WO2022267877A1 - 多模式水氟多联机系统 - Google Patents

多模式水氟多联机系统 Download PDF

Info

Publication number
WO2022267877A1
WO2022267877A1 PCT/CN2022/097286 CN2022097286W WO2022267877A1 WO 2022267877 A1 WO2022267877 A1 WO 2022267877A1 CN 2022097286 W CN2022097286 W CN 2022097286W WO 2022267877 A1 WO2022267877 A1 WO 2022267877A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation loop
heat
heat exchanger
air
circulation
Prior art date
Application number
PCT/CN2022/097286
Other languages
English (en)
French (fr)
Inventor
李先庭
王源
王文涛
梁辰吉昱
石文星
王宝龙
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to EP22827373.6A priority Critical patent/EP4343214A1/en
Publication of WO2022267877A1 publication Critical patent/WO2022267877A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present application relates to the technical field of air conditioning, in particular to a multi-mode water-fluorine multi-connected system.
  • Energy expenditure and greenhouse gas emissions related to building operation account for about one-third of the total amount of the whole society.
  • heating, ventilation, air conditioning and domestic hot water account for more than two-thirds of energy consumption, which are the most important components of building energy consumption.
  • the proportion of energy consumption is increasing year by year. Therefore, improving the energy efficiency of the air conditioning system is an important way to reduce the total energy consumption of the society and realize energy saving and emission reduction.
  • Air conditioning systems are mainly divided into two categories: centralized and decentralized. At present, the distributed systems with more practical applications are mainly combined chiller and fan coil systems, and multi-connected systems.
  • the combination system of chiller unit and fan coil unit connects each end to the main unit through the circulating water system to realize long-distance energy transmission.
  • this scheme increases the heat exchange link between refrigerant and water, which restricts the energy efficiency of the system operation; the multi-connected system adopts the direct expansion scheme, and improves the energy efficiency of the unit through direct heat exchange between refrigerant and air.
  • the performance of the refrigerant system is significantly affected by the length and height difference of the pipes, and the energy cannot be transported over long distances, nor can it take advantage of the water system to use natural energy or municipal water sources to achieve free cooling and heating.
  • the main heat recovery solutions are heat recovery multi-connection and water ring heat pump. The former is limited by the scale of the system and has low efficiency under small load conditions; the latter has a serious problem of cold and heat mixing in the water ring.
  • the Chinese utility model patent with the patent application number 201920627088.8 discloses a multi-mode water ring multi-connected air conditioning system.
  • the system selects a three-medium heat exchanger that can realize direct heat exchange between three media (water, refrigerant, and air) as the indoor heat exchanger and outdoor heat exchanger of the multi-connected system.
  • three media water, refrigerant, and air
  • the system combines the advantages of the water system and the refrigerant system, and can realize multiple modes of cooling and heating.
  • the outdoor heat exchanger is air-cooled or water-cooled; some indoor heat exchangers are cooled, and other indoor heat exchangers are heated at the same time; natural energy is used for free cooling and heating; when the load is small, some outdoor heat exchangers simultaneously produce cold and heat Wind and hot and cold water supply all indoor heat exchangers; defrosting uninterrupted heating.
  • the outdoor unit is mainly air-cooled and heating, and usually needs to be defrosted. That is, it is impossible to realize the operation mode of "defrosting when cooling with small load while some units are heating";
  • the single water loop can be switched to two loops, and the outdoor heat exchanger is the water source, the internal unit can only have one water temperature at this time. If cooling is realized, it cannot supply heat to other non-operating units; If you don't heat, you can't cool the room. That is, the operation mode of "cooling with small load and heating with small load" cannot be realized;
  • the system can divide the total water loop into the outdoor heat exchanger water loop and the indoor heat exchanger water loop through the opening and closing of the valve, the two cannot directly exchange heat to make full use of the outdoor heat exchanger
  • the energy of the water loop that is, the natural energy is only connected to the loop on the outdoor heat exchanger side, and cannot be directly used on the indoor heat exchanger side;
  • the system only adopts the form of air end, and the indoor thermal comfort is poor during heating in winter, which can no longer meet people's increasing requirements for room comfort.
  • This application provides a multi-mode water fluorine multi-connection system, which can have multiple operating modes. Through various operating modes, not only the functions of the above-mentioned prior art patents can be realized, but also the efficient use of natural energy, energy recovery, defrosting, Free scheduling of cold and heat between systems improves operating efficiency under small loads and ensures that the air conditioning system can operate stably and efficiently throughout the year.
  • the application provides a multi-mode water-fluorine multi-connected system, including several air-conditioning units, each air-conditioning unit includes a refrigerant circulation circuit and at least one outdoor heat exchanger and at least one indoor heat exchanger, and the refrigerant in each air-conditioning unit
  • the circulation loops are independent of each other.
  • the outdoor heat exchanger and the indoor heat exchanger are respectively provided with a first medium channel, and the outdoor heat exchanger and the indoor heat exchanger in each air-conditioning unit are respectively connected to each other through the first medium channel.
  • An independent refrigerant circulation circuit by setting expansion valves to respectively control the conduction, closure and flow adjustment of the first medium channel in each indoor heat exchanger, the refrigerant circulation circuit is provided with a compressor for driving the refrigerant flow and
  • the four-way reversing valve for switching the flow direction of refrigerant is characterized in that it also includes a first circulation loop, a second circulation loop and a main heat exchanger, and the first circulation loop is provided with a first circulation pump and natural energy collection
  • the second circulation loop is provided with a second circulation pump, the first circulation loop and the second circulation loop realize mutual heat exchange through the main heat exchanger, each of the outdoor heat exchanger and the indoor heat exchanger
  • There are also second medium passages inside, and the outdoor heat exchangers of each of the air-conditioning units are connected in parallel to the first circulation loop through the second medium passages inside, so that the first circulation loop can pass through each
  • the second medium passages respectively exchange heat with the first medium passages in each outdoor heat exchanger, and each of the outdoor heat
  • a medium channel exchanges heat with each other, respectively controlling the conduction and closing of the second medium channel in each outdoor heat exchanger and the first circulation loop by setting valves, and controlling the conduction and closing of the second medium channel in each indoor heat exchanger by setting valves.
  • the conduction and closure between the second medium channel and the second circulation loop, each of the indoor heat exchangers is also provided with a second air heat exchange channel, and the second air heat exchange channel communicates with the indoor heat exchange channel.
  • the first medium channel and/or the second medium channel in the device exchange heat with each other, and the heat in the second air heat exchange channel is driven to the room with the air flow by setting a fan.
  • a multi-mode water fluorine multi-line system it also includes a third circulation loop, the third circulation loop is provided with a third circulation pump, and the indoor heat exchangers of each of the air-conditioning units pass through the internal first
  • the two medium passages are connected in parallel to the third circulation loop, so that the third circulation loop can communicate with the first medium passage and/or the second air in each indoor heat exchanger through each of the second medium passages.
  • the heat exchange channels exchange heat with each other, the third circulation loop and the second circulation loop are separated by setting valves, and the valves control the conduction and closure of the third circulation loop and each second medium channel respectively.
  • a multi-mode water-fluorine multi-line system it also includes at least one heat exchange device, and the heat exchange devices are respectively connected in parallel with the second circulation loop and/or the third circulation loop, and by setting a valve The conduction and closure between the heat exchange device and the second circulation loop and between the heat exchange device and the third circulation loop are respectively controlled.
  • the first circulation loop is provided with a first bypass, and the first bypass is connected in parallel to both ends of the natural energy harvester, and the The first bypass and the natural energy collector are respectively controlled to be turned on and off by setting valves.
  • the first circulation loop is connected in parallel with a second bypass
  • the second circulation loop is connected in parallel with a third bypass
  • the first circulation loop is connected in parallel with a third bypass.
  • the second bypass and the third bypass are respectively connected in parallel to both ends of the main heat exchanger, and the second bypass, the third bypass and the main heat exchanger are respectively controlled on and off by setting valves.
  • the second circulation loop is connected to a natural energy collector through a bypass, and the natural energy collector is connected to the second circulation pump through a bypass between the main heat exchanger.
  • each of the heat exchange devices is at least one of a ceiling-type heat radiator, a wall-type heat radiator, a floor-type heat radiator, and a liquid heat storage.
  • the air conditioner unit is a multi-connected air conditioner unit with heat recovery function, so that the air conditioner unit can realize the heat recovery function and pass through the internal refrigerant pipeline Realize mutual transfer of cold and heat between multiple indoor heat exchangers.
  • the natural energy collector is a geothermal energy collection device, an underground hot water heat energy collection device, a solar heat collection device, an indirect evaporative cooling device, a cooling tower, and a building waste heat collection device. At least one of the device and the industrial waste heat collection device.
  • each of the air-conditioning units also includes a throttling device, an oil separator, a gas-liquid separator, a subcooler, and a throttling device, through which the outdoor heat exchanger , a compressor, a four-way reversing valve, a throttling device, an indoor heat exchanger, an oil separator, a gas-liquid separator and a recooler together constitute the refrigerant circulation circuit of the air conditioning unit.
  • the circulation medium in the first circulation loop, the second circulation loop and the third circulation loop is water or antifreeze.
  • the main heat exchanger is a passage communicating between the first circulation loop and the second circulation loop or the third circulation loop, so that the second circulation loop or the third circulation loop One of them is combined with the first circulation loop to form a fourth circulation loop, the other of the second circulation loop and the third circulation loop forms a fifth circulation loop and the outdoor heat exchanger is connected in parallel in.
  • the multi-mode water fluorine multi-online system provided by this application has the following outstanding substantive features and significant technical progress:
  • Both of the two loops can be connected to natural energy or other energy recovery equipment, so that natural energy or recovered energy can be used more flexibly, and the energy efficiency of the system can be further improved;
  • the system can realize two different operating parameters, realize the free scheduling of cold and heat in each system, avoid the loss of energy grade caused by mixing, and can use different types of refrigerants, taking into account the advantages of antifreeze and heat exchange ;
  • the system of the present application can have multiple operating modes.
  • a multi-mode water ring multi-connected air-conditioning system disclosed in the Chinese utility model patent application number 201920627088.8 through various operating modes, it can also It is easy to match natural energy with different parameters and the energy demand of different terminals, further improving the operating efficiency of the system under partial load or even very small load, avoiding simultaneous cooling and heating conditions, and different system requirements
  • the resulting energy mixing is not limited by the operating parameters of the refrigerant ring and the water ring, allowing the indoor heat exchanger to switch between cooling and heating modes at will;
  • the system can realize efficient utilization of natural energy, energy recovery, free scheduling of cold and heat between systems, realize defrosting function through free scheduling of heat, and improve operating efficiency under small loads, ensuring that the air conditioning system can Stable and efficient operation throughout the year.
  • Fig. 1 is the structural principle schematic diagram of the present application
  • Fig. 2 is the schematic diagram of the embodiment of the present application.
  • Figure 3 is a schematic diagram of the working principle and structure of the application system in the water cooling of some outdoor units and the air cooling operation mode of some outdoor units at the same time;
  • Fig. 4 is a schematic diagram of the application system realizing simultaneous cooling and heating working modes
  • Fig. 5 is a schematic diagram of the free cooling/heating working mode of the application system
  • Fig. 6 is a schematic diagram of the defrosting working mode realized by the system of the present application.
  • Fig. 7 is a schematic diagram of the application system realizing the light load working mode
  • Figure 8 is a schematic diagram of an embodiment of the present application.
  • Fig. 9 is a schematic diagram of the application system realizing the working mode of small heating load + natural energy free cooling
  • Fig. 10 is a schematic diagram of the application system realizing the working mode of small heating load + free cooling of the evaporator;
  • Figure 11 is a schematic diagram of the application system realizing the working mode of small heating load + small cooling load;
  • Figure 12 is a schematic diagram of the application system realizing the working mode of small cooling load + heating defrosting
  • Fig. 13 is a schematic structural diagram of the intermittent heating function realized by the application system
  • Fig. 14 is a schematic diagram of the application system in the start-up phase of the intermittent heating mode
  • Fig. 15 is a schematic diagram of the application system in the stable stage of intermittent heating mode
  • Fig. 16 is a schematic diagram of another embodiment of the system of the present application.
  • Fig. 17 is a schematic structural view of each air conditioning unit in the system of the present application.
  • each air conditioning unit 100 includes a refrigerant circulation circuit 101 and an outdoor heat exchanger respectively.
  • the refrigerant circulation circuits 101 in each air-conditioning unit 100 are independent of each other
  • the outdoor heat exchanger 102 and the indoor heat exchanger 103 are respectively provided with a first medium channel 104
  • each air-conditioning unit 100 The outdoor heat exchanger 102 and the indoor heat exchanger 103 are respectively connected to each independent refrigerant circulation circuit 101 through the first medium channel 104 .
  • an expansion valve is installed in the pipeline of the system to control the conduction, closing and closing of the first medium passage 104 in each indoor heat exchanger 103 respectively. flow regulation.
  • first air heat exchange channels 107 are formed in each outdoor heat exchanger 102, and the first air heat exchange channels 107 are connected with the first medium channel 104 and/or the second medium channel in the outdoor heat exchanger 102.
  • 105 exchange heat with each other, and drive the heat in the first air heat exchange channel 107 to transfer to the outside with the air flow by installing a fan (not shown in the figure).
  • each indoor heat exchanger 103 is also formed with a second air heat exchange passage 106, and the second air heat exchange passage 106 is connected with the first medium passage 104 or/and the second medium passage 105 in the indoor heat exchanger 103.
  • the refrigerant circulation circuit 101 is provided with a compressor for driving the flow of the refrigerant and a four-way reversing valve for switching the flow direction of the refrigerant.
  • each air conditioning unit 100 also includes a throttle device, an oil separator, an air Liquid separator, subcooler, throttling device, composed of outdoor heat exchanger, compressor, four-way reversing valve, throttling device, indoor heat exchanger, oil separator, gas-liquid separator and subcooler
  • the refrigerant circulation circuit of the air conditioning unit is provided with a compressor for driving the flow of the refrigerant and a four-way reversing valve for switching the flow direction of the refrigerant.
  • the system also adds a first circulation loop 200, a second circulation loop 300 and a main heat exchanger 3, the first circulation loop 200 is provided with a first circulation pump 1.1 and a natural energy harvester 2, and the second circulation loop
  • the loop 300 is provided with a second circulation pump 1.2, the first circulation loop 200 and the second circulation loop 300 realize mutual heat exchange through the main heat exchanger 3, each outdoor heat exchanger 102 and indoor heat exchanger 103 are also equipped with a second Two medium passages 105, the outdoor heat exchangers 102 of each air-conditioning unit 100 are respectively connected in parallel to the first circulation loop 200 through the second medium passage 105 inside itself, so that the first circulation loop 200 can pass through each second medium passage 105 respectively exchange heat with the first medium channel 104 in each outdoor heat exchanger 102; in addition, the indoor heat exchangers 103 of each air conditioning unit 100 are respectively connected in parallel to the second cycle through the second medium channel 105 inside itself.
  • loop 300 so that the second circulation loop 300 can exchange heat with the first medium passage 104 in each indoor heat exchange
  • each second medium passage 105 a plurality of valves are set in the piping of the system to respectively control the conduction and closure between the second medium passage 105 in each outdoor heat exchanger 102 and the first circulation loop 200, Moreover, the conduction and closure of the second medium channel 105 in each indoor heat exchanger 103 and the second circulation loop 300 are respectively controlled by setting valves.
  • the third circulation loop 400 also includes a third circulation loop 400, the third circulation loop 400 is provided with a third circulation pump 1.3, and the indoor heat exchangers 103 of each air conditioning unit 100 are respectively connected in parallel to the second medium channel 105 inside itself.
  • the second air heat exchange channels 106 exchange heat with each other.
  • the third circulation loop 400 and the second circulation loop 300 are separated by a plurality of valves, and the third circulation loop 400 and each of the third circulation loops are respectively controlled by the valves.
  • the conduction and closure between the two medium channels 105 are independently controlled.
  • the second circulation loop 300 and the third circulation loop 400 are respectively connected to both ends of the second medium channel 105 by adding a plurality of branches, and by setting valves on all the branches, they can realize independent switching.
  • the second circulation loop 300 and the third circulation loop 400 are controlled.
  • the circulation medium in the first circulation loop 200 , the second circulation loop 300 and the third circulation loop 400 is a brine such as water or antifreeze.
  • the circulation media used in the first circulation loop 200 , the second circulation loop 300 and the third circulation loop 400 may be the same or different.
  • the second circulation loop 300 and the third circulation loop 400 can be One of them is merged with the first circulation loop 200, and the combined circulation loop is the fourth circulation loop 500, and the outdoor heat exchanger 102 is connected in parallel to the other of the second circulation loop 300 and the third circulation loop 400 to make it
  • the fifth circulation loop 600 is formed.
  • the fourth circulation loop 500 combines the functions of one of the second circulation loop 300 and the third circulation loop 400 with the first circulation loop 200, and the structure will be simpler.
  • the circulating medium in all circulating loops is the same, which is convenient for unified configuration and standardized manufacturing and maintenance; on the other hand, when the circulating medium in each circulating loop is the same, the main heat exchange The device 3 does not need to use complicated operations such as connecting pipes, but can be directly designed as a section of passage connecting two circulation loops, so that the system can realize the same based on the fourth circulation loop 500 and the fifth circulation loop 600. function, and compared with the structure of the original three circulation loops, the structure is simpler, and one circulation pump can also be reduced accordingly, and the heat exchange efficiency of the through-type main heat exchanger 3 is higher. Specifically, the through-type The main heat exchanger 3 only needs to consider the heat loss when circulating in the passage.
  • the above-mentioned embodiment is only one of many embodiments of the present application, and in actual use, the structure of three circulation loops or the structure of two circulation loops can be decided according to the needs of users.
  • the first circulation loop 200 is provided with a first bypass 201, and the first bypass 201 is connected to both ends of the natural energy harvester 2 in parallel. on and off.
  • the second bypass 202 is connected in parallel on the first circulation loop 200
  • the third bypass 301 is connected in parallel on the second circulation loop 300
  • the second bypass 202 and the third bypass 301 are respectively connected in parallel to the main converter.
  • the two ends of the heat exchanger 3 , the second bypass 202 , the third bypass 301 and the main heat exchanger 3 are respectively controlled on and off by setting valves.
  • the second circulation loop 300 is connected with a natural energy collector (not shown in the figure) through a bypass, and the natural energy collector is connected between the second circulation pump 1.2 and the main heat exchanger 3 through a bypass .
  • the natural energy collector is at least one of a geothermal energy collection device, an underground hot water heat collection device, a solar heat collection device, an indirect evaporative cooling device, a cooling tower, a building waste heat collection device, and an industrial waste heat collection device .
  • the air-conditioning unit 100 of this embodiment is a multi-connected air-conditioning unit with heat recovery function, so that the air-conditioning unit 100 can realize the heat recovery function and realize the connection between multiple indoor heat exchangers through the internal refrigerant pipeline. heat and cold transfer to each other.
  • the main heat exchanger 3 can be changed into a passage, and the The first circulation loop 200 and the second circulation loop 300 or the third circulation loop 400 are combined into one.
  • FIG. 2 shows two of the air conditioning units 100, one of which is C.6, and the last air conditioning unit 100 is C.k
  • each air-conditioning unit 100 has an outdoor heat exchanger 102 and three indoor heat exchangers 103 respectively
  • the outdoor heat exchangers 102 include air-conditioning outdoor units 6.5 and 7.5
  • the indoor heat exchanger 103 includes air-conditioning indoor units 6.3.1, 6.3.2, 6.3.3, 7.3.1, 7.3.2, 7.3.3
  • the second medium channels 105 in air conditioner outdoor units 6.5 and 7.5 are brine pipelines 6.5.1 and 7.5.1
  • the first medium channel 104 is the refrigerant pipeline
  • the compressors 6.1, 7.1 enable the refrigerant circulation circuit 101 to operate, and open the expansion valves 6.4.1, 6.4.2, 6.4.3, 7.4.1, 7.4.2, 7.4.3, open Fans 6.5.3 and 7.5.3 on the outdoor unit close other valves, and at this time, the refrigerant pipelines 6.5.2 and 7.5.2 of the outdoor unit can exchange heat with the outside air through the first air heat exchange channel 107 of the outdoor unit, thereby Realize the air source working mode.
  • the compressors 6.1, 7.1 are turned on to allow the refrigerant circulation circuit 101 to operate, and the expansion valves 6.4.1, 6.4.2, 6.4.3, 7.4.1, 7.4.2, 7.4.3 are turned on, Open valves 6.6, 7.6, 4.1, 4.4, close other valves, open the first circulation pump 1.1 to allow the first circulation loop 200 to run, and open the natural energy harvester 2, and close the fans 6.5.3 and 7.5 on the outdoor units of each air conditioner. 3.
  • the refrigerant pipeline 6.5.2 of the outdoor unit can exchange heat with the brine pipeline 6.5.1
  • the refrigerant pipeline 7.5.2 can exchange heat with the brine pipeline 7.5.1, so as to realize the water source work model.
  • the brine pipeline is transferred to the air in the second air heat exchange channel 106 at 7.3.1.1 to form cold air to provide cooling demand for indoor rooms, realizing free Cooling mode; so the whole system can realize cooling, supplying heat mode.
  • the free heating mode can be realized.
  • the refrigerant pipelines 6.3.1.2, 6.3.2.2, and 6.3.3.2 exchange heat with the brine pipelines 6.3.1.1, 6.3.2.1, and 6.3.3.1 respectively, and transfer the heat to the second circulation loop 300;
  • the heat obtained at brine pipelines 6.3.1.1, 6.3.2.1, and 6.3.3.1 passes through brine pipeline 6.3.1.1, brine pipeline 6.3.2.1, Refrigerant pipeline 6.3.3.1, valve 6.8.1, valve 6.8.2, valve 6.8.3, second circulation pump 1.2, main heat exchanger 3, valve 4.5, valve 6.7.1, valve 6.7.2, valve 6.7 .3.
  • Valve 7.7.1, valve 7.7.2, valve 7.7.3, brine pipeline 6.3.1.1, brine pipeline 6.3.2.1, brine pipeline 6.3.3.1, brine pipeline 7.3.1.1, brine pipeline 7.3.2.1, brine pipeline 7.3.3.1 form a circulation loop, part of the heat passes through brine pipeline 7.3.1.1, brine pipeline 7.3.2.1, brine pipe 7.3.3.1, under the action of fans 7.3.1.3, 7.3.2.3, 7.3.3.3, the air in the second air heat exchange channel 106 is transferred to form hot air to provide heating demand for indoor rooms;
  • the heat exchanger 3 exchanges heat with the first circulation loop 200, and transfers heat to the first circulation loop 200.
  • Valve 7.8.1, valve 7.8.2, valve 7.8.3, and the second circulating pump 1.2 form a circulation loop, and the heat passes through the brine pipeline 7.3.1.1, brine pipeline 7.3.2.1, brine In pipeline 7.3.3.1, under the action of fans 7.3.1.3, 7.3.2.3, and 7.3.3.3, the air transferred to the second air heat exchange channel 106 forms hot air to provide heat supply for indoor rooms, Realize the small load mode; similarly, the system can also realize the above functions by only turning on the compressor 7.1 to realize the small load mode; similarly, the system can also meet the cooling demand and realize the small load mode; the small load mode concentrates the load In a small number of heat pump units, increasing the load rate of the unit is conducive to improving the energy efficiency of the unit.
  • Air-conditioning units 100 wherein one air-conditioning unit 100 is C.6, the second air-conditioning unit 100 is C.7, and the last air-conditioning unit 100 is C.k.
  • each The air conditioner unit 100 has one outdoor heat exchanger 102 and three indoor heat exchangers 103 respectively, the outdoor heat exchangers 102 respectively include air conditioner outdoor units 6.5, 7.5, 8.5, and the indoor heat exchangers 103 respectively include air conditioner indoor units 6.3.1 , 6.3.2, 6.3.3, 7.3.1, 7.3.2, 7.3.3, 8.3.1, 8.3.2, 8.3.3, the first medium channels 104 in the air conditioner outdoor units 6.5, 7.5 and 8.5 are respectively Refrigerant pipelines 6.5.2, 7.5.2, 8.5.2, and the second medium channel 105 in the air conditioner outdoor unit 6.5, 7.5, 8.5 are brine pipelines 6.5.1, 7.5.1, 8.5.1,
  • the first medium channels 104 in the air-conditioning indoor units 6.3.1, 6.3.2, 6.3.3, 7.3.1, 7.3.2, 7.3.3, 8.3.1, 8.3.2, and 8.3.3 are refrigerant pipes Road 6.3.1.2, 6.3.2.2, 6.3.3.2, 7.3.1.2, 7.3
  • the second medium channels 105 in 7.3.1, 7.3.2, 7.3.3, 8.3.1, 8.3.2, and 8.3.3 are respectively brine pipelines 6.3.1.1, 6.3.2.1, and 6.3.3.1 , 7.3.1.1, 7.3.2.1, 7.3.3.1, 8.3.1.1, 8.3.2.1, 8.3.3.1, and the rest of the valves are described in detail as follows.
  • the air conditioner indoor units 6.3.1, 6.3.2, and 6.3.3 have the power supply Cooling demand
  • air conditioner indoor units 7.3.1, 7.3.2, 7.3.3, 8.3.1, 8.3.2, 8.3.3 have heating demand as an example.
  • the indoor units 7.3.1, 7.3.2, and 7.3.3 of the air conditioner act as condensers
  • the outdoor unit 7.5 acts as an evaporator; 7.3.2.2, 7.3.3.2, on
  • the second circulation pump 1.2 and the main heat exchanger 3 form a circulation loop, and the cooling capacity obtained by the second circulation loop 300 at the main heat exchanger 3 passes through the brine pipeline 6.3.1.1 and the brine pipeline 6.3. 2.1.
  • the brine pipeline is 6.3.3.1, under the action of the fans 6.3.1.3, 6.3.2.3, and 6.3.3.3, the air in the second air heat exchange channel 106 is transferred to form cold air to provide supply for the indoor room. Cooling demand, to realize the free cooling mode of natural energy; combining the two, the system can realize the mode of "small heating load + free cooling of natural energy".
  • the small heating load mode concentrates the load on a smaller number of heat pumps In the unit, increasing the load rate of the unit is conducive to improving the energy efficiency of the unit.
  • using natural energy for free cooling can save the energy consumption of the heat pump unit for cooling.
  • the air conditioner indoor units 6.3.1, 6.3.2, and 6.3.3 have cooling needs
  • the air conditioner indoor units 7.3.1, 7.3.2, 7.3.3, 8.3.1, 8.3.2, 8.3.3 have heating demand as an example.
  • Valve 8.9.3, brine pipeline 7.3.1.1, brine pipeline 7.3.2.1, brine pipeline 7.3.3.1, brine pipeline 8.3.1.1, brine pipeline 8.3 .2.1, refrigerant pipeline 8.3.3.1, valve 7.10.1, valve 7.10.2, valve 7.10.3, valve 8.10.1, valve 8.10.2, valve 8.10.3, third circulation pump 1.3 form a circulation loop , when the heat passes through brine pipeline 8.3.1.1, brine pipeline 8.3.2.1, brine pipeline 8.3.3.1, under the action of fans 8.3.1.3, 8.3.2.3, 8.3.3.3, it is transferred to the second
  • the air in the two-air heat exchange channel 106 forms hot air to provide heating demand for indoor rooms, and realizes a small heating load mode ;
  • the cooling capacity generated by the outdoor unit 7.5 as an evaporator is transferred from the refrigerant pipeline 7.5.2 to the brine pipeline 7.5.1 through heat exchange, and under the circulation of the first circulation pump 1.1, the refrigerant pipeline 7.5.
  • the cooling capacity of 1 forms a circulation loop through the refrigerant pipeline 7.5.1, the first circulating pump 1.1, the valve 4.2, the main heat exchanger 3, the valve 4.3, the valve 7.6, and the refrigerant pipeline 7.5.1, so that the first The circulation loop 200 collects cold energy, and the cold energy is transferred to the second circulation loop 300 when passing through the main heat exchanger 3;
  • the volume passes through main heat exchanger 3, valve 4.5, valve 6.7.1, valve 6.7.2, valve 6.7.3, brine pipeline 6.3.1.1, brine pipeline 6.3.2.1, brine pipeline 6.3 .3.1, valve 6.8.1, valve 6.8.2, valve 6.8.3, the second circulation pump 1.2, and the main heat exchanger 3 form a circulation loop, and the cooling capacity obtained by the second circulation loop 300 at the main heat exchanger 3 passes through
  • the brine pipeline 6.3.1.1, brine pipeline 6.3.2.1, and brine pipeline 6.3.3.1 are transferred to the second
  • the air in the air heat exchange channel 106 forms cold air to provide cooling demand for indoor rooms,
  • the indoor units 6.3.1, 6.3.2, 6.3.3, and 7.3.1 have cooling Demand
  • indoor units 7.3.2, 7.3.3, 8.3.1, 8.3.2, 8.3.3 have heating demand as an example.
  • the refrigerant pipelines 6.3.1.2, 6.3.2.2, 6.3 .3.2 Exchange heat with the refrigerant pipelines 6.3.1.1, 6.3.2.1, and 6.3.3.1 respectively, and transfer the cooling capacity to the second circulation loop 300;
  • the cooling capacity obtained at roads 6.3.1.1, 6.3.2.1, and 6.3.3.1 passes through brine pipeline 6.3.1.1, brine pipeline 6.3.2.1, brine pipeline 6.3.3.1, valve 6.8.1, Valve 6.8.2, valve 6.8.3, second circulation pump 1.2, valve 4.6, valve 6.7.1, valve 6.7.2, valve 6.7.3, valve 7.7.1, refrigerant pipeline 6.3.1.1, refrigerant Agent pipeline 6.3.2.1, brine pipeline 6.3.3.1, brine pipeline 7.3.1.1, valve 6.8.1, valve 6.8.2, valve 6.8.3, valve 7.8.1, second circulation pump 1.2
  • a circulation loop is formed.
  • the cooling capacity passes through the refrigerant pipeline 7.3.1.1, under the action of the fan 7.3.1.3, it is transferred to the air in the second air heat exchange channel 106 for heat exchange, forming cold air to provide cooling requirements for indoor rooms.
  • the heat produced by the compressor 8.1 passes through the refrigerant pipelines 8.3.1.2, 8.3.2.2, 8.3.
  • the air transferred to the second air heat exchange channel 106 forms hot air to provide heating demand for indoor rooms, and realizes a small heating load mode; combining the two, the system can realize "Small load for heating + small load for cooling" mode, which concentrates the load into a small number of heat pump units, increases the load rate of the units, and is conducive to improving the energy efficiency of the units.
  • the outdoor unit 8.5 may be frosted, and at this time, open the valves 4.2, 4.4, 6.6, 8.6, turn on the first circulation pump 1.1, under the circulation of the first circulation pump 1.1, the heat generated by the air conditioner outdoor unit 6.5 as a condenser passes through the refrigerant pipeline 6.5.1, the first circulation pump 1.1, and the valve 4.2 , valve 4.4, valve 6.6, valve 8.6, brine pipeline 6.5.1, brine pipeline 8.5.1, and the first circulating pump 1.1 form a circulation loop, and the heat is used in brine pipeline 8.5.1 Defrost, realize the heating defrosting mode; Combining the "heating small load + cooling small load” mode in Figure 11, Figure 12 can realize the "cooling small load + heating defrosting” mode, reducing defrosting The required energy consumption and heat supply security are improved.
  • this embodiment also includes a plurality of heat exchange devices, and the heat exchange devices are respectively connected in parallel to the second circulation loop 300 and the third circulation loop 400, by setting The valves respectively control the conduction and closure between the heat exchange device and the second circulation loop 300 and between the heat exchange device and the third circulation loop 400.
  • Each heat exchange device is a ceiling heat radiator, a wall heat radiator, a floor heat radiator At least one of type heat radiator and liquid heat storage.
  • each air-conditioning unit 100 has three air-conditioning indoor units. If air conditioner indoor unit 6.3.1, air conditioner indoor unit 6.3.2, air conditioner indoor unit 6.3.3, and heat exchange device 5.1 belong to the same room (the first room), air conditioner indoor unit 7.3.1, air conditioner indoor unit 7.3.2, The indoor unit 7.3.3 of the air conditioner and the heat exchange device 5.2 belong to the same room (the second room) as an example, and an example is taken in which the first room has a heat supply demand and the second room has no heat supply demand.
  • the compressor 6.1 adjust the four-way reversing valve 6.2 to make it run in the heating mode, the indoor units 6.3.1, 6.3.2, 6.3.3 become condensers, and the outdoor unit 6.5 becomes an evaporator; in the heat pump cycle
  • the produced heat passes through the refrigerant pipeline 6.3.1.2, 6.3.2.2, 6.3.3.2, on the one hand, it is transferred to the second air for heat exchange under the action of the fan 6.3.1.3, 6.3.2.3, 6.3.3.3
  • the air in the channel 106 forms hot air to provide heating for indoor rooms and meet the needs of quick response.
  • the heat passes through the heat exchange device 5.1, the heat is supplied to the indoor room through radiation heat dissipation. heat demand.
  • the above functions can also be realized by only turning on the compressor 7.1 or turning on the compressors 6.1 and 7.1 at the same time, here No more details; similarly, when the room has a cooling demand, the above functions can also be realized, and will not be repeated here; similarly; when the first and second rooms have different heating/cooling needs, if the first room has Heating demand, the second room has cooling demand, the above functions can be realized by combining the operation modes of attached drawings 10 to 13, and will not be repeated here; similarly, if the personnel stay indoors for a short If the temperature of the terminal has left before reaching the target temperature, only hot air can be generated during the start-up phase, and hot water will not be supplied to the radiant heating terminal, which will not be described here; similarly, multiple indoor units in each room It is not necessary to open all
  • each air-conditioning unit 100 has three air-conditioning indoor units. If indoor unit 6.3.1, indoor unit 6.3.2, indoor unit 6.3.3, and heat exchange device 5.1 belong to the same room (first room), indoor unit 7.3.1, indoor unit 7.3.2, and indoor unit 7.3.3 1.
  • the heat exchange device 5.2 belongs to the same room (the second room) as an example, and the first room has a heat supply demand and the second room has no heat supply demand as an example.
  • the above functions can also be realized by only turning on the compressor 7.1 or turning on the compressors 6.1 and 7.1 at the same time, here No more details; similarly, when the room has a cooling demand, the above functions can also be realized, and will not be repeated here; similarly; when the first and second rooms have different heating/cooling needs, if the first room has Heating demand, the second room has cooling demand, the above functions can be realized by combining the operation modes of attached drawings 10 to 13, and will not be repeated here; similarly, each room is not limited to only one radiation heat exchange device (For example: heat exchange device 5.1), when the room has multiple heat exchange devices, the above functions can also be realized, and will not be repeated here; The temperature has reached the target temperature and enters the stable stage of the intermittent heating mode.
  • heat exchange device 5.1 Radiation device
  • the two modes can avoid the disadvantage of radiant heating that is inconvenient to shut down due to large thermal inertia, and realize intermittent operation of radiant cooling/heating.
  • the main heat exchanger 3 can be turned into a passage, and the first circulation loop 200 and the second circulation loop Three circulation loops 400 are combined into one circulation loop.
  • This embodiment can also realize the operation modes shown in Fig. 2 to Fig. 15 .
  • the principle and operation method of the system in this embodiment to realize the above operation modes are similar to the above-described embodiments, and the present application will not repeat them here.
  • this way can not only save pipeline materials, but also reduce the energy grade loss caused by different media in the heat exchange of the main heat exchanger 3, further Improve the efficiency of the water fluorine multi-line in the free energy scheduling.
  • Both of the two loops can be connected to natural energy or other energy recovery equipment, so that natural energy or recovered energy can be used more flexibly, and the energy efficiency of the system can be further improved;
  • the system can realize two different operating parameters, realize the free scheduling of cold and heat in each system, avoid the loss of energy grade caused by mixing, and can use different types of refrigerants, taking into account the advantages of antifreeze and heat exchange ;
  • the system of the present application can have multiple operating modes.
  • a multi-mode water ring multi-connected air-conditioning system disclosed in the Chinese utility model patent application number 201920627088.8 through various operating modes, it can also It is easy to match natural energy with different parameters and the energy demand of different terminals, further improving the operating efficiency of the system under partial load or even very small load, avoiding simultaneous cooling and heating conditions, and different system requirements
  • the resulting energy mixing is not limited by the operating parameters of the refrigerant ring and the water ring, allowing the indoor heat exchanger to switch between cooling and heating modes at will;
  • the system can realize efficient utilization of natural energy, energy recovery, free scheduling of cold and heat between systems, realize defrosting function through free scheduling of heat, and improve operating efficiency under small loads, ensuring that the air conditioning system can Stable and efficient operation throughout the year.

Abstract

一种多模式水氟多联机系统,包括若干个空调机组(100)的制冷剂循环回路(101)、室外换热器(102)、室内换热器(103),还包括第一循环回路(200)、第二循环回路(300)以及主换热器(3),第一循环回路(200)和第二循环回路(300)通过主换热器(3)实现相互换热,各个所述室外换热器(102)和室内换热器(103)内还分别设置有第二介质通道(105),所述第一循环回路(200)和所述第二循环回路(300)能通过各个所述第二介质通道(105),分别与各个室外换热器(102)内的第一介质通道(104)和/或第一空气换热通道(107),及各个室内换热器(103)内的第二介质通道(105)和/或第二空气换热通道(106)相互换热。该系统可实现自然能源高效利用、能量回收、除霜、各系统之间的冷热量自由调度、提升小负荷下的运行效率,确保空调系统能在全年稳定高效地运行。

Description

多模式水氟多联机系统
相关申请的交叉引用
本申请要求于2021年6月21日提交的申请号为2021106879084,名称为“多模式水氟多联机系统”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调技术领域,尤其是涉及一种多模式水氟多联机系统。
背景技术
建筑运行相关的能源支出和温室气体排放量约占全社会总量的三分之一。其中采暖、通风、空调及生活热水的能耗比例达到了三分之二以上,是建筑能耗最主要的组成部分。且随着建筑功能及人对舒适度的需求提升,能耗比重逐年增加。因此提高空调系统能效,是降低社会总能耗、实现节能减排的重要途径。
空调系统主要分为集中式和分散式两大类。目前,实际应用较多的分散式系统主要为冷水机组和风机盘管结合系统,及多联机系统。冷水机组和风机盘管结合系统通过循环水系统将各末端与主机相连,实现能量长距离输送。然而该方案增加了制冷剂与水的换热环节,制约了系统运行能效;多联机系统采用直膨方案,通过制冷剂与空气直接换热方式,提高机组能效。该方案中制冷剂系统性能受配管长度、高差影响显著,能量无法长距离输送,更无法利用水系统的优势使用自然能源或市政水源以实现免费供冷、供热。并且,公共建筑广泛存在部分房间需供冷,同时部分房间需供热的情况。目前主要的热回收解决方案为热回收型多联机及水环热泵,前者受系统规模的限制,在小负荷情况下效率较低;后者的水环存在严重的冷热掺混问题。
为了解决上述问题,专利申请号为201920627088.8的中国实用新型专利公开了一种多模式水环多联机空调系统。该系统选择可以实现三种介质(水、制冷剂、空气)两两之间直接换热的三介质换热器,作为多联机系统的室内换热器和室外换热器。通过将三介质换热器的水路相连,组成水环路,该系统结合了水系统和制冷剂系统的优势,可实现多种模式的供冷、供热。例如,室外换热器风冷或水 冷;部分室内换热器制冷,其它室内换热器同时制热;使用自然能源免费供冷、供热;小负荷时部分室外换热器同时制取冷热风和冷热水,供给所有室内换热器;除霜不间断供热。
然而,该系统在应用时存在一些桎梏与不足:
1、该系统在应用时无法涵盖实际运行中常出现的高效节能工况,导致在多数情况该系统与传统的空调系统相比,节能或功能实现效果不明显,以下几个常见可高效运行情况无法实现:
(1)有部分房间需要供冷(如内区),这些房间也可能一段时间需要供热、另一段时间需要供冷,此时外机以风冷制热为主,通常需要除霜。即,无法实现“小负荷供冷同时部分机组供热时除霜”运行模式;
(2)虽可将单水环切换成两个环路,室外换热器为水源,此时内机只能有一个水温,如实现供冷,就无法给其它不运行机组供热;如实现供热,就无法给房间供冷。即,无法实现“小负荷供冷同时小负荷供热”运行模式;
(3)当过渡季时,典型场景是水(地)源可直接用于内区供冷,此时无法解决小负荷供热的问题。即,无法实现“自然能源免费供冷同时小负荷供热”运行模式;
(4)参考(3),也无法实现“小负荷供热同时回收蒸发器冷量进行免费供冷”模式。
2、该系统所有室内换热器同时并联在同一个水环路上,当需要同时供冷和供热时,无法实现任意一个室内换热器制冷和制热工况的灵活切换。
3、仅通过一个水环路连接所有的室内换热器和室外换热器,当室内换热器环路和室外换热器环路需求的参数不同时,会产生如下缺陷:
(1)该系统虽可以通过阀门的启闭,将总水环路分为室外换热器水环路和室内换热器水环路,但二者无法直接换热以充分利用室外换热器水环路的能源,即自然能源仅与室外换热器侧环路连接,无法直接用于室内换热器侧;
(2)由于自然能源仅连接在该系统的室外侧,故无法满足室内、室外两个环路同时使用自然能源的需求情况,即若需要实现多种复合运行模式时,该系统无法实施和执行,制约了实际应用的实用性和灵活性。
4、单水环切换为两个水环路运行时,需要两个定压点,而合并为一个水环时仅需要一个定压点,需要设置并切换定压点,导致系统内压力不稳定;并且, 该系统室外换热器环路和室内换热器环路无法使用两种载冷剂,例如,室外换热器环路使用防冻液,室内换热器环路使用水,以兼顾两种载冷剂的防冻和换热的优势。
5、该系统仅采用了风末端一种形式,冬季供暖时室内热舒适性较差,已无法满足人们日益提高的对房间舒适度的要求。
因此,该现有技术的系统虽能实现全年多种模式下的制冷、制热方案,但在大多数的用能需求下,并不是最适用、节能及可靠的系统。
发明内容
本申请提供一种多模式水氟多联机系统,能具备多种运行模式,通过各种运行模式不仅能实现上述现有技术专利的功能,还能实现自然能源高效利用、能量回收、除霜、各系统之间的冷热量自由调度、提升小负荷下的运行效率,确保空调系统能在全年稳定高效地运行。
本申请提供一种多模式水氟多联机系统,包括若干个空调机组,各个空调机组分别包括制冷剂循环回路以及至少一个室外换热器和至少一个室内换热器,各个空调机组内的制冷剂循环回路相互独立,所述室外换热器和室内换热器内分别设有第一介质通道,各个空调机组内的室外换热器和室内换热器分别通过第一介质通道接通于各个相互独立的制冷剂循环回路,通过设置膨胀阀分别控制各个室内换热器内的第一介质通道的导通、关闭与流量调节,所述制冷剂循环回路内设置有用于驱使冷媒流动的压缩机以及用于切换冷媒流动方向的四通换向阀,其特征在于,还包括第一循环回路、第二循环回路以及主换热器,所述第一循环回路设有第一循环泵和自然能源采集器,所述第二循环回路设有第二循环泵,所述第一循环回路和第二循环回路通过所述主换热器实现相互换热,各个所述室外换热器和室内换热器内还分别设置有第二介质通道,各个所述空调机组的室外换热器分别通过内部的第二介质通道并联接通于所述第一循环回路,以使所述第一循环回路能通过各个所述第二介质通道分别与各个室外换热器内的第一介质通道相互换热,各个所述室外换热器内还分别设置有第一空气换热通道,所述第一空气换热通道与室外换热器内的第一介质通道和/或第二介质通道相互换热,并通过 设置风机驱使所述第一空气换热通道内的热量随气流向外界传递;各个所述空调机组的室内换热器分别通过内部的第二介质通道并联接通于所述第二循环回路,以使所述第二循环回路能通过各个所述第二介质通道分别与各个室内换热器内的第一介质通道相互换热,通过设置阀门分别控制各个室外换热器内的第二介质通道与所述第一循环回路之间的导通与关闭并且通过设置阀门分别控制各个室内换热器内的第二介质通道与所述第二循环回路之间的导通与关闭,各个所述室内换热器内还分别设置有第二空气换热通道,所述第二空气换热通道与室内换热器内的第一介质通道和/或第二介质通道相互换热,并通过设置风机驱使所述第二空气换热通道内的热量随气流向室内传递。
根据本申请提供的一种多模式水氟多联机系统,还包括第三循环回路,所述第三循环回路设有第三循环泵,各个所述空调机组的室内换热器分别通过内部的第二介质通道并联接通于所述第三循环回路,以使所述第三循环回路能通过各个所述第二介质通道分别与各个室内换热器内的第一介质通道和/或第二空气换热通道相互换热,所述第三循环回路与所述第二循环回路之间通过设置阀门分隔,并且通过阀门分别控制第三循环回路与各个第二介质通道之间的导通与关闭。
根据本申请提供的一种多模式水氟多联机系统,还包括至少一个换热装置,所述换热装置分别并联接通于所述第二循环回路和/或第三循环回路,通过设置阀门分别控制换热装置与第二循环回路之间以及换热装置与第三循环回路之间的导通与关闭。
根据本申请提供的一种多模式水氟多联机系统,所述第一循环回路设有第一旁路,所述第一旁路并联接通于所述自然能源采集器的两端,所述第一旁路和自然能源采集器分别通过设置阀门控制导通与关闭。
根据本申请提供的一种多模式水氟多联机系统,所述第一循环回路上并联接通有第二旁路,所述第二循环回路上并联接通有第三旁路,所述第二旁路和第三旁路分别并联接通于所述主换热器的两端,所述第二旁路、第三旁路以及主换热器分别通过设置阀门控制导通与关闭。
根据本申请提供的一种多模式水氟多联机系统,所述第二循环回路通过旁路 接通有自然能源采集器,所述自然能源采集器通过旁路接通在所述第二循环泵与主换热器之间。
根据本申请提供的一种多模式水氟多联机系统,各个所述换热装置为顶棚式热辐射器、墙壁式热辐射器、地板式热辐射器、液体储热器中的至少一种。
根据本申请提供的一种多模式水氟多联机系统,所述空调机组为具有热回收功能的多联式空调机组,以使所述空调机组可以实现热回收功能并通过内部的制冷剂管路实现多个室内换热器之间的冷热量相互转移。
根据本申请提供的一种多模式水氟多联机系统,所述自然能源采集器为地热能采集装置、地下热水热能采集装置、太阳能集热装置、间接蒸发冷却装置、冷却塔、建筑废热采集装置、工业余热采集装置中的至少一种。
根据本申请提供的一种多模式水氟多联机系统,各个所述空调机组还包括节流装置、油分离器、气液分离器、再冷却器、节流装置,通过所述室外换热器、压缩机、四通换向阀、节流装置、室内换热器、油分离器、气液分离器和再冷却器共同构成所述空调机组的制冷剂循环回路。
根据本申请提供的一种多模式水氟多联机系统,所述第一循环回路、第二循环回路和第三循环回路内的循环介质为水或防冻液。
根据本申请提供的一种多模式水氟多联机系统,当所述第一循环回路使用的载冷剂与所述第二循环回路或所述第三循环回路使用的载冷剂为同种介质时,所述主换热器为连通所述第一循环回路与所述第二循环回路或所述第三循环回路之间的通路,以使得所述第二循环回路或所述第三循环回路中的一个与所述第一循环回路合并成第四循环回路,所述第二循环回路和所述第三循环回路中的另一个形成第五循环回路且将所述室外换热器并联接入其中。
本申请提供的一种多模式水氟多联机系统,相比于现有技术,具有如下突出的实质性特点和显著的技术进步:
(1)该系统在所有室外换热器并联在一个环路的基础上,将所有室内换热器同时并联在另外两个相互独立的环路上,所有室内换热器的进出口均可自由地在两个环路上切换连接,从而实现两个环路不同的运行参数,室内换热器可按照 不同房间功能进行分区,组成不同的独立环路;
(2)室外换热器所在环路和室内换热器所在环路分别用两套独立的环路,二者通过换热器实现热力工况的连接;
(3)两个环路二者均可连接自然能源或其他能源回收设备,更灵活地使用自然能源或回收能源,进一步提升系统能效;
(4)该系统可实现两个不同的运行参数,实现各系统冷热量的自由调度,避免掺混导致能量品位的损失,且能使用不同种类的载冷剂,兼顾防冻和换热的优势;
(5)本申请的系统能具备多种运行模式,通过各种运行模式除了能实现专利申请号为201920627088.8的中国实用新型专利公开的一种多模式水环多联机空调系统的全部功能外,还能便于匹配不同参数的自然能源与不同末端的用能需求,进一步提升了系统在部分负荷甚至是极小负荷下的运行效率,避免同时供冷、同时供热等工况,及系统需求不同时导致的能量掺混,不受制冷剂环和水环运行参数的限制,可以实现室内换热器随意切换制冷或制热模式;
(6)可以兼顾间歇供暖的快速响应和热舒适性的需求;
(7)该系统可实现自然能源高效利用、能量回收、各系统之间的冷热量自由调度,通过自由调度热量实现除霜功能,并能提升小负荷下的运行效率,确保空调系统能在全年稳定高效地运行。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的结构原理示意图;
图2为本申请的实施方式示意图;
图3是本申请系统在部分室外机水冷,同时部分室外机风冷运行模式的工作原理及结构示意图;
图4是本申请系统实现同时供冷和供热工作模式的示意图;
图5是本申请系统实现免费供冷/供热工作模式的示意图;
图6是本申请系统实现除霜工作模式的示意图;
图7是本申请系统实现小负荷工作模式的示意图;
图8为本申请的实施方式示意图;
图9是本申请系统实现供热小负荷+自然能源免费供冷工作模式的示意图;
图10是本申请系统实现供热小负荷+蒸发器免费供冷工作模式的示意图;
图11是本申请系统实现供热小负荷+供冷小负荷工作模式的示意图;
图12是本申请系统实现供冷小负荷+供热除霜工作模式的示意图;
图13是本申请系统实现间歇供暖功能的结构示意图;
图14是本申请系统在间歇供暖模式启动阶段的示意图;
图15是本申请系统在间歇供暖模式稳定阶段的示意图;
图16是本申请系统的另一种实施方式示意图;
图17是本申请系统中各个空调机组的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图1描述本申请的一种多模式水氟多联机系统,如附图1所示,包括多个空调机组100,各个空调机组100分别包括制冷剂循环回路101以及一个室外换热器102和多个室内换热器103,各个空调机组100内的制冷剂循环回路101相互独立,室外换热器102和室内换热器103内分别设有第一介质通道104,各个空调机组100内的室外换热器102和室内换热器103分别通过第一介质通道104接通于各个相互独立的制冷剂循环回路101。另外,为了独立控制各个室内换热器103内的第一介质通道104,在系统的管路中通过设置膨胀阀分别控制各个室内换热器103内的第一介质通道104的导通、关闭与流量调节。
与此同时,各个室外换热器102内还分别形成有第一空气换热通道107,第 一空气换热通道107与室外换热器102内的第一介质通道104和/或第二介质通道105相互换热,并通过安装风机(图中未标出)驱使第一空气换热通道107内的热量随气流向外界传递。同样地,各个室内换热器103内还分别形成有第二空气换热通道106,第二空气换热通道106与室内换热器103内的第一介质通道104或/和第二介质通道105相互换热,并通过安装风机(图中未标出)驱使第二空气换热通道106内的热量随气流向室内扩散传递,即利用第二空气换热通道106吸收来自第一介质通道104和/或第二介质通道105的热量,然后通过风机驱使第二空气换热通道106内的气流流动,促使第二空气换热通道106内的热量得以随气流向外传递,从而可以把室内换热器103的热量传递至各个房间,对各个房间实施供冷或供热。在实际应用中,室内换热器103为具有三介质通道的三介质换热器。
而制冷剂循环回路101内设置有用于驱使冷媒流动的压缩机以及用于切换冷媒流动方向的四通换向阀,在实际应用中,各个空调机组100还包括节流装置、油分离器、气液分离器、再冷却器、节流装置,通过室外换热器、压缩机、四通换向阀、节流装置、室内换热器、油分离器、气液分离器和再冷却器共同构成所述空调机组的制冷剂循环回路。
除此之外,系统中还增加了第一循环回路200、第二循环回路300以及主换热器3,第一循环回路200设有第一循环泵1.1和自然能源采集器2,第二循环回路300设有第二循环泵1.2,第一循环回路200和第二循环回路300通过主换热器3实现相互换热,各个室外换热器102和室内换热器103内还分别设有第二介质通道105,各个空调机组100的室外换热器102分别通过其自身内部的第二介质通道105并联接通于第一循环回路200,以使第一循环回路200能通过各个第二介质通道105分别与各个室外换热器102内的第一介质通道104相互换热;另外,各个空调机组100的室内换热器103分别通过其自身内部的第二介质通道105并联接通于第二循环回路300,以使第二循环回路300能通过各个第二介质通道105分别与各个室内换热器103内的第一介质通道104相互换热。
为了独立控制各个第二介质通道105,在系统的管路中通过设置多个阀门分别控制各个室外换热器102内的第二介质通道105与第一循环回路200之间的导通与关闭,并且通过设置阀门分别控制各个室内换热器103内的第二介质通道105与第二循环回路300之间的导通与关闭。
进一步地,还包括第三循环回路400,第三循环回路400设有第三循环泵1.3,各个空调机组100的室内换热器103分别通过其自身内部的第二介质通道105并联接通于第三循环回路400,以使第三循环回路400能通过各个第二介质通道105分别与各个室内换热器103内的第一介质通道104相互换热,也可以与各个室内换热器103内的第二空气换热通道106相互换热。另外,为了分别独立控制第二循环回路300和第三循环回路400,第三循环回路400与第二循环回路300之间通过多个阀门分隔,并且通过阀门分别控制第三循环回路400与各个第二介质通道105之间的导通与关闭。
具体地,第二循环回路300和第三循环回路400各自通过增设多个支路分别接通于第二介质通道105的两端,通过在所有的支路上分别设置阀门,便能够实现分别独立切换控制第二循环回路300和第三循环回路400。
第一循环回路200、第二循环回路300和第三循环回路400内的循环介质是水或防冻液等载冷剂。
需要说明的是,第一循环回路200、第二循环回路300和第三循环回路400内所使用的循环介质可以相同,也可以不同。例如,当第一循环回路200、第二循环回路300和第三循环回路400内所使用的循环介质相同时(例如均为防冻液),可以将第二循环回路300和第三循环回路400中的一个与第一循环回路200合并,合并后的循环回路为第四循环回路500,并且将室外换热器102并联接入第二循环回路300和第三循环回路400中的另一个以使其形成第五循环回路600,此时,第四循环回路500综合了第二循环回路300和第三循环回路400中的一个与第一循环回路200的功能,并且结构会更加简单。
这样,在本实施例中,一方面,所有循环回路内的循环介质均相同,便于统一配置,便于标准化的制造和维修;另一方面,当各个循环回路内的循环介质相同时,主换热器3无需采用复杂的接管等操作,而是可以直接被设计为连通两个循环回路的一段通路,从而使得系统基于第四循环回路500和第五循环回路600两个循环回路,便能实现同样的功能,并且相较于原有的三条循环回路的结构,结构更加简单,也可以相应减少一台循环泵,并且通路式的主换热器3的换热效率更高,具体地,通路式的主换热器3仅需考虑在通路内流通时损失的热量。
当然,上述实施例仅为本申请众多实施例中的一个,在实际使用过程中,可以根据用户需求决定采用三条循环回路的结构或者两条循环回路的结构。
另外,第一循环回路200设有第一旁路201,第一旁路201并联接通于自然能源采集器2的两端,第一旁路201和自然能源采集器2分别通过设置阀门控制导通与关闭。第一循环回路200上并联接通有第二旁路202,第二循环回路300上并联接通有第三旁路301,第二旁路202和第三旁路301分别并联接通于主换热器3的两端,第二旁路202、第三旁路301以及主换热器3分别通过设置阀门控制导通与关闭。
可选地,第二循环回路300通过旁路接通有自然能源采集器(图中未画出),自然能源采集器通过旁路接通在第二循环泵1.2与主换热器3之间。
可选地,所述自然能源采集器为地热能采集装置、地下热水热能采集装置、太阳能集热装置、间接蒸发冷却装置、冷却塔、建筑废热采集装置、工业余热采集装置中的至少一种。
可选地,本实施例的空调机组100为具有热回收功能的多联式空调机组,以使空调机组100可以实现热回收功能并通过内部的制冷剂管路实现多个室内换热器之间的冷热量相互转移。
可选地,本实施例的第一循环回路200和第二循环回路300或第三循环回路400中使用的载冷剂为同种介质时,可将主换热器3变成通路,并将第一循环回路200和第二循环回路300或第三循环回路400合并成一个。
基于本申请的系统,可以实现多种运行模式,通过各种运行模式不仅能实现现有技术的功能,还能实现自然能源高效利用、能量回收、除霜、各系统之间的冷热量自由调度、提升小负荷下的运行效率,确保空调系统能在全年稳定高效地运行,下面结合系统工作模式附图2~附图156对各种运行模式进行具体说明:
结合附图2和附图1617所示,在以下系统工作模式附图中,附图2中显示其中两个空调机组100,其中一个空调机组100为C.6,最后一个空调机组100为C.k,在本实施例中,假设系统中有两个空调机组100,每个空调机组100上分别具有一个室外换热器102和三个室内换热器103,室外换热器102分别包括空调室外机6.5和7.5,室内换热器103分别包括空调室内机6.3.1、6.3.2、6.3.3、7.3.1、7.3.2、7.3.3,空调室外机6.5和7.5内的第一介质通道104分别为制冷剂管路6.5.2和7.5.2,空调室外机6.5和7.5内的第二介质通道105分别为载冷剂管路6.5.1和7.5.1,空调室内机6.3.1、6.3.2、6.3.3、7.3.1、7.3.2、7.3.3内的第一介质通道104分别为制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2、7.3.1.2、7.3.2.2、7.3.3.2, 空调室内机6.3.1、6.3.2、6.3.3、7.3.1、7.3.2、7.3.3内的第二介质通道105分别为载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1、7.3.1.1、7.3.2.1、7.3.3.1,其余各个阀门按如下具体叙述。
(1)实现空气源工作模式的过程如下:
如附图3所示,压缩机6.1、7.1让制冷剂循环回路101能运行,并开启膨胀阀6.4.1、6.4.2、6.4.3、7.4.1、7.4.2、7.4.3,开启室外机上的风机6.5.3和7.5.3,关闭其他阀门,此时室外机制冷剂管路6.5.2和7.5.2可通过室外机的第一空气换热通道107与外界空气换热,从而实现空气源工作模式。
(2)实现水源工作模式的过程如下:
如附图3所示,开启压缩机6.1、7.1让制冷剂循环回路101能运行,并开启膨胀阀6.4.1、6.4.2、6.4.3、7.4.1、7.4.2、7.4.3,打开阀门6.6、7.6、4.1、4.4,关闭其他阀门,开启第一循环泵1.1让第一循环回路200能运行,并开启自然能源采集器2,关闭各个空调室外机上的风机6.5.3和7.5.3,此时室外机制冷剂管路6.5.2可与载冷剂管路6.5.1换热、制冷剂管路7.5.2可与载冷剂管路7.5.1换热,从而实现水源工作模式。
(3)实现空气源和水源联合工作模式的过程如下:
如附图3所示,开启压缩机6.1、7.1让制冷剂循环回路101运行,开启膨胀阀6.4.1、6.4.2、6.4.3、7.4.1、7.4.2、7.4.3,打开阀门6.6、4.1、4.4,关闭其他阀门,让第一循环回路200内的载冷剂仅能通过空调室外机6.5内的载冷剂管路6.5.1,另外,关闭空调室外机6.5上的风机6.5.3、打开空调室外机7.5上的风机7.5.3,此时空调室外机6.5的制冷剂管路6.5.2可与载冷剂管路6.5.1换热以实现水源工作模式,另外,在风机7.5.3的作用下,制冷剂管路7.5.2可以通过第一空气换热通道107与外界空气换热以实现空气源工作模式,因此整个系统可实现空气源和水源联合工作模式。
(4)实现同时供冷和供热工作模式的过程如下:
如附图4所示,当不同的房间存在同时供冷、供热需求时,假设当空调室内机6.3.2、6.3.3、7.3.2、7.3.3具有供热需求,而室内机6.3.1、7.3.1具有供冷需求时,此时开启膨胀阀6.4.2、6.4.3、7.4.2、7.4.3,关闭膨胀阀6.4.1、7.4.1,开启阀门4.2、4.3、4.5、6.6、7.6、6.7.1、6.8.1、7.7.1、7.8.1,关闭其他阀门,开启第一循环泵1.1、第二循环泵1.2让第一循环回路200和第二循环回路300均能 运行,关闭第三循环泵1.3,开启压缩机6.1、7.1,并调整四通换向阀6.2、7.2,使其均运行在制热模式,室内机6.3.2、6.3.3、7.3.2、7.3.3成为冷凝器,室外机6.5、7.5成为蒸发器;空调室内机6.3.2、6.3.3、7.3.2、7.3.3作为冷凝器,其制冷剂管路6.3.2.2、6.3.3.2、7.3.2.2、7.3.3.2内的热量分别在风机6.3.2.3、6.3.3.3、7.3.2.3、7.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,实现热泵供热模式;而空调室外机6.5、7.5作为蒸发器,通过制冷剂管路6.5.2与载冷剂管路6.5.1换热、制冷剂管路7.5.2与载冷剂管路7.5.1换热,可将蒸发冷量传递至载冷剂管路6.5.1和7.5.1;在第一循环泵1.1的循环作用下,蒸发冷量经过载冷剂管路6.5.1、载冷剂管路7.5.1、第一循环泵1.1、阀门4.2、主换热器3、阀门4.3、阀门6.6、阀门7.6、载冷剂管路6.5.1、载冷剂管路7.5.1形成循环回路,即通过第一循环回路200收集来自各个蒸发器的蒸发冷量,然后让蒸发冷量在主换热器3处传递至第二循环回路300;在第二循环泵1.2的循环作用下,第二循环回路300在主换热器3处得到的蒸发冷量经过主换热器3、阀门4.5、阀门6.7.1、阀门7.7.1、载冷剂管路6.3.1.1、载冷剂管路7.3.1.1、阀门6.8.1、阀门7.8.1、第二循环泵1.2、主换热器3形成循环回路,蒸发冷量经过载冷剂管路6.3.1.1、载冷剂管路7.3.1.1时在风机6.3.1.3、7.3.1.3的作用下,传递至第二空气换热通道106中的空气,形成冷风为室内房间提供供冷需求,实现免费供冷模式;因此整个系统可实现同时供冷、供热模式。同理,当室内机6.3.2、6.3.3、7.3.2、7.3.3具有供冷需求、室内机7.3.2、7.3.3具有供热需求时,可实现免费供热模式。
(5)实现免费供冷/供热工作模式的过程如下:
如附图5所示,当外界自然能源参数合适时,关闭膨胀阀6.4.1、6.4.2、6.4.3、7.4.1、7.4.2、7.4.3,开启阀门4.1、4.3、4.5、6.7.1、6.7.2、6.7.3、6.8.1、6.8.2、6.8.3、7.7.1、7.7.2、7.7.3、7.8.1、7.8.2、7.8.3,关闭其他阀门,开启第一循环泵1.1、第二循环泵1.2让第一循环回路200和第二循环回路300均能运行,关闭第三循环泵1.3,开启自然能源采集器2,关闭压缩机6.1、7.1,即停止制冷剂循环回路101运行;在第一循环泵1.1的循环作用下,自然能源采集器2的冷/热量经过自然能源采集器2、阀门4.1、主换热器3、阀门4.3、阀门6.6、阀门7.6、载冷剂管路6.5.1、载冷剂管路7.5.1、第一循环泵1.1、自然能源采集器2形成循环回路(阀门6.6、阀门7.6至少需开启一个,以形成循环回路),利用第一循环回 路200收集冷/热量,然后第一循环回路200中的冷/热量在主换热器3处传递至第二循环回路300;在第二循环泵1.2的循环作用下,第二循环回路300在主换热器3处得到的冷/热量经过主换热器3、阀门4.5、阀门6.7.1、阀门6.7.2、阀门6.7.3、阀门7.7.1、阀门7.7.2、阀门7.7.3、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、阀门7.8.1、阀门7.8.2、阀门7.8.3、第二循环泵1.2、主换热器3形成循环回路,第二循环回路300在主换热器3处得到的冷/热量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1时,分别在风机6.3.1.3、6.3.2.3、6.3.3.3、7.3.1.3、7.3.2.3、7.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成冷/热风为室内房间提供供冷/热需求,实现免费供冷/热模式。
(6)实现除霜工作模式的过程如下:
如附图6所示,当采用空气源工作模式制热且部分空调室外机需除霜时,假设空调室外机7.5需要除霜、室外机6.5无需除霜、六个室内机均具有供热需求时,此时关闭压缩机7.1,关闭膨胀阀7.4.1、7.4.2、7.4.3,开启膨胀阀6.4.1、6.4.2、6.4.3,开启阀门4.2、4.3、4.5、6.7.1、6.7.2、6.7.3、6.8.1、6.8.2、6.8.3、7.7.1、7.7.2、7.7.3、7.8.1、7.8.2、7.8.3,关闭其他阀门,开启第一循环泵1.1、第二循环泵1.2让第一循环回路200和第二循环回路300均能运行,并关闭第三循环泵1.3,开启压缩机6.1,调整四通换向阀6.2,使其运行在制热模式,室内机6.3.1、6.3.2、6.3.3成为冷凝器,室外机6.5成为蒸发器;在热泵循环的作用下,冷凝热经过制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2时,一方面在风机6.3.1.3、6.3.2.3、6.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,另一方面制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2分别与载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1换热,将热量传递至第二循环回路300;在第二循环泵1.2的循环作用下,在载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1处得到的热量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、第二循环泵1.2、主换热器3、阀门4.5、阀门6.7.1、阀门6.7.2、阀门6.7.3、阀门7.7.1、阀门7.7.2、阀门7.7.3、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1形成循环回路,一部分热量经过载冷剂管路7.3.1.1、载冷剂 管路7.3.2.1、载冷剂管路7.3.3.1时在风机7.3.1.3、7.3.2.3、7.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求;另一部分热量经过主换热器3时与第一循环回路200换热,将热量传递至第一循环回路200,在第一循环泵1.1的循环作用下,这部分热量经过主换热器3、阀门4.3、阀门7.6、载冷剂管路7.5.1、第一循环泵1.1、阀门4.2、主换热器3形成循环回路,热量在载冷剂管路7.5.1处用于除霜,实现除霜模式。
(7)实现小负荷工作模式的过程如下:
如附图7所示,当多个可调室内机具有供冷/热需求且室内负荷较小时,下面以小负荷模式供热需求为例,假设空调室内机6.3.1、6.3.2、6.3.3、7.3.1、7.3.2、7.3.3具有供热需求但每个房间的热负荷均较小时,此时关闭压缩机7.1,关闭膨胀阀7.4.1、7.4.2、7.4.3,开启膨胀阀6.4.1、6.4.2、6.4.3,开启阀门4.6、6.6、6.7.1、6.7.2、6.7.3、6.8.1、6.8.2、6.8.3、7.7.1、7.7.2、7.7.3、7.8.1、7.8.2、7.8.3,关闭其他阀门,开启第二循环泵1.2,让第二循环回路300能运行,并关闭第三循环泵1.3,开启自然能源采集器2,开启压缩机6.1,调整四通换向阀6.2,使其运行在制热模式,室内机6.3.1、6.3.2、6.3.3成为冷凝器,室外机6.5成为蒸发器;在热泵循环的作用下,制出的热量经过制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2时,一方面在风机6.3.1.3、6.3.2.3、6.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,另一方面制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2分别与载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1换热,将热量传递至第二循环回路300;在第二循环泵1.2的循环作用下,在载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1处得到的热量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、第二循环泵1.2、阀门4.6、阀门6.7.1、阀门6.7.2、阀门6.7.3、阀门7.7.1、阀门7.7.2、阀门7.7.3、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、阀门7.8.1、阀门7.8.2、阀门7.8.3、第二循环泵1.2形成循环回路,热量经过载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1时在风机7.3.1.3、7.3.2.3、7.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,实现小负荷模式;同理,该系统也可通过仅开启压缩机7.1实现以上功能,实现小负荷模式;同理,该系统也可满足供冷需求,实现小负荷模式;小负荷模式将 负荷集中到较少数量的热泵机组中,提高机组的负荷率,有利于提高机组能效。
进一步地,当系统中增加了第三循环回路400后能实现更完善的工作模式,结合附图8和附图176所示,在以下系统工作模式附图中,附图9中显示其中三个空调机组100,其中一个空调机组100为C.6,第二个空调机组100为C.7,最后一个空调机组100为C.k,在本实施例中,假设系统中有三个空调机组100,每个空调机组100上分别具有一个室外换热器102和三个室内换热器103,室外换热器102分别包括空调室外机6.5、7.5、8.5,室内换热器103分别包括空调室内机6.3.1、6.3.2、6.3.3、7.3.1、7.3.2、7.3.3、8.3.1、8.3.2、8.3.3,空调室外机6.5、7.5和8.5内的第一介质通道104分别为制冷剂管路6.5.2、7.5.2、8.5.2,空调室外机6.5、7.5、8.5内的第二介质通道105分别为载冷剂管路6.5.1、7.5.1、8.5.1,空调室内机6.3.1、6.3.2、6.3.3、7.3.1、7.3.2、7.3.3、8.3.1、8.3.2、8.3.3内的第一介质通道104分别为制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2、7.3.1.2、7.3.2.2、7.3.3.2、8.3.1.2、8.3.2.2、8.3.3.2,空调室内机6.3.1、6.3.2、6.3.3、7.3.1、7.3.2、7.3.3、8.3.1、8.3.2、8.3.3内的第二介质通道105分别为载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1、7.3.1.1、7.3.2.1、7.3.3.1、8.3.1.1、8.3.2.1、8.3.3.1,其余各个阀门按如下具体叙述,具体能实现的工作模式如下:
(8)实现“供热小负荷+自然能源免费供冷”工作模式的过程如下:
如附图9所示,当部分房间需要供热、部分房间需要供冷且房间供热负荷较小、自然能源参数合适时,以空调室内机6.3.1、6.3.2、6.3.3具有供冷需求,空调室内机7.3.1、7.3.2、7.3.3、8.3.1、8.3.2、8.3.3具有供热需求为例。开启阀门4.1、4.3、4.5、6.6、6.7.1、6.7.2、6.7.3、6.8.1、6.8.2、6.8.3、7.9.1、7.9.2、7.9.3、7.10.1、7.10.2、7.10.3、8.9.1、8.9.2、8.9.3、8.10.1、8.10.2、8.10.3,关闭其他阀门,关闭压缩机6.1、8.1,开启膨胀阀7.4.1、7.4.2、7.4.3,关闭膨胀阀6.4.1、6.4.2、6.4.3、8.4.1、8.4.2、8.4.3,开启第一循环泵1.1、第二循环泵1.2、第三循环泵1.3,让第一循环回路200、第二循环回路300和第三循环回路400均能运行,并开启自然能源采集器2,开启压缩机7.1,调整四通换向阀7.2,使其运行在制热模式,空调室内机7.3.1、7.3.2、7.3.3成为冷凝器,室外机7.5成为蒸发器;在热泵循环的作用下,制出的热量经过制冷剂管路7.3.1.2、7.3.2.2、7.3.3.2时,一方面在风机7.3.1.3、7.3.2.3、7.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,另一方面制冷剂管路7.3.1.2、 7.3.2.2、7.3.3.2分别与载冷剂管路7.3.1.1、7.3.2.1、7.3.3.1换热,将热量传递至第三循环回路400;在第三循环泵1.3的循环作用下,在载冷剂管路7.3.1.1、7.3.2.1、7.3.3.1处得到的热量经过载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1、阀门7.10.1、阀门7.10.2、阀门7.10.3、第三循环泵1.3、阀门7.9.1、阀门7.9.2、阀门7.9.3、阀门8.9.1、阀门8.9.2、阀门8.9.3、载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1、载冷剂管路8.3.1.1、载冷剂管路8.3.2.1、载冷剂管路8.3.3.1、阀门7.10.1、阀门7.10.2、阀门7.10.3、阀门8.10.1、阀门8.10.2、阀门8.10.3、第三循环泵1.3形成循环回路,热量经过载冷剂管路8.3.1.1、载冷剂管路8.3.2.1、载冷剂管路8.3.3.1时在风机8.3.1.3、8.3.2.3、8.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,实现供热小负荷模式;在第一循环泵1.1的循环作用下,自然能源的冷量经过自然能源采集器2、阀门4.1、主换热器3、阀门4.3、阀门6.6、载冷剂管路6.5.1、第一循环泵1.1、自然能源采集器2形成循环回路(阀门6.6、阀门8.6至少需开启一个,以形成循环回路),使第一循环回路200收集冷量,冷量经过主换热器3时传递至第二循环回路300;在第二循环泵1.2的循环作用下,第二循环回路300在主换热器3处得到的冷量经过主换热器3、阀门4.5、阀门6.7.1、阀门6.7.2、阀门6.7.3、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、第二循环泵1.2、主换热器3形成循环回路,第二循环回路300在主换热器3处得到的冷量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1时,分别在风机6.3.1.3、6.3.2.3、6.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成冷风为室内房间提供供冷需求,实现自然能源免费供冷模式;综合二者,该系统可实现“供热小负荷+自然能源免费供冷”模式,一方面,供热小负荷模式将负荷集中到较少数量的热泵机组中,提高机组的负荷率,有利于提高机组能效,另一方面,利用自然能源免费供冷可节约热泵机组用于制冷的能耗。
(9)实现“供热小负荷+蒸发器免费供冷”工作模式的过程如下:
如附图10所示,当部分房间需要供热、部分房间需要供冷且房间供热负荷较小时,以空调室内机6.3.1、6.3.2、6.3.3具有供冷需求,空调室内机7.3.1、7.3.2、7.3.3、8.3.1、8.3.2、8.3.3具有供热需求为例。开启阀门4.2、4.3、4.5、7.6、6.7.1、6.7.2、6.7.3、6.8.1、6.8.2、6.8.3、7.9.1、7.9.2、7.9.3、7.10.1、7.10.2、7.10.3、 8.9.1、8.9.2、8.9.3、8.10.1、8.10.2、8.10.3,关闭其他阀门,关闭自然能源采集器2,关闭压缩机6.1、8.1,开启膨胀阀7.4.1、7.4.2、7.4.3,关闭膨胀阀6.4.1、6.4.2、6.4.3、8.4.1、8.4.2、8.4.3,开启第一循环泵1.1、第二循环泵1.2、第三循环泵1.3让第一循环回路200、第二循环回路300和第三循环回路400均能运行,开启压缩机7.1,调整四通换向阀7.2,使其运行在制热模式,室内机7.3.1、7.3.2、7.3.3成为冷凝器,室外机7.5成为蒸发器;在热泵循环的作用下,制出的热量经过制冷剂管路7.3.1.2、7.3.2.2、7.3.3.2时,一方面在风机7.3.1.3、7.3.2.3、7.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,另一方面制冷剂管路7.3.1.2、7.3.2.2、7.3.3.2分别与载冷剂管路7.3.1.1、7.3.2.1、7.3.3.1换热,将热量传递至第三循环回路400;在第三循环泵1.3的循环作用下,在载冷剂管路7.3.1.1、7.3.2.1、7.3.3.1处得到的热量经过载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1、阀门7.10.1、阀门7.10.2、阀门7.10.3、第三循环泵1.3、阀门7.9.1、阀门7.9.2、阀门7.9.3、阀门8.9.1、阀门8.9.2、阀门8.9.3、载冷剂管路7.3.1.1、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1、载冷剂管路8.3.1.1、载冷剂管路8.3.2.1、载冷剂管路8.3.3.1、阀门7.10.1、阀门7.10.2、阀门7.10.3、阀门8.10.1、阀门8.10.2、阀门8.10.3、第三循环泵1.3形成循环回路,热量经过载冷剂管路8.3.1.1、载冷剂管路8.3.2.1、载冷剂管路8.3.3.1时在风机8.3.1.3、8.3.2.3、8.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,实现供热小负荷模式;室外机7.5作为蒸发器产生的冷量通过换热从制冷剂管路7.5.2转移至载冷剂管路7.5.1,在第一循环泵1.1的循环作用下,制冷剂管路7.5.1的冷量经过载冷剂管路7.5.1、第一循环泵1.1、阀门4.2、主换热器3、阀门4.3、阀门7.6、载冷剂管路7.5.1形成循环回路,使第一循环回路200收集冷量,冷量经过主换热器3时传递至第二循环回路300;在第二循环泵1.2的循环作用下,载冷剂管路在主换热器3处得到的冷量经过主换热器3、阀门4.5、阀门6.7.1、阀门6.7.2、阀门6.7.3、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、第二循环泵1.2、主换热器3形成循环回路,第二循环回路300在主换热器3处得到的冷量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1时,分别在风机6.3.1.3、6.3.2.3、6.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成冷风为室内房间提供供冷需求,实现蒸发器免费供冷模 式;综合二者,该系统可实现“供热小负荷+蒸发器免费供冷”模式,一方面,供热小负荷模式将负荷集中到较少数量的热泵机组中,提高机组的负荷率,有利于提高机组能效,另一方面,利用热泵机组供热时蒸发器产生的冷量进行免费供冷,可节约热泵机组用于制冷的能耗。
(10)实现“供热小负荷+供冷小负荷”工作模式的过程如下:
如附图11所示,当部分房间需要供热、部分房间需要供冷且房间冷、热负荷均较小时,以室内机6.3.1、6.3.2、6.3.3、7.3.1具有供冷需求,室内机7.3.2、7.3.3、8.3.1、8.3.2、8.3.3具有供热需求为例。开启阀门4.6、6.7.1、6.7.2、6.7.3、6.8.1、6.8.2、6.8.3、7.7.1、7.8.1、7.9.2、7.9.3、7.10.2、7.10.3、8.9.1、8.9.2、8.9.3、8.10.1、8.10.2、8.10.3,关闭其他阀门,关闭自然能源采集器2,关闭压缩机7.1,开启膨胀阀6.4.1、6.4.2、6.4.3、8.4.1、8.4.2、8.4.3,关闭膨胀阀7.4.1、7.4.2、7.4.3,关闭第一循环泵1.1,开启第二循环泵1.2、第三循环泵1.3,让第二循环回路300和第三循环回路400均能运行;开启压缩机6.1,调整四通换向阀6.2,使其运行在制冷模式,室内机6.3.1、6.3.2、6.3.3成为蒸发器,室外机6.5成为冷凝器;开启压缩机8.1,调整四通换向阀8.2,使其运行在制热模式,室内机8.3.1、8.3.2、8.3.3成为冷凝器,室外机8.5成为蒸发器;在热泵循环的作用下,压缩机6.1制出的冷量经过制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2时,一方面在风机6.3.1.3、6.3.2.3、6.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成冷风为室内房间提供供冷需求,另一方面制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2分别与载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1换热,将冷量传递至第二循环回路300;在第二循环泵1.2的循环作用下,在载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1处得到的冷量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、第二循环泵1.2、阀门4.6、阀门6.7.1、阀门6.7.2、阀门6.7.3、阀门7.7.1、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、载冷剂管路7.3.1.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、阀门7.8.1、第二循环泵1.2形成循环回路,冷量经过载冷剂管路7.3.1.1时在风机7.3.1.3的作用下,传递至第二空气换热通道106中的空气换热,形成冷风为室内房间提供供冷需求,实现供冷小负荷模式;另外,在热泵循环的作用下,压缩机8.1制出的热量经过制冷剂管路8.3.1.2、8.3.2.2、8.3.3.2时,一方面在风机8.3.1.3、8.3.2.3、8.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热 需求,另一方面制冷剂管路8.3.1.2、8.3.2.2、8.3.3.2分别与载冷剂管路8.3.1.1、8.3.2.1、8.3.3.1换热,将热量传递至第三循环回路400;在第三循环泵1.3的循环作用下,在载冷剂管路8.3.1.1、8.3.2.1、8.3.3.1处得到的热量经过载冷剂管路8.3.1.1、载冷剂管路8.3.2.1、载冷剂管路8.3.3.1、阀门8.10.1、阀门8.10.2、阀门8.10.3、第三循环泵1.3、阀门7.9.2、阀门7.9.3、阀门8.9.1、阀门8.9.2、阀门8.9.3、载冷剂管路7.3.2.1、载冷剂管路7.3.3.1、载冷剂管路8.3.1.1、载冷剂管路8.3.2.1、载冷剂管路8.3.3.1、阀门7.10.2、阀门7.10.3、阀门8.10.1、阀门8.10.2、阀门8.10.3、第三循环泵1.3形成循环回路,热量经过载冷剂管路7.3.2.1、载冷剂管路7.3.3.1时在风机7.3.2.3、7.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,实现供热小负荷模式;综合二者,该系统可实现“供热小负荷+供冷小负荷”模式,该模式将负荷集中到较少数量的热泵机组中,提高机组的负荷率,有利于提高机组能效。
(11)实现“供冷小负荷+供热除霜”工作模式的过程如下:
在附图11“供热小负荷+供冷小负荷”模式的基础上,处于制热模式的压缩机8.1运行一段时间后,室外机8.5可能出现结霜现象,此时开启阀门4.2、4.4、6.6、8.6,开启第一循环泵1.1,在第一循环泵1.1的循环作用下,空调室外机6.5作为冷凝器产生的热量经过载冷剂管路6.5.1、第一循环泵1.1、阀门4.2、阀门4.4、阀门6.6、阀门8.6、载冷剂管路6.5.1、载冷剂管路8.5.1、第一循环泵1.1形成循环回路,热量在载冷剂管路8.5.1处用于除霜,实现供热除霜模式;综合附图11的“供热小负荷+供冷小负荷”模式,附图12可实现“供冷小负荷+供热除霜”模式,减少了除霜所需能耗,供热保障性得到提高。
另外,如附图13所示,为了实现房间的间歇供暖功能,本实施例还包括多个换热装置,换热装置分别并联接通于第二循环回路300和第三循环回路400,通过设置阀门分别控制换热装置与第二循环回路300之间以及换热装置与第三循环回路400之间的导通与关闭,各个换热装置为顶棚式热辐射器、墙壁式热辐射器、地板式热辐射器、液体储热器中的至少一种。通过增加换热装置,可以使系统实现如下工作模式:
(12)“间歇供暖”模式启动阶段的运行过程如下:
如附图14所示,假设具有两个换热装置,两个空调机组100、每个空调机组100上具有三个空调室内机。以空调室内机6.3.1、空调室内机6.3.2、空调室 内机6.3.3、换热装置5.1属于同一个房间(第一房间),空调室内机7.3.1、空调室内机7.3.2、空调室内机7.3.3、换热装置5.2属于同一个房间(第二房间)为例,并以第一房间具有供热需求、第二房间无供热需求为例。开启压缩机6.1,调整四通换向阀6.2,使其运行在制热模式,室内机6.3.1、6.3.2、6.3.3成为冷凝器,室外机6.5成为蒸发器;在热泵循环的作用下,制出的热量经过制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2时,一方面在风机6.3.1.3、6.3.2.3、6.3.3.3的作用下,传递至第二空气换热通道106中的空气,形成热风为室内房间提供供热需求,满足快速响应的需求,另一方面制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2分别与载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1换热,将热量传递至第二循环回路300;在第二循环泵1.2的循环作用下,在载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1处得到的热量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、第二循环泵1.2、阀门4.6、阀门6.7.1、阀门6.7.2、阀门6.7.3、阀门5.2.1、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、换热装置5.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、阀门5.3.1、第二循环泵1.2形成循环回路,热量经过换热装置5.1时通过辐射散热室内房间提供供热需求。同理,仅第二房间具有供热需求、第一房间与第二房间均有供热需求等情况时,通过仅开启压缩机7.1或同时开启压缩机6.1、7.1也可实现以上功能,此处不再赘述;同理,房间具有供冷需求时,也可实现以上功能,此处不再赘述;同理;当第一与第二房间具有不同供热/冷需求时,如第一房间具有供热需求、第二房间具有供冷需求,可结合附图10~附图13的运行模式实现以上功能,此处不再赘述;同理,若人员在室内停留时间较短,在辐射换热末端的温度达到目标温度前就已离开,则在启动阶段也可仅产生热风,不再将热水供入辐射供热末端,此处不再赘述;同理,每个房间的多个室内机不一定全部开启,可仅开启其中的一部分,也可实现以上功能,此处不再赘述;同理,每个房间不局限于仅有一个辐射换热装置(如:换热装置5.1),当房间具有多个换热装置时,也可实现以上功能,此处不再赘述;在间歇供暖模式的启动阶段,此系统既可以产生热风也可产生热水,用热风提升室内温度的速度较快,但由于热惯性,热水通入辐射换热末端以提升室内温度的速度较慢;当房间此前并无供热、房间温度较低时,为快速提高室内温度,采用吹出热风以快速升温,产生的热水通入辐射供热末端缓慢提高室内温度,二者同时起到升温作用。
(12)“间歇供暖”模式稳定阶段的运行过程如下:
如附图15所示,假设具有两个换热装置,两个空调机组100、每个空调机组100上具有三个空调室内机。以室内机6.3.1、室内机6.3.2、室内机6.3.3、换热装置5.1属于同一个房间(第一房间),室内机7.3.1、室内机7.3.2、室内机7.3.3、换热装置5.2属于同一个房间(第二房间)为例,并以第一房间具有供热需求、第二房间无供热需求为例。在附图12间歇供暖模式启动阶段运行的基础上。当室内温度达到或接近所需温度时,此时关闭风机6.3.1.3、6.3.2.3、6.3.3.3;在热泵循环的作用下,制出的热量经过制冷剂管路6.3.1.2、6.3.2.2、6.3.3.2分别与载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1换热,将热量传递至第二循环回路300;在第二循环泵1.2的循环作用下,在载冷剂管路6.3.1.1、6.3.2.1、6.3.3.1处得到的热量经过载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、第二循环泵1.2、阀门4.6、阀门6.7.1、阀门6.7.2、阀门6.7.3、阀门5.2.1、载冷剂管路6.3.1.1、载冷剂管路6.3.2.1、载冷剂管路6.3.3.1、换热装置5.1、阀门6.8.1、阀门6.8.2、阀门6.8.3、阀门5.3.1、第二循环泵1.2形成循环回路,热量经过换热装置5.1时通过辐射散热室内房间提供供热需求;通过此种模式,稳定阶段优先采用辐射供暖以满足室内舒适需求。同理,仅第二房间具有供热需求、第一房间与第二房间均有供热需求等情况时,通过仅开启压缩机7.1或同时开启压缩机6.1、7.1也可实现以上功能,此处不再赘述;同理,房间具有供冷需求时,也可实现以上功能,此处不再赘述;同理;当第一与第二房间具有不同供热/冷需求时,如第一房间具有供热需求、第二房间具有供冷需求,可结合附图10~附图13的运行模式实现以上功能,此处不再赘述;同理,每个房间不局限于仅有一个辐射换热装置(如:换热装置5.1),当房间具有多个换热装置时,也可实现以上功能,此处不再赘述;经历间歇供暖模式的启动阶段后,通入热水的辐射换热末端的温度已达到目标温度,进入间歇供暖模式的稳定阶段,此时无需送入热风,仅通过辐射供热末端承担热负荷;由于辐射供热所需温度品位低于热风,因此当无需送入热风后,热泵机组供应的温度品位可降低,有利于提高机组效率,降低能耗。
对于附图14的间歇供暖模式的启动阶段及附图15的间歇供暖模式的稳定阶段两种模式,启动阶段优先采用热风以快速响应,稳定运行后以冷热水辐射供冷热为主,稳定阶段模式可采用更低品位的能源以降低能耗,因此该二种模式可 避免辐射供暖因热惯性大而不方便关闭的缺点,实现辐射供冷/热的间歇运行。
如附图16所示,当第一循环回路200和第三循环回路400中使用的载冷剂为同种介质时,可将主换热器3变成通路,将第一循环回路200和第三循环回路400合并成一个循环回路。该实施例同样可以实现附图2~附图15中的运行模式,本实施例的系统实现上述运行模式的原理和操作方式与上文中描述的实施例类似,本申请在此不再赘述。当第一循环回路200和其他循环回路使用同种载冷剂时,通过该方式不仅可以节约管路材料,而且可以减少不同介质在主换热器3进行热交换时造成的能量品位损失,进一步提升水氟多联机在能量自由调度时的效率。
通过上述各个运行模式可以得出,本申请提供的一种多模式水氟多联机系统相比于现有技术,具有如下突出的实质性特点和显著的技术进步:
(1)该系统在所有室外换热器并联在一个环路的基础上,将所有室内换热器同时并联在另外两个相互独立的环路上,所有室内换热器的进出口均可自由地在两个环路上切换连接,从而实现两个环路不同的运行参数,室内换热器可按照不同房间功能进行分区,组成不同的独立环路;
(2)室外换热器所在的环路和室内换热器所在环路分别用两套独立的环路室外换热器所在的环路和室内换热器所在分别用两套独立的环路相连,二者通过换热器实现热力工况的连接;
(3)两个环路二者均可连接自然能源或其他能源回收设备,更灵活地使用自然能源或回收能源,进一步提升系统能效;
(4)该系统可实现两个不同的运行参数,实现各系统冷热量的自由调度,避免掺混导致能量品位的损失,且能使用不同种类的载冷剂,兼顾防冻和换热的优势;
(5)本申请的系统能具备多种运行模式,通过各种运行模式除了能实现专利申请号为201920627088.8的中国实用新型专利公开的一种多模式水环多联机空调系统的全部功能外,还能便于匹配不同参数的自然能源与不同末端的用能需求,进一步提升了系统在部分负荷甚至是极小负荷下的运行效率,避免同时供冷、同时供热等工况,及系统需求不同时导致的能量掺混,不受制冷剂环和水环运行参数的限制,可以实现室内换热器随意切换制冷或制热模式;
(6)可以兼顾间歇供暖的快速响应和热舒适性的需求;
(7)该系统可实现自然能源高效利用、能量回收、各系统之间的冷热量自由调度,通过自由调度热量实现除霜功能,并能提升小负荷下的运行效率,确保空调系统能在全年稳定高效地运行。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种多模式水氟多联机系统,包括若干个空调机组(100),各个空调机组(100)分别包括制冷剂循环回路(101)以及至少一个室外换热器(102)和至少一个室内换热器(103),各个空调机组(100)内的制冷剂循环回路(101)相互独立,所述室外换热器(102)和室内换热器(103)内分别设有第一介质通道(104),各个空调机组(100)内的室外换热器(102)和室内换热器(103)分别通过第一介质通道(104)接通于各个相互独立的制冷剂循环回路(101),通过设置膨胀阀分别控制各个室内换热器(103)内的第一介质通道(104)的导通、关闭与流量调节,所述制冷剂循环回路(101)内设置有用于驱使冷媒流动的压缩机以及用于切换冷媒流动方向的四通换向阀,其特征在于,还包括第一循环回路(200)、第二循环回路(300)以及主换热器(3),所述第一循环回路(200)设有第一循环泵(1.1)和自然能源采集器(2),所述第二循环回路(300)设有第二循环泵(1.2),所述第一循环回路(200)和第二循环回路(300)通过所述主换热器(3)实现相互换热,各个所述室外换热器(102)和室内换热器(103)内还分别设置有第二介质通道(105),各个所述空调机组(100)的室外换热器(102)分别通过内部的第二介质通道(105)并联接通于所述第一循环回路(200),以使所述第一循环回路(200)能通过各个所述第二介质通道(105)分别与各个室外换热器(102)内的第一介质通道(104)相互换热,各个所述室外换热器(102)内还分别设置有第一空气换热通道(107),所述第一空气换热通道(107)与室外换热器(102)内的第一介质通道(104)和/或第二介质通道(105)相互换热,并通过设置风机驱使所述第一空气换热通道(107)内的热量随气流向外界传递;各个所述空调机组(100)的室内换热器(103)分别通过内部的第二介质通道(105)并联接通于所述第二循环回路(300),以使所述第二循环回路(300)能通过各个所述第二介质通道(105)分别与各个室内换热器(103)内的第一介质通道(104)相互换热,通过设置阀门分别控制各个所述室外换热器(102)内的第二介质通道(105)与所述第一循环回路(200)之间的导通与关闭,并且通过设置阀门分别控制各个所述室内换热器(103)内的第二介质通道(105)与所述第二循环回路(300)之间的导通与关闭,各个所述室内换热器(103)内还分别设置有第二空气换热通道(106),所述第二空气换热通道(106)与室内换热器(103)内的 第一介质通道(104)和/或第二介质通道(105)相互换热,并通过设置风机驱使所述第二空气换热通道(106)内的热量随气流向室内传递。
  2. 根据权利要求1所述的多模式水氟多联机系统,其特征在于,还包括第三循环回路(400),所述第三循环回路(400)设有第三循环泵(1.3),各个所述空调机组(100)的室内换热器(103)分别通过内部的第二介质通道(105)并联接通于所述第三循环回路(400),以使所述第三循环回路(400)能通过各个所述第二介质通道(105)分别与各个室内换热器(103)内的第一介质通道(104)和/或第二空气换热通道(106)相互换热,所述第三循环回路(400)与所述第二循环回路(300)之间通过设置阀门分隔,并且通过阀门分别控制第三循环回路(400)与各个第二介质通道(105)之间的导通与关闭。
  3. 根据权利要求2所述的多模式水氟多联机系统,其特征在于,还包括至少一个换热装置,所述换热装置分别并联接通于所述第二循环回路(300)和/或第三循环回路(400),通过设置阀门分别控制换热装置与第二循环回路(300)之间以及换热装置与第三循环回路(400)之间的导通与关闭。
  4. 根据权利要求1所述的多模式水氟多联机系统,其特征在于,所述第一循环回路(200)设有第一旁路(201),所述第一旁路(201)并联接通于所述自然能源采集器(2)的两端,所述第一旁路(201)和自然能源采集器(2)分别通过设置阀门控制导通与关闭。
  5. 根据权利要求1所述的多模式水氟多联机系统,其特征在于,所述第一循环回路(200)上并联接通有第二旁路(202),所述第二循环回路(300)上并联接通有第三旁路(301),所述第二旁路(202)和第三旁路(301)分别并联接通于所述主换热器(3)的两端,所述第二旁路(202)、第三旁路(301)以及主换热器(3)分别通过设置阀门控制导通与关闭。
  6. 根据权利要求1所述的多模式水氟多联机系统,其特征在于,所述第二循环回路(300)通过旁路接通有自然能源采集器,所述自然能源采集器通过旁路接通在所述第二循环泵(1.2)与主换热器(3)之间。
  7. 根据权利要求1所述的多模式水氟多联机系统,其特征在于,所述空调机组(100)为具有热回收功能的多联式空调机组,以使所述空调机组(100)可以实现热回收功能并通过内部的制冷剂管路实现多个室内换热器之间的冷热量相互转移。
  8. 根据权利要求1或6任一项所述的多模式水氟多联机系统,其特征在于,所述自然能源采集器为地热能采集装置、地下热水热能采集装置、太阳能集热装置、间接蒸发冷却装置、冷却塔、建筑废热采集装置、工业余热采集装置中的至少一种。
  9. 根据权利要求2所述的多模式水氟多联机系统,其特征在于,所述第一循环回路(200)、第二循环回路(300)和第三循环回路(400)内的循环介质为水或防冻液。
  10. 根据权利要求9所述的多模式水氟多联机系统,其特征在于,当所述第一循环回路(200)所使用的载冷剂与所述第二循环回路(300)或所述第三循环回路(400)所使用的载冷剂为同种介质时,所述主换热器为连通所述第一循环回路(200)与所述第二循环回路(300)或所述第三循环回路(400)之间的通路,以使得所述第二循环回路(300)或所述第三循环回路(400)中的一个与所述第一循环回路(200)合并成第四循环回路(500),所述第二循环回路(300)或所述第三循环回路(400)中的另一个形成第五循环回路(600)且将所述室外换热器(102)并联接入其中。
PCT/CN2022/097286 2021-06-21 2022-06-07 多模式水氟多联机系统 WO2022267877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22827373.6A EP4343214A1 (en) 2021-06-21 2022-06-07 Multi-mode water-fluorine multi-split system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110687908.4A CN113483412B (zh) 2021-06-21 2021-06-21 多模式水氟多联机系统
CN202110687908.4 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022267877A1 true WO2022267877A1 (zh) 2022-12-29

Family

ID=77933933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097286 WO2022267877A1 (zh) 2021-06-21 2022-06-07 多模式水氟多联机系统

Country Status (3)

Country Link
EP (1) EP4343214A1 (zh)
CN (1) CN113483412B (zh)
WO (1) WO2022267877A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483412B (zh) * 2021-06-21 2022-04-15 清华大学 多模式水氟多联机系统
CN114909713A (zh) * 2022-04-18 2022-08-16 青岛海尔空调电子有限公司 空调系统及其控制方法、装置、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282434A1 (en) * 2008-03-31 2010-11-11 Mitsubishi Electric Corporation Air conditioning and hot water supply complex system
CN110160178A (zh) * 2019-05-05 2019-08-23 清华大学 基于自然能源的热泵空调系统
CN110160179A (zh) * 2019-05-05 2019-08-23 清华大学 热泵空调系统
CN110160171A (zh) * 2019-05-05 2019-08-23 清华大学 一种多模式水环多联机空调系统
CN111998581A (zh) * 2020-09-10 2020-11-27 清华大学 自除霜式空气源热量采集装置及其运行方法
CN112413750A (zh) * 2020-11-12 2021-02-26 珠海格力电器股份有限公司 多联机系统及其制冷、制热方法
CN113483412A (zh) * 2021-06-21 2021-10-08 清华大学 多模式水氟多联机系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009071074A2 (de) * 2007-12-07 2009-06-11 Hombuecher Heinz-Dieter Vorrichtung zur steigerung der heiz- und kühlleistung einer wärmepumpe in der wärmerückgewinnung in lüftungsgeräten
CN101701737B (zh) * 2009-10-28 2011-09-14 东南大学 一种热泵驱动的溶液除湿空调装置
CN102252385A (zh) * 2011-05-15 2011-11-23 杭州兴环科技开发有限公司 双回路空调系统
CN103017481A (zh) * 2012-12-14 2013-04-03 广东吉荣空调有限公司 低温冷凝式油气回收机及其运行方法
CN103322662B (zh) * 2013-06-27 2015-01-21 江苏天舒电器有限公司 采用热风扩展工作温度并具有独立双换热回路的制冷系统
CN105318466B (zh) * 2015-11-13 2019-04-23 清华大学 一种蓄热型空气源热泵冷热水系统及其运行方法
CN106091480B (zh) * 2016-06-15 2018-10-16 清华大学 一种双向吸收式换热器
CN108302834A (zh) * 2017-01-12 2018-07-20 维谛技术有限公司 空调系统
CN109383228B (zh) * 2018-09-29 2020-05-05 珠海格力电器股份有限公司 一种热泵空调器及其控制方法
CN209672626U (zh) * 2019-01-21 2019-11-22 天津商业大学 一种改进的单、双级混合热泵系统
CN109764572A (zh) * 2019-01-23 2019-05-17 李社红 一种热泵机组及具有其的空调系统
CN210267538U (zh) * 2019-05-05 2020-04-07 清华大学 一种多模式水环多联机空调系统
US20200386447A1 (en) * 2019-06-05 2020-12-10 Lin-Shu Wang Heat pump management of low-grade-heat in buildings
EP3760951B1 (en) * 2019-07-05 2022-04-27 Carrier Corporation Air handling unit and method for controlling such an air handling unit
CN111288682A (zh) * 2020-03-12 2020-06-16 广东省特种设备检测研究院珠海检测院 制冷与冷热回收综合系统及制冷与冷热回收综合利用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282434A1 (en) * 2008-03-31 2010-11-11 Mitsubishi Electric Corporation Air conditioning and hot water supply complex system
CN110160178A (zh) * 2019-05-05 2019-08-23 清华大学 基于自然能源的热泵空调系统
CN110160179A (zh) * 2019-05-05 2019-08-23 清华大学 热泵空调系统
CN110160171A (zh) * 2019-05-05 2019-08-23 清华大学 一种多模式水环多联机空调系统
CN111998581A (zh) * 2020-09-10 2020-11-27 清华大学 自除霜式空气源热量采集装置及其运行方法
CN112413750A (zh) * 2020-11-12 2021-02-26 珠海格力电器股份有限公司 多联机系统及其制冷、制热方法
CN113483412A (zh) * 2021-06-21 2021-10-08 清华大学 多模式水氟多联机系统

Also Published As

Publication number Publication date
CN113483412A (zh) 2021-10-08
CN113483412B (zh) 2022-04-15
EP4343214A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
CN205678804U (zh) 一种带有自然冷却功能的风冷冷水机组和空调器
WO2022267877A1 (zh) 多模式水氟多联机系统
CN109610683B (zh) 装配式空调墙及其运行方法
CN102788392A (zh) 一种热管热泵复合系统
CN108662714B (zh) 一种空气能热泵热回收独立新风机组
CN109341138B (zh) 机房和热水系统的组合空调系统及其控制方法
CN109340960B (zh) 机房和房间的组合空调系统及其控制方法
CN109357426B (zh) 用于机房和房间的组合式空调系统及其控制方法
CN209763378U (zh) 基于蒸发冷却与机械制冷相结合的空调机组
CN102721128A (zh) 一种利用水库水作冷源或热源的水电空调系统
CN108626836B (zh) 一种空气能热泵热回收兼具加湿功能的独立新风机组
CN106839217B (zh) 脱电独立运行复合式热泵空调系统及其控制方法
CN113819548A (zh) 一种冷冻水热回收空调系统及其使用方法
CN109357427B (zh) 用于机房和热水系统的组合式空调系统及其控制方法
CN1587864A (zh) 一种半复叠式热泵供冷供热方法及空调系统
CN109915968B (zh) 一种防堵塞的蒸发冷却结合机械制冷的空调机组
CN102679484A (zh) 以地热能为单一辅助冷热源的水环热泵式空调系统
CN110160180A (zh) 一种复合能源空气处理机组
CN216048111U (zh) 带全热回收的双源一体式空气源热泵机组
CN101799223B (zh) 全年候空气源热泵三用机组及其运行方法
CN113803816A (zh) 一种耦合全年供冷系统的水源vrf空调系统及其使用方法
CN210267538U (zh) 一种多模式水环多联机空调系统
CN210267577U (zh) 基于自然能源的热泵空调系统
CN109612156B (zh) 包含节能式热泵系统的装配式空调墙及其运行方法
CN203132025U (zh) 一种基站机房空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827373

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827373

Country of ref document: EP

Effective date: 20231222

NENP Non-entry into the national phase

Ref country code: DE