セル群1Hを充電する。 As shown in FIG. 2 , the charging control circuit 100 connects a plurality of battery modules 2 in series to form a battery module 2 group, and connects the battery module 2 group to the charging circuit 11 . A charging circuit 11 connects a power supply input cable 10 to a commercial power supply, inputs an AC voltage, converts it to a desired DC voltage, applies the DC voltage to a second group of battery modules, and inputs a charging current to the second group of battery modules. The battery cell group 1H in the battery module 2 is charged.
 図3に示すように、電池モジュール3は、複数のリチウムイオン二次電池セルが直列接続された高電圧定格の電池セル群1Hを、その電池セル群1Hへの充電電流入力を可逆的に入力または停止する第1通電遮断素子としての半導体通電遮断素子FET6、および、不可逆的に入力または遮断する第2通電遮断素子としての自己溶断型ヒューズSCP7を直列に介して端子8に接続する。モジュールコントローラすなわち一次保護IC4は、前記電池セル群1Hの電圧、または、前記電池セル群1Hの電流、すなわち、シャント抵抗6の両端に現れる電圧を検知して、その検知結果に応じてFET6をオンまたはオフに操作し端子8からの充電電流入力の入力または停止を制御する。また、二次保護IC5は前記一次保護IC4と独立に駆動し、前記電池セル群1Hの電圧を検知して、その検知結果、または、一次保護IC4からの指示信号9に応じてFET10をオンに操作してSCP7内のヒータを通電加熱して前記SCP7内のヒューズエレメントを自己溶断し不可逆的に充電電流を遮断する。前記二次保護IC5におけるSCP7による充電電流遮断のトリガとなる電圧閾値は一次保護IC4によるFET6による充電電流遮断のトリガとなる電圧閾値より高い値に設定し、過充電を二重に保護する仕組みが成立する。特に、不可逆的に通電を遮断するSCP7を有する電池モジュール3を複数個直列接続するため、前記一次保護としての過充電遮断の失敗に伴うFET6の再通電により充電が再開されてさらに過充電されることがなく高い信頼性を確保できる。なお、前記電圧検出対象は、電池セル群1H、または、前記電池セル群1Hの内の少なくとも1個の電池セルのいずれでも良い。 As shown in FIG. 3, the battery module 3 reversibly inputs a high-voltage rated battery cell group 1H in which a plurality of lithium ion secondary battery cells are connected in series, and a charging current input to the battery cell group 1H. Alternatively, a semiconductor conduction breaking element FET6 as a first conduction breaking element to be stopped and a self blowing fuse SCP7 as a second conduction breaking element to be irreversibly input or interrupted are connected to the terminal 8 in series. The module controller, that is, the primary protection IC 4 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns on the FET 6 according to the detection result. Alternatively, it is turned off to control the input or stop of charging current input from the terminal 8 . The secondary protection IC 5 is driven independently of the primary protection IC 4, detects the voltage of the battery cell group 1H, and turns on the FET 10 according to the detection result or an instruction signal 9 from the primary protection IC 4. When operated, the heater in the SCP 7 is energized and heated, and the fuse element in the SCP 7 self-fuses to cut off the charging current irreversibly. The voltage threshold that triggers the interruption of the charging current by the SCP7 in the secondary protection IC5 is set to a higher value than the voltage threshold that triggers the interruption of the charging current by the FET6 of the primary protection IC4, thereby providing double protection against overcharging. To establish. In particular, since a plurality of battery modules 3 having an SCP 7 that irreversibly cuts off electricity are connected in series, charging is resumed by re-energization of the FET 6 following the failure of the overcharge interruption as the primary protection, and further overcharging occurs. high reliability can be ensured. The voltage detection target may be either the battery cell group 1H or at least one battery cell in the battery cell group 1H.
 図4に示すように、充電放電制御回路103は、複数の電池モジュール3を直列接続して電池モジュール3群を構成し、前記電池モジュール3群を充電回路11へ接続する。充電回路11は商電源入力ケーブル10を商用電源に接続して前記商用電源の交流電圧を入力し所望の直流電圧へ変換し電池モジュール2群へ前記直流電圧を印加し前記電池モジュール3群へ充電電流を入力して電池モジュール3内の電池セル群1Hを充電する。メインコントローラ9は後述のフローチャート図に従って制御を行い過充電に対する二重保護を実現する。 As shown in FIG. 4 , the charge/discharge control circuit 103 connects a plurality of battery modules 3 in series to form a group of battery modules 3 , and connects the group of battery modules 3 to the charging circuit 11 . A charging circuit 11 connects a commercial power supply input cable 10 to a commercial power supply, inputs the AC voltage of the commercial power supply, converts it into a desired DC voltage, applies the DC voltage to the second group of battery modules, and charges the third group of battery modules. A current is input to charge the battery cell group 1H in the battery module 3 . The main controller 9 performs control according to a flow chart to be described later to realize double protection against overcharging.
 前記充電回路103のメインコントローラ9の制御について、次に、図5のフローチャート図を用いて説明する。 Next, the control of the main controller 9 of the charging circuit 103 will be explained using the flow chart of FIG.
 充電制御回路103のメインコントローラ12は、Step1にて、通信信号4を用いて電池モジュール3群と通信を行い前記電池モジュール3群の内、少なくとも1個の電池モジュール3内の電池セル群1Hの電圧が所定電圧1を超えたか否かを検知する。電池セル群1Hの電圧が所定電圧1を超えたと判定すると、Step2へ移行し、全ての前記電池モジュール3へFET6をオフに操作するように指示し全ての電池モジュール群の充電電流の通電を停止する。メインコントローラ9は、Step3にて、通信信号4を用いて電池モジュール3群と通信を行い前記電池モジュール3群の内、少なくとも1個の電池モジュール3内の電池セル群1Hの電圧が所定電圧1よりも高い所定電圧2を超えたか否かを検知する。前記電池セル群1Hの電圧が所定電圧2を超えたと判定すると、Step4へ移行し、全ての前記電池モジュール3へFET10をオンに操作してSCP7を不可逆に遮断するように通信信号4を用いて指示し全ての前記電池モジュール3の充電電流の通電を遮断する。前述のStep4に至る状態とは、電池モジュール3群の内の少なくとも1個の電池モジュール3の一次保護IC4がStep1にて電池セル群1Hの過電圧の検知に失敗した状態、または、Step2にて電池モジュール3群の内の全ての電池モジュール3のFET6をオフに操作しても前記FET6のショート故障等により充電電流の遮断に失敗し充電が継続した状態のいずれかであり、前記Step3ないしStep4の制御は、前記Step1ないしStep2の過充電に対する一次保護の失敗を補う二重保護の役割を果たし、一般に、前記一次保護の失敗の発生確率が低いとは言え、万一発火した場合の被害は甚大であり、リスクアセスメント観点で有効な安全性を実現できる。特に、前記Step3ないしStep4におけるSCP7を不可逆的に遮断するための制御を、二次保護IC5がメインコントローラ9からの通信信号4による指示を前記電池モジュール3内で一次保護IC4および通信信号9を介して実行する制御、および、二次保護IC5自身の制御が独立して実行する制御を並列して実行すると一層高い信頼性を確保する目的で好適である。 In Step 1, the main controller 12 of the charging control circuit 103 communicates with the battery module 3 groups using the communication signal 4 to control the battery cell group 1H in at least one battery module 3 among the battery module 3 groups. It is detected whether the voltage exceeds the predetermined voltage 1 or not. When it is determined that the voltage of the battery cell group 1H has exceeded the predetermined voltage 1, the process proceeds to Step 2, in which all the battery modules 3 are instructed to turn off the FETs 6, thereby stopping the supply of charging current to all the battery module groups. do. In Step 3, the main controller 9 communicates with the battery module 3 group using the communication signal 4, and the voltage of the battery cell group 1H in at least one battery module 3 out of the battery module 3 group reaches the predetermined voltage 1 It is detected whether or not a predetermined voltage 2 higher than is exceeded. When it is determined that the voltage of the battery cell group 1H has exceeded the predetermined voltage 2, the process proceeds to Step 4, and the communication signal 4 is used to turn on the FETs 10 of all the battery modules 3 to irreversibly cut off the SCP 7. to cut off the supply of charging current to all the battery modules 3. The state leading to Step 4 described above is a state in which the primary protection IC 4 of at least one battery module 3 in the battery module 3 group failed to detect overvoltage in the battery cell group 1H in Step 1, or a state in which the battery Even if the FETs 6 of all the battery modules 3 in the group of modules 3 are turned off, the interruption of the charging current fails due to a short failure of the FETs 6 or the like, and charging continues. The control plays a role of double protection to compensate for the failure of the primary protection against overcharging in Step 1 to Step 2, and although the probability of occurrence of failure of the primary protection is generally low, the damage in the event of ignition is enormous. It is possible to realize effective safety from the viewpoint of risk assessment. In particular, the control for irreversibly shutting down the SCP 7 in Steps 3 to 4 is performed by the secondary protection IC 5 receiving an instruction by the communication signal 4 from the main controller 9 within the battery module 3 via the primary protection IC 4 and the communication signal 9. It is preferable to execute in parallel the control executed by the secondary protection IC 5 itself and the control executed independently by the secondary protection IC 5 for the purpose of ensuring higher reliability.
 これらによって、多数のリチウムイオン二次電池セルを搭載する気自動車の充電において、一部の回路故障も想定した過充電に対する二重保護を実現し安全性を向上できる。 With these, it is possible to improve safety by realizing double protection against overcharging assuming partial circuit failure when charging electric vehicles equipped with a large number of lithium-ion secondary battery cells.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and the present invention also includes equivalents thereof.
  2   電池モジュール
  3   電池モジュール
  9   メインコントローラ
  11  充電回路
  100 充電制御回路
  103 充電放電制御回路
2 Battery Module 3 Battery Module 9 Main Controller 11 Charging Circuit 100 Charging Control Circuit 103 Charging and Discharging Control Circuit

Claims (3)

  1.  充電回路と、
     前記充電回路に接続される複数の電池モジュールと、を備え、
     前記電池モジュールは、
      電池セルと、
      前記電池セルへの充電電流を可逆的に通電または遮断する第1通電遮断素子と、
      前記電池セルへの前記充電電流を不可逆的に通電または遮断する第2通電遮断素子と、
     を備え、
     前記電池モジュールのうちの少なくとも1つが過充電になった場合に、過充電となった前記電池モジュールの前記第1通電遮断素子を用いて前記充電電流を遮断し、前記第1通電遮断素子による遮断に失敗した場合、全ての前記電池モジュールの前記第2通電遮断素子を用いて充電電流を遮断する充電制御回路。
    a charging circuit;
    a plurality of battery modules connected to the charging circuit,
    The battery module is
    a battery cell;
    a first conduction/interruption element for reversibly conducting or interrupting a charging current to the battery cell;
    a second conduction/interruption element for irreversibly conducting or interrupting the charging current to the battery cell;
    with
    When at least one of the battery modules is overcharged, the charging current is cut off using the first current cutoff element of the overcharged battery module, and the first cutoff element cuts off the charging current. charging control circuit for interrupting the charging current by using the second conduction interrupting elements of all the battery modules when the above fails.
  2.  前記第2通電遮断素子による過充電遮断の電圧閾値は、前記第1通電遮断素子による過充電遮断の電圧閾値よりも高い請求項1に記載の充電制御回路。 2. The charge control circuit according to claim 1, wherein the voltage threshold for overcharge cutoff by the second current cutoff element is higher than the voltage threshold for overcharge cutoff by the first current cutoff element.
  3.  前記電池モジュールは、
      前記第1通電遮断素子を制御する第1制御部と、
      前記第2通電遮断素子を制御する第2制御部と、
     を備え、
     前記第2通電遮断素子の制御は、前記第2制御部および前記第1制御部により並列に実行する請求項1または2に記載の充電制御回路。
    The battery module is
    a first control unit that controls the first energization breaking element;
    a second control unit that controls the second current breaking element;
    with
    3. The charging control circuit according to claim 1, wherein the control of the second energization breaking element is executed in parallel by the second control section and the first control section.
PCT/JP2021/023857 2021-06-23 2021-06-23 Charge control circuit WO2022269833A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529346A JP7412055B2 (en) 2021-06-23 2021-06-23 Charging control circuit
PCT/JP2021/023857 WO2022269833A1 (en) 2021-06-23 2021-06-23 Charge control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023857 WO2022269833A1 (en) 2021-06-23 2021-06-23 Charge control circuit

Publications (1)

Publication Number Publication Date
WO2022269833A1 true WO2022269833A1 (en) 2022-12-29

Family

ID=84545406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023857 WO2022269833A1 (en) 2021-06-23 2021-06-23 Charge control circuit

Country Status (2)

Country Link
JP (1) JP7412055B2 (en)
WO (1) WO2022269833A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280840A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Inspection circuit, battery pack, and battery pack unit
JP2008161029A (en) * 2006-12-26 2008-07-10 Fdk Corp Electricity accumulation module and electricity accumulation system
JP2016054633A (en) * 2014-09-03 2016-04-14 株式会社豊田自動織機 Power feeding path shielding device and power feeding path shielding method
WO2018151110A1 (en) * 2017-02-14 2018-08-23 ヤマハ発動機株式会社 Power supply circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280840A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Inspection circuit, battery pack, and battery pack unit
JP2008161029A (en) * 2006-12-26 2008-07-10 Fdk Corp Electricity accumulation module and electricity accumulation system
JP2016054633A (en) * 2014-09-03 2016-04-14 株式会社豊田自動織機 Power feeding path shielding device and power feeding path shielding method
WO2018151110A1 (en) * 2017-02-14 2018-08-23 ヤマハ発動機株式会社 Power supply circuit

Also Published As

Publication number Publication date
JPWO2022269833A1 (en) 2022-12-29
JP7412055B2 (en) 2024-01-12

Similar Documents

Publication Publication Date Title
JP6883067B2 (en) Battery management system and its switching method
EP3657628A1 (en) Equalization circuit, charging device, and energy storage device
JP5804540B2 (en) Battery pack with improved safety
US8593111B2 (en) Assembled battery system
JP5025160B2 (en) Secondary battery device
EP2448081B1 (en) Battery pack overcharge protection system
KR20130043258A (en) Battery pack of improved safety
KR102249889B1 (en) Protection apparutus for rechargeable battery
KR20150057732A (en) Protection apparutus for rechargeable battery
CN112751104A (en) Battery pack, battery system and battery pack thermal runaway control method
JP2018198519A (en) Vehicle power supply device
KR20180028239A (en) Battery pack
KR102066413B1 (en) Safety control system of battery
JP2002034166A (en) Protective device for secondary battery
EP3975381A1 (en) Battery protection apparatus and battery system including the same
JP2001126772A (en) Secondary battery and device for protecting the same
KR102259215B1 (en) Protection apparatus for rechargeable battery
WO2022269833A1 (en) Charge control circuit
JP2010212166A (en) Lithium ion secondary battery system
KR102421778B1 (en) Rechargeable battery charging apparatus
KR20150068845A (en) Battery assembly and hybrid vehicle comprsing the same
WO2022269834A1 (en) Charge control circuit
WO2022269835A1 (en) Battery power supply circuit
WO2022269832A1 (en) Discharge control circuit
WO2023073976A1 (en) Battery module and battery power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529346

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947118

Country of ref document: EP

Kind code of ref document: A1