WO2022269707A1 - Route control device, communication system, and route control method - Google Patents

Route control device, communication system, and route control method Download PDF

Info

Publication number
WO2022269707A1
WO2022269707A1 PCT/JP2021/023454 JP2021023454W WO2022269707A1 WO 2022269707 A1 WO2022269707 A1 WO 2022269707A1 JP 2021023454 W JP2021023454 W JP 2021023454W WO 2022269707 A1 WO2022269707 A1 WO 2022269707A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
prediction
switch
unit
traffic volume
Prior art date
Application number
PCT/JP2021/023454
Other languages
French (fr)
Japanese (ja)
Inventor
優花 岡本
裕隆 氏川
慈仁 酒井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/023454 priority Critical patent/WO2022269707A1/en
Priority to JP2023529233A priority patent/JPWO2022269707A1/ja
Publication of WO2022269707A1 publication Critical patent/WO2022269707A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/121Shortest path evaluation by minimising delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/08Learning-based routing, e.g. using neural networks or artificial intelligence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/18Communication route or path selection, e.g. power-based or shortest path routing based on predicted events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to a routing control device, a communication system, and a routing control method.
  • MFH Mobile Front Haul
  • MMH Mobile Mid Haul
  • MBH Mobile Back Haul
  • DUs distributed units: remote stations
  • RUs Radio units: radio stations
  • CUs Central units: aggregation base stations
  • SW switch
  • the amount of traffic arriving at a certain CU is predicted (by machine learning), and when the arrival of traffic that cannot be processed by the CU is expected, the SW is set so that the traffic is sent to a different CU. switch (for example, see Non-Patent Document 1).
  • CU switching is realized by turning off the power of CUs that are not in use. It was difficult to switch only traffic to another CU.
  • the present invention has been made in view of the problems described above, and a routing control device, a communication system, and a routing control method that can determine and switch an efficient communication route even if traffic and propagation delays fluctuate. intended to provide
  • a route control device is a route control device that controls a switch that is provided between a plurality of aggregation base stations and a plurality of remote stations and switches communication paths, wherein the switch and the aggregation base station transmission time between and, transmission time between the switch and the remote station, control information including traffic volume and schedule information between the remote station and the aggregation base station, operation time of the switch, and previously a prediction time determination unit that determines a time available for predicting future traffic volume for a communication path based on the set maximum allowable delay time; and within the time available for prediction determined by the prediction time determination unit a selection unit that selects an algorithm capable of determining a communication path from among a plurality of algorithms according to a predetermined priority; an execution unit that determines a communication path between the remote stations, and a switching control unit that controls switching of the communication path by the switch so that the aggregation base station and the remote station communicate via the communication path determined by the execution unit. characterized by having
  • a communication system includes a switch that is provided between a plurality of centralized base stations and a plurality of remote stations to switch communication paths, and a path control device that controls the switches.
  • the path control device controls the transmission time between the switch and the aggregation base station, the transmission time between the switch and the remote station, and the traffic between the remote station and the aggregation base station.
  • a prediction time determination unit that determines the time available for predicting future traffic volume for a communication path based on control information including volume and schedule information, operation time of the switch, and a preset maximum allowable delay time; a selection unit for selecting an algorithm capable of determining a communication path within the time available for prediction determined by the prediction time determination unit from among a plurality of algorithms according to a predetermined priority; an execution unit that determines a communication path between the aggregation base station and the remote station by executing an algorithm; and the aggregation base station and the remote station communicate with each other through the communication path determined by the execution unit. and a switching control unit for controlling switching of the communication path by the switch.
  • a routing control method is a routing control method for controlling a switch provided between a plurality of aggregation base stations and a plurality of remote stations for switching communication paths, wherein the switches and the aggregation transmission time between the base station, transmission time between the switch and the remote station, control information including traffic volume and schedule information between the remote station and the aggregation base station, operation time of the switch, and a prediction time determination step of determining the time available for predicting the future traffic volume for the communication route based on a preset maximum allowable delay time, and determining the communication route within the time available for the determined prediction.
  • an efficient communication route can be determined and switched even if the traffic and propagation delay fluctuate.
  • FIG. 3 is a block diagram illustrating the functions and peripherals of a route control device according to one embodiment;
  • FIG. FIG. 5 is a diagram schematically showing an example of predicted time determined by a predicted time determination unit;
  • FIG. 10 is a diagram showing a specific example of a plurality of algorithms used by the selection unit for algorithm selection;
  • (a) is a diagram schematically showing an operation example of a route control device when traffic volume is used.
  • (b) is a diagram schematically showing an operation example of the route control device when control information is used.
  • (a) is a diagram schematically showing the relationship with traffic when prediction time is sufficient.
  • (b) is a diagram schematically showing the relationship with traffic when the prediction time is insufficient.
  • (a) is a diagram showing the traffic volume of each DU predicted by the routing device.
  • (b) is a diagram showing the traffic volume of each CU before and after the routing control device allocates the traffic volume.
  • (a) is a diagram showing the traffic volume of each DU predicted by the route control device and the actual traffic volume.
  • (b) is a diagram showing the traffic volume of each CU before and after the routing control device actually allocates the traffic volume.
  • (a) is a diagram showing the traffic volume of each DU predicted by the routing device according to the embodiment, the traffic volume of each DU predicted by the routing device of the comparative example, and the actual traffic volume.
  • (b) is a diagram showing a result of prediction and actual traffic volume allocation by the routing control device according to the embodiment and a result of prediction and actual traffic volume allocation by the routing control device of the comparative example; be.
  • FIG. 1 is a diagram showing a configuration example of a communication system 1 according to one embodiment.
  • a communication system 1 includes, for example, a core network 11 to which an end server 10 is connected, and a plurality of CUs (Central units: aggregation base stations) 12 are connected to configure a network as, for example, 5G (fifth generation mobile communication system). ing.
  • CUs Central units: aggregation base stations
  • the CU 12 is connected to a plurality of DUs (Distribution Units: remote stations) 13 and the routing control device 3 via SWs (switches) 2, respectively.
  • DUs Distribution Units: remote stations
  • SWs switching
  • Each DU 13 is connected to a plurality of RUs (Radio units) 14.
  • the RU 14 accommodates a UE (User equipment: wireless terminal) 15 and enables the UE 15 to access the end server 10 .
  • UE User equipment: wireless terminal
  • the SW2 is provided between the plurality of CU12 and the plurality of DU13, and constitutes an MMH (Mobile Mid Haul) that switches the communication path between the CU12 and the DU13 according to the control of the path control device 3, for example.
  • MMH Mobile Mid Haul
  • CU#1 and CU#2 when distinguishing between a plurality of CUs 12, they are distinguished by adding a number after #, such as CU#1 and CU#2.
  • a number after # such as DU#1 to DU#4.
  • FIG. 2 is a diagram showing a configuration example around SW2.
  • SW2 receives, for example, information indicating transmission time (t) and traffic volume (x) for communication from each of CU#1 and CU#2. Also, SW2 receives transmission time (t) and control information (c) for communication from each of DU#1 to DU#4. In the case of uplink communication, SW2 also receives information indicating the traffic volume (x) from each of DU#1 to DU#4.
  • control information is information that the UE 15 transmits to the DU 13 in order to access the end server 10, for example.
  • the control information transmitted from each of DU#1 to DU#4 to SW2 includes, for example, the traffic volume and schedule information between DU13 and CU12. Specifically, the control information describes the next actual traffic transmission time (t C ). Then, based on the control information, the allocated data will be sent in the next transmission.
  • FIG. 3 is a block diagram illustrating the functions and peripherals of the route control device 3 according to one embodiment.
  • the route control device 3 has a time analysis unit 30, a prediction time determination unit 31, a storage unit 32, a selection unit 33, an execution unit 34, and a switching control unit 35, and is connected to SW2.
  • the time analysis unit 30 analyzes the traffic transmission time from the control information (C DU ) received from the DU 13, and outputs the traffic transmission time (t C ) and the control information to the prediction time determination unit 31 and the execution unit 34. .
  • time analysis unit 30 may receive a time stamp together with the control information and analyze the time (t c ) at which the next traffic is actually transmitted based on the TTI (Transmission Time. Interval) cycle.
  • the prediction time determination unit 31 determines the transmission time ( tCU ) between SW2 and CU12, the transmission time ( tDU ) between SW2 and DU13, the traffic volume and schedule information (tC) between DU13 and CU12 . etc.), the operation time (t SW ) of SW2, and the preset maximum allowable delay time (for example, the required delay time of MMH: t MMH ), to predict the future traffic volume for the communication path
  • a usable time (predicted time: t f ) is determined and output to the selection unit 33 .
  • the prediction time determination unit 31 determines, for example, the maximum allowable delay time of MMH according to the priority of traffic as the maximum allowable delay time used for determining the time that can be used for prediction, or A maximum allowable delay time determination unit 310 may be provided that determines 0 as the maximum allowable delay time used for time determination. In this case, the prediction time determination unit 31 can use the total time of the time from the reception of the control information to the arrival of the main signal and the maximum allowable delay time determined by the maximum allowable delay time determination unit 310 for prediction. Decide as time.
  • the predicted time determining unit 31 obtains the current time (t now ) from the grandmaster clock or the original clock. Also, the predicted time determining unit 31 may store the time required to calculate the allocation to each CU 12 from the estimated traffic information as being constant. In addition, the predicted time determination unit 31 may store the time required for SW2 to switch from the instruction to the switching to be constant. Further, the predicted time determination unit 31 may store the MMH request delay time as being constant.
  • FIG. 4 is a diagram schematically showing an example of the prediction time determined by the prediction time determining section 31.
  • the transmission time (t DU ) between SW2 and DU13 could be as shown in equation (1) below.
  • the storage unit 32 stores the transmitted traffic volume and outputs it to the execution unit 34 as a continuous value together with the previously stored past traffic volume.
  • the selection unit 33 selects an algorithm capable of determining a communication route within the time (prediction time) that can be used for prediction determined by the prediction time determination unit 31 from among a plurality of algorithms according to a predetermined priority. A result is output to the execution unit 34 .
  • the selection unit 33 selects traffic estimation when the prediction time is sufficient, and when the prediction time is not sufficient, time series prediction or the like is selected. Choose an algorithm. Note that the selection unit 33 may be configured to select a plurality of algorithms.
  • FIG. 5 is a diagram showing specific examples of a plurality of algorithms used by the selection unit 33 for algorithm selection.
  • the selection unit 33 selects at least one of a plurality of algorithms numbered 1 to 3 according to priority as an algorithm capable of determining a communication route within the predicted time.
  • Algorithms with higher priority (1>2>3) have higher prediction accuracy, but take longer to calculate.
  • the selection unit 33 assigns a high priority RB (resource block) and estimates (calculates) traffic by multiplication using MCS (Modulation Coding Scheme) to select.
  • MCS Modulation Coding Scheme
  • the selection unit 33 acquires the resource allocation number (RIV: resource indication value) and MCS from the control information (DCI: Downlink Control Information). For example, the selection unit 33 estimates the line quality from the MCS, obtains the traffic volume of the RB, and multiplies it by the RIV to calculate the traffic volume of each DU 13 .
  • RIV resource indication value
  • DCI Downlink Control Information
  • the selection unit 33 selects linear prediction with the second highest priority because the algorithm with the highest priority is longer than the prediction time. In linear prediction, increasing the amount of traffic increases the accuracy, but the time required for prediction increases. Therefore, the selection unit 33 adjusts the traffic volume to be used according to the time required for prediction.
  • the selection unit 33 selects time-series prediction by machine learning with the third priority.
  • time-series prediction as with linear prediction, increasing the amount of traffic improves accuracy, but the time required for prediction increases. Therefore, the selection unit 33 adjusts the traffic volume to be used according to the time required for prediction.
  • the execution unit 34 determines the communication route between the CU 12 and the DU 13 by executing the algorithm selected by the selection unit 33 .
  • the execution unit 34 executes traffic estimation when the prediction time is sufficient, and executes time-series prediction when the prediction time is insufficient.
  • Traffic estimation is an algorithm that predicts each traffic volume from control information.
  • Time-series prediction is an algorithm that uses past traffic information to calculate the predicted traffic volume for the next time. In time-series prediction, the traffic information used may be changed according to the time available for prediction.
  • the execution unit 34 may be configured to execute a plurality of algorithms, merge a plurality of prediction results, and output one prediction result.
  • the execution unit 34 weights accuracy and time for multiple prediction results, and merges multiple prediction results by majority rule.
  • the executing unit 34 includes an aggregating unit 340 for aggregating a plurality of algorithms, and when the selecting unit 33 selects a plurality of algorithms, the aggregating unit 340 executes the multiple algorithms and merges the multiple prediction results. and output one prediction result. At this time, the aggregating unit 340 weights the accuracy and time of the plurality of prediction results, and merges the plurality of prediction results by majority rule.
  • the switching control unit 35 has a determination unit 350 and an allocation determination unit 352, and controls communication path switching by SW2 so that the CU 12 and DU 13 communicate via the communication path determined by the execution unit 34.
  • the determination unit 350 determines whether switching of SW2 is necessary based on the predicted traffic volume calculated by the execution unit 34, and if switching is not necessary, switches the communication path (path). However, when switching is necessary, the predicted traffic volume is output to the allocation determining unit 352 .
  • the determination unit 350 determines whether switching of SW2 is necessary by determining whether the predicted traffic volume exceeds a threshold value (bandwidth x 0.8, etc.).
  • the determination unit 350 determines that switching of SW2 is unnecessary when the traffic volume does not change in each communication path.
  • the determination unit 350 determines that communication path switching is necessary.
  • the allocation determination unit 352 determines the allocation of SW2 based on the predicted traffic volume input from the determination unit 350, and transmits an instruction to switch the communication path to SW2.
  • SW2 switches the communication path according to the instruction sent by the path control device 3.
  • FIG. 6 is a diagram schematically showing an operation example according to information used by the route control device 3.
  • FIG. 6(a) is a diagram schematically showing an operation example of the route control device 3 when the traffic volume (traffic information) is used.
  • FIG. 6B is a diagram schematically showing an operation example of the route control device 3 when using control information.
  • the route control device 3 when the route control device 3 tries to switch the communication route using the actual traffic information, the traffic is only for a short period of time between the time the data is received and the time the data is transmitted. Prediction is not available in time for actual traffic because it cannot be used for prediction.
  • the route control device 3 predicts the traffic using the previous data and switches the communication route. In this case, since the route control device 3 uses the previous data, the prediction accuracy of the traffic volume may be lowered.
  • the route control device 3 by using the received control information, the route control device 3, during the period from the time of receiving the control information to the time of data transmission, is used from prediction to communication route switching. You can secure the time you can.
  • the predicted time increases by the amount of time from when the control information is received until when the data is received. Moreover, by making predictions using the control information, the prediction accuracy is ensured more than using the previous data.
  • the route control device 3 analyzes the time required for prediction, and if the prediction time is sufficient, it can perform real-time path switching with high accuracy based on the control information.
  • FIG. 7 is a diagram schematically showing the relationship between the time available for prediction (prediction time) calculated by the route control device 3 and the traffic.
  • FIG. 7(a) is a diagram schematically showing the relationship with traffic when the prediction time is sufficient.
  • FIG. 7(b) is a diagram schematically showing the relationship with traffic when the prediction time is insufficient.
  • t C be the time until the data calculated by the time analysis unit 30 is transmitted.
  • the predicted time determination unit 31 determines the transmission time t CU between CU12 and SW2, the transmission time t DU between DU13 and SW2, the time t C until data transmission, and the operation time of SW2 (time until allocation/switching of communication paths).
  • the time (prediction time: t f ) that can be used for predicting traffic volume is calculated by the following equation (3).
  • the selection unit 33 selects an algorithm for calculating traffic volume for switching communication paths based on the predicted time tf .
  • the selection unit 33 uses the control information to estimate (calculate) the traffic Algorithm to select. Then, the execution unit 34 executes a traffic estimation algorithm to calculate traffic and outputs it to the switching control unit 35 .
  • the selection unit 33 uses past traffic data to predict the future traffic volume. Choose an algorithm to perform series prediction. At this time, the selection unit 33 may change parameters such as the number of traffic data to be used according to the time required for prediction.
  • the execution unit 34 predicts the next traffic volume using a time-series prediction algorithm and outputs it to the switching control unit 35 .
  • the route control device 3 controls the communication route in real time with high precision, and when the prediction time is not sufficient, the route control device 3 controls the communication route with an accuracy equivalent to switching the communication route using traffic information. to control the communication path.
  • the predicted time determination unit 31 may synchronize the time, or transmit the time stamp from the DU 13, and actually arrive at SW2 from t DU . A deviation from the time may be corrected.
  • the selection unit 33 selects an algorithm based on the predicted time (t f ).
  • the selection unit 33 selects the estimation (calculation, 1 ms) of the traffic transmitted by the control information.
  • the execution unit 34 transmits each traffic volume to the switching control unit 35 .
  • the execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
  • the allocation determining unit 352 changes the allocation of DU13 as communication path switching. That is, the allocation determination unit 352 transmits a communication path switching instruction to SW2 in order to change the CU 12 to which the DU 13 is connected.
  • the predicted time determination unit 31 may synchronize the time, or transmit the time stamp from the DU 13, and actually arrive at SW2 from t DU . A deviation from the time may be corrected.
  • the selection unit 33 selects an algorithm based on the predicted time (t f ).
  • the selection unit 33 selects the estimation (calculation, 0.7 ms) of the traffic transmitted by the control information.
  • the execution unit 34 transmits each traffic volume to the switching control unit 35 . The execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
  • the allocation determination unit 352 changes the allocation of DU13 as communication route switching. That is, the allocation determination unit 352 transmits a communication path switching instruction to SW2 in order to change the CU 12 to which the DU 13 is connected.
  • the predicted time determination unit 31 may synchronize the time, or transmit the time stamp from the DU 13, and actually arrive at SW2 from t DU . A deviation from the time may be corrected.
  • the route control device 3 is provided with a traffic prediction unit that predicts each traffic volume using the previous traffic volume. may be used to predict each traffic volume.
  • the selection unit 33 selects an algorithm based on the predicted time (t f ).
  • the selection unit 33 selects an algorithm for predicting future traffic information from past traffic information (determines the amount of data to be used in time for the prediction time).
  • the execution unit 34 transmits each traffic volume to the switching control unit 35 .
  • the execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
  • the allocation determining unit 352 changes the allocation of DU13 as communication path switching. That is, the allocation determination unit 352 transmits a communication path switching instruction to SW2 in order to change the CU 12 to which the DU 13 is connected.
  • the judgment time (t judgment) is a negative value. In other words, even if the communication path is switched according to the amount of traffic, it is too late.
  • the route control device 3 switches the communication route based on the prediction of the traffic volume in the next section.
  • the selection unit 33 selects an algorithm based on the predicted time (tf).
  • the execution unit 34 After executing the algorithm, the execution unit 34 transmits each traffic volume to the switching control unit 35 .
  • the execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
  • the allocation determining unit 352 does not allocate DU13 as communication path switching.
  • the route control device 3 controls switching of communication routes by changing the allocation of the traffic volume of each DU 13 to each CU 12 . As a result, the route control device 3 can distribute the load on the communication route for each CU 12 .
  • FIG. 8 is a diagram schematically showing the traffic volume of each DU 13 predicted by the routing device 3 and the result of allocating the traffic volume of each DU 13 to each CU 12 using the predicted traffic volume.
  • FIG. 8(a) is a diagram showing the traffic volume of each DU 13 predicted by the routing device 3.
  • FIG. 8(b) is a diagram showing the traffic volume of each CU 12 before and after allocation of traffic volume by the route control device 3 (before and after load distribution).
  • the traffic volume predicted by the route control device 3 and the actual traffic volume match.
  • CU#1 has a traffic volume of 8 Gbps
  • CU#2 has a traffic volume of 2 Gbps (before load balancing).
  • the route control device 3 switches the communication route by SW2.
  • the allocation determination unit 352 changes the allocation of the traffic volume of each DU 13 so as to distribute the traffic volume of each DU 13 to each CU 12, and transmits an instruction to that effect to SW2.
  • FIG. 9 is a diagram schematically showing the result of allocating the traffic volume of each DU 13 to each CU 12 using the traffic volume of each DU 13 predicted by the routing device 3 and the actual traffic volume.
  • FIG. 9(a) is a diagram showing the traffic volume of each DU 13 predicted by the routing device 3 and the actual traffic volume.
  • FIG. 9(b) is a diagram showing the traffic volume of each CU 12 before and after the route control device 3 actually allocates the traffic volume (before and after load distribution).
  • the traffic volume of each DU 13 after the routing control device 3 executes the algorithm described above is the traffic volume shown in the upper part of FIG.
  • CU#1 has a traffic volume of 8 Gbps
  • CU#2 has a traffic volume of 2 Gbps.
  • the route control device 3 switches the communication route using SW2.
  • the allocation determination unit 352 changes the allocation of the traffic volume of each DU 13 so as to distribute the traffic volume of each DU 13 to each CU 12, and transmits an instruction to that effect to SW2.
  • FIG. 10 shows the result of assigning the traffic volume of each DU 13 based on the traffic volume of each DU 13 predicted by the routing control device 3 according to one embodiment, and the traffic volume of each DU 13 predicted by the routing control device of the comparative example.
  • FIG. 10 is a diagram schematically showing the result of allocating the traffic volume of each DU 13 by means of
  • FIG. 10A is a diagram showing the traffic volume of each DU 13 predicted by the routing device 3 according to the embodiment, the traffic volume of each DU 13 predicted by the routing device of the comparative example, and the actual traffic volume.
  • FIG. 10(b) shows the result of prediction and actual traffic volume allocation by the routing control device 3 according to the embodiment and the result of prediction and actual traffic volume allocation by the routing control device of the comparative example.
  • FIG. 4 is a diagram showing;
  • the result of allocating the traffic volume of each DU 13 based on the traffic volume of each DU 13 predicted by the routing device 3 shows that the actual traffic volume is larger than the predicted traffic volume. It is shown that the communication path was suitably switched even if the
  • the routing control device 3 since the routing control device 3 has high traffic volume prediction accuracy, even if an error occurs in the traffic volume prediction, there is a margin so that the bandwidth of each CU 12 is not exceeded.
  • the communication system 1 selects an algorithm that can determine a communication route within a time that the route control device 3 can use for predicting traffic volume, among a plurality of algorithms according to a predetermined priority. , an efficient communication route can be determined and switched even if the traffic or propagation delay fluctuates.
  • each function of the path control device 3 described above may be configured partially or wholly by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or a processor such as a CPU. may be configured as a program executed by a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or a processor such as a CPU. may be configured as a program executed by a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or a processor such as a CPU. may be configured as a program executed by
  • the route control device 3 can be implemented using a computer and a program, and the program can be recorded on a storage medium or provided through a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

A route control device according to one embodiment of the present invention has: a prediction time determination unit for determining the time available for prediction of future traffic volume for a communication route, the determination being performed on the basis of transmission time between a switch and an aggregation base station, transmission time between the switch and a remote station, control information that includes schedule information and traffic volume between the remote station and the aggregation base station, operation time of the switch, and a preset maximum allowable delay time; a selection unit for selecting, from among a plurality of algorithms in accordance with a prescribed priority, an algorithm that can determine a communication route within the time available for prediction determined by the prediction time determination unit; an execution unit for determining a communication route between the aggregation base station and the remote station by executing the algorithm selected by the selection unit; and, a switching control unit for controlling switching of communication routes using the switch so that the aggregation base station and the remote station communicate by the communication route determined by the execution unit.

Description

経路制御装置、通信システム、及び経路制御方法Route control device, communication system, and route control method
 本発明は、経路制御装置、通信システム、及び経路制御方法に関する。 The present invention relates to a routing control device, a communication system, and a routing control method.
 例えば5G(第5世代移動通信システム)などでは、MFH(Mobile Front Haul)、MMH(Mobile Mid Haul)、及びMBH(Mobile Back Haul)を含み、トラフィックを制御するように構成されたシステムが知られている。 For example, in 5G (fifth generation mobile communication system), etc., a system configured to control traffic including MFH (Mobile Front Haul), MMH (Mobile Mid Haul), and MBH (Mobile Back Haul) is known. ing.
 例えば、複数のRU(Radio unit:無線局)がそれぞれ接続された複数のDU(Distribution unit:リモート局)と、複数のCU(Central unit:集約基地局)との間の通信経路がSW(スイッチ)によって切替えられる無線通信システムがある。 For example, a communication path between a plurality of DUs (Distribution units: remote stations) to which a plurality of RUs (Radio units: radio stations) are respectively connected and a plurality of CUs (Central units: aggregation base stations) is SW (switch ) are switched wireless communication systems.
 従来、このようなシステムでは、あるCUに到着するトラフィック量を予測(機械学習による)し、当該CUが処理しきれないトラフィックの到着が見込まれる場合、異なるCUにトラフィックが送られるようにSWを切り替える(例えば、非特許文献1参照)。 Conventionally, in such a system, the amount of traffic arriving at a certain CU is predicted (by machine learning), and when the arrival of traffic that cannot be processed by the CU is expected, the SW is set so that the traffic is sent to a different CU. switch (for example, see Non-Patent Document 1).
 しかしながら、従来技術では、単一のアルゴリズムに従ってCU-DU間の帯域保障されたパスの設定を実施するため、ネットワーク構成による伝送遅延や、ネットワークのトラフィックが異なる場合、通信経路に対する将来のトラフィック量の予測が実際のトラフィックに対して間に合わないことが生じ得る。将来のトラフィック量の予測が実際のトラフィックに対して間に合わない場合には、帯域保証をすることはできない。 However, in the conventional technology, since a path with guaranteed bandwidth between CU-DU is set according to a single algorithm, if the transmission delay due to the network configuration and the traffic of the network are different, the future traffic volume for the communication path It may happen that the forecast is not in time for the actual traffic. Bandwidth cannot be guaranteed if the forecast of future traffic volume is too late for the actual traffic.
 また、従来技術では、使用しないCUの電源を切ることによってCUの切り替えを実現しているため、一部のDUとのトラフィックを動作中のCUで受け入れたままで、その他の一部のDUとのトラフィックだけを別のCUに切り替えることは困難であった。 In addition, in the conventional technology, CU switching is realized by turning off the power of CUs that are not in use. It was difficult to switch only traffic to another CU.
 本発明は、上述した課題を鑑みてなされたものであり、トラフィックや伝搬遅延が変動しても、効率的な通信経路を決定して切替えることができる経路制御装置、通信システム、及び経路制御方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the problems described above, and a routing control device, a communication system, and a routing control method that can determine and switch an efficient communication route even if traffic and propagation delays fluctuate. intended to provide
 本発明の一実施形態にかかる経路制御装置は、複数の集約基地局と複数のリモート局との間に設けられて通信経路を切替えるスイッチを制御する経路制御装置において、前記スイッチと前記集約基地局との間の伝送時間、前記スイッチと前記リモート局との間の伝送時間、前記リモート局と前記集約基地局との間のトラフィック量及びスケジュール情報を含む制御情報、前記スイッチの動作時間、並びに予め設定された最大許容遅延時間に基づいて、通信経路に対する将来のトラフィック量の予測に使用可能な時間を決定する予測時間決定部と、前記予測時間決定部が決定した予測に使用可能な時間内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定する選定部と、前記選定部が選定したアルゴリズムを実行することにより、前記集約基地局と前記リモート局との間の通信経路を決定する実行部と、前記実行部が決定した通信経路によって前記集約基地局と前記リモート局とが通信を行うように、前記スイッチによる通信経路の切替えを制御する切替制御部とを有することを特徴とする。 A route control device according to an embodiment of the present invention is a route control device that controls a switch that is provided between a plurality of aggregation base stations and a plurality of remote stations and switches communication paths, wherein the switch and the aggregation base station transmission time between and, transmission time between the switch and the remote station, control information including traffic volume and schedule information between the remote station and the aggregation base station, operation time of the switch, and previously a prediction time determination unit that determines a time available for predicting future traffic volume for a communication path based on the set maximum allowable delay time; and within the time available for prediction determined by the prediction time determination unit a selection unit that selects an algorithm capable of determining a communication path from among a plurality of algorithms according to a predetermined priority; an execution unit that determines a communication path between the remote stations, and a switching control unit that controls switching of the communication path by the switch so that the aggregation base station and the remote station communicate via the communication path determined by the execution unit. characterized by having
 また、本発明の一実施形態にかかる通信システムは、複数の集約基地局と複数のリモート局との間に設けられて通信経路を切替えるスイッチと、前記スイッチを制御する経路制御装置とを備えた通信システムにおいて、前記経路制御装置が、前記スイッチと前記集約基地局との間の伝送時間、前記スイッチと前記リモート局との間の伝送時間、前記リモート局と前記集約基地局との間のトラフィック量及びスケジュール情報を含む制御情報、前記スイッチの動作時間、並びに予め設定された最大許容遅延時間に基づいて、通信経路に対する将来のトラフィック量の予測に使用可能な時間を決定する予測時間決定部と、前記予測時間決定部が決定した予測に使用可能な時間内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定する選定部と、前記選定部が選定したアルゴリズムを実行することにより、前記集約基地局と前記リモート局との間の通信経路を決定する実行部と、前記実行部が決定した通信経路によって前記集約基地局と前記リモート局とが通信を行うように、前記スイッチによる通信経路の切替えを制御する切替制御部とを有することを特徴とする。 Further, a communication system according to an embodiment of the present invention includes a switch that is provided between a plurality of centralized base stations and a plurality of remote stations to switch communication paths, and a path control device that controls the switches. In a communication system, the path control device controls the transmission time between the switch and the aggregation base station, the transmission time between the switch and the remote station, and the traffic between the remote station and the aggregation base station. a prediction time determination unit that determines the time available for predicting future traffic volume for a communication path based on control information including volume and schedule information, operation time of the switch, and a preset maximum allowable delay time; a selection unit for selecting an algorithm capable of determining a communication path within the time available for prediction determined by the prediction time determination unit from among a plurality of algorithms according to a predetermined priority; an execution unit that determines a communication path between the aggregation base station and the remote station by executing an algorithm; and the aggregation base station and the remote station communicate with each other through the communication path determined by the execution unit. and a switching control unit for controlling switching of the communication path by the switch.
 また、本発明の一実施形態にかかる経路制御方法は、複数の集約基地局と複数のリモート局との間に設けられて通信経路を切替えるスイッチを制御する経路制御方法において、前記スイッチと前記集約基地局との間の伝送時間、前記スイッチと前記リモート局との間の伝送時間、前記リモート局と前記集約基地局との間のトラフィック量及びスケジュール情報を含む制御情報、前記スイッチの動作時間、並びに予め設定された最大許容遅延時間に基づいて、通信経路に対する将来のトラフィック量の予測に使用可能な時間を決定する予測時間決定工程と、決定した予測に使用可能な時間内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定する選定工程と、選定したアルゴリズムを実行することにより、前記集約基地局と前記リモート局との間の通信経路を決定する実行工程と、決定した通信経路によって前記集約基地局と前記リモート局とが通信を行うように、前記スイッチによる通信経路の切替えを制御する切替制御工程とを含むことを特徴とする。 Further, a routing control method according to an embodiment of the present invention is a routing control method for controlling a switch provided between a plurality of aggregation base stations and a plurality of remote stations for switching communication paths, wherein the switches and the aggregation transmission time between the base station, transmission time between the switch and the remote station, control information including traffic volume and schedule information between the remote station and the aggregation base station, operation time of the switch, and a prediction time determination step of determining the time available for predicting the future traffic volume for the communication route based on a preset maximum allowable delay time, and determining the communication route within the time available for the determined prediction. A selection step of selecting a possible algorithm from among a plurality of algorithms according to a predetermined priority; and executing the selected algorithm to determine a communication path between the aggregation base station and the remote station. and a switching control step of controlling switching of the communication path by the switch so that the aggregation base station and the remote station communicate via the determined communication path.
 本発明によれば、トラフィックや伝搬遅延が変動しても、効率的な通信経路を決定して切替えることができる。 According to the present invention, an efficient communication route can be determined and switched even if the traffic and propagation delay fluctuate.
一実施形態にかかる通信システムの構成例を示す図である。It is a figure which shows the structural example of the communication system concerning one Embodiment. SWの周辺の構成例を示す図である。It is a figure which shows the structural example of the periphery of SW. 一実施形態にかかる経路制御装置が有する機能とその周辺を例示するブロック図である。3 is a block diagram illustrating the functions and peripherals of a route control device according to one embodiment; FIG. 予測時間決定部が決定する予測時間の例を模式的に示す図である。FIG. 5 is a diagram schematically showing an example of predicted time determined by a predicted time determination unit; 選定部がアルゴリズムの選定に用いる複数のアルゴリズムの具体例を示す図である。FIG. 10 is a diagram showing a specific example of a plurality of algorithms used by the selection unit for algorithm selection; (a)は、トラフィック量を用いた場合の経路制御装置の動作例を模式的に示す図である。(b)は、制御情報を用いた場合の経路制御装置の動作例を模式的に示す図である。(a) is a diagram schematically showing an operation example of a route control device when traffic volume is used. (b) is a diagram schematically showing an operation example of the route control device when control information is used. (a)は、予測時間が十分にある場合のトラフィックとの関係を模式的に示す図である。(b)は、予測時間が十分にない場合のトラフィックとの関係を模式的に示す図である。(a) is a diagram schematically showing the relationship with traffic when prediction time is sufficient. (b) is a diagram schematically showing the relationship with traffic when the prediction time is insufficient. (a)は、経路制御装置が予測した各DUのトラフィック量を示す図である。(b)は、経路制御装置がトラフィック量の割当てを行う前後の各CUのトラフィック量を示す図である。(a) is a diagram showing the traffic volume of each DU predicted by the routing device. (b) is a diagram showing the traffic volume of each CU before and after the routing control device allocates the traffic volume. (a)は、経路制御装置が予測した各DUのトラフィック量、及び実際のトラフィック量を示す図である。(b)は、経路制御装置が実際のトラフィック量の割当てを行う前後の各CUのトラフィック量を示す図である。(a) is a diagram showing the traffic volume of each DU predicted by the route control device and the actual traffic volume. (b) is a diagram showing the traffic volume of each CU before and after the routing control device actually allocates the traffic volume. (a)は、一実施形態にかかる経路制御装置が予測した各DUのトラフィック量、比較例の経路制御装置が予測した各DUのトラフィック量、及び実際のトラフィック量を示す図である。(b)は、一実施形態にかかる経路制御装置が予測して実際のトラフィック量を割当てた結果と、比較例の経路制御装置が予測して実際のトラフィック量を割当てた結果とを示す図である。(a) is a diagram showing the traffic volume of each DU predicted by the routing device according to the embodiment, the traffic volume of each DU predicted by the routing device of the comparative example, and the actual traffic volume. (b) is a diagram showing a result of prediction and actual traffic volume allocation by the routing control device according to the embodiment and a result of prediction and actual traffic volume allocation by the routing control device of the comparative example; be.
 一実施形態にかかる通信システムについて、以下のように図面を用いて説明する。図1は、一実施形態にかかる通信システム1の構成例を示す図である。通信システム1は、例えばエンドサーバ10が接続されたコアネットワーク11に複数のCU(Central unit:集約基地局)12が接続されて、例えば5G(第5世代移動通信システム)としてのネットワークを構成している。 A communication system according to one embodiment will be described using the drawings as follows. FIG. 1 is a diagram showing a configuration example of a communication system 1 according to one embodiment. A communication system 1 includes, for example, a core network 11 to which an end server 10 is connected, and a plurality of CUs (Central units: aggregation base stations) 12 are connected to configure a network as, for example, 5G (fifth generation mobile communication system). ing.
 CU12は、それぞれSW(スイッチ)2を介して複数のDU(Distribution unit:リモート局)13及び経路制御装置3に接続されている。 The CU 12 is connected to a plurality of DUs (Distribution Units: remote stations) 13 and the routing control device 3 via SWs (switches) 2, respectively.
 DU13は、それぞれ複数のRU(Radio unit:無線局)14に接続されている。RU14は、UE(User equipment:無線端末)15を収容しており、UE15がエンドサーバ10に対してアクセスすることを可能にしている。 Each DU 13 is connected to a plurality of RUs (Radio units) 14. The RU 14 accommodates a UE (User equipment: wireless terminal) 15 and enables the UE 15 to access the end server 10 .
 SW2は、複数のCU12と複数のDU13との間に設けられ、例えば経路制御装置3の制御に応じてCU12とDU13との間の通信経路を切替えるMMH(Mobile Mid Haul)を構成している。以下、複数のCU12をそれぞれ区別する場合には、CU#1,CU#2のように、それぞれ#の次に番号を付して区別することとする。また、複数のDU13をそれぞれ区別する場合には、DU#1~DU#4・・・のように、それぞれ#の次に番号を付して区別することとする。 The SW2 is provided between the plurality of CU12 and the plurality of DU13, and constitutes an MMH (Mobile Mid Haul) that switches the communication path between the CU12 and the DU13 according to the control of the path control device 3, for example. Hereinafter, when distinguishing between a plurality of CUs 12, they are distinguished by adding a number after #, such as CU#1 and CU#2. When distinguishing between a plurality of DUs 13, they are distinguished by adding a number after #, such as DU#1 to DU#4.
 図2は、SW2の周辺の構成例を示す図である。SW2は、例えばCU#1,CU#2それぞれから通信についての伝送時間(t)及びトラフィック量(x)を示す情報を受信する。また、SW2は、DU#1~DU#4それぞれから通信についての伝送時間(t)及び制御情報(c)を受信する。なお、上り通信の場合には、SW2は、DU#1~DU#4それぞれからトラフィック量(x)を示す情報も受信する。 FIG. 2 is a diagram showing a configuration example around SW2. SW2 receives, for example, information indicating transmission time (t) and traffic volume (x) for communication from each of CU#1 and CU#2. Also, SW2 receives transmission time (t) and control information (c) for communication from each of DU#1 to DU#4. In the case of uplink communication, SW2 also receives information indicating the traffic volume (x) from each of DU#1 to DU#4.
 なお、制御情報は、UE15が例えばエンドサーバ10にアクセスするために、DU13に対して送信する情報である。DU#1~DU#4それぞれがSW2に対して送信する制御情報には、例えばDU13とCU12との間のトラフィック量及びスケジュール情報が含まれている。具体的には、制御情報には、次回実際にトラフィック送信される時刻(t)が記載されている。そして、制御情報に基づいて、割り当てを実施したデータが次の送信で送られることとなる。 Note that the control information is information that the UE 15 transmits to the DU 13 in order to access the end server 10, for example. The control information transmitted from each of DU#1 to DU#4 to SW2 includes, for example, the traffic volume and schedule information between DU13 and CU12. Specifically, the control information describes the next actual traffic transmission time (t C ). Then, based on the control information, the allocated data will be sent in the next transmission.
 次に、一実施形態にかかる経路制御装置3について詳述する。図3は、一実施形態にかかる経路制御装置3が有する機能とその周辺を例示するブロック図である。経路制御装置3は、時刻分析部30、予測時間決定部31、記憶部32、選定部33、実行部34、及び切替制御部35を有し、SW2に接続されている。 Next, the route control device 3 according to one embodiment will be described in detail. FIG. 3 is a block diagram illustrating the functions and peripherals of the route control device 3 according to one embodiment. The route control device 3 has a time analysis unit 30, a prediction time determination unit 31, a storage unit 32, a selection unit 33, an execution unit 34, and a switching control unit 35, and is connected to SW2.
 時刻分析部30は、DU13から受信した制御情報(CDU)からトラフィックの送信時刻を分析し、トラフィック送信時刻(t)と制御情報を予測時間決定部31及び実行部34に対して出力する。 The time analysis unit 30 analyzes the traffic transmission time from the control information (C DU ) received from the DU 13, and outputs the traffic transmission time (t C ) and the control information to the prediction time determination unit 31 and the execution unit 34. .
 なお、時刻分析部30は、制御情報と共にタイムスタンプを受信し、TTI(Transmission Time. Interval)周期に基づいて次回実際にトラフィック送信される時刻(t)を分析してもよい。 Note that the time analysis unit 30 may receive a time stamp together with the control information and analyze the time (t c ) at which the next traffic is actually transmitted based on the TTI (Transmission Time. Interval) cycle.
 予測時間決定部31は、SW2とCU12との間の伝送時間(tCU)、SW2とDU13との間の伝送時間(tDU)、DU13とCU12との間のトラフィック量及びスケジュール情報(tなど)を含む制御情報、SW2の動作時間(tSW)、並びに予め設定された最大許容遅延時間(例えばMMHの要求遅延時間:tMMH)に基づいて、通信経路に対する将来のトラフィック量の予測に使用可能な時間(予測時間:t)を決定し、選定部33に対して出力する。 The prediction time determination unit 31 determines the transmission time ( tCU ) between SW2 and CU12, the transmission time ( tDU ) between SW2 and DU13, the traffic volume and schedule information (tC) between DU13 and CU12 . etc.), the operation time (t SW ) of SW2, and the preset maximum allowable delay time (for example, the required delay time of MMH: t MMH ), to predict the future traffic volume for the communication path A usable time (predicted time: t f ) is determined and output to the selection unit 33 .
 また、予測時間決定部31は、例えばトラフィックの優先度に応じてMMHの最大許容遅延時間を、予測に使用可能な時間の決定に用いる最大許容遅延時間として決定する、又は、予測に使用可能な時間の決定に用いる最大許容遅延時間を0に決定する最大許容遅延時間決定部310を備えていてもよい。この場合、予測時間決定部31は、制御情報の受信時から主信号が到着するまでの時間と、最大許容遅延時間決定部310が決定した最大許容遅延時間との合計時間を予測時に使用可能な時間として決定する。 In addition, the prediction time determination unit 31 determines, for example, the maximum allowable delay time of MMH according to the priority of traffic as the maximum allowable delay time used for determining the time that can be used for prediction, or A maximum allowable delay time determination unit 310 may be provided that determines 0 as the maximum allowable delay time used for time determination. In this case, the prediction time determination unit 31 can use the total time of the time from the reception of the control information to the arrival of the main signal and the maximum allowable delay time determined by the maximum allowable delay time determination unit 310 for prediction. Decide as time.
 例えば、予測時間決定部31は、グランドマスタークロック又はオリジナルクロックにより現時刻(tnow)を把握する。また、予測時間決定部31は、推定されるトラフィック情報から各CU12に対して割り当てを計算するために要する時間が一定であるとして記憶していてもよい。また、予測時間決定部31は、SW2が切替えの指示から実施までに要する時間も一定であるとして記憶していてもよい。また、予測時間決定部31は、MMHの要求遅延時間も一定であるとして記憶していてもよい。 For example, the predicted time determining unit 31 obtains the current time (t now ) from the grandmaster clock or the original clock. Also, the predicted time determining unit 31 may store the time required to calculate the allocation to each CU 12 from the estimated traffic information as being constant. In addition, the predicted time determination unit 31 may store the time required for SW2 to switch from the instruction to the switching to be constant. Further, the predicted time determination unit 31 may store the MMH request delay time as being constant.
 図4は、予測時間決定部31が決定する予測時間の例を模式的に示す図である。例えば、SW2とDU13との間の伝送時間(tDU)は、下式(1)に示されるようになる可能性もある。 FIG. 4 is a diagram schematically showing an example of the prediction time determined by the prediction time determining section 31. As shown in FIG. For example, the transmission time (t DU ) between SW2 and DU13 could be as shown in equation (1) below.
 tDU=tnow+1-t         ・・・(1) t DU = t now + 1 - t C (1)
 記憶部32は、送信されたトラフィック量を記憶し、以前に記憶した過去のトラフィック量とともに連続値として実行部34へ出力する。 The storage unit 32 stores the transmitted traffic volume and outputs it to the execution unit 34 as a continuous value together with the previously stored past traffic volume.
 選定部33は、予測時間決定部31が決定した予測に使用可能な時間(予測時間)内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定し、選定結果を実行部34に対して出力する。 The selection unit 33 selects an algorithm capable of determining a communication route within the time (prediction time) that can be used for prediction determined by the prediction time determination unit 31 from among a plurality of algorithms according to a predetermined priority. A result is output to the execution unit 34 .
 例えば、選定部33は、予測時間決定部31が決定した予測時間に基づいて、予測時間が十分にある場合にはトラフィック推定を選定し、予測時間が十分にない場合には時系列予測などのアルゴリズムを選定する。なお、選定部33は、複数のアルゴリズムを選定するように構成されてもよい。 For example, based on the prediction time determined by the prediction time determination unit 31, the selection unit 33 selects traffic estimation when the prediction time is sufficient, and when the prediction time is not sufficient, time series prediction or the like is selected. Choose an algorithm. Note that the selection unit 33 may be configured to select a plurality of algorithms.
 図5は、選定部33がアルゴリズムの選定に用いる複数のアルゴリズムの具体例を示す図である。例えば、選定部33は、優先度に応じて1~3・・・の番号が振られた複数のアルゴリズムの少なくともいずれかを、予測時間内に通信経路を決定可能なアルゴリズムとして選定する。 FIG. 5 is a diagram showing specific examples of a plurality of algorithms used by the selection unit 33 for algorithm selection. For example, the selection unit 33 selects at least one of a plurality of algorithms numbered 1 to 3 according to priority as an algorithm capable of determining a communication route within the predicted time.
 優先度(1>2>3)が高いアルゴリズムほど、予測精度が高くなるが、計算に時間を要する。 Algorithms with higher priority (1>2>3) have higher prediction accuracy, but take longer to calculate.
 例えば、選定部33は、予測に使用可能な時間が0.7msよりも長い場合、優先度の高いRB(resource block)割り当てと、MCS(Modulation Coding Scheme)を使用した掛け算によるトラフィック推定(算出)を選定する。 For example, if the time available for prediction is longer than 0.7 ms, the selection unit 33 assigns a high priority RB (resource block) and estimates (calculates) traffic by multiplication using MCS (Modulation Coding Scheme) to select.
 このとき、選定部33は、制御情報(DCI:Downlink Control Information)から、リソース割り当て数(RIV:resource indication value)とMCSを取得する。例えば、選定部33は、MCSから回線品質を推定し、RBのトラフィック量を求めて、RIVと掛け算することにより、各DU13のトラフィック量を算出する。 At this time, the selection unit 33 acquires the resource allocation number (RIV: resource indication value) and MCS from the control information (DCI: Downlink Control Information). For example, the selection unit 33 estimates the line quality from the MCS, obtains the traffic volume of the RB, and multiplies it by the RIV to calculate the traffic volume of each DU 13 .
 また、選定部33は、予測に使用可能な時間が0.3~0.7msである場合、最優先のアルゴリズムが予測時間以上であるため、優先度が2番目に高い線形予測を選定する。線形予測では、トラフィック量を増やした方が精度は上がるが、予測に要する時間が長くなる。そのため、選定部33は、予測に要する時間に応じて、使用するトラフィック量を調整する。 In addition, when the time available for prediction is 0.3 to 0.7 ms, the selection unit 33 selects linear prediction with the second highest priority because the algorithm with the highest priority is longer than the prediction time. In linear prediction, increasing the amount of traffic increases the accuracy, but the time required for prediction increases. Therefore, the selection unit 33 adjusts the traffic volume to be used according to the time required for prediction.
 また、選定部33は、予測に使用可能な時間が0.3msより短い場合、優先度が3番目の機械学習による時系列予測を選定する。時系列予測でも、線形予測と同様に、トラフィック量を増やした方が精度は上がるが、予測に要する時間が長くなる。そのため、選定部33は、予測に要する時間に応じて、使用するトラフィック量を調整する。 In addition, when the time available for prediction is shorter than 0.3 ms, the selection unit 33 selects time-series prediction by machine learning with the third priority. In time-series prediction, as with linear prediction, increasing the amount of traffic improves accuracy, but the time required for prediction increases. Therefore, the selection unit 33 adjusts the traffic volume to be used according to the time required for prediction.
 実行部34は、選定部33が選定したアルゴリズムを実行することにより、CU12とDU13との間の通信経路を決定する。 The execution unit 34 determines the communication route between the CU 12 and the DU 13 by executing the algorithm selected by the selection unit 33 .
 例えば、実行部34は、予測時間が十分にある場合にはトラフィック推定を実行し、予測時間が十分にない場合には時系列予測を実行する。トラフィック推定は、制御情報から各トラフィック量を予測するアルゴリズムである。時系列予測は、過去のトラフィック情報を使用して次時刻の予測トラフィック量を算出するアルゴリズムである。時系列予測では、予測に使用できる時間に応じて使用するトラフィック情報を変更してもよい。 For example, the execution unit 34 executes traffic estimation when the prediction time is sufficient, and executes time-series prediction when the prediction time is insufficient. Traffic estimation is an algorithm that predicts each traffic volume from control information. Time-series prediction is an algorithm that uses past traffic information to calculate the predicted traffic volume for the next time. In time-series prediction, the traffic information used may be changed according to the time available for prediction.
 なお、実行部34は、選定部33が複数のアルゴリズムを選定した場合には、複数のアルゴリズムを実行し、複数の予測結果をマージして1つの予測結果を出力するように構成されてもよい。例えば、実行部34は、複数の予測結果に対して精度や時間に重み付けをしたり、多数決などによって複数の予測結果をマージする。 In addition, when the selection unit 33 selects a plurality of algorithms, the execution unit 34 may be configured to execute a plurality of algorithms, merge a plurality of prediction results, and output one prediction result. . For example, the execution unit 34 weights accuracy and time for multiple prediction results, and merges multiple prediction results by majority rule.
 例えば、実行部34は、複数のアルゴリズムを集約させる集約部340を備え、選定部33が複数のアルゴリズムを選定した場合には、集約部340が複数のアルゴリズムを実行し、複数の予測結果をマージして1つの予測結果を出力する。このとき、集約部340は、複数の予測結果に対して精度や時間に重み付けをしたり、多数決などによって複数の予測結果をマージする。 For example, the executing unit 34 includes an aggregating unit 340 for aggregating a plurality of algorithms, and when the selecting unit 33 selects a plurality of algorithms, the aggregating unit 340 executes the multiple algorithms and merges the multiple prediction results. and output one prediction result. At this time, the aggregating unit 340 weights the accuracy and time of the plurality of prediction results, and merges the plurality of prediction results by majority rule.
 切替制御部35は、判定部350及び割当て決定部352を有し、実行部34が決定した通信経路によってCU12とDU13とが通信を行うように、SW2による通信経路の切替えを制御する。 The switching control unit 35 has a determination unit 350 and an allocation determination unit 352, and controls communication path switching by SW2 so that the CU 12 and DU 13 communicate via the communication path determined by the execution unit 34.
 例えば、判定部350は、実行部34が算出した予測トラフィック量に基づいて、SW2の切替えが必要であるか否かを判定し、切替えが不要であれば通信経路(パス)の切り替えを実施せず、切替えが必要な場合には割当て決定部352に対して予測トラフィック量を出力する。 For example, the determination unit 350 determines whether switching of SW2 is necessary based on the predicted traffic volume calculated by the execution unit 34, and if switching is not necessary, switches the communication path (path). However, when switching is necessary, the predicted traffic volume is output to the allocation determining unit 352 .
 具体例として、判定部350は、予測トラフィック量が閾値(帯域×0.8など)を越えるか否かを判定することにより、SW2の切替えが必要であるか否かを判定する。 As a specific example, the determination unit 350 determines whether switching of SW2 is necessary by determining whether the predicted traffic volume exceeds a threshold value (bandwidth x 0.8, etc.).
 また、判定部350は、下式(2)に示すように、各通信経路においてトラフィック量が変わらない場合には、SW2の切替えが必要でないと判定する。 Also, as shown in the following formula (2), the determination unit 350 determines that switching of SW2 is unnecessary when the traffic volume does not change in each communication path.
 |xCU#1-xCU#2|<Max(xCU)×0.1   ・・・(2) |x CU#1 −x CU#2 |<Max(x CU )×0.1 (2)
 また、判定部350は、その他の場合には、通信経路の切替えが必要であると判定する。 In other cases, the determination unit 350 determines that communication path switching is necessary.
 割当て決定部352は、判定部350から入力された予測トラフィック量に基づいて、SW2の割り当てを決定し、SW2に対して通信経路を切替えるように指示を送信する。 The allocation determination unit 352 determines the allocation of SW2 based on the predicted traffic volume input from the determination unit 350, and transmits an instruction to switch the communication path to SW2.
 そして、SW2は、経路制御装置3が送信した指示に応じて、通信経路の切替えを実施する。 Then, SW2 switches the communication path according to the instruction sent by the path control device 3.
 次に、経路制御装置3の各動作例について説明する。図6は、経路制御装置3の使用する情報に応じた動作例を模式的に示す図である。図6(a)は、トラフィック量(トラフィック情報)を用いた場合の経路制御装置3の動作例を模式的に示す図である。図6(b)は、制御情報を用いた場合の経路制御装置3の動作例を模式的に示す図である。 Next, each operation example of the route control device 3 will be described. FIG. 6 is a diagram schematically showing an operation example according to information used by the route control device 3. In FIG. FIG. 6(a) is a diagram schematically showing an operation example of the route control device 3 when the traffic volume (traffic information) is used. FIG. 6B is a diagram schematically showing an operation example of the route control device 3 when using control information.
 図6(a)に示すように、経路制御装置3は、実際のトラフィック情報を用いて通信経路を切替えようとすると、データを受信したときからデータを送信するまでの間の短時間しかトラフィックの予測に使用できないため、実際のトラフィックに対して予測が間に合わない。 As shown in FIG. 6(a), when the route control device 3 tries to switch the communication route using the actual traffic information, the traffic is only for a short period of time between the time the data is received and the time the data is transmitted. Prediction is not available in time for actual traffic because it cannot be used for prediction.
 そこで、経路制御装置3は、実際のトラフィック情報を用いて通信経路を切替えるために、1つ前のデータを用いてトラフィックの予測を実行し、通信経路の切替えを実施する。この場合、経路制御装置3は、1つ前のデータを用いるので、トラフィック量の予測精度は低下し得る。 Therefore, in order to switch the communication route using the actual traffic information, the route control device 3 predicts the traffic using the previous data and switches the communication route. In this case, since the route control device 3 uses the previous data, the prediction accuracy of the traffic volume may be lowered.
 図6(b)に示すように、経路制御装置3は、受信した制御情報を用いることにより、制御情報を受信したときからデータを送信するまでの間に、予測~通信経路の切替えまでに使用できる時間を確保することができる。 As shown in FIG. 6(b), by using the received control information, the route control device 3, during the period from the time of receiving the control information to the time of data transmission, is used from prediction to communication route switching. You can secure the time you can.
 この場合、1つ前のデータを用いなくても、制御情報を受信したときからデータを受信するまでの時間分の予測時間が増える。また、制御情報を使用して予測することにより、1つ前のデータを用いるよりも予測精度が担保される。 In this case, even if the previous data is not used, the predicted time increases by the amount of time from when the control information is received until when the data is received. Moreover, by making predictions using the control information, the prediction accuracy is ensured more than using the previous data.
 そして、制御情報の受信からデータの受信までの時間が、トラフィック量の予測から通信経路の切替えまでにかかる時間よりも長い場合、データ受信時に通信経路の切替え(リアルタイムパス切替え)が可能である。そのため、経路制御装置3は、予測にかかる時間を分析して、予測時間が十分ある場合、制御情報に基づいて高精度にリアルタイムパス切替えを実施することができる。 Then, if the time from receiving control information to receiving data is longer than the time required from predicting the amount of traffic to switching communication paths, it is possible to switch communication paths (real-time path switching) when data is received. Therefore, the route control device 3 analyzes the time required for prediction, and if the prediction time is sufficient, it can perform real-time path switching with high accuracy based on the control information.
 図7は、経路制御装置3が算出した予測に使用可能な時間(予測時間)とトラフィックとの関係を模式的に示す図である。図7(a)は、予測時間が十分にある場合のトラフィックとの関係を模式的に示す図である。図7(b)は、予測時間が十分にない場合のトラフィックとの関係を模式的に示す図である。 FIG. 7 is a diagram schematically showing the relationship between the time available for prediction (prediction time) calculated by the route control device 3 and the traffic. FIG. 7(a) is a diagram schematically showing the relationship with traffic when the prediction time is sufficient. FIG. 7(b) is a diagram schematically showing the relationship with traffic when the prediction time is insufficient.
 ここで、時刻分析部30が算出するデータが送信されるまでの時間をtとする。予測時間決定部31は、CU12-SW2間の伝送時間tCU、DU13-SW2間の伝送時間tDU、データ送信までの時間t、SW2の動作時間(割り当て・通信経路の切替えまでの時間)tSW、MMHの遅延要件tMMHに基づいて、下式(3)によりトラフィック量の予測に使用できる時間(予測時間:t)を算出する。 Here, let t C be the time until the data calculated by the time analysis unit 30 is transmitted. The predicted time determination unit 31 determines the transmission time t CU between CU12 and SW2, the transmission time t DU between DU13 and SW2, the time t C until data transmission, and the operation time of SW2 (time until allocation/switching of communication paths). Based on t SW and the delay requirement t MMH of MMH, the time (prediction time: t f ) that can be used for predicting traffic volume is calculated by the following equation (3).
 t=tMMH-(Max(tCU)+Max(tDU-t)-tSW
                            ・・・(3)
t f =t MMH −(Max(t CU )+Max(t DU −t C )−t SW )
... (3)
 そして、選定部33は、予測時間tに基づいて、通信経路の切替えのためのトラフィック量を算出するアルゴリズムを選定する。 Then, the selection unit 33 selects an algorithm for calculating traffic volume for switching communication paths based on the predicted time tf .
 例えば、図7(a)に示したように、予測時間が十分にある場合(例えばトラフィックを送信する時間がある場合)、選定部33は、制御情報を用いてトラフィックを推定(算出)するアルゴリズムを選定する。そして、実行部34は、トラフィック推定アルゴリズムを実行してトラフィックを算出し、切替制御部35に対して出力する。 For example, as shown in FIG. 7A, when there is sufficient prediction time (for example, when there is time to transmit traffic), the selection unit 33 uses the control information to estimate (calculate) the traffic Algorithm to select. Then, the execution unit 34 executes a traffic estimation algorithm to calculate traffic and outputs it to the switching control unit 35 .
 一方、図7(b)に示したように、予測時間が十分にない場合(例えばトラフィックを送信する時間がない場合)、選定部33は、過去のトラフィックデータを用いて将来のトラフィック量の時系列予測を実施するアルゴリズムを選定する。このとき、選定部33は、予測に要する時間に応じて使用するトラフィックデータの数などのパラメータを変更してもよい。 On the other hand, as shown in FIG. 7(b), when the prediction time is not enough (for example, when there is no time to transmit traffic), the selection unit 33 uses past traffic data to predict the future traffic volume. Choose an algorithm to perform series prediction. At this time, the selection unit 33 may change parameters such as the number of traffic data to be used according to the time required for prediction.
 そして、実行部34は、時系列予測アルゴリズムを用いて次に来るトラフィック量の予測を行い、切替制御部35に対して出力する。 Then, the execution unit 34 predicts the next traffic volume using a time-series prediction algorithm and outputs it to the switching control unit 35 .
 つまり、経路制御装置3は、予測時間が十分にある場合には高精度でリアルタイムに通信経路を制御し、予測時間が十分にない場合にはトラフィック情報を用いた通信経路の切替えと同等の精度で通信経路を制御する。 In other words, when the prediction time is sufficient, the route control device 3 controls the communication route in real time with high precision, and when the prediction time is not sufficient, the route control device 3 controls the communication route with an accuracy equivalent to switching the communication route using traffic information. to control the communication path.
 次に、経路制御装置3の動作の具体例について説明する。まず、経路制御装置3がリアルタイムパス切替えを行うように制御する場合について説明する。 Next, a specific example of the operation of the route control device 3 will be described. First, the case where the route control device 3 performs real-time path switching will be described.
 例えば、時刻分析部30は、制御情報(CDU)を受信し、トラフィックの送信時刻(t=4TTI=4ms後の時刻)を計算し、予測時間決定部31に対して送信する。 For example, the time analysis unit 30 receives the control information (C DU ), calculates the traffic transmission time (t C =4 TTI=4 ms later), and transmits it to the prediction time determination unit 31 .
 予測時間決定部31は、下式(4),(5)に示すように、現時刻(tnow)のトラフィックの送信時刻(t)と、SW2-CU12間の送受信時間(tCU=0.1ms)、SW2-DU13間の送受信時間(tDU=0.05ms)、CU割当決定時間(tpath=1ms)、及び通信経路の切替時間(tSW=0.1ms)を用いて、トラフィック送信までに要する時間(tfRT)と、MMHの要求遅延時間(tMMH=5ms)から予測に使用可能な時間(t)を算出する。 As shown in the following equations (4) and (5), the prediction time determination unit 31 determines the transmission time (t C ) of traffic at the current time (t now ) and the transmission/reception time (t CU =0) between SW2 and CU12. .1 ms), the transmission/reception time between SW2 and DU13 (t DU =0.05 ms), the CU allocation determination time (t path =1 ms), and the communication path switching time (t SW =0.1 ms). A time (t f ) that can be used for prediction is calculated from the time required for transmission (t fRT ) and the required delay time of MMH (t MMH =5 ms).
 tfRT=t+tDU-tnow-tpath-tSW=2.85ms   ・・・(4)
 t=tMMH+t-tnow-tCU-tpath-tSW=7.8ms ・・・(5)
tfRT =tC+ tDU - tnow - tpath - tSW = 2.85ms (4)
tf = tMMH +tC - tnow -tCU- tpath - tSW = 7.8ms (5)
 予測時間決定部31は、DU13の時刻と経路制御装置3の時刻がずれている場合、時刻を同期させてもよいし、DU13からタイムスタンプも送信して、tDUから実際にSW2に到達する時刻とのずれを補正してもよい。 When the time of the DU 13 and the time of the route control device 3 are different, the predicted time determination unit 31 may synchronize the time, or transmit the time stamp from the DU 13, and actually arrive at SW2 from t DU . A deviation from the time may be corrected.
 そして、選定部33は、予測時間(t)に基づいて、アルゴリズムの選定を行う。ここでは、選定部33は、t=7.8msであるため、制御情報により送信されるトラフィックの推定(算出、1ms)を選定する。実行部34は、アルゴリズムを実施した後、各トラフィック量を切替制御部35に対して送信する。実行部34は、SW2による通信経路の切替えが不要であれば送信を行わない。 Then, the selection unit 33 selects an algorithm based on the predicted time (t f ). Here, since t f =7.8 ms, the selection unit 33 selects the estimation (calculation, 1 ms) of the traffic transmitted by the control information. After executing the algorithm, the execution unit 34 transmits each traffic volume to the switching control unit 35 . The execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
 例えば、CU#1に対するトラフィック量が8Gbpsであり、CU#2に対するトラフィック量が2Gbpsである場合、割当て決定部352は、通信経路の切替えとしてDU13の割り当てを変更する。つまり、割当て決定部352は、DU13の接続先となるCU12を変更するために、通信経路の切替え指示をSW2に対して送信する。 For example, if the traffic volume for CU#1 is 8 Gbps and the traffic volume for CU#2 is 2 Gbps, the allocation determining unit 352 changes the allocation of DU13 as communication path switching. That is, the allocation determination unit 352 transmits a communication path switching instruction to SW2 in order to change the CU 12 to which the DU 13 is connected.
 次に、予測時間が十分にある場合に経路制御装置3が行う制御例について説明する。 Next, an example of control performed by the route control device 3 when the prediction time is sufficient will be described.
 時刻分析部30は、制御情報(CDU)を受信し、トラフィックの送信時刻(t=4TTI=1ms後の時刻)を計算し、予測時間決定部31に対して送信する。 The time analysis unit 30 receives the control information (C DU ), calculates the traffic transmission time (t C =4 TTI=1 ms later), and transmits it to the prediction time determination unit 31 .
 予測時間決定部31は、SW2-CU12間の送受信時間(tCU=0.1ms)と、SW2-DU13間の送受信時間(tDU=0.05ms)を取得する。 The predicted time determination unit 31 acquires the transmission/reception time (t CU =0.1 ms) between SW2 and CU12 and the transmission/reception time (t DU =0.05 ms) between SW2 and DU13.
 そして、予測時間決定部31は、下式(6),(7)に示すように、現時刻(tnow)のトラフィックの送信時刻(t)と、SW2-CU12間の送受信時間(tCU=0.1ms)、SW2-DU13間の送受信時間(tDU=0.05ms)、CU割当決定時間(tpath=1ms)、及び通信経路の切替時間(tSW=0.1ms)を用いて、トラフィック送信までに要する時間(tfRT)と、MMHの要求遅延時間(tMMH=1ms)から予測に使用可能な時間(t)を算出する。 Then, as shown in the following equations (6) and (7), the prediction time determination unit 31 determines the transmission time (t C ) of the traffic at the current time (t now ) and the transmission/reception time (t CU = 0.1 ms), transmission/reception time between SW2-DU13 (t DU = 0.05 ms), CU assignment decision time (t path = 1 ms), and communication path switching time (t SW = 0.1 ms) , the time required for traffic transmission (t fRT ) and the required delay time of MMH (t MMH =1 ms), the time (t f ) that can be used for prediction is calculated.
 tfRT=t+tDU-tnow-tpath-tSW=-0.15ms  ・・・(6)
 t=tMMH+t-tnow-tCU-tpath-tSW=0.8ms ・・・(7)
t fRT =t C +t DU -t now -t path -t SW =-0.15 ms (6)
tf = tMMH +tC - tnow - tCU - tpath - tSW =0.8 ms (7)
 予測時間決定部31は、DU13の時刻と経路制御装置3の時刻がずれている場合、時刻を同期させてもよいし、DU13からタイムスタンプも送信して、tDUから実際にSW2に到達する時刻とのずれを補正してもよい。 When the time of the DU 13 and the time of the route control device 3 are different, the predicted time determination unit 31 may synchronize the time, or transmit the time stamp from the DU 13, and actually arrive at SW2 from t DU . A deviation from the time may be corrected.
 そして、選定部33は、予測時間(t)に基づいて、アルゴリズムの選定を行う。ここでは、選定部33は、t=0.8msであるため、制御情報により送信されるトラフィックの推定(算出、0.7ms)を選定する。実行部34は、アルゴリズムを実施した後、各トラフィック量を切替制御部35に対して送信する。実行部34は、SW2による通信経路の切替えが不要であれば送信を行わない。 Then, the selection unit 33 selects an algorithm based on the predicted time (t f ). Here, since t f =0.8 ms, the selection unit 33 selects the estimation (calculation, 0.7 ms) of the traffic transmitted by the control information. After executing the algorithm, the execution unit 34 transmits each traffic volume to the switching control unit 35 . The execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
 例えば、CU#1に対するトラフィック量が9Gbpsであり、CU#2に対するトラフィック量が8Gbpsである場合、割当て決定部352は、通信経路の切替えとしてDU13の割り当てを変更する。つまり、割当て決定部352は、DU13の接続先となるCU12を変更するために、通信経路の切替え指示をSW2に対して送信する。 For example, if the traffic volume for CU#1 is 9 Gbps and the traffic volume for CU#2 is 8 Gbps, the allocation determination unit 352 changes the allocation of DU13 as communication route switching. That is, the allocation determination unit 352 transmits a communication path switching instruction to SW2 in order to change the CU 12 to which the DU 13 is connected.
 次に、予測時間が十分にない場合に経路制御装置3が行う制御例について説明する。 Next, an example of control performed by the route control device 3 when the prediction time is insufficient will be described.
 時刻分析部30は、制御情報(CDU)を受信し、トラフィックの送信時刻(t=4TTI=0.5ms後の時刻)を計算し、予測時間決定部31に対して送信する。 The time analysis unit 30 receives the control information (C DU ), calculates the traffic transmission time (t C =4 TTI=0.5 ms later), and transmits it to the prediction time determination unit 31 .
 予測時間決定部31は、SW2-CU12間の送受信時間(tCU=0.1ms)と、SW2-DU13間の送受信時間(tDU=0.05ms)を取得する。 The predicted time determination unit 31 acquires the transmission/reception time (t CU =0.1 ms) between SW2 and CU12 and the transmission/reception time (t DU =0.05 ms) between SW2 and DU13.
 そして、予測時間決定部31は、下式(8),(9)に示すように、現時刻(tnow)のトラフィックの送信時刻(t)と、SW2-CU12間の送受信時間(tCU=0.1ms)、SW2-DU13間の送受信時間(tDU=0.05ms)、CU割当決定時間(tpath=1ms)、及び通信経路の切替時間(tSW=0.1ms)を用いて、トラフィック送信までに要する時間(tfRT)と、MMHの要求遅延時間(tMMH=1ms)から予測に使用可能な時間(t)を算出する。 Then, as shown in the following equations (8) and (9), the prediction time determination unit 31 determines the transmission time (t C ) of the traffic at the current time (t now ), the transmission/reception time (t CU = 0.1 ms), transmission/reception time between SW2-DU13 (t DU = 0.05 ms), CU assignment decision time (t path = 1 ms), and communication path switching time (t SW = 0.1 ms) , the time required for traffic transmission (t fRT ) and the required delay time of MMH (t MMH =1 ms), the time (t f ) that can be used for prediction is calculated.
 tfRT=t+tDU-tnow-tpath-tSW=-0.55ms  ・・・(8)
 t=tMMH+t-tnow-tCU-tpath-tSW=0.3ms ・・・(9)
t fRT =t C +t DU -t now -t path -t SW =-0.55 ms (8)
tf = tMMH +tC - tnow -tCU- tpath - tSW = 0.3ms (9)
 予測時間決定部31は、DU13の時刻と経路制御装置3の時刻がずれている場合、時刻を同期させてもよいし、DU13からタイムスタンプも送信して、tDUから実際にSW2に到達する時刻とのずれを補正してもよい。 When the time of the DU 13 and the time of the route control device 3 are different, the predicted time determination unit 31 may synchronize the time, or transmit the time stamp from the DU 13, and actually arrive at SW2 from t DU . A deviation from the time may be corrected.
 なお、経路制御装置3は、記憶部32に代えて、1つ前のトラフィック量を用いて各トラフィック量を予測するトラフィック予測部を備え、予測時間を決定する前に、1つ前のトラフィック量を用いて各トラフィック量を予測してもよい。 Instead of the storage unit 32, the route control device 3 is provided with a traffic prediction unit that predicts each traffic volume using the previous traffic volume. may be used to predict each traffic volume.
 そして、選定部33は、予測時間(t)に基づいて、アルゴリズムの選定を行う。ここでは、選定部33は、t=0.3msであるため、過去のトラフィック情報から将来のトラフィック情報を予測するアルゴリズムを選定(予測時間に間に合うように使用データ量の決定)する。実行部34は、アルゴリズムを実施した後、各トラフィック量を切替制御部35に対して送信する。実行部34は、SW2による通信経路の切替えが不要であれば送信を行わない。 Then, the selection unit 33 selects an algorithm based on the predicted time (t f ). Here, since t f =0.3 ms, the selection unit 33 selects an algorithm for predicting future traffic information from past traffic information (determines the amount of data to be used in time for the prediction time). After executing the algorithm, the execution unit 34 transmits each traffic volume to the switching control unit 35 . The execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
 例えば、CU#1に対するトラフィック量が8Gbpsであり、CU#2に対するトラフィック量が2Gbpsである場合、割当て決定部352は、通信経路の切替えとしてDU13の割り当てを変更する。つまり、割当て決定部352は、DU13の接続先となるCU12を変更するために、通信経路の切替え指示をSW2に対して送信する。 For example, if the traffic volume for CU#1 is 8 Gbps and the traffic volume for CU#2 is 2 Gbps, the allocation determining unit 352 changes the allocation of DU13 as communication path switching. That is, the allocation determination unit 352 transmits a communication path switching instruction to SW2 in order to change the CU 12 to which the DU 13 is connected.
 次に、制御情報を使用することなく経路制御装置3が行う制御例について説明する。 Next, an example of control performed by the route control device 3 without using control information will be described.
 予測時間決定部31は、SW2-CU12間の送受信時間(tCU=0.1ms)と、SW2-DU13間の送受信時間(tDU=0.05ms)を取得する。 The predicted time determination unit 31 acquires the transmission/reception time (t CU =0.1 ms) between SW2 and CU12 and the transmission/reception time (t DU =0.05 ms) between SW2 and DU13.
 そして、予測時間決定部31は、下式(10)に示すように、SW2-CU12間の送受信時間(tCU=0.1ms)、SW2-DU13間の送受信時間(tDU=0.05ms)、CU割当決定時間(tpath=1ms)、及び通信経路の切替時間(tSW=0.1ms)を用いて、トラフィック送信までに要する時間(tfRT)と、MMHの要求遅延時間(tMMH=1ms)から、切替えに使用する時間があるか否かを判定する(t判定)ことが可能である。 Then, as shown in the following formula (10), the predicted time determination unit 31 determines the transmission/reception time between SW2 and CU12 (t CU =0.1 ms), the transmission/reception time between SW2 and DU13 (t DU =0.05 ms) , CU allocation decision time (t path = 1 ms), and communication path switching time (t SW = 0.1 ms), the time required for traffic transmission (t fRT ) and the required delay time of MMH (t MMH = 1 ms), it is possible to determine whether there is time to use for switching (t determination).
 t判定=tMMH-tDU-tCU-tpath-tSW=-0.25ms・・・(10) t judgment = t MMH - t DU - t CU - t path - t SW = -0.25 ms (10)
 このとき、判定時間(t判定)は、負の値になっている。つまり、トラフィック量により通信経路の切替えを実施しても間に合わない。 At this time, the judgment time (t judgment) is a negative value. In other words, even if the communication path is switched according to the amount of traffic, it is too late.
 そこで、経路制御装置3は、次の区間のトラフィック量の予測から通信経路の切替えを実施する。この場合、予測に使用可能な時間は、4TTI周期(1ms)分増えるので、t=0.75msとなる。そして、選定部33は、予測時間(tf)に基づいてアルゴリズムの選定を行う。 Therefore, the route control device 3 switches the communication route based on the prediction of the traffic volume in the next section. In this case, the time available for prediction increases by 4 TTI periods (1 ms), so t f =0.75 ms. Then, the selection unit 33 selects an algorithm based on the predicted time (tf).
 ここでは、t=0.75msであるため、過去のトラフィック情報から将来のトラフィック情報を予測するアルゴリズムを選定(予測時間に間に合うように使用データ量の決定)を行う。ただし、時系列予測となるため、制御情報を用いる場合よりも予測精度は低下する。 Here, since t f =0.75 ms, an algorithm for predicting future traffic information from past traffic information is selected (the amount of data to be used is determined in time for the prediction time). However, since this is time-series prediction, the prediction accuracy is lower than when control information is used.
 実行部34は、アルゴリズムを実施した後、各トラフィック量を切替制御部35に対して送信する。実行部34は、SW2による通信経路の切替えが不要であれば送信を行わない。 After executing the algorithm, the execution unit 34 transmits each traffic volume to the switching control unit 35 . The execution unit 34 does not perform transmission if switching of the communication path by SW2 is unnecessary.
 例えば、CU#1に対するトラフィック量が8Gbpsであり、CU#2に対するトラフィック量が7.5Gbpsである場合、割当て決定部352は、通信経路の切替えとしてのDU13の割り当てを実施しない。 For example, if the traffic volume for CU#1 is 8 Gbps and the traffic volume for CU#2 is 7.5 Gbps, the allocation determining unit 352 does not allocate DU13 as communication path switching.
 次に、経路制御装置3が通信経路の切替えを実施した場合の具体例について説明する。経路制御装置3は、各CU12に対する各DU13のトラフィック量の割当てを変更することにより、通信経路の切替えを制御する。これにより、経路制御装置3は、各CU12に対する通信経路上の負荷を分散させることができる。 Next, a specific example in which the route control device 3 switches the communication route will be described. The route control device 3 controls switching of communication routes by changing the allocation of the traffic volume of each DU 13 to each CU 12 . As a result, the route control device 3 can distribute the load on the communication route for each CU 12 .
 以下、CU12の数を2(CU#1,CU#2)とし、DU13の数を8(DU#1~DU#8)とした場合を例に説明する。 A case where the number of CUs 12 is 2 (CU#1, CU#2) and the number of DUs 13 is 8 (DU#1 to DU#8) will be described below as an example.
 図8は、経路制御装置3が予測した各DU13のトラフィック量と、予測したトラフィック量を用いて各CU12に対する各DU13のトラフィック量を割当てた結果を模式的に示す図である。図8(a)は、経路制御装置3が予測した各DU13のトラフィック量を示す図である。図8(b)は、経路制御装置3がトラフィック量の割当てを行う前後(負荷分散前後)の各CU12のトラフィック量を示す図である。ここでは、経路制御装置3が予測したトラフィック量と実際のトラフィック量とが一致しているとする。 FIG. 8 is a diagram schematically showing the traffic volume of each DU 13 predicted by the routing device 3 and the result of allocating the traffic volume of each DU 13 to each CU 12 using the predicted traffic volume. FIG. 8(a) is a diagram showing the traffic volume of each DU 13 predicted by the routing device 3. FIG. FIG. 8(b) is a diagram showing the traffic volume of each CU 12 before and after allocation of traffic volume by the route control device 3 (before and after load distribution). Here, it is assumed that the traffic volume predicted by the route control device 3 and the actual traffic volume match.
 経路制御装置3が上述したアルゴリズムを実施した後の各DU13のトラフィック量が図8(a)に示されたトラフィック量である場合、通信システム1は、SW2が通信経路の切替えを実施しなければ、CU#1に8Gbpsのトラフィック量となり、CU#2に2Gbpsのトラフィック量となる(負荷分散前)。 If the traffic volume of each DU 13 after the routing control device 3 executes the algorithm described above is the traffic volume shown in FIG. , CU#1 has a traffic volume of 8 Gbps, and CU#2 has a traffic volume of 2 Gbps (before load balancing).
 このとき、CU#1の帯域10Gbpsに対してトラフィック量が8割を占めており、CU#2の帯域には十分空きがある(判定条件:|8-2|>8×0.1)ため、経路制御装置3は、SW2による通信経路の切替えを実施する。 At this time, the traffic volume occupies 80% of the bandwidth of CU#1, which is 10 Gbps, and the bandwidth of CU#2 is sufficiently empty (judgment condition: |8−2|>8×0.1). , the route control device 3 switches the communication route by SW2.
 例えば、割当て決定部352は、各CU12に対し、各DU13のトラフィック量を分散させるように、各DU13のトラフィック量の割当てを変更し、その旨を示す指示をSW2に対して送信する。 For example, the allocation determination unit 352 changes the allocation of the traffic volume of each DU 13 so as to distribute the traffic volume of each DU 13 to each CU 12, and transmits an instruction to that effect to SW2.
 その結果、図8(b)の負荷分散後に示されたように、仮に経路制御装置3によるトラフィック量の予測に誤差が生じた場合であっても、各CU12の帯域を超えないように余裕がある。 As a result, as shown after load distribution in FIG. be.
 図9は、経路制御装置3が予測した各DU13のトラフィック量と、実際のトラフィック量を用いて各CU12に対する各DU13のトラフィック量を割当てた結果を模式的に示す図である。図9(a)は、経路制御装置3が予測した各DU13のトラフィック量、及び実際のトラフィック量を示す図である。図9(b)は、経路制御装置3が実際のトラフィック量の割当てを行う前後(負荷分散前後)の各CU12のトラフィック量を示す図である。 FIG. 9 is a diagram schematically showing the result of allocating the traffic volume of each DU 13 to each CU 12 using the traffic volume of each DU 13 predicted by the routing device 3 and the actual traffic volume. FIG. 9(a) is a diagram showing the traffic volume of each DU 13 predicted by the routing device 3 and the actual traffic volume. FIG. 9(b) is a diagram showing the traffic volume of each CU 12 before and after the route control device 3 actually allocates the traffic volume (before and after load distribution).
 経路制御装置3が上述したアルゴリズムを実施した後の各DU13のトラフィック量が図9(a)上段に示されたトラフィック量である場合、通信システム1は、SW2が通信経路の切替えを実施しなければ、CU#1に8Gbpsのトラフィック量となり、CU#2に2Gbpsのトラフィック量となる。 If the traffic volume of each DU 13 after the routing control device 3 executes the algorithm described above is the traffic volume shown in the upper part of FIG. For example, CU#1 has a traffic volume of 8 Gbps, and CU#2 has a traffic volume of 2 Gbps.
 ただし、実際のトラフィック量が図9(a)下段に示されたトラフィック量である場合、図9(b)の負荷分散前に示したように、CU#1の帯域10Gbpsに対してトラフィック量が過多となる。 However, if the actual traffic volume is the traffic volume shown in the lower part of FIG. become excessive.
 このとき、CU#2の帯域には十分空きがある(判定条件:|8-2|>8×0.1)ため、経路制御装置3は、SW2による通信経路の切替えを実施する。 At this time, since there is sufficient free space in the band of CU#2 (judgment condition: |8-2|>8×0.1), the route control device 3 switches the communication route using SW2.
 例えば、割当て決定部352は、各CU12に対し、各DU13のトラフィック量を分散させるように、各DU13のトラフィック量の割当てを変更し、その旨を示す指示をSW2に対して送信する。 For example, the allocation determination unit 352 changes the allocation of the traffic volume of each DU 13 so as to distribute the traffic volume of each DU 13 to each CU 12, and transmits an instruction to that effect to SW2.
 その結果、図9(b)の負荷分散後に示されたように、経路制御装置3によるトラフィック量の予測に誤差が生じた場合であっても、各CU12の帯域を超えないように余裕がある。 As a result, as shown after load distribution in FIG. 9B, even if an error occurs in the prediction of the traffic volume by the route control device 3, there is a margin so that the bandwidth of each CU 12 is not exceeded. .
 図10は、一実施形態にかかる経路制御装置3が予測した各DU13のトラフィック量に基づいて各DU13のトラフィック量を割当てた結果と、比較例の経路制御装置予測した各DU13のトラフィック量に基づいて各DU13のトラフィック量を割当てた結果とを模式的に示す図である。 FIG. 10 shows the result of assigning the traffic volume of each DU 13 based on the traffic volume of each DU 13 predicted by the routing control device 3 according to one embodiment, and the traffic volume of each DU 13 predicted by the routing control device of the comparative example. FIG. 10 is a diagram schematically showing the result of allocating the traffic volume of each DU 13 by means of
 図10(a)は、一実施形態にかかる経路制御装置3が予測した各DU13のトラフィック量、比較例の経路制御装置が予測した各DU13のトラフィック量、及び実際のトラフィック量を示す図である。図10(b)は、一実施形態にかかる経路制御装置3が予測して実際のトラフィック量を割当てた結果と、比較例の経路制御装置が予測して実際のトラフィック量を割当てた結果とを示す図である。 FIG. 10A is a diagram showing the traffic volume of each DU 13 predicted by the routing device 3 according to the embodiment, the traffic volume of each DU 13 predicted by the routing device of the comparative example, and the actual traffic volume. . FIG. 10(b) shows the result of prediction and actual traffic volume allocation by the routing control device 3 according to the embodiment and the result of prediction and actual traffic volume allocation by the routing control device of the comparative example. FIG. 4 is a diagram showing;
 図10に示したように、一実施形態にかかる経路制御装置3が予測した各DU13のトラフィック量に基づいて各DU13のトラフィック量を割当てた結果では、実際のトラフィック量が予測したトラフィック量より多くても、好適に通信経路の切替えがなされたことが示されている。 As shown in FIG. 10, the result of allocating the traffic volume of each DU 13 based on the traffic volume of each DU 13 predicted by the routing device 3 according to one embodiment shows that the actual traffic volume is larger than the predicted traffic volume. It is shown that the communication path was suitably switched even if the
 一方、比較例の経路制御装置が予測した各DU13のトラフィック量に基づいて各DU13のトラフィック量を割当てた結果では、実際のトラフィック量が予測したトラフィック量より多くなったときに、CU#1の帯域10Gbpsに対してトラフィック量が過多となっている。 On the other hand, as a result of allocating the traffic volume of each DU 13 based on the traffic volume of each DU 13 predicted by the route control device of the comparative example, when the actual traffic volume exceeds the predicted traffic volume, the CU#1 The amount of traffic is excessive with respect to the bandwidth of 10 Gbps.
 つまり、経路制御装置3は、トラフィック量の予測精度が高いため、トラフィック量の予測に誤差が生じた場合であっても、各CU12の帯域を超えないように余裕がある。 In other words, since the routing control device 3 has high traffic volume prediction accuracy, even if an error occurs in the traffic volume prediction, there is a margin so that the bandwidth of each CU 12 is not exceeded.
 このように、一実施形態にかかる通信システム1は、経路制御装置3がトラフィック量の予測に使用可能な時間内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定するので、トラフィックや伝搬遅延が変動しても、効率的な通信経路を決定して切替えることができる。 In this way, the communication system 1 according to one embodiment selects an algorithm that can determine a communication route within a time that the route control device 3 can use for predicting traffic volume, among a plurality of algorithms according to a predetermined priority. , an efficient communication route can be determined and switched even if the traffic or propagation delay fluctuates.
 なお、上述した経路制御装置3が有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。 It should be noted that each function of the path control device 3 described above may be configured partially or wholly by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or a processor such as a CPU. may be configured as a program executed by
 例えば、一実施形態にかかる経路制御装置3は、コンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。 For example, the route control device 3 according to one embodiment can be implemented using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
 1・・・通信システム、2・・・SW、3・・・経路制御装置、10・・・エンドサーバ、11・・・コアネットワーク、12・・・CU、13・・・DU、14・・・RU、15・・・UE、30・・・時刻分析部、31・・・予測時間決定部、32・・・記憶部、33・・・選定部、34・・・実行部、35・・・切替制御部、310・・・最大許容遅延時間決定部、340・・・集約部、350・・・判定部、352・・・割当て決定部 1... communication system, 2... SW, 3... path control device, 10... end server, 11... core network, 12... CU, 13... DU, 14... RU, 15... UE, 30... Time analysis unit, 31... Prediction time determination unit, 32... Storage unit, 33... Selection unit, 34... Execution unit, 35... Switching control unit 310 Maximum allowable delay time determination unit 340 Consolidation unit 350 Judgment unit 352 Allocation determination unit

Claims (6)

  1.  複数の集約基地局と複数のリモート局との間に設けられて通信経路を切替えるスイッチを制御する経路制御装置において、
     前記スイッチと前記集約基地局との間の伝送時間、前記スイッチと前記リモート局との間の伝送時間、前記リモート局と前記集約基地局との間のトラフィック量及びスケジュール情報を含む制御情報、前記スイッチの動作時間、並びに予め設定された最大許容遅延時間に基づいて、通信経路に対する将来のトラフィック量の予測に使用可能な時間を決定する予測時間決定部と、
     前記予測時間決定部が決定した予測に使用可能な時間内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定する選定部と、
     前記選定部が選定したアルゴリズムを実行することにより、前記集約基地局と前記リモート局との間の通信経路を決定する実行部と、
     前記実行部が決定した通信経路によって前記集約基地局と前記リモート局とが通信を行うように、前記スイッチによる通信経路の切替えを制御する切替制御部と
     を有することを特徴とする経路制御装置。
    In a route control device that controls a switch that is provided between a plurality of aggregation base stations and a plurality of remote stations and that switches communication routes,
    control information including transmission time between the switch and the aggregation base station, transmission time between the switch and the remote station, traffic volume and schedule information between the remote station and the aggregation base station; a prediction time determination unit that determines a time that can be used to predict future traffic volume for a communication path based on the operating time of the switch and a preset maximum allowable delay time;
    a selection unit that selects an algorithm capable of determining a communication route within the time available for prediction determined by the prediction time determination unit from among a plurality of algorithms according to a predetermined priority;
    an execution unit that determines a communication route between the aggregation base station and the remote station by executing the algorithm selected by the selection unit;
    a switching control unit that controls switching of communication paths by the switch so that the aggregation base station and the remote station communicate via the communication path determined by the execution unit.
  2.  前記選定部は、
     前記予測時間決定部が決定した時間に基づいて、トラフィックを送信する時間がある場合にはトラフィックを推定するアルゴリズムを選定し、トラフィックを送信する時間がない場合にはトラフィック量の時系列予測を実施するアルゴリズムを選定すること
     を特徴とする請求項1に記載の経路制御装置。
    The selection unit
    Based on the time determined by the prediction time determination unit, when there is time to transmit traffic, an algorithm for estimating traffic is selected, and when there is no time to transmit traffic, time-series prediction of traffic volume is performed. 2. The route control device according to claim 1, wherein an algorithm for determining the route is selected.
  3.  前記予測時間決定部は、
     トラフィックの優先度に応じてMMHの最大許容遅延時間を、予測に使用可能な時間の決定に用いる最大許容遅延時間として決定する、又は、予測に使用可能な時間の決定に用いる最大許容遅延時間を0に決定する最大許容遅延時間決定部をさらに有し、制御情報の受信時から主信号が到着するまでの時間と、前記最大許容遅延時間決定部が決定した最大許容遅延時間との合計時間を予測時に使用可能な時間として決定すること
     を特徴とする請求項1又は2に記載の経路制御装置。
    The prediction time determination unit
    Determine the maximum allowable delay time of MMH according to the priority of traffic as the maximum allowable delay time used for determining the time available for prediction, or the maximum allowable delay time used for determining the time available for prediction further comprising a maximum allowable delay time determining unit for determining 0, the total time of the time from the reception of the control information to the arrival of the main signal and the maximum allowable delay time determined by the maximum allowable delay time determining unit; 3. The route control device according to claim 1, wherein the available time is determined at the time of prediction.
  4.  前記選定部は、
     複数のアルゴリズムを選定し、
     前記実行部は、
     前記選定部が選定した複数のアルゴリズムを実行し、複数の予測結果に対して精度又は時間に重み付けをしてマージした1つの予測結果を出力する集約部をさらに有すること
     を特徴とする請求項1~3のいずれか1項に記載の経路制御装置。
    The selection unit
    Select multiple algorithms,
    The execution unit
    2. An aggregating unit that executes a plurality of algorithms selected by the selecting unit, weights accuracy or time for a plurality of prediction results, and outputs a single prediction result that is merged. 4. The route control device according to any one of items 1 to 3.
  5.  複数の集約基地局と複数のリモート局との間に設けられて通信経路を切替えるスイッチと、前記スイッチを制御する経路制御装置とを備えた通信システムにおいて、
     前記経路制御装置は、
     前記スイッチと前記集約基地局との間の伝送時間、前記スイッチと前記リモート局との間の伝送時間、前記リモート局と前記集約基地局との間のトラフィック量及びスケジュール情報を含む制御情報、前記スイッチの動作時間、並びに予め設定された最大許容遅延時間に基づいて、通信経路に対する将来のトラフィック量の予測に使用可能な時間を決定する予測時間決定部と、
     前記予測時間決定部が決定した予測に使用可能な時間内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定する選定部と、
     前記選定部が選定したアルゴリズムを実行することにより、前記集約基地局と前記リモート局との間の通信経路を決定する実行部と、
     前記実行部が決定した通信経路によって前記集約基地局と前記リモート局とが通信を行うように、前記スイッチによる通信経路の切替えを制御する切替制御部と
     を有することを特徴とする通信システム。
    In a communication system comprising a switch provided between a plurality of aggregation base stations and a plurality of remote stations for switching communication paths, and a path control device for controlling the switch,
    The route control device is
    control information including transmission time between the switch and the aggregation base station, transmission time between the switch and the remote station, traffic volume and schedule information between the remote station and the aggregation base station; a prediction time determination unit that determines a time that can be used to predict future traffic volume for a communication path based on the operating time of the switch and a preset maximum allowable delay time;
    a selection unit that selects an algorithm capable of determining a communication route within the time available for prediction determined by the prediction time determination unit from among a plurality of algorithms according to a predetermined priority;
    an execution unit that determines a communication route between the aggregation base station and the remote station by executing the algorithm selected by the selection unit;
    a switching control unit that controls switching of the communication path by the switch so that the aggregation base station and the remote station communicate via the communication path determined by the execution unit.
  6.  複数の集約基地局と複数のリモート局との間に設けられて通信経路を切替えるスイッチを制御する経路制御方法において、
     前記スイッチと前記集約基地局との間の伝送時間、前記スイッチと前記リモート局との間の伝送時間、前記リモート局と前記集約基地局との間のトラフィック量及びスケジュール情報を含む制御情報、前記スイッチの動作時間、並びに予め設定された最大許容遅延時間に基づいて、通信経路に対する将来のトラフィック量の予測に使用可能な時間を決定する予測時間決定工程と、
     決定した予測に使用可能な時間内に通信経路を決定可能なアルゴリズムを所定の優先度に応じて複数のアルゴリズムの中から選定する選定工程と、
     選定したアルゴリズムを実行することにより、前記集約基地局と前記リモート局との間の通信経路を決定する実行工程と、
     決定した通信経路によって前記集約基地局と前記リモート局とが通信を行うように、前記スイッチによる通信経路の切替えを制御する切替制御工程と
     を含むことを特徴とする経路制御方法。
    In a route control method for controlling a switch provided between a plurality of aggregation base stations and a plurality of remote stations for switching communication routes,
    control information including transmission time between the switch and the aggregation base station, transmission time between the switch and the remote station, traffic volume and schedule information between the remote station and the aggregation base station; a prediction time determination step of determining a time available for predicting future traffic volume for the communication path based on the operating time of the switch and a preset maximum allowable delay time;
    a selection step of selecting an algorithm capable of determining a communication route within the time available for the determined prediction from among a plurality of algorithms according to a predetermined priority;
    executing a selected algorithm to determine a communication path between the aggregation base station and the remote station;
    A route control method, comprising: a switching control step of controlling switching of the communication route by the switch so that the aggregation base station and the remote station communicate with each other through the determined communication route.
PCT/JP2021/023454 2021-06-21 2021-06-21 Route control device, communication system, and route control method WO2022269707A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023454 WO2022269707A1 (en) 2021-06-21 2021-06-21 Route control device, communication system, and route control method
JP2023529233A JPWO2022269707A1 (en) 2021-06-21 2021-06-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023454 WO2022269707A1 (en) 2021-06-21 2021-06-21 Route control device, communication system, and route control method

Publications (1)

Publication Number Publication Date
WO2022269707A1 true WO2022269707A1 (en) 2022-12-29

Family

ID=84545286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023454 WO2022269707A1 (en) 2021-06-21 2021-06-21 Route control device, communication system, and route control method

Country Status (2)

Country Link
JP (1) JPWO2022269707A1 (en)
WO (1) WO2022269707A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170163342A1 (en) * 2014-07-11 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Optical Transport Network
JP2019009588A (en) * 2017-06-23 2019-01-17 日本電信電話株式会社 Communication system
JP2019029842A (en) * 2017-07-31 2019-02-21 株式会社Nttドコモ Front hole multiplexer and radio communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170163342A1 (en) * 2014-07-11 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Optical Transport Network
JP2019009588A (en) * 2017-06-23 2019-01-17 日本電信電話株式会社 Communication system
JP2019029842A (en) * 2017-07-31 2019-02-21 株式会社Nttドコモ Front hole multiplexer and radio communication system

Also Published As

Publication number Publication date
JPWO2022269707A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6278492B2 (en) A framework for traffic engineering in software-defined networking
US11290375B2 (en) Dynamic deployment of network applications having performance and reliability guarantees in large computing networks
EP3090513B1 (en) Adaptive traffic engineering configuration
US10129894B2 (en) Systems and methods for performing traffic engineering through network slices
US9380487B2 (en) System and method for a location prediction-based network scheduler
US10904794B2 (en) Framework for traffic engineering in software defined networking
Farmanbar et al. Traffic engineering for software-defined radio access networks
CN111512600A (en) Method, apparatus and computer program for distributing traffic in a telecommunications network
EP3942756B1 (en) Methods, apparatus and computer programs for configuring a telecommunication network
WO2022269707A1 (en) Route control device, communication system, and route control method
Moeyersons et al. Enabling emergency flow prioritization in SDN networks
Samanta et al. On low latency uplink scheduling for cellular haptic communication to support tactile internet
JP7330922B2 (en) Communication management method, communication system and program
WO2023181139A1 (en) Communication control device, communication system, and communication control method
Tiwana et al. Software-Defined Networking’s Adaptive Load Optimisation Technique for Multimedia Applications with Multi-Controller Utilisation
JP2015029185A (en) Tdm network system and scheduling method thereof
CN116545915A (en) Deterministic route setting method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023529233

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE