WO2022267624A1 - 浅水域浮式风电系统及其动态缆组件 - Google Patents

浅水域浮式风电系统及其动态缆组件 Download PDF

Info

Publication number
WO2022267624A1
WO2022267624A1 PCT/CN2022/085638 CN2022085638W WO2022267624A1 WO 2022267624 A1 WO2022267624 A1 WO 2022267624A1 CN 2022085638 W CN2022085638 W CN 2022085638W WO 2022267624 A1 WO2022267624 A1 WO 2022267624A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic cable
cable
dynamic
connecting plate
buoyancy
Prior art date
Application number
PCT/CN2022/085638
Other languages
English (en)
French (fr)
Inventor
叶金钰
潘盼
祝庆斌
刘栋
Original Assignee
中天科技海缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技海缆股份有限公司 filed Critical 中天科技海缆股份有限公司
Priority to EP22827127.6A priority Critical patent/EP4206462A1/en
Publication of WO2022267624A1 publication Critical patent/WO2022267624A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • H02G1/10Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle in or under water
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/12Installations of electric cables or lines in or on the ground or water supported on or from floats, e.g. in water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present application relates to offshore wind power generation technology, in particular to a floating wind power system in shallow water and a dynamic cable assembly thereof.
  • a floating wind power system includes a floating wind turbine, a dynamic cable and a static cable. One end of the dynamic cable is connected to the floating wind turbine and the other end is connected to the static cable. That is, the power generated by the floating wind turbine can be transmitted through the dynamic cable and the static cable.
  • the line type of the dynamic cable mainly presses the dynamic cable into an "S" or "W” shape through buoyancy blocks or counterweights.
  • the axial tension of the dynamic cable is relieved during the deflection of the floating fan.
  • both the buoyancy block and the counterweight need to be fixed on the dynamic cable.
  • the buoyancy block applies upward buoyancy to the dynamic cable, and the counterweight applies downward pressure to the dynamic cable, thereby setting the line shape of the dynamic cable to a preset value. set shape.
  • the embodiment of the present application provides a shallow water floating wind power system and its dynamic cable assembly to solve the problem that when the sea conditions are relatively bad, the existing dynamic cable will drift in a large range under the action of waves and ocean currents, and the dynamic cable will drift in a large range. After drifting, it is easy to collide with the floating wind turbine or the anchor chain of the floating wind turbine and cause failure.
  • a dynamic cable assembly for a floating wind power system in shallow water including:
  • the first end of the dynamic cable is used to connect to the floating wind turbine, and the second end of the dynamic cable is used to connect to the static cable;
  • a plurality of said buoyancy units, a plurality of said buoyancy units are arranged at intervals on said dynamic cable;
  • connection unit includes a mooring chain and an elastic cable, the bottom end of the elastic cable is fixedly connected to the seabed, and the top end of the elastic cable is fixedly connected to a position close to the bottom end of the mooring chain, The top end of the mooring chain is fixedly connected to the dynamic cable;
  • connection unit and the buoyancy unit jointly define the line shape of the dynamic cable, and the line shape of the dynamic cable includes a first wave trough section connected with the floating wind turbine, a wave valley section connected with the first wave trough section A plurality of crest sections and a second trough section between two adjacent crest sections; each of the buoyancy units is correspondingly arranged on the top of one of the crest sections, and each of the connecting units is correspondingly arranged on a The peak section is away from the side of the floating fan.
  • the elastic cable includes a first connecting plate, a second connecting plate and a spring, the first connecting plate is parallel to the second connecting plate and the first connecting plate is located at the Above the second connecting plate, one end of the spring is fixed to the first connecting plate, and the other end of the spring is fixed to the second connecting plate; the middle part of the first connecting plate is provided with a through hole, The position near the bottom end of the mooring chain passes through the through hole of the first connecting plate and is fixedly connected with the first connecting plate.
  • connection unit further includes a monitoring component and an anchor, the monitoring component is provided with a wireless communication module, the main part of the monitoring component is fixedly connected to the dynamic cable, and the mooring chain is the power line of the monitoring component;
  • the anchor is fixedly connected with the seabed and the second connecting plate is installed on the top of the anchor, the middle part of the second connecting plate is provided with a through hole, the inside of the anchor is provided with a power supply, and the power transmission The bottom end of the wire passes through the through hole of the second connection plate and is connected to the power supply inside the anchor.
  • the monitoring component can monitor the force and motion state of the connection between the dynamic cable and the mooring chain. The device sends an alarm signal.
  • the length of a part of the power transmission line between the first connection plate and the second connection plate is greater than the maximum length of the spring.
  • the main part of the monitoring component is connected to the dynamic cable through a bending-limiting caliper
  • the bending-limiting caliper includes a clamping section and cone sections located on both sides of the clamping section , the cone section is made of elastic material and the large-diameter end of the cone section is fixedly connected to the clamping section; the dynamic cable is passed through the two cone sections, and the clamping The segment is firmly connected with the part of the dynamic cable located between the two cone segments; the main part of the monitoring component is firmly connected with the clamping segment.
  • the bending-limiting caliper can also increase the fatigue resistance of the dynamic cable and improve the service life of the dynamic cable.
  • the buoyancy unit includes a plurality of buoyancy blocks, the buoyancy blocks are fastened to the dynamic cable, and the plurality of buoyancy blocks are arranged at intervals along the extending direction of the dynamic cable.
  • the number of buoyancy blocks can increase the net buoyancy of the buoyancy unit, thereby improving the bearing capacity of the dynamic cable. It is not easy for shells, seaweed and other organisms to attach to the dynamic cable in shallow water The line shape of the dynamic cable is lowered to reduce the risk of scratching between the dynamic cable and the seabed.
  • the distance between two adjacent buoyancy blocks in the buoyancy unit is 1-2 times the length of the buoyancy blocks.
  • the bending limiting cylinder is made of elastic material, the bending limiting cylinder is formed into a conical structure, and the large diameter end of the conical structure is provided with multiple A bolt for fastening connection with the floating fan, the first end of the dynamic cable is passed through the inside of the tapered structure and fixedly connected with the floating fan.
  • a counterweight is further included, the counterweight is fastened to the dynamic cable, and the counterweight is installed on the first valley section.
  • a floating wind power system in shallow water including a floating wind turbine, a static cable, and the above-mentioned dynamic cable assembly;
  • the floating wind turbine is floating on the sea surface
  • the static cable is fixed on the seabed
  • one end of the dynamic cable in the dynamic cable assembly is electrically connected to the floating wind turbine, and the other end is electrically connected to the static cable.
  • the dynamic cable assembly used in the shallow water floating wind power system of the present application the dynamic cable is used to connect the floating wind turbine and the static cable, and both the buoyancy unit and the connection unit are connected to the dynamic cable.
  • the connection unit and the buoyancy unit jointly define the line shape of the dynamic cable.
  • the line shape of the dynamic cable includes the first valley section, the peak section and the second valley section. fan side. In this way, the dynamic cable can meet the offset of the floating wind turbine through the deformation of the first wave trough section, the wave crest section and the second wave trough section.
  • the side of the wave peak section away from the floating wind turbine is connected to the seabed through the connecting unit.
  • connection unit will limit the position of the dynamic cable to avoid collision failure due to large-scale drift of the dynamic cable.
  • the connecting unit can act as a buffer through the elastic deformation of the elastic cable, reduce the impact load on the dynamic cable, and avoid damage to the connection between the dynamic cable and the mooring chain due to excessive impact .
  • Fig. 1 is a schematic structural diagram of a shallow water power generation system provided by an embodiment of the present application
  • Fig. 2 is the partially enlarged schematic diagram of place A in Fig. 1;
  • Fig. 3 is a schematic structural diagram of the elastic cord provided by the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another shallow water power generation system provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural view of the buoyancy block provided by the embodiment of the present application.
  • Figure 6 is a left view of the buoyancy block in Figure 5;
  • FIG. 7 is a schematic structural diagram of a bending-limiting caliper provided in an embodiment of the present application.
  • Fig. 8 is a left view of the bending limiting caliper in Fig. 7;
  • Fig. 9 is a schematic structural diagram of a bending limiting cylinder provided in an embodiment of the present application.
  • Fig. 10 is a left view of the bending limiting cylinder in Fig. 9;
  • FIG. 11 is a schematic structural view of a counterweight provided in an embodiment of the present application.
  • Fig. 12 is a left side view of the counterweight in Fig. 11 .
  • the dynamic cable mainly presses the dynamic cable into an "S" or "W” shape through buoyancy blocks or counterweights.
  • the "S" or “W” line shape ensures that the dynamic cable can meet the large-scale offset of the floating fan
  • the axial tension of the dynamic cable is relieved during the deflection of the fan. Specifically, both the buoyancy block and the counterweight need to be fixed on the dynamic cable.
  • the buoyancy block applies upward buoyancy to the dynamic cable, and the counterweight applies downward pressure to the dynamic cable, thereby setting the line shape of the dynamic cable to a preset value. set shape.
  • the dynamic cable in order to ensure the uninterrupted power generation of the floating wind power system in shallow waters, the dynamic cable must have a high degree of integrity, that is, the structure of the dynamic cable will not be damaged.
  • the dynamic cable will drift in a large range under the action of waves and ocean currents. After the dynamic cable drifts in a large range, on the one hand, the dynamic cable is easily pulled and broken in the water; on the other hand, the dynamic cable The cable is easy to collide with the floating wind turbine or the anchor chain of the floating wind turbine and fail.
  • the connecting unit can be used to connect the part of the dynamic cable to the seabed and the connecting unit is provided with elastic cables, the elastic deformation of the elastic cables can reduce the impact of the dynamic cable on waves and ocean currents.
  • the shock loads experienced, the joint elements and the buoyancy elements together define the line shape of the dynamic cable.
  • the line shape of the dynamic cable includes a first valley section connected with the floating wind turbine, a plurality of peak sections connected with the first valley section, and a second valley section between two adjacent peak sections.
  • connection unit can prevent the dynamic cable itself from drifting in a large range, and prevent the dynamic cable from colliding with the floating wind turbine or the anchor chain of the floating wind turbine to cause failure.
  • the applicant designed a dynamic cable assembly for a floating wind power system in shallow water, including: a dynamic cable, multiple buoyancy units and multiple connection units.
  • the dynamic cable is used to connect the floating wind turbine and the static cable
  • the connection unit connects the dynamic cable to the seabed through elastic cables and mooring chains.
  • the buoyancy unit and the connecting unit define the line shape of the dynamic cable
  • the line shape of the dynamic cable includes the first wave trough section connected to the floating wind turbine, a plurality of wave peak sections connected to the first wave trough section, and the wave between two adjacent wave peak sections. the second trough segment.
  • Each buoyancy unit is correspondingly arranged on the top of a wave crest section, and each connecting unit is correspondingly arranged on a side of a wave crest section away from the floating fan.
  • the dynamic cable can meet the large-scale deviation of the floating wind turbine.
  • the connection unit can prevent the dynamic cable from drifting in a large range and collide with the floating wind turbine or the anchor chain of the floating wind turbine to cause failure, and
  • the elastic cables connecting the units can absorb impact loads and prevent the dynamic cables from being damaged due to excessive impact.
  • FIG. 1 is a schematic structural diagram of a shallow water power generation system provided by the embodiment of the present application
  • Fig. 2 is a partially enlarged schematic diagram of A in Fig. 1
  • Fig. 3 is a schematic structural diagram of the elastic cable provided by the embodiment of the present application
  • Fig. 4 is A schematic structural view of another shallow water power generation system provided by the embodiment of the present application
  • Figure 5 is a schematic structural view of the buoyant block provided by the embodiment of the present application
  • Figure 6 is a left view of the buoyant block in Figure 5
  • Figure 7 is the implementation of the present application
  • FIG. 8 is the left view of the bending limiting caliper in FIG. 7
  • FIG. 8 is the left view of the bending limiting caliper in FIG. 7
  • FIG. 8 is the left view of the bending limiting caliper in FIG. 7
  • FIG. 8 is the left view of the bending limiting caliper in FIG.
  • FIG. 9 is the structural schematic diagram of the bending limiting cylinder provided in the embodiment of the present application; FIG. Views; FIG. 11 is a schematic structural view of the counterweight provided by the embodiment of the present application; FIG. 12 is a left view of the counterweight in FIG. 11 .
  • the dynamic cable assembly for shallow water floating wind power system includes a dynamic cable 100, a plurality of buoyancy units and a plurality of connection units 300, the first end of the dynamic cable 100 is used to connect the floating The fan 700, the second end of the dynamic cable 100 is used to connect the static cable.
  • Fig. 1 shows that the left end of the dynamic cable 100 is electrically connected to the floating wind turbine 700, and the right end of the dynamic cable 100 is used to connect a static cable such as a power cable or a static array formed by a plurality of static cables.
  • the dynamic cable 100 can be used to transmit power and/or communication control signals, and those skilled in the art can set the specific structure of the dynamic cable 100 according to the specific type of signal transmitted by the dynamic cable 100.
  • This embodiment is here for the dynamic cable 100
  • the specific structure is not limited.
  • the connection unit 300 includes a mooring chain 310 and an elastic cable 320, the bottom end of the elastic cable 320 is fixedly connected to the seabed 800, the top end of the elastic cable 320 is fixedly connected to the position near the bottom of the mooring chain 310, and the top end of the mooring chain 310 It is fixedly connected with the dynamic cable 100 .
  • the elastic cable 320 can be elastically deformed when subjected to tension, so that the length of the elastic cable is elongated, and the length of the elastic cable 320 returns to the original state after the tension disappears.
  • the connection unit 300 the mooring chain 310 and the elastic cable 320 of the connection unit 300 can limit the dynamic cable 100, that is, limit the maximum distance between the position where the dynamic cable 100 is connected to the mooring chain 310 and the seabed 800 , in addition, the mooring chain 310 and the elastic cable 320 can also prevent the dynamic cable 100 from rising to the sea surface 900 under the buoyancy of the buoyancy unit.
  • connection unit 300 and the buoyancy unit jointly define the line shape of the dynamic cable 100
  • the line shape of the dynamic cable 100 includes the first wave trough section 110 connected to the floating wind turbine 700, and the multiple wave trough sections connected to the first wave trough section 110.
  • the peak section 120 and the second valley section 130 between two adjacent peak sections 120, for example, the length of the peak section 120 may be 1-1.5 times the water depth. It is worth mentioning that the height of the top of the wave crest section 120 is less than the height of the sea surface 900, so as to avoid direct sunlight on the dynamic cable 100 to cause aging of the outer sheath of the dynamic cable 100 and ensure the service life of the dynamic cable 100.
  • the number of peak sections 120 is non-limiting, it can be two or more, and those skilled in the art can set it according to the offset of the floating fan 700, for example, when the number of peak sections 120 is more At this time, by setting the length of the peak section 120, the dynamic cable 100 can meet the requirement of the water depth offset of the floating wind turbine 700 more than twice.
  • Each buoyancy unit is correspondingly arranged on the top of a wave crest section 120, that is, the height of the dynamic cable 100 on both sides of the buoyancy unit is smaller than the height of the dynamic cable 100 where the buoyancy unit is installed.
  • Each connecting unit 300 is correspondingly arranged on a side of a crest section 120 away from the floating wind turbine 700.
  • the first trough section 110, the second trough section 130, and the peak section 120 can be deformed To meet the offset of the floating fan 700, and when the floating fan 700 returns to its original position, the first trough section 110, the second trough section 130, and the peak section 120 also return to their original positions to restore the line shape of the dynamic cable 100 To the preset state, that is, the state before the floating wind turbine 700 deflects.
  • the line type of the dynamic cable 100 is defined by the buoyancy unit and the connection unit 300 provided on the dynamic cable 100 , so that the dynamic cable 100 can meet the deflection of the floating wind turbine 700 .
  • the connection unit 300 includes a mooring chain 310 and an elastic cable, and the maximum distance between the position where the dynamic cable 100 and the mooring chain 310 are connected to the seabed 800 is limited by the mooring chain 310 and the elastic cable, so as to avoid the dynamic cable 100 being in a bad situation.
  • the dynamic cable 100 under the impact of the dynamic cable 100 under the impact of the ocean current perpendicular to the linear direction, the dynamic cable 100 will not drift in a large range as a whole, and then the anchor chain between the dynamic cable 100 and the floating wind turbine 700 or the floating wind turbine 700 can be avoided. collision, and the elastic cable 320 elastically elongates when the dynamic cable 100 is subject to a large impact, thereby absorbing the impact load received by the dynamic cable 100, the dynamic cable 100 can have a high degree of integrity, that is, the structure of the dynamic cable 100 will not be damaged Collision damage ensures the stability of power and/or signal transmission by the dynamic cable 100 .
  • the elastic cable 320 includes a first connecting plate 321, a second connecting plate 322 and a spring 323.
  • the shapes of the first connecting plate 321 and the second connecting plate 322 may be circular, And the size of the first connecting plate 321 and the second connecting plate 322 are equal.
  • the first connecting plate 321 is parallel to the second connecting plate 322 and the first connecting plate 321 is positioned above the second connecting plate 322.
  • One end of the spring 323 is fixed to the first connecting plate 321, and the other end of the spring 323 is connected to the second connecting plate 322. fixed. It is easy to understand that the number of springs 323 is not limited.
  • the number of springs 323 is multiple, and the multiple springs 323 are uniformly arranged around the axes of the first connecting plate 321 and the second connecting plate 322 .
  • the middle part of the first connecting plate 321 is provided with a through hole, and the mooring chain 310 near the bottom end is penetrated inside the through hole of the first connecting plate 321 and is fixedly connected with the first connecting plate 321 .
  • the through hole of the mooring chain 310 and the first connecting plate 321 can be fixed in various ways, for example, the mooring chain 310 can be welded with the first connecting plate 321 after passing through the through hole of the first connecting plate 321 fixed.
  • the elastic cable 320 absorbs the impact load of the dynamic cable 100 through elastic elongation, so as to prevent the position where the dynamic cable 100 is connected with the mooring chain 310 from being damaged due to excessive impact.
  • the connection unit 300 also includes a monitoring component 330 and an anchor 340 .
  • the monitoring component 330 is provided with a wireless communication module, that is, the monitoring component 330 can communicate with a remote device through the wireless communication module.
  • the wireless communication module includes an acoustic energy converter and an acoustic wave transmitter
  • the remote device includes an acoustic wave receiver system.
  • the remote device is configured with a display component, and the staff can understand the status of the dynamic cable 100 through the information displayed by the display component.
  • the main part of the monitoring component 330 is fixedly connected with the dynamic cable 100 , and the monitoring component 330 is also provided with a power line connected with the main part of the monitoring component 330 .
  • the main part of the monitoring component 330 also includes a stress module, a displacement module and a temperature module, wherein the stress module is used to monitor the force at the joint between the dynamic cable 100 and the monitoring component 330, which may be a stress sensor; the temperature module is used for For monitoring the temperature at the connection between the dynamic cable 100 and the monitoring component 330, it can be an infrared temperature sensor; the displacement module is used to monitor the height of the connection between the dynamic cable 100 and the monitoring component 330, and it can be a radar displacement sensor or a laser displacement sensor.
  • the stress module, the displacement module and the temperature module are transmitted to the remote device through the wireless communication device, so that the remote staff can know the specific state of the dynamic cable 100 through the remote device.
  • This embodiment does not limit the structure of the monitoring component 330 here, and those skilled in the art can select any suitable monitoring component 330 according to actual needs, and of course, existing monitoring components 330 on the market can also be selected.
  • the power line of the monitoring component 330 is provided with an armor layer, so as to ensure that the power line of the monitoring component 330 has sufficient tensile strength.
  • the mooring chain 310 is the power line of the monitoring component 330 , that is, the power line of the monitoring component 330 is used as the mooring chain 310 .
  • This embodiment does not limit the structure of the monitoring component 330 here, and those skilled in the art can select any suitable monitoring component 330 according to actual needs, and of course, existing monitoring components 330 on the market can also be selected.
  • the anchor 340 is fixedly connected with the seabed 800. As shown in FIG. For other suitable shapes, those skilled in the art can set the anchor 340 according to actual needs.
  • the second connecting plate 322 is installed on the top of the anchor 340 , for example, the second connecting plate 322 can be installed on the top of the anchor 340 by a fastener such as a screw.
  • the inside of the anchor 340 is provided with a power supply, which can be a battery or other power supply device, and the bottom end of the power line passes through the through hole of the second connecting plate 322 and is connected to the power supply inside the anchor 340 .
  • the monitoring component 330 can monitor the force and displacement state of the connection between the dynamic cable 100 and the mooring chain 310, When the force and displacement at this place exceed the set value, for example, when the force at the connection between the monitoring component 330 and the mooring chain 310 is too large or when there are too many sea creatures attached to the dynamic cable 100, the monitoring component 330 can communicate through the wireless communication module. An alarm signal is sent to the remote equipment to alert the staff that there is an abnormality in the dynamic cable 100.
  • the length of the part of the power line of the monitoring component 330 located between the first connecting plate 321 and the second connecting plate 322 is greater than the maximum length of the spring 323, that is to say, the power line of the monitoring component 330 is located at The portion between the first connecting plate 321 and the second connecting plate 322 has a certain reserve margin to ensure that the spring 323 of the elastic cable 320 will not be broken when stretched.
  • Figure 1, Figure 4, Figure 9 and Figure 10 show that the first end of the dynamic cable 100 is also provided with a limited bending cylinder 500, the bending limiting cylinder 500 is made of an elastic material such as polyester amine, and is made of elastic material to limit bending barrel 500 so that the bend limiting barrel 500 can bend a small amount.
  • the bending limiting cylinder 500 is formed into a conical structure, and the large-diameter end of the conical structure is provided with a plurality of bolts 510 fastened to the floating fan 700 , for example, a plurality of bolts 510 are arranged at intervals around the axis of the bending limiting cylinder 500 , and the extension direction of the bolt 510 is parallel to the axial direction of the bending restricting cylinder 500 .
  • the floating fan 700 is provided with a flange for fastening connection with the large-diameter end of the bending-limiting cylinder 500 , the flange is provided with a plurality of through holes matching the bolts 510 , and the large-diameter end of the bending-limiting cylinder 500 It can be firmly connected with the floating fan 700 through bolts 510 and flanges.
  • the middle part of the bending limiting cylinder 500 is provided with a through hole coaxial with the bending limiting cylinder 500, and the first end of the dynamic cable 100 is passed through the through hole in the middle part of the bending limiting cylinder 500 inside the tapered structure. It is fixedly connected with the floating fan 700.
  • the bending limiting cylinder 500 is provided at the first end of the dynamic cable 100, the bending limiting cylinder 500 is formed into a conical structure and the large-diameter end of the conical structure is firmly connected with the floating fan 700, and the dynamic The first end of the cable 100 is passed through the inside of the conical structure and is fixedly connected to the floating fan 700 .
  • the bending limiting tube 500 covering the first end of the dynamic cable 100 can prevent the connection between the dynamic cable 100 and the floating fan 700 Excessive bending occurs, so that the first end of the dynamic cable 100 can be prevented from being damaged due to stress concentration, and the transmission stability of the dynamic cable 100 can be ensured.
  • the axis of the bending limiting cylinder 500 is arranged obliquely. One end extends in the same direction.
  • the buoyancy unit includes a plurality of buoyancy blocks 200, and the buoyancy blocks 200 are firmly connected with the dynamic cable 100.
  • the buoyancy blocks 200 can be made of buoyancy materials, and the density of the buoyancy materials is less than Seawater density, so the buoyancy block 200 can provide upward buoyancy for the dynamic cable 100 in seawater.
  • the buoyancy block 200 is formed into a cylindrical structure, and the buoyancy block 200 is sleeved on the dynamic cable 100 and firmly connected with the dynamic cable 100 .
  • the cross-section of the buoyant block 200 is not limited to a circle, for example, the cross-sectional shape of the buoyant block 200 can also be any suitable shape such as square or polygon.
  • a plurality of buoyancy blocks 200 are arranged at intervals along the extending direction of the dynamic cable 100. It is easy to understand that the number of buoyancy blocks 200 in each buoyancy unit is not limited, and those skilled in the art can set it according to actual needs. Setting the number of buoyancy blocks 200 to a plurality can increase the net buoyancy of the buoyancy unit, thereby improving the load-carrying capacity of the dynamic cable 100. Marine organisms such as shells and seaweed that grow on the dynamic cable 100 are not easy to move the line of the dynamic cable 100. Type depression, thereby reducing the risk of scratching between the dynamic cable 100 and the seabed 800 .
  • the dynamic cable 100 in order to make the line shape of the dynamic cable 100 into a preset shape, it is necessary to accurately calculate the volume of the buoyancy material in the buoyancy block 200 so that the net buoyancy of the buoyancy unit reaches a preset value.
  • the dynamic cable 100 is connected to the seabed 800 through the elastic cable 320 of the connection unit 300 and the mooring chain 310, and the net buoyancy of the buoyancy unit can exceed the preset value of the buoyancy unit in the existing dynamic cable assembly.
  • Set the value, the elastic cable 320 and the mooring chain 310 can prevent the dynamic cable 100 from being lifted to the sea surface 900 by the buoyancy force of the buoyancy block 200 .
  • the dynamic cable assembly provided by this embodiment has a large margin in the design and selection of the buoyancy block 200, and at the same time, there is a large margin in the assembly error and construction error of the buoyancy block 200, so that it can Improve assembly efficiency of dynamic cable assemblies.
  • the distance between two adjacent buoyancy blocks 200 in the buoyancy unit is 1-2 times the length of the buoyancy block 200 .
  • the dynamic cable 100 bends downward between two adjacent buoyancy blocks 200 under the action of its own gravity, and the distance between two adjacent buoyancy blocks 200 is set as buoyancy block 200 1-2 times of the length can avoid excessive bending of the dynamic cable 100 in the middle of the two buoyancy blocks 200, thereby ensuring the stability of the dynamic cable 100 for power and/or signal transmission.
  • the main part of the monitoring component 330 is connected with the dynamic cable 100 through the bending limiting caliper 400, and the bending limiting caliper 400 is used to limit the dynamic cable 100 and the mooring chain 310. That is to monitor the bending radius of the connection between the power lines of the component 330 to avoid stress concentration caused by excessive bending of the dynamic cable 100 , resulting in rupture of the outer sheath of the dynamic cable 100 and failure of functional units of the dynamic cable 100 .
  • the bending limiting caliper 400 includes a clamping section 410 and two cone sections 420, the two cone sections 420 are respectively located on both sides of the clamping section 410, and the cone sections 420 are made of elastic materials such as polyester amine This allows the cone section 420 to bend slightly.
  • the large-diameter end of the cone section 420 is fixedly connected to the clamping section 410 , for example, the large-diameter end of the cone section 420 can be fixed to the clamping section 410 through a flange.
  • the dynamic cable 100 is passed through the two cone sections 420 , and the clamping section 410 is fastened to the part of the dynamic cable 100 located between the two cone sections 420 .
  • the clamping section 410 includes two snap-fit parts, and the two snap-fit parts define a cylindrical structure.
  • the dynamic cable 100 The two snap-fit parts are threaded between the two snap-fit parts, and the two snap-fit parts can be fastened by fasteners. Further, glue can be injected between the dynamic cable 100 and the two buckled parts to improve the stability of the connection between the dynamic cable 100 and the clamping section 410 .
  • the dynamic cable 100 is passed through the two cone sections 420 and the part of the dynamic cable 100 located between the two cone sections 420 is clamped by the two fastened parts of the clamping section 410, which can also increase the resistance of the dynamic cable 100.
  • the main body of the monitoring assembly 330 is fastened to the clamping section 410 , for example, the main body of the monitoring assembly 330 can be fastened to the clamping section 410 of the bending limiting caliper 400 by using screws.
  • the dynamic cable assembly further includes a counterweight 600 , which is firmly connected with the dynamic cable 100 , and the counterweight 600 is installed on the first valley section 110 .
  • the counterweight 600 is also a cylindrical structure defined by two buckled parts, and the counterweight 600 is sleeved on the dynamic cable 100 and is firmly connected with the dynamic cable 100 . It is easy to understand that the material density of the counterweight 600 is greater than that of seawater, so that when the counterweight 600 is firmly connected to the dynamic cable 100 , the counterweight 600 can exert downward gravity on the dynamic cable 100 .
  • the number of counterweights 600 may also be multiple, and the plurality of counterweights 600 are arranged at intervals along the extending direction of the dynamic cable 100 .
  • the counterweight 600 exerts a downward gravity on the dynamic cable 100, and the gravity of the counterweight 600 can prevent the dynamic cable 100 from being located in the floating wind turbine. 700 and the part between the buoyancy units floats above the sea surface 900.
  • the gravity of the counterweight 600 and the buoyancy of the buoyancy unit make the line shape of the dynamic cable 100 include the first trough section 110 connected to the floating fan 700 and the peak section 120 connected to the first trough section 110, that is to say , by setting the counterweight 600, the dynamic cable 100 can form a preset line shape in seawater, thereby improving the ability of the dynamic cable 100 to resist the impact of ocean currents and waves.
  • This embodiment also provides a floating wind power system in shallow water, including a floating wind turbine, a static cable, and the dynamic cable assembly in the first embodiment.
  • the floating fan floats on the sea surface.
  • the floating fan includes a fan, a central tower and a floating platform, wherein the fan can be a three-blade fan, and the fan is installed on the top of the central tower, and the bottom of the central tower
  • the terminal is arranged on a floating platform, and the floating platform can be a Spar (single-column type), a barge or a semi-submersible platform, etc., and this embodiment is not limited here.
  • the static cable is fixed to the seabed, for example, the static cable may be fastened to the surface of the seabed by fasteners.
  • One end of the dynamic cable in the dynamic cable assembly is electrically connected to the floating wind turbine, for example, one end of the dynamic cable can be suspended on the floating platform of the floating wind turbine and electrically connected to the wind turbine on the floating platform, and the other end is electrically connected to the static cable , so that when the sea breeze drives the wind turbine to rotate, the power generated by the wind turbine can be transmitted through dynamic cables and static cables.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application based on specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Power Engineering (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种浅水域浮式风电系统及其动态缆组件。浅水域浮式风电系统用动态缆组件包括动态缆(100)、多个浮力单元以及多个连接单元(300),连接单元(300)包括系泊链(310)、弹性索(320)和锚固(340),动态缆(100)通过系泊链(310)与弹力索(320)与海床(800)连接;连接单元(300)与浮力单元共同限定出动态缆(100)的线型,动态缆(100)的线型包括第一波谷段(110)、多个波峰段(120)以及相邻两个波峰段(120)之间的第二波谷段(130);浮力单元包括多个浮力块(200),其设置在波峰段(120)的顶端,连接单元(300)设置在波峰段(120)远离浮式风机(700)的一侧。一种浅水域浮式风电系统包括浮式风机(700)和动态缆组件,浮式风机(700)通过限弯筒(500)与动态缆组件连接。浅水域浮式风电系统用动态缆组件,当海况较为恶劣时,动态缆(100)不会发生大范围的漂移,并且当动态缆(100)受到的冲击过大时,弹性索(320)可以降低动态缆(100)受到的冲击载荷,避免动态缆(100)与系泊链(310)之间的连接处因冲击过大而发生破坏。

Description

浅水域浮式风电系统及其动态缆组件
本申请要求于2021年06月21日提交中国专利局、申请号为202110686385.1、申请名称为“浅水域浮式风电系统及其动态缆组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及海上风力发电技术,尤其涉及一种浅水域浮式风电系统及其动态缆组件。
背景技术
随着新能源的发展与应用,浮式风电系统的应用已成为获取优质风资源和降低施工成本的必然趋势,目前,浮式风电系统主要应用在水深小于60m的浅水域。浮式风电系统包括浮式风机、动态缆以及静态缆,动态缆的一端与浮式风机连接、另一端与静态缆连接,即浮式风机产生的电力可以经过动态缆以及静态缆实现传输。
目前,动态缆的线型主要通过浮力块或配重块将动态缆压成“S”或“W”型,“S”或“W”线型可以满足浮式风机的大范围偏移,在浮式风机偏移的过程中缓解动态缆的轴向拉力。具体而言,浮力块以及配重块均需要固定在动态缆上,浮力块为动态缆施加向上的浮力,配重块为动态缆施加向下的压力,从而将动态缆的线型设置成预设的形状。
然而,当海况较为恶劣时,动态缆会在波浪和洋流的作用下发生大范围的漂移,动态缆发生大范围漂移后容易与浮式风机或浮式风机的锚链发生碰撞而发生失效。
发明内容
本申请实施例提供一种浅水域浮式风电系统及其动态缆组件,以解决当海况较为恶劣时,现有动态缆会在波浪和洋流的作用下发生大范围的漂移,动态缆发生大范围漂移后容易与浮式风机或浮式风机的锚链发生碰撞而发生失效的问题。
根据本申请实施例的一方面,提供一种浅水域浮式风电系统用动态缆组件,包括:
动态缆,所述动态缆的第一端用于连接浮式风机,所述动态缆的第二端用于连接静态缆;
多个所述浮力单元,多个所述浮力单元相互间隔设置在所述动态缆上;
多个连接单元,所述连接单元包括系泊链与弹性索,所述弹性索的底端与海床固定连接,所述弹性索的顶端与所述系泊链的靠近底端的位置固定连接,所述系泊链的顶端与所述动态缆固定连接;
所述连接单元与所述浮力单元共同限定出所述动态缆的线型,所述动态缆的线型包括与所述浮式风机相连的第一波谷段、与所述第一波谷段相连的多个波峰段以及相邻两个所述波峰段之间的第二波谷段;每个所述浮力单元均对应设置在一个所述波峰段的顶端,每个所述连接单元均对应设置在一个所述波峰段远离所述浮式风机的一侧。
在一种可选的实现方式中,所述弹性索包括第一连接板、第二连接板以及弹簧,所述第一连接板与所述第二连接板平行并且所述第一连接板位于所述第二连接板的上方,所述弹簧的一端与所述第一连接板固定,所述弹簧的另一端与所述第二连接板固定;所述第一连接板的中部设置有通孔,所述系泊链靠近底端的位置穿设在所述第一连接板的通孔内部并与所述第一连接板固定连接。本领域技术人员能够理解的是,当动态缆所受到的冲击过大时,弹性索通过弹簧的伸长可以起到一定缓冲的作用,避免动态缆与系泊链连接的位置处因冲击过大而遭到破坏。
在一种可选的实现方式中,所述连接单元还包括监测组件以及锚固,所述监测组件设置有无线通信模块,所述监测组件的主体部分与所述动态缆固定连接,所述系泊链为所述监测组件的输电线;
所述锚固与所述海床固定连接并且所述第二连接板安装在所述锚固的顶端,所述第二连接板的中部设置有通孔,所述锚固的内部设置有电源,所述输电线的底端穿过所述第二连接板的通孔并与所述锚固内部的电源连接。本领域技术人员能够理解的是,监测组件可以监测动态缆与系泊链连接处的受力和运动状态,当该处的受力和位移超过设定值时,监测组件 通过无线通信模块向远程设备发送警报信号。
在一种可选的实现方式中,所述输电线位于所述第一连接板与所述第二连接板之间的部分长度大于弹簧伸长的最大长度。本领域技术人员能够理解的是,通过上述设置,在弹簧拉伸时保证输电线不会被拉断。
在一种可选的实现方式中,所述监测组件的主体部分与所述动态缆通过限弯卡钳连接,所述限弯卡钳包括夹紧段以及位于所述夹紧段两侧的锥筒段,所述锥筒段由弹性材料制成并且所述锥筒段的大径端与所述夹紧段固定连接;所述动态缆穿设在两个所述锥筒段内,所述夹紧段与所述动态缆位于两个所述锥筒段之间的部分紧固连接;所述监测组件的主体部分与所述夹紧段紧固连接。本领域技术人员能够理解的是,通过设置限弯卡钳,利用限弯卡钳限制动态缆的弯曲半径,避免动态缆过度弯曲产生应力集中导致动态缆的外护套破裂以及动态缆的功能单元失效,限弯卡钳还可以增大动态缆的抗疲劳性能,提高动态缆的使用寿命。
在一种可选的实现方式中,所述浮力单元包括多个浮力块,所述浮力块与所述动态缆紧固连接,多个所述浮力块沿所述动态缆的延伸方向间隔设置。本领域技术人员能够理解的是,将浮力块的数量设置为多个,可以增大浮力单元的净浮力,进而提高动态缆的承载能力,浅水域内贝壳、海藻等生物附着在动态缆上不容易将动态缆的线型压低,减少动态缆与海床出现剐蹭的风险。
在一种可选的实现方式中,所述浮力单元中相邻两个所述浮力块之间的间距为所述浮力块长度的1-2倍。本领域技术人员能够理解的是,通过上述设置,可以避免动态缆位于两个浮力块中间的区域出现过弯的情况,从而保证动态缆传输的稳定性。
在一种可选的实现方式中,还包括限弯筒,所述限弯筒由弹性材料制成,所述限弯筒形成为锥形结构,所述锥形结构的大径端设置有多个用于与所述浮式风机紧固连接的螺栓,所述动态缆的第一端穿设在所述锥形结构内部并与所述浮式风机固定连接。本领域技术人员能够理解的是,通过设置限弯筒,可以避免动态缆的第一端出现过弯的情况,保证动态缆传输的稳定性。
在一种可选的实现方式中,还包括配重块,所述配重块与所述动态缆紧固连接,所述配重块安装在所述第一波谷段。本领域技术人员能够理解的是,通过在第一波谷段朝向浮式风机一侧设置配重块,配重块为动态缆施加向下的重力,一方面使动态缆形成第一波谷段,另一方面,可以防止动态缆漂浮在海面以上。
根据本申请实施例的另一方面,提供一种浅水域浮式风电系统,包括浮式风机、静态缆以及上述的动态缆组件;
所述浮式风机漂浮在海面上,所述静态缆固定在海床上,所述动态缆组件中动态缆的一端与所述浮式风机电连接、另一端与所述静态缆电连接。
本领域技术人员能够理解的是,本申请的浅水域浮式风电系统用动态缆组件,动态缆用于连接浮式风机以及静态缆,浮力单元与连接单元均与动态缆连接。连接单元与浮力单元共同限定出动态缆的线型,动态缆的线型包括第一波谷段、波峰段以及第二波谷段,浮力单元设置在波峰段的顶端,连接单元位于波峰段远离浮式风机一侧。这样,动态缆可以通过第一波谷段、波峰段以及第二波谷段的变形来满足浮式风机的偏移,波峰段远离浮式风机的一侧与海床通过连接单元连接,当海况较为恶劣时,连接单元会对动态缆起到限位的作用,避免动态缆出现大范围漂移而出现碰撞失效,另外,由于连接单元的系泊链与海床之间设置有弹性索,当动态缆受到的冲击过大时,连接单元可以通过弹性索发生弹性变形而起到缓冲的作用,降低动态缆所受到的冲击载荷,避免动态缆与系泊链之间的连接处因冲击过大而发生破坏。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种浅水域发电系统的结构示意图;
图2为图1中A处的局部放大示意图;
图3为本申请实施例提供的弹性索的结构示意图;
图4为本申请实施例提供的另一种浅水域发电系统的结构示意图;
图5为本申请实施例提供的浮力块的结构示意图;
图6为图5中浮力块的左视图;
图7为本申请实施例提供的限弯卡钳的结构示意图;
图8为图7中限弯卡钳的左视图;
图9为本申请实施例提供的限弯筒的结构示意图;
图10为图9中限弯筒的左视图;
图11为本申请实施例提供的配重块的结构示意图;
图12为图11中配重块的左视图。
附图标记说明:
100、动态缆;             110、第一波谷段;
120、波峰段;             130、第二波谷段;
200、浮力块;             300、连接单元;
310、系泊链;             320、弹性索;
321、第一连接板;         322、第二连接板;
323、弹簧;               330、监测组件;
340、锚固;               400、限弯卡钳;
410、夹紧段;             420、锥筒段;
500、限弯筒;             510、螺栓;
600、配重块;             700、浮式风机;
800、海床;               900、海面。
具体实施方式
首先,本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。本领域技术人员可以根据需要对其做出调整,以便适应具体的应用场合。
其次,需要说明的是,在本申请的描述中,术语“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示装置或构件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
目前,我国海域近岸水深变化小,水深普遍不超过60m,同时浮式风机所处海域通常环境非常恶劣,浮式风机会在风、浪、流的加载下发生非常大的偏移。动态缆主要通过浮力块或配重块将动态缆压成“S”或“W”型,“S”或“W”线型保证动态缆可以满足浮式风机的大范围偏移,并且在浮式风机偏移的过程中缓解动态缆的轴向拉力。具体而言,浮力块以及配重块均需要固定在动态缆上,浮力块为动态缆施加向上的浮力,配重块为动态缆施加向下的压力,从而将动态缆的线型设置成预设的形状。然而,为了保证浅水域浮式风电系统能够不间断的发电,动态缆必须具有高度的完整性,即动态缆的结构不会被破坏。当海况较为恶劣时,动态缆会在波浪和洋流的作用下发生大范围的漂移,动态缆发生大范围漂移后,一方面,动态缆在水中容易被牵拉拉断;在另一方面,动态缆容易与浮式风机或浮式风机的锚链发生碰撞而发生失效。
经过反复思考与验证,申请人发现,如果可以使用连接单元将动态缆的部分与海床连接起来并且连接单元设置有弹力索,通过弹力索的弹性变形可以降低动态缆在波浪和洋流冲击时所受到的冲击载荷,连接单元以及浮力单元共同限定出动态缆的线型。其中,动态缆的线型包括与浮式风机相连的第一波谷段、与第一波谷段相连的多个波峰段以及相邻两个波峰段之间的第二波谷段。这样,当浮式风机发生偏移时,动态缆通过第一波谷段以及波峰段的变形满足浮式风机的偏移,并且当浮式风机偏移时第一波谷段以及波峰段的变形可以缓解动态缆的轴向拉力。另外,当海况较为恶劣时,连接单元可以防止动态缆自身发生大范围漂移,避免动态缆与浮式风机或浮式风机的锚链发生碰撞而失效。
有鉴于此,申请人设计了一种浅水域浮式风电系统用动态缆组件,包括:动态缆、多个浮力单元与多个连接单元。其中,动态缆用于连接浮式风机与静态缆,连接单元通过弹性索与系泊链将动态缆与海床进行连接。浮力单元与连接单元限定出动态缆的线型,动态缆的线型包括与浮式风机相连的第一波谷段、与第一波谷段相连的多个波峰段以及相邻两个波峰段之间的第二波谷段。每个浮力单元均对应设置在一个波峰段的顶端,每个连接单元均对应设置在一个波峰段远离浮式风机的一侧。这样,动态缆可以满足浮式风机大范围的偏移,当海况较为恶劣时,连接单元可以防止动 态缆发生大范围漂移而与浮式风机或浮式风机的锚链发生碰撞而造成失效,并且连接单元的弹性索可以起到吸收冲击载荷的作用,避免动态缆受到冲击过大而发生破坏。
实施例一
图1为本申请实施例提供的一种浅水域发电系统的结构示意图;图2为图1中A处的局部放大示意图;图3为本申请实施例提供的弹性索的结构示意图;图4为本申请实施例提供的另一种浅水域发电系统的结构示意图;图5为本申请实施例提供的浮力块的结构示意图;图6为图5中浮力块的左视图;图7为本申请实施例提供的限弯卡钳的结构示意图;图8为图7中限弯卡钳的左视图;图9为本申请实施例提供的限弯筒的结构示意图;图10为图9中限弯筒的左视图;图11为本申请实施例提供的配重块的结构示意图;图12为图11中配重块的左视图。
如图1所示,本实施例提供的浅水域浮式风电系统用动态缆组件,包括动态缆100、多个浮力单元以及多个连接单元300,动态缆100的第一端用于连接浮式风机700,动态缆100的第二端用于连接静态缆。图1示出了,动态缆100的左端与浮式风机700电连接,动态缆100的右端用于连接静态缆例如电力电缆或者由多个静态缆形成的静态阵列。容易理解,动态缆100可以用于传输电力和/或通讯控制信号,本领域技术人员可以根据动态缆100传输信号的具体种类设置动态缆100的具体结构,本实施例此处对于动态缆100的具体结构并不限制。
如图1-图2所示,多个浮力单元相互间隔设置在动态缆100上,容易理解,浮力单元的密度小于海水的密度,浮力单元设置在动态缆100上可以为动态缆100提供向上的浮力。连接单元300包括系泊链310与弹性索320,弹性索320的底端与海床800固定连接,弹性索320的顶端与系泊链310的靠近底端的位置固定连接,系泊链310的顶端与动态缆100固定连接。容易理解,弹性索320在受到拉力时可以发生弹性变形,从而弹力索的长度伸长,在拉力消失后,弹性索320的长度恢复初始状态。通过设置连接单元300,连接单元300的系泊链310以及弹性索320可以对动态缆100进行限位,即限制动态缆100与系泊链310连接的位置处与海床800 之间的最大间距,另外,系泊链310以及弹性索320还可以防止动态缆100在浮力单元的浮力作用下升至海面900。
继续参照图1,连接单元300与浮力单元共同限定出动态缆100的线型,动态缆100的线型包括与浮式风机700相连的第一波谷段110、与第一波谷段110相连的多个波峰段120以及相邻两个波峰段120之间的第二波谷段130,示例性地,波峰段120的长度可以为水深的1-1.5倍。值得一提的是,波峰段120顶端的高度小于海面900的高度,从而避免阳光直接照射到动态缆100上使动态缆100的外护套发生老化,保障动态缆100的使用寿命。容易理解,波峰段120的数量为非限制性的,其可以为两个或者多个,本领域技术人员可以根据浮式风机700的偏移量进行设置,例如,当波峰段120的数量为多个时,通过设置波峰段120的长度可以使动态缆100能够满足浮式风机700两倍以上水深偏移量的要求。每个浮力单元均对应设置在一个波峰段120的顶端,即动态缆100上位于浮力单元两侧部分的高度小于安装有浮力单元处动态缆100的高度。每个连接单元300均对应设置在一个波峰段120远离浮式风机700的一侧,当浮式风机700发生偏移时,第一波谷段110、第二波谷段130以及波峰段120可以通过变形来满足浮式风机700的偏移,并且当浮式风机700回到原位时,第一波谷段110、第二波谷段130以及波峰段120同样回到原位使动态缆100的线型回复到预设状态即浮式风机700发生偏移之前的状态。
本领域技术人员能够理解的是,利用设置在动态缆100上的浮力单元以及连接单元300限定出动态缆100的线型,使得动态缆100能够满足浮式风机700的偏移。连接单元300包括系泊链310与弹力索,通过系泊链310以及弹力索限制动态缆100与系泊链310连接的位置与海床800之间的最大间距,避免动态缆100在恶劣的情况下,例如动态缆100在垂直于线型方向洋流冲击的作用下,动态缆100不会出现整体大范围的漂移,进而可以避免动态缆100与浮式风机700或浮式风机700的锚链发生碰撞,并且,弹性索320在动态缆100受到较大冲击时发生弹性伸长,从而吸收动态缆100受到的冲击载荷,动态缆100可以具有高度的完整性,即动态缆100的结构不会被碰撞损坏,保证动态缆100传输电力和/或信号的稳定性。
如图1-图3所示,弹性索320包括第一连接板321、第二连接板322以及弹簧323,示例性地,第一连接板321与第二连接板322的形状可以为圆形,并且第一连接板321与第二连接板322的大小相等。第一连接板321与第二连接板322平行并且第一连接板321位于第二连接板322的上方,弹簧323的一端与第一连接板321固定,弹簧323的另一端与第二连接板322固定。容易理解,弹簧323的数量为非限制性的,示意性地,弹簧323的数量为多个,多个弹簧323环绕第一连接板321与第二连接板322的轴线均匀设置。第一连接板321的中部设置有通孔,系泊链310靠近底端的位置穿设在第一连接板321的通孔内部并与第一连接板321固定连接。其中,系泊链310与第一连接板321的通孔可以有多种固定方式,例如,系泊链310穿过第一连接板321的通孔后可以与第一连接板321通过焊接的方式固定。本领域技术人员能够理解的是,当动态缆100所受到的冲击过大时,位于第一连接板321与第二连接板322之间的弹簧323伸长,从而可以起到一定缓冲的作用,也即是说,弹性索320通过弹性伸长来吸收动态缆100的冲击载荷,避免动态缆100与系泊链310连接的位置处因冲击过大而遭到破坏。
如图4所示,连接单元300还包括监测组件330以及锚固340,监测组件330设置有无线通信模块,即监测组件330可以通过无线通信模块与远程设备进行通信连接。示例性地,无线通信模块包括声能转换器和声波发射器,远程设备包括声波接收机系统,同时,远程设备配置有显示组件,工作人员可以通过显示组件显示的信息了解动态缆100的状态。监测组件330的主体部分与动态缆100固定连接,监测组件330还设置有与监测组件330的主体部分连接的输电线。示例性地,监测组件330的主体部分还包括应力模块、位移模块以及温度模块,其中,应力模块用于监测动态缆100与监测组件330连接处的受力,其可以为应力传感器;温度模块用于监测动态缆100与监测组件330连接处的温度,其可以为红外温度传感器;位移模块用于监测动态缆100与监测组件330连接处的高度,其可以为雷达位移传感器或激光位移传感器等,应力模块、位移模块以及温度模块通过无线通信设备传递到远程设备,使得远程的工作人员可以通过远程设备了解到动态缆100的具体状态。本实施例此处对于监测组件330的结构并 不限制,本领域技术人员可以根据实际需要选择任意合适的监测组件330,当然,也可以选择市面上现有的监测组件330。
在一种可能的实现方式中,监测组件330的输电线设置有铠装层,从而保证监测组件330的输电线具备足够的抗拉强度。系泊链310为监测组件330的输电线,即使用监测组件330的输电线作为系泊链310。本实施例此处对于监测组件330的结构并不限制,本领域技术人员可以根据实际需要选择任意合适的监测组件330,当然,也可以选择市面上现有的监测组件330。锚固340与海床800固定连接,图4示出了,锚固340可以为矩形块状结构,其可以埋设在海床800的内部或者通过销钉与海床800紧固连接,当然,锚固340也可以为其他适合形状,本领域技术人员可以根据实际需要对锚固340进行设置。第二连接板322安装在锚固340的顶端,示例性地,第二连接板322可以通过紧固件例如螺钉安装在锚固340的顶端。锚固340的内部设置有电源,电源可以为电池或者其他供电装置,输电线的底端穿过第二连接板322的通孔并与锚固340内部的电源连接。
本领域技术人员能够理解的是,通过设置监测组件330并且使用监测组件330的输电线作为系泊链310,监测组件330可以监测动态缆100与系泊链310连接处的受力和位移状态,当该处的受力和位移超过设定值时,例如监测组件330与系泊链310连接处的受力过大或者动态缆100上附着过多海生物时,监测组件330可以通过无线通信模块向远程设备发送警报信号,提醒工作人员动态缆100出现异常情况。
值得一提的是,监测组件330的输电线位于第一连接板321与第二连接板322之间的部分长度大于弹簧323伸长的最大长度,也即是说,监测组件330的输电线位于第一连接板321与第二连接板322之间的部分拥有一定储备余量,保证弹性索320的弹簧323在拉伸时输电线不会被拉断。
图1、图4、图9与图10示出了,动态缆100的第一端还设置有限弯筒500,限弯筒500由弹性材料例如聚酯胺制成,使用弹性材料制成限弯筒500,使得限弯筒500可以发生少量弯曲。限弯筒500形成为锥形结构,锥形结构的大径端设置有多个与浮式风机700紧固连接的螺栓510,示例性地,多个螺栓510环绕限弯筒500的轴线间隔设置,并且螺栓510的延伸方向平行于限弯筒500的轴线方向。容易理解,浮式风机700设置有用 于与限弯筒500的大径端紧固连接的法兰盘,法兰盘设置有多个与螺栓510匹配的通孔,限弯筒500的大径端可以通过螺栓510以及法兰盘与浮式风机700紧固连接。值得一提的是,限弯筒500的中部设置有与限弯筒500同轴的通孔,动态缆100的第一端穿设在锥形结构内部即限弯筒500中部的通孔中并与浮式风机700固定连接。
本领域技术人员能够理解的是,在动态缆100的第一端设置限弯筒500,限弯筒500形成为锥形结构并且锥形结构的大径端与浮式风机700紧固连接,动态缆100的第一端穿设在锥形结构的内部并与浮式风机700固定连接,包覆在动态缆100第一端的限弯筒500可以防止动态缆100与浮式风机700的连接处出现过度弯曲,从而可以避免动态缆100的第一端因应力集中而发生破坏,保证动态缆100传输的稳定性。
较佳的,如图1与图4所示,限弯筒500的轴线倾斜设置,示例性地,当浮式风机700不发生偏移时,限弯筒500轴线的延伸方向与动态缆100第一端的延伸方向相同。
如图1与图4-图6所示,浮力单元包括多个浮力块200,浮力块200与动态缆100紧固连接,容易理解,浮力块200可以由浮力材料制成,浮力材料的密度小于海水密度,从而浮力块200在海水中可以为动态缆100提供向上的浮力。示例性地,浮力块200形成为筒状结构,浮力块200套设在动态缆100上并与动态缆100紧固连接。值得一提的是,浮力块200的横截面不限于圆形,例如,浮力块200的横截面形状也可以为方形或多边形等任意适合的形状。多个浮力块200沿动态缆100的延伸方向间隔设置,容易理解,每个浮力单元中浮力块200的数量为非限制性的,本领域技术人员可以根据实际需要进行设置。将浮力块200的数量设置为多个,可以增大浮力单元的净浮力,从而可以提高动态缆100的承载能力,动态缆100上滋生的贝壳、海藻等海生物不容易将动态缆100的线型压低,进而降低动态缆100与海床800发生剐蹭的风险。
值得一提的是,现有的动态缆100,为了使动态缆100的线型形成预设的形状,需要精确计算浮力块200中浮力材料的体积,使浮力单元的净浮力达到预设值。本实施例提供的动态缆组件,动态缆100通过连接单元300的弹性索320以及系泊链310与海床800进行连接,其浮力单元的净 浮力可以超出现有动态缆组件中浮力单元的预设值,弹性索320以及系泊链310可以避免动态缆100受浮力块200浮力作用升至海面900。也即是说,本实施例提供的动态缆组件,其浮力块200的设计与选型具有较大裕度,同时,浮力块200的装配误差以及施工误差同样存在较大的裕度,从而能够提高动态缆组件的装配效率。
示例性地,浮力单元中相邻两个浮力块200之间的间距为浮力块200长度的1-2倍。本领域技术人员能够理解的是,动态缆100在自身重力的作用下,在相邻两个浮力块200之间向下弯曲,将相邻两个浮力块200之间的间距设置为浮力块200长度的1-2倍,可以避免动态缆100位于两个浮力块200中间的区域出现过度弯曲的情况,从而可以保证动态缆100传输电力和/或信号的稳定性。
如图4与图7-图8所示,值得一提的是,监测组件330的主体部分与动态缆100通过限弯卡钳400连接,限弯卡钳400用于限制动态缆100与系泊链310即监测组件330的输电线之间连接处的弯曲半径,避免动态缆100过度弯曲产生应力集中导致动态缆100的外护套破裂以及动态缆100的功能单元失效。具体而言,限弯卡钳400包括夹紧段410以及两个锥筒段420,两个锥筒段420分别位于夹紧段410的两侧,锥筒段420由弹性材料例如聚酯胺制成使得锥筒段420可以少量弯曲。锥筒段420的大径端与夹紧段410固定连接,例如,锥筒段420的大径端可以通过法兰与夹紧段410固定。动态缆100穿设在两个锥筒段420内,夹紧段410与动态缆100位于两个锥筒段420之间的部分紧固连接。图7-图8示出了,夹紧段410包括两个扣合的部件,两个扣合的部件限定出筒状结构,在夹紧段410与动态缆100装配的过程中,动态缆100穿设在两个扣合的部件之间由两个扣合的部件夹紧,两个扣合的部件可以使用紧固件紧固。进一步地,可以在动态缆100与两个扣合的部件之间注胶,提高动态缆100与夹紧段410之间连接的稳定性。动态缆100穿设在两个锥筒段420中并且动态缆100位于两个锥筒段420之间的部分被夹紧段410的两个扣合的部分夹紧还可以增加动态缆100的抗疲劳性能,即动态缆100反复弯曲不容易断裂,从而提高动态缆100的使用寿命。监测组件330的主体部分与夹紧段410紧固连接,例如可以使用螺钉将监测组件330的主体部分紧固在限弯卡钳 400的夹紧段410上。
如图4与图11-图12所示,动态缆组件还包括配重块600,配重块600与动态缆100紧固连接,配重块600安装在第一波谷段110。示例性地,配重块600同样为两个扣合的部件限定出的筒状结构,配重块600套设在动态缆100上并与动态缆100紧固连接。容易理解,配重块600的材料密度大于海水密度,从而当配重块600与动态缆100紧固连接时,配重块600能够为动态缆100施加向下的重力。其中,配重块600的数量也可以为多个,多个配重块600沿动态缆100的延伸方向间隔设置。本领域技术人员能够理解的是,通过在动态缆100上设置配重块600,配重块600为动态缆100施加向下的重力,配重块600的重力可以避免动态缆100位于浮式风机700以及浮力单元之间的部分漂浮在海面900以上。另外,配重块600的重力以及浮力单元的浮力使动态缆100的线型包括与浮式风机700相连的第一波谷段110以及与第一波谷段110相连的波峰段120,也即是说,通过设置配重块600可以使动态缆100在海水中形成预设的线型,进而提高动态缆100抵抗洋流冲击以及波浪的能力。
实施例二
本实施例还提供一种浅水域浮式风电系统,包括浮式风机、静态缆以及实施例一中的动态缆组件。
浮式风机漂浮在海面上,示例性地,浮式风机包括风机、中心塔筒以及浮式平台,其中,风机可以为三叶片风机,并且风机安装在中心塔筒的顶端,中心塔筒的底端设置在浮式平台上,浮式平台可以为Spar(单柱式)、驳船或半潜式平台等,本实施例此处并不限制。静态缆固定在海床上,例如,静态缆可以通过紧固件紧固在海床的表面。动态缆组件中动态缆的一端与浮式风机电连接,例如,动态缆的一端可以悬挂在浮式风机的浮式平台上并且与浮式平台上的风机电连接、另一端与静态缆电连接,从而当海风带动风机转动时,风机产生的电力可以通过动态缆以及静态缆实现传输。
本实施例提供的浅水域浮式风电系统,由于采用实施例一中的动态缆组件,当海况较为恶劣时,动态缆不会出现大范围漂移而发生与浮式风机或浮式风机的锚链发生碰撞导致失效的问题。
在本申请的描述中,需要理解的是,术语“顶”、“底”、“上”、“下”(如果存在)等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
本申请的说明书和权利要求书及上述附图说明中的术语“第一”、“第二”是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种浅水域浮式风电系统用动态缆组件,其特征在于,包括:
    动态缆,所述动态缆的第一端用于连接浮式风机,所述动态缆的第二端用于连接静态缆;
    多个浮力单元,多个所述浮力单元相互间隔设置在所述动态缆上;
    多个连接单元,所述连接单元包括系泊链与弹性索,所述弹性索的底端与海床固定连接,所述弹性索的顶端与所述系泊链的靠近底端的位置固定连接,所述系泊链的顶端与所述动态缆固定连接;
    所述连接单元与所述浮力单元共同限定出所述动态缆的线型,所述动态缆的线型包括与所述浮式风机相连的第一波谷段、与所述第一波谷段相连的多个波峰段以及相邻两个所述波峰段之间的第二波谷段;每个所述浮力单元均对应设置在一个所述波峰段的顶端,每个所述连接单元均对应设置在一个所述波峰段远离所述浮式风机的一侧。
  2. 根据权利要求1所述的动态缆组件,其特征在于,所述弹性索包括第一连接板、第二连接板以及弹簧,所述第一连接板与所述第二连接板平行并且所述第一连接板位于所述第二连接板的上方,所述弹簧的一端与所述第一连接板固定,所述弹簧的另一端与所述第二连接板固定;所述第一连接板的中部设置有通孔,所述系泊链靠近底端的位置穿设在所述第一连接板的通孔内部并与所述第一连接板固定连接。
  3. 根据权利要求2所述的动态缆组件,其特征在于,所述连接单元还包括监测组件以及锚固,所述监测组件设置有无线通信模块,所述监测组件的主体部分与所述动态缆固定连接,所述系泊链为所述监测组件的输电线;
    所述锚固与所述海床固定连接并且所述第二连接板安装在所述锚固的顶端,所述第二连接板的中部设置有通孔,所述锚固的内部设置有电源,所述输电线的底端穿过所述第二连接板的通孔并与所述锚固内部的电源连接。
  4. 根据权利要求3所述的动态缆组件,其特征在于,所述输电线位于所述第一连接板与所述第二连接板之间的部分长度大于弹簧伸长的最大长度。
  5. 根据权利要求3所述的动态缆组件,其特征在于,所述监测组件的主体部分与所述动态缆通过限弯卡钳连接,所述限弯卡钳包括夹紧段以及位于所述夹紧段两侧的锥筒段,所述锥筒段由弹性材料制成并且所述锥筒段的大径端与所述夹紧段固定连接;所述动态缆穿设在两个所述锥筒段内,所述夹紧段与所述动态缆位于两个所述锥筒段之间的部分紧固连接;所述监测组件的主体部分与所述夹紧段紧固连接。
  6. 根据权利要求1-5任一项所述的动态缆组件,其特征在于,所述浮力单元包括多个浮力块,所述浮力块与所述动态缆紧固连接,多个所述浮力块沿所述动态缆的延伸方向间隔设置。
  7. 根据权利要求6所述的动态缆组件,其特征在于,所述浮力单元中相邻两个所述浮力块之间的间距为所述浮力块长度的1-2倍。
  8. 根据权利要求1-5任一项所述的动态缆组件,其特征在于,还包括限弯筒,所述限弯筒由弹性材料制成,所述限弯筒形成为锥形结构,所述锥形结构的大径端设置有多个用于与所述浮式风机紧固连接的螺栓,所述动态缆的第一端穿设在所述锥形结构内部并与所述浮式风机固定连接。
  9. 根据权利要求1-5任一项所述的动态缆组件,其特征在于,还包括配重块,所述配重块与所述动态缆紧固连接,所述配重块安装在所述第一波谷段。
  10. 一种浅水域浮式风电系统,其特征在于,包括浮式风机、静态缆以及权利要求1-9中任一项所述的动态缆组件;
    所述浮式风机漂浮在海面上,所述静态缆固定在海床上,所述动态缆组件中动态缆的一端与所述浮式风机电连接、另一端与所述静态缆电连接。
PCT/CN2022/085638 2021-06-21 2022-04-07 浅水域浮式风电系统及其动态缆组件 WO2022267624A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22827127.6A EP4206462A1 (en) 2021-06-21 2022-04-07 Shallow water floating wind power system and dynamic cable assembly thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110686385.1 2021-06-21
CN202110686385.1A CN113217295B (zh) 2021-06-21 2021-06-21 浅水域浮式风电系统及其动态缆组件

Publications (1)

Publication Number Publication Date
WO2022267624A1 true WO2022267624A1 (zh) 2022-12-29

Family

ID=77080726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085638 WO2022267624A1 (zh) 2021-06-21 2022-04-07 浅水域浮式风电系统及其动态缆组件

Country Status (3)

Country Link
EP (1) EP4206462A1 (zh)
CN (1) CN113217295B (zh)
WO (1) WO2022267624A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217295B (zh) * 2021-06-21 2022-07-08 中天科技海缆股份有限公司 浅水域浮式风电系统及其动态缆组件
CN114446519A (zh) * 2021-12-30 2022-05-06 明阳智慧能源集团股份公司 一种浅水区域漂浮式风力发电机组动态海缆构型
CN114435540B (zh) * 2022-01-21 2023-03-03 中海石油深海开发有限公司 一种多波段动态缆系统及设计方法
CN114884004B (zh) * 2022-05-10 2023-10-31 中天科技海缆股份有限公司 一种动态缆保护系统及风电系统
CN114735136A (zh) * 2022-06-10 2022-07-12 中国海洋大学 一种浅水条件下漂浮式新能源发电装置用系泊系统
CN115864288B (zh) * 2022-12-21 2023-11-14 中天科技海缆股份有限公司 动态缆组件及动态缆系统
CN116221500B (zh) * 2023-05-08 2023-07-14 上海勘测设计研究院有限公司 一种适用于浅水域的动态管缆构型系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159521A1 (en) * 2005-01-07 2006-07-20 Streiff Jean L Shallow water riser configuration
US20070292214A1 (en) * 2004-09-23 2007-12-20 Marine Subsea Group A.S. Bend stiffener
EP2326794A1 (en) * 2008-09-09 2011-06-01 Misc Berhad A offshore seabed to surface conduit transfer system
US20130292129A1 (en) * 2010-11-09 2013-11-07 Wellstream International Limited Solid oxide fuel cell system
EP2727813A1 (en) * 2008-04-23 2014-05-07 Principle Power, Inc. Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
EP2886787A1 (en) * 2013-12-20 2015-06-24 Shell International Research Maatschappij B.V. Waved steel production riser, offshore hydrocarbon production system, and method of producing a hydrocarbon stream
CN107407133A (zh) * 2015-03-04 2017-11-28 通用电气石油和天然气英国有限公司 立管组件及方法
EP3249430A1 (en) * 2015-03-26 2017-11-29 CGG Services SA Quick mount cable-protecting device usable in marine surveys
WO2018167186A1 (en) * 2017-03-14 2018-09-20 Wfs Technologies Limited Subsea structure monitoring system
US20190048668A1 (en) * 2016-02-23 2019-02-14 Can Systems As A marine flexible elongate element and method of installation
WO2020043793A2 (en) * 2018-08-29 2020-03-05 Wfs Technologies Ltd Communication network
CN212718685U (zh) * 2020-07-07 2021-03-16 苏州希倍优辊轮有限公司 一种柔性管缆用分段组合式防弯曲保护装置
CN113217295A (zh) * 2021-06-21 2021-08-06 中天科技海缆股份有限公司 浅水域浮式风电系统及其动态缆组件

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117713B (en) * 1982-04-05 1986-04-23 Goeppner Kaiserslautern Eisen A collapsible floating pontoon
KR100282844B1 (ko) * 1998-07-08 2001-04-02 박병권 파동펌프를 이용한 능동방재형 양식가두리 및 그 부력조절장치
CN1112483C (zh) * 1999-01-06 2003-06-25 刘寄声 一种不随波浪晃动的海上浮桥及其架设方法
JP2006206006A (ja) * 2005-01-31 2006-08-10 Univ Of Ryukyus 浮体の係留方法
FR2907419B1 (fr) * 2006-10-20 2009-01-09 Nenuphar Sarl Reseau de flotteurs,notamment destine pour d'eoliennes et/ou d'hydroliennes sur des sites marins de profondeur importante.
US7958835B2 (en) * 2007-01-01 2011-06-14 Nagan Srinivasan Offshore floating production, storage, and off-loading vessel for use in ice-covered and clear water applications
US7930885B2 (en) * 2007-11-16 2011-04-26 Brown Clifford H Water wave-based energy transfer system
CN201144760Y (zh) * 2008-01-09 2008-11-05 邓海城 太阳能、波浪能、风能综合发电坞
KR20110071930A (ko) * 2009-12-22 2011-06-29 신춘우 너울및 파도를 이용한 수력 발전장치
CN102080621A (zh) * 2010-08-02 2011-06-01 杨金田 零碳发电厂技术
FR2972421B1 (fr) * 2011-03-11 2013-03-29 Nass & Wind Ind Dispositif flottant avec systeme d'ancrage particulier
WO2013001121A1 (es) * 2011-06-29 2013-01-03 Jose Antonio Amoraga Rodriguez Conjunto de suportación flotante para generadores de energía eólicos
CN102269328B (zh) * 2011-08-18 2013-01-02 浙江大学 一种海上输油输气柔性立管管线
EP2604501B1 (en) * 2011-12-15 2015-02-18 Andreas Graf System of anchoring and mooring of floating wind turbine towers and corresponding methods for towing and erecting thereof
CN102454553B (zh) * 2011-12-26 2013-10-09 中国科学院工程热物理研究所 一种漂浮式风电场
CN103264752B (zh) * 2013-05-28 2015-08-19 江苏科技大学 一种用于张紧式系泊系统的系泊装置
FR3019519B1 (fr) * 2014-04-07 2017-10-27 Ifp Energies Now Ligne d'ancrage pour support flottant comprenant un dispositif elastique
CN106005282B (zh) * 2016-07-12 2017-12-29 中天科技海缆有限公司 一种动态缆注水沉降式环形吊装浮体设备
US10723415B2 (en) * 2016-08-03 2020-07-28 Mangrove Deep LLC Mooring system for drifting energy converters
CN206579794U (zh) * 2017-03-02 2017-10-24 大连民德海洋科技有限公司 智能化深海养殖设施的双浮筒单点系泊系统
CN207505738U (zh) * 2017-10-11 2018-06-19 珠海市强森海产养殖有限公司 一种深海网箱养殖锚泊系统
CN207580094U (zh) * 2017-11-30 2018-07-06 福建渔家傲养殖科技有限公司 一种基于锚链的水上传感器悬拉装置
DK3527821T3 (da) * 2018-02-16 2021-11-08 Siemens Gamesa Renewable Energy As Offshore-arrangement, en forbindelsesindretning og en fremgangsmåde til tilvejebringelse af en elektrisk offshore-forbindelse
CN109052569A (zh) * 2018-08-23 2018-12-21 长沙理工大学 一种兼具消浪和海水淡化功能的水上防护装置
CN110616667A (zh) * 2019-09-29 2019-12-27 大连理工大学 适用于海上浮式风机安装的防波装置及其安装海上浮式风机的方法
CN110820678A (zh) * 2019-11-15 2020-02-21 大连理工大学 适用于人工岛的生态两用型珊瑚礁浮式防波堤及发电系统
CN111734584B (zh) * 2020-07-03 2021-08-27 上海电气风电集团股份有限公司 一种漂浮式风机基础及风机
CN111927716B (zh) * 2020-08-18 2021-11-19 上海电气风电集团股份有限公司 一种漂浮式风机基础系泊装置及安装方法
CN112373640A (zh) * 2020-11-25 2021-02-19 广州船舶及海洋工程设计研究院(中国船舶工业集团公司第六0五研究院) 一种海上浮式风电平台
CN112727698A (zh) * 2021-01-12 2021-04-30 湖南大学 一种漂浮式风力机系泊系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292214A1 (en) * 2004-09-23 2007-12-20 Marine Subsea Group A.S. Bend stiffener
US20060159521A1 (en) * 2005-01-07 2006-07-20 Streiff Jean L Shallow water riser configuration
EP2727813A1 (en) * 2008-04-23 2014-05-07 Principle Power, Inc. Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
EP2326794A1 (en) * 2008-09-09 2011-06-01 Misc Berhad A offshore seabed to surface conduit transfer system
US20130292129A1 (en) * 2010-11-09 2013-11-07 Wellstream International Limited Solid oxide fuel cell system
EP2886787A1 (en) * 2013-12-20 2015-06-24 Shell International Research Maatschappij B.V. Waved steel production riser, offshore hydrocarbon production system, and method of producing a hydrocarbon stream
CN107407133A (zh) * 2015-03-04 2017-11-28 通用电气石油和天然气英国有限公司 立管组件及方法
EP3249430A1 (en) * 2015-03-26 2017-11-29 CGG Services SA Quick mount cable-protecting device usable in marine surveys
US20190048668A1 (en) * 2016-02-23 2019-02-14 Can Systems As A marine flexible elongate element and method of installation
WO2018167186A1 (en) * 2017-03-14 2018-09-20 Wfs Technologies Limited Subsea structure monitoring system
WO2020043793A2 (en) * 2018-08-29 2020-03-05 Wfs Technologies Ltd Communication network
CN212718685U (zh) * 2020-07-07 2021-03-16 苏州希倍优辊轮有限公司 一种柔性管缆用分段组合式防弯曲保护装置
CN113217295A (zh) * 2021-06-21 2021-08-06 中天科技海缆股份有限公司 浅水域浮式风电系统及其动态缆组件

Also Published As

Publication number Publication date
CN113217295A (zh) 2021-08-06
CN113217295B (zh) 2022-07-08
EP4206462A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2022267624A1 (zh) 浅水域浮式风电系统及其动态缆组件
US11014637B2 (en) Motion-attenuated semi-submersible floating-type foundation for supporting a wind power generation system
JP7374108B2 (ja) ソーラーパネル用のポンツーンのアレイ及びその接続モジュール
US11939032B2 (en) Floating-type foundation for supporting a wind power generation system and including a stabilized power cable, system of floating-type foundations, and a method of stabilizing the power cable
US20220060009A1 (en) Inter-array cable for floating platforms
US10507894B2 (en) Self-restoring motion compensating mooring system
CN109703713A (zh) 一种水上漂浮系统
CN101353080B (zh) 一种潜标系留装置
CN212605703U (zh) 一种可曲挠连接的超大浮体结构
CN114162268B (zh) 一种用于中浅水域浮体的系泊装置及安装方法
CN116566286A (zh) 多边型浮管的海上漂浮式光伏系统
WO2022013145A1 (en) A mooring system for a plurality of floating units
EP3960614A1 (en) Motion-attenuated semi-submersible floating-type foundation for supporting a wind power generation system
CN209833927U (zh) 一种水上漂浮系统
CN116812075A (zh) 一种漂浮单柱式风电平台系泊系统
CN111976897A (zh) 浮标基海洋观测系统
KR20210117902A (ko) 무천공 태양광발전 수상구조체 및 그 시공방법
CN107994533B (zh) 一种用于水上光伏电站的s形电缆敷设组件
CN111645829B (zh) 一种fpso水声监测基阵安装装置及安装方法
JP2023528164A (ja) 浮体式洋上風力発電所との間及びその内部における電力ケーブルへの損傷を回避するためのシステム
CN220786081U (zh) 一种海上漂浮式光伏平台
CN212738441U (zh) 浮标基海洋观测系统
CN217078842U (zh) 一种侧拉旋入锚复合基础
CN215684228U (zh) 一种深水网箱用抗风浪弯头
KR102337086B1 (ko) 탄성 계류 로프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022827127

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE