WO2022269818A1 - Probability calculation device, probability calculation method, and probability calculation program - Google Patents

Probability calculation device, probability calculation method, and probability calculation program Download PDF

Info

Publication number
WO2022269818A1
WO2022269818A1 PCT/JP2021/023834 JP2021023834W WO2022269818A1 WO 2022269818 A1 WO2022269818 A1 WO 2022269818A1 JP 2021023834 W JP2021023834 W JP 2021023834W WO 2022269818 A1 WO2022269818 A1 WO 2022269818A1
Authority
WO
WIPO (PCT)
Prior art keywords
probability
cluster
variation
occurrence probability
vector
Prior art date
Application number
PCT/JP2021/023834
Other languages
French (fr)
Japanese (ja)
Inventor
篤彦 前田
和昭 尾花
幸雄 菊谷
健一 福田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/023834 priority Critical patent/WO2022269818A1/en
Priority to JP2023529331A priority patent/JPWO2022269818A1/ja
Publication of WO2022269818A1 publication Critical patent/WO2022269818A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the disclosed technique relates to a probability calculation device, a probability calculation method, and a probability calculation program.
  • Non-Patent Document 1 describes that real-time emergency demand prediction is performed to optimize the deployment of ambulances.
  • the disclosed technology has been made in view of the above points, and provides a probability calculation device, a probability calculation method, and a probability calculation method that can appropriately calculate the event occurrence probability of a target while suppressing errors even when there is little observed data about the target. and to provide a probability calculation program.
  • a first aspect of the present disclosure is a probability calculation device that calculates a basic occurrence probability, which is an occurrence probability obtained from past event occurrence data for each of a plurality of objects, and a specific explanatory variable of the event occurrence data.
  • a first variation calculation unit that calculates a first variation vector as a vector representing a variation according to the specific explanatory variable for each of the targets, based on the conditional occurrence probability that is the occurrence probability as a condition;
  • a clustering unit that classifies the targets into clusters by clustering each variation vector, and for each cluster, aggregating the event occurrence data associated with the targets belonging to the cluster, and clustering the cluster a second variation calculation unit that calculates a second variation vector as a vector representing variation according to the specific explanatory variable; and for each target, using the second variation vector of the cluster to which the target belongs, and an integrated calculation unit that calculates the event occurrence probability of the target under the condition of the explanatory variables.
  • a second aspect of the present disclosure is a probability calculation method, wherein a basic occurrence probability, which is an occurrence probability obtained from past event occurrence data for each of a plurality of objects, and a specific explanatory variable of the event occurrence data
  • a first variation vector is calculated as a vector representing variation according to the specific explanatory variable for each target based on the conditional occurrence probability, which is the probability of occurrence as a condition, and the variation vector for each of the targets is calculated.
  • the targets are classified into clusters, and for each cluster, the event occurrence data associated with the targets belonging to the cluster are aggregated, and the variation according to the specific explanatory variable of the cluster.
  • a second variation vector is calculated as a vector representing, and for each target, using the second variation vector of the cluster to which the target belongs, the event occurrence probability of the target under the condition of the specific explanatory variable is calculated, and the computer executes the process.
  • a third aspect of the present disclosure is a probability calculation program, which calculates a basic occurrence probability that is an occurrence probability obtained from past event occurrence data in each of a plurality of objects, and a specific explanatory variable of the event occurrence data.
  • a first variation vector is calculated as a vector representing variation according to the specific explanatory variable for each target based on the conditional occurrence probability, which is the probability of occurrence as a condition, and the variation vector for each of the targets is calculated.
  • the targets are classified into clusters, and for each cluster, the event occurrence data associated with the targets belonging to the cluster are aggregated, and the variation according to the specific explanatory variable of the cluster.
  • a second variation vector is calculated as a vector representing, and for each target, using the second variation vector of the cluster to which the target belongs, the event occurrence probability of the target under the condition of the specific explanatory variable is calculated, and the computer executes the process.
  • FIG. 10 is a diagram showing an example of a data string generated assuming subdivision into small areas; It is a block diagram showing the hardware configuration of the probability calculation device of the embodiment of the present disclosure.
  • 1 is a block diagram showing a functional configuration of a probability calculation device according to an embodiment of the present disclosure
  • FIG. FIG. 10 is a diagram showing an example of a graph of results of obtaining first variation vectors for a plurality of subregions
  • FIG. 10 is a diagram showing the result of clustering the first variation vectors for each small area into two using k-means and obtaining the second variation vectors for each cluster
  • 4 is a flow chart showing the flow of probability calculation processing by the probability calculation device of the embodiment of the present disclosure;
  • event occurrence probability the probability of occurrence of an event that is ultimately desired in this embodiment
  • probability of occurrence of other events will simply be referred to as probability of occurrence.
  • event occurrence data will become increasingly scarce. For example, if it is desired to obtain the variation in the probability of occurrence of an injured or sick person depending on the day of the week, the data string of the event occurrence data must be divided into seven. In particular, assuming that the effects of conditions such as the day of the week only change the base probability of occurrence by about 20 to 30%, the probability of occurrence of 0.01 will change to 0.012 or 0.013. As such, the lack of data becomes more pronounced.
  • some of the small subdivisions have similar urban functions, such as so-called residential areas or entertainment districts.
  • residential areas or entertainment districts there is a possibility that the number of acute alcoholics will increase on a specific day of the week and during a specific time period, and the probability of injury or illness will increase.
  • residential areas there is a possibility that the probability of injury or illness will increase due to the time and date when many people are spending time at home.
  • a vector that represents the fluctuations of multiple regions from the conditional probability of occurrence under the condition of specific explanatory variables in each small region
  • the reason for clustering using vectors that represent fluctuations is that the absolute amount of occurrence (probability) differs for each small area. If clustering is performed by the above method, for example, an entertainment district in the city center with a particularly high population density and an entertainment district in a small area adjacent to the city center can be classified into the same cluster.
  • the above idea is realized by configuring the probability calculation device according to the embodiment of the present disclosure as follows.
  • FIG. 2 is a block diagram showing the hardware configuration of the probability calculation device 100 according to the embodiment of the present disclosure.
  • the probability calculation device 100 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display unit 16, and a communication interface. (I/F) 17.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage 14 an input unit 15, a display unit 16, and a communication interface. (I/F) 17.
  • I/F communication interface.
  • the CPU 11 is a central processing unit that executes various programs and controls each section. That is, the CPU 11 reads a program from the ROM 12 or the storage 14 and executes the program using the RAM 13 as a work area. The CPU 11 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 12 or the storage 14 . In this embodiment, the ROM 12 or storage 14 stores an occurrence probability calculation program.
  • the ROM 12 stores various programs and various data.
  • the RAM 13 temporarily stores programs or data as a work area.
  • the storage 14 is configured by a storage device such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system and various data.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
  • the display unit 16 is, for example, a liquid crystal display, and displays various information.
  • the display unit 16 may employ a touch panel system and function as the input unit 15 .
  • the communication interface 17 is an interface for communicating with other devices such as terminals.
  • the communication uses, for example, a wired communication standard such as Ethernet (registered trademark) or FDDI, or a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark).
  • FIG. 3 is a block diagram showing the functional configuration of the probability calculation device 100 according to the embodiment of the present disclosure.
  • Each functional configuration is realized by the CPU 11 reading out an occurrence probability calculation program stored in the ROM 12 or the storage 14, developing it in the RAM 13, and executing it.
  • the probability calculation device 100 includes an event storage unit 102, a basic probability calculation unit 110, a conditional probability calculation unit 112, a first fluctuation calculation unit 114, a clustering unit 116, and a second fluctuation calculation unit. It includes a unit 118 and an integrated calculation unit 120 .
  • the probability calculation device 100 receives event occurrence data as input and stores it in the event storage unit 102 .
  • the event occurrence data records the date and time when the event occurred, the day of the week, the small area where the event occurred, and the like in each of the plurality of targets in a certain period of time in the past.
  • the following explanation assumes that the event occurrence probability is constant from the past to the future if the occurrence time zone, day of the week, and small area are the same. In other words, it is possible to calculate the event occurrence probability under the same conditions in the future by simply accumulating sufficient event occurrence data under the same conditions. However, it is assumed that sufficient event occurrence data is not accumulated for the scale of the event occurrence probability to be obtained.
  • the basic probability calculation unit 110 calculates the occurrence probability (basic occurrence probability) for each time zone for each small area.
  • the basic occurrence probability can be calculated by counting events in a specific small area and in a specific time period in the past fixed period of the event occurrence data and dividing by the number of days in the fixed period. For example, if the period is 350 days and a total of 35 events occurred in a small area between 10:00 and 350, the basic occurrence probability is 0.1 at 35/350.
  • the conditional probability calculation unit 112 calculates the occurrence probability (conditional occurrence probability) for each day of the week and time zone for each small area.
  • the conditional probability of occurrence can be calculated by counting events in a specific small area and in a specific time period in the past fixed period of the event occurrence data and dividing by the number of days in the fixed period. For example, if the period is 350 days and a total of 35 events occurred in a small area between 10:00 and 350, the conditional probability of occurrence is 0.1 at 35/350.
  • Setting the day of the week as a condition is an example of setting a specific explanatory variable as a condition of the technology of the present disclosure.
  • the probability calculation device 100 may receive the basic occurrence probability and the conditional occurrence probability calculated in advance by another device or the like. In that case, the basic probability calculation unit 110 and the conditional probability calculation unit 112 may be omitted in terms of configuration.
  • the first fluctuation calculation unit 114 receives inputs of the basic occurrence probability from the basic probability calculation unit 110 and the conditional occurrence probability from the conditional probability calculation unit 112 .
  • the first fluctuation calculator 114 calculates a first fluctuation vector for each small area based on the basic occurrence probability and the conditional occurrence probability.
  • the first variation vector is a vector representing variation according to a specific explanatory variable, here the day of the week.
  • the first variation vector here is obtained by calculating how many times the conditional occurrence probability for each day of the week is the basic occurrence probability ignoring the day of the week for each small area.
  • FIG. 4 is a diagram showing an example of a graph of results of obtaining first variation vectors for a plurality of small areas.
  • the first variation vector the amount of variation for each day of the week and each time slot for subregions A, B, C, and D are obtained.
  • the clustering unit 116 receives the input of the variation vector of each small area from the first variation calculation unit 114 .
  • the clustering unit 116 classifies the small areas into clusters by clustering the first variation vectors of the small areas.
  • a typical clustering method such as k-means may be used.
  • the number of clusters may be set as a parameter to be manually adjusted, and the number of clusters may be tried and adjusted so that the future prediction result is the most suitable.
  • the second variation calculation unit 118 receives the result of classifying each small area into each cluster as a clustering result from the clustering unit 116 . For each cluster, the second variation calculation unit 118 aggregates the event occurrence data associated with the small areas belonging to the cluster, and calculates a second variation vector. Specifically, when calculating the second variation vector, the second variation calculation unit 118 acquires event occurrence data of small areas included in the cluster from the event storage unit 102 for each cluster and aggregates them. The second fluctuation calculation unit 118 uses the event occurrence data aggregated for the cluster to obtain the basic occurrence probability of the cluster in the time period, and the probability of occurrence of the cluster in each day of the week and time period. Find the conditional probability of occurrence. Then, a second variation vector is calculated based on the basic occurrence probability of the cluster and the conditional occurrence probability of the cluster. As a result, the second variation vector can be calculated as a vector representing the variation according to the specific explanatory variable of the cluster.
  • FIG. 5 is a diagram showing the result of clustering the first variation vector for each small area into two by k-means and obtaining the second variation vector for each cluster.
  • the graph is basically smoother than the original first variation vector for each small area.
  • the event occurrence data of the clustered small areas is aggregated and then the second variation vector is recalculated. More strongly influenced by sub-regions of This effectively weakens the influence of small regions with large observation errors.
  • the time zone width is widened in the original small area, the result may be similar, but if there is a place where the change in the true probability of occurrence increases or decreases every hour, the method of the present disclosure is appropriate. be.
  • the integrated calculation unit 120 receives input of the second fluctuation vector for each cluster from the second fluctuation calculation unit 118 .
  • the integrated calculation unit 120 calculates the event occurrence probability for each small area based on the basic occurrence probability for each time zone of the small area and the variation value in the second variation vector of the cluster to which the small area belongs.
  • the event occurrence probability is obtained as a conditional occurrence probability for each small area. For example, if the event occurrence probability for each sub-area on Sunday between 10:00 and 10:00 is to be obtained, the basic occurrence probability between 10:00 and 10:00 is obtained for each sub-area regardless of the day of the week. After that, the variation value for Sunday and 10:00 is extracted from the second variation vector of the cluster to which the small area corresponds, and the conditional occurrence probability for Sunday and 10:00 for each small area is calculated as the event occurrence probability. .
  • FIG. 6 is a flowchart showing the flow of probability calculation processing by the probability calculation device 100 of the embodiment of the present disclosure.
  • the CPU 11 reads out the probability calculation program from the ROM 12 or the storage 14, develops it in the RAM 13, and executes it, thereby performing the probability calculation process.
  • the CPU 11 executes the following processes as each part of the probability calculation device 100 .
  • step S100 the CPU 11, as the basic probability calculation unit 110, calculates the occurrence probability (basic occurrence probability) for each time period for each small area based on the event occurrence data stored in the event storage unit 102.
  • step S102 the CPU 11, as the conditional probability calculation unit 112, calculates the occurrence probability (conditional occurrence probability) for each day of the week and for each time period for each small area based on the event occurrence data stored in the event storage unit 102.
  • step S104 the CPU 11, as the first fluctuation calculator 114, calculates a first fluctuation vector for each small area based on the basic occurrence probability and the conditional occurrence probability.
  • the first variation vector is a vector representing variation according to a specific explanatory variable, here the day of the week.
  • step S106 the CPU 11, as the clustering unit 116, classifies the small regions into clusters by clustering the first variation vectors of each of the small regions.
  • step S108 the CPU 11, as the second fluctuation calculation unit 118, aggregates the event occurrence data associated with the small areas belonging to the cluster for each cluster, and calculates the second fluctuation vector.
  • step S110 the CPU 11, as the integrated calculation unit 120, for each small area, based on the basic occurrence probability for each time period of the small area and the variation value in the second variation vector of the cluster to which the small area belongs, Calculate the event occurrence probability.
  • the probability calculation device 100 of the present embodiment even when there is little data observed for subdivided small areas, it is possible to appropriately calculate the event occurrence probability of the small areas by suppressing errors.
  • the probability calculation processing executed by the CPU reading the software (program) in the above embodiment may be executed by various processors other than the CPU.
  • the processor is a PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing, such as an FPGA (Field-Programmable Gate Array), and an ASIC (Application Specific Integrated Circuit) to execute specific processing.
  • a dedicated electric circuit or the like which is a processor having a specially designed circuit configuration, is exemplified.
  • the probability calculation processing may be executed by one of these various processors, or by a combination of two or more processors of the same or different type (for example, multiple FPGAs and a combination of CPU and FPGA). etc.).
  • the hardware structure of these various processors is an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the probability calculation program is pre-stored (installed) in the storage 14
  • Programs are stored in non-transitory storage media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), and USB (Universal Serial Bus) memory.
  • CD-ROM Compact Disk Read Only Memory
  • DVD-ROM Digital Versatile Disk Read Only Memory
  • USB Universal Serial Bus
  • the program may be downloaded from an external device via a network.
  • a probability calculation device configured as follows.
  • Appendix 2 A non-transitory storage medium storing a program executable by a computer to perform a probability calculation process, Based on the basic occurrence probability, which is the occurrence probability obtained from past event occurrence data for each of a plurality of subjects, and the conditional occurrence probability, which is the occurrence probability conditioned on a specific explanatory variable of the event occurrence data , for each target, calculating a first variation vector as a vector representing variation according to the specific explanatory variable; classifying the objects into clusters by clustering the variation vectors of each of the objects; For each cluster, the event occurrence data associated with the object belonging to the cluster is aggregated, and a second variation vector is calculated as a vector representing the variation according to the specific explanatory variable of the cluster; For each target, using the second variation vector of the cluster to which the target belongs, calculating the event occurrence probability of the target under the condition of the specific explanatory variable; Non-transitory storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Complex Calculations (AREA)

Abstract

A probability calculation device according to the present invention calculates, for each target and on the basis of a basic occurrence probability and a conditional occurrence probability, a first fluctuation vector as a vector expressing a fluctuation corresponding to a specified explanatory variable, said calculation being performed in a first fluctuation calculation unit. The targets are classified into clusters as a result of a clustering unit clustering respective fluctuation vectors of the targets. For each cluster, a second fluctuation calculation unit aggregates event occurrence data which corresponds to the targets belonging to said cluster, and calculates a second fluctuation vector as a vector expressing a fluctuation corresponding to a specified explanatory variable for said cluster. For each vector, an integrated calculation unit uses the second fluctuation vector of the cluster to which the target belongs to calculate the event occurrence probability for the target in a case in which the specific explanatory variable serves as a condition.

Description

確率算出装置、確率算出方法、及び確率算出プログラムProbability calculation device, probability calculation method, and probability calculation program
 開示の技術は、確率算出装置、確率算出方法、及び確率算出プログラムに関する。 The disclosed technique relates to a probability calculation device, a probability calculation method, and a probability calculation program.
 事故の発生又は傷病者の発生などの何らかの事象発生確率を、過去の事象発生データに基づき、細分化された地域毎に、曜日又は時間帯などいくつかの条件により変動することも踏まえて予測したい場合がある。すなわち条件付きの事象発生確率を求めたい場合がある。例えば、求めた事象発生確率をもとに、パトカー又は救急車などの緊急車両を適切な場所に予め配備したい場合などである。非特許文献1には、リアルタイムな救急需要予測を行い、救急車の配備を最適化することが記載されている。 We want to predict the occurrence probability of some kind of event, such as the occurrence of an accident or the occurrence of a sick or injured person, based on past event occurrence data, taking into account that it may vary depending on several conditions such as the day of the week or time of day for each subdivided region. Sometimes. That is, there are cases where it is desired to obtain conditional event occurrence probabilities. For example, based on the obtained event occurrence probability, there is a case where an emergency vehicle such as a police car or an ambulance is desired to be deployed in advance at an appropriate location. Non-Patent Document 1 describes that real-time emergency demand prediction is performed to optimize the deployment of ambulances.
 上記のような用途では、地域全体の事象発生確率を求めるのではなく、地域全体の中から対象となる地域をある程度の小地域に細分化し、小地域毎の事象発生確率を求めることが必要となる。しかし、地域全体を細分化すると、個々の小地域における事象発生確率は小さくなってしまう。 For the above applications, it is necessary to subdivide the target area from the entire area into small areas to some extent and calculate the event occurrence probability for each small area, instead of obtaining the event occurrence probability for the entire area. Become. However, subdividing the entire area reduces the event occurrence probability in each small area.
 開示の技術は、上記の点に鑑みてなされたものであり、対象について観測されたデータが少ない場合でも、誤差を抑えて適切に対象の事象発生確率を算出できる確率算出装置、確率算出方法、及び確率算出プログラムを提供することを目的とする。 The disclosed technology has been made in view of the above points, and provides a probability calculation device, a probability calculation method, and a probability calculation method that can appropriately calculate the event occurrence probability of a target while suppressing errors even when there is little observed data about the target. and to provide a probability calculation program.
 本開示の第1態様は、確率算出装置であって、複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出する第1変動算出部と、前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類するクラスタリング部と、前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出する第2変動算出部と、前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する統合算出部と、を含む。 A first aspect of the present disclosure is a probability calculation device that calculates a basic occurrence probability, which is an occurrence probability obtained from past event occurrence data for each of a plurality of objects, and a specific explanatory variable of the event occurrence data. a first variation calculation unit that calculates a first variation vector as a vector representing a variation according to the specific explanatory variable for each of the targets, based on the conditional occurrence probability that is the occurrence probability as a condition; A clustering unit that classifies the targets into clusters by clustering each variation vector, and for each cluster, aggregating the event occurrence data associated with the targets belonging to the cluster, and clustering the cluster a second variation calculation unit that calculates a second variation vector as a vector representing variation according to the specific explanatory variable; and for each target, using the second variation vector of the cluster to which the target belongs, and an integrated calculation unit that calculates the event occurrence probability of the target under the condition of the explanatory variables.
 本開示の第2態様は、確率算出方法であって、複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出し、前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類し、前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出し、前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する、処理をコンピュータに実行させる。 A second aspect of the present disclosure is a probability calculation method, wherein a basic occurrence probability, which is an occurrence probability obtained from past event occurrence data for each of a plurality of objects, and a specific explanatory variable of the event occurrence data A first variation vector is calculated as a vector representing variation according to the specific explanatory variable for each target based on the conditional occurrence probability, which is the probability of occurrence as a condition, and the variation vector for each of the targets is calculated. By clustering, the targets are classified into clusters, and for each cluster, the event occurrence data associated with the targets belonging to the cluster are aggregated, and the variation according to the specific explanatory variable of the cluster. A second variation vector is calculated as a vector representing, and for each target, using the second variation vector of the cluster to which the target belongs, the event occurrence probability of the target under the condition of the specific explanatory variable is calculated, and the computer executes the process.
 本開示の第3態様は、確率算出プログラムであって、複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出し、前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類し、前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出し、前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する、処理をコンピュータに実行させる。 A third aspect of the present disclosure is a probability calculation program, which calculates a basic occurrence probability that is an occurrence probability obtained from past event occurrence data in each of a plurality of objects, and a specific explanatory variable of the event occurrence data. A first variation vector is calculated as a vector representing variation according to the specific explanatory variable for each target based on the conditional occurrence probability, which is the probability of occurrence as a condition, and the variation vector for each of the targets is calculated. By clustering, the targets are classified into clusters, and for each cluster, the event occurrence data associated with the targets belonging to the cluster are aggregated, and the variation according to the specific explanatory variable of the cluster. A second variation vector is calculated as a vector representing, and for each target, using the second variation vector of the cluster to which the target belongs, the event occurrence probability of the target under the condition of the specific explanatory variable is calculated, and the computer executes the process.
 開示の技術によれば、対象について観測されたデータが少ない場合でも、誤差を抑えて適切に対象の事象発生確率を算出できる。 According to the disclosed technology, even if there is little observed data about the target, it is possible to appropriately calculate the event occurrence probability of the target while suppressing errors.
小地域に細分化した想定で生成したデータ列の一例を示す図である。FIG. 10 is a diagram showing an example of a data string generated assuming subdivision into small areas; 本開示の実施形態の確率算出装置のハードウェア構成を示すブロック図である。It is a block diagram showing the hardware configuration of the probability calculation device of the embodiment of the present disclosure. 本開示の実施形態の確率算出装置の機能的な構成を示すブロック図である。1 is a block diagram showing a functional configuration of a probability calculation device according to an embodiment of the present disclosure; FIG. 複数の小地域の第1変動ベクトルを求めた結果のグラフの一例を示す図である。FIG. 10 is a diagram showing an example of a graph of results of obtaining first variation vectors for a plurality of subregions; 小地域毎の第1変動ベクトルをk-meansで2つにクラスタリングし、クラスタ毎の第2変動ベクトルを求めた結果を示す図である。FIG. 10 is a diagram showing the result of clustering the first variation vectors for each small area into two using k-means and obtaining the second variation vectors for each cluster; 本開示の実施形態の確率算出装置による確率算出処理の流れを示すフローチャートである。4 is a flow chart showing the flow of probability calculation processing by the probability calculation device of the embodiment of the present disclosure;
 以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 An example of an embodiment of the disclosed technology will be described below with reference to the drawings. In each drawing, the same or equivalent components and portions are given the same reference numerals. Also, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios.
 まず、本開示の概要について説明する。上記課題において述べたように、地域全体を細分化すると個々の小地域における事象発生確率は小さくなってしまう。なお、以下では説明の便宜のため、本実施形態で最終的に求めたい事象の発生確率を事象発生確率と表記し、そのほかの事象の発生確率は単に発生確率と表記する。 First, the outline of this disclosure will be explained. As described in the above problem, subdividing the entire area reduces the event occurrence probability in each small area. For convenience of explanation, the probability of occurrence of an event that is ultimately desired in this embodiment will be referred to as event occurrence probability, and the probability of occurrence of other events will simply be referred to as probability of occurrence.
 発生確率が小さい場合はより多くの事象発生データ(観測データ)が必要である一方で、データ数が不足に陥るケースが想定される。例えば、地域全体での傷病者発生に関する真の発生確率が0.1である場合に、この発生確率に従ってコンピュータで毎回2値の乱数を生成し、0であれば発生せず、1であれば発生したことにする、という計算を繰り返す観測を行ったとする。その観測結果(0と1からなるデータ列)から元の発生確率を安定的に求めようとすると、乱数生成のアルゴリズムでは通常はおおよそ100回ほどの観測が必要となる。ここで、地域全体を細分化して小地域に分けた結果、ある小地域における真の発生確率が0.01となる場合が想定される。その場合、1000回ほどの事象発生データが必要となる。図1は、小地域に細分化した想定で生成したデータ列の一例を示す図である。観測を1000回行ったとして、データ列のA1だけ観測すると発生確率は0/10=0、A2だけ観測すると発生確率は1/10=0.1となり、データ列1000個の中に1が10回ほど出現することになる。実際の観測においては、そこまで多くの事象発生データが手に入らないことが想定されるため、少ない観測回数の事象発生データから小地域の発生確率を求める必要が生じる。しかし、少ない観測回数の事象発生データから小地域の発生確率を求めてしまうと、多くの場合、発生確率が0となるか、又は真の発生確率よりも大きな確率を誤って算出してしまう可能性がある。 If the probability of occurrence is small, more event occurrence data (observation data) is required, but there may be cases where the amount of data is insufficient. For example, if the true probability of occurrence of casualties in the entire region is 0.1, a computer generates a binary random number each time according to this probability of occurrence. Suppose we make an observation that repeats the calculation that we assume that it has occurred. To stably obtain the original probability of occurrence from the observation result (a data string consisting of 0s and 1s), a random number generation algorithm normally requires approximately 100 observations. Here, as a result of subdividing the whole area into small areas, it is assumed that the true probability of occurrence in a certain small area is 0.01. In that case, event occurrence data of about 1000 times is required. FIG. 1 is a diagram showing an example of a data string generated assuming subdivision into small areas. Assuming that the observation is performed 1000 times, if only A1 in the data string is observed, the probability of occurrence is 0/10=0, and if only A2 is observed, the probability of occurrence is 1/10=0.1. It will appear several times. In actual observation, it is assumed that such a large amount of event occurrence data will not be available, so it will be necessary to obtain the occurrence probability of a small area from the event occurrence data of a small number of observations. However, if the occurrence probability of a small area is obtained from the event occurrence data of a small number of observations, in many cases the occurrence probability will be 0, or it may be calculated by mistake that the probability is greater than the true occurrence probability. have a nature.
 更に条件付きの事象発生確率を求めようとすると、ますます事象発生データが不足することが想定される。例えば、曜日による傷病者の発生確率の変動を求めたいとすると、事象発生データのデータ列を7分割しなければならなくなる。特に、曜日などの条件による影響が、ベースとなる発生確率を仮に20~30%程度変動させるだけであったと仮定すると、発生確率0.01が0.012又は0.013などに変動するということであるから、データ不足はより顕著になる。 If we try to obtain conditional event occurrence probabilities, it is assumed that event occurrence data will become increasingly scarce. For example, if it is desired to obtain the variation in the probability of occurrence of an injured or sick person depending on the day of the week, the data string of the event occurrence data must be divided into seven. In particular, assuming that the effects of conditions such as the day of the week only change the base probability of occurrence by about 20 to 30%, the probability of occurrence of 0.01 will change to 0.012 or 0.013. As such, the lack of data becomes more pronounced.
 上記の事例であれば、細分化された小地域の中には、いわゆる住宅街又は歓楽街と呼ばれる小地域など、小地域同士で類似した都市機能を有している可能性がある。例えば、歓楽街であれば、どの歓楽街でも同じように特定の曜日及び時間帯に急性アルコール中毒者が増加し、傷病者の発生確率が上昇する可能性がある。また、住宅街では多くの人々が自宅で過ごしている日時などで傷病者の発生確率が上昇する可能性がある。 In the case of the above example, it is possible that some of the small subdivisions have similar urban functions, such as so-called residential areas or entertainment districts. For example, in all entertainment districts, there is a possibility that the number of acute alcoholics will increase on a specific day of the week and during a specific time period, and the probability of injury or illness will increase. In addition, in residential areas, there is a possibility that the probability of injury or illness will increase due to the time and date when many people are spending time at home.
 このように類似した都市機能をもつ小地域では、たとえ隣接していなかったとしても、特定の説明変数の条件から同じように影響を受けて発生確率が変動していると仮定できる。よって、小地域の過去の事象発生データをまとめて集計することにより、一旦、発生確率の規模を大きくしてから特定の説明変数による変動を算出し、そのあと個々の小地域の変動を求める際に利用することが考えられる。これにより、比較的少ない事象発生データからでも、複数の小地域の各々に対する真の発生確率に近い確率が求まりやすくなるはずである。 In such small areas with similar urban functions, even if they are not adjacent, it can be assumed that the probability of occurrence fluctuates due to the same influence from the conditions of specific explanatory variables. Therefore, by aggregating past event occurrence data for small regions, once the scale of the probability of occurrence is increased, fluctuations due to specific explanatory variables are calculated, and then fluctuations for individual small regions are calculated. It can be considered to be used for As a result, probabilities close to the true occurrence probabilities for each of a plurality of small areas should be easily obtained even from relatively small amount of event occurrence data.
 類似した都市機能を持つ小地域同士を集約する方法については、個々の小地域で、特定の説明変数を条件とした条件付き発生確率から複数の地域の変動を表すベクトル(第1変動ベクトル)として算出し、クラスタリングする。小地域毎の変動を表すベクトルをもとに地域同士をクラスタリングすることにより、細分化された小地域における個々の変動に関しては観測データ数が少ないため正確には算出できなかったとしても、多少の観測誤差を打ち消すことができる。 As for the method of aggregating small regions with similar urban functions, a vector (first variation vector) that represents the fluctuations of multiple regions from the conditional probability of occurrence under the condition of specific explanatory variables in each small region Calculate and cluster. By clustering the regions based on the vectors representing the changes in each small region, it is possible to estimate the individual changes in the subdivided small regions even if they cannot be accurately calculated due to the small number of observation data. Observation error can be canceled.
 変動を表すベクトルを用いてクラスタリングする理由は、小地域毎の絶対的な発生量(確率)が異なるためである。上記の方法によってクラスタリングを行えば、例えば、人口密度が特に多い都心部の歓楽街と、都心部に隣接した小地域の歓楽街を同じクラスタに分類できる。 The reason for clustering using vectors that represent fluctuations is that the absolute amount of occurrence (probability) differs for each small area. If clustering is performed by the above method, for example, an entertainment district in the city center with a particularly high population density and an entertainment district in a small area adjacent to the city center can be classified into the same cluster.
 なお、上記の説明は、想定される小地域の当てはめを簡単に説明するため、歓楽街又は住宅街という典型的な街のイメージを小地域に当てはめて説明したが、実際には多くの小地域では住居及び飲食店が分散して存在しており、複雑な属性を持っているはずである。よって、ある小地域とある小地域が同じ変動を示すとは容易には判別できないため、小地域毎の変動を表すベクトルを算出した上でクラスタリングすることが重要となる。 In the above explanation, in order to simply explain the application of assumed small areas, the image of a typical town such as an entertainment district or a residential area was applied to the small area. Residences and restaurants are distributed and should have complex attributes. Therefore, it is not easy to determine that a certain small area and another small area show the same variation, so it is important to cluster after calculating a vector representing the variation for each small area.
 また、上記以外にも、海抜高低差がある複数の小地域の各々を対象として、気温を特定の説明変数にする場合が想定される。この場合、近い海抜の小地域同士をクラスタリングできれば、熱中症等の発生数の変動を、限られた事象発生データから予測しやすくする。以上のような複数の小地域の各々が、本開示の技術の複数の対象の各々の一例である。 In addition to the above, it is also possible to use temperature as a specific explanatory variable for each of multiple small areas with differences in elevation above sea level. In this case, if it is possible to cluster small areas with similar altitudes, it will be easier to predict fluctuations in the number of occurrences of heatstroke and the like from limited event occurrence data. Each of the plurality of small areas as described above is an example of each of the plurality of targets of the technology of the present disclosure.
 なお、本実施形態では、事象発生確率を求める対象を小地域とする場合を例に説明するが、本実施形態の適用範囲は、現実空間で事象発生データが集計可能な小地域に限られない。事象発生データを集計できれば、例えば、インターネット空間、ネットワーク環境などの対象を問わず本実施形態の手法を適用可能である。 In this embodiment, an example of a case where the event occurrence probability is to be obtained is a small area will be described, but the scope of application of this embodiment is not limited to small areas where event occurrence data can be aggregated in real space. . As long as the event occurrence data can be aggregated, the method of the present embodiment can be applied regardless of the target such as the Internet space or network environment.
 以上を踏まえて、本開示の実施形態に係る確率算出装置として以下のように構成することにより、上記の考え方を実現する。 Based on the above, the above idea is realized by configuring the probability calculation device according to the embodiment of the present disclosure as follows.
 以下、本実施形態の構成について説明する。 The configuration of this embodiment will be described below.
 図2は、本開示の実施形態の確率算出装置100のハードウェア構成を示すブロック図である。 FIG. 2 is a block diagram showing the hardware configuration of the probability calculation device 100 according to the embodiment of the present disclosure.
 図2に示すように、確率算出装置100は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。 As shown in FIG. 2, the probability calculation device 100 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display unit 16, and a communication interface. (I/F) 17. Each component is communicatively connected to each other via a bus 19 .
 CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、発生確率算出プログラムが格納されている。 The CPU 11 is a central processing unit that executes various programs and controls each section. That is, the CPU 11 reads a program from the ROM 12 or the storage 14 and executes the program using the RAM 13 as a work area. The CPU 11 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 12 or the storage 14 . In this embodiment, the ROM 12 or storage 14 stores an occurrence probability calculation program.
 ROM12は、各種プログラム及び各種データを格納する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。 The ROM 12 stores various programs and various data. The RAM 13 temporarily stores programs or data as a work area. The storage 14 is configured by a storage device such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system and various data.
 入力部15は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。 The input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
 表示部16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能してもよい。 The display unit 16 is, for example, a liquid crystal display, and displays various information. The display unit 16 may employ a touch panel system and function as the input unit 15 .
 通信インタフェース17は、端末等の他の機器と通信するためのインタフェースである。当該通信には、例えば、イーサネット(登録商標)若しくはFDDI等の有線通信の規格、又は、4G、5G、若しくはWi-Fi(登録商標)等の無線通信の規格が用いられる。 The communication interface 17 is an interface for communicating with other devices such as terminals. The communication uses, for example, a wired communication standard such as Ethernet (registered trademark) or FDDI, or a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark).
 次に、確率算出装置100の各機能構成について説明する。図3は、本開示の実施形態の確率算出装置100の機能的な構成を示すブロック図である。各機能構成は、CPU11がROM12又はストレージ14に記憶された発生確率算出プログラムを読み出し、RAM13に展開して実行することにより実現される。 Next, each functional configuration of the probability calculation device 100 will be described. FIG. 3 is a block diagram showing the functional configuration of the probability calculation device 100 according to the embodiment of the present disclosure. Each functional configuration is realized by the CPU 11 reading out an occurrence probability calculation program stored in the ROM 12 or the storage 14, developing it in the RAM 13, and executing it.
 図3に示すように、確率算出装置100は、事象記憶部102と、基本確率算出部110と、条件確率算出部112と、第1変動算出部114と、クラスタリング部116と、第2変動算出部118と、統合算出部120とを含んで構成されている。 As shown in FIG. 3, the probability calculation device 100 includes an event storage unit 102, a basic probability calculation unit 110, a conditional probability calculation unit 112, a first fluctuation calculation unit 114, a clustering unit 116, and a second fluctuation calculation unit. It includes a unit 118 and an integrated calculation unit 120 .
 確率算出装置100は、入力として、事象発生データを受け付け、事象記憶部102に格納する。事象発生データには、複数の対象の各々における過去の一定期間における事象の発生日時、曜日、事象が発生した小地域、などが記録されている。 The probability calculation device 100 receives event occurrence data as input and stores it in the event storage unit 102 . The event occurrence data records the date and time when the event occurred, the day of the week, the small area where the event occurred, and the like in each of the plurality of targets in a certain period of time in the past.
 説明を簡単にするため、以下の説明では、発生時間帯、曜日、小地域が同一条件の場合には過去から将来にわたって事象発生確率は一定であるとする。すなわち、同一条件の事象発生データを十分蓄積さえすれば、未来の同一条件の事象発生確率も算出できることとする。ただし、求めたい事象発生確率の規模に対して十分な事象発生データが蓄積されていない想定とする。 For simplicity of explanation, the following explanation assumes that the event occurrence probability is constant from the past to the future if the occurrence time zone, day of the week, and small area are the same. In other words, it is possible to calculate the event occurrence probability under the same conditions in the future by simply accumulating sufficient event occurrence data under the same conditions. However, it is assumed that sufficient event occurrence data is not accumulated for the scale of the event occurrence probability to be obtained.
 基本確率算出部110は、事象記憶部102に格納されている事象発生データに基づいて、小地域毎に、時間帯別の発生確率(基本発生確率)を算出する。基本発生確率は、事象発生データの過去の一定期間における特定の小地域、及び特定の時間帯の事象をカウントし、その一定期間の日数で割れば算出できる。例えば、期間が350日で、その中である小地域の10時台の事象が合計35件発生していたとすれば、35/350で基本発生確率は0.1となる。 Based on the event occurrence data stored in the event storage unit 102, the basic probability calculation unit 110 calculates the occurrence probability (basic occurrence probability) for each time zone for each small area. The basic occurrence probability can be calculated by counting events in a specific small area and in a specific time period in the past fixed period of the event occurrence data and dividing by the number of days in the fixed period. For example, if the period is 350 days and a total of 35 events occurred in a small area between 10:00 and 350, the basic occurrence probability is 0.1 at 35/350.
 条件確率算出部112は、事象記憶部102に格納されている事象発生データに基づいて、小地域毎に、曜日別かつ時間帯別の発生確率(条件付き発生確率)を算出する。条件付き発生確率は、事象発生データの過去の一定期間における特定の小地域、及び特定の時間帯の事象をカウントし、その一定期間の日数で割れば算出できる。例えば、期間が350日で、その中である小地域の10時台の事象が合計35件発生していたとすれば、35/350で条件付き発生確率は0.1となる。曜日を条件とすることが、本開示の技術の特定の説明変数を条件とすることの一例である。なお、予め別装置等で算出しておいた基本発生確率と、条件付き発生確率とを確率算出装置100で受け付けるようにしてもよく、その場合には、基本確率算出部110及び条件確率算出部112は構成上なくてもよい。 Based on the event occurrence data stored in the event storage unit 102, the conditional probability calculation unit 112 calculates the occurrence probability (conditional occurrence probability) for each day of the week and time zone for each small area. The conditional probability of occurrence can be calculated by counting events in a specific small area and in a specific time period in the past fixed period of the event occurrence data and dividing by the number of days in the fixed period. For example, if the period is 350 days and a total of 35 events occurred in a small area between 10:00 and 350, the conditional probability of occurrence is 0.1 at 35/350. Setting the day of the week as a condition is an example of setting a specific explanatory variable as a condition of the technology of the present disclosure. Note that the probability calculation device 100 may receive the basic occurrence probability and the conditional occurrence probability calculated in advance by another device or the like. In that case, the basic probability calculation unit 110 and the conditional probability calculation unit 112 may be omitted in terms of configuration.
 第1変動算出部114は、基本確率算出部110から基本発生確率、条件確率算出部112から条件付き発生確率の入力を受け付ける。第1変動算出部114は、基本発生確率と、条件付き発生確率とに基づいて、小地域毎に、第1変動ベクトルを算出する。第1変動ベクトルは、特定の説明変数、ここでは曜日に応じた変動を表すベクトルである。ここでの第1変動ベクトルは、小地域毎に、曜日毎の条件付き発生確率が、曜日を無視した基本発生確率の何倍になっているかを計算することで求める。上記の例では、10時台の日曜日の変動は0.06/0.1=0.6倍となり、全時間帯と全曜日の組み合わせ分求めて、これを第1変動ベクトルとする。図4は、複数の小地域の第1変動ベクトルを求めた結果のグラフの一例を示す図である。図4の例では、第1変動ベクトルとして、小地域A、小地域B、小地域C、及び小地域Dのそれぞれ曜日別かつ時間帯別の変動量が求められている。 The first fluctuation calculation unit 114 receives inputs of the basic occurrence probability from the basic probability calculation unit 110 and the conditional occurrence probability from the conditional probability calculation unit 112 . The first fluctuation calculator 114 calculates a first fluctuation vector for each small area based on the basic occurrence probability and the conditional occurrence probability. The first variation vector is a vector representing variation according to a specific explanatory variable, here the day of the week. The first variation vector here is obtained by calculating how many times the conditional occurrence probability for each day of the week is the basic occurrence probability ignoring the day of the week for each small area. In the above example, the variation on Sunday between 10:00 and 10:00 is 0.06/0.1=0.6 times, and the combination of all time zones and all days of the week is obtained and used as the first variation vector. FIG. 4 is a diagram showing an example of a graph of results of obtaining first variation vectors for a plurality of small areas. In the example of FIG. 4, as the first variation vector, the amount of variation for each day of the week and each time slot for subregions A, B, C, and D are obtained.
 クラスタリング部116は、第1変動算出部114から小地域の各々の変動ベクトルの入力を受け付ける。クラスタリング部116は、小地域の各々の第1変動ベクトルをクラスタリングすることにより、小地域をクラスタに分類する。クラスタリングの手法はk-meansなどの代表的な手法を用いればよい。例えば、クラスタ数は手動で調整するパラメータとし、いくつかのクラスタ数を試して、最終的に未来の予測結果が最も適合するように調整すればよい。 The clustering unit 116 receives the input of the variation vector of each small area from the first variation calculation unit 114 . The clustering unit 116 classifies the small areas into clusters by clustering the first variation vectors of the small areas. A typical clustering method such as k-means may be used. For example, the number of clusters may be set as a parameter to be manually adjusted, and the number of clusters may be tried and adjusted so that the future prediction result is the most suitable.
 第2変動算出部118は、クラスタリング部116からクラスタリング結果として各クラスタに小地域の各々が分類された結果を受け付ける。第2変動算出部118は、クラスタ毎に、当該クラスタに属する小地域に対応付けられた事象発生データを集約し、第2変動ベクトルを算出する。具体的には、第2変動算出部118は、第2変動ベクトルの算出にあたって、クラスタ毎に、事象記憶部102から当該クラスタに含まれる小地域の事象発生データを取得して集約する。第2変動算出部118は、当該クラスタについて集約した事象発生データを用いて、時間帯の当該クラスタの基本発生確率を求め、かつ、曜日別かつ時間帯別の発生確率を条件とした当該クラスタの条件付き発生確率を求める。そして、当該クラスタの基本発生確率と、当該クラスタの条件付き発生確率とに基づいて、第2変動ベクトルを算出する。これにより、クラスタの特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出できる。 The second variation calculation unit 118 receives the result of classifying each small area into each cluster as a clustering result from the clustering unit 116 . For each cluster, the second variation calculation unit 118 aggregates the event occurrence data associated with the small areas belonging to the cluster, and calculates a second variation vector. Specifically, when calculating the second variation vector, the second variation calculation unit 118 acquires event occurrence data of small areas included in the cluster from the event storage unit 102 for each cluster and aggregates them. The second fluctuation calculation unit 118 uses the event occurrence data aggregated for the cluster to obtain the basic occurrence probability of the cluster in the time period, and the probability of occurrence of the cluster in each day of the week and time period. Find the conditional probability of occurrence. Then, a second variation vector is calculated based on the basic occurrence probability of the cluster and the conditional occurrence probability of the cluster. As a result, the second variation vector can be calculated as a vector representing the variation according to the specific explanatory variable of the cluster.
 図5は、小地域毎の第1変動ベクトルをk-meansで2つにクラスタリングし、クラスタ毎の第2変動ベクトルを求めた結果を示す図である。グラフ化した場合、基本的には、元となっている小地域毎の第1変動ベクトルよりも滑らかなグラフとなる。また、小地域毎の変動ベクトルから直接平均ベクトルを求めるのではなく、クラスタリングされた小地域の事象発生データを集約してから第2変動ベクトルを再計算しているため、基本発生確率が大きい元の小地域の影響をより強く受ける。これは実質、観測誤差が大きい小地域の影響を弱めていることになる。元の小地域で時間帯幅を広くとると近い結果となる場合もあるが、真の発生確率の変動が1時間毎に増減している箇所がある場合には、本開示の手法が適切である。 FIG. 5 is a diagram showing the result of clustering the first variation vector for each small area into two by k-means and obtaining the second variation vector for each cluster. When graphed, the graph is basically smoother than the original first variation vector for each small area. In addition, instead of obtaining the average vector directly from the variation vector for each small area, the event occurrence data of the clustered small areas is aggregated and then the second variation vector is recalculated. more strongly influenced by sub-regions of This effectively weakens the influence of small regions with large observation errors. If the time zone width is widened in the original small area, the result may be similar, but if there is a place where the change in the true probability of occurrence increases or decreases every hour, the method of the present disclosure is appropriate. be.
 統合算出部120は、第2変動算出部118からクラスタ毎の第2変動ベクトルの入力を受け付ける。統合算出部120は、小地域毎に、当該小地域の時間帯別の基本発生確率と、当該小地域が属するクラスタの第2変動ベクトルにおける変動値とに基づいて、事象発生確率を算出する。事象発生確率は、小地域毎に条件付き発生確率として求められる。例えば、日曜日かつ10時台における小地域毎の事象発生確率を求めるのであれば、小地域毎に曜日によらない10時台の基本発生確率を求める。その後、小地域が該当するクラスタの第2変動ベクトルから日曜日かつ10時台の変動値を取り出し、掛け合わせて、小地域毎の日曜日かつ10時台の条件付き発生確率を事象発生確率として算出する。 The integrated calculation unit 120 receives input of the second fluctuation vector for each cluster from the second fluctuation calculation unit 118 . The integrated calculation unit 120 calculates the event occurrence probability for each small area based on the basic occurrence probability for each time zone of the small area and the variation value in the second variation vector of the cluster to which the small area belongs. The event occurrence probability is obtained as a conditional occurrence probability for each small area. For example, if the event occurrence probability for each sub-area on Sunday between 10:00 and 10:00 is to be obtained, the basic occurrence probability between 10:00 and 10:00 is obtained for each sub-area regardless of the day of the week. After that, the variation value for Sunday and 10:00 is extracted from the second variation vector of the cluster to which the small area corresponds, and the conditional occurrence probability for Sunday and 10:00 for each small area is calculated as the event occurrence probability. .
 次に、確率算出装置100の作用について説明する。 Next, the operation of the probability calculation device 100 will be described.
 図6は、本開示の実施形態の確率算出装置100による確率算出処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14から確率算出プログラムを読み出して、RAM13に展開して実行することにより、確率算出処理が行なわれる。CPU11が確率算出装置100の各部として以下の処理を実行する。 FIG. 6 is a flowchart showing the flow of probability calculation processing by the probability calculation device 100 of the embodiment of the present disclosure. The CPU 11 reads out the probability calculation program from the ROM 12 or the storage 14, develops it in the RAM 13, and executes it, thereby performing the probability calculation process. The CPU 11 executes the following processes as each part of the probability calculation device 100 .
 ステップS100において、CPU11は、基本確率算出部110として、事象記憶部102に格納されている事象発生データに基づいて、小地域毎に、時間帯別の発生確率(基本発生確率)を算出する。 In step S100, the CPU 11, as the basic probability calculation unit 110, calculates the occurrence probability (basic occurrence probability) for each time period for each small area based on the event occurrence data stored in the event storage unit 102.
 ステップS102において、CPU11は、条件確率算出部112として、事象記憶部102に格納されている事象発生データに基づいて、小地域毎に、曜日別かつ時間帯別の発生確率(条件付き発生確率)を算出する。 In step S102, the CPU 11, as the conditional probability calculation unit 112, calculates the occurrence probability (conditional occurrence probability) for each day of the week and for each time period for each small area based on the event occurrence data stored in the event storage unit 102. Calculate
 ステップS104において、CPU11は、第1変動算出部114として、基本発生確率と、条件付き発生確率とに基づいて、小地域毎に、第1変動ベクトルを算出する。第1変動ベクトルは、特定の説明変数、ここでは曜日に応じた変動を表すベクトルである。 In step S104, the CPU 11, as the first fluctuation calculator 114, calculates a first fluctuation vector for each small area based on the basic occurrence probability and the conditional occurrence probability. The first variation vector is a vector representing variation according to a specific explanatory variable, here the day of the week.
 ステップS106において、CPU11は、クラスタリング部116として、小地域の各々の第1変動ベクトルをクラスタリングすることにより、小地域をクラスタに分類する。 In step S106, the CPU 11, as the clustering unit 116, classifies the small regions into clusters by clustering the first variation vectors of each of the small regions.
 ステップS108において、CPU11は、第2変動算出部118として、クラスタ毎に、当該クラスタに属する小地域に対応付けられた事象発生データを集約し、第2変動ベクトルを算出する。 In step S108, the CPU 11, as the second fluctuation calculation unit 118, aggregates the event occurrence data associated with the small areas belonging to the cluster for each cluster, and calculates the second fluctuation vector.
 ステップS110において、CPU11は、統合算出部120として、小地域毎に、当該小地域の時間帯別の基本発生確率と、当該小地域が属するクラスタの第2変動ベクトルにおける変動値とに基づいて、事象発生確率を算出する。 In step S110, the CPU 11, as the integrated calculation unit 120, for each small area, based on the basic occurrence probability for each time period of the small area and the variation value in the second variation vector of the cluster to which the small area belongs, Calculate the event occurrence probability.
 以上説明したように本実施形態の確率算出装置100によれば、細分化された小地域について観測されたデータが少ない場合でも、誤差を抑えて適切に小地域の事象発生確率を算出できる。 As described above, according to the probability calculation device 100 of the present embodiment, even when there is little data observed for subdivided small areas, it is possible to appropriately calculate the event occurrence probability of the small areas by suppressing errors.
 なお、上記実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した確率算出処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、確率算出処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 It should be noted that the probability calculation processing executed by the CPU reading the software (program) in the above embodiment may be executed by various processors other than the CPU. In this case, the processor is a PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing, such as an FPGA (Field-Programmable Gate Array), and an ASIC (Application Specific Integrated Circuit) to execute specific processing. A dedicated electric circuit or the like, which is a processor having a specially designed circuit configuration, is exemplified. Further, the probability calculation processing may be executed by one of these various processors, or by a combination of two or more processors of the same or different type (for example, multiple FPGAs and a combination of CPU and FPGA). etc.). More specifically, the hardware structure of these various processors is an electric circuit in which circuit elements such as semiconductor elements are combined.
 また、上記実施形態では、確率算出プログラムがストレージ14に予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 Also, in the above embodiment, a mode in which the probability calculation program is pre-stored (installed) in the storage 14 has been described, but the present invention is not limited to this. Programs are stored in non-transitory storage media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), and USB (Universal Serial Bus) memory. may be provided in the form Also, the program may be downloaded from an external device via a network.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiments, the following additional remarks are disclosed.
 (付記項1)
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出し、
 前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類し、
 前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出し、
 前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する、
 ように構成されている確率算出装置。
(Appendix 1)
memory;
at least one processor connected to the memory;
including
The processor
Based on the basic occurrence probability, which is the occurrence probability obtained from past event occurrence data for each of a plurality of subjects, and the conditional occurrence probability, which is the occurrence probability conditioned on a specific explanatory variable of the event occurrence data , for each target, calculating a first variation vector as a vector representing variation according to the specific explanatory variable;
classifying the objects into clusters by clustering the variation vectors of each of the objects;
For each cluster, the event occurrence data associated with the object belonging to the cluster is aggregated, and a second variation vector is calculated as a vector representing the variation according to the specific explanatory variable of the cluster;
For each target, using the second variation vector of the cluster to which the target belongs, calculating the event occurrence probability of the target under the condition of the specific explanatory variable;
A probability calculation device configured as follows.
 (付記項2)
 確率算出処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
 複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出し、
 前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類し、
 前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出し、
 前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する、
 非一時的記憶媒体。
(Appendix 2)
A non-transitory storage medium storing a program executable by a computer to perform a probability calculation process,
Based on the basic occurrence probability, which is the occurrence probability obtained from past event occurrence data for each of a plurality of subjects, and the conditional occurrence probability, which is the occurrence probability conditioned on a specific explanatory variable of the event occurrence data , for each target, calculating a first variation vector as a vector representing variation according to the specific explanatory variable;
classifying the objects into clusters by clustering the variation vectors of each of the objects;
For each cluster, the event occurrence data associated with the object belonging to the cluster is aggregated, and a second variation vector is calculated as a vector representing the variation according to the specific explanatory variable of the cluster;
For each target, using the second variation vector of the cluster to which the target belongs, calculating the event occurrence probability of the target under the condition of the specific explanatory variable;
Non-transitory storage media.
100 確率算出装置
102 事象記憶部
110 基本確率算出部
112 条件確率算出部
114 第1変動算出部
116 クラスタリング部
118 第2変動算出部
120 統合算出部
100 probability calculation device 102 event storage unit 110 basic probability calculation unit 112 conditional probability calculation unit 114 first fluctuation calculation unit 116 clustering unit 118 second fluctuation calculation unit 120 integrated calculation unit

Claims (5)

  1.  複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出する第1変動算出部と、
     前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類するクラスタリング部と、
     前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出する第2変動算出部と、
     前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する統合算出部と、
    を含む確率算出装置。
    Based on the basic occurrence probability, which is the occurrence probability obtained from past event occurrence data for each of a plurality of subjects, and the conditional occurrence probability, which is the occurrence probability conditioned on a specific explanatory variable of the event occurrence data , a first variation calculation unit that calculates, for each target, a first variation vector as a vector representing a variation according to the specific explanatory variable;
    A clustering unit that classifies the objects into clusters by clustering the variation vectors of each of the objects;
    for each cluster, the event occurrence data associated with the object belonging to the cluster is aggregated, and a second variation vector is calculated as a vector representing variation according to the specific explanatory variable of the cluster; a fluctuation calculator;
    an integrated calculation unit that calculates, for each target, the event occurrence probability of the target when the specific explanatory variable is used as a condition, using the second variation vector of the cluster to which the target belongs;
    Probability calculator including
  2.  前記統合算出部は、前記対象毎に、当該対象の前記基本発生確率と、当該対象が属する前記クラスタの前記第2変動ベクトルにおける変動値とに基づいて、前記事象発生確率を算出する請求項1に記載の確率算出装置。 The integrated calculation unit calculates, for each target, the event occurrence probability based on the basic occurrence probability of the target and a variation value in the second variation vector of the cluster to which the target belongs. 2. The probability calculation device according to 1.
  3.  前記第2変動算出部は、前記クラスタ毎に、当該クラスタについて集約した前記事象発生データを用いて、当該クラスタの前記基本発生確率を求め、かつ、前記特定の説明変数を条件とした当該クラスタの前記条件付き発生確率を求めて、当該クラスタの前記基本発生確率と、当該クラスタの前記条件付き発生確率とに基づいて、前記第2変動ベクトルを算出する請求項1又は請求項2に記載の確率算出装置。 For each cluster, the second variation calculation unit obtains the basic occurrence probability of the cluster using the event occurrence data aggregated for the cluster, and calculates the basic occurrence probability of the cluster with the specific explanatory variable as a condition. 3. The second variation vector is calculated based on the basic occurrence probability of the cluster and the conditional occurrence probability of the cluster by obtaining the conditional occurrence probability of Probability calculator.
  4.  複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出し、
     前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類し、
     前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出し、
     前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する、
     処理をコンピュータに実行させる確率算出方法。
    Based on the basic occurrence probability, which is the occurrence probability obtained from past event occurrence data for each of a plurality of subjects, and the conditional occurrence probability, which is the occurrence probability conditioned on a specific explanatory variable of the event occurrence data , for each target, calculating a first variation vector as a vector representing variation according to the specific explanatory variable;
    classifying the objects into clusters by clustering the variation vectors of each of the objects;
    For each cluster, the event occurrence data associated with the object belonging to the cluster is aggregated, and a second variation vector is calculated as a vector representing the variation according to the specific explanatory variable of the cluster;
    For each target, using the second variation vector of the cluster to which the target belongs, calculating the event occurrence probability of the target under the condition of the specific explanatory variable;
    A probability calculation method that causes a computer to execute a process.
  5.  複数の対象の各々における過去の事象発生データから求められた発生確率である基本発生確率と、前記事象発生データの特定の説明変数を条件とした発生確率である条件付き発生確率とに基づいて、前記対象毎に、前記特定の説明変数に応じた変動を表すベクトルとして第1変動ベクトルを算出し、
     前記対象の各々の変動ベクトルをクラスタリングすることにより、前記対象をクラスタに分類し、
     前記クラスタ毎に、当該クラスタに属する前記対象に対応付けられた前記事象発生データを集約し、当該クラスタの前記特定の説明変数に応じた変動を表すベクトルとして第2変動ベクトルを算出し、
     前記対象毎に、当該対象が属する前記クラスタの前記第2変動ベクトルを用いて、前記特定の説明変数を条件とした場合における当該対象の事象発生確率を算出する、
     処理をコンピュータに実行させる確率算出プログラム。
    Based on the basic occurrence probability, which is the occurrence probability obtained from past event occurrence data for each of a plurality of subjects, and the conditional occurrence probability, which is the occurrence probability conditioned on a specific explanatory variable of the event occurrence data , for each target, calculating a first variation vector as a vector representing variation according to the specific explanatory variable;
    classifying the objects into clusters by clustering the variation vectors of each of the objects;
    For each cluster, the event occurrence data associated with the object belonging to the cluster is aggregated, and a second variation vector is calculated as a vector representing the variation according to the specific explanatory variable of the cluster;
    For each target, using the second variation vector of the cluster to which the target belongs, calculating the event occurrence probability of the target under the condition of the specific explanatory variable;
    A probability calculation program that causes a computer to execute processing.
PCT/JP2021/023834 2021-06-23 2021-06-23 Probability calculation device, probability calculation method, and probability calculation program WO2022269818A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023834 WO2022269818A1 (en) 2021-06-23 2021-06-23 Probability calculation device, probability calculation method, and probability calculation program
JP2023529331A JPWO2022269818A1 (en) 2021-06-23 2021-06-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023834 WO2022269818A1 (en) 2021-06-23 2021-06-23 Probability calculation device, probability calculation method, and probability calculation program

Publications (1)

Publication Number Publication Date
WO2022269818A1 true WO2022269818A1 (en) 2022-12-29

Family

ID=84545402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023834 WO2022269818A1 (en) 2021-06-23 2021-06-23 Probability calculation device, probability calculation method, and probability calculation program

Country Status (2)

Country Link
JP (1) JPWO2022269818A1 (en)
WO (1) WO2022269818A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284991A (en) * 2004-03-30 2005-10-13 Fujitsu Fip Corp Emergency work simulation system and method
JP2016042369A (en) * 2015-11-02 2016-03-31 富士通株式会社 Risk case display program, risk case display method, and risk case display device
JP2019108798A (en) * 2017-05-16 2019-07-04 ワン コンサーン インコーポレイテッドOne Concern,Inc. Estimate of damage prevention with architectural structure renovation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284991A (en) * 2004-03-30 2005-10-13 Fujitsu Fip Corp Emergency work simulation system and method
JP2016042369A (en) * 2015-11-02 2016-03-31 富士通株式会社 Risk case display program, risk case display method, and risk case display device
JP2019108798A (en) * 2017-05-16 2019-07-04 ワン コンサーン インコーポレイテッドOne Concern,Inc. Estimate of damage prevention with architectural structure renovation

Also Published As

Publication number Publication date
JPWO2022269818A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2019216404A1 (en) Neural network construction device, information processing device, neural network construction method, and program
Weber et al. CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization
Wargon et al. A systematic review of models for forecasting the number of emergency department visits
WO2018207878A1 (en) Demand forecast device
US9189738B2 (en) Automatic event analysis
Liu et al. Collective traffic prediction with partially observed traffic history using location-based social media
WO2022269818A1 (en) Probability calculation device, probability calculation method, and probability calculation program
US20200379867A1 (en) Anomalous computing resource usage detection based on seasonality-based dynamic thresholds
Park et al. Robust sparse regression and tuning parameter selection via the efficient bootstrap information criteria
Sampson et al. Controlling the local false discovery rate in the adaptive Lasso
JP6946542B2 (en) Learning system, estimation system and trained model
US12001440B2 (en) Prediction device, prediction method, and prediction program
CN115545943A (en) Map processing method, device and equipment
JP7294421B2 (en) Learning device, prediction device, learning method, prediction method, learning program, and prediction program
US11704472B2 (en) Standard cells and variations thereof within a standard cell library
US20230205847A1 (en) Methods and systems for automatically identify in a dataset insufficient data for learning, or records with anomalous combinations of feature values
JP6557192B2 (en) Clustering apparatus and clustering method
Islam et al. Fuel shortages during hurricanes: Epidemiological modeling and optimal control
von Collani Theoretical stochastics
JP2019066930A (en) Congestion predicting model generation device
JP7273562B2 (en) Track prediction device and track prediction method
WO2022091368A1 (en) Inference device, inference method, and inference program
EP4055780A1 (en) Management of predictive models of a communication network
WO2022264343A1 (en) Demand prediction device, demand prediction method, and demand prediction program
JP7268753B2 (en) Parameter estimation device, parameter estimation method, and parameter estimation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947103

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529331

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947103

Country of ref document: EP

Kind code of ref document: A1