WO2022266916A1 - 瞬时可调电磁悬挂装置 - Google Patents

瞬时可调电磁悬挂装置 Download PDF

Info

Publication number
WO2022266916A1
WO2022266916A1 PCT/CN2021/101978 CN2021101978W WO2022266916A1 WO 2022266916 A1 WO2022266916 A1 WO 2022266916A1 CN 2021101978 W CN2021101978 W CN 2021101978W WO 2022266916 A1 WO2022266916 A1 WO 2022266916A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
sleeve
actuator
magnets
vehicle
Prior art date
Application number
PCT/CN2021/101978
Other languages
English (en)
French (fr)
Inventor
周宇
Original Assignee
周宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周宇 filed Critical 周宇
Priority to PCT/CN2021/101978 priority Critical patent/WO2022266916A1/zh
Publication of WO2022266916A1 publication Critical patent/WO2022266916A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method

Definitions

  • the present application relates to a momentarily adjustable electromagnetic suspension device for a real-time vehicle stability system.
  • it involves real-time control based on different road conditions on the road surface, and an instantaneously adjustable electromagnetic suspension device that avoids vibration in advance to achieve vehicle body stability.
  • the active suspension has an adjustment mechanism that can manually or automatically control force generation in its structure, and can automatically adjust the damping of the shock absorber according to the road surface conditions to obtain better driving comfort.
  • Judging from the type of suspension it can be roughly divided into two categories.
  • One is the electronically controlled active hydraulic suspension, which can calculate the force and acceleration of the suspension through the on-board computer, and use the expansion and contraction of the hydraulic shock absorber to maintain the balance of the body;
  • the other is the electronically controlled air suspension, which also uses the The on-board computer calculates the force on the suspension and senses the road conditions, and adjusts the damping coefficient of the air shock absorber in a timely manner to keep the vibration of the vehicle body within a certain range.
  • the common point of these two types of electronically controlled active suspensions is: after the vibration force is generated, the height of the vehicle body is adjusted, and the damping of the shock absorber is changed to suppress the change of the body posture and improve the vehicle's operating stability and ride comfort.
  • the main purpose of the present application is to provide an instantaneously adjustable electromagnetic suspension device for a real-time vehicle stabilization system.
  • it involves real-time regulation based on different road conditions on the road surface, using the electromagnetic system to respond in milliseconds, and avoiding vibration in advance to achieve body stability.
  • the reaction speed of this device is 5 times faster than the traditional suspension, and the relative placement of the magnets can generate a large push-pull force.
  • the distance between the two magnets is adjustable, and can be controlled by electrification with the electromagnet. Even on the most bumpy and complex road surfaces, it can also ensure the smooth running of the vehicle.
  • the present application discloses an instantaneously adjustable electromagnetic suspension device, which includes: a double-sleeve structure, including: a first sleeve and a second sleeve; magnet assemblies are respectively installed in the two sleeves, including: a first magnet and a second sleeve.
  • the second magnet, the two magnets are arranged oppositely, and at least one of the two magnets is a controllable electromagnet; one end of at least one magnet is connected to the actuator, the actuator is installed on the corresponding sleeve, and the actuator drives the magnet produces linear motion.
  • a spring seat is installed on the outside of the double sleeve, including: an upper spring seat and a lower spring seat, and a helical compression spring is arranged between the spring seats.
  • the first magnet and the second magnet are multilayer stacked magnets.
  • the actuator is an electric actuator, including: an electric motor and a connecting rod, the connecting rod is fixed between the electric motor and the magnet, and the electric motor drives the connecting rod to generate linear motion of the magnet.
  • the actuator is a hydraulic or pneumatic actuator, including: a hydraulic or pneumatic motor, which drives the magnet to generate linear motion.
  • the device further includes: a position sensor for judging the distance between the two magnets.
  • the device further includes: a collision protection component for protecting the two magnets from collision damage.
  • the first magnet is a permanent magnet, and on the periphery of the magnet, an excitation coil is nested in the inner layer of the second sleeve.
  • the excitation coil When the first magnet moves linearly with the suspension system, the excitation coil generates an electric field.
  • the device further includes: an air or hydraulic spring installed at the tail of any sleeve, and the spring has the characteristics of adjustable expansion and damping.
  • the device also includes: a controller; the vehicle control unit ECU receives the point cloud signal emitted by the electromagnetic wave transmitter, collects ground information, and obtains the control signal through the reinforcement learning method, and transmits it to the instantaneously adjustable electromagnetic suspension device
  • the controller controls the actuator to adjust the magnet to the specified relative position, and at the same time controls the controllable electromagnet to generate suction thrust, instantaneously regulates the expansion and contraction and damping of the electromagnetic suspension device, and simulates various advance intervention actions in real time to avoid the impending accident on the known road surface shock.
  • the specific implementation method of the real-time vehicle stabilization system includes the following steps: a) The electromagnetic wave transmitter emits a point cloud to illuminate the road ahead, and the electromagnetic wave receiver receives the point cloud position data as the ground state S1; b) The state S is obtained by adding the vehicle state S2 to S1; c) Input the state S into the pre-trained reinforcement learning model to obtain the vehicle stability intervention action A; d) The change of the driving state sensor parameters generated by the vehicle stability intervention action A (that is, the vehicle driving stability is judged by the acceleration sensor, etc.) T, set a parameter R that decreases as the parameter T increases, as a feedback reward; e) get the next state S' after the vehicle stability intervention action A; f) train a reinforcement learning model, based on "state S + vehicle stability intervention Action A+next state S'+feedback reward R” is used as training data, constantly trying and improving, so that the vehicle stability intervention action A tends to maximize the feedback reward R.
  • the obtained vehicle stability intervention action A includes instantaneously adjusting the expansion and contraction and damping of the electromagnetic suspension device to maximize the vehicle stability and avoid the upcoming vibration of the known road surface.
  • the embodiment of the present application provides an instantaneously adjustable electromagnetic suspension device for a real-time vehicle stability system, which can instantaneously adjust the expansion and damping of the electromagnetic suspension device, and simulate various advance intervention actions in real time to avoid the upcoming vibration of the known road surface.
  • the device has simple structure, low cost and high application value.
  • FIG. 1 is a schematic diagram and a cross-sectional view of the first embodiment of the present application.
  • Fig. 2 is a schematic diagram and a cross-sectional view of a second embodiment of the present application.
  • Fig. 3 is a schematic diagram and a cross-sectional view of a third embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection, or integral connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • the anti-collision avoidance device detects whether there is an obstacle ahead by emitting a laser beam in a specific direction.
  • a schematic configuration of a collision avoidance device for a vehicle according to the present embodiment will be described with reference to FIG. 1 .
  • the device and method of the present application can be used in any type of vehicle, including conventional vehicles, hybrid electric vehicles (HEV), extended-range electric vehicles (EREV), pure electric vehicles (BEV), motorcycles, battery cars, passenger cars, sports SUVs, crossovers, trucks, vans, buses, recreational vehicles (RV) and more.
  • HEV hybrid electric vehicles
  • EREV extended-range electric vehicles
  • BEV pure electric vehicles
  • FIG. 1 shows a first embodiment of the present application.
  • the instantaneously adjustable electromagnetic suspension device is a structure of an electric motor and a connecting rod.
  • the instantaneously adjustable electromagnetic suspension device includes a double-sleeve structure, and the double-sleeves are composed of a first sleeve (11) and a second sleeve (12).
  • the first sleeve (11) is fixed on the unillustrated body end
  • the second sleeve (12) is fixed on the unillustrated wheel side
  • the second sleeve (12) can be inside the first sleeve (11) slide.
  • a spring retainer is installed outside the double sleeve, including: an upper spring retainer (41) and a lower spring retainer (42), and a helical pressure spring (51) is arranged between the spring retainers, mainly for supporting the vehicle body and absorbing unevenness
  • the impact caused by the road surface and other forces on the tires, and the so-called other forces here include the forces on the spring caused by acceleration, deceleration, braking, turning, etc.
  • the use of the helical pressure spring (51) is mainly due to its ease of manufacture, high performance and efficiency, and low price.
  • An electric motor (31) is installed and fixed in the first sleeve (11).
  • the electric motor is designed as a threaded transmission mechanism to drive the connecting rod (32) to generate linear motion.
  • the end of the connecting rod (32) is connected to the first magnet (21).
  • the magnets are permanent magnets.
  • a second magnet (22) is installed and fixed in the second sleeve (12).
  • the second magnet is a controllable electromagnet, and the magnetic pole direction and magnetic field strength of the second magnet can be controlled by passing an electric current.
  • the second magnet generates a magnetic field, so that it can attract or repel each other with the first magnet, that is, when the second magnet is energized, if the polarity of the magnetic field formed on the side of the second magnet facing the first magnet is the same as that of the first magnet facing the second.
  • the second magnet and the first magnet repel each other, if the polarity of the magnetic field formed by the second magnet towards the side of the first magnet is the same as that of the first magnet towards the side of the second magnet opposite, the second magnet and the first magnet attract each other, and the second magnet cooperates with the first magnet to make the second sleeve (12) under the action of attractive or repulsive force on the first sleeve ( 11) Inner telescopic movement.
  • the first magnet and the second magnet are arranged oppositely.
  • the first magnet (21) and the second magnet (22) are multi-layer stacked magnets, that is, composed of multiple rings or A combination of cylindrical magnet layers, and each magnet layer is fixed on the inner side of the second sleeve (12) and the outer side of the connecting rod (32) at equal intervals. The more magnet layers there are, the greater the suction thrust is, and the magnets with n layers have n times greater suction thrust than the magnets with 1 layer.
  • the relative arrangement of the first magnet and the second magnet has its advantages in increasing the force between the first magnet and the second magnet, there are certain disadvantages at the same time. If the two magnets are too close and the suction force is too large, the two magnets will It is easy to collide, which will cause permanent damage to the magnet, and finally make the instantaneous adjustable electromagnetic suspension device invalid. Therefore, the key to controlling the two magnets from colliding is to know the distance between the two magnets. Although the approximate position can be judged by the rotation of the motor, due to There is some error in the distance movement caused by the rotation of the motor, and long-term accumulation will cause a distance judgment error. Therefore, a position sensor (61) is installed on the inner wall of the first sleeve (11).
  • the position sensor (61) adopts a Hall sensor.
  • the sensor is a magnetic field sensor made according to the Hall effect. That is, the position of the first magnet (21) is determined by sensing the change of the magnetic field near the position sensor, and the distance between the first magnet and the second magnet is obtained indirectly.
  • a strong magnet (62) can be embedded in the connecting rod, and the position closest to the position sensor between the strong magnet (62) and the position sensor is set as the position zero point, and the position is reset to zero at regular intervals Action to correct the error caused by long-term exercise.
  • a collision protection component (63) is set on the second magnet to protect the two magnets from being too close due to unexpected reasons, where the collision protection component (63)
  • the elastic body capable of elastic deformation is adopted. When the distance between the two magnets is too close, the elastic body will be squeezed to further absorb the impact force and protect the two magnets.
  • the second sleeve (12) is nested with an exciting coil (81).
  • the exciting coil When the first magnet moves linearly with the suspension system, the exciting coil generates an electric field, and the electric field is connected to the wiring harness.
  • the connection leads to the rectification circuit to convert it into direct current, and stores it in an energy storage battery or a large capacitor, and then reversely supplies the controllable electromagnet, which reduces the energy consumption of the entire instantaneously adjustable electromagnetic suspension device.
  • the present application has the above-mentioned structure, and its working with the real-time vehicle stabilization system will be described next.
  • the instantaneously adjustable electromagnetic suspension device also includes: a controller (91); the vehicle control unit ECU receives point cloud signals emitted by the electromagnetic wave transmitter, collects ground information, and obtains control signals through reinforcement learning methods, and transmits them to the instantaneously adjustable electromagnetic suspension device
  • the controller controls the actuator to adjust the magnet to the specified relative position, and at the same time controls the controllable electromagnet to generate suction thrust, instantaneously regulates the expansion and contraction and damping of the electromagnetic suspension device, and simulates various advance intervention actions in real time to avoid the impending accident on the known road surface shock.
  • Reinforcement learning is a Sequential Decision Making problem. It needs to continuously select some behaviors, and get the maximum benefit from these behaviors as the best result. Without any label telling the algorithm what to do, it first tries to make some behaviors - then gets a result, and gives feedback on the previous behavior by judging whether the result is right or wrong. The previous behavior is adjusted by this feedback, and the algorithm can learn what behavior to choose under what circumstances to get the best results through continuous adjustment of the algorithm.
  • Step a) The electromagnetic wave transmitter emits a point cloud to irradiate the road ahead, and the electromagnetic wave receiver receives the point cloud position data as the road surface state S1.
  • the actual road state S1 digital matrix should be denser, with a larger amount of data, including more information, such as: in addition to potholes and congestion, there are more information such as road slope, in addition to the electromagnetic wave point cloud position matrix and the electromagnetic wave point cloud size matrix , the point cloud size refers to the diameter of the point, and this parameter can reflect the material properties of the pavement.
  • the road surface state S1 digital matrix is just a digital matrix, the actual information it contains must be richer than the known information, which can only be interpreted through the reinforcement learning model, which is also the strength of the reinforcement learning model.
  • Step b) Add vehicle state S2 to S1 to obtain state S.
  • the height and damping of the wheels can be regulated in advance to stabilize the vehicle body.
  • t there is still a time difference t when the road surface state S1 reaches the wheels. Therefore, it is necessary to obtain the parameters of the vehicle state sensor to calculate the arrival of the wheels.
  • the corresponding position, direction, and adjustable suspension system height and damping parameters when the road surface state S1 is described, and the parameters of these vehicle state sensors constitute the vehicle state S2.
  • the state S obtained by adding the vehicle state S2 to the road surface state S1 can be simply fused with the digital matrix S1 plus the digital matrix S2, and a new digital matrix S can be generated by adding the time parameter t, or the speed and acceleration in S2 , steering angle, time t and other parameters are calculated when the wheels arrive at the S1 point cloud matrix, the parameters such as the position and direction of the wheels simplify the road surface state S1, and then add the adjustable suspension system height and damping parameters to obtain the state S digital matrix.
  • Step c) Input the state S into the pre-trained reinforcement learning model to obtain the vehicle stabilization intervention action A.
  • the digital matrix of the state S is input, and the digital matrix of the output vehicle stability intervention action A is obtained, wherein the parameters in the digital matrix of A include: wheel height adjustment parameters and wheel damping adjustment parameters. That is, whether the wheels should rise or fall when encountering various road conditions, and whether the damping should be adjusted to be softer or harder to adapt to the road surface, making the vehicle more stable and improving driving comfort.
  • other control means in the execution unit can also be used, such as: vehicle speed controller, braking device and steering device. When using the vehicle speed controller, braking device and steering device for regulation, the existing driving conditions should be fully considered, especially the driving safety and driving comfort of the vehicle.
  • Step d) The parameter change T of the driving state sensor produced by the vehicle stability intervention action A, set a parameter R that decreases with the increase of the parameter T, as a feedback reward; Sensors are used to judge vehicle stability, that is, the smaller and/or smoother the parameter changes in vehicle tilt, acceleration and steering, the better the vehicle stability.
  • different weight parameters can be added in front of the three parameters to define the different importance of vehicle tilt, acceleration and steering.
  • the specific weight parameters can be defined according to the driving experience of the actual experimental situation, or made into different options for the driver Passengers are free to choose.
  • Step e) The next state S' is obtained after the vehicle stabilization intervention action A.
  • Step f) Train a reinforcement learning model, based on "state S + vehicle stability intervention action A + next state S' + feedback reward R" as training data, keep trying and improving, so that vehicle stability intervention action A tends to feedback reward R maximum.
  • the reinforcement learning model can be trained using the Q-learning method, and the Q-learning update formula is as follows: Q(s,a) ⁇ Q(s,a)+ ⁇ [r+ ⁇ maxa' Q(s', a') ⁇ Q(s,a)], according to the next state s', select the largest Q(s',a') value multiplied by the decay coefficient ⁇ plus the real return value as the Q reality, and according to the past Q table
  • the Q(s,a) inside is used as a Q estimate to update the Q-table, where ⁇ is the learning rate.
  • the reinforcement learning model can be trained using the DQN (CNN+Q-Learning) method.
  • the convolutional neural network CNN is introduced, and the Q-table update is transformed into a function fitting problem, and the Q-table is generated by fitting a function function.
  • the Q value makes similar states get similar output actions.
  • obtaining the vehicle stability intervention action A mainly refers to instantaneously adjusting the expansion and contraction and damping of the electromagnetic suspension device to maximize the vehicle stability and avoid the upcoming vibration of the known road surface.
  • the action parameters of A here mainly include: 1. The distance between the two magnets, 2. The magnitude of the current controlling the instantaneous suction thrust between the two magnets, 3. The change of the current pulse formed according to the time; the combination of these three parameters can simulate each magnet in real time. It is an early intervention action to avoid the upcoming vibration of the known road surface.
  • FIG. 2 shows a second embodiment of the present application.
  • the actuator in the instantaneously adjustable electromagnetic suspension device, is a hydraulic or pneumatic motor structure.
  • the same reference numerals are attached to the same components as those in the above-mentioned first embodiment, and description thereof will be omitted.
  • the oil unloading action drives the piston to slide up and down, and finally plays the function of regulating the up and down movement of the first magnet (21).
  • the lift control oil chamber (37) from the oil filling pipe (35)
  • the piston moves downward.
  • a damping control tube is provided between the hydraulic motor (31) and the lifting control oil chamber (37), which can control the damping of the piston's up and down motion, and add an additional control damping parameter for adjusting the expansion and contraction of the electromagnetic suspension device, which is more conducive to complex Simulation of intervention actions.
  • the air motor in this embodiment only the hydraulic oil needs to be replaced with nitrogen, which will not be repeated here.
  • FIG. 3 shows a third embodiment of the present application.
  • the momentarily adjustable electromagnetic suspension device adds air or hydraulic spring structure.
  • the same reference numerals are attached to the same components as those in the above-mentioned first embodiment, and description thereof will be omitted.
  • a hydraulic spring (70) is installed at the bottom of the second sleeve (12).
  • the hydraulic spring is equipped with a hydraulic motor (72), a lifting control oil chamber (71) and a piston (76), the connecting rod (77) that the piston links to each other is connected with the wheel side, and a dustproof protective cover (78) is provided outside the connecting rod (77) simultaneously.
  • the hydraulic motor (72) is connected to the oil cylinder through the oil filling pipe (73) and the oil unloading pipe (74), and drives the piston to slide up and down through the oil filling and oil unloading actions, and finally plays the function of regulating the height of the vehicle body.
  • the piston moves downward.
  • the piston moves upward.
  • a damping control tube is provided between the hydraulic motor (72) and the lifting control oil chamber (71), which can adjust the elastic damping of the hydraulic spring to better absorb unfiltered body vibration.
  • the pneumatic spring in this embodiment only the hydraulic oil needs to be replaced with nitrogen, which will not be repeated here.
  • the embodiment of the present application provides an instantaneously adjustable electromagnetic suspension device for a real-time vehicle stabilization system, which can instantaneously adjust the stretching and damping of the electromagnetic suspension device, and simulate various advance intervention actions in real time, so as to avoid the imminent occurrence of known road conditions. vibration.
  • the device has simple structure, low cost and high application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本申请涉及用于实时车辆稳定系统的瞬时可调电磁悬挂装置。特别涉及基于路面不同路况实时调控,提前规避震动来达到车身稳定的瞬时可调电磁悬挂装置。该装置包括:双套筒结构,包括:第一套筒和第二套筒;两个套筒内分别装有磁体组件,包括:第一磁体和第二磁体,两个磁体相对布置,且两个磁体至少其中之一是可控电磁体;其中至少一个磁体一端连接致动器,致动器安装在对应的套筒上,致动器带动磁体产生直线运动。

Description

瞬时可调电磁悬挂装置 技术领域
本申请涉及用于实时车辆稳定系统的瞬时可调电磁悬挂装置。特别涉及基于路面不同路况实时调控,提前规避震动来达到车身稳定的瞬时可调电磁悬挂装置。
背景技术
现有技术中,主动悬挂在其结构中植入了可人工或自动控制发力的调节机构,并能根据路面情况自动调节减震器阻尼,以获得更好的行驶舒适性。从这种悬挂的组成种类来看,大致又可以分为两大类。一类是电子控制式主动液压悬挂,它能通过车载电脑计算出悬挂受力大小和加速度,利用液压减震器的伸缩来保持车身平衡;另一类则是电子控制式空气悬挂,它也是通过车载电脑计算悬挂的受力及感应路面情况,适时调整空气减震器的阻尼系数,令车身的震动始终保持在一定范围内。这两类电控主动悬挂的共同点是:产生震动受力后,通过车身高度调节,改变减震器阻尼来抑制车身姿态变化,增进汽车操作稳定性、乘坐舒适性等性能。
技术问题
那么有没有一个方案可以规避这样的车辆震动,在车辆震动前就对悬挂系统进行调控,将震动扼杀在摇篮。比如遇到前方存在各种坑洼、拥包、倾斜等复杂路面情况,怎么进行规避,特别是通过传感器已知路面情况后,如何快速实现悬挂装置伸缩和阻尼的动态调控。
技术解决方案
本申请的主要目的在于提供一种实时车辆稳定系统的瞬时可调电磁悬挂装置。特别涉及基于路面不同路况实时调控,利用电磁系统做出毫秒级反应,提前规避震动来达到车身稳定。该装置的反应速度比传统的悬挂快5倍,而且磁体相对放置能够产生较大推拉力,同时两磁体距离可调,可以和电磁体通电控制,组合模拟出各种提前干预动作,即使是在最颠簸复杂的路面,也能保证车辆平稳行驶。
本申请公开一种瞬时可调电磁悬挂装置,该装置包括:双套筒结构,包括:第一套筒和第二套筒;两个套筒内分别装有磁体组件,包括:第一磁体和第二磁体,两个磁体相对布置,且两个磁体至少其中之一是可控电磁体;其中至少一个磁体一端连接致动器,致动器安装在对应的套筒上,致动器带动磁体产生直线运动。
作为本申请的进一步改进,双套筒外安装有弹簧座圈,包括:上弹簧座圈和下弹簧座圈,弹簧座圈之间设有螺旋压力弹簧。
作为本申请的进一步改进,第一磁体和第二磁体是多层叠加磁体。
作为本申请的进一步改进,致动器为电动致动器,包括:电动马达和连杆,连杆固定在电动马达和磁体之间,电动马达带动连杆产生磁体的直线运动。
作为本申请的进一步改进,致动器为液压或气动致动器,包括:液压或气动马达,带动磁体产生直线运动。
作为本申请的进一步改进,该装置还包括:位置传感器,用于判断两磁体间的距离。
作为本申请的进一步改进,该装置还包括:碰撞保护部件,用于保护两磁体,避免碰撞损伤。
作为本申请的进一步改进,第一磁体为永磁体,在磁体的外围,第二套筒内层嵌套励磁线圈,当第一磁体随悬挂系统直线运动时,励磁线圈产生电场。
作为本申请的进一步改进,该装置还包括:空气或液压弹簧,安装在任一套筒尾部,且该弹簧具有伸缩和阻尼可调特性。
作为本申请的进一步改进,该装置还包括:控制器;车辆控制单元ECU接收电磁波发射器发射点云信号,采集地面信息,并通过强化学习方法得到控制信号,并传送给瞬时可调电磁悬挂装置控制器,控制致动器调节磁体到指定相对位置,同时控制可控电磁体产生吸推力,瞬时调控电磁悬挂装置伸缩和阻尼,并实时模拟出各种提前干预动作,规避已知路面即将产生的震动。
实时车辆稳定系统具体实现方法,包括如下步骤:a)电磁波发射器发射点云照射前方路面,电磁波接收器接收点云位置数据作为地面状态S1;b)将车辆状态S2加上S1得到状态S;c)把状态S输入到预先训练好的强化学习模型中,得到车辆稳定干预动作A;d)车辆稳定干预动作A产生的行驶状态传感器参数变化(即通过加速度传感器等判断车辆行驶的稳定性)T,设定一个参数R随参数T增大而减小,作为反馈奖励;e)车辆稳定干预动作A后得到下一个状态S';f)训练一个强化学习模型,基于“状态S+车辆稳定干预动作A+下一个状态S'+反馈奖励R” 作为训练数据,不断地尝试,不断地改进,使得车辆稳定干预动作A趋向反馈奖励R最大。
其中得到车辆稳定干预动作A包括瞬时调控电磁悬挂装置伸缩和阻尼,来达到车辆稳定最大化,规避已知路面即将产生的震动。
有益效果
本申请实施例提供了一种用于实时车辆稳定系统的瞬时可调电磁悬挂装置,瞬时调控电磁悬挂装置伸缩和阻尼,并实时模拟出各种提前干预动作,规避已知路面即将产生的震动。而且本装置结构简单,成本低,有很高的应用价值。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施第一例的示意图和剖视图。
图2为本申请实施第二例的示意图和剖视图。
图3为本申请实施第三例的示意图和剖视图。
本发明的最佳实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的系统或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电气连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
以下,参照附图对作为搭载于车辆的自动驾驶防撞避免装置而具体化后的实施方式进行说明。本实施方式所涉及的防撞避免装置通过发射特定方向激光光束,来探测前方是否存在障碍物。首先,使用图1对本实施方式所涉及的车辆的防撞避免装置的示意结构进行说明。应当理解,本申请的装置和方法可用于任何类型的车辆,包括传统车辆、混合动力车辆(HEV)、增程式电动车(EREV)、纯电动车(BEV)、摩托车、电瓶车、客车、运动型多功能车(SUV)、跨界车、卡车、厢式货车、公共汽车、旅行车(RV) 等。这些仅仅是可能的应用中的一些,因为本文所述装置和方法不限于图1-4所示示例性实施例,并且可通过多种不同方式实现。
图1表示本申请的第一种实施方式。在附图中,瞬时可调电磁悬挂装置为电动马达和连杆的结构。瞬时可调电磁悬挂装置包括双套筒结构,双套筒由第一套筒(11)和第二套筒(12)构成。第一套筒(11)固定于未图示的车身端,第二套筒(12)固定于未图示的车轮侧,并且第二套筒(12)可在第一套筒(11)内滑动。
双套筒外安装有弹簧座圈,包括:上弹簧座圈(41)和下弹簧座圈(42),弹簧座圈之间设有螺旋压力弹簧(51),主要用于支持车身以及吸收不平路面和其它施力对轮胎所造成的冲击,而这里所谓的其它施力包含了加速、减速、刹车、转弯等所对弹簧造成的施力。采用螺旋压力弹簧(51)主要是容易制作、性能效率高、价格低。
  第一套筒(11)内安装固定有电动马达(31),电动马达设计成螺纹传动机构带动连杆(32)产生直线运动,连杆(32)末端连接第一磁体(21),第一磁体为永磁体。第二套筒(12)内安装固定有第二磁体(22),第二磁体为可控电磁体,通过电流可控制第二磁体的磁极方向和磁场强弱。第二磁体产生磁场,从而可以与第一磁体相互吸引或者相互排斥,即当第二磁体通电时,若第二磁体朝向第一磁体的一侧形成的磁场的极性与第一磁体朝向第二磁体的一侧的极性相同,则第二磁体和第一磁体相互排斥,若第二磁体朝向第一磁体的一侧形成的磁场的极性与第一磁体朝向第二磁体的一侧的极性相反,则第二磁体和第一磁体相互吸引,进而第二磁体通过与第一磁体的配合,可以让第二套筒(12)在吸引力或者排斥力的作用下在第一套筒(11)内伸缩移动。
为了增大第一磁体和第二磁体之间的作用力,减少消耗电力,第一磁体和第二磁体采用相对布置。为了进一步增大第一磁体和第二磁体之间的作用力,以便产生瞬时大吸推力,第一磁体(21)和第二磁体(22)是多层叠加磁体,即由多个圆环或圆柱状磁体层的组合,且各磁体层等间距地固定在第二套筒(12)内侧和连杆(32)外侧。磁体层越多吸推力越大,n层的磁体比1层的磁体,吸推力大n倍。
第一磁体和第二磁体采用相对布置虽然有其优点,增大第一磁体和第二磁体之间的作用力,但同时存在一定缺点,如果两磁体过近,且吸力过大时,两磁体容易发生碰撞,导致磁体永久性损伤,最后使瞬时可调电磁悬挂装置失效,所以控制两磁体不相撞的关键在于知道两磁体间的距离,虽然可以通过电机的转动来判断大致位置,但是由于电机转动产生的距离移动存在部分误差,长时间堆积会产生距离判断错误,因此在第一套筒(11)内壁安装位置传感器(61),此处位置传感器(61)采用霍尔传感器,霍尔传感器是根据霍尔效应制作的一种磁场传感器。即感应位置传感器附近的磁场变化来确定第一磁体(21)的位置,间接得到第一磁体和第二磁体之间的距离。为了得到的距离参数更加精确,可在连杆内嵌一颗强磁体(62),设置强磁体(62)与位置传感器最接近位置为位置零点,且每隔一定时间间隔,做一个位置归零动作,较正长时间运动产生的误差。为了完全的保护,另在第一磁体和第二磁体之间,第二磁体上设置碰撞保护部件(63),保护由于意想不到的原因导致两磁体距离过近,此处碰撞保护部件(63)采用能够弹性变形的弹性体,当两磁体距离过近,会挤压弹性体,进一步吸收冲击力,起到保护两磁体的作用。
在可控电磁体第二磁体(22)不工作时,车辆在行驶过程中悬挂系统无法避免的会产生跳动和震动,而震动能量会转为热能浪费掉,能否将震动能量转为电能储存用于可控电磁体,实现整个瞬时可调电磁悬挂装置的低能耗。因此在永磁体第一磁体(21)的外围,第二套筒(12)内层嵌套励磁线圈(81),当第一磁体随悬挂系统直线运动时,励磁线圈产生电场,将电场用线束连接引出到整流电路转为直流电,并存储于储能电池或者大电容中,再反向供给可控电磁体,降低了整个瞬时可调电磁悬挂装置的能耗。
本申请具有上述结构,接下来对其配合实时车辆稳定系统工作进行说明。
瞬时可调电磁悬挂装置还包括:控制器(91);车辆控制单元ECU接收电磁波发射器发射点云信号,采集地面信息,并通过强化学习方法得到控制信号,并传送给瞬时可调电磁悬挂装置控制器,控制致动器调节磁体到指定相对位置,同时控制可控电磁体产生吸推力,瞬时调控电磁悬挂装置伸缩和阻尼,并实时模拟出各种提前干预动作,规避已知路面即将产生的震动。
强化学习作为一个序列决策(Sequential Decision Making)问题,它需要连续选择一些行为,从这些行为完成后得到最大的收益作为最好的结果。它在没有任何label告诉算法应该怎么做的情况下,通过先尝试做出一些行为——然后得到一个结果,通过判断这个结果是对还是错来对之前的行为进行反馈。由这个反馈来调整之前的行为,通过不断的调整算法能够学习到在什么样的情况下选择什么样的行为可以得到最好的结果。
通俗语言解释 :我们训练出一个人工大脑Agent,这个Agent可以对环境Environment中的状态Status做出判断,读取环境的状态,并做出动作Action. 这个人工大脑做出动作之后,环境会根据受到的来自Agent的动作给这个Agent进行奖励反馈Reward,这个人工大脑会根据环境的奖励反馈做出改进,从而做出更好Improve的行动. 就是这样一个循环往复的过程,Agent不断地尝试,不断地改进自己。那么如何让Agent变得足够远见,能够从长远的角度优化当前固定行动,而不是急功近利呢。所以Agent 每一步都要需要向着获得最大利益那边靠齐。
步骤a)电磁波发射器发射点云照射前方路面,电磁波接收器接收点云位置数据作为路面状态S1。其中坑洼和拥包位置,由于路面状态的变化,所述位置的点云的点位置会发生一定量的偏移,得到路面状态S1数字矩阵。实际路面状态S1数字矩阵要更加密集,数据量更大,包括更多信息,比如:除了坑洼和拥包还有路面倾斜等更多信息,除了电磁波点云位置矩阵还有电磁波点云大小矩阵,所述点云大小指点的直径大小,此参数可以反映路面的材料特性。当然路面状态S1数字矩阵虽然只是一个数字矩阵,但实际包含的信息肯定比已知的更加丰富,只能通过强化学习模型来解读,这也是强化学习模型的强大之处。
步骤b)将车辆状态S2加上S1得到状态S。根据采集到的路面状态S1,可以对车轮的高低和阻尼进行提前调控达到稳定车身的作用,但是路面状态S1到达车轮还有一个时间差t,所以需要得到车辆状态传感器的参数,来计算车轮到达所述路面状态S1时的对应位置、方向以及可调悬挂系统高度和阻尼参数,而这些车辆状态传感器的参数构成车辆状态S2。其中,车辆状态S2加上路面状态S1得到状态S中,可以数字矩阵S1加上数字矩阵S2进行简单的融合,再加上时间参数t生成一个新的数字矩阵S,也可由S2中速度、加速度、转向角、时间t等参数计算出车轮到达S1点云矩阵时候,车轮的位置、方向等参数对路面状态S1进行简化,然后再加上可调悬挂系统高度和阻尼参数得到状态S数字矩阵。
步骤c)把状态S输入到预先训练好的强化学习模型中,得到车辆稳定干预动作A。通过强化学习模型,输入状态S的数字矩阵,得到输出车辆稳定干预动作A的数字矩阵,其中A的数字矩阵中的参数包括:车轮的高度调节参数和车轮的阻尼调节参数。即车轮遇到各种路面状态,是应该上升还是下降,是阻尼调节到更柔软还是更硬,来适用路面,使得车辆更加稳定,提高驾乘的舒适性。更进一步,除了车辆可调悬挂系统的调节外,还可以通过执行单元中的其他调控手段,例如:车速调控器、制动装置和转向装置。在使用车速调控器、制动装置和转向装置进行调控时,应充分考虑现有的行车状况,特别是车辆行驶安全和驾乘舒适性。
步骤d)车辆稳定干预动作A产生的行驶状态传感器参数变化T,设定一个参数R随参数T增大而减小,作为反馈奖励;此处定义了车辆稳定的标准,即通过车辆上行驶状态传感器来判断车辆稳定性,即车辆倾斜、加速和转向上的参数变化越小和/或越平缓,则车辆稳定性越好。当然三个参数的前面可以加上不同的权重参数,来定义车辆倾斜、加速和转向不同的重要性,具体权重参数,可以根据实际实验情况的驾乘体验来定义,或者做成不同选项让驾乘人员自由选择。
步骤e)车辆稳定干预动作A后得到下一个状态S'。
步骤f)训练一个强化学习模型,基于“状态S+车辆稳定干预动作A+下一个状态S'+反馈奖励R” 作为训练数据,不断地尝试,不断地改进,使得车辆稳定干预动作A趋向反馈奖励R最大。
进一步地,反馈奖励R为了长期表现良好,我们不仅需要考虑即时奖励,还有我们将得到的未来奖励。因此设置Rt=rt+γRt+1,rt为执行完t步骤后的即时奖励,Rt+1为执行完下一个t+1步骤后的未来奖励,γ是数值在0与1之间的贴现因子,在距离我们越远的未来奖励,我们便考虑的越少。
进一步地,所述强化学习模型可以采用Q-learning方法训练,Q-learning更新的公式如下:Q(s,a)←Q(s,a)+α[r+γmaxa'​Q(s',a')−Q(s,a)],根据下一个状态s'中选取最大的Q(s',a')值乘以衰变系数γ加上真实回报值作为Q现实,而根据过往Q表里面的Q(s,a)作为Q估计对Q-table进行更新,其中α为学习率。
进一步地,普通的Q-learning中,当状态S和动作A是离散且维数不高时可使用Q-Table储存每个状态S和动作A对应的Q值,而当状态S和动作A是高维连续时,使用Q-Table储存状态S和动作A,由于数据量太大储存十分困难。故强化学习模型可以采用DQN(CNN+Q-Learning)方法训练,先引入卷积神经网络CNN,把Q-table更新转化为一函数拟合问题,通过拟合一个函数function来代替Q-table产生Q值,使得相近的状态得到相近的输出动作。
其中得到车辆稳定干预动作A最主要是指瞬时调控电磁悬挂装置伸缩和阻尼,来达到车辆稳定最大化,规避已知路面即将产生的震动。此处A动作参数主要包括:1.两磁体间的距离,2.控制两磁体间瞬时吸推力的电流大小,3.以及根据时间形成的电流脉冲变化;这三个参数组合,实时模拟出各种提前干预动作,规避已知路面即将产生的震动。
本发明的实施方式
图2表示本申请的第二种实施方式。在附图中,瞬时可调电磁悬挂装置中,致动器为液压或气动马达的结构。在本实施方式中,对与上述第一实施方式相同的构成要素标注相同的附图标记,并省略其说明。现以液压马达为例进行说明,如图所示,油缸(33)内设有活塞(32),液压马达(31)通过加油管(35)和卸油管(36)与油缸相连,并通过加油和卸油动作带动活塞上下滑动,最后起到调控第一磁体(21)上下运动功能。当从加油管(35)向升降控制油腔(37)内加油时,活塞向下运动。当通过卸油管(36)向升降控制油腔(37)内卸油时,活塞向上运动。此外,在液压马达(31)和升降控制油腔(37)之间还设置有阻尼控制管,可以控制活塞上下运动的阻尼,为调控电磁悬挂装置伸缩多增加一个调控阻尼参数,更有利于复杂干预动作的模拟。本实施例中的气动马达同理,只需将液压油更换成氮气即可,在此不再重述。
图3表示本申请的第三种实施方式。在附图中,瞬时可调电磁悬挂装置增加空气或液压弹簧结构。在本实施方式中,对与上述第一实施方式相同的构成要素标注相同的附图标记,并省略其说明。现以液压弹簧为例进行说明,如图所示,在第二套筒(12)底部安装液压弹簧(70),液压弹簧内设有液压马达(72)、升降控制油腔(71)和活塞(76),活塞相连的连杆(77)与车轮侧连接,同时在连杆(77)外设有防尘保护罩(78)。液压马达(72)通过加油管(73)和卸油管(74)与油缸相连,并通过加油和卸油动作带动活塞上下滑动,最后起到调控车身高度功能。当从加油管(73)向升降控制油腔(71)内加油时,活塞向下运动。当通过卸油管(74)向升降控制油腔(71)内卸油时,活塞向上运动。此外,在液压马达(72)和升降控制油腔(71)之间还设置有阻尼控制管,能够调节液压弹簧的弹性阻尼,更好吸收没有过滤的车身震动。本实施例中的气动弹簧同理,只需将液压油更换成氮气即可,在此不再重述。
工业实用性
综上,本申请实施例提供了一种用于实时车辆稳定系统的瞬时可调电磁悬挂装置,瞬时调控电磁悬挂装置伸缩和阻尼,并实时模拟出各种提前干预动作,规避已知路面即将产生的震动。而且本装置结构简单,成本低,有很高的应用价值。
本申请依据实施例进行了记述,但是应理解的是本申请并不限定于该实施例及构造。本申请也包含各种变形例及等同范围内的变形。除此以外,各种各样的组合及方式、以及在其中仅包含一个要素、一个以上要素或一个以下要素的其他组合或方式也包含在本申请的范畴及思想范围内。

Claims (10)

  1. 一种用于实时车辆稳定系统的瞬时可调电磁悬挂装置,该装置包括:
      双套筒结构,包括:第一套筒和第二套筒;两个套筒内分别装有磁体组件,包括:第一磁体和第二磁体,两个磁体相对布置,且两个磁体至少其中之一是可控电磁体;其中至少一个磁体一端连接致动器,致动器安装在对应的套筒上,致动器带动磁体产生直线运动。
  2. 根据权利要求1所述的装置,其特征在于:双套筒外安装有弹簧座圈,包括:上弹簧座圈和下弹簧座圈,弹簧座圈之间设有螺旋压力弹簧。
  3. 根据权利要求2所述的装置,其特征在于:第一磁体和第二磁体是多层叠加磁体,且每层之间为等间距。
  4. 根据权利要求3所述的装置,其特征在于:致动器为电动致动器,包括:电动马达和连杆,连杆固定在电动马达和磁体之间,电动马达带动连杆产生磁体的直线运动。
  5. 根据权利要求3所述的装置,其特征在于:致动器为液压或气动致动器,包括:液压或气动马达,带动磁体产生直线运动。
  6. 根据权利要求1所述的装置,其特征在于:该装置还包括:位置传感器,用于判断两磁体间的距离。
  7. 根据权利要求6所述的装置,其特征在于:该装置还包括:碰撞保护部件,用于保护两磁体,避免碰撞损伤。
  8. 根据权利要求7所述的方法,其特征在于:第一磁体为永磁体,在第一磁体的外围,第二套筒内层嵌套励磁线圈,当第一磁体随悬挂系统直线运动时,励磁线圈产生电场。
  9. 根据权利要求8所述的方法,其特征在于:该装置还包括:空气或液压弹簧,安装在任一套筒尾部,且该弹簧具有伸缩和阻尼可调特性。
  10. 根据权利要求1-9中任一项,其特征在于:该装置还包括:控制器;车辆控制单元ECU接收电磁波发射器发射点云信号,采集地面信息,并通过强化学习方法得到控制信号,并传送给瞬时可调电磁悬挂装置控制器,控制致动器调节磁体到指定相对位置,同时控制可控电磁体产生吸推力,瞬时调控电磁悬挂装置伸缩和阻尼,并实时模拟出各种提前干预动作,规避已知路面即将产生的震动。
PCT/CN2021/101978 2021-06-24 2021-06-24 瞬时可调电磁悬挂装置 WO2022266916A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101978 WO2022266916A1 (zh) 2021-06-24 2021-06-24 瞬时可调电磁悬挂装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101978 WO2022266916A1 (zh) 2021-06-24 2021-06-24 瞬时可调电磁悬挂装置

Publications (1)

Publication Number Publication Date
WO2022266916A1 true WO2022266916A1 (zh) 2022-12-29

Family

ID=84545079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101978 WO2022266916A1 (zh) 2021-06-24 2021-06-24 瞬时可调电磁悬挂装置

Country Status (1)

Country Link
WO (1) WO2022266916A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405841B1 (en) * 2000-09-15 2002-06-18 Damon R. Zeno Electromagnetic shock absorber
WO2008025994A1 (en) * 2006-09-01 2008-03-06 University Of Reading Suspension unit
CN107264211A (zh) * 2017-07-04 2017-10-20 陈蜀乔 一种瞬态主动式直线电机电磁悬架
CN109130757A (zh) * 2018-07-16 2019-01-04 西安交通大学 一种馈能式半主动悬架变阻尼系统与控制方法
WO2020034542A1 (zh) * 2018-08-17 2020-02-20 平安科技(深圳)有限公司 神经网络模型训练、人脸识别方法、装置、设备及介质
CN211117302U (zh) * 2019-10-14 2020-07-28 广州杰赛科技股份有限公司 一种缓冲装置及减震器
CN111981072A (zh) * 2020-09-23 2020-11-24 浙江源创普贝特尔曼科技有限公司 一种多级式磁悬浮减震器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405841B1 (en) * 2000-09-15 2002-06-18 Damon R. Zeno Electromagnetic shock absorber
WO2008025994A1 (en) * 2006-09-01 2008-03-06 University Of Reading Suspension unit
CN107264211A (zh) * 2017-07-04 2017-10-20 陈蜀乔 一种瞬态主动式直线电机电磁悬架
CN109130757A (zh) * 2018-07-16 2019-01-04 西安交通大学 一种馈能式半主动悬架变阻尼系统与控制方法
WO2020034542A1 (zh) * 2018-08-17 2020-02-20 平安科技(深圳)有限公司 神经网络模型训练、人脸识别方法、装置、设备及介质
CN211117302U (zh) * 2019-10-14 2020-07-28 广州杰赛科技股份有限公司 一种缓冲装置及减震器
CN111981072A (zh) * 2020-09-23 2020-11-24 浙江源创普贝特尔曼科技有限公司 一种多级式磁悬浮减震器

Similar Documents

Publication Publication Date Title
US9440507B2 (en) Context aware active suspension control system
EP2223838B1 (en) Vehicle driving operation support apparatus/process and cooperation control
EP2223839B1 (en) Vehicle driving operation support apparatus/process and inducement control
JP4972440B2 (ja) 減衰力可変ダンパの制御装置
US9114683B2 (en) Vehicle control device and method
JP4648126B2 (ja) 車両用サスペンション装置
US10442475B2 (en) Method and device for performing open-loop control of a driver's cab mount
JP4546308B2 (ja) 可変減衰力ダンパーの制御装置
US20130245888A1 (en) Vehicle controlling apparatus and method
WO2019217084A1 (en) Suspension system and method for controlling suspension system
CN113232566B (zh) Ai电磁瞬控主动防震座椅及其方法
JP4427555B2 (ja) 減衰力可変ダンパの制御装置
WO2022266916A1 (zh) 瞬时可调电磁悬挂装置
US20220314725A1 (en) Vehicle control device
GB2597458A (en) Vehicle active suspension control system and method
GB2597457A (en) Vehicle active suspension control system and method
CN216231564U (zh) 瞬时可调电磁悬挂装置
JP2011143770A (ja) サスペンション装置
WO2021059845A1 (ja) 車両運動制御装置
CN113212090A (zh) 瞬时可调电磁悬挂装置
JP2005119563A (ja) 車両懸架装置
CN213017452U (zh) 减振器和具有其的车辆
US11938779B2 (en) Behavior control device for vehicle
CN215042285U (zh) 减振装置、汽车座椅、汽车
Yoshioka et al. SKYACTIV TECHNOLOGY to enhance ‘Jinba-Ittai’

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE