WO2022269763A1 - Method for measuring phthalic-acid-ester- and bromine-based flame-retardant compound, and gas chromatography for use in said method - Google Patents

Method for measuring phthalic-acid-ester- and bromine-based flame-retardant compound, and gas chromatography for use in said method Download PDF

Info

Publication number
WO2022269763A1
WO2022269763A1 PCT/JP2021/023636 JP2021023636W WO2022269763A1 WO 2022269763 A1 WO2022269763 A1 WO 2022269763A1 JP 2021023636 W JP2021023636 W JP 2021023636W WO 2022269763 A1 WO2022269763 A1 WO 2022269763A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
separation column
compound
sample
measuring
Prior art date
Application number
PCT/JP2021/023636
Other languages
French (fr)
Japanese (ja)
Inventor
恭彦 工藤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2023529283A priority Critical patent/JPWO2022269763A1/ja
Priority to CN202180098937.5A priority patent/CN117413180A/en
Priority to PCT/JP2021/023636 priority patent/WO2022269763A1/en
Publication of WO2022269763A1 publication Critical patent/WO2022269763A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a method for measuring phthalate esters and brominated flame retardant compounds, and a gas chromatograph column used in carrying out the method.
  • Phthalates di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP)
  • PBBs polybrominated biphenyls
  • PBDEs polybrominated diphenyl ethers
  • Pyrolysis-gas chromatography/mass spectrometry and pyrolyzer/thermal desorption-gas chromatography/mass spectrometry (Py-GC/MS) are used to measure phthalates, PBBs, and PBDEs in resin samples.
  • /TD-GC/MS method is used.
  • a container containing a resin sample is introduced into a pyrolyzer and heated to thermally decompose the resin.
  • PBDEs hereinafter collectively referred to as "regulated compounds" are introduced into the gas chromatograph.
  • the resin sample is heated, for example, to about 600°C.
  • a container containing a resin sample is introduced into a pyrolyzer and heated to a temperature below the temperature at which the resin thermally decomposes, thereby desorbing the regulated compounds contained in the resin from the resin. to the gas chromatograph.
  • the resin sample is heated, for example, to about 340°C.
  • Non-Patent Document 1 describes that an insert tube is used to attach a guard column to a separation column in the following procedure. First, the guard column is inserted from one end of the insert tube, and the separation column is inserted from the other end. A ferrule is then placed on each end of the insert tube. Finally, the guard column and the separation column positioned inside the insert tube are fixed by attaching nuts to the outside of the ferrules positioned at both ends and crushing the ferrules.
  • connecting the guard column described in Non-Patent Document 1 to the separation column requires a three-step work process, which takes time and effort.
  • the connection between the guard column and the separation column is not perfect, carrier gas and regulated compounds will leak, resulting in erroneous measurement results.
  • Non-Patent Document 1 a metal insert tube is used.
  • the regulated compounds include those that are highly reactive with metals, and there is a gap between the guard column inserted in the insert tube and the separation column. Then, if a highly reactive regulated compound is adsorbed on the metal constituting the insert tube and then decomposed, the content of the regulated compound cannot be measured correctly.
  • the problem to be solved by the present invention is that it is possible to suppress the deterioration of the separation column without requiring complicated work, and to accurately measure phthalates and brominated flame retardants that are easily adsorbed and decomposed. To provide a method and a gas chromatographic column for use in carrying out the method.
  • the method for measuring phthalate esters and brominated flame retardant compounds according to the present invention which has been made to solve the above problems, heating a sample containing a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group to vaporize the target compound contained in the sample;
  • An analysis column having a separation column internally provided with a stationary phase for separating the target compound, and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts. , adjusting the temperature to a temperature lower than the maximum temperature at which the target compound is vaporized, introducing the vaporized target compound into the analysis column; A target compound flowing out from the separation column is detected.
  • Another aspect of the present invention which has been made to solve the above problems, is a gas chromatograph column used in carrying out a method for measuring phthalates and brominated flame retardant compounds, a separation column provided with a stationary phase for separating a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group; and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts.
  • a column provided with a stationary phase for separating target compounds belonging to at least one of phthalates, polybrominated biphenyls, and polybrominated diphenyl ethers, and a An analysis column having the separation column and a guard column provided integrally is used.
  • the separation column and the guard column are integrally constructed without using connecting parts, there is no need to connect them, and the carrier gas or the target compound leaks from the connection between the two.
  • the target compound is not adsorbed to the connecting member and decomposed. Therefore, deterioration of the separation column can be suppressed without requiring complicated work, and phthalate esters and brominated flame-retardant compounds, which tend to adhere to the separation column or decompose, can be measured correctly.
  • FIG. 4 is a diagram showing the configuration of a column in this embodiment; Graph showing the relationship between the length of the guard column and the flow rate of the carrier gas when the flow rate of the carrier gas is constant. Measurement conditions for phthalate esters and brominated flame retardant compounds in this example.
  • An example of a relative sensitivity coefficient table in this embodiment. 1 is a flow chart showing a procedure in an embodiment of a method for measuring phthalates and brominated flame retardants according to the present invention.
  • FIG. 4 is a flow chart showing the procedure in another example of the method for measuring phthalate esters and brominated flame retardant compounds according to the present invention. Measurement results confirming the effects of the measurement method and the chromatographic column for the phthalate esters and brominated flame retardant compounds of this example.
  • FIG. 1 shows the main configuration of a pyrolyzer-gas chromatograph/mass spectrometer (Py-GC-MS) 1 used in the method for measuring a regulated compound in this example.
  • the Py-GC-MS 1 is roughly divided into a gas chromatograph section 10, a mass spectrometry section 20, and a control/processing section 30.
  • the gas chromatograph unit 10 includes a sample vaporization chamber 11, a pyrolyzer 12 provided in the sample vaporization chamber 11, a carrier gas flow path 13 connected to the sample vaporization chamber, and an outlet of the sample vaporization chamber 11.
  • a column 14 is provided. Column 14 is housed inside column oven 15 .
  • the pyrolyzer 12 and the column 14 in the column oven 15 are each heated to a predetermined temperature by a heating mechanism (not shown).
  • FIG. 2 shows the structure of the column 14 (corresponding to the analysis column in the present invention) used in this example.
  • Column 14 is composed of guard column 141 and separation column 142 .
  • the guard column 141 is provided seamlessly and integrally with the separation column 142 on the side of the sample injection port of the separation column 142 .
  • Both the guard column 141 and the separation column 142 are capillary tubes made of fused silica with an inner diameter of 0.25 mm. liquid phase) is provided.
  • 100% dimethylpolysiloxane with a film thickness of 0.1 ⁇ m is used as the stationary phase.
  • a stationary phase other than dimethylpolysiloxane may be used to measure the controlled compound.
  • the regulated compound in this example is a highly polar compound
  • the film thickness is preferably 0.05 ⁇ m or more because it is necessary to desorb from the stationary phase by generating a certain degree of interaction with each regulatory compound.
  • guard columns have a stationary phase inside.
  • contaminants are more likely to be collected and less likely to reach the separation column, so that the separation column is less likely to be contaminated.
  • both contaminants and the target compound are collected on the stationary phase of the guard column, so peak tailing is likely to occur when measuring the target compound.
  • a guard column 141 without a stationary phase is used in order to prevent tailing of the peak of the regulated compound.
  • the length of the guard column 141 of this embodiment is 2 m, and the length of the separation column 142 is 15 m.
  • the guard column 141 is used to prevent the separation column 142 from being contaminated by substances other than the regulated compounds (resin thermal decomposition products, contaminant compounds, etc.) released when the resin sample is heated by the pyrolyzer 12. . Since the temperature at which the column 14 is heated by the column oven 15 is lower than the temperature at which the pyrolyzer 12 is heated, these substances released from the pyrolyzer 12 are gradually cooled and adhere to the inner wall surface of the guard column 141 . If guard column 141 is shorter than 50 cm, these substances can easily enter separation column 142 .
  • the length of the guard column 141 is preferably 50 cm or more and 4 m or less.
  • FIG. 3 shows the relationship between the carrier gas flow rate and the length of the guard column required to achieve a linear velocity of 52.1 cm/sec using the same separation column with a length of 15 m and an inner diameter of 0.25 mm as in this example. .
  • the length of the guard column 141 is 4 m or less, the increase in the carrier gas flow rate can be suppressed to 30% or less of the flow rate when the guard column 141 is not used.
  • the guard column 141 with a length of 2 m is used as in the present embodiment, the linear velocity can be the same as when the guard column 141 is not used, simply by increasing the flow rate of the carrier gas by 10%.
  • the flow rate of the carrier gas itself depends on the inner diameter of the column and the length of the separation column, but in many cases, the relationship between the flow rate of the carrier gas and the length of the guard column is similar to that shown in FIG. Therefore, it is preferable to set the length of the guard column to 50 cm or more and 4 m or less.
  • the mass spectrometer 20 includes an electron ionization source 22 , an ion lens 23 , a quadrupole mass filter 24 and an ion detector 25 inside a vacuum chamber 21 .
  • Sample components temporally separated inside the column 14 are sequentially introduced into the electron ionization source 22 and ionized by irradiation with thermal electrons emitted from a filament (not shown).
  • the control/processing unit 30 has a storage unit 31 .
  • the storage unit 31 stores method files used when measuring the controlled compounds.
  • a method file is a file that describes measurement conditions for a regulated compound.
  • the measurement conditions include the temperature of the pyrolyzer 12, the temperature of the separation column 142 (the temperature of the column oven 15), the type and flow rate of the carrier gas, and the phthalates, PBBs, and PBDEs, which are regulated compounds. It contains information such as two types of ions (a quantifying ion and a confirming ion).
  • FIG. 4 shows an example of measurement conditions.
  • Figure 4 shows three ions for phthalates (one quantifying ion and two confirming ions) and two ions for PBBs and PBDEs (one quantifying ion and one confirming ion). ) is described.
  • a quantifying ion is used to quantify the compound from the area (or height) of the peak of the quantifying ion.
  • the confirmation ion is used to confirm (identify) the compound based on the fact that the ratio of the height of the peak area of the quantitation ion and the height of the peak area of the confirmation ion is within a preset range.
  • the storage unit 31 also stores information on the mass-to-charge ratio of one or more preliminary ions for each compound.
  • the storage unit 31 stores a relative response coefficient database 311 .
  • the relative response factor database 311 associates one or more predetermined reference compounds included in the regulated compounds with reference compounds that are regulated compounds other than the reference compounds.
  • the ratio of the detection sensitivity of the reference compound to the detection sensitivity of the reference compound (relative response factor RRF) is stored in a database.
  • RRF relative response factor
  • An example of a relative response factor table for PBBs and PBDEs is shown in FIG.
  • a relative response coefficient database (for example, Non-Patent Document 4) is stored for phthalates.
  • the relative response factor database 311 is used when performing "2-1. Screening of regulated compounds using the relative response factor database" (described later), and "2-2. When “screening of regulated compounds” (described later) is performed, it is not necessary to store the relative response coefficient database 311 in the storage unit 31.
  • FIG. 1 Screening of regulated compounds using the relative response factor database
  • RRF a/x The relative response factor RRF a/x of the reference compound a with respect to the standard compound x is represented by the following formula (1).
  • RRFa /x RFa / RFx ...(1) where RFa and RFx are the response factors for reference compound a and reference compound x, respectively.
  • the control/processing unit 30 includes, as functional blocks, a reference compound determination unit 32, a standard sample measurement unit 33, an analysis target sample measurement unit 34, a reference compound quantification unit 35, a reference compound quantification unit 36, and a screening unit 37. .
  • the entity of the control/processing unit 30 is a general personal computer, and each functional block described above is realized by executing a preinstalled analysis sample measurement program on the processor.
  • the control/processing unit 30 is also connected to an input unit 4 for a user to perform an input operation and a display unit 5 for displaying various information.
  • the reference compound determination unit 32 and the reference compound quantification unit 36 (the functional blocks indicated by the dashed lines in FIG. 1) perform “2-1.
  • control/processing unit 30 controls the standard sample measurement unit 33, the analysis target A sample measurement unit 34, a reference compound quantification unit (quantification unit) 35, and a screening unit 37 (functional blocks indicated by solid lines in FIG. 1) may be provided.
  • the Py-GC-MS1 of this embodiment can perform two types of screening, ie, screening of controlled compounds using a relative response coefficient database and screening of controlled compounds using a calibration curve for each controlled compound.
  • the reference compound determination unit 32 reads the relative response coefficient database 311 from the storage unit 31 and displays the relative response coefficient table (FIG. 5) described therein on the display unit 5. do.
  • the user confirms this and changes the correspondence between the standard compound and the reference compound if necessary. For example, if it is difficult to obtain a standard sample containing the reference compound selected in the relative response coefficient table, the compound may be deleted from the reference compound, or another compound may be set as the reference compound. can be done.
  • the reference compound is determined (step 1).
  • the standard sample measurement unit 33 performs measurement conditions described in the method file associated with the relative response coefficient database 311 stored in the storage unit 31 (related to measurement of the reference compound). (Step 2).
  • the temperature of the pyrolyzer 12 is first raised from 200° C. at a rate of 20° C./min based on the measurement conditions shown in FIG. After reaching 300° C., the temperature is raised at a rate of 5° C./min, and when the temperature reaches 340° C., the temperature is maintained for 1 minute.
  • the controlled compound contained in the standard sample is vaporized (step 21).
  • the vaporized controlled compound is introduced into the analysis column 14 along with the carrier gas flow.
  • the standard sample measurement unit 33 displays the completion of heating on the display unit 5 (or notifies by voice or the like) and instructs the user to take out the container.
  • each substance including the decomposed resin vaporized from the standard sample by the pyrolyzer 12 is introduced into the analysis column 14 while being gradually cooled (step 23).
  • Decomposed resin introduced into the analysis column 14 adheres to the inner wall inside the guard column 141 provided on the inlet side of the analysis column 14 .
  • the regulated compound adheres to the inner wall of the guard column 141 or mainly reaches the inlet of the separation column 142 and adheres.
  • the standard sample measuring section 33 starts heating the column oven 15 .
  • the temperature was raised from 80° C. at a rate of 20° C./min and maintained at 320° C. for 4 minutes.
  • the regulated compounds adhering to the inlet of the separation column 142 enter the separation column 142 in order from those that have reached the vaporization temperature of each compound, and are transferred to the stationary phase 1421 by the action of the stationary phase 1421 of the separation column 142. It advances through the separation column 142 while desorbing and flows out. Compounds exiting the separation column 142 are in turn introduced into the electron ionization source 22 .
  • the ions generated by the electron ionization source 22 are converged near the central axis (ion optical axis C) in the direction of flight by the ion lens 23, and then enter the quadrupole mass filter 24. It is separated and detected by the ion detector 25 (step 24). Output signals from the ion detector 25 are sequentially transmitted to and stored in the storage unit 31 .
  • the mass spectrometry unit 20 repeatedly performs scan measurement and selective ion monitoring (SIM) measurement. Specifically, the mass-to-charge ratio of ions passing through the quadrupole mass filter 24 is scanned in a predetermined range (for example, the range of m/z is 50 to 1000), and A preset SIM measurement for each m/z in which the mass-to-charge ratio of the ion to be measured is fixed to the mass-to-charge ratio of the quantitation ion or confirming ion of each compound for a predetermined time is set as one set, and this is repeated. Note that the scan measurement is not essential, and only the SIM measurement may be repeatedly performed.
  • SIM selective ion monitoring
  • n-alkane samples are also measured.
  • An n-alkane sample is a standard sample containing multiple compounds with different hydrocarbon chain lengths, and is used to obtain a retention index based on the retention time of each compound.
  • the retention index Ix of compound x is represented by the following formula (4).
  • C n , C n+i are the numbers of carbon atoms in n-alkanes positioned before and after the retention time of the compound
  • t x is the retention time of compound x
  • t n , t n+i are the retention times of the n-alkanes before and after the retention time of the compound.
  • the standard sample measuring section 33 Upon completion of the measurement of the standard sample, the standard sample measuring section 33 creates a calibration curve corresponding to each reference compound (step 3). Here, only one standard sample is measured to create a one-point calibration curve. When the amount of the reference compound and the measured intensity are in a non-linear relationship, a plurality of standard samples with different contents of the reference compound may be measured to create a calibration curve based on two or more measurement points.
  • the user After creating the calibration curve of the reference compound, the user sets the sample to be analyzed and instructs the start of measurement.
  • the sample to be analyzed is measured using the measurement conditions obtained (step 4). Specifically, based on the measurement conditions shown in FIG. 3, the pyrolyzer 12 is first heated from 200° C. at a rate of 20° C./min. After reaching 300° C., the temperature is raised at a rate of 5° C./min, and when the temperature reaches 340° C., the temperature is maintained for 1 minute. As a result, the controlled compound contained in the standard sample is vaporized (step 41). The vaporized controlled compound is introduced into the analysis column 14 along with the carrier gas flow.
  • the standard sample measurement unit 33 displays the completion of heating on the display unit 5 (or notifies by voice or the like) and instructs the user to take out the container.
  • each substance including the decomposed resin vaporized from the sample to be analyzed by the pyrolyzer 12 is introduced into the analysis column 14 while being gradually cooled (step 43).
  • Decomposed resin products introduced into the analysis column 14 adhere to the inner wall of the guard column 141 provided on the inlet side of the analysis column 14 .
  • the regulated compound adheres to the inner wall of the guard column 141 or mainly reaches the inlet of the separation column 142 and adheres.
  • the standard sample measuring section 33 starts heating the column oven 15 .
  • the temperature was raised from 80° C. at a rate of 20° C./min and maintained at 320° C. for 4 minutes.
  • the regulated compounds adhering to the inlet of the guard column 141 or the separation column 142 enter the separation column 142 in order from those that have reached the vaporization temperature of each compound, and interact with the stationary phase 1421 of the separation column 142. It advances through the separation column 142 while desorbing to the stationary phase 1421 and flows out.
  • the compounds discharged from the separation column 142 are sequentially mass-separated by the mass spectrometer 20 and detected by the ion detector 25 (step 44).
  • an n-alkane sample may also be measured separately from the measurement of the sample to be analyzed.
  • scan measurement is not essential, and only SIM measurement may be performed.
  • by performing scan measurement if a large peak other than the compound to be measured is found after creating the total ion current chromatogram, by analyzing the mass spectrum obtained at the retention time of the peak, Compounds corresponding to peaks can be identified.
  • the reference compound quantification unit 35 When the measurement of the sample to be analyzed is completed, the reference compound quantification unit 35 generates quantitative ions and confirmation ions based on the respective retention indices of the reference compounds, or the predicted retention times calculated based on the retention indices and the measurement data of n-alkanes. Determine the mass chromatogram peak of . Then, it is confirmed that the peak area of the quantitative ion and the peak area of the confirmation ion are within a predetermined range, and the quantitative value is obtained by comparing the peak area of the quantitative ion with the calibration curve of the reference compound (step 5). .
  • the reference compound quantification unit 36 calculates the retention time of each reference compound, or the predicted retention time calculated based on the retention index of each reference compound and the measurement data of n-alkane, Determine the mass chromatogram peaks of the quantitation and confirming ions for each reference compound. Then, it is confirmed that the peak area of the quantitative ions and the peak area of the confirmation ions are within a predetermined range.
  • quantitation of each reference compound based on the amount of the reference compound contained in the standard sample, the peak area of the quantification ion of the reference compound detected by measuring the standard sample, the peak area of the quantification ion of the reference compound and the relative response factor Obtain a value (step 6).
  • the screening unit 37 compares these quantitative values with predetermined threshold values to screen the sample to be analyzed.
  • predetermined threshold values the amount of DEHP, the amount of BBP, the amount of DBP, the amount of DIBP, the total amount of PBBs, and the total amount of PBDEs are all 1000 mg / kg or less
  • the analysis target Screening judgment whether the quantitative values of DEHP, BBP, DBP, and DIBP contained in the sample are within the range of ⁇ 50% of the reference value, and whether the total amount of PBBs and PBDEs is within the range of ⁇ 70% of the reference value. (step 7).
  • Non-Patent Document 5 the following criteria described in Non-Patent Document 5 can be used. If the quantitative value of DEHP, BBP, DBP, and DIBP contained in the sample to be analyzed is 500 mg/kg or less, and if the total quantitative value of PBBs and PBDEs is all 300 mg/kg or less, the analysis Judge that the target sample satisfies the standards of the RoHS Directive. In addition, if the quantitative values of DEHP, BBP, DBP, and DIBP are 1500mg/kg or more, or if any of the total quantitative values of PBBs and PBDEs is 1700mg/kg or more, the sample to be analyzed shall comply with the RoHS Directive. judged not to meet the criteria.
  • the standard sample measurement unit 33 When the user sets a container containing a standard sample, which is a resin sample containing known amounts of all regulated compounds, to the pyrolyzer and instructs the start of measurement, the standard sample measurement unit 33 is stored in the storage unit 31.
  • the standard sample is measured according to the measurement conditions described in the method file (step 11).
  • the procedure (steps 21 to 24) for the measurement of the standard sample is the same as in the case of using the relative response factor database (except that all controlled compounds are measured), so a detailed explanation is omitted.
  • the standard sample measurement unit 33 After completing the measurement of the standard sample, the standard sample measurement unit 33 creates a calibration curve for each regulated compound (step 12). Again, measure only one standard sample to create a one-point calibration curve. If there is a non-linear relationship between the amount of a regulated compound and the measured intensity, multiple standard samples with different contents of the regulated compound may be measured, and a calibration curve based on two or more measurement points may be created.
  • the user After creating the calibration curve for each regulated compound, the user sets the sample to be analyzed and instructs the start of measurement.
  • the sample to be analyzed is measured using the measurement conditions described in the method file (step 13).
  • the procedure (steps 41 to 44) for measurement of the sample to be analyzed is also the same as in the case of using the relative response coefficient database, so detailed description will be omitted.
  • the reference compound quantification unit 35 determines the mass chromatogram peaks of the quantitative ions and confirmation ions of each regulated compound based on the retention time of each regulated compound obtained during the measurement of the standard sample. to decide. Then, it is confirmed that the peak area of the quantitative ion and the peak area of the confirmation ion are within a predetermined range, and the quantitative value is obtained by comparing the peak area of the quantitative ion with the calibration curve of each regulatory compound (step 14). .
  • the screening unit 37 compares these quantitative values with predetermined threshold values to screen the sample to be analyzed.
  • analysis based on the standard values in the RoHS Directive (the amount of DEHP, the amount of BBP, the amount of DBP, the amount of DIBP, the total amount of PBBs, and the total amount of PBDEs are all 1000 mg/kg or less). Screening whether the quantified values of DEHP, BBP, DBP, and DIBP contained in the target sample are within ⁇ 50% of the standard value, and whether the total amount of PBBs and PBDEs are within ⁇ 70% of the standard value. Determine (step 15).
  • the separation column 142 provided with the stationary phase for separating the controlled compound and the guard column 141 provided integrally with the separation column 142 on the inlet side of the separation column 142 are used.
  • the carrier gas and the regulated compound do not leak from the connection between the two, and the regulated compound does not adsorb and decompose when the connecting member is touched. Therefore, deterioration of the separation column 142 can be suppressed without requiring complicated work, and regulated compounds that tend to adhere to the separation column 142 or decompose can be measured correctly.
  • FIG. 8 shows the results of measurement using the column 14 of the above example (measurement conditions are the same as in the above example in FIG. 4).
  • the graph in FIG. 8 plots changes in the symmetry coefficient with respect to the number of measurements.
  • a column without a guard column usually had a symmetry coefficient of more than 2.5 after 300-400 measurements. .
  • the above embodiment is just an example, and can be modified as appropriate in line with the spirit of the present invention.
  • Py-GC-MS1 was used to thermally desorb the controlled compound by the Py/TD-GC/MS method to screen the sample for analysis. It is also possible to screen the sample to be analyzed by
  • the apparatus configuration for the Py-GC/MS method is the same as in the above examples, and the sample heating temperature by the pyrolyzer is different.
  • the maximum temperature at which the resin sample is heated in order to vaporize the target compound contained in the resin sample is higher than the heating temperature of the separation column. Since other substances (decomposition products of the resin and contaminant compounds) are introduced into the analysis column 14, contamination of the separation column 142 can be prevented by providing the guard column 141 as in the above embodiment.
  • the guard column 141 and the separation column 142 are integrally configured without connecting fittings such as nuts and ferrules, compounds that easily adsorb and decompose, such as phthalates and flame-retardant brominated compounds, are not used. can be measured correctly.
  • each compound flowing out from the column 14 was configured to be subjected to mass spectrometry, but each compound can also be detected by a method other than mass spectrometry.
  • detectors include, for example, flame ionization detectors (FID), thermal ionization detectors (FTD), flame photometric detectors (FPD), electron capture detectors (ECD), sulfur chemiluminescence detectors (SCD). , thermal conductivity detector (TCD), barrier discharge ionization detector (BID), etc. can also be used.
  • a method for measuring a phthalate ester and a brominated flame retardant compound comprises: heating a sample containing a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group to vaporize the target compound contained in the sample; An analysis column having a separation column internally provided with a stationary phase for separating the target compound, and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts. , adjusting the temperature to a temperature lower than the maximum temperature at which the target compound is vaporized, introducing the vaporized target compound into the analysis column; A target compound flowing out from the separation column is detected.
  • FIG. 8 Another aspect of the present invention is a gas chromatograph column used in carrying out a method for measuring phthalates and brominated flame retardant compounds, a separation column provided with a stationary phase for separating a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group; and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts.
  • the gas chromatograph column described in Section 8 is used in the method for measuring phthalates and brominated flame retardant compounds in Section 1.
  • the separation column and the guard column are integrally constructed without using connecting parts, so there is no need to connect them.
  • the target compound is not adsorbed and decomposed. Therefore, deterioration of the separation column can be suppressed without requiring complicated work, and phthalate esters and brominated flame-retardant compounds, which tend to adhere to the separation column or decompose, can be measured correctly.
  • the target compound is vaporized by thermal decomposition and the target by thermal desorption.
  • the method of vaporizing the compound can be properly used.
  • guard columns have a stationary phase (liquid phase) inside.
  • a stationary phase liquid phase
  • contaminants are more likely to be collected and less likely to reach the separation column, so that the separation column is less likely to be contaminated.
  • contaminants trapped in the stationary phase of the guard column flow out, and the peak tends to tail when the target compound is measured.
  • an analysis column in which a stationary phase is provided only in the separation column is used. Content can be measured accurately.
  • the guard column has a length of 50 cm or more and 4 m or less.
  • the use of a guard column with a length of 50 cm or longer causes contaminants such as resin decomposition products to enter the separation column and contaminate the separation column. can be prevented.
  • the guard column is 4 m or shorter, the target compound can be measured at the same linear velocity by increasing the flow rate of the carrier gas by about 30% compared to when the guard column is not used.
  • the separation column has a length of 10 m or more and 30 m or less.
  • the controlled compounds contained in the sample can be sufficiently separated by using a separation column with a length of 10m or longer. Moreover, since the length of the separation column is 30 m or less, the measurement time does not become extremely long.
  • Resin samples containing phthalates and brominated flame retardant compounds contain various contaminants other than the target compound.
  • decomposition products of the resin also enter the column of the gas chromatograph when the target compound is vaporized.
  • each compound that has flowed out from the separation column is detected by mass separation, so even if contaminants co-eluted with the target compound are present, Contaminants can be found with high accuracy and the content of target compounds can be measured correctly.
  • the method for measuring the phthalate esters and brominated flame retardant compounds described in items 1 to 6 is as described in item 7. Whether the content of the target compound is within a predetermined range or not It can be suitably used for screening the sample based on the above. In particular, by using an analysis column having a guard column and a separation column having lengths as described in the fourth and fifth items, the sample to be analyzed can be screened with high efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided is a method for measuring a phthalic-acid-ester- and bromine-based flame-retardant compound, said method including: a step 41 for heating a specimen that contains a subject compound belonging to at least one of phthalic acid esters, polybrominated biphenyls, and polybrominated diphenyl esters, and vaporizing the subject compound included in the specimen; a step 42 for adjusting an analysis column 14 to a temperature lower than the maximum temperature used when vaporizing the subject compound, the analysis column 14 having a separation column 142 provided with a securing phase 1421 for separating the subject compound in the interior thereof, and a guard column 141 provided integrally with the separation column at the inlet side of the separation column without using a connection component; a step 2 for introducing the vaporized subject compound into the analysis column 14; and a step 44 for detecting the subject compound flowing out from the separation column 142.

Description

フタル酸エステル類及び臭素系難燃化合物の測定方法及び同方法用ガスクロマトグラフカラムMethod for measuring phthalates and brominated flame-retardant compounds and gas chromatograph column for the method
 本発明は、フタル酸エステル類及び臭素系難燃化合物の測定方法、及び該方法を実施する際に用いるガスクロマトグラフカラムに関する。 The present invention relates to a method for measuring phthalate esters and brominated flame retardant compounds, and a gas chromatograph column used in carrying out the method.
 フタル酸エステル類(フタル酸ジ(2-エチルへキシル)(DEHP)、フタル酸ブチルベンジル(BBP)、フタル酸ジブチル(DBP)、及びフタル酸ジイソブチル(DIBP))や、臭素系難燃化合物であるポリ臭化ビフェニル群(polybrominated biphenyls, PBBs, 分子式C12H(10-n)Brn(1≦n≦10))及びポリ臭化ジフェニルエーテル群(polybrominated diphenyl ethers, PBDEs, 分子式C12H(10-m)BrmO(1≦m≦10))はRoHS指令における規制対象の化合物に指定されており、欧州に輸出される電気電子機器製品に含まれる樹脂等の各部品に許容されるフタル酸エステル類、PBBs、及びPBDEsの総含有量がそれぞれ定められている。 Phthalates (di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP)) and brominated flame retardants Certain polybrominated biphenyls (PBBs, molecular formula C 12 H (10-n) Br n (1 ≤ n ≤ 10)) and polybrominated diphenyl ethers (PBDEs, molecular formula C 12 H (10 -m) Br m O (1≤m≤10)) is designated as a regulated compound under the RoHS Directive, and is a phthalate that is allowed in parts such as resins contained in electrical and electronic products exported to Europe. Total contents of acid esters, PBBs, and PBDEs are defined respectively.
 樹脂試料に含まれるフタル酸エステル類、PBBs、及びPBDEsの測定には、熱分解-ガスクロマトグラフィ/質量分析(Py-GC/MS)法やパイロライザー/熱脱離-ガスクロマトグラフィ/質量分析(Py/TD-GC/MS)法が用いられている。Py-GC/MS法では、樹脂試料を収容した容器をパイロライザーに導入して加熱することにより樹脂を熱分解させて、その熱分解物及び樹脂試料に含まれるフタル酸エステル類、PBBs、及びPBDEs(以下、これらをまとめて「規制化合物」と呼ぶ。)をガスクロマトグラフに導入する。Py-GC/MSでは、例えば約600℃に樹脂試料を加熱する。Py/TD-GC/MS法では、樹脂試料を収容した容器をパイロライザーに導入して樹脂が熱分解する温度以下の温度に加熱することにより樹脂内に含まれる規制化合物を樹脂から脱離させてガスクロマトグラフに導入する。Py/TD-GC/MSでは、例えば約340℃に樹脂試料を加熱する。 Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolyzer/thermal desorption-gas chromatography/mass spectrometry (Py-GC/MS) are used to measure phthalates, PBBs, and PBDEs in resin samples. /TD-GC/MS) method is used. In the Py-GC/MS method, a container containing a resin sample is introduced into a pyrolyzer and heated to thermally decompose the resin. PBDEs (hereinafter collectively referred to as "regulated compounds") are introduced into the gas chromatograph. In Py-GC/MS, the resin sample is heated, for example, to about 600°C. In the Py/TD-GC/MS method, a container containing a resin sample is introduced into a pyrolyzer and heated to a temperature below the temperature at which the resin thermally decomposes, thereby desorbing the regulated compounds contained in the resin from the resin. to the gas chromatograph. In Py/TD-GC/MS, the resin sample is heated, for example, to about 340°C.
 Py-GC/MS法では、規制化合物だけでなく、樹脂の熱分解物及び樹脂試料に含まれる規制化合物以外の化合物(夾雑化合物)もガスクロマトグラフに導入される。Py/TD-GC/MS法でも、樹脂試料の一部が熱分解して生成された熱分解物、及び夾雑化合物がガスクロマトグラフに導入される。これらの規制化合物を測定する際の分離カラムの保温温度は、パイロライザーで樹脂試料を加熱する際の温度よりも低い(例えば約300℃以下)ため、樹脂試料の分解物や夾雑化合物の一部が分離カラム内に付着して残留し、分離カラム内が汚染されやすい。分離カラム内が汚染されると、規制化合物を測定したときにクロマトグラムのピークがテーリングしたり、測定の再現性や定量精度が悪くなったりする。そのため、分離カラムが劣化した場合には、劣化した入口部分を切断したり、分離カラムを新品に交換したりする必要がある。電気電子機器製品には数多くの樹脂部品が用いられており、それらの樹脂部品に含まれる規制化合物の量を高頻度で測定することが求められる場合がある。しかし、分離カラムが劣化する毎に上記の作業を行うと測定効率が悪くなる。そこで、ガスクロマトグラフの分離カラムの入口にガードカラムを取り付け、分離カラムの内部の汚染を抑制することが提案されている(例えば非特許文献1及び2)。これにより分離カラムの寿命を長くして上記作業の頻度を下げ、測定効率を高くすることができる。 In the Py-GC/MS method, not only regulated compounds but also compounds other than regulated compounds (contamination compounds) contained in resin thermal decomposition products and resin samples are introduced into the gas chromatograph. Also in the Py/TD-GC/MS method, thermal decomposition products generated by thermal decomposition of a part of the resin sample and contaminant compounds are introduced into the gas chromatograph. Since the temperature of the separation column when measuring these regulated compounds is lower than the temperature used to heat the resin sample with a pyrolyzer (e.g., about 300°C or less), some decomposition products and contaminant compounds of the resin sample adheres to and remains in the separation column, easily contaminating the inside of the separation column. If the inside of the separation column is contaminated, chromatogram peak tailing occurs when a regulated compound is measured, and measurement reproducibility and quantification accuracy deteriorate. Therefore, when the separation column deteriorates, it is necessary to cut off the deteriorated inlet portion or replace the separation column with a new one. A large number of resin parts are used in electrical and electronic equipment products, and it may be required to frequently measure the amount of regulated compounds contained in those resin parts. However, if the above operation is performed every time the separation column deteriorates, the efficiency of measurement will deteriorate. Therefore, it has been proposed to attach a guard column to the inlet of the separation column of the gas chromatograph to suppress contamination inside the separation column (for example, Non-Patent Documents 1 and 2). As a result, the life of the separation column can be lengthened, the frequency of the above operations can be reduced, and the measurement efficiency can be increased.
 非特許文献1には、インサートチューブを用い、次のような手順でガードカラムを分離カラムに取り付けることが記載されている。まず、インサートチューブの一端からガードカラムを挿入し、他端から分離カラムを挿入する。次に、インサートチューブの両端にそれぞれフェラルを配置する。最後に、両端に位置するフェラルの外側にそれぞれナットを取り付けてフェラルを押しつぶすことにより、該インサートチューブ内部に位置するガードカラム及び分離カラムを固定する。このように、非特許文献1に記載のガードカラムを分離カラムに接続するには3段階の作業工程を経る必要があり、手間と時間がかかる。また、ガードカラムと分離カラムの接続状態が完全でないと、キャリアガスや規制化合物がリークして測定結果に誤りが生じる。樹脂製品の検査を目的として規制化合物の含有量を測定する者がこうした作業に熟練した者であるとは限らないため、より簡便に分離カラムの劣化を抑制することができる技術が求められている。さらに、非特許文献1では金属製のインサートチューブが用いられている。非特許文献3に記載されているように、上記規制化合物には金属との反応性が高いものが含まれており、インサートチューブ内に挿入されたガードカラムと分離カラムの接続部に隙間があると、インサートチューブを構成する金属に反応性の高い規制化合物が吸着し、さらに分解した場合、該規制化合物の含有量を正しく測定することができなくなる。 Non-Patent Document 1 describes that an insert tube is used to attach a guard column to a separation column in the following procedure. First, the guard column is inserted from one end of the insert tube, and the separation column is inserted from the other end. A ferrule is then placed on each end of the insert tube. Finally, the guard column and the separation column positioned inside the insert tube are fixed by attaching nuts to the outside of the ferrules positioned at both ends and crushing the ferrules. Thus, connecting the guard column described in Non-Patent Document 1 to the separation column requires a three-step work process, which takes time and effort. In addition, if the connection between the guard column and the separation column is not perfect, carrier gas and regulated compounds will leak, resulting in erroneous measurement results. The person who measures the content of regulated compounds for the purpose of inspecting resin products is not always skilled in such work, so there is a need for a technology that can more easily suppress the deterioration of separation columns. . Furthermore, in Non-Patent Document 1, a metal insert tube is used. As described in Non-Patent Document 3, the regulated compounds include those that are highly reactive with metals, and there is a gap between the guard column inserted in the insert tube and the separation column. Then, if a highly reactive regulated compound is adsorbed on the metal constituting the insert tube and then decomposed, the content of the regulated compound cannot be measured correctly.
 ここではパイロライザーを用いて規制化合物を気化させる場合を例に説明したが、パイロライザー以外の熱脱着装置を用いてフタル酸エステル類や臭素系難燃化合物を気化させてクロマトグラフ分析する場合にも上記同様の問題があった。 Here, the case of vaporizing regulated compounds using a pyrolyzer was explained as an example. had the same problem as above.
 本発明が解決しようとする課題は、煩雑な作業を要することなく分離カラムの劣化を抑制することができ、吸着及び分解しやすいフタル酸エステル類や臭素系難燃化合物を正しく測定することができる方法、及び該方法を実施する際に用いるガスクロマトグラフ用カラムを提供することである。 The problem to be solved by the present invention is that it is possible to suppress the deterioration of the separation column without requiring complicated work, and to accurately measure phthalates and brominated flame retardants that are easily adsorbed and decomposed. To provide a method and a gas chromatographic column for use in carrying out the method.
 上記課題を解決するために成された本発明に係るフタル酸エステル類及び臭素系難燃化合物の測定方法は、
 フタル酸エステル類、ポリ臭化ビフェニル群、及びポリ臭化ジフェニルエーテル群の少なくとも1つに属する対象化合物を含有する試料を加熱して該試料に含まれる対象化合物を気化させ、
 内部に前記対象化合物を分離するための固定相が設けられた分離カラムと、接続部品を用いることなく該分離カラムの入口側に該分離カラムと一体に設けられたガードカラムとを有する分析カラムを、前記対象化合物を気化させる際の最高温度よりも低い温度に温調し、
 気化させた前記対象化合物を前記分析カラムに導入し、
 前記分離カラムから流出する対象化合物を検出する
 ものである。
The method for measuring phthalate esters and brominated flame retardant compounds according to the present invention, which has been made to solve the above problems,
heating a sample containing a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group to vaporize the target compound contained in the sample;
An analysis column having a separation column internally provided with a stationary phase for separating the target compound, and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts. , adjusting the temperature to a temperature lower than the maximum temperature at which the target compound is vaporized,
introducing the vaporized target compound into the analysis column;
A target compound flowing out from the separation column is detected.
 また、上記課題を解決するために成された本発明の別の態様は、フタル酸エステル類及び臭素系難燃化合物の測定方法を実施する際に用いるガスクロマトグラフカラムであって、
 フタル酸エステル類、ポリ臭化ビフェニル群、及びポリ臭化ジフェニルエーテル群の少なくとも1つに属する対象化合物を分離するための固定相が設けられた分離カラムと、
 接続部品を用いることなく前記分離カラムの入口側に該分離カラムと一体に設けられたガードカラムと
 を備える。
Another aspect of the present invention, which has been made to solve the above problems, is a gas chromatograph column used in carrying out a method for measuring phthalates and brominated flame retardant compounds,
a separation column provided with a stationary phase for separating a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group;
and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts.
 本発明では、フタル酸エステル類、ポリ臭化ビフェニル群、及びポリ臭化ジフェニルエーテル群の少なくとも1つに属する対象化合物を分離するための固定相が設けられたカラムと、該分離カラムの入口側に該分離カラムと一体に設けられたガードカラムとを有する分析カラムを使用する。本発明では、分離カラムとガードカラムが接続部品を用いることなく一体的に構成されているため、これらを接続する作業が不要であり、両者の接続部からキャリアガスや対象化合物がリークしたり、接続部材に対象化合物が吸着して分解したりすることもない。従って、煩雑な作業を要することなく分離カラムの劣化を抑制することができ、かつ、分離カラムへの付着や分解が生じやすいフタル酸エステル類や臭素系難燃化合物を正しく測定することができる。 In the present invention, a column provided with a stationary phase for separating target compounds belonging to at least one of phthalates, polybrominated biphenyls, and polybrominated diphenyl ethers, and a An analysis column having the separation column and a guard column provided integrally is used. In the present invention, since the separation column and the guard column are integrally constructed without using connecting parts, there is no need to connect them, and the carrier gas or the target compound leaks from the connection between the two. The target compound is not adsorbed to the connecting member and decomposed. Therefore, deterioration of the separation column can be suppressed without requiring complicated work, and phthalate esters and brominated flame-retardant compounds, which tend to adhere to the separation column or decompose, can be measured correctly.
本発明に係るフタル酸エステル類及び臭素系難燃化合物の測定方法の一実施例において用いる、本発明に係るガスクロマトグラフカラムの一実施例を含む、パイロライザー-ガスクロマトグラフィ/質量分析装置の要部構成図。Principal part of a pyrolyzer-gas chromatography/mass spectrometer including an example of the gas chromatograph column of the present invention, which is used in an example of the method for measuring phthalates and brominated flame retardant compounds of the present invention Diagram. 本実施例におけるカラムの構成を示す図。FIG. 4 is a diagram showing the configuration of a column in this embodiment; キャリアガスの流速を一定にしときの、ガードカラムの長さとキャリアガスの流量の関係を示すグラフ。Graph showing the relationship between the length of the guard column and the flow rate of the carrier gas when the flow rate of the carrier gas is constant. 本実施例におけるフタル酸エステル類及び臭素系難燃化合物の測定条件。Measurement conditions for phthalate esters and brominated flame retardant compounds in this example. 本実施例における相対感度係数テーブルの例。An example of a relative sensitivity coefficient table in this embodiment. 本発明に係るフタル酸エステル類及び臭素系難燃化合物の測定方法の一実施例における手順を示すフローチャート。1 is a flow chart showing a procedure in an embodiment of a method for measuring phthalates and brominated flame retardants according to the present invention. 本発明に係るフタル酸エステル類及び臭素系難燃化合物の測定方法の別の実施例における手順を示すフローチャート。4 is a flow chart showing the procedure in another example of the method for measuring phthalate esters and brominated flame retardant compounds according to the present invention. 本実施例のフタル酸エステル類及び臭素系難燃化合物の測定方法及びクロマトグラフカラムを用いた効果を確認した測定結果。Measurement results confirming the effects of the measurement method and the chromatographic column for the phthalate esters and brominated flame retardant compounds of this example.
 本発明に係るフタル酸エステル類及び臭素系難燃化合物の測定方法及びガスクロマトグラフカラムの一実施例について、以下、図面を参照して説明する。本実施例はパイロライザー-ガスクロマトグラフ質量分析装置(Py-GC-MS)を用いて、フタル酸エステル類、及び臭素系難燃化合物であるポリ臭化ビフェニル群(polybrominated biphenyls, PBBs, 分子式C12H(10-n)Brn(1≦n≦10))とポリ臭化ジフェニルエーテル群(polybrominated diphenyl ethers, PBDEs, 分子式C12H(10-m)BrmO(1≦m≦10))を定量することにより分析対象試料をスクリーニングするものである。以下、これらの化合物をまとめて規制化合物と呼ぶ。本実施例における分析対象試料は、RoHS指令の対象となっている樹脂製品などである。 An embodiment of the method for measuring phthalates and brominated flame retardant compounds and the gas chromatograph column according to the present invention will be described below with reference to the drawings. In this example, using a pyrolyzer-gas chromatograph mass spectrometer (Py-GC-MS), phthalates and polybrominated biphenyls, which are brominated flame retardant compounds (polybrominated biphenyls, PBBs, molecular formula C 12 H (10-n) Br n (1≦n≦10)) and polybrominated diphenyl ethers (PBDEs, molecular formula C 12 H (10-m) Br m O(1≦m≦10)) The quantification is used to screen the sample to be analyzed. Hereinafter, these compounds are collectively referred to as regulated compounds. A sample to be analyzed in this embodiment is a resin product or the like subject to the RoHS Directive.
1.Py-GC-MSの構成
 図1に、本実施例の規制化合物の測定方法において使用する、パイロライザー-ガスクロマトグラフィ/質量分析装置(Py-GC-MS)1の要部構成を示す。
1. Configuration of Py-GC-MS FIG. 1 shows the main configuration of a pyrolyzer-gas chromatograph/mass spectrometer (Py-GC-MS) 1 used in the method for measuring a regulated compound in this example.
 Py-GC-MS1は、大別して、ガスクロマトグラフ部10、質量分析部20、及び制御・処理部30で構成される。ガスクロマトグラフ部10は、試料気化室11と該試料気化室11内に設けられたパイロライザー12と、試料気化室に接続されたキャリアガス流路13と、試料気化室11の出口に接続されたカラム14を備えている。カラム14はカラムオーブン15の内部に収容されている。パイロライザー12とカラムオーブン15内のカラム14はそれぞれ、図示しない加熱機構により所定の温度に加熱される。 The Py-GC-MS 1 is roughly divided into a gas chromatograph section 10, a mass spectrometry section 20, and a control/processing section 30. The gas chromatograph unit 10 includes a sample vaporization chamber 11, a pyrolyzer 12 provided in the sample vaporization chamber 11, a carrier gas flow path 13 connected to the sample vaporization chamber, and an outlet of the sample vaporization chamber 11. A column 14 is provided. Column 14 is housed inside column oven 15 . The pyrolyzer 12 and the column 14 in the column oven 15 are each heated to a predetermined temperature by a heating mechanism (not shown).
 図2に、本実施例において用いるカラム14(本発明における分析カラムに相当)の構造を示す。カラム14は、ガードカラム141と分離カラム142で構成されている。ガードカラム141は、分離カラム142の試料注入口側に該分離カラム142と継ぎ目なく一体的に設けられている。ガードカラム141及び分離カラム142はいずれも内径が0.25mmであるフューズドシリカ製のキャピラリチューブであり、分離カラム142の内壁面にのみ規制化合物との相互作用により該試料成分を脱着させる固定相(液相)が設けられている。本実施例の分離カラム142では、固定相として100%ジメチルポリシキロサンを膜厚0.1μmで用いている。規制化合物を測定する固定相としてジメチルポリシキロサン以外のものを用いてもよい。本実施例における規制化合物は極性が大きい化合物であることを考慮すると、固定相として無極性の物質を膜厚1.0μm以下で用いることが好ましい。但し、各規制化合物との間で一定程度の相互作用を生じさせて該固定相から脱着させる必要があるため、膜厚は0.05μm以上とすることが好ましい。 FIG. 2 shows the structure of the column 14 (corresponding to the analysis column in the present invention) used in this example. Column 14 is composed of guard column 141 and separation column 142 . The guard column 141 is provided seamlessly and integrally with the separation column 142 on the side of the sample injection port of the separation column 142 . Both the guard column 141 and the separation column 142 are capillary tubes made of fused silica with an inner diameter of 0.25 mm. liquid phase) is provided. In the separation column 142 of this embodiment, 100% dimethylpolysiloxane with a film thickness of 0.1 μm is used as the stationary phase. A stationary phase other than dimethylpolysiloxane may be used to measure the controlled compound. Considering that the regulated compound in this example is a highly polar compound, it is preferable to use a nonpolar substance with a film thickness of 1.0 μm or less as the stationary phase. However, the film thickness is preferably 0.05 μm or more because it is necessary to desorb from the stationary phase by generating a certain degree of interaction with each regulatory compound.
 従来用いられているガードカラムの中には内部に固定相を設けたものが存在する。ガードカラムの内部に固定相を設けることにより、夾雑物が捕集されやすくなり分離カラムに到達しにくくなるため、分離カラムが汚染されにくい。しかし、その一方でガードカラムの固定相に夾雑物と対象化合物が共に捕集されるため、対象化合物の測定時にピークがテーリングしやすくなる。本実施例では、規制化合物のピークにテーリングが生じるのを防ぐために、固定相のないガードカラム141を使用している。 Some conventionally used guard columns have a stationary phase inside. By providing the stationary phase inside the guard column, contaminants are more likely to be collected and less likely to reach the separation column, so that the separation column is less likely to be contaminated. On the other hand, however, both contaminants and the target compound are collected on the stationary phase of the guard column, so peak tailing is likely to occur when measuring the target compound. In this example, a guard column 141 without a stationary phase is used in order to prevent tailing of the peak of the regulated compound.
 本実施例のガードカラム141の長さは2m、分離カラム142の長さは15mである。ガードカラム141は、パイロライザー12で樹脂試料を加熱したときに放出される、規制化合物以外の物質(樹脂の熱分解物や夾雑化合物など)により分離カラム142が汚染されるのを防ぐために用いられる。パイロライザー12における加熱温度よりもカラムオーブン15によるカラム14の加熱温度の方が低いため、パイロライザー12から放出されたこれらの物質は徐々に冷却されてガードカラム141の内壁面に付着する。ガードカラム141が50cmよりも短いとこれらの物質が分離カラム142に進入しやすくなる。一方、ガードカラム141が4mよりも長いと、ガードカラムを用いない場合と線速度を同じにするにはキャリアガスの流量を大きく増大しなければならず、キャリアガスの消費量が大きく増えてしまう。従って、ガードカラム141の長さは50cm以上4m以下とすることが好ましい。 The length of the guard column 141 of this embodiment is 2 m, and the length of the separation column 142 is 15 m. The guard column 141 is used to prevent the separation column 142 from being contaminated by substances other than the regulated compounds (resin thermal decomposition products, contaminant compounds, etc.) released when the resin sample is heated by the pyrolyzer 12. . Since the temperature at which the column 14 is heated by the column oven 15 is lower than the temperature at which the pyrolyzer 12 is heated, these substances released from the pyrolyzer 12 are gradually cooled and adhere to the inner wall surface of the guard column 141 . If guard column 141 is shorter than 50 cm, these substances can easily enter separation column 142 . On the other hand, if the guard column 141 is longer than 4 m, the carrier gas flow rate must be greatly increased to achieve the same linear velocity as when the guard column is not used, resulting in a large increase in carrier gas consumption. . Therefore, the length of the guard column 141 is preferably 50 cm or more and 4 m or less.
 図3に、本実施例と同じ、長さ15m、内径0.25mmの分離カラムを用いて線速度を52.1cm/secとするために必要なキャリアガスの流量とガードカラムの長さの関係を示す。ガードカラム141の長さが4m以下であれば、キャリアガスの流量の増加を、ガードカラム141を使用しない場合の流量の30%以下に抑えることができる。本実施例のように2mのガードカラム141を用いれば、キャリアガスの流量を10%増やすのみで、ガードカラム141を使用しないと同じ線速度にすることができる。キャリアガスの流量の値そのものはカラムの内径や分離カラムの長さにも依存するが、多くの場合、キャリアガスの流量とガードカラムの長さは図3と同様の関係になる。従って、ガードカラムの長さを50cm以上4m以下とすることが好ましい。 FIG. 3 shows the relationship between the carrier gas flow rate and the length of the guard column required to achieve a linear velocity of 52.1 cm/sec using the same separation column with a length of 15 m and an inner diameter of 0.25 mm as in this example. . If the length of the guard column 141 is 4 m or less, the increase in the carrier gas flow rate can be suppressed to 30% or less of the flow rate when the guard column 141 is not used. If the guard column 141 with a length of 2 m is used as in the present embodiment, the linear velocity can be the same as when the guard column 141 is not used, simply by increasing the flow rate of the carrier gas by 10%. The flow rate of the carrier gas itself depends on the inner diameter of the column and the length of the separation column, but in many cases, the relationship between the flow rate of the carrier gas and the length of the guard column is similar to that shown in FIG. Therefore, it is preferable to set the length of the guard column to 50 cm or more and 4 m or less.
 質量分析部20は、真空チャンバ21内に、電子イオン化源22、イオンレンズ23、四重極マスフィルタ24、及びイオン検出器25を備えている。電子イオン化源22にはカラム14の内部で時間的に分離された試料成分が順次導入され、図示しないフィラメントから放出される熱電子の照射によってイオン化される。 The mass spectrometer 20 includes an electron ionization source 22 , an ion lens 23 , a quadrupole mass filter 24 and an ion detector 25 inside a vacuum chamber 21 . Sample components temporally separated inside the column 14 are sequentially introduced into the electron ionization source 22 and ionized by irradiation with thermal electrons emitted from a filament (not shown).
 制御・処理部30は、記憶部31を有している。記憶部31には、規制化合物を測定する際に用いるメソッドファイルが保存されている。メソッドファイルは、規制化合物の測定条件を記載したファイルである。この測定条件には、パイロライザー12の温度、分離カラム142の温度(カラムオーブン15の温度)、キャリアガスの種類と流量、規制化合物であるフタル酸エステル類、PBBs、及びPBDEsのそれぞれを特徴づける2種類のイオン(定量イオンと確認イオン)などの情報が含まれている。図4に測定条件の一例を示す。図4ではフタル酸エステル類に対して3種類のイオン(1種類の定量イオンと2種類の確認イオン)、PBBs及びPBDEsに対して2種類のイオン(1種類の定量イオンと1種類の確認イオン)を記載している。定量イオンは、該定量イオンのピークの面積(あるいは高さ)から当該化合物を定量するために用いられる。確認イオンは、定量イオンのピーク面積と確認イオンのピーク面積の高さの比が予め設定された範囲内であることに基づいて当該化合物であることを確認(同定)するために用いられる。測定する試料によっては、これらの定量イオンと確認イオンのいずれかの質量電荷比が、試料に含まれる夾雑物から生成されるイオンの質量電荷比に近く、当該質量電荷比のイオンを使用することができない場合がある。そのため、記憶部31には、各化合物について1乃至複数の予備イオンの質量電荷比の情報も保存されている。 The control/processing unit 30 has a storage unit 31 . The storage unit 31 stores method files used when measuring the controlled compounds. A method file is a file that describes measurement conditions for a regulated compound. The measurement conditions include the temperature of the pyrolyzer 12, the temperature of the separation column 142 (the temperature of the column oven 15), the type and flow rate of the carrier gas, and the phthalates, PBBs, and PBDEs, which are regulated compounds. It contains information such as two types of ions (a quantifying ion and a confirming ion). FIG. 4 shows an example of measurement conditions. Figure 4 shows three ions for phthalates (one quantifying ion and two confirming ions) and two ions for PBBs and PBDEs (one quantifying ion and one confirming ion). ) is described. A quantifying ion is used to quantify the compound from the area (or height) of the peak of the quantifying ion. The confirmation ion is used to confirm (identify) the compound based on the fact that the ratio of the height of the peak area of the quantitation ion and the height of the peak area of the confirmation ion is within a preset range. Depending on the sample to be measured, the mass-to-charge ratio of one of these quantification ions and confirmation ions is close to the mass-to-charge ratio of ions generated from contaminants contained in the sample, and ions with this mass-to-charge ratio should be used. may not be possible. Therefore, the storage unit 31 also stores information on the mass-to-charge ratio of one or more preliminary ions for each compound.
 また、記憶部31には、相対応答係数データベース311が保存されている。相対応答係数データベース311とは、規制化合物に含まれる1乃至複数の予め決められた基準化合物に、該基準化合物以外の規制化合物である参照化合物を対応付けたものである。相対応答感度係数データベース311では、基準化合物の検出感度に対する参照化合物の検出感度の比(相対応答係数RRF)がデータベース化されている。PBBs及びPBDEsに関する相対応答係数テーブルの一例を図5に示す。フタル酸エステル類についても同様に相対応答係数データベース(例えば非特許文献4)が保存されている。なお、相対応答係数データベース311は、「2-1.相対応答係数データベースを用いる規制化合物のスクリーニング」(後記)を行う際に用いるものであり、「2-2.各規制化合物の検量線を用いる規制化合物のスクリーニング」(後記)を行う場合には、記憶部31に相対応答係数データベース311を保存しておく必要はない。 In addition, the storage unit 31 stores a relative response coefficient database 311 . The relative response factor database 311 associates one or more predetermined reference compounds included in the regulated compounds with reference compounds that are regulated compounds other than the reference compounds. In the relative response sensitivity factor database 311, the ratio of the detection sensitivity of the reference compound to the detection sensitivity of the reference compound (relative response factor RRF) is stored in a database. An example of a relative response factor table for PBBs and PBDEs is shown in FIG. Similarly, a relative response coefficient database (for example, Non-Patent Document 4) is stored for phthalates. The relative response factor database 311 is used when performing "2-1. Screening of regulated compounds using the relative response factor database" (described later), and "2-2. When "screening of regulated compounds" (described later) is performed, it is not necessary to store the relative response coefficient database 311 in the storage unit 31. FIG.
 基準化合物xに対する参照化合物aの相対応答係数RRFa/xは次式(1)で表される。
 RRFa/x=RFa/RFx   …(1)
 ここで、RFaとRFxはそれぞれ、参照化合物aと基準化合物xの応答係数である。
The relative response factor RRF a/x of the reference compound a with respect to the standard compound x is represented by the following formula (1).
RRFa /x = RFa / RFx ...(1)
where RFa and RFx are the response factors for reference compound a and reference compound x, respectively.
 参照化合物aの応答係数RFaは、次式(2)で表される。なお、以降の数式は参照化合物aだけでなく基準化合物xについても同様である。
 RFa=Aa/ma   …(2)
 ここで、Aaとmaはそれぞれ、マスクロマトグラムにおける参照化合物aのピーク面積と重量(mg)である。また、参照化合物aの重量maは次式(3)で表される。
 ma=M×Ca   …(3)
 ここで、MとCaはそれぞれ、標準試料の重量(kg)と、標準試料に含まれる参照化合物aの濃度(mg/kg)である。
The response factor RF a of reference compound a is represented by the following formula (2). Note that the following formulas apply not only to the reference compound a but also to the standard compound x.
RF a =A a /m a …(2)
where A a and ma are the peak area and weight (mg) of reference compound a in the mass chromatogram, respectively. Also, the weight ma of the reference compound a is represented by the following formula (3).
m a = M × C a … (3)
Here, M and C a are the weight (kg) of the standard sample and the concentration (mg/kg) of the reference compound a contained in the standard sample, respectively.
 制御・処理部30は、機能ブロックとして、基準化合物決定部32、標準試料測定部33、分析対象試料測定部34、基準化合物定量部35、参照化合物定量部36、及びスクリーニング部37を備えている。制御・処理部30の実体は一般的なパーソナルコンピュータであり、予めインストールされた分析試料測定用プログラムをプロセッサで実行することにより上記の各機能ブロックが具現化される。また、制御・処理部30には、使用者が入力操作を行うための入力部4と、種々の情報を表示するための表示部5が接続されている。上記機能ブロックのうち、基準化合物決定部32と参照化合物定量部36(図1に破線で示した機能ブロック)は、「2-1.相対応答係数データベースを用いる規制化合物のスクリーニング」(後記)を行うための機能ブロックであり、「2-2.各規制化合物の検量線を用いる規制化合物のスクリーニング」(後記)を行う場合には、制御・処理部30は、標準試料測定部33、分析対象試料測定部34、基準化合物定量部(定量部)35、及びスクリーニング部37(図1に実線で示した機能ブロック)を備えればよい。 The control/processing unit 30 includes, as functional blocks, a reference compound determination unit 32, a standard sample measurement unit 33, an analysis target sample measurement unit 34, a reference compound quantification unit 35, a reference compound quantification unit 36, and a screening unit 37. . The entity of the control/processing unit 30 is a general personal computer, and each functional block described above is realized by executing a preinstalled analysis sample measurement program on the processor. The control/processing unit 30 is also connected to an input unit 4 for a user to perform an input operation and a display unit 5 for displaying various information. Of the above functional blocks, the reference compound determination unit 32 and the reference compound quantification unit 36 (the functional blocks indicated by the dashed lines in FIG. 1) perform “2-1. Screening of regulated compounds using relative response factor database” (described later). When performing "2-2. Screening of regulated compounds using the calibration curve of each regulated compound" (described later), the control/processing unit 30 controls the standard sample measurement unit 33, the analysis target A sample measurement unit 34, a reference compound quantification unit (quantification unit) 35, and a screening unit 37 (functional blocks indicated by solid lines in FIG. 1) may be provided.
2.規制化合物のスクリーニング手順
 次に、分析対象試料をスクリーニングする手順を説明する。本実施例のPy-GC-MS1では、相対応答係数データベースを用いる規制化合物のスクリーニング、及び各規制化合物の検量線を用いる規制化合物のスクリーニングの2通りのスクリーニングを行うことができる。
2. Screening Procedure for Regulated Compounds Next, a procedure for screening a sample to be analyzed will be described. The Py-GC-MS1 of this embodiment can perform two types of screening, ie, screening of controlled compounds using a relative response coefficient database and screening of controlled compounds using a calibration curve for each controlled compound.
2-1.相対応答係数データベースを用いる規制化合物のスクリーニング
 図6に示すフローチャートを参照して、相対応答係数データベースを用いて規制化合物をスクリーニングする手順を説明する。
2-1. Screening of Regulated Compounds Using the Relative Response Factor Database A procedure for screening regulated compounds using the relative response factor database will now be described with reference to the flow chart shown in FIG.
 使用者が規制化合物のスクリーニングを指示すると、基準化合物決定部32は、記憶部31から相対応答係数データベース311を読み出し、そこに記載されている相対応答係数テーブル(図5)を表示部5に表示する。使用者はこれを確認し、必要に応じて基準化合物と参照化合物の対応関係を変更する。例えば、相対応答係数テーブルにおいて選定されている基準化合物を含む標準試料を入手することが困難な場合には、当該化合物を基準化合物から削除したり、別の化合物を基準化合物として設定したりすることができる。使用者が基準化合物の確認を終えると、基準化合物が決定される(ステップ1)。 When the user instructs screening of regulated compounds, the reference compound determination unit 32 reads the relative response coefficient database 311 from the storage unit 31 and displays the relative response coefficient table (FIG. 5) described therein on the display unit 5. do. The user confirms this and changes the correspondence between the standard compound and the reference compound if necessary. For example, if it is difficult to obtain a standard sample containing the reference compound selected in the relative response coefficient table, the compound may be deleted from the reference compound, or another compound may be set as the reference compound. can be done. Once the user has confirmed the reference compound, the reference compound is determined (step 1).
 次に、基準化合物をそれぞれ既知量含む樹脂試料を標準試料として用意し、標準試料を収容した容器をパイロライザーにセットし、測定開始を指示する。 Next, prepare a resin sample containing a known amount of each reference compound as a standard sample, set the container containing the standard sample in the pyrolyzer, and instruct the start of measurement.
 測定開始が指示されると、標準試料測定部33は、記憶部31に保存されている相対応答係数データベース311に対応付けられているメソッドファイルに記載された測定条件(基準化合物の測定に関連するもの)に従って標準試料を測定する(ステップ2)。本実施例では図3に示した測定条件に基づき、まず、パイロライザー12を200℃から20℃/minの速度で昇温する。そして、300℃に達した後、5℃/minの速度で昇温し、340℃に達したところで1分間維持する。これにより標準試料に含まれている規制化合物が気化する(ステップ21)。気化した規制化合物は、キャリアガスの流れに乗って分析カラム14に導入される。パイロライザー12による標準試料の加熱を完了すると、標準試料測定部33は加熱が完了したことを表示部5に表示し(あるいは音声等で通知し)、使用者に容器の取り出しを指示する。 When the measurement start is instructed, the standard sample measurement unit 33 performs measurement conditions described in the method file associated with the relative response coefficient database 311 stored in the storage unit 31 (related to measurement of the reference compound). (Step 2). In this embodiment, the temperature of the pyrolyzer 12 is first raised from 200° C. at a rate of 20° C./min based on the measurement conditions shown in FIG. After reaching 300° C., the temperature is raised at a rate of 5° C./min, and when the temperature reaches 340° C., the temperature is maintained for 1 minute. As a result, the controlled compound contained in the standard sample is vaporized (step 21). The vaporized controlled compound is introduced into the analysis column 14 along with the carrier gas flow. When the heating of the standard sample by the pyrolyzer 12 is completed, the standard sample measurement unit 33 displays the completion of heating on the display unit 5 (or notifies by voice or the like) and instructs the user to take out the container.
 パイロライザー12を加熱している間、ガスクロマトグラフの試料気化室11の試料注入部は300℃に維持され、分析カラム14は80℃に維持されている(ステップ22)。そのため、パイロライザー12で標準試料から気化した、樹脂の分解物を含む各物質は徐々に冷却されつつ分析カラム14に導入される(ステップ23)。分析カラム14に導入された樹脂の分解物は分析カラム14の入口側に設けられているガードカラム141の内部で内壁に付着する。規制化合物はガードカラム141の内壁に付着するか、主には分離カラム142の入口に到達して付着する。 While heating the pyrolyzer 12, the sample injection part of the sample vaporization chamber 11 of the gas chromatograph is maintained at 300°C, and the analysis column 14 is maintained at 80°C (step 22). Therefore, each substance including the decomposed resin vaporized from the standard sample by the pyrolyzer 12 is introduced into the analysis column 14 while being gradually cooled (step 23). Decomposed resin introduced into the analysis column 14 adheres to the inner wall inside the guard column 141 provided on the inlet side of the analysis column 14 . The regulated compound adheres to the inner wall of the guard column 141 or mainly reaches the inlet of the separation column 142 and adheres.
 使用者がパイロライザー12から容器を取り出すと、標準試料測定部33は、カラムオーブン15の加熱を開始する。本実施例では、80℃から20℃/minの速度で昇温し、320℃で4分間維持する。分離カラム142の入口に付着していた規制化合物は、各化合物の気化温度に達したものから順に分離カラム142の内部に進入し、分離カラム142の固定相1421との作用により該固定相1421に脱着しながら分離カラム142内を進んで流出する。分離カラム142から流出した化合物は順に、電子イオン化源22に導入される。 When the user takes out the container from the pyrolyzer 12 , the standard sample measuring section 33 starts heating the column oven 15 . In this example, the temperature was raised from 80° C. at a rate of 20° C./min and maintained at 320° C. for 4 minutes. The regulated compounds adhering to the inlet of the separation column 142 enter the separation column 142 in order from those that have reached the vaporization temperature of each compound, and are transferred to the stationary phase 1421 by the action of the stationary phase 1421 of the separation column 142. It advances through the separation column 142 while desorbing and flows out. Compounds exiting the separation column 142 are in turn introduced into the electron ionization source 22 .
 電子イオン化源22で生成されたイオンは、イオンレンズ23で飛行方向の中心軸(イオン光軸C)の近傍に収束されたあと、四重極マスフィルタ24に入射し、質量電荷比に応じて分離されイオン検出器25で検出される(ステップ24)。イオン検出器25からの出力信号は順次、記憶部31に送信され保存される。 The ions generated by the electron ionization source 22 are converged near the central axis (ion optical axis C) in the direction of flight by the ion lens 23, and then enter the quadrupole mass filter 24. It is separated and detected by the ion detector 25 (step 24). Output signals from the ion detector 25 are sequentially transmitted to and stored in the storage unit 31 .
 標準試料の測定中、質量分析部20ではスキャン測定と選択イオンモニタリング(SIM)測定が繰り返し実行される。具体的には、四重極マスフィルタ24を通過させるイオンの質量電荷比を所定の範囲(例えばm/zが50~1000の範囲)で走査するスキャン測定と、四重極マスフィルタ24を通過させるイオンの質量電荷比を、各化合物の定量イオン又は確認イオンの質量電荷比に所定時間固定する、予め設定された各m/zのSIM測定とを1セットとし、これを繰り返し行う。なお、スキャン測定は必須ではなく、SIM測定のみを繰り返し行ってもよい。 During the measurement of the standard sample, the mass spectrometry unit 20 repeatedly performs scan measurement and selective ion monitoring (SIM) measurement. Specifically, the mass-to-charge ratio of ions passing through the quadrupole mass filter 24 is scanned in a predetermined range (for example, the range of m/z is 50 to 1000), and A preset SIM measurement for each m/z in which the mass-to-charge ratio of the ion to be measured is fixed to the mass-to-charge ratio of the quantitation ion or confirming ion of each compound for a predetermined time is set as one set, and this is repeated. Note that the scan measurement is not essential, and only the SIM measurement may be repeatedly performed.
 また、標準試料の測定とは別に、n-アルカン試料も測定する。n-アルカン試料とは、炭化水素鎖の長さが互いに異なる複数の化合物を含む標準試料であり、各化合物の保持時間を基準とする保持指標を得るために用いられる。非特許文献4に記載されているように、化合物xの保持指標Ixは次式(4)で表される。
 Ix=100(Cn+i-Cn){(tx-tn)/(tn+i-tn)}+100Cn   …(4)
 ここで、Cn, Cn+iはそれぞれ当該化合物の保持時間を挟んで保持時間が前後に位置するn-アルカンの炭素数、txは化合物xの保持時間、tn, tn+iは当該化合物の保持時間を挟んで保持時間が前後に位置するn-アルカンの保持時間である。なお、各規制化合物の保持指標が予め得られている場合には、ここでのn-アルカン試料の測定を省略し、分析対象試料の測定時にのみn-アルカン試料の測定を行い、n-アルカン試料に含まれる各化合物の保持時間と予め得られている規制化合物の保持指標の値から各規制化合物の保持時間を推定するようにしてもよい。
In addition to measuring standard samples, n-alkane samples are also measured. An n-alkane sample is a standard sample containing multiple compounds with different hydrocarbon chain lengths, and is used to obtain a retention index based on the retention time of each compound. As described in Non-Patent Document 4, the retention index Ix of compound x is represented by the following formula (4).
Ix= 100(Cn +i -Cn){( tx -tn)/( tn +i - tn ) } + 100Cn ...(4)
Here, C n , C n+i are the numbers of carbon atoms in n-alkanes positioned before and after the retention time of the compound, t x is the retention time of compound x, t n , t n+i are the retention times of the n-alkanes before and after the retention time of the compound. If the retention index of each regulated compound is obtained in advance, the measurement of the n-alkane sample is omitted here, and the n-alkane sample is measured only when the sample to be analyzed is measured. The retention time of each regulated compound may be estimated from the retention time of each compound contained in the sample and the previously obtained retention index value of the regulated compound.
 標準試料の測定を完了すると、標準試料測定部33は、基準化合物のそれぞれに対応する検量線を作成する(ステップ3)。ここでは、1つの標準試料のみを測定して1点検量線を作成する。基準化合物の量と測定強度が非線形な関係にある場合には、基準化合物の含有量が異なる複数の標準試料を測定し、2点以上の測定点に基づく検量線を作成してもよい。 Upon completion of the measurement of the standard sample, the standard sample measuring section 33 creates a calibration curve corresponding to each reference compound (step 3). Here, only one standard sample is measured to create a one-point calibration curve. When the amount of the reference compound and the measured intensity are in a non-linear relationship, a plurality of standard samples with different contents of the reference compound may be measured to create a calibration curve based on two or more measurement points.
 基準化合物の検量線を作成した後、使用者が分析対象試料をセットし、測定開始を指示すると、分析対象試料測定部34は、相対応答係数データベース311に対応付けられているメソッドファイルに記載された測定条件を用いて分析対象試料を測定する(ステップ4)。具体的には、図3に示した測定条件に基づき、まず、パイロライザー12を200℃から20℃/minの速度で昇温する。そして、300℃に達した後、5℃/minの速度で昇温し、340℃に達したところで1分間維持する。これにより標準試料に含まれている規制化合物が気化する(ステップ41)。気化した規制化合物は、キャリアガスの流れに乗って分析カラム14に導入される。パイロライザー12による標準試料の加熱を完了すると、標準試料測定部33は加熱が完了したことを表示部5に表示し(あるいは音声等で通知し)、使用者に容器の取り出しを指示する。 After creating the calibration curve of the reference compound, the user sets the sample to be analyzed and instructs the start of measurement. The sample to be analyzed is measured using the measurement conditions obtained (step 4). Specifically, based on the measurement conditions shown in FIG. 3, the pyrolyzer 12 is first heated from 200° C. at a rate of 20° C./min. After reaching 300° C., the temperature is raised at a rate of 5° C./min, and when the temperature reaches 340° C., the temperature is maintained for 1 minute. As a result, the controlled compound contained in the standard sample is vaporized (step 41). The vaporized controlled compound is introduced into the analysis column 14 along with the carrier gas flow. When the heating of the standard sample by the pyrolyzer 12 is completed, the standard sample measurement unit 33 displays the completion of heating on the display unit 5 (or notifies by voice or the like) and instructs the user to take out the container.
 パイロライザー12を加熱している間、ガスクロマトグラフの試料気化室11の試料注入部は300℃に維持され、分析カラム14は80℃に維持されている(ステップ42)。そのため、パイロライザー12で分析対象試料から気化した、樹脂の分解物を含む各物質は徐々に冷却されつつ分析カラム14に導入される(ステップ43)。分析カラム14に導入された樹脂の分解物は分析カラム14の入口側に設けられているガードカラム141の内壁に付着する。規制化合物はガードカラム141の内壁に付着するか、主には分離カラム142の入口に到達して付着する。 While heating the pyrolyzer 12, the sample injection part of the sample vaporization chamber 11 of the gas chromatograph is maintained at 300°C, and the analytical column 14 is maintained at 80°C (step 42). Therefore, each substance including the decomposed resin vaporized from the sample to be analyzed by the pyrolyzer 12 is introduced into the analysis column 14 while being gradually cooled (step 43). Decomposed resin products introduced into the analysis column 14 adhere to the inner wall of the guard column 141 provided on the inlet side of the analysis column 14 . The regulated compound adheres to the inner wall of the guard column 141 or mainly reaches the inlet of the separation column 142 and adheres.
 使用者がパイロライザー12から容器を取り出すと、標準試料測定部33は、カラムオーブン15の加熱を開始する。本実施例では、80℃から20℃/minの速度で昇温し、320℃で4分間維持する。ガードカラム141または分離カラム142の入口に付着していた規制化合物は、各化合物の気化温度に達したものから順に分離カラム142の内部に進入し、分離カラム142の固定相1421との作用により該固定相1421に脱着しながら分離カラム142内を進んで流出する。分離カラム142から流出した化合物は順に、質量分析部20で質量分離され、イオン検出器25で検出される(ステップ44)。 When the user takes out the container from the pyrolyzer 12 , the standard sample measuring section 33 starts heating the column oven 15 . In this example, the temperature was raised from 80° C. at a rate of 20° C./min and maintained at 320° C. for 4 minutes. The regulated compounds adhering to the inlet of the guard column 141 or the separation column 142 enter the separation column 142 in order from those that have reached the vaporization temperature of each compound, and interact with the stationary phase 1421 of the separation column 142. It advances through the separation column 142 while desorbing to the stationary phase 1421 and flows out. The compounds discharged from the separation column 142 are sequentially mass-separated by the mass spectrometer 20 and detected by the ion detector 25 (step 44).
 また、保持指標を基に各対象化合物の保持時間を予測する場合は分析対象試料の測定とは別に、n-アルカン試料も測定してもよい。分析対象試料の測定においてもスキャン測定は必須でなく、SIM測定のみを行ってもよい。しかし、スキャン測定を行っておくことにより、トータルイオンカレントクロマトグラムの作成後に測定対象化合物以外に大きなピークが見つかった場合に、当該ピークの保持時間に得られたマススペクトルを解析することで、当該ピークに対応する化合物を同定することができる。 In addition, when predicting the retention time of each target compound based on the retention index, an n-alkane sample may also be measured separately from the measurement of the sample to be analyzed. In the measurement of the sample to be analyzed, scan measurement is not essential, and only SIM measurement may be performed. However, by performing scan measurement, if a large peak other than the compound to be measured is found after creating the total ion current chromatogram, by analyzing the mass spectrum obtained at the retention time of the peak, Compounds corresponding to peaks can be identified.
 分析対象試料の測定を完了すると、基準化合物定量部35は、基準化合物のそれぞれの保持指標、または保持指標とn-アルカンの測定データを基に算出した予測保持時間に基づいて定量イオンと確認イオンのマスクロマトグラムのピークを決定する。そして、定量イオンのピーク面積と確認イオンのピーク面積が予め決められた範囲内であることを確認し、定量イオンのピーク面積を当該基準化合物の検量線に照らして定量値を求める(ステップ5)。 When the measurement of the sample to be analyzed is completed, the reference compound quantification unit 35 generates quantitative ions and confirmation ions based on the respective retention indices of the reference compounds, or the predicted retention times calculated based on the retention indices and the measurement data of n-alkanes. Determine the mass chromatogram peak of . Then, it is confirmed that the peak area of the quantitative ion and the peak area of the confirmation ion are within a predetermined range, and the quantitative value is obtained by comparing the peak area of the quantitative ion with the calibration curve of the reference compound (step 5). .
 基準化合物の定量値が得られると、参照化合物定量部36は、各参照化合物の保持時間、または各参照化合物の保持指標とn-アルカンの測定データを基に算出した予測保持時間に基づいて、各参照化合物の定量イオンと確認イオンのマスクロマトグラムのピークを決定する。そして、定量イオンのピーク面積と確認イオンのピーク面積が予め決められた範囲内であることを確認する。さらに、標準試料に含まれる基準化合物の量、標準試料を測定して検出された基準化合物の定量イオンのピーク面積、参照化合物の定量イオンのピーク面積及び相対応答係数に基づいて各参照化合物の定量値を求める(ステップ6)。 When the quantitative value of the reference compound is obtained, the reference compound quantification unit 36 calculates the retention time of each reference compound, or the predicted retention time calculated based on the retention index of each reference compound and the measurement data of n-alkane, Determine the mass chromatogram peaks of the quantitation and confirming ions for each reference compound. Then, it is confirmed that the peak area of the quantitative ions and the peak area of the confirmation ions are within a predetermined range. In addition, quantitation of each reference compound based on the amount of the reference compound contained in the standard sample, the peak area of the quantification ion of the reference compound detected by measuring the standard sample, the peak area of the quantification ion of the reference compound and the relative response factor Obtain a value (step 6).
 基準化合物と参照化合物について定量値が得られると、スクリーニング部37は、それらの定量値を予め決められた閾値と比較して分析対象試料をスクリーニングする。本実施例では、RoHS指令における基準値(DEHPの量、BBPの量、DBPの量、DIBPの量、PBBsの総量、及びPBDEsの総量がいずれも1000mg/kg以下である)に基づき、分析対象試料に含まれるDEHP、BBP、DBP、DIBPの定量値が基準値の±50%の範囲内、またPBBsおよびPBDEsの総量がいずれも基準値の±70%の範囲内であるか否かスクリーニング判定する(ステップ7)。 When quantitative values are obtained for the standard compound and the reference compound, the screening unit 37 compares these quantitative values with predetermined threshold values to screen the sample to be analyzed. In this example, based on the standard values in the RoHS Directive (the amount of DEHP, the amount of BBP, the amount of DBP, the amount of DIBP, the total amount of PBBs, and the total amount of PBDEs are all 1000 mg / kg or less), the analysis target Screening judgment whether the quantitative values of DEHP, BBP, DBP, and DIBP contained in the sample are within the range of ±50% of the reference value, and whether the total amount of PBBs and PBDEs is within the range of ±70% of the reference value. (step 7).
 具体的には、例えば非特許文献5に記載されている、以下の判定基準を用いることができる。分析対象試料に含まれるDEHP、BBP、DBP、及びDIBPの定量値が500mg/kg以下である場合、またPBBs及びPBDEsの定量値の合計値がいずれも300mg/kg以下である場合には、分析対象試料がRoHS指令の基準を満たしていると判定する。また、DEHP、BBP、DBP、及びDIBPの定量値が1500mg/kg以上の場合、PBBs及びPBDEsの定量値の合計値のいずれかが1700mg/kg以上の場合には、分析対象試料がRoHS指令の基準を満たさないと判定する。そして、DEHP、BBP、DBP、及びDIBPの定量値が300mg/kgから1500mg/kgの場合(いずれかが1500mg/kg以上の場合を除く)、PBBs及びPBDEsの定量値の合計値のいずれかが300mg/kgから1700mg/kgの範囲内である場合(いずれかが1700mg/kg以上の場合を除く)には判定保留とし、当該分析対象試料を別の手法で詳細に分析してより厳密に定量値を算出する。 Specifically, for example, the following criteria described in Non-Patent Document 5 can be used. If the quantitative value of DEHP, BBP, DBP, and DIBP contained in the sample to be analyzed is 500 mg/kg or less, and if the total quantitative value of PBBs and PBDEs is all 300 mg/kg or less, the analysis Judge that the target sample satisfies the standards of the RoHS Directive. In addition, if the quantitative values of DEHP, BBP, DBP, and DIBP are 1500mg/kg or more, or if any of the total quantitative values of PBBs and PBDEs is 1700mg/kg or more, the sample to be analyzed shall comply with the RoHS Directive. judged not to meet the criteria. And when the quantitative values of DEHP, BBP, DBP, and DIBP are 300 mg/kg to 1500 mg/kg (excluding cases where any of them is 1500 mg/kg or more), either of the total values of the quantitative values of PBBs and PBDEs If it is within the range of 300 mg/kg to 1700 mg/kg (excluding the case where any of them is 1700 mg/kg or more), the judgment will be suspended, and the sample to be analyzed will be analyzed in detail by another method and quantified more strictly. Calculate the value.
2-2.各規制化合物の検量線を用いる規制化合物のスクリーニング
 図7に示すフローチャートを参照して、各規制化合物の検量線を用いて規制化合物をスクリーニングする手順を説明する。なお、相対応答係数データベースを用いる規制化合物のスクリーニングと同じ手順については適宜、説明を省略する。
2-2. Screening of Regulated Compounds Using Calibration Curves of Each Regulated Compound A procedure for screening a regulated compound using a calibration curve of each regulated compound will be described with reference to the flowchart shown in FIG. The description of the same procedure as the screening of controlled compounds using the relative response factor database will be omitted as appropriate.
 使用者が、全ての規制化合物をそれぞれ既知量含む樹脂試料である標準試料を収容した容器をパイロライザーにセットして測定開始を指示すると、標準試料測定部33は、記憶部31に保存されているメソッドファイルに記載された測定条件に従って標準試料を測定する(ステップ11)。標準試料の測定に係る手順(ステップ21-24)は相対応答係数データベースを用いる場合と同様である(但し、全ての規制化合物を測定するという点では異なる)ため、詳細な説明を省略する。 When the user sets a container containing a standard sample, which is a resin sample containing known amounts of all regulated compounds, to the pyrolyzer and instructs the start of measurement, the standard sample measurement unit 33 is stored in the storage unit 31. The standard sample is measured according to the measurement conditions described in the method file (step 11). The procedure (steps 21 to 24) for the measurement of the standard sample is the same as in the case of using the relative response factor database (except that all controlled compounds are measured), so a detailed explanation is omitted.
 標準試料の測定を完了すると、標準試料測定部33は、各規制化合物の検量線を作成する(ステップ12)。ここでも、1つの標準試料のみを測定して1点検量線を作成する。規制化合物の量と測定強度が非線形な関係にある場合には、その規制化合物について含有量が異なる複数の標準試料を測定し、2点以上の測定点に基づく検量線を作成してもよい。 After completing the measurement of the standard sample, the standard sample measurement unit 33 creates a calibration curve for each regulated compound (step 12). Again, measure only one standard sample to create a one-point calibration curve. If there is a non-linear relationship between the amount of a regulated compound and the measured intensity, multiple standard samples with different contents of the regulated compound may be measured, and a calibration curve based on two or more measurement points may be created.
 各規制化合物の検量線を作成した後、使用者が分析対象試料をセットし、測定開始を指示すると、分析対象試料測定部34は、標準試料の測定時と同様に、記憶部31に保存されているメソッドファイルに記載された測定条件を用いて分析対象試料を測定する(ステップ13)。分析対象試料の測定に係る手順(ステップ41-44)も相対応答係数データベースを用いる場合と同様であるため、詳細な説明を省略する。 After creating the calibration curve for each regulated compound, the user sets the sample to be analyzed and instructs the start of measurement. The sample to be analyzed is measured using the measurement conditions described in the method file (step 13). The procedure (steps 41 to 44) for measurement of the sample to be analyzed is also the same as in the case of using the relative response coefficient database, so detailed description will be omitted.
 分析対象試料の測定を完了すると、基準化合物定量部35は、標準試料の測定時に得られている各規制化合物の保持時間に基づいて、各規制化合物の定量イオンと確認イオンのマスクロマトグラムのピークを決定する。そして、定量イオンのピーク面積と確認イオンのピーク面積が予め決められた範囲内であることを確認し、定量イオンのピーク面積を各規制化合物の検量線に照らして定量値を求める(ステップ14)。 When the measurement of the sample to be analyzed is completed, the reference compound quantification unit 35 determines the mass chromatogram peaks of the quantitative ions and confirmation ions of each regulated compound based on the retention time of each regulated compound obtained during the measurement of the standard sample. to decide. Then, it is confirmed that the peak area of the quantitative ion and the peak area of the confirmation ion are within a predetermined range, and the quantitative value is obtained by comparing the peak area of the quantitative ion with the calibration curve of each regulatory compound (step 14). .
 各規制化合物について定量値が得られると、スクリーニング部37は、それらの定量値を予め決められた閾値と比較して分析対象試料をスクリーニングする。ここでも上記同様に、RoHS指令における基準値(DEHPの量、BBPの量、DBPの量、DIBPの量、PBBsの総量、及びPBDEsの総量がいずれも1000mg/kg以下である)に基づき、分析対象試料に含まれるDEHP、BBP、DBP、DIBPの定量値が基準値の±50%の範囲内、またPBBsおよびPBDEsの総量がいずれも基準値の±70%の範囲内であるか否かスクリーニング判定する(ステップ15)。 When quantitative values are obtained for each regulated compound, the screening unit 37 compares these quantitative values with predetermined threshold values to screen the sample to be analyzed. Here, same as above, analysis based on the standard values in the RoHS Directive (the amount of DEHP, the amount of BBP, the amount of DBP, the amount of DIBP, the total amount of PBBs, and the total amount of PBDEs are all 1000 mg/kg or less). Screening whether the quantified values of DEHP, BBP, DBP, and DIBP contained in the target sample are within ±50% of the standard value, and whether the total amount of PBBs and PBDEs are within ±70% of the standard value. Determine (step 15).
 このように、本実施例では、規制化合物を分離するための固定相が設けられた分離カラム142と、該分離カラム142の入口側に該分離カラム142と一体に設けられたガードカラム141とを有するカラム14を使用する。分離カラム142とガードカラム141が接続部品を用いることなく一体的に構成されているため、従来の一般的なガードカラムを用いる場合のように、ナットやフェラルといった部材を用いて両者を接続する作業を行う必要がない。また、両者の接続部からキャリアガスや規制化合物がリークすることがなく、さらに、接続部材に触れて規制化合物が吸着して分解したりすることもない。従って、煩雑な作業を要することなく分離カラム142の劣化を抑制することができ、かつ、分離カラム142への付着や分解が生じやすい規制化合物を正しく測定することができる。 Thus, in this embodiment, the separation column 142 provided with the stationary phase for separating the controlled compound and the guard column 141 provided integrally with the separation column 142 on the inlet side of the separation column 142 are used. A column 14 having Since the separation column 142 and the guard column 141 are integrally constructed without using connecting parts, the work of connecting them using members such as nuts and ferrules is required as in the case of using conventional general guard columns. no need to do In addition, the carrier gas and the regulated compound do not leak from the connection between the two, and the regulated compound does not adsorb and decompose when the connecting member is touched. Therefore, deterioration of the separation column 142 can be suppressed without requiring complicated work, and regulated compounds that tend to adhere to the separation column 142 or decompose can be measured correctly.
 上記実施例の測定方法及びカラム14を用いることにより分離カラム142の汚染を防止する効果を確認する実験の結果を説明する。この実験では、100mg/kgのDBPを含む、フタル酸エステル類測定用の樹脂標準試料(島津製作所製。P/N: 225-31003-91)を繰り返し測定し、測定回ごとに取得したマスクロマトグラムのピークの形状(対称性)を確認した。ピークの形状は、シンメトリ係数と呼ばれる指標により表され、ピークのテーリングが大きくなるほどシンメトリ係数の値が大きくなる。通常、シンメトリ係数が2.5を超えるとカラムが汚染されていると判断し、カラムの交換等を行っている。 The results of an experiment to confirm the effect of preventing contamination of the separation column 142 by using the measurement method and column 14 of the above example will be explained. In this experiment, a resin standard sample for measuring phthalates containing 100 mg/kg DBP (manufactured by Shimadzu Corporation, P/N: 225-31003-91) was repeatedly measured, and the mass chromatogram obtained for each measurement was Gram's peak shape (symmetry) was confirmed. The peak shape is represented by an index called a symmetry coefficient, and the greater the tailing of the peak, the greater the value of the symmetry coefficient. Normally, when the symmetry coefficient exceeds 2.5, it is determined that the column is contaminated, and the column is replaced.
 図8に、上記実施例のカラム14を用いた測定(測定条件は上記実施例と同じ図4)の結果を示す。図8のグラフは、測定回数に対するシンメトリ係数の変化をプロットしたものである。ガードカラムを有しないカラムでは、通常300~400回の測定でシンメトリ係数が2.5を上回るのに対し、上記実施例のカラム14では700回以上の測定を行ってもシンメトリ係数が2.5未満であった。つまり、従来、300~400回の測定を行う毎にカラムの交換等を行う必要があったのに対し、本実施例のカラム14を用いると少なくとも700回の測定を行う間、カラムを交換する作業を行う必要がなく、カラム14の耐久性が2倍以上に向上していることが分かる。 FIG. 8 shows the results of measurement using the column 14 of the above example (measurement conditions are the same as in the above example in FIG. 4). The graph in FIG. 8 plots changes in the symmetry coefficient with respect to the number of measurements. A column without a guard column usually had a symmetry coefficient of more than 2.5 after 300-400 measurements. . In other words, conventionally, it was necessary to replace the column every time 300 to 400 measurements were performed. It can be seen that the durability of the column 14 is more than doubled without the need for any work.
 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。上記実施例ではPy-GC-MS1を用いてPy/TD-GC/MS法により規制化合物を熱脱離させて分析対象試料をスクリーニングしたが、Py-GC/MS法により規制化合物を熱分解して分析対象試料をスクリーニングすることもできる。Py-GC/MS法を行う場合の装置構成は上記実施例と同様であり、パイロライザーによる試料の加熱温度が異なる。また、パイロライザーを用いない熱脱離装置を用いて試料から規制化合物を気化させる構成を採ることもできる。これらのいずれにおいても、樹脂試料に含まれる対象化合物を気化させるために該樹脂試料を加熱する際の最高温度の方が分離カラムの加熱温度よりも高く、上記実施例の場合と同様に規制化合物以外の物質(樹脂の分解物や夾雑化合物)が分析カラム14に導入されるため、上記実施例のようにガードカラム141を備えることにより分離カラム142の汚染を防ぐことができる。また、ガードカラム141と分離カラム142が、ナットやフェラルといった接続具を介することなく一体的に構成されているため、フタル酸エステル類や難燃性臭素系化合物のように吸着及び分解しやすい化合物を正しく測定することができる。 The above embodiment is just an example, and can be modified as appropriate in line with the spirit of the present invention. In the above example, Py-GC-MS1 was used to thermally desorb the controlled compound by the Py/TD-GC/MS method to screen the sample for analysis. It is also possible to screen the sample to be analyzed by The apparatus configuration for the Py-GC/MS method is the same as in the above examples, and the sample heating temperature by the pyrolyzer is different. Moreover, it is also possible to employ a configuration in which a controlled compound is vaporized from a sample using a thermal desorption device that does not use a pyrolyzer. In any of these, the maximum temperature at which the resin sample is heated in order to vaporize the target compound contained in the resin sample is higher than the heating temperature of the separation column. Since other substances (decomposition products of the resin and contaminant compounds) are introduced into the analysis column 14, contamination of the separation column 142 can be prevented by providing the guard column 141 as in the above embodiment. In addition, since the guard column 141 and the separation column 142 are integrally configured without connecting fittings such as nuts and ferrules, compounds that easily adsorb and decompose, such as phthalates and flame-retardant brominated compounds, are not used. can be measured correctly.
 また、上記実施例ではカラム14から流出した各化合物を質量分析する構成としたが、質量分析以外の方法で各化合物を検出することもできる。そのような検出器として、例えば水素炎イオン化検出器(FID)、熱イオン化検出器(FTD)、炎光光度検出器(FPD)、電子捕捉検出器(ECD)、化学発光硫黄検出器(SCD)、熱伝導度検出器(TCD)、バリア放電イオン化検出器(BID)などを用いることもできる。 Also, in the above example, each compound flowing out from the column 14 was configured to be subjected to mass spectrometry, but each compound can also be detected by a method other than mass spectrometry. Such detectors include, for example, flame ionization detectors (FID), thermal ionization detectors (FTD), flame photometric detectors (FPD), electron capture detectors (ECD), sulfur chemiluminescence detectors (SCD). , thermal conductivity detector (TCD), barrier discharge ionization detector (BID), etc. can also be used.
[態様]
 上述した複数の例示的な実施例は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be appreciated by those skilled in the art that the multiple exemplary embodiments described above are specific examples of the following aspects.
(第1項)
 本発明の一態様に係るフタル酸エステル類及び臭素系難燃化合物の測定方法は、
 フタル酸エステル類、ポリ臭化ビフェニル群、及びポリ臭化ジフェニルエーテル群の少なくとも1つに属する対象化合物を含有する試料を加熱して該試料に含まれる対象化合物を気化させ、
 内部に前記対象化合物を分離するための固定相が設けられた分離カラムと、接続部品を用いることなく該分離カラムの入口側に該分離カラムと一体に設けられたガードカラムとを有する分析カラムを、前記対象化合物を気化させる際の最高温度よりも低い温度に温調し、
 気化させた前記対象化合物を前記分析カラムに導入し、
 前記分離カラムから流出する対象化合物を検出する
 ものである。
(Section 1)
A method for measuring a phthalate ester and a brominated flame retardant compound according to one aspect of the present invention comprises:
heating a sample containing a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group to vaporize the target compound contained in the sample;
An analysis column having a separation column internally provided with a stationary phase for separating the target compound, and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts. , adjusting the temperature to a temperature lower than the maximum temperature at which the target compound is vaporized,
introducing the vaporized target compound into the analysis column;
A target compound flowing out from the separation column is detected.
 (第8項)
 本発明の別の一態様は、フタル酸エステル類及び臭素系難燃化合物の測定方法を実施する際に用いるガスクロマトグラフカラムであって、
 フタル酸エステル類、ポリ臭化ビフェニル群、及びポリ臭化ジフェニルエーテル群の少なくとも1つに属する対象化合物を分離するための固定相が設けられた分離カラムと、
 接続部品を用いることなく前記分離カラムの入口側に該分離カラムと一体に設けられたガードカラムと
 を備える。
(Section 8)
Another aspect of the present invention is a gas chromatograph column used in carrying out a method for measuring phthalates and brominated flame retardant compounds,
a separation column provided with a stationary phase for separating a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group;
and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts.
 第1項のフタル酸エステル類及び臭素系難燃化合物の測定方法では、第8項に記載のガスクロマトグラフカラムを用いる。このガスクロマトグラフカラムでは分離カラムとガードカラムが接続部品を用いることなく一体的に構成されているため、これらを接続する作業が不要であり、両者の接続部から対象化合物がリークしたり、接続部材に対象化合物が吸着して分解したりすることもない。従って、煩雑な作業を要することなく分離カラムの劣化を抑制することができ、かつ、分離カラムへの付着や分解が生じやすいフタル酸エステル類や臭素系難燃化合物を正しく測定することができる。 The gas chromatograph column described in Section 8 is used in the method for measuring phthalates and brominated flame retardant compounds in Section 1. In this gas chromatograph column, the separation column and the guard column are integrally constructed without using connecting parts, so there is no need to connect them. Also, the target compound is not adsorbed and decomposed. Therefore, deterioration of the separation column can be suppressed without requiring complicated work, and phthalate esters and brominated flame-retardant compounds, which tend to adhere to the separation column or decompose, can be measured correctly.
(第2項)
 第1項に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法において、
 前記対象化合物をパイロライザーにおいて気化させる。
(Section 2)
In the method for measuring phthalates and brominated flame retardants according to item 1,
The target compound is vaporized in the pyrolyzer.
 第2項のフタル酸エステル類及び臭素系難燃化合物の測定方法では、パイロライザーにおいて試料を加熱する温度を適宜に設定することにより、熱分解により対象化合物を気化させる方法と熱脱離による対象化合物を気化させる方法を適宜に使い分けることができる。 In the method for measuring phthalates and brominated flame retardant compounds in Section 2, by appropriately setting the temperature at which the sample is heated in the pyrolyzer, the target compound is vaporized by thermal decomposition and the target by thermal desorption. The method of vaporizing the compound can be properly used.
(第3項)
 第1項又は第2項に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法において、
 前記分析カラムのうち、前記分離カラムにのみ固定相が設けられている。
(Section 3)
In the method for measuring the phthalates and brominated flame retardant compounds according to item 1 or 2,
Of the analysis columns, only the separation column is provided with a stationary phase.
 従来用いられているガードカラムの中には内部に固定相(液相)を設けたものが存在する。ガードカラムの内部に固定相を設けることにより、夾雑物が捕集されやすくなり分離カラムに到達しにくくなるため、分離カラムが汚染されにくい。しかし、その一方でガードカラムの固定相に捕集された夾雑物が流出して対象化合物の測定時にピークがテーリングしやすくなる。第3項のフタル酸エステル類及び臭素系難燃化合物の測定方法では、分離カラムにのみ固定相が設けられた分析カラムを用いるため、クロマトグラムのピークがテーリングするのを抑制して規制化合物の含有量を正確に測定することができる。 Some conventionally used guard columns have a stationary phase (liquid phase) inside. By providing the stationary phase inside the guard column, contaminants are more likely to be collected and less likely to reach the separation column, so that the separation column is less likely to be contaminated. On the other hand, however, contaminants trapped in the stationary phase of the guard column flow out, and the peak tends to tail when the target compound is measured. In the method for measuring phthalates and brominated flame retardants in Section 3, an analysis column in which a stationary phase is provided only in the separation column is used. Content can be measured accurately.
(第4項)
 第1項から第3項のいずれかに記載のフタル酸エステル類及び臭素系難燃化合物の測定方法において、
 前記ガードカラムの長さが50cm以上4m以下である。
(Section 4)
In the method for measuring phthalates and brominated flame retardant compounds according to any one of items 1 to 3,
The guard column has a length of 50 cm or more and 4 m or less.
 第4項のフタル酸エステル類及び臭素系難燃化合物の測定方法では、50cm以上の長さのガードカラムを用いることにより樹脂の分解物等の夾雑物が分離カラムに進入して分離カラムが汚染されることを防止することができる。また、ガードカラムが4m以下であることにより、ガードカラムを用いない場合に比べて3割程度、キャリアガスの流量を増やすのみで同等の線速度で対象化合物を測定することができる。 In the method for measuring phthalates and brominated flame retardants in Section 4, the use of a guard column with a length of 50 cm or longer causes contaminants such as resin decomposition products to enter the separation column and contaminate the separation column. can be prevented. In addition, since the guard column is 4 m or shorter, the target compound can be measured at the same linear velocity by increasing the flow rate of the carrier gas by about 30% compared to when the guard column is not used.
(第5項)
 第1項から第4項のいずれかに記載のフタル酸エステル類及び臭素系難燃化合物の測定方法において、
 前記分離カラムの長さが10m以上30m以下である。
(Section 5)
In the method for measuring phthalates and brominated flame retardant compounds according to any one of items 1 to 4,
The separation column has a length of 10 m or more and 30 m or less.
 第5項のフタル酸エステル類及び臭素系難燃化合物の測定方法では、10m以上の長さの分離カラムを用いることにより試料に含まれる規制化合物を十分に分離することができる。また、分離カラムの長さが30m以下であるため、測定時間が極端に長くなることもない。 In the measurement method for phthalates and brominated flame-retardant compounds in Section 5, the controlled compounds contained in the sample can be sufficiently separated by using a separation column with a length of 10m or longer. Moreover, since the length of the separation column is 30 m or less, the measurement time does not become extremely long.
(第6項)
 第1項から第5項のいずれかに記載のフタル酸エステル類及び臭素系難燃化合物の測定方法において、
 前記分離カラムから流出する対象化合物を質量分離して検出する。
(Section 6)
In the method for measuring phthalates and brominated flame retardant compounds according to any one of items 1 to 5,
The target compound flowing out from the separation column is detected by mass separation.
 フタル酸エステル類や臭素系難燃化合物を含む樹脂試料には、対象化合物以外にも様々な夾雑物が含まれている。また、対象化合物を気化させる際に樹脂の分解物もガスクロマトグラフのカラムに進入する。第6項のフタル酸エステル類及び臭素系難燃化合物の測定方法では、分離カラムから流出した各化合物を質量分離して検出するため、対象化合物と共溶出した夾雑物が存在する場合でも、その夾雑物を高精度で見つけ出し、対象化合物の含有量を正しく測定することができる。 Resin samples containing phthalates and brominated flame retardant compounds contain various contaminants other than the target compound. In addition, decomposition products of the resin also enter the column of the gas chromatograph when the target compound is vaporized. In the measurement method for phthalates and brominated flame-retardant compounds in Section 6, each compound that has flowed out from the separation column is detected by mass separation, so even if contaminants co-eluted with the target compound are present, Contaminants can be found with high accuracy and the content of target compounds can be measured correctly.
(第7項)
 第1項から第6項のいずれかに記載のフタル酸エステル類及び臭素系難燃化合物の測定方法において、さらに、
 前記対象化合物の含有量が予め決められた範囲内であるか否かに基づいて、前記試料をスクリーニングする。
(Section 7)
In the method for measuring phthalates and brominated flame retardant compounds according to any one of items 1 to 6,
The sample is screened based on whether the content of the target compound is within a predetermined range.
 第1項から第6項に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法は、第7項に記載のように、対象化合物の含有量が予め決められた範囲内であるか否かに基づいて、前記試料をスクリーニングするために好適に用いることができる。特に、第4項及び第5項に記載のような長さのガードカラム及び分離カラムを有する分析カラムを用いることにより、高効率で分析対象の試料をスクリーニングすることができる。 The method for measuring the phthalate esters and brominated flame retardant compounds described in items 1 to 6 is as described in item 7. Whether the content of the target compound is within a predetermined range or not It can be suitably used for screening the sample based on the above. In particular, by using an analysis column having a guard column and a separation column having lengths as described in the fourth and fifth items, the sample to be analyzed can be screened with high efficiency.
1…熱脱離-ガスクロマトグラフィ/質量分析装置
10…ガスクロマトグラフ部
 11…試料気化室
 12…パイロライザー
 13…キャリアガス流路
 14…カラム(分析カラム)
  141…ガードカラム
  142…分離カラム
   1421…固定相
 15…カラムオーブン
20…質量分析部
 21…真空チャンバ
 22…電子イオン化源
 23…イオンレンズ
 24…四重極マスフィルタ
 25…イオン検出器
30…制御・処理部
 31…記憶部
  311…相対応答係数データベース
 32…基準化合物決定部
 33…標準試料測定部
 34…分析対象試料測定部
 35…基準化合物定量部
 36…参照化合物定量部
 37…スクリーニング部
4…入力部
5…表示部
DESCRIPTION OF SYMBOLS 1... Thermal desorption-gas chromatography/mass spectrometer 10... Gas chromatograph part 11... Sample vaporization chamber 12... Pyrolyzer 13... Carrier gas flow path 14... Column (analysis column)
141... Guard column 142... Separation column 1421... Stationary phase 15... Column oven 20... Mass spectrometer 21... Vacuum chamber 22... Electron ionization source 23... Ion lens 24... Quadrupole mass filter 25... Ion detector 30... Control/ Processing unit 31 Storage unit 311 Relative response coefficient database 32 Reference compound determination unit 33 Standard sample measurement unit 34 Analysis sample measurement unit 35 Reference compound quantification unit 36 Reference compound quantification unit 37 Screening unit 4 Input Part 5... Display part

Claims (8)

  1.  フタル酸エステル類、ポリ臭化ビフェニル群、及びポリ臭化ジフェニルエーテル群の少なくとも1つに属する対象化合物を含有する試料を加熱して該試料に含まれる対象化合物を気化させ、
     内部に前記対象化合物を分離するための固定相が設けられた分離カラムと、接続部品を用いることなく該分離カラムの入口側に該分離カラムと一体に設けられたガードカラムとを有する分析カラムを、前記対象化合物を気化させる際の最高温度よりも低い温度に温調し、
     気化させた前記対象化合物を前記分析カラムに導入し、
     前記分離カラムから流出する対象化合物を検出する
     ものである、フタル酸エステル類及び臭素系難燃化合物の測定方法。
    heating a sample containing a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group to vaporize the target compound contained in the sample;
    An analysis column having a separation column internally provided with a stationary phase for separating the target compound, and a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts. , adjusting the temperature to a temperature lower than the maximum temperature at which the target compound is vaporized,
    introducing the vaporized target compound into the analysis column;
    A method for measuring phthalate esters and brominated flame-retardant compounds, wherein the target compound flowing out from the separation column is detected.
  2.  前記対象化合物をパイロライザーにおいて気化させる、請求項1に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法。 The method for measuring phthalate esters and brominated flame retardant compounds according to claim 1, wherein the target compound is vaporized in a pyrolyzer.
  3.  前記分析カラムのうち、前記分離カラムにのみ固定相が設けられている、請求項1に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法。 The method for measuring phthalates and brominated flame-retardant compounds according to claim 1, wherein only the separation column of the analysis columns is provided with a stationary phase.
  4.  前記ガードカラムの長さが50cm以上4m以下である、請求項1に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法。 The method for measuring phthalates and brominated flame retardant compounds according to claim 1, wherein the guard column has a length of 50 cm or more and 4 m or less.
  5.  前記分離カラムの長さが10m以上30m以下である、請求項1に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法。 The method for measuring phthalates and brominated flame-retardant compounds according to claim 1, wherein the separation column has a length of 10 m or more and 30 m or less.
  6.  前記分離カラムから流出する対象化合物を質量分離して検出する、請求項1に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法。 The method for measuring phthalates and brominated flame-retardant compounds according to claim 1, wherein the target compounds flowing out from the separation column are detected by mass separation.
  7.  さらに、前記対象化合物の含有量が予め決められた範囲内であるか否かに基づいて、前記試料をスクリーニングする、請求項1に記載のフタル酸エステル類及び臭素系難燃化合物の測定方法。 Further, the method for measuring phthalate esters and brominated flame retardant compounds according to claim 1, wherein the sample is screened based on whether the content of the target compound is within a predetermined range.
  8.  フタル酸エステル類、ポリ臭化ビフェニル群、及びポリ臭化ジフェニルエーテル群の少なくとも1つに属する対象化合物を分離するための固定相が設けられた分離カラムと、
     接続部品を用いることなく前記分離カラムの入口側に該分離カラムと一体に設けられたガードカラムと
     を備えるガスクロマトグラフカラム。
    a separation column provided with a stationary phase for separating a target compound belonging to at least one of the phthalates, the polybrominated biphenyl group, and the polybrominated diphenyl ether group;
    A gas chromatograph column comprising: a guard column provided integrally with the separation column on the inlet side of the separation column without using connecting parts.
PCT/JP2021/023636 2021-06-22 2021-06-22 Method for measuring phthalic-acid-ester- and bromine-based flame-retardant compound, and gas chromatography for use in said method WO2022269763A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023529283A JPWO2022269763A1 (en) 2021-06-22 2021-06-22
CN202180098937.5A CN117413180A (en) 2021-06-22 2021-06-22 Method for determining phthalic acid esters and brominated flame retardant compounds and gas chromatographic column used for method
PCT/JP2021/023636 WO2022269763A1 (en) 2021-06-22 2021-06-22 Method for measuring phthalic-acid-ester- and bromine-based flame-retardant compound, and gas chromatography for use in said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023636 WO2022269763A1 (en) 2021-06-22 2021-06-22 Method for measuring phthalic-acid-ester- and bromine-based flame-retardant compound, and gas chromatography for use in said method

Publications (1)

Publication Number Publication Date
WO2022269763A1 true WO2022269763A1 (en) 2022-12-29

Family

ID=84545333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023636 WO2022269763A1 (en) 2021-06-22 2021-06-22 Method for measuring phthalic-acid-ester- and bromine-based flame-retardant compound, and gas chromatography for use in said method

Country Status (3)

Country Link
JP (1) JPWO2022269763A1 (en)
CN (1) CN117413180A (en)
WO (1) WO2022269763A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531866A (en) * 2003-07-14 2007-11-08 ウオーターズ・インベストメンツ・リミテツド Separator with integrated guard column

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531866A (en) * 2003-07-14 2007-11-08 ウオーターズ・インベストメンツ・リミテツド Separator with integrated guard column

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Development of UA Guard", 1 April 2020 (2020-04-01), Retrieved from the Internet <URL:https://www.frontier-lab.com/assets/file/technical-note/UAT-008.pdf> *
"InertCap series. Build-in Guard Column: InertCap ProGuard", 29 March 2019 (2019-03-29), Retrieved from the Internet <URL:https://ebook-gls.meclib.jp/generalcatalog/book/#target/page_no=377> *
BJORKLUND, JONAS ET AL.: "Influence of the injection technique and column system on gas chromatographic determination of polybrominated diphenyl ethers", JOURNAL OF CHROMATOGRAPHY A., vol. 1041, 2004, pages 201 - 210, XP004519493, DOI: 10.1016/j.chroma.2004.04.025 *
KUDO, YUKIHIKO ET AL.: "Development of a screening method for phthalate ester in polymers using a quantitative database in combination with pyrolyzer/thermal desorption gas chromatography mass spectrometry", JOURNAL OF CHROMATOGRAPHY A, vol. 1602, 2019, pages 441 - 449, XP085757595, DOI: 10.1016/j.chroma.2019.06.014 *

Also Published As

Publication number Publication date
CN117413180A (en) 2024-01-16
JPWO2022269763A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
Santos et al. Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy
US8513593B2 (en) In-situ conditioning in mass spectrometer systems
Fialkov et al. Sensitivity and noise in GC–MS: Achieving low limits of detection for difficult analytes
Hakme et al. Further improvements in pesticide residue analysis in food by applying gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) technologies
Rodríguez‐González et al. Species‐specific stable isotope analysis by the hyphenation of chromatographic techniques with MC‐ICPMS
Patil et al. Development and validation of a simple analytical method for the determination of 2, 4, 6-trichloroanisole in wine by GC–MS
Bignardi et al. Optimization of mass spectrometry acquisition parameters for determination of polycarbonate additives, degradation products, and colorants migrating from food contact materials to chocolate
WO2022269763A1 (en) Method for measuring phthalic-acid-ester- and bromine-based flame-retardant compound, and gas chromatography for use in said method
Moreno-González et al. Evaluation of a novel controlled-atmosphere flexible microtube plasma soft ionization source for the determination of BTEX in olive oil by headspace-gas chromatography/mass spectrometry
CN115389683B (en) Quantitative device of brominated flame-retardant compound
KR20110139968A (en) Sample analyzing apparatus and sample analyzing method
WO2010140497A1 (en) Method for quantifying red phosphorus in resin
Ionas et al. Identification strategies for flame retardants employing time‐of‐flight mass spectrometric detectors along with spectral and spectra‐less databases
Moeder Gas chromatography-mass spectrometry
Cvačka et al. Computer‐assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols
Mirabelli et al. Rapid screening and quantitation of PAHs in water and complex sample matrices by solid‐phase microextraction coupled to capillary atmospheric pressure photoionization‐mass spectrometry
Kudo et al. Using an optimized relative response factor database to simplify a pyrolyzer/thermal desorption-gas chromatography-mass spectrometry method of screening for phthalate esters, polybrominated diphenyl ethers, and polybrominated biphenyls in polymers
David et al. Determining High-Molecular-Weight Phthalates in Sediments Using GC–APCI-TOF-MS
Korenková et al. Study on the feasibility of coupling large‐volume injection to fast gas chromatography with mass spectrometric detection for analysis of organochlorine pesticides
Rosenfelder et al. Gas chromatography coupled to electron capture negative ion mass spectrometry with nitrogen as the reagent gas–an alternative method for the determination of polybrominated compounds
WO2023026354A1 (en) Screening method for sample comprising phenol, isopropylated phosphate (3:1), and device
JP7375826B2 (en) Analytical methods, analytical equipment and programs
Clement et al. Techniques for the gas chromatography-mass spectrometry identification of organic compounds in effluents
Rao et al. REVIEW ON GAS CHROMATOGRAPHY & ITS HYPHENATION TECHNIQUES
Amirav et al. The Multiple Benefits of Cold EI–Leading the Way to the Future of GC-MS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529283

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180098937.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE