WO2022269723A1 - Communication system that performs synchronous control, synchronous control method therefor, reception server, and synchronous control program - Google Patents

Communication system that performs synchronous control, synchronous control method therefor, reception server, and synchronous control program Download PDF

Info

Publication number
WO2022269723A1
WO2022269723A1 PCT/JP2021/023482 JP2021023482W WO2022269723A1 WO 2022269723 A1 WO2022269723 A1 WO 2022269723A1 JP 2021023482 W JP2021023482 W JP 2021023482W WO 2022269723 A1 WO2022269723 A1 WO 2022269723A1
Authority
WO
WIPO (PCT)
Prior art keywords
server
video signal
video
frame size
receiving
Prior art date
Application number
PCT/JP2021/023482
Other languages
French (fr)
Japanese (ja)
Inventor
真二 深津
麻衣子 井元
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023529249A priority Critical patent/JPWO2022269723A1/ja
Priority to PCT/JP2021/023482 priority patent/WO2022269723A1/en
Publication of WO2022269723A1 publication Critical patent/WO2022269723A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal

Definitions

  • Embodiments of the present invention relate to a communication system that performs synchronization control in information communication including video and audio, a synchronization control method thereof, a receiving server, and a synchronization control program.
  • Non-Patent Document 1 As a technique for synchronization without delay, for example, the MMT (MPEG Media Transport) method described in Non-Patent Document 1 is known as one of the media transport methods.
  • MMT MPEG Media Transport
  • ABR Adaptive Bit Rate
  • NW Network Work
  • ABR Onwards, it is necessary to prepare videos with multiple bitrates before transmission. As described above, in order to create a sense of unity between the host and the audience in the live distribution, it is necessary to send the video of the inside of the remote venue back to the host. However, ABR is controlled by the transmitting side, and since images of the inside of each venue taken from a plurality of remote venues are transmitted to the organizer, the organizer cannot uniquely determine the frame size.
  • a plurality of second videos shot at a plurality of second venues in response to a first video transmitted from a first venue through a network are returned from a plurality of second venues to the first venue.
  • Another object of the present invention is to provide a technique for synchronizing a plurality of secondary images that are generated.
  • a communication system for performing synchronization control includes a transmission server that transmits a first video signal; a plurality of receiving servers that receive the first video signal transmitted from the transmitting server through the transmission server and transmit back to the transmitting server a second video signal that responds to the first video signal; a first timing control unit that sets an allowable waiting time that does not cause a visual difference between the scenes of the plurality of the second video signals when the plurality of the second video signals are displayed simultaneously; and each of the receiving servers.
  • the frame size of the second video signal is the frame size of the second video signal based on the throughput and round trip time of the signal transmitted between the transmitting server and the receiving server so that the return transmission is completed within the allowable waiting time and a second timing control unit that edits the second video signal with the calculated frame size.
  • a first image is transmitted from a transmission server to a plurality of reception servers respectively arranged at a plurality of remote locations, and a second image is sent in response to the first image signal received by each of the reception servers.
  • an allowable waiting time is set in advance based on the previously obtained throughput of the signal transmitted between the transmitting server and the plurality of receiving servers and the round-trip time.
  • Each receiving server calculates the frame size of the second video signal so that return transmission is completed within the allowable waiting time, and adjusts the resolution, bit depth, and chroma subsampling so as to achieve the calculated frame size.
  • FIG. 1 is a block diagram showing the overall configuration of a communication system.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a computer functioning as a transmission server according to the first embodiment.
  • FIG. 3 is a flowchart for explaining the calculation of the permissible waiting time for the return video.
  • FIG. 4 is a flowchart for explaining the calculation of the frame size of the return video.
  • FIG. 5 is a diagram showing setting patterns of the frame size of the return video signal in the communication system according to the first embodiment.
  • FIG. 6 is a diagram showing setting patterns of the frame size of the return video signal in the communication system according to the modification of the first embodiment.
  • FIG. 7 is a diagram showing setting patterns of the frame size of the return video signal in the communication system according to the first embodiment.
  • FIG. 8 is a communication timing flow diagram for explaining transmission of a video signal and return video in the communication system according to the first embodiment.
  • FIG. 9 is a timing flow diagram of communication in the communication system according to the modification of the first embodiment.
  • FIG. 10 is a timing flow diagram of communication in the communication system according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to one embodiment.
  • the communication system 1 of the present embodiment includes a main venue side communication system 2 (hereinafter referred to as a communication system 2) provided in the main venue [first venue] where the organizer holds the event, and a plurality, in this example, three , remote venue side communication system 3 (hereinafter referred to as communication system 3) provided at the remote venue [second venue] set up at each remote location, and video signals etc. transmitted between these communication systems are relayed.
  • a main venue side communication system 2 hereinafter referred to as a communication system 2
  • communication system 3 remote venue side communication system 3
  • the video shot in the main venue will be referred to as the event video [first video] or the event video signal, and the state of the remote venue including the audience will be filmed and sent to the main venue.
  • the resulting image is called a return image [second image] or a return image signal.
  • a video signal it is assumed that the video signal includes a sound signal including voice.
  • the communication system 2 on the main venue side includes at least one camera 11, a microphone 12 that collects the host's voice, etc., a monitor 13 that displays return images taken at each remote venue, and a transmission server. 14.
  • the monitor 13 is a display device having a display screen, and can use, for example, a liquid crystal display, a plasma display, an organic EL display, a projector, or the like. Also, although not shown, a speaker for emitting sound is separately provided.
  • a plurality of monitors are installed to display the return video of each remote site on each. A configuration may be used in which the display area is divided into a plurality of display areas, and the return image of each remote site is assigned to each of the divided display areas and displayed.
  • the transmission server 14 includes a first input unit 21 , a first transmission unit 22 , a reception unit 23 , a presentation unit 24 and a timing control unit 25 .
  • the receiving unit 23 and the presenting unit 24 are the first receiving unit 23a and the first presenting unit 24a, the second receiving unit 23b and Three sets of the second presentation unit 24b, the third reception unit 23c, and the third presentation unit 24c are shown as examples.
  • the number of reception units and presentation units is set according to the number of remote venues to be set up. If there are a large number of remote venues set up, a switching device may be installed to switch or select the remote venue as appropriate to display the return video.
  • the first input unit 21 inputs an event video signal captured by at least one camera 11 and a sound signal such as sound collected by the microphone 12, digitally encodes the event video signal and the sound signal, After performing signal processing such as level adjustment and noise removal, the signal is output to the first transmission unit 22 .
  • the first sending unit 22 compresses the data of the event video signal and the sound signal, converts them into communication signals in a format compatible with the network 4 used for communication, and attaches the time information described later to the converted communication signals. , to the receiving server 31 via the network 4 .
  • the receiving unit 23 receives the return video signal of each remote site transmitted from the receiving server 31 (first to third receiving servers 31a, 31b, 31c) installed at each remote site.
  • the presentation unit 24 performs image data processing such as decompression of compressed data on the received return video signal, converts it into a video signal, and immediately outputs it to the monitor 13 .
  • the first timing control unit 25 adds a time stamp or the like indicating the transmission time to the event video signal sent from the first sending unit 22 as time information, and transmits the signal to the receiving server 31.
  • the 2-timing control unit 46 acquires the throughput (Thr x ).
  • the second timing control section 46 sends the acquired throughput Thr x to the first timing control section 25 .
  • the throughput Thr x indicates the amount of data transferred per unit time.
  • the first timing control unit 25 sends out the event video signal from the first sending unit 22 of the main venue, and then the return video signal sent back by the receiving server 31 of each remote venue is received by the sending server 14 .
  • a round trip time (RTT x) is obtained as the time until the call arrives at the unit 23 .
  • the x at the end of the code is an identifier for identifying each remote venue. Since the round trip time RTT x is the round trip time between the sending server 14 and the receiving server 31, the one-way transmission time from the receiving server 31 to the sending server 14 is assumed to be half the round trip time RTT x.
  • the first timing control unit 25 Based on the obtained throughput Thrx and round trip time RTTx, the first timing control unit 25 sets the allowable waiting time ThresW for return video from the remote site, and is notified to a second timing control unit, which will be described later.
  • Various networks can be applied to the network 4, and for example, the Internet, a dedicated line network, or an optical communication network can be used.
  • video transmission methods compatible with multicast such as the IP/MPLS (Multi-Protocol Label Switching) network method, have been adopted for live distribution.
  • the differences between these networks are, for example, the amount of data that can be transmitted and the data communication speed.
  • the network 4 has different communication speeds (or line speeds) depending on the communication environment, for example, the communication method, communication distance, or communication route. ) 4a, a medium-speed network (NW) 4b for medium-speed communication, which is a normal communication speed, and a high-speed network (NW) 4c for high-speed communication.
  • NW medium-speed network
  • NW high-speed network
  • remote venues set up at a plurality of remote locations are connected to the communication system 2 via the network 4, respectively, with respect to the communication system 2 installed at one main venue.
  • a communication system 3 is installed.
  • These communication systems 3 include a receiving server 31, a camera 33 for photographing the situation in the remote hall, a microphone 32 for collecting sounds such as cheers in the remote hall, and an event image photographed in the main hall. and a monitor 34 . Note that the cameras, microphones, and monitors in the receiving servers 31b and 31c are omitted from the drawing.
  • the receiving server 31 will be described as an example of three receiving servers 31a, 31b, and 31c respectively connected to the networks 4 (4a, 4b, and 4c) having different communication speeds.
  • Each receiving server 31 includes a receiving section 41 , a presentation section 42 , an input section 43 , a sending section 44 , a frame size calculating section 45 and a second timing control section 46 .
  • the reception unit 41 receives the event video signal and the sound signal from the transmission server 14 of the main venue via the network 4 and outputs the event video signal and the sound signal to the presentation unit 42 .
  • the presentation unit 42 performs image data processing such as decompression of data compression, outputs an event video signal to the monitor 34, and outputs a sound signal to a speaker (not shown) arranged in the remote hall.
  • the monitor 34 displays an event video being held at the main venue, and the speaker reproduces the sound (for example, music) and voice produced by the organizer.
  • the input unit 43 digitally encodes, adjusts the level of, and adjusts the level of the return video signal of the video including the spectators in the remote venue captured by at least one camera 33 and the sound signal such as the sound collected by the microphone 32 .
  • Signal processing such as noise removal is performed on the signal, and the signal is output to the sending unit 44 .
  • the second timing control unit 46 outputs to the frame size calculation unit 45 the allowable waiting time Thres W for the return video, which is transmitted from the communication system 2 and stored in an updatable manner.
  • the frame size calculator 45 uses the allowable waiting time Thres W as a reference to calculate the frame size by a calculation method to be described later, and sets the frame size in the sending unit 44 .
  • the sending unit 44 edits the return video input from the input unit 43 to a set frame size, compresses the data, processes it into a signal form compatible with the network 4, and indicates the transmission time to the processed return video signal. Attached with time information such as a time stamp, it is transmitted via the network 4 to the transmission server 14 on the side of the main venue.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a computer functioning as the transmission server 14 according to the first embodiment.
  • the transmission server 14 is composed of a computer device and has a processor 51 such as a CPU.
  • a program memory 52 In the first timing control section 25 , a program memory 52 , a data memory 53 , a storage 54 , an input/output section 55 and a communication section 56 are connected to the processor 51 via a bus 57 .
  • the program memory 52 is a non-temporary tangible computer-readable storage medium, for example, a combination of a non-volatile memory such as a flash memory that can be written and read at any time and a non-volatile memory such as a ROM (Read Only Memory). It has been used.
  • the program memory 52 stores programs necessary for the processor 51 to execute various control processes.
  • the data memory 53 is used as a tangible computer-readable storage medium, for example, by combining the above nonvolatile memory and a volatile memory such as RAM (Random Access Memory). This data memory 53 is used to store various data obtained and created in the process of performing various processes.
  • RAM Random Access Memory
  • the storage 54 is a non-temporary tangible computer-readable storage medium, such as a HDD (Hard Disk Drive) or SSD (Solid State Drive). have a medium.
  • the storage 54 has a large storage capacity for rewritably storing various programs and data necessary for the processor 51 to execute various control processes.
  • the input/output unit 55 functions as an interface with the camera 11 , the microphone 12 and the monitor 13 , and the communication unit 56 functions as an interface for communicating signals via the network 4 .
  • the reception server 31 on the remote venue side can also be configured by a computer, similar to the transmission server 14 .
  • the program memory 52 of the computer that constitutes the receiving server 31 stores, for example, an arithmetic program for calculating a frame size, which will be described later.
  • an initial connection is established through the network 4 between the communication system 2 on the main venue side and a plurality of communication systems 3 on the remote venue side, and the test video signal is transmitted from the communication system 2 to each remote venue. is transmitted to the communication system 3 on the side (step S1).
  • each communication system 3 loops back the test video signal or the image of the remote venue and transmits it to the communication system 2 (step S2).
  • the throughput Thr x between the main venue and each remote venue and the round-trip time RTT x due to return transmission are obtained (step S3).
  • x is an identifier for distinguishing each remote venue.
  • the permissible waiting time (Thres W) of the return video is set (step S4).
  • This allowable waiting time is a time that is arbitrarily set, and when multiple images are displayed at the same time, there is no visual difference (and/or auditory difference), and the actions of the displayed scenes are almost synchronized. It is the time difference (delay difference) or the time within the allowable range.
  • the process of transmitting and displaying a plurality of return images to the main venue within the allowable waiting time is called synchronous control.
  • the visual difference referred to here includes the difference in motion within the scene that is felt when viewing a plurality of reversed images at the same time, for example, the time difference between similar motions occurring in the audience.
  • the auditory difference is defined as the time difference between sounds and voices (spectators) that are reproduced together with the scene of the return video.
  • sound (audio) is also added to the return video, and when there is a visual difference in the video, an auditory difference is also generated.
  • the organizer sees the scene where the spectators at each remote venue cheered.
  • the time difference, ie, the delay is such that the cheers raised up do not feel the delay, for example, about several hundred msec.
  • the allowable waiting time (Thres W) for this return video can be set arbitrarily. The longer the time, the longer the delay time, although the quality of the video can be maintained. Of course, this allowable waiting time (time difference) varies depending on the type of event being held, and the numerical value is not limited.
  • This allowable waiting time (Thres W) is transmitted to the communication system 3 and stored in the second timing control section 46 of the reception server 31 of each remote venue (step S5).
  • the acquisition of throughput Thr x and round trip time RTT x is performed periodically during the event, that is, during the period in which the video signal is continuously transmitted, and if necessary, the allowable waiting time ( Thres W) is updated (step S6).
  • it is not necessary to update the allowable waiting time (Thres W) every time it is measured periodically. may be updated as an allowable waiting time (Thres W).
  • a delay time Delay is calculated by the following equation (2) (step S12).
  • step S13 it is determined whether or not the calculated delay time is within a preset allowable waiting time (step S13). If it is determined in step S12 that the delay time is within the allowable waiting time (YES), the return video from the remote venue is set to be transmitted with the highest quality video signal (step S14).
  • step S12 if the calculated delay time is greater than the allowable waiting time (NO) in the determination of step S12, the delay is made within the allowable waiting time in order to absorb the difference by reducing the quality of the video (or image quality).
  • a frame size that fits the time is calculated (step S15).
  • the return video from the remote venue is edited with the calculated frame size and set to be transmitted as the return video with reduced quality (step S16).
  • the frame size that reduces the amount of data is set by a setting pattern that combines the three elements of pixel count, bit depth, and color information (chroma subsampling).
  • a setting pattern that combines the three elements of pixel count, bit depth, and color information (chroma subsampling).
  • the number of pixels is 4 patterns of 4K, 2K, HD and SD.
  • bit depth There are two patterns of bit depth: 10 bits and 8 bits.
  • the color information (chroma subsampling) has three patterns of 4,4,4(3), 4,2,2,(2), and 4,2,0(1.5).
  • the reduction ratio of the data amount by setting the frame size indicates the reduction ratio of the frame size by changing the setting pattern when the highest image quality is 1. . The smaller the reduction ratio, the more the amount of data can be reduced.
  • setting patterns are divided into the following six groups.
  • the frame size is set by sequentially decreasing the number of pixels to 4K, 2K, HD, and SD without changing the bit depth of 10 bits and the color information 4.4.4(3).
  • the reduction ratio decreases from 1 to 0.25, 0.0625, and 0.041667.
  • the second group is a setting in which the bit depth is changed from 10 bits to 8 bits without changing the color information 4.4.4(3). Sets the reduced frame size.
  • the third group shown in FIG. 6 is a setting pattern in which the color information is reduced from 4.4.4.(3) to 4.2.2(2) without changing the bit depth of 10 bits.
  • a frame size is set by decreasing the number in order of 4K, 2K, HD, and SD.
  • a frame size with a bit depth of 8 bits and color information of 4.2.2 (2), respectively, is reduced by one step, and the number of pixels is sequentially reduced to 4K, 2K, HD, and SD. set.
  • color information 4.4.4 As the fifth group shown in FIG. 7, without changing the bit depth of 10 bits, color information 4.4.4.
  • the frame size is set by decreasing the number of pixels from (3) to 4.2.0 (1.5) by two steps, and further decreasing the number of pixels to 4K, 2K, HD, and SD.
  • the bit depth is reduced to 8 bits, and color information 4.4.4.
  • the frame size is set by decreasing the number of pixels from (3) to 4.2.0 (1.5) by two steps, and further decreasing the number of pixels to 4K, 2K, HD, and SD.
  • two receiving servers 31 at remote venues connected to the transmission server 14 at the main venue are connected via a low-speed network 4a to a first receiving server 31a, and connected via a high-speed network 4c to a third receiving server 31a.
  • the receiving server 31c will be described as an example.
  • the first receiving server 31a assumes that the communication environment with the main venue is, for example, a throughput Thr_x of 1 Gbps and a round trip time RTT of 20 msec. It is also assumed that the third receiving server 31c has a throughput Thr_x of 10 Gbps and a round trip time RTT of 10 msec. Also, in this embodiment, the allowable waiting time is set to 100 msec.
  • the delay time when the video is folded back at the highest quality is calculated.
  • the frame size IS_max at the highest quality is obtained by formula (1) above, with the number of pixels set to 4K, bit depth set to 10 bits, and color information set to 4.4.4 (3).
  • the frame size at the highest quality is 249 Mbit/frame. Therefore, the calculation of the delay time Delay uses the formula (2) described above.
  • the communication status between the transmission server 14 at the main venue and the first reception server 31a at the remote venue has a throughput Thr_x of 1 Gbps and a one-way round trip time RTT from the remote venue to the main venue of 10 msec. do.
  • the communication status between the main venue and the third receiving server 31c of the remote venue is, as described above, throughput Thr_x of 10 Gbps, and the one-way round trip time RTT/2 from the remote venue to the main venue is 5 msec.
  • the quality of the image to be transmitted is set depending on whether or not these calculated delay times are within the preset allowable waiting time (100 msec).
  • this allowable waiting time is a one-way time from the remote venue to the main venue, unlike the round trip time RTT.
  • the calculated delay time is within the allowable waiting time, the return video from the remote venue is transmitted with the highest quality video signal.
  • the calculated delay time is longer than the allowable waiting time (NO)
  • NO the difference is absorbed by lowering the image quality, and the frame size that allows the delay time to fall within the allowable waiting time is calculated.
  • the third receiving server 31c whose delay time is 29.9 msec, is within the allowable waiting time (100 msec), so the frame size IS_max of the set pattern with the highest quality, 4K pixels, 10-bit bit depth, and color information In 4.4.4(3), the return video can be transmitted.
  • the first receiving server 31a whose delay time is 259 msec, exceeds the allowable waiting time (100 msec). Calculate size.
  • the return image transmitted from each remote venue is an image in which a large number of independent images are returned and aggregated, and from the organizer's point of view, it is clear that each image is displayed in synchronization without loss. is important. In other words, it is considered that the organizer side does not care much about the quality of the individual video of the return video because it is enough for the organizer to grasp the collected return video as a whole. In other words, even if there is deterioration in the image quality of individual images, there is no big impact. On the organizer side, presentation with low delay is more important than the image quality of the video. Therefore, in the present embodiment, priority is given to low delay over image quality for the return video.
  • the allowable waiting time is set to 100 ms.
  • the number of pixels, the bit depth, and the color information are adjusted in order to decrease the set values, and the data amount is to derive the desired frame size.
  • the transmission unit 44 edits the folded video input from the input unit 43 with the frame size output from the frame size calculation unit 45, and then compresses the data and processes it into a signal format compatible with the network 4.
  • Time information such as a time stamp indicating transmission time is attached to the processed return video signal, and the signal is transmitted to the transmission server 14 on the side of the main venue via the network 4 .
  • the first receiving unit 23a of the transmission server 14 transfers the time information added to the received return video to the first timing control unit 25, decompresses the return video, and outputs the decompressed return video to the first presentation unit 24a.
  • the first presentation unit 24a immediately displays the return video on the monitor 13a.
  • the return video whose delay exceeds the preset allowable waiting time is reduced in image quality.
  • the return video from each delayed venue is displayed on the monitor in the main venue in a synchronized manner. can be displayed.
  • the delay time can be set without the need to match the maximum delay time.
  • the main venue which is the receiving side, can perform synchronous control of the return video sent from a plurality of remote venues. Also, as long as the allowable waiting time or the delay time from the remote site does not change due to changes in the communication status through the network, the communication system at the main site, which is the transmitting side, needs to adjust the frame size only once. In addition, even if the delay time from the remote venue changes, the main venue can adjust the image quality and readjust the frame size based on the allowable waiting time, so that the return video can be synchronously controlled.
  • a communication system according to a modification of the first embodiment will be described with reference to FIG.
  • the configuration of the communication system of this modified example is the same as that of the communication system of the first embodiment, and the description of the configuration is omitted here.
  • This modified example shows an example in which the quality of the return video is lowered without lowering the quality of the event video transmitted from the main venue to a plurality of remote venues.
  • synchronous control with little delay was performed by adjusting the frame size of the loopback video so that it falls within the delay time. It is conceivable that the transmitted event video is also delayed. Delay can also be reduced by adjusting the frame size for this event video as well.
  • lowering the quality of the event video presented from the main venue to the remote venue impairs the quality of the user, so in this modified example, only the quality of the return video is reduced.
  • the first receiving server and the third receiving server shown in FIG. 9 are equivalent to the first receiving server 31a and the third receiving server 31b of the first embodiment described above.
  • the first reception server installed at the remote venue has a communication environment with the main venue with a throughput Thr_x 1 Gbps and a round trip time RTT of 20 msec.
  • the third receiving server assumes a throughput Thr_x of 10 Gbps and a round trip time RTT of 10 msec.
  • the allowable waiting time is set to 140 msec.
  • the round trip time RTT is the round trip transmission time between the main venue and the remote venue, it is conceivable to absorb the delay time from the main venue to the remote venue.
  • delay adjustment is handled not by transmission of one frame but by transmission of a plurality of frames.
  • processing of a multithread program for example, is used to process a plurality of frames in parallel. This makes it possible to reduce the degree of reduction in the frame size compared to the case of dealing with one frame, and to reduce deterioration in video quality.
  • Thres WF is obtained by the following formula, where the number of corresponding frames: NumF and the parallel processing interval: Pt.
  • Thres WF Thres W*(NumF ⁇ 2-1)/ ⁇ NumF*(NumF-1) ⁇ ...(5)
  • the delay time of the first receiving server 31a is 259 msec
  • the allowable waiting time is 100 msc
  • the return video is handled by transmitting 11 frames, from the above equations (4) and (5)
  • the parallel processing interval Pt 10 msec
  • Allowable waiting time Thres WF 109 msec.
  • the present embodiment As described above, according to the present embodiment, as the number of times of transmission of the return video increases, deterioration in video quality is reduced, and the total delay time is gradually reduced by the parallel processing time, which is the overlapping portion of the delay time. Therefore, when the transmission of the set number of frames is completed, the data can be transmitted within the set allowable waiting time.
  • the allowable waiting time is set arbitrarily. set to
  • the transmission server 14 on the main venue side measures the throughput and round trip time for each remote venue side, but the throughput and round trip time are measured on the reception server 31 on each remote venue side. You can make it work. In this case, it is only necessary to transmit only the allowable waiting time to the remote venue from the transmission server 14 on the main venue side.
  • the method described in each embodiment can be executed by a computer (computer) as a distance measurement program (software means), such as a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), optical disk (CD-ROM). , DVD, MO, etc.), a semiconductor memory (ROM, RAM, flash memory, etc.), or the like, or may be transmitted and distributed via a communication medium.
  • the programs stored on the medium also include a setting program for configuring software means (including not only execution programs but also tables and data structures) to be executed by the computer.
  • a computer that realizes this apparatus reads a program recorded on a recording medium, and in some cases, builds software means by a setting program, and executes the above-described processes by controlling the operation by this software means.
  • the term "recording medium” as used herein is not limited to those for distribution, and includes storage media such as magnetic disks, semiconductor memories, etc. provided in computers or devices connected via a network.
  • the present invention is not limited to the respective embodiments described above, and can be modified in various ways without departing from the gist of the present invention at the implementation stage.
  • the configurations described in the above embodiments may be combined as appropriate as possible, in which case the combined effect can be obtained.
  • the above-described embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

Abstract

The present invention: calculates a frame size for transferring a plurality of second videos captured in a plurality of second venues in response to a first video transferred from a first venue via a network, so that the second videos are transferred within a duration set in advance from the plurality of second venues back to the first venue, the calculation being made on the basis of acquired throughput and round-trip time of transfer between the first venue and each of the second venues; and synchronizes the plurality of second videos by editing the second videos to the calculated frame size.

Description

同期制御を行う通信システム、その同期制御方法、受信サーバ及び同期制御プログラムCommunication system performing synchronization control, synchronization control method thereof, receiving server, and synchronization control program
 本発明の実施形態は、映像や音声を含む情報通信における同期制御を行う通信システム、その同期制御方法、受信サーバ及び同期制御プログラムに関する。 Embodiments of the present invention relate to a communication system that performs synchronization control in information communication including video and audio, a synchronization control method thereof, a receiving server, and a synchronization control program.
 近年、1つの主会場で開催される催し(イベント)を複数の遠隔地に設営された遠隔会場に即時配信(ライブ配信)することで、複数の会場の観客が同時にイベントに参加又は、鑑賞することができる通信システムがある。 In recent years, an event held at one main venue is instantly distributed (live distribution) to remote venues set up in multiple remote locations, allowing audiences at multiple venues to participate in or appreciate the event at the same time. There is a communication system that can
 このようなライブ配信において、主会場の主催者が各遠隔会場の観客と一体感を感じるためには、それぞれの遠隔会場の観客の応答又は反応が超低遅延即ち、レスポンスよく且つ同時に、主催者へ返ってくることが重要である。反対に、それぞれの遠隔会場から主催者への応答が大きく遅延したり、応答が揃わず時間差が生じたりした場合には、主催者が次の行動のタイミングが取れず、主催者と観客の間に一体感を感じられなくなる。このため、各遠隔会場からの応答遅延がそれぞれ異なる場合には、観客側の反応を同期させる必要がある。 In such live distribution, in order for the organizer of the main venue to feel a sense of unity with the audience at each remote venue, the response or reaction of the audience at each remote venue must have an ultra-low delay. It is important to come back to On the other hand, if there is a significant delay in the response from each remote venue to the organizer, or if there is a time lag due to inconsistent responses, the organizer will not be able to determine the timing of the next action, and the organizer and the audience will not be able to I can't feel the sense of unity. Therefore, if the response delays from each remote venue are different, it is necessary to synchronize the reactions of the audience.
 遅延を無くして同期を取る手法としては、メディアトランスポート方式の一つとして、例えば、非特許文献1に記載されているMMT(MPEG Media Transport)方式が知られている。 As a technique for synchronization without delay, for example, the MMT (MPEG Media Transport) method described in Non-Patent Document 1 is known as one of the media transport methods.
 前述したMMT方式は、通信装置毎に設定された共通の基準クロックとなるSTC(system Time Clock)に映像及び音声の提示タイムスタンプ(Presentation Time Stamp)を設定することで、遅延時間が異なる複数の通信装置に対して、絶対時刻における同期を実現している。この同期を取る際に、遅延が最も大きい通信装置(ストリーム)に合わせてオフセットを設定することで、対象とする複数の通信装置の完全同期を実現することができる。 In the above-mentioned MMT method, by setting the presentation time stamp (Presentation Time Stamp) of video and audio to the STC (system time clock), which is a common reference clock set for each communication device, multiple Synchronization in absolute time is realized for communication devices. By setting an offset according to the communication device (stream) with the largest delay when establishing this synchronization, it is possible to achieve complete synchronization of a plurality of target communication devices.
 しかし、遅延が最も大きい通信装置に同期を取った場合に、遅延が小さい通信装置においては、時間合わせのための待機期間が発生するため、受信した映像のフレームをリピートさせることで対応している。このような対応は、通信の同期を実現させることができるが、1つでも遅延が大きい通信装置が含まれていれば、他が低遅延の通信装置であっても遅延が大きい通信装置に合わせるため、レスポンスよく主催者へ応答することはできない。 However, when synchronizing with a communication device with the longest delay, a waiting period for time adjustment occurs in the communication device with the shortest delay, so the frame of the received video is repeated. . Such correspondence can realize communication synchronization, but if even one communication device with a large delay is included, even if the other communication devices are low-delay communication devices, the delay is adjusted to the communication device with a large delay. Therefore, it is not possible to respond to the organizer with good response.
 この対応策としては、ビットレートを可変する手法がある。例えば、その可変方法の1つとして、非特許文献2に記載されているABR(Adaptive Bit Rate)が知られている。このABRは、撮影された映像に基づく複数のビットレートの動画を予め用意し、ネットワークNW(Net Work)の通信状況に応じて、好適するビットレートを選択することで、遅延を少なくする。 As a countermeasure for this, there is a method of varying the bit rate. For example, ABR (Adaptive Bit Rate) described in Non-Patent Document 2 is known as one of the variable methods. This ABR reduces delay by preparing moving images of a plurality of bit rates based on captured images in advance and selecting a suitable bit rate according to the communication status of the network NW (Network Work).
 ABRを利用した場合、利用の有無に関わらず、送信前に複数のビットレートの動画を用意する必要がある。前述したように、ライブ配信における主催者と観客との間に一体感を出すためには、遠隔会場内を撮影した映像を主催者に折り返えすように送信する必要がある。しかし、ABRは、送出側による制御であり、複数の遠隔会場から各会場内を撮影した映像を主催者に送出しているため、主催者側ではフレームサイズを一意に定めることができない。 When using ABR, regardless of whether it is used or not, it is necessary to prepare videos with multiple bitrates before transmission. As described above, in order to create a sense of unity between the host and the audience in the live distribution, it is necessary to send the video of the inside of the remote venue back to the host. However, ABR is controlled by the transmitting side, and since images of the inside of each venue taken from a plurality of remote venues are transmitted to the organizer, the organizer cannot uniquely determine the frame size.
 この発明は、第1会場からネットワークを通じて伝送された第1映像に応答する複数の第2会場で撮影される複数の第2映像に対して、複数の第2会場から前記第1会場へ折り返し伝送される複数の第2映像を同期させる技術を提供しようとするものである。 According to the present invention, a plurality of second videos shot at a plurality of second venues in response to a first video transmitted from a first venue through a network are returned from a plurality of second venues to the first venue. Another object of the present invention is to provide a technique for synchronizing a plurality of secondary images that are generated.
 上記課題を解決するために、この発明の一態様に係る同期制御を行う通信システムは、第1映像信号を送出する送出サーバと、前記送出サーバに対して複数の遠隔地にそれぞれ配置され、ネットワークを通じて、前記送出サーバから伝送された前記第1映像信号を受信し、前記第1映像信号に応答する第2映像信号を前記送出サーバへ折り返し伝送する複数の受信サーバと、を備え、前記送出サーバは、複数の前記第2映像信号が同時に表示させる際に、複数の前記第2映像信号による場面に視覚差が生じない許容待ち時間を設定する第1のタイミング制御部と、それぞれの前記受信サーバは、前記許容待ち時間以内に前記折り返し伝送が完了するように、前記送出サーバと当該受信サーバとの間で伝送される信号のスループットとラウンドトリップタイムとに基づき、前記第2映像信号のフレームサイズを算出し、算出されたフレームサイズで第2映像信号を編集する第2のタイミング制御部と、を備える。 In order to solve the above problems, a communication system for performing synchronization control according to one aspect of the present invention includes a transmission server that transmits a first video signal; a plurality of receiving servers that receive the first video signal transmitted from the transmitting server through the transmission server and transmit back to the transmitting server a second video signal that responds to the first video signal; a first timing control unit that sets an allowable waiting time that does not cause a visual difference between the scenes of the plurality of the second video signals when the plurality of the second video signals are displayed simultaneously; and each of the receiving servers. is the frame size of the second video signal based on the throughput and round trip time of the signal transmitted between the transmitting server and the receiving server so that the return transmission is completed within the allowable waiting time and a second timing control unit that edits the second video signal with the calculated frame size.
 この発明の一態様によれば、送出サーバから複数の遠隔地にそれぞれ配置される複数の受信サーバに第1映像を送出し、それぞれの受信サーバが受信した第1映像信号に応答する第2映像信号を送出サーバへ折り返し伝送する時に、予め取得した送出サーバと複数の受信サーバとの間で伝送される信号のスループットとラウンドトリップタイムに基づき、予め許容待ち時間が設定される。それぞれの受信サーバは、許容待ち時間以内に折り返し伝送が完了するように、第2映像信号のフレームサイズを算出し、算出されたフレームサイズになるように、解像度、ビット深度及び、クロマサブサンプリングを変更して第2映像を編集して送出サーバへ伝送することで、複数の第2会場から前記第1会場へ折り返し伝送される複数の第2映像信号を同期させる技術を提供することができる。よって、第1の会場において複数の第2映像信号が表示される際に、複数の第2映像の場面に視覚差が生じない同期した映像を表示させることができる。 According to one aspect of the present invention, a first image is transmitted from a transmission server to a plurality of reception servers respectively arranged at a plurality of remote locations, and a second image is sent in response to the first image signal received by each of the reception servers. When transmitting the signal back to the transmitting server, an allowable waiting time is set in advance based on the previously obtained throughput of the signal transmitted between the transmitting server and the plurality of receiving servers and the round-trip time. Each receiving server calculates the frame size of the second video signal so that return transmission is completed within the allowable waiting time, and adjusts the resolution, bit depth, and chroma subsampling so as to achieve the calculated frame size. It is possible to provide a technique for synchronizing a plurality of second video signals returned from a plurality of second venues to the first venue by changing and editing the second video and transmitting it to the transmission server. Therefore, when a plurality of second video signals are displayed in the first venue, synchronized video can be displayed without visual difference between the scenes of the plurality of second video images.
図1は、通信システムの全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a communication system. 図2は、第1実施形態に係る送出サーバとして機能するコンピュータの構成の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the configuration of a computer functioning as a transmission server according to the first embodiment. 図3は、折り返し映像の許容待ち時間の算出について説明するためのフローチャートである。FIG. 3 is a flowchart for explaining the calculation of the permissible waiting time for the return video. 図4は、折り返し映像のフレームサイズの算出について説明するためのフローチャートである。FIG. 4 is a flowchart for explaining the calculation of the frame size of the return video. 図5は、第1の実施形態に係る通信システムにおける折り返し映像信号のフレームサイズの設定パターンを示す図である。FIG. 5 is a diagram showing setting patterns of the frame size of the return video signal in the communication system according to the first embodiment. 図6は、第1の実施形態の変形例に係る通信システムにおける折り返し映像信号のフレームサイズの設定パターンを示す図である。FIG. 6 is a diagram showing setting patterns of the frame size of the return video signal in the communication system according to the modification of the first embodiment. 図7は、第1の実施形態に係る通信システムにおける折り返し映像信号のフレームサイズの設定パターンを示す図である。FIG. 7 is a diagram showing setting patterns of the frame size of the return video signal in the communication system according to the first embodiment. 図8は、第1の実施形態に係る通信システムの映像信号及び折り返し映像の伝送について説明するための通信のタイミングフロー図である。FIG. 8 is a communication timing flow diagram for explaining transmission of a video signal and return video in the communication system according to the first embodiment. 図9は、第1の実施形態の変形例に係る通信システムにおける通信のタイミングフロー図である。FIG. 9 is a timing flow diagram of communication in the communication system according to the modification of the first embodiment. 図10は、第2の実施形態に係る通信システムにおける通信のタイミングフロー図である。FIG. 10 is a timing flow diagram of communication in the communication system according to the second embodiment.
 以下、図面を参照して本発明の実施形態について詳細に説明する。図1は、一実施形態に係る通信システムの構成例を示す図である。 
 本実施形態の通信システム1は、主催者がイベントを開催する主会場[第1会場]に設けられる主会場側通信システム2(以下、通信システム2とする)と、複数、この例では3つ、の遠隔地にそれぞれ設営された遠隔会場[第2会場]に設けられる遠隔会場側通信システム3(以下、通信システム3とする)と、これらの通信システム間で伝送される映像信号等を中継するネットワーク4とで構成される。尚、説明の明確化を図るために、主会場内で撮影された映像をイベント映像[第1映像]又はイベント映像信号と称し、観客を含む遠隔会場内の様子を撮影して主会場に送出する映像を折り返し映像[第2映像]又は折り返し映像信号と称する。ここでは、映像信号として称しているが、映像信号には、音声を含む音信号を含んでいるものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of a communication system according to one embodiment.
The communication system 1 of the present embodiment includes a main venue side communication system 2 (hereinafter referred to as a communication system 2) provided in the main venue [first venue] where the organizer holds the event, and a plurality, in this example, three , remote venue side communication system 3 (hereinafter referred to as communication system 3) provided at the remote venue [second venue] set up at each remote location, and video signals etc. transmitted between these communication systems are relayed. It is composed of a network 4 that In order to clarify the explanation, the video shot in the main venue will be referred to as the event video [first video] or the event video signal, and the state of the remote venue including the audience will be filmed and sent to the main venue. The resulting image is called a return image [second image] or a return image signal. Although referred to as a video signal here, it is assumed that the video signal includes a sound signal including voice.
 主会場側の通信システム2は、少なくとも1台のカメラ11と、主催者の音声等を集音するマイクロフォン12と、各遠隔会場で撮影された折り返し映像をそれぞれに表示するモニタ13と、送出サーバ14とで構成される。 The communication system 2 on the main venue side includes at least one camera 11, a microphone 12 that collects the host's voice, etc., a monitor 13 that displays return images taken at each remote venue, and a transmission server. 14.
 モニタ13は、表示画面を有する表示装置であって、例えば、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、及びプロジェクタ等を利用することができる。また、図示していないが音声を発するスピーカを別途、設けている。尚、本実施形態の図1においては、複数のモニタを設置し、それぞれに各遠隔会場の折り返し映像を表示する構成であるが、1つの大きな表示画面を有するモニタを用いて、その表示画面を複数の表示領域に分割し、それらの分割した各表示領域に各遠隔会場の折り返し映像を割り当てて表示する構成であってもよい。 The monitor 13 is a display device having a display screen, and can use, for example, a liquid crystal display, a plasma display, an organic EL display, a projector, or the like. Also, although not shown, a speaker for emitting sound is separately provided. In addition, in FIG. 1 of the present embodiment, a plurality of monitors are installed to display the return video of each remote site on each. A configuration may be used in which the display area is divided into a plurality of display areas, and the return image of each remote site is assigned to each of the divided display areas and displayed.
 送出サーバ14は、第1入力部21と、第1送出部22と、受信部23と、提示部24と、タイミング制御部25と、を備える。本実施形態において、受信部23及び提示部24は、遠隔会場側にそれぞれ配置される3台の受信サーバ31に対応する、第1受信部23a及び第1提示部24a、第2受信部23b及び第2提示部24b、第3受信部23c及び第3提示部24cの3組を例として示している。勿論、遠隔会場の設営数によって、受信部及び提示部の数が設定される。尚、遠隔会場の設営数が多数であった場合には、切替装置を設置して、適宜、遠隔会場を切り替えて又は、選択して、折り返し映像を表示させてもよい。 The transmission server 14 includes a first input unit 21 , a first transmission unit 22 , a reception unit 23 , a presentation unit 24 and a timing control unit 25 . In this embodiment, the receiving unit 23 and the presenting unit 24 are the first receiving unit 23a and the first presenting unit 24a, the second receiving unit 23b and Three sets of the second presentation unit 24b, the third reception unit 23c, and the third presentation unit 24c are shown as examples. Of course, the number of reception units and presentation units is set according to the number of remote venues to be set up. If there are a large number of remote venues set up, a switching device may be installed to switch or select the remote venue as appropriate to display the return video.
 第1入力部21は、少なくとも1台のカメラ11により撮影されたイベント映像信号と、マイクロフォン12で集音された音声等の音信号とを入力し、イベント映像信号及び音信号をデジタル符号化、レベル調整及びノイズ除去等の信号処理を施し、第1送出部22へ出力する。 The first input unit 21 inputs an event video signal captured by at least one camera 11 and a sound signal such as sound collected by the microphone 12, digitally encodes the event video signal and the sound signal, After performing signal processing such as level adjustment and noise removal, the signal is output to the first transmission unit 22 .
 第1送出部22は、イベント映像信号と音信号をデータ圧縮し、通信に用いるネットワーク4に対応する形態の通信信号に変換処理し、変換処理された通信信号に後述する時間情報を添付して、ネットワーク4を介して受信サーバ31に伝送する。 
 受信部23は、各遠隔会場に設置された受信サーバ31(第1乃至第3受信サーバ31a,31b,31c)から伝送された各遠隔会場の折り返し映像信号を受信する。 
 提示部24は、受信した折り返し映像信号に対して、圧縮データの解凍等の画像データ処理を施して映像信号に変換し、直ちにモニタ13に出力する。
The first sending unit 22 compresses the data of the event video signal and the sound signal, converts them into communication signals in a format compatible with the network 4 used for communication, and attaches the time information described later to the converted communication signals. , to the receiving server 31 via the network 4 .
The receiving unit 23 receives the return video signal of each remote site transmitted from the receiving server 31 (first to third receiving servers 31a, 31b, 31c) installed at each remote site.
The presentation unit 24 performs image data processing such as decompression of compressed data on the received return video signal, converts it into a video signal, and immediately outputs it to the monitor 13 .
 第1タイミング制御部25は、第1送出部22から送出されるイベント映像信号に送信時間を示すタイムスタンプ等を時間情報として付加して、受信サーバ31へ伝送し、後述する受信サーバ31の第2タイミング制御部46は、スループット(throughput)Thr xを取得する。第2タイミング制御部46は、取得したスループットThr xを、第1タイミング制御部25へ送出する。尚、スループットThr xは、単位時間あたりのデータ転送量を示す。 
 さらに、第1タイミング制御部25は、主会場の第1送出部22よりイベント映像信号を送出してから、各遠隔会場の受信サーバ31で折り返して送出される折り返し映像信号が送出サーバ14の受信部23に着信するまでの時間として、ラウンドトリップタイム(Round Trip Time)RTT xを取得する。 
 尚、共に、符号の末尾のxは、各遠隔会場を識別するための識別子とする。ラウンドトリップタイムRTT xは、送出サーバ14と受信サーバ31との往復時間であるため、受信サーバ31から送出サーバ14までの片道の伝送時間は、ラウンドトリップタイムRTT xの1/2とする。
The first timing control unit 25 adds a time stamp or the like indicating the transmission time to the event video signal sent from the first sending unit 22 as time information, and transmits the signal to the receiving server 31. The 2-timing control unit 46 acquires the throughput (Thr x ). The second timing control section 46 sends the acquired throughput Thr x to the first timing control section 25 . The throughput Thr x indicates the amount of data transferred per unit time.
Further, the first timing control unit 25 sends out the event video signal from the first sending unit 22 of the main venue, and then the return video signal sent back by the receiving server 31 of each remote venue is received by the sending server 14 . A round trip time (RTT x) is obtained as the time until the call arrives at the unit 23 .
In both cases, the x at the end of the code is an identifier for identifying each remote venue. Since the round trip time RTT x is the round trip time between the sending server 14 and the receiving server 31, the one-way transmission time from the receiving server 31 to the sending server 14 is assumed to be half the round trip time RTT x.
 第1タイミング制御部25は、取得されたスループットThr x及び、ラウンドトリップタイムRTT xに基づき、遠隔会場側からの折り返し映像の許容待ち時間Thres Wを設定し、それぞれの遠隔会場の受信サーバ31内の後述する第2タイミング制御部へ通知する。 Based on the obtained throughput Thrx and round trip time RTTx, the first timing control unit 25 sets the allowable waiting time ThresW for return video from the remote site, and is notified to a second timing control unit, which will be described later.
 ネットワーク4は、種々のネットワークが適用でき、例えば、インターネットや専用回線のネットワーク、又は、光通信のネットワーク等を用いることができる。近年、ライブ配信には、IP/MPLS(Multi-Protocol Label Switching)ネットワーク方式等のマルチキャスト対応の映像伝送方式が採用されている。これらのネットワークの違いは、例えば、伝達できるデータ量及び、データの通信速度である。ネットワーク4は、通信環境、例えば通信方式、通信距離又は通信経路等によって、通信速度(又は、回線速度)が異なっており、本実施形態では、比較のために、低速通信を行う低速ネットワーク(NW)4a、通常の通信速度である中速通信を行う中速ネットワーク(NW)4b、高速通信を行う高速ネットワーク(NW)4cを例としている。 Various networks can be applied to the network 4, and for example, the Internet, a dedicated line network, or an optical communication network can be used. In recent years, video transmission methods compatible with multicast, such as the IP/MPLS (Multi-Protocol Label Switching) network method, have been adopted for live distribution. The differences between these networks are, for example, the amount of data that can be transmitted and the data communication speed. The network 4 has different communication speeds (or line speeds) depending on the communication environment, for example, the communication method, communication distance, or communication route. ) 4a, a medium-speed network (NW) 4b for medium-speed communication, which is a normal communication speed, and a high-speed network (NW) 4c for high-speed communication.
 本実施形態の通信システム1において、1つの主会場に設置される通信システム2に対して、複数の遠隔地に設営される遠隔会場には、それぞれにネットワーク4を介して通信システム2に接続する通信システム3が設置される。 In the communication system 1 of the present embodiment, remote venues set up at a plurality of remote locations are connected to the communication system 2 via the network 4, respectively, with respect to the communication system 2 installed at one main venue. A communication system 3 is installed.
 これらの通信システム3は、受信サーバ31と、遠隔会場内の様子を撮影するカメラ33と、遠隔会場内の歓声等を集音するマイクロフォン32と、主会場内で撮影されたイベント映像を表示するモニタ34と、で構成される。尚、受信サーバ31b,31cにおけるカメラとマイクロフォンとモニタは、図示を省略している。 These communication systems 3 include a receiving server 31, a camera 33 for photographing the situation in the remote hall, a microphone 32 for collecting sounds such as cheers in the remote hall, and an event image photographed in the main hall. and a monitor 34 . Note that the cameras, microphones, and monitors in the receiving servers 31b and 31c are omitted from the drawing.
 受信サーバ31は、前述した通信速度が異なるネットワーク4(4a,4b,4c)にそれぞれ接続する3台の受信サーバ31a,31b,31cを例として説明する。各受信サーバ31は、受信部41と、提示部42と、入力部43と、送出部44と、フレームサイズ算出部45と、第2タイミング制御部46とを備えている。 The receiving server 31 will be described as an example of three receiving servers 31a, 31b, and 31c respectively connected to the networks 4 (4a, 4b, and 4c) having different communication speeds. Each receiving server 31 includes a receiving section 41 , a presentation section 42 , an input section 43 , a sending section 44 , a frame size calculating section 45 and a second timing control section 46 .
 受信部41は、主会場の送出サーバ14からネットワーク4を介してイベント映像信号と音信号を受信し、提示部42にイベント映像信号と音信号を出力する。提示部42は、データ圧縮を解凍する等の画像データ処理を施し、イベント映像信号をモニタ34に出力し、遠隔会場内に配置されたスピーカ(図示せず)に音信号を出力する。モニタ34は、主会場で催されているイベント映像を表示し、スピーカは、主催者が発した音(例えば、楽曲等)及び音声を再生する。 The reception unit 41 receives the event video signal and the sound signal from the transmission server 14 of the main venue via the network 4 and outputs the event video signal and the sound signal to the presentation unit 42 . The presentation unit 42 performs image data processing such as decompression of data compression, outputs an event video signal to the monitor 34, and outputs a sound signal to a speaker (not shown) arranged in the remote hall. The monitor 34 displays an event video being held at the main venue, and the speaker reproduces the sound (for example, music) and voice produced by the organizer.
 入力部43は、少なくとも1台のカメラ33により撮影された遠隔会場内の観客を含む映像の折り返し映像信号と、マイクロフォン32で集音された音声等の音信号とをデジタル符号化、レベル調整及びノイズ除去等の信号処理を施し、送出部44へ出力する。 The input unit 43 digitally encodes, adjusts the level of, and adjusts the level of the return video signal of the video including the spectators in the remote venue captured by at least one camera 33 and the sound signal such as the sound collected by the microphone 32 . Signal processing such as noise removal is performed on the signal, and the signal is output to the sending unit 44 .
 第2タイミング制御部46は、通信システム2から送信されて更新可能に格納している前述した折り返し映像の許容待ち時間Thres Wをフレームサイズ算出部45に出力する。 
 フレームサイズ算出部45は、許容待ち時間Thres Wを基準に用いて、後述する算出方法によりフレームサイズを算出して送出部44に設定する。
The second timing control unit 46 outputs to the frame size calculation unit 45 the allowable waiting time Thres W for the return video, which is transmitted from the communication system 2 and stored in an updatable manner.
The frame size calculator 45 uses the allowable waiting time Thres W as a reference to calculate the frame size by a calculation method to be described later, and sets the frame size in the sending unit 44 .
 送出部44は、入力部43から入力された折り返し映像を設定されたフレームサイズに編集し、データ圧縮及び、ネットワーク4に対応する信号形態に処理し、処理された折り返し映像信号に送信時間を示すタイムスタンプ等の時間情報を添付して、ネットワーク4を介して主会場側の送出サーバ14に伝送する。 The sending unit 44 edits the return video input from the input unit 43 to a set frame size, compresses the data, processes it into a signal form compatible with the network 4, and indicates the transmission time to the processed return video signal. Attached with time information such as a time stamp, it is transmitted via the network 4 to the transmission server 14 on the side of the main venue.
 図2は、第1実施形態に係る送出サーバ14として機能するコンピュータの構成の一例を示す模式図である。 
 送出サーバ14は、図2に示すように、コンピュータデバイスにより構成され、CPU等のプロセッサ51を有する。この第1タイミング制御部25では、プロセッサ51に対し、プログラムメモリ52と、データメモリ53と、ストレージ54と、入出力部55と、通信部56とが、バス57を介して接続される。
FIG. 2 is a schematic diagram showing an example of the configuration of a computer functioning as the transmission server 14 according to the first embodiment.
As shown in FIG. 2, the transmission server 14 is composed of a computer device and has a processor 51 such as a CPU. In the first timing control section 25 , a program memory 52 , a data memory 53 , a storage 54 , an input/output section 55 and a communication section 56 are connected to the processor 51 via a bus 57 .
 プログラムメモリ52は、非一時的な有形のコンピュータ可読記憶媒体として、例えば、フラッシュメモリ等の随時書込み及び読出しが可能な不揮発性メモリと、ROM(Read Only Memory)等の不揮発性メモリとが組合せて使用されたものである。このプログラムメモリ52には、プロセッサ51が各種制御処理を実行するために必要なプログラムが格納されている。 The program memory 52 is a non-temporary tangible computer-readable storage medium, for example, a combination of a non-volatile memory such as a flash memory that can be written and read at any time and a non-volatile memory such as a ROM (Read Only Memory). It has been used. The program memory 52 stores programs necessary for the processor 51 to execute various control processes.
 データメモリ53は、有形のコンピュータ可読記憶媒体として、例えば、上記の不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリとが組合せて使用されたものである。このデータメモリ53は、各種処理が行われる過程で取得及び作成された各種データが記憶されるために用いられる。 The data memory 53 is used as a tangible computer-readable storage medium, for example, by combining the above nonvolatile memory and a volatile memory such as RAM (Random Access Memory). This data memory 53 is used to store various data obtained and created in the process of performing various processes.
 ストレージ54は、非一時的な有形のコンピュータ可読記憶媒体として、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の随時書込み及び読出しが可能な不揮発性メモリを用いた大容量の記憶媒体を有している。このストレージ54には、プロセッサ51が各種制御処理を実行するために必要な各種のプログラムやデータが書き換え可能に格納する大容量の記憶量を有する。入出力部55は、カメラ11、マイクロフォン12、モニタ13とのインタフェースとして機能し、通信部56は、ネットワーク4を経由して信号を通信するためのインタフェースとして機能する。 The storage 54 is a non-temporary tangible computer-readable storage medium, such as a HDD (Hard Disk Drive) or SSD (Solid State Drive). have a medium. The storage 54 has a large storage capacity for rewritably storing various programs and data necessary for the processor 51 to execute various control processes. The input/output unit 55 functions as an interface with the camera 11 , the microphone 12 and the monitor 13 , and the communication unit 56 functions as an interface for communicating signals via the network 4 .
 遠隔会場側の受信サーバ31も、この送出サーバ14と同様に、コンピュータによって構成することができる。受信サーバ31を構成するコンピュータのプログラムメモリ52には、例えば、後述するフレームサイズを算出するための演算プログラム等が格納されている。 The reception server 31 on the remote venue side can also be configured by a computer, similar to the transmission server 14 . The program memory 52 of the computer that constitutes the receiving server 31 stores, for example, an arithmetic program for calculating a frame size, which will be described later.
 次に、図3に示すフローチャートを参照して、第1タイミング制御部25による折り返し映像の許容待ち時間の設定について説明する。 
 まず、主会場側の通信システム2と、各遠隔会場側の複数の通信システム3との間にネットワーク4を通じて初回の接続(セッション)を確立し、試験用映像信号を通信システム2から各遠隔会場側の通信システム3に送信する(ステップS1)。また、各通信システム3は、試験用映像信号又は、遠隔会場内を撮影した映像を折り返し、通信システム2へ送信する(ステップS2)。
Next, the setting of the permissible waiting time for the return video by the first timing control unit 25 will be described with reference to the flowchart shown in FIG.
First, an initial connection (session) is established through the network 4 between the communication system 2 on the main venue side and a plurality of communication systems 3 on the remote venue side, and the test video signal is transmitted from the communication system 2 to each remote venue. is transmitted to the communication system 3 on the side (step S1). In addition, each communication system 3 loops back the test video signal or the image of the remote venue and transmits it to the communication system 2 (step S2).
 この試験用映像信号の往復伝送から主会場側と各遠隔会場との間のスループットThr x及び、折り返し伝送によるラウンドトリップタイムRTT xを取得する(ステップS3)。但し、xは、各遠隔会場を区別するための識別子である。スループットThr x及びラウンドトリップタイムRTT xに基づき、折り返し映像の許容待ち時間(Thres W)を設定する(ステップS4)。この許容待ち時間は、任意に設定される時間であり、複数の映像が同時に表示された際に、視覚差(及び/又は聴覚差)が生じずに、表示されている場面の動作がほぼ同期していると見なされる時間差(遅延差)又は、許容範囲の時間である。本実施形態では、この許容待ち時間内に複数の折り返し映像が主会場に伝送されて表示されることを同期制御と称している。尚、ここでいう、視覚差は、複数の折り返し映像を同時に見た際に感じるシーン内の動作の差、例えば、観客に起こった同様な動きの時間差を含む。また、同時に、折り返し映像のシーンと共に再生される音や音声(観客)の時間差を聴覚差としている。ここでは、折り返し映像には、音(音声)も付加されており、映像に視覚差が生じた際には、聴覚差も生じるものとする。例えば、2つの遠隔会場からそれぞれの観客を写した映像が主会場側のモニタに同時に表示されている場合に、各遠隔会場の観客が歓声を上げたシーンを主催者が見て、観客の動きと上がった歓声に遅延を感じない程度の時間差即ち、遅延であり、例えば、数百msec程度である。 From the round-trip transmission of this test video signal, the throughput Thr x between the main venue and each remote venue and the round-trip time RTT x due to return transmission are obtained (step S3). However, x is an identifier for distinguishing each remote venue. Based on the throughput Thrx and the round trip time RTTx, the permissible waiting time (Thres W) of the return video is set (step S4). This allowable waiting time is a time that is arbitrarily set, and when multiple images are displayed at the same time, there is no visual difference (and/or auditory difference), and the actions of the displayed scenes are almost synchronized. It is the time difference (delay difference) or the time within the allowable range. In this embodiment, the process of transmitting and displaying a plurality of return images to the main venue within the allowable waiting time is called synchronous control. It should be noted that the visual difference referred to here includes the difference in motion within the scene that is felt when viewing a plurality of reversed images at the same time, for example, the time difference between similar motions occurring in the audience. At the same time, the auditory difference is defined as the time difference between sounds and voices (spectators) that are reproduced together with the scene of the return video. Here, sound (audio) is also added to the return video, and when there is a visual difference in the video, an auditory difference is also generated. For example, when images of spectators from two remote venues are displayed simultaneously on the monitor at the main venue, the organizer sees the scene where the spectators at each remote venue cheered, The time difference, ie, the delay, is such that the cheers raised up do not feel the delay, for example, about several hundred msec.
 この折り返し映像の許容待ち時間(Thres W)は、任意に設定できるが、許容待ち時間を短くするほど、伝送できる映像のデータ容量が少なくなるため、映像の品質は低下し、逆に、許容待ち時間を長くするほど、映像の品質は維持できるが、遅延時間が大きくなる。勿論、この許容待ち時間(時間差)は、催しているイベントの種別によって異なり、数値は限定されるものではない。 The allowable waiting time (Thres W) for this return video can be set arbitrarily. The longer the time, the longer the delay time, although the quality of the video can be maintained. Of course, this allowable waiting time (time difference) varies depending on the type of event being held, and the numerical value is not limited.
 この許容待ち時間(Thres W)は、通信システム3へ送信され、各遠隔会場の受信サーバ31の第2タイミング制御部46に格納される(ステップS5)。尚、スループットThr x及び、ラウンドトリップタイムRTT xの取得は、イベント開催中即ち、映像信号を継続して伝送している期間中に、定期的に実施して、必要であれば許容待ち時間(Thres W)を更新する(ステップS6)。また、許容待ち時間(Thres W)の更新は、必ずも定期的に計測した毎に更新する必要は無く、前回格納した許容待ち時間(Thres W)と予め設定した範囲を超えた際に、新たな許容待ち時間(Thres W)として更新してもよい。 This allowable waiting time (Thres W) is transmitted to the communication system 3 and stored in the second timing control section 46 of the reception server 31 of each remote venue (step S5). The acquisition of throughput Thr x and round trip time RTT x is performed periodically during the event, that is, during the period in which the video signal is continuously transmitted, and if necessary, the allowable waiting time ( Thres W) is updated (step S6). In addition, it is not necessary to update the allowable waiting time (Thres W) every time it is measured periodically. may be updated as an allowable waiting time (Thres W).
 図4に示すフローチャートを参照して、各遠隔会場側における折り返し映像のフレームサイズ(画像サイズ)の算出について説明する。 
 まず、最高品質で映像を折り返す際の遅延時間を求める。
Calculation of the frame size (image size) of the return video at each remote venue will be described with reference to the flowchart shown in FIG.
First, the delay time when the video is folded back at the highest quality is obtained.
 最高品質でのフレームサイズIS_maxを算出する(ステップS11)。例えば、
 IS_max=3840*2160(4K)*10(10bit)*3(4:4:4)=249Mbit/frame  …(1)
 遅延時間Delayを次式(2)で算出する(ステップS12)。
A frame size IS_max at the highest quality is calculated (step S11). for example,
IS_max=3840*2160(4K)*10(10bit)*3(4:4:4)=249Mbit/frame …(1)
A delay time Delay is calculated by the following equation (2) (step S12).
   Delay_x=IS_max/スループットThr_x+ラウンドトリップタイムRTT_X/2  …(2)
 次に、算出した遅延時間は、予め設定された許容待ち時間以内か否かを判定する(ステップS13)。このステップS12の判定で、遅延時間が許容待ち時間以内であった場合には(YES)、その遠隔会場からの折り返し映像は、最高品質の映像信号で伝送することに設定する(ステップS14)。
Delay_x=IS_max/throughput Thr_x + round trip time RTT_X/2 …(2)
Next, it is determined whether or not the calculated delay time is within a preset allowable waiting time (step S13). If it is determined in step S12 that the delay time is within the allowable waiting time (YES), the return video from the remote venue is set to be transmitted with the highest quality video signal (step S14).
 しかしながら、ステップS12の判定で、算出された遅延時間が許容待ち時間より大きかった場合(NO)、その差分を映像の品質(又は、画質)を落とすことで吸収すべく、許容待ち時間内に遅延時間が収まるフレームサイズを算出する(ステップS15)。遠隔会場からの折り返し映像を算出されたフレームサイズで編集して、品質を落した折り返し映像で伝送することに設定する(ステップS16)。 However, if the calculated delay time is greater than the allowable waiting time (NO) in the determination of step S12, the delay is made within the allowable waiting time in order to absorb the difference by reducing the quality of the video (or image quality). A frame size that fits the time is calculated (step S15). The return video from the remote venue is edited with the calculated frame size and set to be transmitted as the return video with reduced quality (step S16).
 次に、図5乃至図7を参照して、データ量を減少させるフレームサイズの設定パターンについて説明する。 
 前述したように、データ量を減少させるフレームサイズは、画素数、ビット深度及び、色情報(クロマサブサンプリング)の3つの要素を組合せた設定パターンにより設定される。ここでは、フレームサイズの設定パターン数は、画素数:4パターン × ビット深度:2パターン × 色情報:3パターンの合計24通りが存在する。画素数は、4K、2K、HD及びSDの4パターンである。ビット深度は、10bitと、8bitの2パターンである。さらに、色情報(クロマサブサンプリング)は、4,4,4(3)と、4,2,2,(2)及び、4,2,0(1.5)の3パターンである。また図5乃至図7に示す削減割合の欄において、フレームサイズの設定によるデータ量の削減割合は、最高画質を1とした場合、設定パターンを変更することによるフレームサイズの削減割合を示している。この削減割合が小さいほど、データ量を減少させることができる。
Next, frame size setting patterns for reducing the amount of data will be described with reference to FIGS. 5 to 7. FIG.
As described above, the frame size that reduces the amount of data is set by a setting pattern that combines the three elements of pixel count, bit depth, and color information (chroma subsampling). Here, there are a total of 24 frame size setting patterns, ie number of pixels: 4 patterns, bit depth: 2 patterns, and color information: 3 patterns. The number of pixels is 4 patterns of 4K, 2K, HD and SD. There are two patterns of bit depth: 10 bits and 8 bits. Further, the color information (chroma subsampling) has three patterns of 4,4,4(3), 4,2,2,(2), and 4,2,0(1.5). 5 to 7, the reduction ratio of the data amount by setting the frame size indicates the reduction ratio of the frame size by changing the setting pattern when the highest image quality is 1. . The smaller the reduction ratio, the more the amount of data can be reduced.
 本実施形態では、設定パターンは、以下の6つの群に分かれる。 
 図5に示す第1群として、ビット深度10bit、色情報4.4.4(3)を変更せずに、画素数を4K,2K,HD,SDと順次、減少させたフレームサイズを設定する。この設定によれば、削減割合が、1から0.25と、0.0625と、0.041667とまで減少する。 
 また、第2群として、色情報4.4.4(3)を変更せずに、ビット深度10bitから8bitに変更した設定であり、さらに、画素数を4K,2K,HD,SDと順次、減少させたフレームサイズを設定する。
In this embodiment, setting patterns are divided into the following six groups.
As the first group shown in FIG. 5, the frame size is set by sequentially decreasing the number of pixels to 4K, 2K, HD, and SD without changing the bit depth of 10 bits and the color information 4.4.4(3). . With this setting, the reduction ratio decreases from 1 to 0.25, 0.0625, and 0.041667.
The second group is a setting in which the bit depth is changed from 10 bits to 8 bits without changing the color information 4.4.4(3). Sets the reduced frame size.
 図6に示す第3群は、ビット深度10bitを変更せずに、色情報4.4.4.(3)から4.2.2(2)に一段減少させた設定パターンで、さらに、画素数を4K,2K,HD,SDと順次、減少させたフレームサイズを設定する。 
 また、第4群として、ビット深度8bit及び色情報4.2.2(2)にそれぞれ一段減少させた設定で、さらに、画素数を4K,2K,HD,SDと順次、減少させたフレームサイズを設定する。
The third group shown in FIG. 6 is a setting pattern in which the color information is reduced from 4.4.4.(3) to 4.2.2(2) without changing the bit depth of 10 bits. A frame size is set by decreasing the number in order of 4K, 2K, HD, and SD.
In addition, as the fourth group, a frame size with a bit depth of 8 bits and color information of 4.2.2 (2), respectively, is reduced by one step, and the number of pixels is sequentially reduced to 4K, 2K, HD, and SD. set.
 図7に示す第5群として、ビット深度10bitを変更せずに、カラー色情報4.4.4.(3)から4.2.0(1.5)に二段減少させた設定で、さらに、画素数を4K,2K,HD,SDと順次、減少させたフレームサイズを設定する。 
 また、第6群として、ビット深度8bitに一段減少させ、カラー色情報4.4.4.(3)から4.2.0(1.5)に二段減少させた設定で、さらに、画素数を4K,2K,HD,SDと順次、減少させたフレームサイズを設定する。
As the fifth group shown in FIG. 7, without changing the bit depth of 10 bits, color information 4.4.4. The frame size is set by decreasing the number of pixels from (3) to 4.2.0 (1.5) by two steps, and further decreasing the number of pixels to 4K, 2K, HD, and SD.
As a sixth group, the bit depth is reduced to 8 bits, and color information 4.4.4. The frame size is set by decreasing the number of pixels from (3) to 4.2.0 (1.5) by two steps, and further decreasing the number of pixels to 4K, 2K, HD, and SD.
 次に、図8に示すタイミングフローを参照して、第1の実施形態に係る通信システムにおける主会場と各遠隔会場との間の折り返し映像の伝送について説明する。本実施形態では、主会場の送出サーバ14と接続する2台の各遠隔会場の受信サーバ31を低速ネットワーク4aを介して接続する第1受信サーバ31aと、高速ネットワーク4cを介して接続する第3受信サーバ31cと、を一例として説明する。 Next, with reference to the timing flow shown in FIG. 8, the transmission of return video between the main venue and each remote venue in the communication system according to the first embodiment will be described. In this embodiment, two receiving servers 31 at remote venues connected to the transmission server 14 at the main venue are connected via a low-speed network 4a to a first receiving server 31a, and connected via a high-speed network 4c to a third receiving server 31a. The receiving server 31c will be described as an example.
 第1受信サーバ31aは、主会場との通信環境が、例えば、スループットThr_x 1Gbpsで、ラウンドトリップタイムRTTが20msecと仮定する。また、第3受信サーバ31cは、スループットThr_x 10Gbpsで、ラウンドトリップタイムRTTが10msecと仮定する。また、本実施形態では、許容待ち時間は、100msecに設定される。 The first receiving server 31a assumes that the communication environment with the main venue is, for example, a throughput Thr_x of 1 Gbps and a round trip time RTT of 20 msec. It is also assumed that the third receiving server 31c has a throughput Thr_x of 10 Gbps and a round trip time RTT of 10 msec. Also, in this embodiment, the allowable waiting time is set to 100 msec.
 まず、最高品質で映像を折り返す際の遅延時間を算出する。最高品質でのフレームサイズIS_maxは、画素数を4K、ビット深度10bit、色情報4.4.4(3)として、前述した(1)式により、
   IS_max=3840*2160(4K)*10(10bit)*3(4:4:4)=249Mbit/frame
 最高品質でのフレームサイズは、249Mbit/フレームとなる。よって、遅延時間Delayの算出は、前述した(2)式を用いる。ここで、主会場の送出サーバ14と遠隔会場の第1受信サーバ31aとの通信状況は、前述したように、スループットThr_x 1Gbps、遠隔会場から主会場までの片道のラウンドトリップタイムRTTは、10msecとする。求められる遅延時間は、前述した(2)式により、
   Delay_x=249M/Thr_x+RTT_x/2= 259msec
から、遅延時間259msecである。
First, the delay time when the video is folded back at the highest quality is calculated. The frame size IS_max at the highest quality is obtained by formula (1) above, with the number of pixels set to 4K, bit depth set to 10 bits, and color information set to 4.4.4 (3).
IS_max=3840*2160(4K)*10(10bit)*3(4:4:4)=249Mbit/frame
The frame size at the highest quality is 249 Mbit/frame. Therefore, the calculation of the delay time Delay uses the formula (2) described above. Here, as described above, the communication status between the transmission server 14 at the main venue and the first reception server 31a at the remote venue has a throughput Thr_x of 1 Gbps and a one-way round trip time RTT from the remote venue to the main venue of 10 msec. do. The required delay time is given by the formula (2) above.
Delay_x=249M/Thr_x+RTT_x/2=259msec
, the delay time is 259 msec.
 また、主会場と遠隔会場の第3受信サーバ31cとの通信状況が、前述したように、スループットThr_x 10Gbps、遠隔会場から主会場までの片道のラウンドトリップタイムRTT/2は、5msecとする。求められる遅延時間は、前述した(2)式により、
   Delay_x=249M/Thr_x+RTT_x/2= 29.9msec
から、遅延時間29.9msecである。
Also, the communication status between the main venue and the third receiving server 31c of the remote venue is, as described above, throughput Thr_x of 10 Gbps, and the one-way round trip time RTT/2 from the remote venue to the main venue is 5 msec. The required delay time is given by the formula (2) above.
Delay_x=249M/Thr_x+RTT_x/2=29.9msec
, the delay time is 29.9 msec.
 これらの算出した遅延時間が予設定された許容待ち時間(100msec)以内か否かで、伝送される画像の品質を設定する。尚、この許容待ち時間は、ラウンドトリップタイムRTTとは異なり、遠隔会場から主会場までの片道の時間である。ここで、算出した遅延時間が許容待ち時間以内であれば、その遠隔会場からの折り返し映像は、最高品質の映像信号で伝送する。一方、算出された遅延時間が許容待ち時間より大きかった場合(NO)、その差分を画質を落とすことで吸収させて、許容待ち時間内に遅延時間が収まるフレームサイズを算出する。 The quality of the image to be transmitted is set depending on whether or not these calculated delay times are within the preset allowable waiting time (100 msec). Note that this allowable waiting time is a one-way time from the remote venue to the main venue, unlike the round trip time RTT. Here, if the calculated delay time is within the allowable waiting time, the return video from the remote venue is transmitted with the highest quality video signal. On the other hand, if the calculated delay time is longer than the allowable waiting time (NO), the difference is absorbed by lowering the image quality, and the frame size that allows the delay time to fall within the allowable waiting time is calculated.
 よって、遅延時間29.9msecである第3受信サーバ31cは、許容待ち時間(100msec)以内であるため、最高品質で設定パターンのフレームサイズIS_maxである、画素数を4K、ビット深度10bit、色情報4.4.4(3)で折り返し映像を伝送することができる。 
 これに対して、遅延時間259msecである第1受信サーバ31aは、許容待ち時間(100msec)を越えているため、画質を下げて、ラウンドトリップタイムの10msecを含んで遅延時間が100msec以内に収まるフレームサイズを算出する。
Therefore, the third receiving server 31c, whose delay time is 29.9 msec, is within the allowable waiting time (100 msec), so the frame size IS_max of the set pattern with the highest quality, 4K pixels, 10-bit bit depth, and color information In 4.4.4(3), the return video can be transmitted.
On the other hand, the first receiving server 31a, whose delay time is 259 msec, exceeds the allowable waiting time (100 msec). Calculate size.
 ここで、データ量を減少させるための折り返し映像の画質を下げる点について説明する。各遠隔会場から伝送された折り返し画像は、多数の独立した映像が返信されて集合された状態の映像であり、主催者側からみれば、各映像がロスなく同期して表示されていることが重要である。つまり、主催者側は、集合された折り返し映像を全体としてとらえればよいため、折り返し映像の個別の映像の品質に関しては、あまり気にしないものと考える。つまりは、個別の映像に画質の劣化があったとしても大きな影響はない。主催者側は映像の画質よりも低遅延で提示されることの方が重要になる。よって、本実施形態では、折り返し映像に対しては画質よりも低遅延を優先させている。 Here, we will explain the point of lowering the image quality of the return video in order to reduce the amount of data. The return image transmitted from each remote venue is an image in which a large number of independent images are returned and aggregated, and from the organizer's point of view, it is clear that each image is displayed in synchronization without loss. is important. In other words, it is considered that the organizer side does not care much about the quality of the individual video of the return video because it is enough for the organizer to grasp the collected return video as a whole. In other words, even if there is deterioration in the image quality of individual images, there is no big impact. On the organizer side, presentation with low delay is more important than the image quality of the video. Therefore, in the present embodiment, priority is given to low delay over image quality for the return video.
 次に、フレームサイズは、
   IS_x =Thres W/Delay_x*IS_max  …(3)
で求められる。本実施形態においては、許容待ち時間が100msに設定されている。この場合、フレームサイズは、100/259*249M=96.1Mbit/frameとなる。 
 ここで算出した96.1Mbit/frameのフレームサイズを実現するためには、前述したように、画素数、ビット深度及び、色情報の順で、設定値を減少させるように調整して、データ量を削減させて、所望するフレームサイズを導出する。
Then the frame size is
IS_x =Thres W/Delay_x*IS_max …(3)
is required. In this embodiment, the allowable waiting time is set to 100 ms. In this case, the frame size is 100/259*249M=96.1Mbit/frame.
In order to realize the frame size of 96.1 Mbit/frame calculated here, as described above, the number of pixels, the bit depth, and the color information are adjusted in order to decrease the set values, and the data amount is to derive the desired frame size.
 データ量を削減、即ち、削減割合は、所望するフレームサイズを最高品質のフレームサイズで除する(IS_x/IS_max)とすることで算出される。例えば、算出された96.1Mbit/frameのフレームサイズを249Mbit/frameの最高品質のフレームサイズで除する。その結果、削減割合は、96.1/249=0.39である。算出された削減割合0.39に近い削減割合を前述した図5乃至図7に示した設定パターンの中から選択すると、図7に示す、削減割合が0.4の"4k, 8bit, 4:2:0(1.5)"の設定パターンが最好適である。具体的には、sqrt{96.1M/(10*1.5)/(16*9)}=210.9であるため、画面サイズは、3374×1898(px)となる。 The data amount reduction, that is, the reduction rate, is calculated by dividing the desired frame size by the highest quality frame size (IS_x/IS_max). For example, divide the calculated frame size of 96.1 Mbit/frame by the highest quality frame size of 249 Mbit/frame. As a result, the reduction rate is 96.1/249=0.39. When a reduction rate close to the calculated reduction rate of 0.39 is selected from the setting patterns shown in FIGS. 5 to 7, "4k, 8bit, 4: A setting pattern of 2:0 (1.5)" is most suitable. Specifically, since sqrt{96.1M/(10*1.5)/(16*9)}=210.9, the screen size is 3374×1898 (px).
 送出部44は、フレームサイズ算出部45から出力されたフレームサイズで、入力部43から入力された折り返し映像を編集した後、データ圧縮及び、ネットワーク4に対応する信号形態に処理する。処理された折り返し映像信号に送信時間を示すタイムスタンプ等の時間情報を添付して、ネットワーク4を介して主会場側の送出サーバ14に送出する。 The transmission unit 44 edits the folded video input from the input unit 43 with the frame size output from the frame size calculation unit 45, and then compresses the data and processes it into a signal format compatible with the network 4. Time information such as a time stamp indicating transmission time is attached to the processed return video signal, and the signal is transmitted to the transmission server 14 on the side of the main venue via the network 4 .
 次に、送出サーバ14の第1受信部23aは、受信した折り返し映像に付加された時間情報を第1タイミング制御部25に転送すると共に、折り返し映像を解凍し、第1提示部24aに出力する。第1提示部24aは、即時、折り返し映像をモニタ13aに表示させる。 Next, the first receiving unit 23a of the transmission server 14 transfers the time information added to the received return video to the first timing control unit 25, decompresses the return video, and outputs the decompressed return video to the first presentation unit 24a. . The first presentation unit 24a immediately displays the return video on the monitor 13a.
 以上のように、本実施形態では、複数の遠隔会場から主会場へのそれぞれの折り返し映像に異なる遅延時間が生じる場合に、遅延時間が予め設定した許容待ち時間を超える折り返し映像に対して、画質を低下させてデータ容量を減少させ、折り返し映像が許容待ち時間内に伝送されるようにフレームサイズを調整することで、各遅延会場からの折り返し映像を同期がとれたように主会場のモニタに表示されることができる。また、折り返し映像に対して、解像度、ビット深度、色情報(クロマサブサンプリング)を低下させることで画質の低下と共にデータ容量を削減し、許容遅延時間内に伝送されるフレームサイズで編集させることができる。従って、最も大きい遅延時間に合わせる必要がなく、遅延時間が設定できる。 As described above, in the present embodiment, when different delay times occur in each return video from a plurality of remote venues to the main venue, the return video whose delay exceeds the preset allowable waiting time is reduced in image quality. By reducing the data capacity and adjusting the frame size so that the return video is transmitted within the allowable waiting time, the return video from each delayed venue is displayed on the monitor in the main venue in a synchronized manner. can be displayed. In addition, by lowering the resolution, bit depth, and color information (chroma subsampling) for the folded video, it is possible to reduce the data capacity as well as the image quality, and edit it with the frame size transmitted within the allowable delay time. can. Therefore, the delay time can be set without the need to match the maximum delay time.
 本実施形態では、複数の遠隔会場が送出する折り返し映像に対して、受信側となる主会場側で、折り返し映像の同期制御を行うことができる。また、ネットワークを通じた通信状況の変化により、許容待ち時間又は、遠隔会場からの遅延時間が変わらない限り、送信側である主会場の通信システムによるフレームサイズ調整による対処は一度だけでよい。また、遠隔会場からの遅延時間が変わった場合でも、主会場側で、許容待ち時間に基づき、画質調整を行いフレームサイズを再調整することで、折り返し映像の同期制御を行うことができる。 In this embodiment, the main venue, which is the receiving side, can perform synchronous control of the return video sent from a plurality of remote venues. Also, as long as the allowable waiting time or the delay time from the remote site does not change due to changes in the communication status through the network, the communication system at the main site, which is the transmitting side, needs to adjust the frame size only once. In addition, even if the delay time from the remote venue changes, the main venue can adjust the image quality and readjust the frame size based on the allowable waiting time, so that the return video can be synchronously controlled.
 [第1実施形態の変形例]
 図9を参照して、第1実施形態の変形例の通信システムについて説明する。本変形例の通信システムの構成は、第1実施形態の通信システムと同等であり、ここでの構成の説明は省略する。 
 本変形例は、主会場から複数の遠隔会場へ伝送されるイベント映像の品質を下げずに、折り返し映像の品質のみを下げることで対応する例を示している。前述した第1の実施形態では、折り返し映像に対して、遅延時間内に収まるようにフレームサイズを調整することで遅延の少ない同期制御を行っていたが、実際には、主会場から遠隔会場へ伝送されるイベント映像に対しても遅延が生じていることが考えられる。このイベント映像に対してもフレームサイズを調整することで遅延を少なくすることもできる。しかしながら、主会場から遠隔会場へ提示されるイベント映像の品質を下げることはユーザ品質を損なうことになるため、この変形例では、折り返し映像の品質のみを下げることで対応する。
[Modification of First Embodiment]
A communication system according to a modification of the first embodiment will be described with reference to FIG. The configuration of the communication system of this modified example is the same as that of the communication system of the first embodiment, and the description of the configuration is omitted here.
This modified example shows an example in which the quality of the return video is lowered without lowering the quality of the event video transmitted from the main venue to a plurality of remote venues. In the first embodiment described above, synchronous control with little delay was performed by adjusting the frame size of the loopback video so that it falls within the delay time. It is conceivable that the transmitted event video is also delayed. Delay can also be reduced by adjusting the frame size for this event video as well. However, lowering the quality of the event video presented from the main venue to the remote venue impairs the quality of the user, so in this modified example, only the quality of the return video is reduced.
 図9に示す第1受信サーバ及び第3受信サーバは、前述した第1実施形態の第1受信サーバ31a及び第3受信サーバ31b同等であるものとする。遠隔会場に設置される第1受信サーバは、主会場との通信環境が、スループットThr_x 1Gbpsで、ラウンドトリップタイムRTTが20msecと仮定する。同様に、第3受信サーバは、スループットThr_x 10Gbpsで、ラウンドトリップタイムRTT が10msecと仮定する。また、本実施形態では、許容待ち時間は、140msecに設定される。  The first receiving server and the third receiving server shown in FIG. 9 are equivalent to the first receiving server 31a and the third receiving server 31b of the first embodiment described above. Assume that the first reception server installed at the remote venue has a communication environment with the main venue with a throughput Thr_x 1 Gbps and a round trip time RTT of 20 msec. Similarly, the third receiving server assumes a throughput Thr_x of 10 Gbps and a round trip time RTT of 10 msec. Also, in this embodiment, the allowable waiting time is set to 140 msec.
 ラウンドトリップタイムRTTは、主会場と遠隔会場を往復する伝送時間であるため、主会場から遠隔会場への遅延時間を吸収することが考えられる。前述したように、第1受信サーバにおける遅延時間(遠隔会場から主会場への片道)は、
  Delay_x=249M/Thr_x+RTT_x/2=259ms
となる。また、フレームサイズは、
  IS_x ={Thres W-(Delay_x-Thres W)}/Delay_x*IS_max
で求められる。例えば、許容待ち時間140msに設定された場合、
  IS_x ={140-(259-140)}/259*249M=20.19Mbit/frame
となる。 
 よって、削減割合は、IS_x/IS_maxから、20.19/249=0.081となる。
Since the round trip time RTT is the round trip transmission time between the main venue and the remote venue, it is conceivable to absorb the delay time from the main venue to the remote venue. As mentioned above, the delay time at the first receiving server (one way from the remote venue to the main venue) is
Delay_x=249M/Thr_x+RTT_x/2=259ms
becomes. Also, the frame size is
IS_x ={ThresW-(Delay_x-ThresW)}/Delay_x*IS_max
is required. For example, if the allowable waiting time is set to 140 ms,
IS_x={140-(259-140)}/259*249M=20.19Mbit/frame
becomes.
Therefore, the reduction rate is 20.19/249=0.081 from IS_x/IS_max.
 削減割合0.081に近似する削減割合は、図5に示す削減割合0.0625になるが、削減割合0.0625は、HD, 10bit, 4:4:4であるため、解像度HDよりも大きい解像度になる。具体的には、sqrt{20.19M/(8*3)/(16*9)}=76.43となるため、画面サイズは、1223×688(px)である。尚、前述した第1実施形態における許容待ち時間(片側)を100msに設定した場合、IS_xが負となり、フレームサイズを縮小しても、その許容待ち時間での伝送はできないため、この変形例では、許容待ち時間を増加している。 A reduction ratio that approximates the reduction ratio of 0.081 is the reduction ratio of 0.0625 shown in FIG. become resolution. Specifically, since sqrt{20.19M/(8*3)/(16*9)}=76.43, the screen size is 1223×688 (px). Incidentally, when the permissible waiting time (one side) in the first embodiment described above is set to 100 ms, IS_x becomes negative, and even if the frame size is reduced, transmission with that permissible waiting time cannot be performed. , increasing the allowable waiting time.
 よって、本変形例によれば、折り返し映像の画像サイズを1223x688(px)とすることで、イベント映像の送信の画素数を4Kに維持しても、主会場と遠隔会場の間を往復する伝送であっても、遅延時間を280msecに収めることが可能となる。 Therefore, according to this modified example, by setting the image size of the return video to 1223x688 (px), even if the number of pixels for transmission of the event video is maintained at 4K, the round-trip transmission between the main venue and the remote venue is possible. Even so, the delay time can be kept within 280 msec.
 [第2実施形態]
 本実施形態は、遅延調整を1フレームの伝送で対応するのではなく、複数のフレームの伝送で対応する。この際、複数のフレームを並列的に処理するのに、例えば、マルチスレッドプログラムの処理を利用する。これにより、1フレームで対応する場合に比べて、フレームサイズを縮小する程度を抑えることができ、映像の品質の劣化を低減させることができる。 
 具体的には、映像の1フレームあたりの許容待ち時間:Thres WFは、対応するフレーム数:NumF、並列処理区間:Ptとした場合、次式で求められる。
   Pt=Thres W/(NumF-1)   …(4)
   Thres WF=Thres W*(NumF^2-1)/{NumF*(NumF-1)}  …(5)
 ここで、第1受信サーバ31aの遅延時間259msec、許容待ち時間100mscで、折り返し映像を11フレームの伝送で対処するとした場合、上記の(4)(5)式より、並列処理区間Pt=10msec、許容待ち時間Thres WF=109msecとなる。
[Second embodiment]
In this embodiment, delay adjustment is handled not by transmission of one frame but by transmission of a plurality of frames. At this time, processing of a multithread program, for example, is used to process a plurality of frames in parallel. This makes it possible to reduce the degree of reduction in the frame size compared to the case of dealing with one frame, and to reduce deterioration in video quality.
Specifically, the permissible waiting time per frame of video: Thres WF is obtained by the following formula, where the number of corresponding frames: NumF and the parallel processing interval: Pt.
Pt=Thres W/(NumF-1) (4)
Thres WF=Thres W*(NumF^2-1)/{NumF*(NumF-1)} …(5)
Here, when the delay time of the first receiving server 31a is 259 msec, the allowable waiting time is 100 msc, and the return video is handled by transmitting 11 frames, from the above equations (4) and (5), the parallel processing interval Pt=10 msec, Allowable waiting time Thres WF=109 msec.
 このとき、並列処理区間とラウンドトリップタイムRTT/2の関係が、Pt≦RTT_x/2であれば、シングルスレッドで処理可となり、Pt>RTT_x/2であれば、マルチスレッドでの処理が必要になる。ここでは、並列処理区間Pt=10msec、ラウンドトリップタイムRTT=10msecとすると、Pt>RTT_x/2であるため、マルチスレッドでの処理を行う。求められた許容待ち時間Thres WFで伝送するためのフレームサイズを導出する。 At this time, if the relationship between the parallel processing interval and the round trip time RTT/2 is Pt≤RTT_x/2, single-thread processing is possible, and if Pt>RTT_x/2, multi-thread processing is required. Become. Here, if the parallel processing interval Pt=10 msec and the round trip time RTT=10 msec, then Pt>RTT_x/2, so multithread processing is performed. Derive the frame size for transmission with the determined allowable latency Thres WF.
 11フレームで伝送した場合の総許容待ち時間は、通常のシングルスレッドで処理した場合には、許容待ち時間100mscで、11*100=1100msecとなる。一方、本実施形態によるマルチスレッドの処理であれば、許容待ち時間109msecであるが、それぞれの許容待ち時間の重なり部分に並列処理区間10msecを含むため、総許容待ち時間は、109*11-100=1099msecとなる。 The total allowable waiting time when transmitting in 11 frames is 11*100=1100msec with an allowable waiting time of 100msc when processed with a normal single thread. On the other hand, in the case of multi-thread processing according to this embodiment, the allowable wait time is 109 msec, but the overlapped portion of each allowable wait time includes a parallel processing section of 10 msec, so the total allowable wait time is 109*11-100. = 1099msec.
 以上のように、本実施形態は、折り返し映像の伝送回数が進むに従い、映像の品質の劣化を低減させながら、遅延時間の重なり部分である並列処理時間により総計的に遅延時間を徐々に削減させて、設定したフレーム分の伝送完了時には設定された許容待ち時間内に伝送することができる。 As described above, according to the present embodiment, as the number of times of transmission of the return video increases, deterioration in video quality is reduced, and the total delay time is gradually reduced by the parallel processing time, which is the overlapping portion of the delay time. Therefore, when the transmission of the set number of frames is completed, the data can be transmitted within the set allowable waiting time.
 次に、変形例について説明する。 
 前述した第1実施形態、及び第1実施形態の変形例、及び第2の実施形態においては、許容待ち時間を任意に設定したが、許容待ち時間を複数の遠隔会場の中で最速の遅延時間に設定する。
Next, a modified example will be described.
In the above-described first embodiment, modified example of the first embodiment, and second embodiment, the allowable waiting time is set arbitrarily. set to
 設定された許容待ち時間内に折り返し映像が送出サーバに伝送されるように、他の遠隔会場から伝送される折り返し映像に対するフレームサイズを算出して設定する。この時、フレームサイズを算出するために、前述した画素数、ビット深度及び、色情報(クロマサブサンプリング)の3つの要素を組合せた24通りの設定パターンを用いていたが、必ずしもこれらの設定パターンの数値には限定されない。設定パターンをより多く設定することで、各遠隔会場からの折り返し映像を完全同期することが可能となる。 Calculate and set the frame size for the return video transmitted from other remote venues so that the return video is transmitted to the transmission server within the set allowable waiting time. At this time, in order to calculate the frame size, 24 setting patterns that combine the three elements of the number of pixels, bit depth, and color information (chroma subsampling) described above were used. is not limited to the numerical value of By setting more setting patterns, it becomes possible to completely synchronize the return video from each remote venue.
 また、上記実施形態では、主会場側の送出サーバ14において各遠隔会場側に対するスループット、ラウンドトリップタイムを計測するようにしているが、各遠隔会場側の受信サーバ31でスループット、ラウンドトリップタイムを計測するようにしても良い。この場合、主会場側の送出サーバ14からは、許容待ち時間のみを遠隔会場側に送信すれば良い。 In the above embodiment, the transmission server 14 on the main venue side measures the throughput and round trip time for each remote venue side, but the throughput and round trip time are measured on the reception server 31 on each remote venue side. You can make it work. In this case, it is only necessary to transmit only the allowable waiting time to the remote venue from the transmission server 14 on the main venue side.
 尚、各実施形態に記載した手法は、計算機(コンピュータ)に実行させることができる離隔測定プログラム(ソフトウェア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク、ハードディスク等)、光ディスク(CD-ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ等)等の記録媒体に格納し、また通信媒体により伝送して頒布することもできる。尚、媒体側に格納されるプログラムには、計算機に実行させるソフトウェア手段(実行プログラムのみならずテーブル、データ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウェア手段を構築し、このソフトウェア手段によって動作が制御されることにより上述した処理を実行する。尚、本明細書でいう記録媒体は、頒布用に限らず、計算機内部或いはネットワークを介して接続される機器に設けられた磁気ディスク、半導体メモリ等の記憶媒体を含むものである。 The method described in each embodiment can be executed by a computer (computer) as a distance measurement program (software means), such as a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), optical disk (CD-ROM). , DVD, MO, etc.), a semiconductor memory (ROM, RAM, flash memory, etc.), or the like, or may be transmitted and distributed via a communication medium. The programs stored on the medium also include a setting program for configuring software means (including not only execution programs but also tables and data structures) to be executed by the computer. A computer that realizes this apparatus reads a program recorded on a recording medium, and in some cases, builds software means by a setting program, and executes the above-described processes by controlling the operation by this software means. The term "recording medium" as used herein is not limited to those for distribution, and includes storage media such as magnetic disks, semiconductor memories, etc. provided in computers or devices connected via a network.
 要するに、本発明は、前述したそれぞれの実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施形態で説明した構成は可能な限り適宜組合せて実施してもよく、その場合、組合せた効果が得られる。さらに、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組合せにより種々の発明が抽出され得る。 In short, the present invention is not limited to the respective embodiments described above, and can be modified in various ways without departing from the gist of the present invention at the implementation stage. Also, the configurations described in the above embodiments may be combined as appropriate as possible, in which case the combined effect can be obtained. Furthermore, the above-described embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.
 1,2,3…通信システム
 4…ネットワーク
 11,33…カメラ
 12,32…マイクロフォン
 13,34…モニタ
 14…送出サーバ
 21…入力部
 22…送出部
 23,41…受信部
 24,42…提示部
 25…第1タイミング制御部
 31…受信サーバ
 43…入力部
 44…送出部
 45…フレームサイズ算出部
 46…第2タイミング制御部
 51…プロセッサ
 52…プログラムメモリ
 53…データメモリ
 54…ストレージ
 55…入出力部
 56…通信部
 57…バス
DESCRIPTION OF SYMBOLS 1, 2, 3... Communication system 4... Network 11, 33... Camera 12, 32... Microphone 13, 34... Monitor 14... Sending server 21... Input part 22... Sending part 23, 41... Receiving part 24, 42... Presentation part 25 First timing control unit 31 Reception server 43 Input unit 44 Sending unit 45 Frame size calculation unit 46 Second timing control unit 51 Processor 52 Program memory 53 Data memory 54 Storage 55 Input/output Part 56... Communication part 57... Bus

Claims (6)

  1.  第1映像信号を送出する送出サーバと、
     前記送出サーバに対して複数の遠隔地にそれぞれ配置され、ネットワークを通じて、前記送出サーバから伝送された前記第1映像信号を受信し、前記第1映像信号に応答する第2映像信号を前記送出サーバへ折り返し伝送する複数の受信サーバと、を備え、
     前記送出サーバは、複数の前記第2映像信号が同時に表示させる際に、複数の前記第2映像信号による場面に視覚差が生じない許容待ち時間を設定する第1のタイミング制御部と、
     それぞれの前記受信サーバは、前記許容待ち時間以内に前記折り返し伝送が完了するように、前記送出サーバと当該受信サーバとの間で伝送される信号のスループットとラウンドトリップタイムとに基づき、前記第2映像信号のフレームサイズを算出し、算出されたフレームサイズで前記第2映像信号を編集する第2のタイミング制御部と、
    を具備する、同期制御を行う通信システム。
    a transmission server that transmits the first video signal;
    and receiving the first video signal transmitted from the transmission server through a network, and transmitting a second video signal in response to the first video signal to the transmission server. a plurality of receiving servers that transmit back to
    The transmission server includes a first timing control unit that sets an allowable waiting time that does not cause a visual difference between the scenes of the plurality of the second video signals when the plurality of the second video signals are displayed at the same time;
    Each of the receiving servers performs the second processing based on the throughput of signals transmitted between the sending server and the receiving server and the round trip time so that the return transmission is completed within the allowable waiting time. a second timing control unit that calculates the frame size of a video signal and edits the second video signal with the calculated frame size;
    A communication system that performs synchronous control.
  2.  複数の前記受信サーバは、
     前記許容待ち時間内に伝送が完了するように、前記第2映像信号の解像度、ビット深度、クロマサブサンプリングを変更して前記フレームサイズを算出するフレームサイズ算出部を
    備える、請求項1に記載の同期制御を行う通信システム。
    The plurality of receiving servers,
    2. The frame size calculator according to claim 1, further comprising a frame size calculator that calculates the frame size by changing the resolution, bit depth, and chroma subsampling of the second video signal so that transmission is completed within the allowable waiting time. A communication system that performs synchronous control.
  3.  送出サーバからネットワークを通じて伝送された第1映像信号を、異なる遠隔地にそれぞれ配置された複数の受信サーバで受信し、前記第1映像信号に応答する複数の第2映像信号を折り返し、複数の前記受信サーバから前記送出サーバに伝送された複数の前記第2映像信号を前記送出サーバが同時に表示させる際に、複数の前記第2映像信号による場面に視覚差が生じない同期制御を行う同期制御方法であって、
     前記送出サーバのプロセッサが、許容待ち時間を設定し、
     前記複数の受信サーバのプロセッサがそれぞれ、折り返し伝送される前記第2映像信号を前記許容待ち時間内に伝送するためのフレームサイズを前記送出サーバと当該受信サーバとの間の伝送される信号のスループットとラウンドトリップタイムとに基づいて算出し、算出された前記フレームサイズで前記第2映像信号を編集し、伝送する同期制御方法。
    A first video signal transmitted from a transmission server through a network is received by a plurality of reception servers respectively located at different remote locations, a plurality of second video signals responding to the first video signal are returned, and a plurality of the A synchronization control method for performing synchronization control so as not to cause a visual difference between scenes of the plurality of second video signals when the transmission server simultaneously displays the plurality of second video signals transmitted from the receiving server to the transmission server. and
    a processor of the delivery server setting an allowable waiting time;
    Throughput of signals transmitted between the transmitting server and the receiving server, wherein each of the processors of the plurality of receiving servers determines a frame size for transmitting the second video signal to be returned and transmitted within the allowable waiting time. and a round-trip time, and editing and transmitting the second video signal with the calculated frame size.
  4.  前記第2映像信号の前記フレームサイズは、
     前記許容待ち時間内に伝送が完了するように、前記第2映像信号の解像度、ビット深度、クロマサブサンプリングを変更する、請求項3に記載の同期制御方法。
    The frame size of the second video signal is
    4. The synchronization control method according to claim 3, wherein the resolution, bit depth and chroma subsampling of said second video signal are changed so that transmission is completed within said allowable waiting time.
  5.  送出サーバからネットワークを通じて伝送された第1映像信号を、異なる遠隔地にそれぞれ配置された複数の受信サーバで受信し、前記第1映像信号に応答する複数の第2映像信号を折り返し、複数の前記受信サーバから前記送出サーバに伝送された複数の前記第2映像信号を前記送出サーバが同時に表示させる際に、複数の前記第2映像信号による場面に視覚差が生じない同期制御を行う通信システムにおける受信サーバであって、
     前記送出サーバから複数の前記第2映像信号による場面に視覚差が生じない待ち時間として設定された許容待ち時間を受信し、前記許容待ち時間以内に前記折り返し伝送が完了するように、前記送出サーバと当該受信サーバとの間で伝送される信号のスループットとラウンドトリップタイムとに基づき、前記第2映像信号のフレームサイズを算出し、算出されたフレームサイズで第2映像信号を編集するタイミング制御部を具備する、受信サーバ。
    A first video signal transmitted from a transmission server through a network is received by a plurality of reception servers respectively located at different remote locations, a plurality of second video signals responding to the first video signal are returned, and a plurality of the In a communication system that performs synchronous control that does not cause a visual difference between the scenes of the plurality of second video signals when the plurality of second video signals transmitted from a receiving server to the sending server are simultaneously displayed by the sending server a receiving server,
    receiving, from the transmission server, an allowable waiting time set as a waiting time at which visual difference does not occur between the scenes of the plurality of second video signals, and the sending server so that the return transmission is completed within the allowable waiting time. A timing control unit that calculates the frame size of the second video signal based on the throughput and round trip time of the signal transmitted between the receiving server and the receiving server, and edits the second video signal with the calculated frame size. a receiving server, comprising:
  6.  送出サーバからネットワークを通じて伝送された第1映像信号を、異なる遠隔地にそれぞれ配置された複数の受信サーバで受信し、前記第1映像信号に応答する複数の第2映像信号を折り返し、複数の前記受信サーバから前記送出サーバに伝送された複数の前記第2映像信号を前記送出サーバが同時に表示させる際に、複数の前記第2映像信号による場面に視覚差が生じない同期制御を行う通信システムにおける請求項5に記載の受信サーバの前記タイミング制御部として、プロセッサを機能させる同期制御プログラム。 A first video signal transmitted from a transmission server through a network is received by a plurality of reception servers respectively located at different remote locations, a plurality of second video signals responding to the first video signal are returned, and a plurality of the In a communication system that performs synchronous control that does not cause a visual difference between the scenes of the plurality of second video signals when the plurality of second video signals transmitted from a receiving server to the sending server are simultaneously displayed by the sending server A synchronization control program that causes a processor to function as the timing control unit of the receiving server according to claim 5 .
PCT/JP2021/023482 2021-06-21 2021-06-21 Communication system that performs synchronous control, synchronous control method therefor, reception server, and synchronous control program WO2022269723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529249A JPWO2022269723A1 (en) 2021-06-21 2021-06-21
PCT/JP2021/023482 WO2022269723A1 (en) 2021-06-21 2021-06-21 Communication system that performs synchronous control, synchronous control method therefor, reception server, and synchronous control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023482 WO2022269723A1 (en) 2021-06-21 2021-06-21 Communication system that performs synchronous control, synchronous control method therefor, reception server, and synchronous control program

Publications (1)

Publication Number Publication Date
WO2022269723A1 true WO2022269723A1 (en) 2022-12-29

Family

ID=84545255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023482 WO2022269723A1 (en) 2021-06-21 2021-06-21 Communication system that performs synchronous control, synchronous control method therefor, reception server, and synchronous control program

Country Status (2)

Country Link
JP (1) JPWO2022269723A1 (en)
WO (1) WO2022269723A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279283A (en) * 2005-03-28 2006-10-12 Sony Corp Communication processing device, data communication system, communication processing method, and computer program
US20120257671A1 (en) * 2011-04-07 2012-10-11 Activevideo Networks, Inc. Reduction of Latency in Video Distribution Networks Using Adaptive Bit Rates
KR20130122117A (en) * 2012-04-30 2013-11-07 광운대학교 산학협력단 Method and apparatus for transmitting a moving image in a real time
JP2017126902A (en) * 2016-01-14 2017-07-20 公立大学法人岩手県立大学 Mixer device and live relay system
JP2018125621A (en) * 2017-01-30 2018-08-09 Kddi株式会社 Client, program and method for controlling reception of segment of data
US20200112876A1 (en) * 2018-10-04 2020-04-09 Sandvine Corporation Method and system for application aware congestion management
WO2021095598A1 (en) * 2019-11-12 2021-05-20 ソニー株式会社 Information processing device, information processing method, information processing program, terminal device, terminal device control method, and control program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279283A (en) * 2005-03-28 2006-10-12 Sony Corp Communication processing device, data communication system, communication processing method, and computer program
US20120257671A1 (en) * 2011-04-07 2012-10-11 Activevideo Networks, Inc. Reduction of Latency in Video Distribution Networks Using Adaptive Bit Rates
KR20130122117A (en) * 2012-04-30 2013-11-07 광운대학교 산학협력단 Method and apparatus for transmitting a moving image in a real time
JP2017126902A (en) * 2016-01-14 2017-07-20 公立大学法人岩手県立大学 Mixer device and live relay system
JP2018125621A (en) * 2017-01-30 2018-08-09 Kddi株式会社 Client, program and method for controlling reception of segment of data
US20200112876A1 (en) * 2018-10-04 2020-04-09 Sandvine Corporation Method and system for application aware congestion management
WO2021095598A1 (en) * 2019-11-12 2021-05-20 ソニー株式会社 Information processing device, information processing method, information processing program, terminal device, terminal device control method, and control program

Also Published As

Publication number Publication date
JPWO2022269723A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6878014B2 (en) Image processing device and its method, program, image processing system
JP6894687B2 (en) Image processing system, image processing device, control method, and program
US10567765B2 (en) Streaming multiple encodings with virtual stream identifiers
JP6672075B2 (en) CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
JP3658087B2 (en) Terminal device and method for controlling terminal device
US9332160B1 (en) Method of synchronizing audio-visual assets
US10341672B2 (en) Method and system for media synchronization
US9462195B2 (en) System and method for distributed video and or audio production
US10708469B2 (en) Image processing apparatus, method of controlling the same, non-transitory computer-readable storage medium, and image processing system
KR101934200B1 (en) Method and system for media synchronization
WO2020241308A1 (en) Synchronization control device, synchronization control method, and synchronization control program
Halák et al. Real-time long-distance transfer of uncompressed 4K video for remote collaboration
US20130166769A1 (en) Receiving device, screen frame transmission system and method
US6871234B1 (en) Information distribution control system, and information distribution control method
Shirai et al. Real time switching and streaming transmission of uncompressed 4K motion pictures
KR20210094078A (en) Method and apparatus for synchronously switching between an audio stream and a video stream
JP6922897B2 (en) AV server and AV server system
WO2022269723A1 (en) Communication system that performs synchronous control, synchronous control method therefor, reception server, and synchronous control program
US20230162435A1 (en) Information processing apparatus, information processing method, and storage medium
JP6827996B2 (en) Image processing device, control method, and program
JP6987567B2 (en) Distribution device, receiver and program
JP2020005063A (en) Processing device and control method thereof, output device, synchronization control system, and program
JP6632703B2 (en) CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
JP2021077120A (en) Image processing system, controller and control method therefor, image transmission method and program
WO2020174994A1 (en) Camera video transmission/playback system, and camera and viewer configuring same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529249

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE