WO2022267107A1 - 水声网络时隙mac协议方法、系统、装置及介质 - Google Patents

水声网络时隙mac协议方法、系统、装置及介质 Download PDF

Info

Publication number
WO2022267107A1
WO2022267107A1 PCT/CN2021/106033 CN2021106033W WO2022267107A1 WO 2022267107 A1 WO2022267107 A1 WO 2022267107A1 CN 2021106033 W CN2021106033 W CN 2021106033W WO 2022267107 A1 WO2022267107 A1 WO 2022267107A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
node
probability
underwater acoustic
mac protocol
Prior art date
Application number
PCT/CN2021/106033
Other languages
English (en)
French (fr)
Inventor
官权升
郑淇尹
季飞
王焱
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022267107A1 publication Critical patent/WO2022267107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/03Protocol definition or specification 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of medium access control (Medium Access Control, MAC), in particular to an underwater acoustic network time slot MAC protocol method, system, device and medium.
  • Medium Access Control Medium Access Control
  • underwater acoustic networks have been used in military, civil, commercial and other fields.
  • the information collected by underwater sensor nodes can be used in various applications, such as: environmental monitoring, disaster prevention, assistance Navigation, military surveillance, seabed resource exploration and underwater sports, etc.
  • the existing MAC protocols for underwater acoustic networks are mainly divided into: MAC protocols based on fixed channel allocation, contention-based MAC protocols and hybrid MAC protocols. Protocols based on fixed channel allocation are divided into three types: TDMA, FDMA, and CDMA, which have problems such as time synchronization, limited available bandwidth, and reliance on more network information; competitive MAC protocols are mainly divided into random access and handshake protocols, which exist separately. The problem of low efficiency and huge consumption of handshake interaction; the hybrid MAC protocol mainly has the problem of communication consumption caused by algorithm complexity.
  • the object of the present invention is to provide an evolutionary game-based underwater acoustic network time slot MAC protocol method, system, device and medium.
  • An underwater acoustic network time slot MAC protocol method comprising the following steps:
  • the ACK confirmation packet is sent by the node that successfully receives the data packet;
  • the cycle period is obtained according to the length of the superframe, and the time slot probability of each node is updated according to the cycle period until the time slot probability distribution of each node converges.
  • Superframe length number of slots * slot length + 2 * maximum propagation delay between nodes + ACK transmission time; or,
  • f n,m (t) is the probability that sending node n uses m time slots in round t
  • Z n,m (t) is the strategy weight of sending node n using m time slots in round t.
  • said obtaining a time slot for transmitting data packets according to the sending probability includes:
  • the time slot probability distribution of node n is ⁇ f n,1 ,f n,2 ,...,f n,M ⁇ , and a random floating-point number q is generated in the interval 0-1;
  • b n,m (t) is the revenue estimate of node n adopting strategy m in the tth round
  • c n,m ( ⁇ ) is the data transmission result of node n adopting strategy m in the ⁇ th round
  • the data transmission result c n,m ( ⁇ ) is determined by whether the node successfully receives the ACK confirmation packet, and it is 1 if it is successfully received, otherwise it is 0.
  • Z n,m (t+1) is the strategy weight of node n using m time slots in the t+1 round; b n,m is the time slot income;
  • An underwater acoustic network time slot MAC protocol system comprising:
  • the initialization module is used to divide the transmission channel into a periodic superframe structure including M time slots, and initializes the weights of each time slot of each node;
  • a transmission probability update module configured to update the transmission probability of each time slot according to the time slot weight, and obtain the time slot for transmitting the data packet according to the transmission probability
  • the time slot weight updating module is used to update the time slot income according to the receiving situation of the ACK confirmation packet, and update each time slot weight according to the time slot income; wherein, the ACK confirmation packet is sent by the node that successfully receives the data packet;
  • the cyclic update module is used to obtain a cycle period according to the length of the superframe, and update the time slot probability of each node according to the cycle period until the time slot probability distribution of each node converges.
  • An underwater acoustic network time slot MAC protocol device comprising:
  • At least one memory for storing at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the above method.
  • a storage medium stores a processor-executable program therein, and the processor-executable program is used to execute the above method when executed by a processor.
  • the present invention imitates the evolutionary game theory, can realize the distributed underwater acoustic network MAC protocol that does not require time synchronization, and only relies on local information to adaptively form the sending strategy of each node, and greatly reduces the conflict probability of data transmission. In this way, higher data delivery rate and throughput performance can be achieved.
  • Fig. 1 is a flow chart of an underwater acoustic network time slot MAC protocol method in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a superframe structure in an embodiment of the present invention.
  • Fig. 3 is an algorithm flow chart of an underwater acoustic network time slot MAC protocol method in an embodiment of the present invention.
  • orientation descriptions such as up, down, front, back, left, right, etc. indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present invention.
  • the present embodiment provides an underwater acoustic network time slot MAC protocol method, including the following steps:
  • Each node can be used as a sending node and a receiving node.
  • the node sends data it is a sending node
  • the node receives data it is a receiving node.
  • Each sending node divides the channel into a periodic superframe structure including M time slots, and initially sets the weight Z n,m of each time slot of the sending node to 1.
  • Fig. 2 is a schematic diagram of the definition of the superframe length
  • Fig. 2(a) is the superframe structure of method 1
  • Fig. 2(b) is the superframe structure of method 2.
  • T a is the transmission time of ACK
  • dl max is the maximum propagation delay between nodes.
  • the main difference between the two methods is whether there is inter-frame interference.
  • the first method is a method to completely avoid inter-frame interference, which considers the propagation delay of the data packet to the destination receiving node and the propagation delay of the ACK confirmation packet return. Due to the unknown distance between nodes, the distance between the data packet and the ACK The propagation delay is calculated by taking the maximum propagation delay between nodes to ensure that the data packets sent by any node in any time slot can be completely transmitted within a superframe. However, during the period of twice the maximum propagation delay, nodes cannot transmit effective data, resulting in a large waste of channel resources, and at the same time, a longer superframe length will reduce the frequency of data transmission. Therefore, under this superframe structure, The time proportion of valid data transmission is small.
  • Method 2 considers inter-frame interference at the superframe length level. Compared with method 1, not only data packet collisions within the same superframe, but also data transmission collisions between different superframes are considered. When the number of slots is small and the transmission time is prolonged, the cause of data packet collision is not only related to the interference between adjacent superframes, but also there may be interference between non-adjacent superframes, resulting in more complex collision situations and greater probability of collision. However, due to the shorter superframe length, method 2 can send more data than method 1 in the same time.
  • the sending probability f n,m of each time slot is updated according to the weight Z n,m of each time slot, and each sending node randomly selects a time slot for data transmission according to the probability distribution.
  • the probability calculation method is:
  • f n,m (t) is the probability that sending node n uses m time slots in round t
  • Z n,m (t) is the strategy weight of sending node n using m time slots in round t.
  • the time slot selection method is as follows: the time slot probability distribution of sending node n is ⁇ f n,1 ,f n,2 ,...,f n,M ⁇ , a random floating point number q is generated in the interval 0-1, if q ⁇ f n,1 selects time slot 1 for transmission, if f n,1 ⁇ q ⁇ f n,1 +f n,2 selects time slot 2 for transmission, and so on, if Then time slot M is selected for transmission.
  • the ACK confirmation packet is sent by the node that successfully receives the data packet.
  • the receiving node decides whether to return an ACK confirmation packet according to the result of receiving the data packet. If the data is successfully received, it returns an ACK confirmation packet, otherwise it does not return it.
  • the ACK confirmation packet will be transmitted to the sending node.
  • the sending node receives the ACK confirmation packet, it means that the receiving node has successfully received the data packet and the data transmission is successful; if the sending node does not receive the ACK confirmation packet, it means that the receiving node failed. Data packet received, data transmission failed.
  • the update method is as follows:
  • b n,m (t) is the revenue estimate of sending node n adopting strategy m in round t
  • c n,m ( ⁇ ) is the data transmission result of sending node n adopting strategy m in round ⁇ , and the ACK confirmation packet is successful 1 if received, 0 otherwise
  • the weight Z n, m of each time slot is updated according to the time slot income b n,m , and the update method is:
  • Z n,m (t+1) is the strategy weight of the sending node n using m time slots in the t+1 round; 0 ⁇ 1 represents the dependence of the strategy weight update on the historical value.
  • Steps S2-S3 are cycled with the superframe length in step S1 as the period, until the time slot probability distribution of each node converges.
  • Each node continuously learns the collision rate of the channel through a clear revenue strategy (that is, the above-mentioned time slot revenue) to move closer to a strategy with a low collision rate. It does not need to monitor the channel, but only needs to obtain the feedback of its own transmission results, which is easy to implement.
  • This embodiment proposes a distributed underwater acoustic network MAC protocol that does not require time synchronization, only relies on local information, and adaptively forms the sending strategy of each node, which overcomes the problem that time synchronization is difficult to achieve in an underwater environment, and at the same time reduces Unnecessary information exchange.
  • This embodiment proposes a method of using an autoregressive model to process local information for strategy benefit estimation.
  • a reasonable estimate of the benefit is realized by nonlinear weighting of the locally received feedback information, and the selection of each time slot for data transmission is reasonably predicted. probability of success.
  • This implementation proposes a time slot strategy probability distribution update method based on evolutionary game theory, which can reduce the conflict probability of data transmission and improve the data delivery rate and throughput performance of the network; in addition, the sliding average method is used for update The adjustment of the speed makes the updating of the updating speed comprehensive additive and multiplicative methods.
  • This embodiment also provides an underwater acoustic network time slot MAC protocol system, including:
  • the initialization module is used to divide the transmission channel into a periodic superframe structure including M time slots, and initializes the weights of each time slot of each node;
  • a transmission probability update module configured to update the transmission probability of each time slot according to the time slot weight, and obtain the time slot for transmitting the data packet according to the transmission probability
  • the time slot weight updating module is used to update the time slot income according to the receiving situation of the ACK confirmation packet, and update each time slot weight according to the time slot income; wherein, the ACK confirmation packet is sent by the node that successfully receives the data packet;
  • the cyclic update module is used to obtain a cycle period according to the length of the superframe, and update the time slot probability of each node according to the cycle period until the time slot probability distribution of each node converges.
  • the underwater acoustic network time slot MAC protocol system of this embodiment can execute the underwater acoustic network time slot MAC protocol method provided by the method embodiment of the present invention, and can execute any combination of implementation steps of the method embodiment, and has the method Corresponding functions and beneficial effects.
  • This embodiment also provides an underwater acoustic network time slot MAC protocol device, including:
  • At least one memory for storing at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the method shown in FIG. 1 .
  • An underwater acoustic network time-slot MAC protocol device in this embodiment can execute an underwater acoustic network time-slot MAC protocol method provided in the method embodiment of the present invention, and can execute any combination of implementation steps of the method embodiment, and has the method Corresponding functions and beneficial effects.
  • the embodiment of the present application also discloses a computer program product or computer program, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device can read the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the method shown in FIG. 1 .
  • This embodiment also provides a storage medium, which stores an instruction or program that can execute the underwater acoustic network time slot MAC protocol method provided by the method embodiment of the present invention. When the instruction or program is run, the method can be executed.
  • the implementation steps of any combination of examples have the corresponding functions and beneficial effects of the method.
  • the functions/operations noted in the block diagrams may occur out of the order noted in the operational diagrams.
  • two blocks shown in succession may, in fact, be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/operations involved.
  • the embodiments presented and described in the flowcharts of the present invention are provided by way of example in order to provide a more comprehensive understanding of the technology. The disclosed methods are not limited to the operations and logical flow presented herein. Alternative embodiments are contemplated in which the order of various operations is changed and in which sub-operations described as part of larger operations are performed independently.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, since the program can be read, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable processing if necessary. processing to obtain the program electronically and store it in computer memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种水声网络时隙MAC协议方法、系统、装置及介质,其中方法包括以下步骤:将发送信道划分为包含M个时隙的超帧结构,初始化设置各节点的各时隙权重;根据时隙权重更新各时隙的发送概率,根据发送概率获取用于传输数据包的时隙;根据ACK确认包的接收情况更新时隙收益,根据时隙收益更新各时隙权重;根据超帧的长度获取循环周期,根据循环周期对各节点的时隙概率进行更新,直至各节点的时隙概率分布收敛。本发明模仿进化博弈理论,可实现无需时间同步、仅依赖本地信息自适应形成各节点发送策略的分布式水声网络MAC协议,较大程度减少数据传输的冲突概率,以此实现较高的数据投递率与吞吐量性能,可广泛应用于媒介接入控制。

Description

水声网络时隙MAC协议方法、系统、装置及介质 技术领域
本发明涉及媒介接入控制(Medium Access Control,MAC)领域,尤其涉及一种水声网络时隙MAC协议方法、系统、装置及介质。
背景技术
随着海洋技术的不断发展,水声网络已应用于军事、民用、商业等各方面领域,通过水下传感器节点收集的信息可被用于各方面的应用,如:环境监测,灾难预防、协助导航、军事监视、海底资源勘探及水下运动等方面。
现有的水声网络MAC协议主要分为:基于固定信道分配的MAC协议、基于竞争的MAC协议以及混合MAC协议。基于固定信道分配的协议分为TDMA、FDMA、CDMA三类,存在需要时间同步、可用带宽有限、依赖较多网络信息等问题;竞争类的MAC协议主要分为随机接入与握手协议,分别存在效率低、握手交互消耗巨大的问题;混合MAC协议则主要存在算法复杂性引起的通信消耗问题。
发明内容
为至少一定程度上解决现有技术中存在的技术问题之一,本发明的目的在于提供一种基于进化博弈的水声网络时隙MAC协议方法、系统、装置及介质。
本发明所采用的技术方案是:
一种水声网络时隙MAC协议方法,包括以下步骤:
将发送信道划分为包含M个时隙的超帧结构,初始化设置各节点的各时隙权重;
根据时隙权重更新各时隙的发送概率,根据发送概率获取用于传输数据包的时隙;
根据ACK确认包的接收情况更新时隙收益,根据时隙收益更新各时隙权重;其中,所述ACK确认包由成功接收到数据包的节点发出;
根据超帧的长度获取循环周期,根据循环周期对各节点的时隙概率进行更新,直至各节点的时隙概率分布收敛。
进一步地,所述超帧结构为:
超帧长度=时隙数*时隙长度+2*节点间最大传播时延+ACK传输时间;或,
超帧长度=时隙数*时隙长度。
进一步地,所述发送概率的计算公式如下:
Figure PCTCN2021106033-appb-000001
其中,f n,m(t)为第t回合发送节点n采用m时隙的概率,Z n,m(t)为第t回合发送节点n采用m时隙的策略权重。
进一步地,所述根据发送概率获取用于传输数据包的时隙,包括:
节点n的时隙概率分布为{f n,1,f n,2,...,f n,M},在区间0-1生成随机浮点数q;
若q<f n,1,则选择时隙1发送数据;
Figure PCTCN2021106033-appb-000002
则选择时隙i发送数据,1<i≤M。
进一步地,所述时隙收益的更新公式为:
Figure PCTCN2021106033-appb-000003
其中,b n,m(t)为第t回合节点n采用策略m的收益估计;c n,m(τ)为第τ次回合节点n采取策略m的数据传输结果;
Figure PCTCN2021106033-appb-000004
代表第τ次博弈回合n节点是否选择m时隙策略进行传输,选择则为1,否则为0;0<μ<1,表示每轮策略的收益估计对近期数据的依赖程度,其值越近于1代表策略收益估计对近期数据的依赖程度越大。
进一步地,所述数据传输结果c n,m(τ)由节点是否成功接收ACK确认包决定,成功接收则为1,否则为0。
进一步地,所述时隙权重的更新公式为:
Figure PCTCN2021106033-appb-000005
其中,Z n,m(t+1)为第t+1回合节点n采用m时隙的策略权重;b n,m为时隙收益;0<γ<1代表时隙权重更新对历史值的依赖程度,γ越近于1代表权重更新对历史值的依赖程度越大,更新速度越缓慢。
本发明所采用的另一技术方案是:
一种水声网络时隙MAC协议系统,包括:
初始化模块,用于将发送信道划分为包含M个时隙的周期性超帧结构,初始化设置各节点的各时隙权重;
发送概率更新模块,用于根据时隙权重更新各时隙的发送概率,根据发送概率获取用于传输数据包的时隙;
时隙权重更新模块,用于根据ACK确认包的接收情况更新时隙收益,根据时隙收益更新各时隙权重;其中,所述ACK确认包由成功接收到数据包的节点发出;
循环更新模块,用于根据超帧的长度获取循环周期,根据循环周期对各节点的时隙概率进行更新,直至各节点的时隙概率分布收敛。
本发明所采用的另一技术方案是:
一种水声网络时隙MAC协议装置,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现上所述方法。
本发明所采用的另一技术方案是:
一种存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序在由处理器执行时用于执行如上所述方法。
本发明的有益效果是:本发明模仿进化博弈理论,可实现无需时间同步、仅依赖本地信息自适应形成各节点发送策略的分布式水声网络MAC协议,较大程度减少数据传输的冲突概率,以此实现较高的数据投递率与吞吐量性能。
附图说明
为了更清楚地说明本发明实施例或者现有技术中的技术方案,下面对本发明实施例或者现有技术中的相关技术方案附图作以下介绍,应当理解的是,下面介绍中的附图仅仅为了方便清晰表述本发明的技术方案中的部分实施例,对于本领域的技术人员而言,在无需付出创造性劳动的前提下,还可以根据这些附图获取到其他附图。
图1是本发明实施例中一种水声网络时隙MAC协议方法的流程图;
图2是本发明实施例中超帧结构的示意图;
图3是本发明实施例中一种水声网络时隙MAC协议方法的算法流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。对于以下实施例中 的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
如图1和图3所示,本实施例提供一种水声网络时隙MAC协议方法,包括以下步骤:
S1、将发送信道划分为包含M个时隙的超帧结构,初始化设置各节点的各时隙权重。
每个节点可作为发送节点和接收节点,当节点发送数据时为发送节点,当节点接收数据时为接收节点。每个发送节点将信道划分为包含M个时隙的周期性超帧结构,初始化设置发送节点的各时隙权重Z n,m为1。
图2即为超帧长度定义的示意图,图2(a)为方法一的超帧结构,图2(b)为方法二的超帧结构。其中T a为ACK的传输时间,dl max为节点间最大传播时延。
两种方法的主要区别在于是否存在帧间干扰。方法一是一种完全避免帧间干扰的方法,其考虑了数据包到达目的接收节点的传播时延与ACK确认包回传的传播时延,由于节点间距离的未知性,数据包与ACK的传播时延取节点间最大传播时延进行计算,保证任何节点在任何时隙发送的数据包都可以在一个超帧内传输完毕。但由于在两倍最大传播时延期间,节点无法进行有效数据的传输,引起较大的信道资源浪费,同时超帧长度较长也会降低数据发送的频率,因此在这种超帧结构下,有效数据传输的时间占比较小。
方法二在超帧长度层面考虑帧间干扰,相比于方法一不仅要考虑同一超帧内的数据包冲突,还要考虑不同超帧之间的数据传输冲突。当时隙数较少并且传播时延长的情况下,造成数据包冲突的原因不止涉及到相邻超帧间的干扰,还可能会存在非相邻超帧间的干扰,造成更复杂的碰撞情形与更大的碰撞概率。但由于超帧长较短,方法二在相同的时间内可以相较 于方法一发送更多的数据。
S2、根据时隙权重更新各时隙的发送概率,根据发送概率获取用于传输数据包的时隙。
根据各时隙权重Z n,m更新各时隙的发送概率f n,m,各发送节点以此概率分布随机地选择一个时隙进行数据传输。其概率计算方法为:
Figure PCTCN2021106033-appb-000006
其中,f n,m(t)为第t回合发送节点n采用m时隙的概率,Z n,m(t)为第t回合发送节点n采用m时隙的策略权重。时隙选择办法如下:发送节点n的时隙概率分布为{f n,1,f n,2,...,f n,M},在区间0-1生成随机浮点数q,若q<f n,1则选择时隙1进行发送,若f n,1<q<f n,1+f n,2则选择时隙2进行发送,以此类推,若
Figure PCTCN2021106033-appb-000007
则选择时隙M进行发送。
S3、根据ACK确认包的接收情况更新时隙收益,根据时隙收益更新各时隙权重。其中,ACK确认包由成功接收到数据包的节点发出。
接收节点根据数据包接收结果决定是否回传ACK确认包,若成功接收数据,则回传ACK确认包,否则不进行回传。该ACK确认包会传输至发送节点,当发送节点接收到ACK确认包,代表接收节点已经成功接收到数据包,数据传输成功;若发送节点没有接收到ACK确认包,则代表接收节点没能成功接收数据包,数据传输失败。
根据ACK成功接收与否更新各时隙收益b n,m,更新方法如下:
Figure PCTCN2021106033-appb-000008
其中,b n,m(t)为第t回合发送节点n采用策略m的收益估计;c n,m(τ)为第τ次回合发送节点n采取策略m的数据传输结果,ACK确认包成功接收则为1,否则为0;
Figure PCTCN2021106033-appb-000009
代表第τ次博弈回合n节点是否选择m时隙策略进行传输,选择则为1,否则为0;0<μ<1,表示每轮策略的收益估计对近期数据的依赖程度。
根据时隙收益b n,m对各时隙权重Z n,m进行更新,更新方法为:
Figure PCTCN2021106033-appb-000010
其中,Z n,m(t+1)为第t+1回合发送节点n采用m时隙的策略权重;0<γ<1代表策略权 重更新对历史值的依赖程度。
S4、根据超帧的长度获取循环周期,根据循环周期对各节点的时隙概率进行更新,直至各节点的时隙概率分布收敛。
以步骤S1中的超帧长度为周期循环步骤S2-S3,直至各节点的时隙概率分布收敛。各个节点通过明确的收益策略(即上述的时隙收益),不断学习信道的碰撞率来向碰撞率低的策略靠拢,不需要监听信道,只需获得自身传输结果的反馈,易于实现。
综上所述,本实施例方法相对于现有技术,具有如下有益效果:
(1)本实施例提出一种无需时间同步、仅依赖本地信息并自适应形成各节点发送策略的分布式水声网络MAC协议,克服了水下环境较难实现时间同步的问题,同时减少了不必要的信息交互。
(2)本实施例提出一种使用自回归模型处理本地信息进行策略收益估计的方法,通过对本地接收反馈信息的非线性加权实现了收益的合理估计,合理预测了选择各时隙进行数据传输的成功概率。
(3)本实施提出了一种基于进化博弈理论的时隙策略概率分布更新方法,能够降低数据传输的冲突概率,提升网络的数据投递率与吞吐量性能;另外使用了滑动平均方法用于更新速度的调整,使得更新速度综合加性与乘性方法的更新。
本实施例还提供一种水声网络时隙MAC协议系统,包括:
初始化模块,用于将发送信道划分为包含M个时隙的周期性超帧结构,初始化设置各节点的各时隙权重;
发送概率更新模块,用于根据时隙权重更新各时隙的发送概率,根据发送概率获取用于传输数据包的时隙;
时隙权重更新模块,用于根据ACK确认包的接收情况更新时隙收益,根据时隙收益更新各时隙权重;其中,所述ACK确认包由成功接收到数据包的节点发出;
循环更新模块,用于根据超帧的长度获取循环周期,根据循环周期对各节点的时隙概率进行更新,直至各节点的时隙概率分布收敛。
本实施例的一种水声网络时隙MAC协议系统,可执行本发明方法实施例所提供的一种水声网络时隙MAC协议方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
本实施例还提供一种水声网络时隙MAC协议装置,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现图1所示方法。
本实施例的一种水声网络时隙MAC协议装置,可执行本发明方法实施例所提供的一种水声网络时隙MAC协议方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
本申请实施例还公开了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存介质中。计算机设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行图1所示的方法。
本实施例还提供了一种存储介质,存储有可执行本发明方法实施例所提供的一种水声网络时隙MAC协议方法的指令或程序,当运行该指令或程序时,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
在一些可选择的实施例中,在方框图中提到的功能/操作可以不按照操作示图提到的顺序发生。例如,取决于所涉及的功能/操作,连续示出的两个方框实际上可以被大体上同时地执行或所述方框有时能以相反顺序被执行。此外,在本发明的流程图中所呈现和描述的实施例以示例的方式被提供,目的在于提供对技术更全面的理解。所公开的方法不限于本文所呈现的操作和逻辑流程。可选择的实施例是可预期的,其中各种操作的顺序被改变以及其中被描述为较大操作的一部分的子操作被独立地执行。
此外,虽然在功能性模块的背景下描述了本发明,但应当理解的是,除非另有相反说明,所述的功能和/或特征中的一个或多个可以被集成在单个物理装置和/或软件模块中,或者一个或多个功能和/或特征可以在单独的物理装置或软件模块中被实现。还可以理解的是,有关每个模块的实际实现的详细讨论对于理解本发明是不必要的。更确切地说,考虑到在本文中公开的装置中各种功能模块的属性、功能和内部关系的情况下,在工程师的常规技术内将会了解该模块的实际实现。因此,本领域技术人员运用普通技术就能够在无需过度试验的情况下实现在权利要求书中所阐明的本发明。还可以理解的是,所公开的特定概念仅仅是说明性的,并不意在限制本发明的范围,本发明的范围由所附权利要求书及其等同方案的全部范围来决定。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技 术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的上述描述中,参考术语“一个实施方式/实施例”、“另一实施方式/实施例”或“某些实施方式/实施例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发 明的范围由权利要求及其等同物限定。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于上述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种水声网络时隙MAC协议方法,其特征在于,包括以下步骤:
    将发送信道划分为包含M个时隙的超帧结构,初始化设置各节点的各时隙权重;
    根据时隙权重更新各时隙的发送概率,根据发送概率获取用于传输数据包的时隙;
    根据ACK确认包的接收情况更新时隙收益,根据时隙收益更新各时隙权重;其中,所述ACK确认包由成功接收到数据包的节点发出;
    根据超帧的长度获取循环周期,根据循环周期对各节点的时隙概率进行更新,直至各节点的时隙概率分布收敛。
  2. 根据权利要求1所述的一种水声网络时隙MAC协议方法,其特征在于,所述超帧结构为:
    超帧长度=时隙数*时隙长度+2*节点间最大传播时延+ACK传输时间;或,
    超帧长度=时隙数*时隙长度。
  3. 根据权利要求1所述的一种水声网络时隙MAC协议方法,其特征在于,所述发送概率的计算公式如下:
    Figure PCTCN2021106033-appb-100001
    其中,f n,m(t)为第t回合发送节点n采用m时隙的概率,Z n,m(t)为第t回合发送节点n采用m时隙的策略权重。
  4. 根据权利要求1所述的一种水声网络时隙MAC协议方法,其特征在于,所述根据发送概率获取用于传输数据包的时隙,包括:
    节点n的时隙概率分布为{f n,1,f n,2,...,f n,M},在区间0-1生成随机浮点数q;
    若q<f n,1,则选择时隙1发送数据;
    Figure PCTCN2021106033-appb-100002
    则选择时隙i发送数据,1<i≤M。
  5. 根据权利要求1所述的一种水声网络时隙MAC协议方法,其特征在于,所述时隙收益的更新公式为:
    Figure PCTCN2021106033-appb-100003
    其中,b n,m(t)为第t回合节点n采用策略m的收益估计;c n,m(τ)为第τ次回合节点n采取策略m的数据传输结果;
    Figure PCTCN2021106033-appb-100004
    代表第τ次博弈回合n节点是否选择m时隙策略进行传输,选择则为1,否则为0;0<μ<1,表示每轮策略的收益估计对近期数据的依赖程度, 其值越近于1代表策略收益估计对近期数据的依赖程度越大。
  6. 根据权利要求5所述的一种水声网络时隙MAC协议方法,其特征在于,所述数据传输结果c n,m(τ)由节点是否成功接收ACK确认包决定,成功接收则为1,否则为0。
  7. 根据权利要求1所述的一种水声网络时隙MAC协议方法,其特征在于,所述时隙权重的更新公式为:
    Figure PCTCN2021106033-appb-100005
    其中,Z n,m(t+1)为第t+1回合节点n采用m时隙的策略权重;b n,m为时隙收益;0<γ<1代表时隙权重更新对历史值的依赖程度,γ越近于1代表权重更新对历史值的依赖程度越大,更新速度越缓慢。
  8. 一种水声网络时隙MAC协议系统,其特征在于,包括:
    初始化模块,用于将发送信道划分为包含M个时隙的周期性超帧结构,初始化设置各节点的各时隙权重;
    发送概率更新模块,用于根据时隙权重更新各时隙的发送概率,根据发送概率获取用于传输数据包的时隙;
    时隙权重更新模块,用于根据ACK确认包的接收情况更新时隙收益,根据时隙收益更新各时隙权重;其中,所述ACK确认包由成功接收到数据包的节点发出;
    循环更新模块,用于根据超帧的长度获取循环周期,根据循环周期对各节点的时隙概率进行更新,直至各节点的时隙概率分布收敛。
  9. 一种水声网络时隙MAC协议装置,其特征在于,包括:
    至少一个处理器;
    至少一个存储器,用于存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现权利要求1-7任一项所述方法。
  10. 一种存储介质,其中存储有处理器可执行的程序,其特征在于,所述处理器可执行的程序在由处理器执行时用于执行如权利要求1-7任一项所述方法。
PCT/CN2021/106033 2021-06-21 2021-07-13 水声网络时隙mac协议方法、系统、装置及介质 WO2022267107A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110685052.7 2021-06-21
CN202110685052.7A CN113507328B (zh) 2021-06-21 2021-06-21 水声网络时隙mac协议方法、系统、装置及介质

Publications (1)

Publication Number Publication Date
WO2022267107A1 true WO2022267107A1 (zh) 2022-12-29

Family

ID=78010459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106033 WO2022267107A1 (zh) 2021-06-21 2021-07-13 水声网络时隙mac协议方法、系统、装置及介质

Country Status (2)

Country Link
CN (1) CN113507328B (zh)
WO (1) WO2022267107A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040375B (zh) * 2021-10-19 2023-10-13 广东技术师范大学 邻居发现冲突协调方法、系统、计算机设备及存储介质
CN114301542B (zh) * 2021-12-31 2022-12-06 广东省国土资源测绘院 一种水声网络的并行通信方法、设备及介质
CN115514424B (zh) * 2022-09-01 2023-07-25 西北工业大学 一种非合作水声网络接收信号生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130142180A1 (en) * 2010-07-28 2013-06-06 Mikael Gidlund Wireless Communication Method And System With Collision Avoidance Protocol
CN109362123A (zh) * 2018-09-28 2019-02-19 河南科技大学 基于ieee802.15.6的无线体域网自适应mac协议及其实现方法
CN109660374A (zh) * 2017-10-11 2019-04-19 北京邮电大学 一种基于智能时隙选择的信道接入方法
CN110691371A (zh) * 2019-09-10 2020-01-14 华南理工大学 一种网状水声网络的mac调度方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027462B2 (en) * 2001-01-02 2006-04-11 At&T Corp. Random medium access methods with backoff adaptation to traffic
US7961691B2 (en) * 2007-02-23 2011-06-14 Xg Technology, Inc. Timeslot duration in TDMA-based MAC for VOIP over wireless
CN105873130A (zh) * 2016-05-30 2016-08-17 电子科技大学 一种用于多跳自组织网络的时隙竞争方法
CN110661579A (zh) * 2019-09-10 2020-01-07 华南理工大学 一种星型水声网络的mac调度方法
CN110769519B (zh) * 2019-10-11 2022-07-26 华南理工大学 一种分布式多信道水声网络通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130142180A1 (en) * 2010-07-28 2013-06-06 Mikael Gidlund Wireless Communication Method And System With Collision Avoidance Protocol
CN109660374A (zh) * 2017-10-11 2019-04-19 北京邮电大学 一种基于智能时隙选择的信道接入方法
CN109362123A (zh) * 2018-09-28 2019-02-19 河南科技大学 基于ieee802.15.6的无线体域网自适应mac协议及其实现方法
CN110691371A (zh) * 2019-09-10 2020-01-14 华南理工大学 一种网状水声网络的mac调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUAN QUANSHENG, WEIQI CHEN, HUA YU, FANGJIONG CHEN, FEI JI: "Acoustic-radio cooperative marine information network", DIANXIN KEXUE - TELECOMMUNICATIONS SCIENCE, RENMIN YOUDIAN CHUBANSHE, BEIJING, CN, 30 June 2018 (2018-06-30), CN , pages 20 - 28, XP093016599, ISSN: 1000-0801, DOI: 10.11959/j.issn.1000−0801.2018196 *

Also Published As

Publication number Publication date
CN113507328B (zh) 2022-05-24
CN113507328A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2022267107A1 (zh) 水声网络时隙mac协议方法、系统、装置及介质
Zhang et al. Novel quick start (QS) method for optimization of TCP
CN113747442B (zh) 基于irs辅助的无线通信传输方法、装置、终端及存储介质
US11178056B2 (en) Communication method and apparatus for optimizing TCP congestion window
KR20100077707A (ko) 수중 센서네트워크의 적응적 통신환경 설정방법 및 장치
CN106656356B (zh) 一种节点发送顺序优化的竞争信道水声网络并行通信方法
CN112383485B (zh) 一种网络拥塞控制方法及装置
CN110892661A (zh) 优化网络参数以实现网络编码
CN117009053A (zh) 边缘计算系统的任务处理方法及相关设备
Wang et al. Reinforcement learning based congestion control in satellite Internet of Things
CN113923743B (zh) 电力地下管廊的路由选择方法、装置、终端及存储介质
CN112929900B (zh) 水声网络中基于深度强化学习实现时域干扰对齐的mac协议
Ke et al. Applying deep reinforcement learning to improve throughput and reduce collision rate in IEEE 802.11 networks
US20230156520A1 (en) Coordinated load balancing in mobile edge computing network
CN107426748B (zh) 一种无线网络控制系统中多传感器估计性能方法
Qureshi et al. A genetic fuzzy contention window optimization approach for IEEE 802.11 WLANs
US20230246887A1 (en) Training in Communication Systems
EP4305823A1 (en) Devices and methods for collaborative learning of a transmission policy in wireless networks
KR102331058B1 (ko) 전송 자원의 지시 방법, 장치 및 저장 매체
CN106255224A (zh) 无线网络的信道接入方法及装置
Chu et al. Ai-empowered joint communication and radar systems with adaptive waveform for autonomous vehicles
CN114040375B (zh) 邻居发现冲突协调方法、系统、计算机设备及存储介质
CN111294284A (zh) 流量调度方法及装置
CN114422416B (zh) 多链路聚合的数据传输方法、系统、装置及存储介质
CN116341685B (zh) 基于联合注意力的分布式计算卸载模型训练方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE