WO2022266819A1 - Voltage conversion circuit and control method therefor, and electronic device - Google Patents

Voltage conversion circuit and control method therefor, and electronic device Download PDF

Info

Publication number
WO2022266819A1
WO2022266819A1 PCT/CN2021/101358 CN2021101358W WO2022266819A1 WO 2022266819 A1 WO2022266819 A1 WO 2022266819A1 CN 2021101358 W CN2021101358 W CN 2021101358W WO 2022266819 A1 WO2022266819 A1 WO 2022266819A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
voltage
switch
control
conversion circuit
Prior art date
Application number
PCT/CN2021/101358
Other languages
French (fr)
Chinese (zh)
Inventor
胡章荣
申朋朋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180021104.9A priority Critical patent/CN115769479A/en
Priority to PCT/CN2021/101358 priority patent/WO2022266819A1/en
Publication of WO2022266819A1 publication Critical patent/WO2022266819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided in the embodiments of the present application are a voltage conversion circuit and a control method therefor, and an electronic device, which relate to the technical field of voltage conversion and can improve the efficiency of a voltage conversion circuit. The voltage conversion circuit comprises a first switch, a second switch, a first device, a second device, a capacitor, a first control terminal, a second control terminal, a third control terminal, a first voltage terminal, a second voltage terminal and a grounding terminal, wherein the first switch is coupled between the first voltage terminal and a first terminal of the capacitor, and is also coupled with the first control terminal; the second switch is coupled between a second terminal of the capacitor and the second voltage terminal, and is also coupled with the second control terminal; the first device is coupled between the first voltage terminal and the second terminal of the capacitor; the second device is coupled between the first terminal of the capacitor and the grounding terminal; one of the first switch and the second switch is a third switch, and the other is an inductor; and the third switch is also coupled with the third control terminal.

Description

电压变换电路及其控制方法、电子设备Voltage conversion circuit and its control method, electronic equipment 技术领域technical field
本申请涉及电压变换技术领域,尤其涉及一种电压变换电路及其控制方法、电子设备。The present application relates to the technical field of voltage conversion, and in particular to a voltage conversion circuit, a control method thereof, and electronic equipment.
背景技术Background technique
目前,手机、个人电脑(personal computer,PC)等电子产品中,直流(direct current,DC)/直流电压变换通常采用电压变换电路实现,电压变换电路包括buck(降压式电压变换)电路和boost(升压式电压变换)电路等。At present, in electronic products such as mobile phones and personal computers (PC), DC (direct current, DC)/DC voltage conversion is usually implemented by a voltage conversion circuit, and the voltage conversion circuit includes a buck (step-down voltage conversion) circuit and a boost circuit. (Boost voltage conversion) circuits, etc.
手机、个人电脑等电子产品的核心(corebuck)模块例如中央处理器(central processing unit,CPU)和图形处理器(graphics processing unit,GPU)要求电压变换电路具有高效率的特性。然而,由于现有的电压变换电路本身的转换效率较低,因而无法满足日益增长的产品应用对高效率性能的需求。The core (corebuck) modules of electronic products such as mobile phones and personal computers, such as central processing unit (CPU) and graphics processing unit (GPU), require voltage conversion circuits to have high efficiency characteristics. However, due to the low conversion efficiency of the existing voltage conversion circuit itself, it cannot meet the increasing demand for high-efficiency performance in product applications.
发明内容Contents of the invention
本申请的实施例提供一种电压变换电路及其控制方法、电子设备,可以提高电压变换电路的效率。为达到上述目的,本申请采用如下技术方案。Embodiments of the present application provide a voltage conversion circuit, a control method thereof, and an electronic device, which can improve the efficiency of the voltage conversion circuit. In order to achieve the above purpose, the present application adopts the following technical solutions.
第一方面,提供一种电压变换电路,该电压变换电路包括第一开关、第二开关、第一器件、第二器件、电容、第一控制端、第二控制端、第三控制端、第一电压端、第二电压端和接地端;第一开关耦合在第一电压端和电容的第一端之间,第一开关还与第一控制端耦合;第二开关耦合在电容的第二端和第二电压端之间,第二开关还与第二控制端耦合;第一器件耦合在第一电压端和电容的第二端之间,第二器件耦合在电容的第一端和接地端之间;其中,第一器件和第二器件中一个为第三开关,另一个为电感;第三开关还与第三控制端耦合。In a first aspect, a voltage conversion circuit is provided, and the voltage conversion circuit includes a first switch, a second switch, a first device, a second device, a capacitor, a first control terminal, a second control terminal, a third control terminal, a first A voltage terminal, a second voltage terminal and a ground terminal; the first switch is coupled between the first voltage terminal and the first terminal of the capacitor, and the first switch is also coupled to the first control terminal; the second switch is coupled to the second terminal of the capacitor Between the terminal and the second voltage terminal, the second switch is also coupled to the second control terminal; the first device is coupled between the first voltage terminal and the second terminal of the capacitor, and the second device is coupled between the first terminal of the capacitor and ground Between the terminals; wherein, one of the first device and the second device is a third switch, and the other is an inductor; the third switch is also coupled to the third control terminal.
在该电压变换电路中,可以是第一电压端为电压输入端,第二电压端为电压输出端;也可以是第一电压端为电压输出端,第二电压端为电压输入端。此外,该电压变换电路可以作为升压式电压变换电路,也可以作为降压式电压变换电路。In the voltage conversion circuit, the first voltage terminal may be a voltage input terminal, and the second voltage terminal may be a voltage output terminal; or the first voltage terminal may be a voltage output terminal, and the second voltage terminal may be a voltage input terminal. In addition, the voltage conversion circuit can be used as a step-up voltage conversion circuit or as a step-down voltage conversion circuit.
由于本申请提供的电压变换电路中,第一开关耦合在第一电压端和电容的第一端之间,第二开关耦合在电容的第二端和第二电压端之间,因此电压变换电路用于实现第一电压端和第二电压端之间能量的传输时,第一电压端提供的至少部分能量可以直接通过电容传递到第二电压端,不经过电感,或者,第二电压端提供的至少部分能量可以直接通过电容传递到第一电压端,不经过电感,而电容的损耗相对于电感大幅度降低,相对于传统的buck电路或boost电路,电压输入端提供的能量通过电感L向电压输出端供电,因此本申请实施例提供的电压变换电路的效率得到很大提升。Since in the voltage conversion circuit provided by the present application, the first switch is coupled between the first voltage terminal and the first terminal of the capacitor, and the second switch is coupled between the second terminal of the capacitor and the second voltage terminal, the voltage conversion circuit When used to realize energy transmission between the first voltage terminal and the second voltage terminal, at least part of the energy provided by the first voltage terminal can be directly transferred to the second voltage terminal through the capacitor without passing through the inductor, or the second voltage terminal provides At least part of the energy can be directly transferred to the first voltage terminal through the capacitor without passing through the inductor, and the loss of the capacitor is greatly reduced compared with the inductor. Compared with the traditional buck circuit or boost circuit, the energy provided by the voltage input terminal is transferred to the first voltage terminal through the inductor L. The voltage output terminal supplies power, so the efficiency of the voltage conversion circuit provided by the embodiment of the present application is greatly improved.
此外,由于电感会抑制电流的突变,因此传统的buck电路或boost电路中,电感会限制输出瞬态响应性能的提升,而在申请本实施例中,由于第一电压端或第二电压端提供的至少部分能量可以直接通过电容进行传输,不经过电感,因此本申请实施例提供的电压变换电路的输出瞬态响应性能(输出瞬态响应性能包括瞬态跌落响应性能 和瞬态过冲响应性能)明显提升。In addition, because the inductance will suppress the sudden change of the current, in the traditional buck circuit or boost circuit, the inductance will limit the improvement of the output transient response performance. In this embodiment of the application, since the first voltage terminal or the second voltage terminal provides At least part of the energy can be transmitted directly through the capacitor without passing through the inductance, so the output transient response performance of the voltage conversion circuit provided by the embodiment of the present application (the output transient response performance includes the transient drop response performance and the transient overshoot response performance ) was significantly improved.
在一种可能的实施方式中,第一器件为第三开关,第二器件为电感。在第二电压端为电压输入端,第一电压端为电压输出端的情况下,在此路径下,电压变换电路为降压式电压变换电路。在第一电压端为电压输入端,第二电压端为电压输出端的情况下,在此路径下,电压变换电路为升压式电压变换电路。In a possible implementation manner, the first device is a third switch, and the second device is an inductor. In the case where the second voltage terminal is a voltage input terminal and the first voltage terminal is a voltage output terminal, in this path, the voltage conversion circuit is a step-down voltage conversion circuit. In the case that the first voltage terminal is a voltage input terminal and the second voltage terminal is a voltage output terminal, in this path, the voltage conversion circuit is a step-up voltage conversion circuit.
在一种可能的实施方式中,电压变换电路还包括第一控制逻辑电路;第一控制逻辑电路与第一控制端、第二控制端和第三控制端耦合;第一控制逻辑电路用于在第一模式下输出第一控制信号和在第二模式下输出第二控制信号;第一控制信号用于控制第一开关和第二开关同时导通或断开,以及控制第三开关和第一开关交替导通;第二控制信号用于控制第二开关和第三开关导通。其中,在电压变换电路为降压式电压变换电路的情况下,电压输出端为第一电压端,在电压变换电路为升压式电压变换电路的情况下,电压输出端为第二电压端。In a possible implementation manner, the voltage conversion circuit further includes a first control logic circuit; the first control logic circuit is coupled to the first control terminal, the second control terminal and the third control terminal; the first control logic circuit is used for The first control signal is output in the first mode and the second control signal is output in the second mode; the first control signal is used to control the first switch and the second switch to be turned on or off at the same time, and to control the third switch and the first switch. The switches are turned on alternately; the second control signal is used to control the second switch and the third switch to be turned on. Wherein, when the voltage conversion circuit is a step-down voltage conversion circuit, the voltage output terminal is the first voltage terminal, and when the voltage conversion circuit is a boost voltage conversion circuit, the voltage output terminal is the second voltage terminal.
在电压变换电路为降压式电压变换电路的情况下,由于电压变换电路包括第一控制逻辑电路,因此当负载瞬态变重,第一控制逻辑电路输出第二控制信号,控制第二开关和第三开关导通,这样一来,电压输入端(即第二电压端)可以经过第二开关和第三开关直接给电压输出端(即第一电压端)进行补电,这样便可以大幅提升负载瞬态跌落响应性能。In the case where the voltage conversion circuit is a step-down voltage conversion circuit, since the voltage conversion circuit includes a first control logic circuit, when the load transient becomes heavy, the first control logic circuit outputs a second control signal to control the second switch and The third switch is turned on, so that the voltage input terminal (that is, the second voltage terminal) can directly supply power to the voltage output terminal (that is, the first voltage terminal) through the second switch and the third switch, so that the voltage can be greatly improved. Load transient drop response performance.
在电压变换电路为升压式电压变换电路的情况下,由于电压变换电路包括第一控制逻辑电路,因此当负载瞬态变轻,第一控制逻辑电路输出第二控制信号,控制第二开关和第三开关导通,这样一来,电压输入端(即第一电压端)可以经过第二开关和第三开关直接给电压输出端(即第二电压端)进行放电,这样便可以大幅提升负载瞬态过冲响应性能。In the case where the voltage conversion circuit is a step-up voltage conversion circuit, since the voltage conversion circuit includes a first control logic circuit, when the transient load becomes lighter, the first control logic circuit outputs a second control signal to control the second switch and The third switch is turned on, so that the voltage input terminal (ie, the first voltage terminal) can directly discharge the voltage output terminal (ie, the second voltage terminal) through the second switch and the third switch, so that the load can be greatly increased Transient overshoot response performance.
在一种可能的实施方式中,第二电压端为电压输入端,第一电压端为电压输出端;此时,电压变换电路为降压式电压变换电路,第一控制逻辑电路具体用于:当电压输出端的电压大于或等于第一阈值电压时,在第一模式下输出第一控制信号。当电压输出端的电压大于或等于第一阈值电压时,电压输入端(即第二电压端)可以经过电容和电感对电压输出端(即第一电压端)进行充分供电,因此触发第一模式,第一控制逻辑电路输出第一控制信号。In a possible implementation manner, the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; at this time, the voltage conversion circuit is a step-down voltage conversion circuit, and the first control logic circuit is specifically used for: When the voltage at the voltage output terminal is greater than or equal to the first threshold voltage, the first control signal is output in the first mode. When the voltage at the voltage output terminal is greater than or equal to the first threshold voltage, the voltage input terminal (that is, the second voltage terminal) can fully supply power to the voltage output terminal (that is, the first voltage terminal) through the capacitor and the inductance, thus triggering the first mode, The first control logic circuit outputs a first control signal.
在一种可能的实施方式中,第一控制逻辑电路具体用于:当电压输出端的电压小于第二阈值电压,在第二模式下输出第二控制信号;其中,第二阈值电压小于或等于第一阈值电压。当负载瞬态变重,电压输出端的电压下跌到触及下限值,即第二阈值电压时,触发第二模式,第一控制逻辑电路输出第二控制信号,电压输入端(即第二电压端)对电压输出端(即第一电压端)直接进行补电。In a possible implementation manner, the first control logic circuit is specifically configured to: output the second control signal in the second mode when the voltage at the voltage output terminal is less than the second threshold voltage; wherein, the second threshold voltage is less than or equal to the second threshold voltage a threshold voltage. When the load transient becomes heavy and the voltage at the voltage output terminal drops to the lower limit, that is, the second threshold voltage, the second mode is triggered, the first control logic circuit outputs a second control signal, and the voltage input terminal (ie, the second voltage terminal ) directly supplements power to the voltage output terminal (ie, the first voltage terminal).
在一种可能的实施方式中,第一电压端为电压输入端,第二电压端为电压输出端;此时,电压变换电路为升压式电压变换电路,第一控制逻辑电路具体用于:当电压输出端的电压小于或等于第一阈值电压时,在第一模式下输出第一控制信号。当电压输出端的电压小于或等于第一阈值电压时,电压输入端(即第一电压端)可以经过电容和电感对电压输出端(即第二电压端)进行充分供电,因此触发第一模式,第一控制逻辑电路可以输出第一控制信号。In a possible implementation manner, the first voltage terminal is a voltage input terminal, and the second voltage terminal is a voltage output terminal; at this time, the voltage conversion circuit is a step-up voltage conversion circuit, and the first control logic circuit is specifically used for: When the voltage at the voltage output terminal is less than or equal to the first threshold voltage, the first control signal is output in the first mode. When the voltage at the voltage output terminal is less than or equal to the first threshold voltage, the voltage input terminal (that is, the first voltage terminal) can fully supply power to the voltage output terminal (that is, the second voltage terminal) through the capacitor and the inductance, thus triggering the first mode, The first control logic circuit may output a first control signal.
在一种可能的实施方式中,第一控制逻辑电路具体用于:当电压输出端的电压大于第 二阈值电压时,在第二模式下输出第二控制信号;其中,第二阈值电压大于或等于第一阈值电压。当负载瞬态变轻,电压输出端的电压过冲到门限,即第二阈值电压时,触发第二模式,第一控制逻辑电路输出第二控制信号,电压输入端(即第一电压端)可以直接对电压输出端(即第二电压端)进行放电,进一步提升瞬态过冲响应性能。In a possible implementation manner, the first control logic circuit is specifically configured to: output the second control signal in the second mode when the voltage at the voltage output terminal is greater than the second threshold voltage; wherein the second threshold voltage is greater than or equal to first threshold voltage. When the load transient becomes lighter and the voltage at the voltage output terminal overshoots to the threshold, that is, the second threshold voltage, the second mode is triggered, the first control logic circuit outputs a second control signal, and the voltage input terminal (that is, the first voltage terminal) can be The voltage output terminal (that is, the second voltage terminal) is directly discharged to further improve the transient overshoot response performance.
在一种可能的实施方式中,第一器件为电感,第二器件为第三开关。在第二电压端为电压输入端,第一电压端为电压输出端的情况下,电压变换电路可以作为升压式电压变换电路;也可以作为降压式电压变换电路。在第一电压端为电压输入端,第二电压端为电压输出端的情况下,电压变换电路可以作为升压式电压变换电路;也可以作为降压式电压变换电路。In a possible implementation manner, the first device is an inductor, and the second device is a third switch. When the second voltage terminal is a voltage input terminal and the first voltage terminal is a voltage output terminal, the voltage conversion circuit can be used as a step-up voltage conversion circuit or as a step-down voltage conversion circuit. When the first voltage terminal is a voltage input terminal and the second voltage terminal is a voltage output terminal, the voltage conversion circuit can be used as a step-up voltage conversion circuit; it can also be used as a step-down voltage conversion circuit.
在一种可能的实施方式中,第二电压端为电压输入端,第一电压端为电压输出端;电压变换电路还包括第二控制逻辑电路,第二控制逻辑电路与第一控制端、第二控制端和第三控制端耦合;在电压变换电路为降压式电压变换电路的情况下,第二控制逻辑电路用于在第三模式下输出第三控制信号和在第四模式下输出第四控制信号;第三控制信号用于控制第一开关和第二开关同时导通或断开,以及控制第三开关和第一开关交替导通;第四控制信号用于控制第一开关和第三开关导通。当第二控制逻辑电路在第四模式下输出第四控制信号时,第一开关和第三开关导通,接地端可以通过第一开关和第三开关对电压输出端(即第一电压端)进行放电,提供负载能量的快速泄放通道,从而实现快速降压调整,进一步提高了输出瞬态响应性能。In a possible implementation manner, the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; the voltage conversion circuit further includes a second control logic circuit, and the second control logic circuit is connected to the first control terminal, the second The second control terminal is coupled to the third control terminal; when the voltage conversion circuit is a step-down voltage conversion circuit, the second control logic circuit is used to output the third control signal in the third mode and output the first control signal in the fourth mode. Four control signals; the third control signal is used to control the first switch and the second switch to be turned on or off at the same time, and to control the third switch and the first switch to be turned on alternately; the fourth control signal is used to control the first switch and the second switch Three switches are turned on. When the second control logic circuit outputs the fourth control signal in the fourth mode, the first switch and the third switch are turned on, and the ground terminal can pass through the first switch and the third switch to the voltage output terminal (that is, the first voltage terminal) It discharges and provides a fast discharge channel for load energy, so as to realize fast step-down adjustment and further improve the output transient response performance.
在一种可能的实施方式中,第二电压端为电压输入端,第一电压端为电压输出端;电压变换电路还包括第二控制逻辑电路,第二控制逻辑电路与第一控制端、第二控制端和第三控制端耦合;在电压变换电路为升压式电压变换电路的情况下,第二控制逻辑电路用于在第三模式下输出第三控制信号和在第四模式下输出第四控制信号;第三控制信号用于控制第二开关和第三开关同时导通或断开,以及第一开关和所述第二开关交替导通;第四控制信号用于控制第一开关和第三开关导通。当第二控制逻辑电路在第四模式下输出第四控制信号时,第一开关和第三开关导通时,接地端可以通过第一开关和第三开关对电压输出端(即第一电压端)进行放电,提供负载能量的快速泄放通道,从而实现快速降压调整,进一步提高了输出瞬态响应性能。In a possible implementation manner, the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; the voltage conversion circuit further includes a second control logic circuit, and the second control logic circuit is connected to the first control terminal, the second The second control terminal is coupled to the third control terminal; when the voltage conversion circuit is a step-up voltage conversion circuit, the second control logic circuit is used to output the third control signal in the third mode and output the first control signal in the fourth mode. Four control signals; the third control signal is used to control the second switch and the third switch to be turned on or off at the same time, and the first switch and the second switch are turned on alternately; the fourth control signal is used to control the first switch and the second switch. The third switch is turned on. When the second control logic circuit outputs the fourth control signal in the fourth mode, when the first switch and the third switch are turned on, the ground terminal can pass through the first switch and the third switch to the voltage output terminal (that is, the first voltage terminal ) to discharge and provide a fast discharge channel for the load energy, so as to realize fast step-down adjustment and further improve the output transient response performance.
在一种可能的实施方式中,第二控制逻辑电路具体用于:在发生以下至少一种场景时,触发第四模式以输出第四控制信号:输出电压过冲、输出快速降压、或快速下电。在输出电压过冲、输出快速降压、快速下电等场景下,负载由重载突变为轻载时,电压输出端(即第一电压端)可能会出现电压过冲的情况,第二控制逻辑电路触发第四模式输出第四控制信号,接地端可以对电压输出端(即第一电压端)进行放电,提供负载能量的快速泄放通道,从而实现快速降压调整。In a possible implementation manner, the second control logic circuit is specifically configured to: trigger the fourth mode to output the fourth control signal when at least one of the following scenarios occurs: output voltage overshoot, output rapid step-down, or rapid Power off. In scenarios such as output voltage overshoot, output rapid step-down, and rapid power-off, etc., when the load changes from heavy load to light load, the voltage output terminal (that is, the first voltage terminal) may experience voltage overshoot, and the second control The logic circuit triggers the fourth mode to output the fourth control signal, and the ground terminal can discharge the voltage output terminal (ie, the first voltage terminal), providing a fast discharge channel for load energy, thereby realizing fast step-down adjustment.
在一种可能的实施方式中,第一开关、第二开关和第三开关包括金属-氧化物-半导体MOS(metal-oxide-semiconductor)管。MOS管包括栅极、源极和漏极。MOS管具有导通电阻小,损耗小,热阻特性好等优势。In a possible implementation manner, the first switch, the second switch and the third switch include metal-oxide-semiconductor MOS (metal-oxide-semiconductor) transistors. The MOS transistor includes a gate, a source and a drain. The MOS tube has the advantages of small on-resistance, low loss, and good thermal resistance characteristics.
第二方面,提供一种电子设备,该电子设备包括负载和上述第一方面提供的电压变换电路;负载与电压变换电路的第一电压端或第二电压端耦合。由于该电子设备具有与上述第一方面提供的电压变换电路相同的技术效果,因此可以参考上述第一方面, 此处不再赘述。A second aspect provides an electronic device, which includes a load and the voltage conversion circuit provided in the first aspect above; the load is coupled to the first voltage end or the second voltage end of the voltage conversion circuit. Since the electronic device has the same technical effect as the voltage conversion circuit provided by the first aspect above, reference may be made to the first aspect above, and details will not be repeated here.
第三方面,提供一种电压变换电路的控制方法,该电压变换电路包括第一开关、第二开关、第一器件、第二器件、电容、第一控制端、第二控制端、第三控制端、第一电压端、第二电压端和接地端;第一开关耦合在第一电压端和电容的第一端之间,第一开关还与第一控制端耦合;第二开关耦合在电容的第二端和第二电压端之间,第二开关还与第二控制端耦合;第一器件耦合在第一电压端和电容的第二端之间,第二器件耦合在电容的第一端和接地端之间;第一器件为第三开关,第二器件为电感;电压变换电路还包括第一控制逻辑电路;第一控制逻辑电路与第一控制端、第二控制端和第三控制端耦合。该电压变换电路的控制方法包括:在第一模式下,输出第一控制信号;第一控制信号用于控制第一开关和第二开关同时导通或断开,以及控制第三开关和第一开关交替导通;在第二模式下,输出第二控制信号;第二控制信号用于控制第二开关和第三开关导通。该电压变换电路的控制方法具有与上述第一方面提供的电压变换电路相同的技术效果,可以参考上述第一方面的相关描述,此处不再赘述。In a third aspect, a control method of a voltage conversion circuit is provided, the voltage conversion circuit includes a first switch, a second switch, a first device, a second device, a capacitor, a first control terminal, a second control terminal, a third control terminal terminal, the first voltage terminal, the second voltage terminal and the ground terminal; the first switch is coupled between the first voltage terminal and the first terminal of the capacitor, and the first switch is also coupled with the first control terminal; the second switch is coupled between the capacitor Between the second terminal of the second voltage terminal and the second voltage terminal, the second switch is also coupled with the second control terminal; the first device is coupled between the first voltage terminal and the second terminal of the capacitor, and the second device is coupled between the first terminal of the capacitor between the terminal and the ground terminal; the first device is the third switch, and the second device is the inductor; the voltage conversion circuit also includes a first control logic circuit; the first control logic circuit and the first control terminal, the second control terminal and the third Control terminal coupling. The control method of the voltage conversion circuit includes: in the first mode, outputting a first control signal; the first control signal is used to control the first switch and the second switch to be turned on or off at the same time, and to control the third switch and the first switch The switches are turned on alternately; in the second mode, a second control signal is output; the second control signal is used to control the second switch and the third switch to be turned on. The control method of the voltage conversion circuit has the same technical effect as that of the voltage conversion circuit provided in the above first aspect, and reference may be made to the relevant description of the above first aspect, which will not be repeated here.
在一种可能的实施方式中,第二电压端为电压输入端,第一电压端为电压输出端;此时,电压变换电路为降压式电压变换电路,当电压输出端的电压大于或等于第一阈值电压时,触发第一模式。可以参考上述第一方面的相关描述,此处不再赘述。In a possible implementation manner, the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; at this time, the voltage conversion circuit is a step-down voltage conversion circuit, when the voltage of the voltage output terminal is greater than or equal to the first When a threshold voltage is reached, the first mode is triggered. Reference may be made to the relevant description of the first aspect above, and details are not repeated here.
在一种可能的实施方式中,当电压输出端的电压小于第二阈值电压时,触发第二模式;其中,第二阈值电压小于或等于第一阈值电压。可以参考上述第一方面的相关描述,此处不再赘述。In a possible implementation manner, the second mode is triggered when the voltage at the voltage output terminal is less than a second threshold voltage; wherein, the second threshold voltage is less than or equal to the first threshold voltage. Reference may be made to the relevant description of the first aspect above, and details are not repeated here.
在一种可能的实施方式中,第一电压端为电压输入端,第二电压端为电压输出端;此时,电压变换电路为升压式电压变换电路,当电压输出端的电压小于或等于第一阈值电压时,触发第一模式。可以参考上述第一方面的相关描述,此处不再赘述。In a possible implementation manner, the first voltage terminal is a voltage input terminal, and the second voltage terminal is a voltage output terminal; at this time, the voltage conversion circuit is a step-up voltage conversion circuit, and when the voltage of the voltage output terminal is less than or equal to the first When a threshold voltage is reached, the first mode is triggered. Reference may be made to the relevant description of the first aspect above, and details are not repeated here.
在一种可能的实施方式中,当电压输出端的电压大于第二阈值电压时,触发第二模式;其中,第二阈值电压大于或等于第一阈值电压。可以参考上述第一方面的相关描述,此处不再赘述。In a possible implementation manner, when the voltage at the voltage output terminal is greater than a second threshold voltage, the second mode is triggered; wherein, the second threshold voltage is greater than or equal to the first threshold voltage. Reference may be made to the relevant description of the first aspect above, and details are not repeated here.
第四方面,提供一种电压变换电路的控制方法,该电压变换电路包括第一开关、第二开关、第一器件、第二器件、电容、第一控制端、第二控制端、第三控制端、第一电压端、第二电压端和接地端;第一开关耦合在第一电压端和电容的第一端之间,第一开关还与第一控制端耦合;第二开关耦合在电容的第二端和第二电压端之间,第二开关还与第二控制端耦合;第一器件耦合在第一电压端和电容的第二端之间,第二器件耦合在电容的第一端和接地端之间;其中,第一器件为电感,第二器件为第三开关;第二电压端为电压输入端,第一电压端为电压输出端;电压变换电路还包括第二控制逻辑电路;第二控制逻辑电路与第一控制端、第二控制端和第三控制端耦合。该电压变换电路的控制方法包括:在第三模式下,输出第三控制信号;第三控制信号用于控制第一开关和第二开关同时导通或断开,以及控制所述第三开关和第一开关交替导通;或者,第三控制信号用于控制第二开关和第三开关同时导通或断开,第一开关和第二开关交替导通;在第四模式下,输出第四控制信号;第四控制信号用于控制第一开关和第三开关导通。可以参考上述第一方面的相关描述,此处不再赘述。In a fourth aspect, a method for controlling a voltage conversion circuit is provided. The voltage conversion circuit includes a first switch, a second switch, a first device, a second device, a capacitor, a first control terminal, a second control terminal, and a third control terminal. terminal, the first voltage terminal, the second voltage terminal and the ground terminal; the first switch is coupled between the first voltage terminal and the first terminal of the capacitor, and the first switch is also coupled with the first control terminal; the second switch is coupled between the capacitor Between the second terminal of the second voltage terminal and the second voltage terminal, the second switch is also coupled with the second control terminal; the first device is coupled between the first voltage terminal and the second terminal of the capacitor, and the second device is coupled between the first terminal of the capacitor Between terminal and ground terminal; wherein, the first device is an inductor, the second device is a third switch; the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; the voltage conversion circuit also includes a second control logic circuit; the second control logic circuit is coupled to the first control terminal, the second control terminal and the third control terminal. The control method of the voltage conversion circuit includes: in the third mode, outputting a third control signal; the third control signal is used to control the first switch and the second switch to be turned on or off at the same time, and to control the third switch and the second switch. The first switch is turned on alternately; or, the third control signal is used to control the second switch and the third switch to be turned on or off at the same time, and the first switch and the second switch are turned on alternately; in the fourth mode, the output of the fourth Control signal; the fourth control signal is used to control the first switch and the third switch to be turned on. Reference may be made to the relevant description of the first aspect above, and details are not repeated here.
在一种可能的实施方式中,在发生以下至少一种场景时,触发第四模式:输出电压过 冲、输出快速降压、快速下电。可以参考上述第一方面的相关描述,此处不再赘述。In a possible implementation manner, the fourth mode is triggered when at least one of the following scenarios occurs: output voltage overshoot, output rapid step-down, and rapid power-off. Reference may be made to the relevant description of the first aspect above, and details are not repeated here.
附图说明Description of drawings
图1为本申请的实施例提供的一种电子设备的结构示意图;FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application;
图2为本申请的实施例提供的一种电压变换电路的结构示意图;FIG. 2 is a schematic structural diagram of a voltage conversion circuit provided by an embodiment of the present application;
图3为本申请的另一实施例提供的一种电压变换电路的结构示意图;FIG. 3 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图4a为本申请的又一实施例提供的一种电压变换电路的结构示意图;Fig. 4a is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图4b为图4a提供的电压变换电路中不同信号的波形示意图;Fig. 4b is a schematic diagram of waveforms of different signals in the voltage conversion circuit provided in Fig. 4a;
图5为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 5 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图6a为本申请的实施例提供的一种电压变换电路与负载耦合的结构示意图;FIG. 6a is a schematic structural diagram of a voltage conversion circuit coupled with a load provided by an embodiment of the present application;
图6b为本申请的另一实施例提供的一种电压变换电路与负载耦合的结构示意图;Fig. 6b is a schematic structural diagram of a voltage conversion circuit coupled with a load provided by another embodiment of the present application;
图7a为本申请的又一实施例提供的一种电压变换电路的结构示意图;Fig. 7a is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图7b为图7a提供的电压变换电路中不同信号的波形示意图;Fig. 7b is a schematic diagram of waveforms of different signals in the voltage conversion circuit provided in Fig. 7a;
图8为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 8 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图9a为本申请实施例提供的电压变换电路和传统的buck电路的效率的仿真结果的对比示意图一;Fig. 9a is a schematic diagram 1 comparing the simulation results of the efficiency of the voltage conversion circuit provided by the embodiment of the present application and the efficiency of the traditional buck circuit;
图9b为本申请实施例提供的电压变换电路和传统的buck电路的瞬态跌落响应性能的仿真结果的对比示意图一;Fig. 9b is a schematic diagram 1 comparing the simulation results of the transient drop response performance of the voltage conversion circuit provided by the embodiment of the present application and the traditional buck circuit;
图10为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 10 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图11a为本申请实施例提供的电压变换电路和传统的buck电路的效率的仿真结果的对比示意图二;Fig. 11a is a schematic diagram 2 comparing the simulation results of the efficiency of the voltage conversion circuit provided by the embodiment of the present application and the traditional buck circuit;
图11b为本申请实施例提供的电压变换电路和传统的buck电路的瞬态跌落响应性能的仿真结果的对比示意图二;Figure 11b is a schematic diagram 2 comparing the simulation results of the transient drop response performance of the voltage conversion circuit provided by the embodiment of the present application and the traditional buck circuit;
图12为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 12 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图13为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 13 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图14为图13提供的电压变换电路中不同信号的波形示意图一;Fig. 14 is a schematic diagram 1 of waveforms of different signals in the voltage conversion circuit provided in Fig. 13;
图15a为本申请实施例提供的电压变换电路的瞬态跌落响应性能的仿真结果的示意图;Fig. 15a is a schematic diagram of the simulation results of the transient drop response performance of the voltage conversion circuit provided by the embodiment of the present application;
图15b为传统的buck电路的瞬态跌落响应性能的仿真结果的示意图;Fig. 15b is a schematic diagram of the simulation results of the transient drop response performance of the traditional buck circuit;
图16为图13提供的电压变换电路中不同信号的波形示意图二;FIG. 16 is a second schematic diagram of waveforms of different signals in the voltage conversion circuit provided in FIG. 13;
图17a为本申请实施例提供的电压变换电路的瞬态过冲响应性能的仿真结果示意意图;Fig. 17a is a schematic diagram of the simulation results of the transient overshoot response performance of the voltage conversion circuit provided by the embodiment of the present application;
图17b为传统的boost电路的瞬态过冲响应性能的仿真结果的示意图;Fig. 17b is a schematic diagram of the simulation results of the transient overshoot response performance of the traditional boost circuit;
图18为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 18 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图19为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 19 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图20为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 20 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图21为图20提供的电压变换电路中不同信号的波形示意图;FIG. 21 is a schematic diagram of waveforms of different signals in the voltage conversion circuit provided in FIG. 20;
图22为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 22 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图23为本申请的又一实施例提供的一种电压变换电路的结构示意图;FIG. 23 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application;
图24为本申请的又一实施例提供的一种电压变换电路的结构示意图。FIG. 24 is a schematic structural diagram of a voltage conversion circuit provided by another embodiment of the present application.
附图标记:1-天线;2-天线;10-电压变换电路;100-电子设备;110-处理器;120-外部存储器接口;121-内部存储器;130-USB接口;140-充电管理模块;141-电源管理模块;142-电池;150-移动通信模块;160-无线通信模块;170-音频模块;180-传感器模块;190-按键;191-马达;192-指示器;193-摄像头;194-显示屏;195-SIM卡接口;101-第一开关;102-第二开关;103-第一器件;104-第二器件;105-第三开关;106-第一控制逻辑电路;1061-比较器;1062-第一或门;1063-第二或门;107-第二控制逻辑电路;1071-第三或门;1072-第四或门;1073-第五或门。Reference signs: 1-antenna; 2-antenna; 10-voltage conversion circuit; 100-electronic equipment; 110-processor; 120-external memory interface; 121-internal memory; 130-USB interface; 140-charging management module; 141-power management module; 142-battery; 150-mobile communication module; 160-wireless communication module; 170-audio module; 180-sensor module; 190-button; 191-motor; 192-indicator; 193-camera; 194 -display screen; 195-SIM card interface; 101-first switch; 102-second switch; 103-first device; 104-second device; 105-third switch; 106-first control logic circuit; 1061- Comparator; 1062-first OR gate; 1063-second OR gate; 107-second control logic circuit; 1071-third OR gate; 1072-fourth OR gate; 1073-fifth OR gate.
具体实施方式detailed description
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。The following will describe the technical solutions in the embodiments of the application with reference to the drawings in the embodiments of the application. Apparently, the described embodiments are only some of the embodiments of the application, not all of them.
以下,术语“第一”、“第二”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。Hereinafter, the terms "first", "second", etc. are used for convenience of description only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as "first", "second", etc. may expressly or implicitly include one or more of that feature. In the description of the present application, unless otherwise specified, "plurality" means two or more.
在本申请实施例中,除非另有明确的规定和限定,术语“耦合”可以是直接的耦合,也可以通过中间媒介间接的耦合。In the embodiments of the present application, unless otherwise specified and limited, the term "coupled" may be a direct coupling or an indirect coupling through an intermediary.
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或“例如”等词旨在以具体方式呈现相关概念。In the embodiments of the present application, words such as "exemplary" or "for example" are used as examples, illustrations or illustrations. Any embodiment or design scheme described as "exemplary" or "for example" in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as "exemplary" or "such as" is intended to present related concepts in a concrete manner.
在本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。In this embodiment of the application, "and/or" describes the association relationship of associated objects, indicating that there may be three relationships, for example, A and/or B, which may mean: A exists alone, A and B exist simultaneously, and there exists alone In the case of B, where A and B can be singular or plural. The character "/" generally indicates that the contextual objects are an "or" relationship.
本申请的实施例提供一种电子设备,该电子设备例如可以为手机(mobile phone)、电脑、平板电脑(pad)、个人数字助理(personal digital assistant,PDA)、电视、智能穿戴产品(例如,智能手表、智能手环)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、充电家用小型电器(例如豆浆机、扫地机器人)、无人机、雷达、航空航天设备和车载设备等不同类型的用户设备或者终端设备;该电子设备还可以为基站等网络设备。本申请实施例对电子设备的具体形式不作特殊限制。Embodiments of the present application provide an electronic device, which can be, for example, a mobile phone (mobile phone), a computer, a tablet computer (pad), a personal digital assistant (personal digital assistant, PDA), a TV, a smart wearable product (for example, Smart watches, smart bracelets), virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, charging small household appliances (such as soybean milk machines, sweeping robots), drones, radar, aviation Different types of user equipment or terminal equipment such as aerospace equipment and vehicle equipment; the electronic equipment can also be network equipment such as base stations. The embodiment of the present application does not specifically limit the specific form of the electronic device.
图1为本申请实施例示例性地提供的一种电子设备的结构示意图。如图1所示,该电子设备100包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。FIG. 1 is a schematic structural diagram of an electronic device exemplarily provided in an embodiment of the present application. As shown in Figure 1, the electronic device 100 includes a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, and a battery 142 , antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and subscriber identification module (subscriber identification module , SIM) card interface 195 etc.
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组 合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。It can be understood that, the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 . In other embodiments of the present application, the electronic device 100 may include more or fewer components than shown, or combine some components, or separate some components, or arrange different components. The illustrated components can be realized in hardware, software or a combination of software and hardware.
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),中央处理器(central processing unit,CPU),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。处理器110中还可以设置存储器,用于存储指令和数据。The processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a central processing unit (central processing unit, CPU), a modem processor, a graphics processor ( graphics processing unit (GPU), image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. A memory may also be provided in the processor 110 for storing instructions and data.
在一些实施例中,处理器110可以包括一个或多个接口,例如通用串行总线(universal serial bus,USB)接口130。In some embodiments, the processor 110 may include one or more interfaces, such as a universal serial bus (universal serial bus, USB) interface 130.
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。The charging management module 140 is configured to receive a charging input from a charger. Wherein, the charger may be a wireless charger or a wired charger. In some wired charging embodiments, the charging management module 140 can receive charging input from the wired charger through the USB interface 130 . In some wireless charging embodiments, the charging management module 140 may receive a wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 is charging the battery 142 , it can also provide power for electronic devices through the power management module 141 .
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。可以理解的是,电源管理模块141接收电池142和/或充电管理模块140的输入后,在为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电前,在一些情况下,电源管理模块141还需要对接收的电压进行降压或升压转换后,再进行供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。The power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 . The power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the display screen 194 , the camera 193 , and the wireless communication module 160 . It can be understood that, after the power management module 141 receives the input from the battery 142 and/or the charging management module 140, before powering the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160, etc., In some cases, the power management module 141 also needs to perform step-down or step-up conversion on the received voltage before supplying power. The power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance). In some other embodiments, the power management module 141 may also be disposed in the processor 110 . In some other embodiments, the power management module 141 and the charging management module 140 may also be set in the same device.
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。The wireless communication function of the electronic device 100 can be realized by the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 , a modem processor, a baseband processor, and the like.
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。The electronic device 100 realizes the display function through the GPU, the display screen 194 , and the application processor.
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。The electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
电子设备100可以通过音频模块170,扬声器,受话器,麦克风,耳机接口,以及应用处理器等实现音频功能。The electronic device 100 can implement audio functions through the audio module 170 , speaker, receiver, microphone, earphone interface, and application processor.
传感器模块180包括压力传感器、陀螺仪传感器、气压传感器或磁传感器等。The sensor module 180 includes a pressure sensor, a gyro sensor, an air pressure sensor, a magnetic sensor, and the like.
按键190包括开机键,音量键等。马达191可以产生振动提示。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口195用于连接SIM卡。The keys 190 include a power key, a volume key and the like. The motor 191 can generate a vibrating reminder. The indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like. The SIM card interface 195 is used for connecting a SIM card.
本申请的实施例提供一种电压变换电路,该电压变换电路可以应用于上述电子设备100的电源管理模块141中,用于进行升压转换或降低转换。Embodiments of the present application provide a voltage conversion circuit, which can be applied to the power management module 141 of the above-mentioned electronic device 100 for performing boost conversion or down conversion.
图2为本申请实施例提供的一种电压变换电路,该电压变换电路为三阶buck电路。如图2所示,该三阶buck电路包括电压输入端Vin、电压输出端Vout、输入电容 Cin、输出电容Cout、飞跨电容Cfly、电感L、第一MOS(MOS是MOSFET(metal-oxide-semiconductor field-effect transistor,金属-氧化物半导体场效应晶体管)的缩写)管Q1、第二MOS管Q2、第三MOS管Q3和第四MOS管Q4。第一MOS管Q1的第一极与电压输入端Vin和输入电容Cin的第一端耦合,输入电容Cin的第二端与接地端GND耦合,第一MOS管Q1的第二极与飞跨电容Cfly的第一端、第二MOS管Q2的第一极耦合,第一MOS管Q1的栅极与第一控制端C1耦合。第二MOS管Q2的第二极与第三MOS管Q3的第一极和电感L的第一端A耦合,第二MOS管Q2的栅极与第二控制端C2耦合。第三MOS管Q3的第二极与飞跨电容Cfly的第二端、第四MOS管Q4的第一极耦合,第三MOS管Q3的栅极与第三控制端C3耦合。第四MOS管Q4的第二极与接地端GND耦合,第四MOS管Q4的栅极与第四控制端C4耦合。电感L的第二端与电压输出端Vout耦合,电压输出端Vout还与输出电容Cout的第一端耦合,输出电容Cout的第二端与接地端GND耦合。FIG. 2 is a voltage conversion circuit provided by an embodiment of the present application, and the voltage conversion circuit is a third-order buck circuit. As shown in Figure 2, the third-order buck circuit includes a voltage input terminal Vin, a voltage output terminal Vout, an input capacitor Cin, an output capacitor Cout, a flying capacitor Cfly, an inductor L, and a first MOS (MOS is a MOSFET (metal-oxide- semiconductor field-effect transistor, the abbreviation of metal-oxide semiconductor field-effect transistor) transistor Q1, the second MOS transistor Q2, the third MOS transistor Q3 and the fourth MOS transistor Q4. The first pole of the first MOS transistor Q1 is coupled to the voltage input terminal Vin and the first terminal of the input capacitor Cin, the second terminal of the input capacitor Cin is coupled to the ground terminal GND, and the second pole of the first MOS transistor Q1 is coupled to the flying capacitor The first terminal of Cfly is coupled to the first pole of the second MOS transistor Q2, and the gate of the first MOS transistor Q1 is coupled to the first control terminal C1. The second pole of the second MOS transistor Q2 is coupled to the first pole of the third MOS transistor Q3 and the first terminal A of the inductor L, and the gate of the second MOS transistor Q2 is coupled to the second control terminal C2. The second pole of the third MOS transistor Q3 is coupled to the second terminal of the flying capacitor Cfly and the first pole of the fourth MOS transistor Q4, and the gate of the third MOS transistor Q3 is coupled to the third control terminal C3. The second electrode of the fourth MOS transistor Q4 is coupled to the ground terminal GND, and the gate of the fourth MOS transistor Q4 is coupled to the fourth control terminal C4. The second terminal of the inductor L is coupled to the voltage output terminal Vout, the voltage output terminal Vout is also coupled to the first terminal of the output capacitor Cout, and the second terminal of the output capacitor Cout is coupled to the ground terminal GND.
对于图2提供的三阶buck电路,当控制第一MOS管Q1和第三MOS管Q3导通,第二MOS管Q2和第四MOS管Q4断开时,电压输入端Vin向飞跨电容Cfly充电,并向电感L充电,电感L的第一端A的电压为Vin-Vc,其中,Vc为飞跨电容Cfly的电压;当控制第三MOS管Q3和第四MOS管Q4导通,第一MOS管Q1和第二MOS管Q2断开时,电感L的第一端A的电压为0;当控制第二MOS管Q2和第四MOS管Q4导通,第一MOS管Q1和第三MOS管Q3断开时,飞跨电容Cfly放电,电感L的第一端A的电压为Vc。For the third-order buck circuit provided in Figure 2, when the first MOS transistor Q1 and the third MOS transistor Q3 are controlled to be turned on, and the second MOS transistor Q2 and the fourth MOS transistor Q4 are turned off, the voltage input terminal Vin is connected to the flying capacitor Cfly Charge and charge the inductance L, the voltage of the first terminal A of the inductance L is Vin-Vc, wherein, Vc is the voltage of the flying capacitor Cfly; when the third MOS transistor Q3 and the fourth MOS transistor Q4 are controlled to be turned on, the first When the first MOS transistor Q1 and the second MOS transistor Q2 are disconnected, the voltage at the first terminal A of the inductor L is 0; when the second MOS transistor Q2 and the fourth MOS transistor Q4 are controlled to be turned on, the first MOS transistor Q1 and the third MOS transistor When the MOS transistor Q3 is disconnected, the flying capacitor Cfly is discharged, and the voltage at the first terminal A of the inductor L is Vc.
在该三阶buck电路的工作过程中,通过控制第一MOS管Q1、第二MOS管Q2、第三MOS管Q3和第四MOS管Q4的导通与断开,可以使得电感L的第一端A的电压为Vin/2,相对于传统的buck电路,电感L的第一端A的电压为Vin,由于电感L的第一端A的电压较小,因此该三阶buck电路有助于减小电感L的纹波,从而可以提高三阶buck电路的效率。此外,电感L的第一端A的电压在Vin-Vc和0之间变化,相对于传统的buck电路,电感L的第一端A的电压在Vin和0之间变化,因而电感L的第一端A的电压摆幅较小,也可以提高三阶buck电路的效率。During the working process of the third-stage buck circuit, by controlling the on and off of the first MOS transistor Q1, the second MOS transistor Q2, the third MOS transistor Q3 and the fourth MOS transistor Q4, the first The voltage at terminal A is Vin/2. Compared with the traditional buck circuit, the voltage at the first terminal A of the inductor L is Vin. Since the voltage at the first terminal A of the inductor L is relatively small, this third-order buck circuit is helpful The ripple of the inductor L is reduced, so that the efficiency of the third-order buck circuit can be improved. In addition, the voltage at the first terminal A of the inductor L varies between Vin-Vc and 0. Compared with the traditional buck circuit, the voltage at the first terminal A of the inductor L varies between Vin and 0, so the first terminal A of the inductor L The voltage swing at one terminal A is small, which can also improve the efficiency of the third-order buck circuit.
然而,由于三阶buck电路包括的器件数量相对较多,因而三阶buck电路占用的面积较大,从而导致成本增加。此外,为了不影响三阶buck电路的性能,因此该三阶buck电路在工作过程中需保证飞跨电容Cfly两端的电压恒定保持在Vin/2,这样一来,就需要调整第一MOS管Q1、第二MOS管Q2、第三MOS管Q3和第四MOS管Q4的占空比,而第一MOS管Q1、第二MOS管Q2、第三MOS管Q3和第四MOS管Q4的性能可能不同,因此控制相对复杂。另外,在该三阶buck电路中,电压输入端Vin通过电感L给电压输出端Vout供电,而电感L的损耗较大,因而三阶buck电路的损耗较大,这样一来,限制了三阶buck电路效率的提升。However, since the third-order buck circuit includes a relatively large number of devices, the area occupied by the third-order buck circuit is relatively large, resulting in an increase in cost. In addition, in order not to affect the performance of the third-order buck circuit, the third-order buck circuit needs to ensure that the voltage across the flying capacitor Cfly is kept constant at Vin/2 during the operation of the third-order buck circuit. In this way, it is necessary to adjust the first MOS transistor Q1 , the duty cycle of the second MOS transistor Q2, the third MOS transistor Q3 and the fourth MOS transistor Q4, and the performance of the first MOS transistor Q1, the second MOS transistor Q2, the third MOS transistor Q3 and the fourth MOS transistor Q4 may be Different, so the control is relatively complicated. In addition, in the third-order buck circuit, the voltage input terminal Vin supplies power to the voltage output terminal Vout through the inductor L, and the loss of the inductor L is relatively large, so the loss of the third-order buck circuit is relatively large. In this way, the third-order buck circuit is limited. Improvement of buck circuit efficiency.
图3为本申请实施例提供的另一种电压变换电路,该电压变换电路包括电源转换电路以及并联在电源转换电路的电压输入端Vin和电压输出端Vout之间的MOS管Q1。对于图3提供的电压变换电路,当电压输出端Vout的负载突然增大时,系统检测到电压输出端Vout的电压跌落到一定阈值时导通MOS管Q1,旁路掉主通路,直接由电压输入端Vin对电压输出端Vout进行补电,从而实现负载跌落的快速响应,因此 图3提供的电压变换电路提升了输出跌落瞬态响应性能。FIG. 3 is another voltage conversion circuit provided by the embodiment of the present application. The voltage conversion circuit includes a power conversion circuit and a MOS transistor Q1 connected in parallel between the voltage input terminal Vin and the voltage output terminal Vout of the power conversion circuit. For the voltage conversion circuit provided in Figure 3, when the load of the voltage output terminal Vout suddenly increases, the system detects that the voltage of the voltage output terminal Vout drops to a certain threshold and turns on the MOS transistor Q1, bypassing the main path, and directly using the voltage The input terminal Vin supplies power to the voltage output terminal Vout to achieve a fast response to load drops. Therefore, the voltage conversion circuit provided in Figure 3 improves the transient response performance of the output drop.
然而,由于电源转换电路仍采用传统的buck电路,因此在MOS管Q1断开时,电压输入端Vin通过电源转换电路中的电感L(图3中未示意出电感L)给电压输出端Vout供电,而电感L的损耗较大,因此导致图3提供的电压变换电路的效率降低。在此基础上,由于图3提供的电压变换电路额外增加了MOS管Q1,从而导致成本增加。此外,由于MOS管Q1相对于电源转换电路是额外增加的,因此还需要额外增加MOS管Q1的控制电路,且MOS管Q1的控制电路需要与电源转换电路的控制电路相互配合,因此控制方案复杂。However, since the power conversion circuit still adopts the traditional buck circuit, when the MOS tube Q1 is disconnected, the voltage input terminal Vin supplies power to the voltage output terminal Vout through the inductance L in the power conversion circuit (the inductance L is not shown in Figure 3). , and the loss of the inductance L is relatively large, thus resulting in a decrease in the efficiency of the voltage conversion circuit provided in FIG. 3 . On this basis, since the voltage conversion circuit provided in FIG. 3 additionally adds a MOS transistor Q1, the cost increases. In addition, since the MOS transistor Q1 is additional to the power conversion circuit, an additional control circuit of the MOS transistor Q1 is required, and the control circuit of the MOS transistor Q1 needs to cooperate with the control circuit of the power conversion circuit, so the control scheme is complicated .
图4a为本申请实施例提供的又一种电压变换电路,该电压变换电路采用三个buck并联的结构,电压变换电路包括电源管理芯片、三个并联的电感LX0、LX1、LX2和电容C,电源管理芯片包括开关电路、非线性控制逻辑电路和用于控制开关电路的控制电路,电感LX0、LX1、LX2的第一端均与电源管理芯片耦合,电感LX0、LX1、LX2的第二端均与电源管理芯片和电容C的第一端耦合,电容C的第二端与接地端GND耦合。其中,并联的三个电感LX0、LX1、LX2的感值不同,电感LX0的感值较大,例如为1μH,电感LX1和LX2的感值较小,例如为60nH。每个buck结构包括一个电感,这三个buck结构中的两个buck的电感LX1和LX2为60nH的小电感用于实现轻载突变重载瞬间抗跌落功能,实现更快的瞬态特性。图4b为瞬态跌落过程中,大电感(即电感LX0)buck电路和小电感(即电感LX1和LX2)buck电路的驱动信号示意图。PWM0为大电感buck电路的驱动信号波形图,PWM1为小电感buck电路的驱动信号波形图。当检测到电压输出端Vout的电压大于阈值电压Vth时,控制电路控制开关电路的导通和断开;当检测到电压输出端Vout的电压跌落到一定阈值电压Vth时,非线性控制逻辑电路控制小电感buck电路开启,对输出电压Vout进行补电,这样一来,复用LX1、LX2两个通路实现负载瞬态性能提升。Figure 4a is another voltage conversion circuit provided by the embodiment of the present application. The voltage conversion circuit adopts a structure of three bucks connected in parallel. The voltage conversion circuit includes a power management chip, three parallel inductors LX0, LX1, LX2 and a capacitor C. The power management chip includes a switch circuit, a non-linear control logic circuit and a control circuit for controlling the switch circuit. The first ends of the inductors LX0, LX1, and LX2 are all coupled to the power management chip, and the second ends of the inductors LX0, LX1, and LX2 are all coupled to each other. It is coupled with the power management chip and the first terminal of the capacitor C, and the second terminal of the capacitor C is coupled with the ground terminal GND. Wherein, the inductance values of the three inductors LX0 , LX1 , and LX2 connected in parallel are different, the inductance value of the inductor LX0 is relatively large, for example 1 μH, and the inductance values of the inductors LX1 and LX2 are relatively small, such as 60 nH. Each buck structure includes an inductor, and the inductance LX1 and LX2 of the two bucks in the three buck structures are 60nH. The small inductance is used to realize the instantaneous anti-drop function of light load sudden change and heavy load, and achieve faster transient characteristics. FIG. 4b is a schematic diagram of driving signals of a large inductance (ie, inductor LX0 ) buck circuit and a small inductance (ie, inductors LX1 and LX2 ) buck circuit during a transient drop. PWM0 is the driving signal waveform diagram of the large inductance buck circuit, and PWM1 is the driving signal waveform diagram of the small inductance buck circuit. When it is detected that the voltage of the voltage output terminal Vout is greater than the threshold voltage Vth, the control circuit controls the on and off of the switch circuit; when it is detected that the voltage of the voltage output terminal Vout drops to a certain threshold voltage Vth, the nonlinear control logic circuit controls The small inductance buck circuit is turned on to supplement the output voltage Vout. In this way, the two channels of LX1 and LX2 are reused to improve the load transient performance.
然而,对于图4a提供的电压变换电路,由于电源管理芯片上设置的主电路仍采用传统的buck结构,电压输入端Vin通过电感L给电压输出端Vout供电,而电感L的损耗较大,因此电压变换电路的本身的效率较低。此外,图4a提供的电压变换电路在瞬态补电时,电感LX1和LX2通过60nH的电感给负载充电,瞬态跌落响应性能有限。However, for the voltage conversion circuit provided in Figure 4a, since the main circuit set on the power management chip still adopts the traditional buck structure, the voltage input terminal Vin supplies power to the voltage output terminal Vout through the inductor L, and the loss of the inductor L is relatively large, so The efficiency of the voltage conversion circuit itself is relatively low. In addition, in the voltage conversion circuit shown in Figure 4a, during transient power supply, the inductors LX1 and LX2 charge the load through the 60nH inductance, and the transient drop response performance is limited.
为解决上述电压变换电路存在的问题,本申请的实施例还提供一种电压变换电路,如图5所示,该电压变换电路10包括第一开关101、第二开关102、第一器件103、第二器件104、电容(也可以称为飞跨电容)Cfly、第一控制端GS1、第二控制端GS2、第三控制端GS3、第一电压端V1、第二电压端V2和接地端GND。In order to solve the problems existing in the above-mentioned voltage conversion circuit, an embodiment of the present application also provides a voltage conversion circuit. As shown in FIG. 5 , the voltage conversion circuit 10 includes a first switch 101, a second switch 102, a first device 103, The second device 104, a capacitor (also called a flying capacitor) Cfly, a first control terminal GS1, a second control terminal GS2, a third control terminal GS3, a first voltage terminal V1, a second voltage terminal V2 and a ground terminal GND .
第一开关101耦合在第一电压端V1和电容Cfly的第一端a之间,第一开关101还与第一控制端GS1耦合,第一控制端GS1提供的信号可以用于控制第一开关101的导通或断开;第二开关102耦合在电容Cfly的第二端b和第二电压端V2之间,第二开关102还与第二控制端GS2耦合,第二控制端GS2提供的信号可以用于控制第二开关102的导通或断开;第一器件103耦合在第一电压端V1和电容Cfly的第二端b之间,第二器件104耦合在电容Cfly的第一端a和接地端GND之间。The first switch 101 is coupled between the first voltage terminal V1 and the first terminal a of the capacitor Cfly, the first switch 101 is also coupled to the first control terminal GS1, and the signal provided by the first control terminal GS1 can be used to control the first switch 101 is turned on or off; the second switch 102 is coupled between the second terminal b of the capacitor Cfly and the second voltage terminal V2, the second switch 102 is also coupled with the second control terminal GS2, and the second control terminal GS2 provides The signal can be used to control the on or off of the second switch 102; the first device 103 is coupled between the first voltage terminal V1 and the second terminal b of the capacitor Cfly, and the second device 104 is coupled to the first terminal of the capacitor Cfly a and the ground terminal GND.
其中,上述第一器件103和第二器件104中一个为第三开关,另一个为电感L;第三开关还与第三控制端GS3耦合,第三控制端GS3提供的信号可以用于控制第三开关的 导通与断开。Wherein, one of the first device 103 and the second device 104 is a third switch, and the other is an inductor L; the third switch is also coupled to the third control terminal GS3, and the signal provided by the third control terminal GS3 can be used to control the first The three switches are turned on and off.
此处,可以是第一电压端V1为电压输入端Vin,第二电压端V2为电压输出端Vout;也可以是第一电压端V1为电压输出端Vout,第二电压端V2为电压输入端Vin。在第二电压端V2为电压输出端Vout的情况下,在一些示例中,如图6a所示,负载R和输出电容Cout并联在第二电压端V2和接地端GND之间。在第一电压端V1为电压输出端Vout的情况下,在一些示例中,如图6b所示,负载R和输出电容Cout并联在第一电压端V1和接地端GND之间。此处,负载R例如可以为处理器、或存储器等。Here, the first voltage terminal V1 may be the voltage input terminal Vin, and the second voltage terminal V2 may be the voltage output terminal Vout; or the first voltage terminal V1 may be the voltage output terminal Vout, and the second voltage terminal V2 may be the voltage input terminal. Vin. In the case that the second voltage terminal V2 is the voltage output terminal Vout, in some examples, as shown in FIG. 6a, the load R and the output capacitor Cout are connected in parallel between the second voltage terminal V2 and the ground terminal GND. When the first voltage terminal V1 is the voltage output terminal Vout, in some examples, as shown in FIG. 6b, the load R and the output capacitor Cout are connected in parallel between the first voltage terminal V1 and the ground terminal GND. Here, the load R may be, for example, a processor or a memory.
需要说明的是,在本申请实施例提供的电压变换电路10中,上述第一电压端V1和第二电压端V2之间能量的传输可以包括以下四种情况:第一种,第一电压端V1的电压升压后向第二电压端V2供电;第二种,第一电压端V1的电压降压后向第二电压端V2供电;第三种,第二电压端V2的电压升压后向第一电压端V1供电;第四种,第二电压端V2的电压降压后向第一电压端V1供电。在第一种和第二种情况下,第一电压端V1作为电压输入端Vin,第二电压端V2作为电压输出端Vout;在第三种和第四种情况下,第二电压端V2作为电压输入端Vin,第一电压端V1作为电压输出端Vout。It should be noted that, in the voltage conversion circuit 10 provided in the embodiment of the present application, the transmission of energy between the first voltage terminal V1 and the second voltage terminal V2 may include the following four situations: first, the first voltage terminal The voltage of V1 is boosted to supply power to the second voltage terminal V2; the second is to supply power to the second voltage terminal V2 after the voltage of the first voltage terminal V1 is stepped down; the third is to boost the voltage of the second voltage terminal V2 Supplying power to the first voltage terminal V1; fourth, the voltage of the second voltage terminal V2 is stepped down to supply power to the first voltage terminal V1. In the first and second cases, the first voltage terminal V1 is used as the voltage input terminal Vin, and the second voltage terminal V2 is used as the voltage output terminal Vout; in the third and fourth cases, the second voltage terminal V2 is used as the voltage output terminal Vout; The voltage input terminal Vin and the first voltage terminal V1 serve as the voltage output terminal Vout.
由于本申请实施例提供的电压变换电路10中,第一开关101耦合在第一电压端V1和电容Cfly的第一端a之间,第二开关102耦合在电容Cfly的第二端b和第二电压端V2之间,因此电压变换电路101用于实现第一电压端V1和第二电压端V2之间能量的传输时,第一电压端V1提供的至少部分能量可以直接通过电容Cfly传递到第二电压端V2,不经过电感L,或者,第二电压端V2提供的至少部分能量可以直接通过电容Cfly传递到第一电压端V1,不经过电感L,而电容Cfly的损耗相对于电感L大幅度降低,相对于传统的buck电路或boost电路,电压输入端Vin提供的能量通过电感L向电压输出端Vout供电,因此本申请实施例提供的电压变换电路10的效率得到很大提升。In the voltage conversion circuit 10 provided by the embodiment of the present application, the first switch 101 is coupled between the first voltage terminal V1 and the first terminal a of the capacitor Cfly, and the second switch 102 is coupled between the second terminal b of the capacitor Cfly and the first terminal a of the capacitor Cfly. Between the two voltage terminals V2, therefore, when the voltage conversion circuit 101 is used to transmit energy between the first voltage terminal V1 and the second voltage terminal V2, at least part of the energy provided by the first voltage terminal V1 can be directly transferred to the The second voltage terminal V2 does not pass through the inductor L, or at least part of the energy provided by the second voltage terminal V2 can be directly transferred to the first voltage terminal V1 through the capacitor Cfly without passing through the inductor L, and the loss of the capacitor Cfly is relatively larger than that of the inductor L It is greatly reduced. Compared with the traditional buck circuit or boost circuit, the energy provided by the voltage input terminal Vin supplies power to the voltage output terminal Vout through the inductor L, so the efficiency of the voltage conversion circuit 10 provided by the embodiment of the present application is greatly improved.
此外,由于电感L会抑制电流的突变,因此传统的buck电路或boost电路中,电感L会限制输出瞬态响应性能的提升,而在本申请实施例中,由于第一电压端V1或第二电压端V2提供的至少部分能量可以直接通过电容Cfly进行传输,不经过电感L,因此本申请实施例提供的电压变换电路10的输出瞬态响应性能(输出瞬态响应性能包括瞬态跌落响应性能和瞬态过冲响应性能)明显提升。In addition, since the inductance L will suppress the sudden change of the current, in the traditional buck circuit or boost circuit, the inductance L will limit the improvement of the output transient response performance. At least part of the energy provided by the voltage terminal V2 can be directly transmitted through the capacitor Cfly without passing through the inductor L, so the output transient response performance of the voltage conversion circuit 10 provided in the embodiment of the present application (the output transient response performance includes the transient drop response performance and transient overshoot response performance) are significantly improved.
以下通过两个具体的实施例对上述电压变换电路10的结构进行示例性说明。The structure of the above-mentioned voltage conversion circuit 10 is illustrated below through two specific embodiments.
实施例一Embodiment one
如图7a所示,该电压变换电路10包括第一开关101、第二开关102、第一器件103、第二器件104、电容Cfly、第一控制端GS1、第二控制端GS2、第三控制端GS3、第一电压端V1、第二电压端V2和接地端GND。在该实施例一中,第一器件103为第三开关105,第二器件104为电感L。第三开关105耦合在第一电压端V1和电容Cfly的第二端b之间;电容Cfly的第一端a和电感L的第一端c耦合;电感L的第二端d与接地端GND耦合。此处,第一开关101、第二开关102以及电容Cfly的连接关系、第一电压端V1和第二电压端V2均可以参考上述描述,此处不再赘述。As shown in Figure 7a, the voltage conversion circuit 10 includes a first switch 101, a second switch 102, a first device 103, a second device 104, a capacitor Cfly, a first control terminal GS1, a second control terminal GS2, a third control terminal terminal GS3 , the first voltage terminal V1 , the second voltage terminal V2 and the ground terminal GND. In the first embodiment, the first device 103 is the third switch 105 , and the second device 104 is the inductor L. The third switch 105 is coupled between the first voltage terminal V1 and the second terminal b of the capacitor Cfly; the first terminal a of the capacitor Cfly is coupled to the first terminal c of the inductor L; the second terminal d of the inductor L is connected to the ground terminal GND coupling. Here, the connection relationship between the first switch 101 , the second switch 102 and the capacitor Cfly, the first voltage terminal V1 and the second voltage terminal V2 can refer to the above description, and will not be repeated here.
在一些示例中,如图7a所示,第一开关101包括第一开关管Q1,第一开关管Q1的 第一极与第一电压端V1耦合,第二极与电容Cfly的第一端a耦合,第三极与第一控制端GS1耦合。需要说明的是,第一开关101包括但不限于第一开关管Q1,还可以包括与第一开关管Q1并联或串联的其它一个或多个开关管。此外,第一开关管Q1可以为N型管,也可以为P型管。In some examples, as shown in FIG. 7a, the first switch 101 includes a first switch tube Q1, the first pole of the first switch tube Q1 is coupled to the first voltage terminal V1, and the second pole is connected to the first terminal a of the capacitor Cfly. coupling, and the third pole is coupled with the first control terminal GS1. It should be noted that the first switch 101 includes but is not limited to the first switch transistor Q1 , and may also include one or more other switch transistors connected in parallel or in series with the first switch transistor Q1 . In addition, the first switching transistor Q1 may be an N-type transistor or a P-type transistor.
另外,第一开关管Q1的类型例如可以为MOS管、三极管或继电器等。在第一开关管Q1为MOS管的情况下,第三极为栅极;第一极为源极,第二极为漏极,或者,第一极为漏极,第二极为源极。在第一开关管Q1为三极管的情况下,第三极为基极;第一极为集电极,第二极为发射极,或者,第一极为发射极,第二极为集电极。In addition, the type of the first switching tube Q1 may be, for example, a MOS tube, a triode, or a relay. When the first switching transistor Q1 is a MOS transistor, the third pole is the gate; the first pole is the source and the second pole is the drain, or the first pole is the drain and the second pole is the source. In the case that the first switching tube Q1 is a triode, the third pole is the base; the first pole is the collector, and the second pole is the emitter, or the first pole is the emitter, and the second pole is the collector.
在一些示例中,如图7a所示,第二开关102包括第二开关管Q2,第二开关管Q2的第一极与电容Cfly的第二端b耦合,第二极与第二电压端V2耦合,第三极与第二控制端GS2耦合。需要说明的是,第二开关102包括但不限于第二开关管Q2,还可以包括与第二开关管Q2并联或串联的其它一个或多个开关管。此外,第二开关管Q2可以为N型管,也可以为P型管。另外,第二开关管Q2的类型可以参考上述第一开关管Q1,此处不再赘述。In some examples, as shown in FIG. 7a, the second switch 102 includes a second switch tube Q2, the first pole of the second switch tube Q2 is coupled to the second terminal b of the capacitor Cfly, and the second pole is connected to the second voltage terminal V2 coupling, and the third pole is coupled with the second control terminal GS2. It should be noted that, the second switch 102 includes but is not limited to the second switch tube Q2, and may also include one or more other switch tubes connected in parallel or in series with the second switch tube Q2. In addition, the second switching transistor Q2 may be an N-type transistor or a P-type transistor. In addition, the type of the second switching tube Q2 can refer to the above-mentioned first switching tube Q1 , which will not be repeated here.
在一些示例中,如图7a所示,第三开关105包括第三开关管Q3,第三开关管Q3的第一极与第一电压端V1耦合,第二极与电容Cfly的第二端b耦合,第三极与第三控制端GS3耦合。需要说明的是,第三开关105包括但不限于第三开关管Q3,还可以包括与第三开关管Q3并联或串联的其它一个或多个开关管。此外,第三开关管Q3可以为N型管,也可以为P型管。另外,第三开关管Q3的类型可以参考上述第一开关管Q1,此处不再赘述。In some examples, as shown in FIG. 7a, the third switch 105 includes a third switching transistor Q3, the first pole of the third switching transistor Q3 is coupled to the first voltage terminal V1, and the second pole is coupled to the second terminal b of the capacitor Cfly. coupling, and the third pole is coupled to the third control terminal GS3. It should be noted that the third switch 105 includes but is not limited to the third switch transistor Q3, and may also include one or more other switch transistors connected in parallel or in series with the third switch transistor Q3. In addition, the third switching transistor Q3 may be an N-type transistor or a P-type transistor. In addition, the type of the third switching transistor Q3 can refer to the above-mentioned first switching transistor Q1 , which will not be repeated here.
基于上述电压变换电路10,该电压变换电路10可以作为升压式电压变换电路;也可以作为降压式电压变换电路。无论电压变换电路10作为升压式电压变换电路,还是作为降压式电压变换电路,在常规工作条件下,即基本控制策略下,电压变换电路10在第一模式下工作,具体工作过程都为:在第一阶段,控制第一开关101和第二开关102导通,控制第三开关105断开;在第二阶段,控制第三开关105导通,控制第一开关101和第二开关102断开;其中,第一阶段和第二阶段交替重复。也就是说,第一开关101和第二开关102同时导通或断开,第一开关101和第三开关105反相,互补导通,即交替导通。Based on the above-mentioned voltage conversion circuit 10, the voltage conversion circuit 10 can be used as a step-up voltage conversion circuit; it can also be used as a step-down voltage conversion circuit. Regardless of whether the voltage conversion circuit 10 is used as a step-up voltage conversion circuit or as a step-down voltage conversion circuit, under normal working conditions, that is, under the basic control strategy, the voltage conversion circuit 10 works in the first mode, and the specific working process is as follows: : In the first stage, the first switch 101 and the second switch 102 are controlled to be turned on, and the third switch 105 is controlled to be turned off; in the second stage, the third switch 105 is controlled to be turned on, and the first switch 101 and the second switch 102 are controlled Disconnect; wherein, the first stage and the second stage are repeated alternately. That is to say, the first switch 101 and the second switch 102 are turned on or off at the same time, the first switch 101 and the third switch 105 are in reverse phase, and are turned on complementary, that is, alternately turned on.
可以理解的是,第一阶段和第二阶段的时长可以根据需要进行设置,第一阶段和第二阶段的时长会影响电压输出端的电压大小。It can be understood that the duration of the first stage and the second stage can be set as required, and the duration of the first stage and the second stage will affect the voltage at the voltage output terminal.
在第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3的情况下,在一些示例中,电压变换电路10还包括与第一控制端GS1耦合的第一信号端PWM_Q1,与第二控制端GS2耦合的第二信号端PWM_Q2和与第三控制端GS3耦合的第三信号端PWM_Q3。如图7b所示,当第一信号端PWM_Q1、第二信号端PWM_Q2和第三信号端PWM_Q3均提供高低电平交替变化的脉冲信号,且第一信号端PWM_Q1和第二信号端PWM_Q2提供的信号相同,第一信号端PWM_Q1和第三信号端PWM_Q3提供的信号高低电平反相时,这样可以控制第一开关管Q1和第二开关管Q2同时导通或断开,第一开关管Q1和第三开关管Q3互补导通。In the case where the first switch 101 includes a first switching tube Q1, the second switch 102 includes a second switching tube Q2, and the third switch 105 includes a third switching tube Q3, in some examples, the voltage conversion circuit 10 further includes a second switching tube Q3. A first signal terminal PWM_Q1 coupled to a control terminal GS1 , a second signal terminal PWM_Q2 coupled to a second control terminal GS2 , and a third signal terminal PWM_Q3 coupled to a third control terminal GS3 . As shown in Figure 7b, when the first signal terminal PWM_Q1, the second signal terminal PWM_Q2 and the third signal terminal PWM_Q3 all provide pulse signals with alternating high and low levels, and the signals provided by the first signal terminal PWM_Q1 and the second signal terminal PWM_Q2 Similarly, when the high and low levels of the signals provided by the first signal terminal PWM_Q1 and the third signal terminal PWM_Q3 are inverted, this can control the first switch tube Q1 and the second switch tube Q2 to be turned on or off at the same time, and the first switch tube Q1 and the second switch tube Q1 The three switching transistors Q3 are turned on in a complementary manner.
如图8所示,在第二电压端V2为电压输入端Vin,第一电压端V1为电压输出端Vout的情况下,在此路径(如图8中粗箭头所示)下,电压变换电路10为降压式电 压变换电路,也可以称为buck电路,此时,Vin大于Vout。As shown in Figure 8, when the second voltage terminal V2 is the voltage input terminal Vin, and the first voltage terminal V1 is the voltage output terminal Vout, under this path (as shown by the thick arrow in Figure 8), the voltage conversion circuit 10 is a step-down voltage conversion circuit, which can also be called a buck circuit. At this time, Vin is greater than Vout.
在第二电压端V2为电压输入端Vin,第一电压端V1为电压输出端Vout的情况下,需要说明的是,第二电压端V2(即电压输入端Vin)通过电容Cfly和电感L向第一电压端V1(即电压输出端Vout)进行供电。In the case where the second voltage terminal V2 is the voltage input terminal Vin, and the first voltage terminal V1 is the voltage output terminal Vout, it should be noted that the second voltage terminal V2 (that is, the voltage input terminal Vin) is connected to the The first voltage terminal V1 (that is, the voltage output terminal Vout) supplies power.
以第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3,第一开关管Q1和第二开关管Q2导通的占空比为D为例,在电压变换电路10用于作为降压式电压变换电路时,第一电压端V1(即电压输出端Vout)和第二电压端V2(即电压输入端Vin)传输增益函数关系如下:The first switch 101 includes a first switch tube Q1, the second switch 102 includes a second switch tube Q2, the third switch 105 includes a third switch tube Q3, and the duty cycle of the conduction of the first switch tube Q1 and the second switch tube Q2 is The ratio is D as an example, when the voltage conversion circuit 10 is used as a step-down voltage conversion circuit, the first voltage terminal V1 (ie, the voltage output terminal Vout) and the second voltage terminal V2 (ie, the voltage input terminal Vin) transmit the gain function The relationship is as follows:
Figure PCTCN2021101358-appb-000001
Figure PCTCN2021101358-appb-000001
根据上述公式可知,第一电压端V1输出电压的范围为(0,0.5V2),因此该电压变换电路10可以实现有限范围的降压转换。According to the above formula, it can be seen that the range of the output voltage of the first voltage terminal V1 is (0, 0.5V2), so the voltage conversion circuit 10 can realize a limited range of step-down conversion.
由于第一开关管Q1和第二开关管Q2导通期间,第二电压端V2(即电压输入端Vin)直接通过电容Cfly给第一电压端V1(即电压输出端Vout)充电,不经过电感L,而电容Cfly的损耗相对于电感L大幅度降低,相对于传统的buck电路,电压输入端Vin通过电感L给电压输出端Vout供电,因此本申请实施例提供的电压变换电路10的转换效率得到很大提升,且负载瞬态跌落响应性能得到明显提升。Since the first switching tube Q1 and the second switching tube Q2 are turned on, the second voltage terminal V2 (that is, the voltage input terminal Vin) directly charges the first voltage terminal V1 (that is, the voltage output terminal Vout) through the capacitor Cfly without passing through the inductor. L, and the loss of the capacitor Cfly is greatly reduced compared with the inductance L. Compared with the traditional buck circuit, the voltage input terminal Vin supplies power to the voltage output terminal Vout through the inductance L. Therefore, the conversion efficiency of the voltage conversion circuit 10 provided by the embodiment of the present application is It has been greatly improved, and the load transient drop response performance has been significantly improved.
在同等条件下,在本申请实施例提供的电压变换电路10作为降低式电压变换电路的情况下,对本申请实施例提供的电压变换电路10和传统的buck电路进行仿真,以电压输入端Vin输入的电压为5V,电压输出端Vout输出的电压为1.35V为例,图9a为本申请实施例提供的电压变换电路10和传统的buck电路的转换效率的仿真结果的对比示意图。图9a中的横坐标表示电压输出端Vout的电流Iout,纵坐标表示效率。从图9a所示的仿真结果可以看出,本申请实施例提供的电压变换电路10相对于传统的buck电路效率平均提升1.5%左右。图9b为本申请实施例提供的电压变换电路10和传统的buck电路的瞬态跌落响应性能的仿真结果的对比示意图,其中,图9b中的横坐标表示时间,图9b中的下图的纵坐标表示电压输出端Vout的电流Iout,图9b的下图中电压输出端Vout的电流Iout从1A突变到5A,图9b中上图的纵坐标表示电压输出端Vout的电压。从图9b所示的仿真结果可以看出,本申请实施例提供的电压变换电路10相对于传统的buck电路瞬态跌落响应性能提升20%左右。Under the same conditions, when the voltage conversion circuit 10 provided by the embodiment of the present application is used as a step-down voltage conversion circuit, the voltage conversion circuit 10 provided by the embodiment of the present application and the traditional buck circuit are simulated, and the voltage input terminal Vin is input The voltage of the voltage is 5V, and the voltage output by the voltage output terminal Vout is 1.35V as an example. FIG. 9a is a schematic diagram comparing the simulation results of the conversion efficiency of the voltage conversion circuit 10 provided by the embodiment of the present application and the traditional buck circuit. The abscissa in FIG. 9a represents the current Iout at the voltage output terminal Vout, and the ordinate represents the efficiency. It can be seen from the simulation results shown in FIG. 9a that the efficiency of the voltage conversion circuit 10 provided by the embodiment of the present application is increased by about 1.5% on average compared with the traditional buck circuit. Fig. 9b is a schematic diagram of the comparison of the simulation results of the transient drop response performance of the voltage conversion circuit 10 provided by the embodiment of the present application and the traditional buck circuit, wherein the abscissa in Fig. 9b represents time, and the vertical in the lower figure in Fig. 9b The coordinates represent the current Iout of the voltage output terminal Vout. The current Iout of the voltage output terminal Vout in the lower figure of FIG. 9b changes suddenly from 1A to 5A. The ordinate of the upper figure in FIG. It can be seen from the simulation results shown in FIG. 9 b that the transient drop response performance of the voltage conversion circuit 10 provided by the embodiment of the present application is improved by about 20% compared with the traditional buck circuit.
如图10所示,在第一电压端V1为电压输入端Vin,第二电压端V2为电压输出端Vout的情况下,在此路径下(如图10中粗箭头所示),电压变换电路10为升压式电压变换电路,也可以称为boost电路,此时Vout大于Vin。As shown in Figure 10, when the first voltage terminal V1 is the voltage input terminal Vin, and the second voltage terminal V2 is the voltage output terminal Vout, under this path (as shown by the thick arrow in Figure 10), the voltage conversion circuit 10 is a step-up voltage conversion circuit, which can also be called a boost circuit. At this time, Vout is greater than Vin.
在第一电压端V1为电压输入端Vin,第二电压端V2为电压输出端Vout的情况下,需要说明的是,第一电压端V1(即电压输入端Vin)通过电容Cfly和电感L向第二电压端V2(即电压输出端Vout)进行供电。In the case where the first voltage terminal V1 is the voltage input terminal Vin, and the second voltage terminal V2 is the voltage output terminal Vout, it should be noted that the first voltage terminal V1 (that is, the voltage input terminal Vin) is connected to the The second voltage terminal V2 (that is, the voltage output terminal Vout) supplies power.
以第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3,第一开关管Q1和第二开关管Q2导通的占空比为D为例,在电压变换电路10用于作为升压式电压变换电路时,第二电压端V2(即电压输出端Vout)和第一电压端V1(即电压输入端Vin)传输增益函数关系如下:The first switch 101 includes a first switch tube Q1, the second switch 102 includes a second switch tube Q2, the third switch 105 includes a third switch tube Q3, and the duty cycle of the conduction of the first switch tube Q1 and the second switch tube Q2 is The ratio is D as an example, when the voltage conversion circuit 10 is used as a step-up voltage conversion circuit, the second voltage terminal V2 (ie, the voltage output terminal Vout) and the first voltage terminal V1 (ie, the voltage input terminal Vin) transmit the gain function The relationship is as follows:
Figure PCTCN2021101358-appb-000002
Figure PCTCN2021101358-appb-000002
根据上述公式可知,第二电压端V2输出电压的范围为(2V1,+∞),因此该电压变换电路10可以实现有限范围的升压转换。According to the above formula, it can be seen that the range of the output voltage of the second voltage terminal V2 is (2V1, +∞), so the voltage conversion circuit 10 can realize a limited range of boost conversion.
由于第一开关管Q1和第二开关管Q2导通期间,第一电压端V1(即电压输入端Vin)直接通过电容Cfly向第二电压端V2(即电压输出端Vout)充电,不经过电感L,而电容Cfly的损耗相对于电感L大幅度降低,相对于传统的boost电路,电压输入端Vin通过电感L给电压输出端Vout供电,因此本申请实施例提供的电压变换电路10的转换效率得到很大提升,且负载瞬态过冲响应性能得到明显提升。During the conduction period of the first switch tube Q1 and the second switch tube Q2, the first voltage terminal V1 (that is, the voltage input terminal Vin) directly charges the second voltage terminal V2 (that is, the voltage output terminal Vout) through the capacitor Cfly without passing through the inductor. L, and the loss of the capacitor Cfly is greatly reduced compared with the inductance L. Compared with the traditional boost circuit, the voltage input terminal Vin supplies power to the voltage output terminal Vout through the inductance L. Therefore, the conversion efficiency of the voltage conversion circuit 10 provided by the embodiment of the present application is It has been greatly improved, and the load transient overshoot response performance has been significantly improved.
在同等条件下,在本申请实施例提供的电压变换电路10作为升压式电压变换电路的情况下,对本申请实施例提供的电压变换电路10和传统的boost电路进行仿真,以电压输入端Vin输入的电压为5V,电压输出端Vout输出的电压为25V为例,图11a为本申请实施例提供的电压变换电路10和传统的boost电路的转换效率的仿真结果的对比示意图。图11a中的横坐标表示电压输出端Vout的电流Iout,纵坐标表示效率。从图11a所示的仿真结果可以看出,本申请实施例提供的电压变换电路10相对于传统的boost电路效率平均提升2.5%左右。图11b为本申请实施例提供的电压变换电路10和传统的boost电路的瞬态过冲响应性能的仿真结果的对比示意图,其中,图11b中的横坐标表示时间,图11b中的下图的纵坐标表示电压输出端Vout的电流Iout,图11b的下图中电压输出端Vout的电流Iout从10A突变到1A,图11b中上图的纵坐标表示电压输出端Vout的电压。从图11b所示的仿真结果可以看出,本申请实施例提供的电压变换电路10相对于传统的boost电路瞬态过冲响应性能提升43%左右。Under the same conditions, when the voltage conversion circuit 10 provided by the embodiment of the present application is used as a boost voltage conversion circuit, the voltage conversion circuit 10 provided by the embodiment of the present application and the traditional boost circuit are simulated, and the voltage input terminal Vin The input voltage is 5V, and the output voltage of the voltage output terminal Vout is 25V as an example. FIG. 11a is a schematic diagram comparing the simulation results of the conversion efficiency of the voltage conversion circuit 10 provided by the embodiment of the present application and the traditional boost circuit. The abscissa in FIG. 11a represents the current Iout at the voltage output terminal Vout, and the ordinate represents the efficiency. It can be seen from the simulation results shown in FIG. 11a that the efficiency of the voltage conversion circuit 10 provided by the embodiment of the present application is increased by about 2.5% on average compared with the traditional boost circuit. Fig. 11b is a schematic diagram of the comparison of the simulation results of the transient overshoot response performance of the voltage conversion circuit 10 provided by the embodiment of the present application and the traditional boost circuit, wherein the abscissa in Fig. 11b represents time, and the lower figure in Fig. 11b The ordinate represents the current Iout of the voltage output terminal Vout. The current Iout of the voltage output terminal Vout in the lower figure of FIG. 11b changes suddenly from 10A to 1A. The ordinate of the upper figure in FIG. It can be seen from the simulation results shown in FIG. 11 b that the transient overshoot response performance of the voltage conversion circuit 10 provided by the embodiment of the present application is improved by about 43% compared with the traditional boost circuit.
为了进一步提高电压变换电路10的输出瞬态响应性能,在一些示例中,如图12所示,电压变换电路10还包括第一控制逻辑电路106,第一控制逻辑电路106与第一控制端GS1、第二控制端GS2、第三控制端GS3耦合,第一控制逻辑电路106用于在第一模式下输出第一控制信号和在第二模式下输出第二控制信号;第一控制信号用于控制第一开关101和第二开关102同时导通或断开,第三开关105和第一开关101交替导通;第二控制信号用于控制第二开关102和第三开关105导通。In order to further improve the output transient response performance of the voltage conversion circuit 10, in some examples, as shown in FIG. , the second control terminal GS2, and the third control terminal GS3 are coupled, and the first control logic circuit 106 is used to output the first control signal in the first mode and the second control signal in the second mode; the first control signal is used for The first switch 101 and the second switch 102 are controlled to be turned on or off at the same time, the third switch 105 and the first switch 101 are turned on alternately; the second control signal is used to control the second switch 102 and the third switch 105 to be turned on.
其中,第一控制信号包括用于控制第一开关101的控制信号、用于控制第二开关102的控制信号以及用于控制第三开关105的控制信号。第二控制信号包括用于控制第二开关102的控制信号和用于控制第三开关105的控制信号。Wherein, the first control signal includes a control signal for controlling the first switch 101 , a control signal for controlling the second switch 102 and a control signal for controlling the third switch 105 . The second control signal includes a control signal for controlling the second switch 102 and a control signal for controlling the third switch 105 .
在电压变换电路10包括第一控制逻辑电路106的情况下,电压变换电路10的控制方法包括:在第一模式下,控制第一控制逻辑电路106输出第一控制信号;在第二模式下,控制第一控制逻辑电路106输出第二控制信号。In the case that the voltage conversion circuit 10 includes the first control logic circuit 106, the control method of the voltage conversion circuit 10 includes: in the first mode, controlling the first control logic circuit 106 to output the first control signal; in the second mode, Control the first control logic circuit 106 to output the second control signal.
此外,请继续参考图12,第一控制逻辑电路106还可以与第一信号端PWM_Q1、第二信号端PWM_Q2和第三信号端PWM_Q3耦合。此处,第一信号端PWM_Q1、第二信号端PWM_Q2和第三信号端PWM_Q3可以用于提供高低电平交替变化的脉冲信号,具体可以参考图7b。图12中的双S曲线表示第一控制逻辑电路106与第一控制端GS1、第二控制端GS2和第三控制端GS3之间可以是直接耦合,也可以是通过其它电子元器件间接耦合。In addition, please continue to refer to FIG. 12 , the first control logic circuit 106 can also be coupled to the first signal terminal PWM_Q1 , the second signal terminal PWM_Q2 and the third signal terminal PWM_Q3 . Here, the first signal terminal PWM_Q1 , the second signal terminal PWM_Q2 and the third signal terminal PWM_Q3 can be used to provide pulse signals with alternating high and low levels, for details, refer to FIG. 7 b . The double S-curve in FIG. 12 indicates that the first control logic circuit 106 may be directly coupled to the first control terminal GS1 , the second control terminal GS2 and the third control terminal GS3 , or may be indirectly coupled through other electronic components.
在此基础上,第一控制逻辑电路106可以根据输出电压Vout与第一阈值电压Vth1、第一阈值电压Vth2的大小,输出第一控制信号或第二控制信号。基于此,在一些示例中,如图12所示,第一控制逻辑电路106还可以与电压输出端Vout、第一阈值电压端Vth1和第一阈值电压端Vth2耦合,第一阈值电压端Vth1用于提供第一阈值电压Vth1,第一阈值电压端Vth2用于提供第二阈值电压Vth2。On this basis, the first control logic circuit 106 can output the first control signal or the second control signal according to the magnitudes of the output voltage Vout and the first threshold voltage Vth1 and the first threshold voltage Vth2. Based on this, in some examples, as shown in FIG. 12 , the first control logic circuit 106 may also be coupled to the voltage output terminal Vout, the first threshold voltage terminal Vth1 and the first threshold voltage terminal Vth2, and the first threshold voltage terminal Vth1 is used for For providing the first threshold voltage Vth1, the first threshold voltage terminal Vth2 is used for providing the second threshold voltage Vth2.
应当理解到,上述第一阈值电压Vth1、第二阈值电压Vth2的大小可以根据需要预先进行设置。It should be understood that the magnitudes of the above-mentioned first threshold voltage Vth1 and second threshold voltage Vth2 can be set in advance as required.
在电压变换电路10用于作为降压式电压变换电路的情况下,第一电压端V1为电压输出端Vout,即第一控制逻辑电路106可以与第一电压端V1耦合。在电压变换电路10用于作为升压式电压变换电路的情况下,第二电压端V2为电压输出端Vout,即第一控制逻辑电路106可以与第二电压端V2耦合。When the voltage conversion circuit 10 is used as a step-down voltage conversion circuit, the first voltage terminal V1 is the voltage output terminal Vout, that is, the first control logic circuit 106 can be coupled to the first voltage terminal V1. When the voltage conversion circuit 10 is used as a boost voltage conversion circuit, the second voltage terminal V2 is the voltage output terminal Vout, that is, the first control logic circuit 106 can be coupled to the second voltage terminal V2.
在电压变换电路10包括第一控制逻辑电路106,且电压变换电路10用于作为降压式电压变换电路的情况下,此时,第二电压端V2为电压输入端Vin,第一电压端V1为电压输出端Vout,第一控制逻辑电路106具体用于:当电压输出端Vout的电压大于或等于第一阈值电压Vth1时,在第一模式下输出第一控制信号;当电压输出端Vout的电压小于第二阈值电压Vth2时,在第二模式下输出第二控制信号;其中,第二阈值电压Vth2小于或等于第一阈值电压Vth1。In the case where the voltage conversion circuit 10 includes a first control logic circuit 106, and the voltage conversion circuit 10 is used as a step-down voltage conversion circuit, at this time, the second voltage terminal V2 is the voltage input terminal Vin, and the first voltage terminal V1 is the voltage output terminal Vout, and the first control logic circuit 106 is specifically configured to: when the voltage of the voltage output terminal Vout is greater than or equal to the first threshold voltage Vth1, output the first control signal in the first mode; when the voltage of the voltage output terminal Vout When the voltage is less than the second threshold voltage Vth2, the second control signal is output in the second mode; wherein, the second threshold voltage Vth2 is less than or equal to the first threshold voltage Vth1.
基于上述,电压变换电路10的控制方法还包括:首先,实时检测电压输出端Vout(即第一电压端V1)的电压,并将检测到的输出电压Vout与第一阈值电压Vth1、第二阈值电压Vth2进行比较。接下来,根据输出电压Vout与第一阈值电压Vth1、第二阈值电压Vth2的比较结果,电压变换电路10的控制方法可以按照以下两种方式执行。Based on the above, the control method of the voltage conversion circuit 10 further includes: firstly, detecting the voltage of the voltage output terminal Vout (ie, the first voltage terminal V1) in real time, and comparing the detected output voltage Vout with the first threshold voltage Vth1, the second threshold voltage voltage Vth2 for comparison. Next, according to the comparison result of the output voltage Vout with the first threshold voltage Vth1 and the second threshold voltage Vth2, the control method of the voltage conversion circuit 10 can be implemented in the following two ways.
第一种,若检测到的电压输出端Vout(即第一电压端V1)的输出电压Vout小于第二阈值电压Vth2,也就是说,负载瞬态变重,电压输出端Vout的电压下跌到触及下限值,即第二阈值电压Vth2时,则按照非线性控制策略对电压变换电路10进行控制,触发第二模式,电压变换电路10在第二模式下工作。这样一来,电压输入端Vin(即第二电压端V2)可以经过第二开关102和第三开关105直接给电压输出端Vout(即第一电压端V1)进行补电。需要说明的是,在此情况下,第一控制端GS1可以控制第一开关101处于导通状态或者断开状态。First, if the detected output voltage Vout of the voltage output terminal Vout (that is, the first voltage terminal V1) is lower than the second threshold voltage Vth2, that is to say, the load transient becomes heavy, and the voltage of the voltage output terminal Vout drops to reach When the lower limit value is the second threshold voltage Vth2, the voltage conversion circuit 10 is controlled according to the nonlinear control strategy to trigger the second mode, and the voltage conversion circuit 10 works in the second mode. In this way, the voltage input terminal Vin (ie, the second voltage terminal V2 ) can directly supply power to the voltage output terminal Vout (ie, the first voltage terminal V1 ) through the second switch 102 and the third switch 105 . It should be noted that, in this case, the first control terminal GS1 can control the first switch 101 to be in an on state or an off state.
第二种,若检测到的电压输出端Vout(即第一电压端V1)的输出电压Vout大于或等于第一阈值电压Vth1,则直接按照基本控制策略进行控制,触发第一模式,电压变换电路10在第一模式下工作。In the second type, if the detected output voltage Vout of the voltage output terminal Vout (that is, the first voltage terminal V1) is greater than or equal to the first threshold voltage Vth1, the control is directly performed according to the basic control strategy, and the first mode is triggered, and the voltage conversion circuit 10 works in the first mode.
以下对第一控制逻辑电路106进行示例性介绍。如图13所示,第一控制逻辑电路106包括比较器1061、第一或门1062和第二或门1063。An exemplary introduction to the first control logic circuit 106 is given below. As shown in FIG. 13 , the first control logic circuit 106 includes a comparator 1061 , a first OR gate 1062 and a second OR gate 1063 .
上述比较器1061例如可以为迟滞比较器,比较器1061的第一输入端与电压输出端Vout耦合;比较器1061的第二输入端与第一阈值电压端Vth1耦合;比较器1061的第三输入端与第二阈值电压端Vth2耦合。比较器1061的输出端与第一或门1062的第一输入端和第二或门1063的第一输入端耦合;第一或门1062的第二输入端与第三信号端PWM_Q3耦合,第一或门1062的输出端与第三控制端GS3耦合;第二或门1063的第二输入端与第二信号端PWM_Q2耦合,第二或门1063的输出端与第二控制端GS2耦合,第 一信号端PWM_Q1与第一控制端GS1耦合。图13中的双S曲线表示第一或门1062的输出端与第三控制端GS3、第二或门1063的输出端与第二控制端GS2、第一信号端PWM_Q1与第一控制端GS1可以是直接耦合,也可以是通过其它电子元器件间接耦合。可以理解的是,第一控制逻辑电路106包括但不限于图13所示的结构。The above-mentioned comparator 1061 can be a hysteresis comparator, for example, the first input terminal of the comparator 1061 is coupled to the voltage output terminal Vout; the second input terminal of the comparator 1061 is coupled to the first threshold voltage terminal Vth1; the third input terminal of the comparator 1061 The terminal is coupled with the second threshold voltage terminal Vth2. The output terminal of the comparator 1061 is coupled with the first input terminal of the first OR gate 1062 and the first input terminal of the second OR gate 1063; the second input terminal of the first OR gate 1062 is coupled with the third signal terminal PWM_Q3, the first The output terminal of the OR gate 1062 is coupled to the third control terminal GS3; the second input terminal of the second OR gate 1063 is coupled to the second signal terminal PWM_Q2, and the output terminal of the second OR gate 1063 is coupled to the second control terminal GS2. The signal terminal PWM_Q1 is coupled to the first control terminal GS1. The double S-curve in Figure 13 indicates that the output terminal of the first OR gate 1062 and the third control terminal GS3, the output terminal of the second OR gate 1063 and the second control terminal GS2, and the first signal terminal PWM_Q1 and the first control terminal GS1 can be It can be directly coupled or indirectly coupled through other electronic components. It can be understood that the first control logic circuit 106 includes but is not limited to the structure shown in FIG. 13 .
以下以电压变换电路10为图13所示的结构,且第一开关管Q1、第二开关管Q2和第三开关管Q3为N型管为例,对电压变换电路10用于作为降压式电压变换电路时,电压变换电路10的控制方法进行具体介绍。电压变换电路10的控制方法具体包括:首先,实时检测电压输出端Vout的电压,并将检测到的电压输出端Vout的电压与第一阈值电压Vth1、第二阈值电压Vth2进行比较。接下来,根据电压输出端Vout的电压与第一阈值电压Vth1、第二阈值电压Vth2的比较结果,电压变换电路10的控制方法可以按照以下两种方式执行。In the following, the voltage conversion circuit 10 has the structure shown in FIG. 13 , and the first switch tube Q1, the second switch tube Q2 and the third switch tube Q3 are N-type tubes as an example, and the voltage conversion circuit 10 is used as a step-down When referring to the voltage conversion circuit, the control method of the voltage conversion circuit 10 will be described in detail. The control method of the voltage conversion circuit 10 specifically includes: firstly, detecting the voltage of the voltage output terminal Vout in real time, and comparing the detected voltage of the voltage output terminal Vout with the first threshold voltage Vth1 and the second threshold voltage Vth2. Next, according to the comparison result of the voltage of the voltage output terminal Vout with the first threshold voltage Vth1 and the second threshold voltage Vth2, the control method of the voltage conversion circuit 10 can be implemented in the following two ways.
第一种,若检测到的电压输出端Vout(即第一电压端V1)的电压小于第二阈值电压Vth2时,则触发第二模式。具体的,如图13所示,比较器1061输出信号“1”,从而控制第一或门1062和第二或门1063的输出端均输出高电平信号,而由于第一或门1062的输出端与第三控制端GS3耦合,第二或门1063的输出端与第二控制端GS2耦合,因此如图14所示,第三控制端GS3和第二控制端GS2均输入高电平信号,此时,第三开关管Q3和第二开关管Q2处于一直导通的状态,这样一来,电压输入端Vin(即第二电压端V2)可以经过第三开关管Q3和第二开关管Q2直接给电压输出端Vout(即第一电压端V1)进行补电。在此过程中,第一开关管Q1可以处于导通状态,也可以处于断开状态。可以理解的是,电压输入端Vin(即第二电压端V2)经过第三开关管Q3和第二开关管Q2直接给电压输出端Vout(即第一电压端V1)进行补电时,电压输出端Vout(即第一电压端V1)的电压会逐渐增加。First, if the detected voltage of the voltage output terminal Vout (ie, the first voltage terminal V1 ) is lower than the second threshold voltage Vth2 , the second mode is triggered. Specifically, as shown in FIG. 13 , the comparator 1061 outputs a signal "1", thereby controlling the output terminals of the first OR gate 1062 and the second OR gate 1063 to output high-level signals, and because the output of the first OR gate 1062 terminal is coupled with the third control terminal GS3, and the output terminal of the second OR gate 1063 is coupled with the second control terminal GS2, so as shown in Figure 14, both the third control terminal GS3 and the second control terminal GS2 input high-level signals, At this time, the third switching tube Q3 and the second switching tube Q2 are in the always-on state. In this way, the voltage input terminal Vin (that is, the second voltage terminal V2) can pass through the third switching tube Q3 and the second switching tube Q2. The voltage output terminal Vout (that is, the first voltage terminal V1 ) is directly supplemented with electricity. During this process, the first switching tube Q1 may be in a conducting state, or may be in an off state. It can be understood that when the voltage input terminal Vin (that is, the second voltage terminal V2) directly supplies power to the voltage output terminal Vout (that is, the first voltage terminal V1) through the third switch tube Q3 and the second switch tube Q2, the voltage output The voltage of the terminal Vout (that is, the first voltage terminal V1) will gradually increase.
第二种,若检测到的电压输出端Vout(即第一电压端V1)的电压大于或等于第一阈值电压Vth1,则触发第一模式。具体的,比较器1061输出信号“0”,从而第一或门1062输出第三信号端PWM_Q3提供的信号,即高低电平交替变化的脉冲信号,第二或门1063输出第二信号端PWM_Q2提供的信号,即高低电平交替变化的脉冲信号,且第三信号端PWM_Q3提供的信号和第二信号端PWM_Q2提供的信号反相,第一控制端GS1接收到的第一信号端PWM_Q1提供的信号与第二信号端PWM_Q2提供的信号相同,这样一来,第一开关管Q1和第二开关管Q2同时导通或断开,第一开关管Q1和第三开关管Q3交替导通。Second, if the detected voltage of the voltage output terminal Vout (ie, the first voltage terminal V1 ) is greater than or equal to the first threshold voltage Vth1 , the first mode is triggered. Specifically, the comparator 1061 outputs a signal "0", so that the first OR gate 1062 outputs the signal provided by the third signal terminal PWM_Q3, that is, a pulse signal with alternating high and low levels, and the second OR gate 1063 outputs the signal provided by the second signal terminal PWM_Q2. The signal, that is, the pulse signal with alternating high and low levels, and the signal provided by the third signal terminal PWM_Q3 and the signal provided by the second signal terminal PWM_Q2 are inverted, and the signal provided by the first signal terminal PWM_Q1 received by the first control terminal GS1 The signal provided by the second signal terminal PWM_Q2 is the same, so that the first switching tube Q1 and the second switching tube Q2 are turned on or off at the same time, and the first switching tube Q1 and the third switching tube Q3 are turned on alternately.
基于上述电压变换电路10的控制方法,由于当负载瞬态变重(即电压输出端Vout(即第一电压端V1)的电压小于第二阈值电压Vth2)时,电压输入端Vin可以直接给电压输出端Vout进行补电,这样便可以大幅提升负载瞬态跌落响应性能。Based on the above-mentioned control method of the voltage conversion circuit 10, when the load transient becomes heavy (that is, when the voltage at the voltage output terminal Vout (ie, the first voltage terminal V1) is less than the second threshold voltage Vth2), the voltage input terminal Vin can directly supply the voltage The output terminal Vout is supplemented with power, which can greatly improve the load transient drop response performance.
此外,本申请实施例提供的电压变换电路10在第二模式下工作时,由于仍采用电路变换电路10已有的器件,因此第一控制逻辑电路106可以在第一模式和第二模式下分别用于控制第一开关101、第二开关102和第三开关105,只是第一控制逻辑电路106输出的控制信号不同,因而本实施例在第二模式下工作时,不增加额外的器件,控制方法简单,且实现最佳的非线性控制效果,极大提升负载瞬态跌落响应性能。In addition, when the voltage conversion circuit 10 provided by the embodiment of the present application works in the second mode, since the existing devices of the circuit conversion circuit 10 are still used, the first control logic circuit 106 can operate in the first mode and the second mode respectively. It is used to control the first switch 101, the second switch 102 and the third switch 105, but the control signals output by the first control logic circuit 106 are different. Therefore, when this embodiment works in the second mode, no additional devices are added, and the control The method is simple, and achieves the best nonlinear control effect, and greatly improves the load transient drop response performance.
当负载由1A突变到10A时,电压输出端Vout的电压从360mv跌落到200mv,对图13提供的电压变换电路10与传统buck电路进行仿真,图15a为图13提供的电压变换电 路10的仿真结果,图15b为传统buck电路的仿真结果,对比图15a和图15b可以看出,抗瞬态跌落响应性能提升45%左右,本申请电压输出端Vout的电压恢复时间也有明显改善。When the load changes from 1A to 10A, the voltage at the voltage output terminal Vout drops from 360mv to 200mv. The voltage conversion circuit 10 provided in FIG. 13 and the traditional buck circuit are simulated. FIG. 15a is the simulation of the voltage conversion circuit 10 provided in FIG. 13 As a result, Fig. 15b is the simulation result of the traditional buck circuit. Comparing Fig. 15a and Fig. 15b, it can be seen that the anti-transient drop response performance is improved by about 45%, and the voltage recovery time of the voltage output terminal Vout of the present application is also significantly improved.
在电压变换电路10包括第一控制逻辑电路106,且电压变换电路10用于作为升压式电压变换电路的情况下,此时,第一电压端V1为电压输入端Vin,第二电压端V2为电压输出端Vout,第一控制逻辑电路106具体用于:当电压输出端Vout的电压小于或等于第一阈值电压Vth1时,在第一模式下输出第一控制信号;当电压输出端Vout的电压大于第二阈值电压Vth2时,在第二模式下输出第二控制信号;其中,第二阈值电压Vth2大于或等于第一阈值电压Vth1。In the case where the voltage conversion circuit 10 includes a first control logic circuit 106, and the voltage conversion circuit 10 is used as a step-up voltage conversion circuit, at this time, the first voltage terminal V1 is the voltage input terminal Vin, and the second voltage terminal V2 is the voltage output terminal Vout, and the first control logic circuit 106 is specifically configured to: when the voltage of the voltage output terminal Vout is less than or equal to the first threshold voltage Vth1, output the first control signal in the first mode; when the voltage of the voltage output terminal Vout When the voltage is greater than the second threshold voltage Vth2, the second control signal is output in the second mode; wherein the second threshold voltage Vth2 is greater than or equal to the first threshold voltage Vth1.
基于上述,电压变换电路10的控制方法还包括:首先,实时检测电压输出端Vout(即第二电压端V2)的电压,并将检测到的输出电压Vout与第一阈值电压Vth1、第二阈值电压Vth2的电压进行比较。接下来,根据输出电压Vout与第一阈值电压Vth1、第二阈值电压Vth2的电压的比较结果,电压变换电路10的控制方法可以按照以下两种方式执行。Based on the above, the control method of the voltage conversion circuit 10 further includes: firstly, detecting the voltage of the voltage output terminal Vout (that is, the second voltage terminal V2) in real time, and comparing the detected output voltage Vout with the first threshold voltage Vth1, the second threshold voltage The voltage of the voltage Vth2 is compared. Next, according to the comparison result of the output voltage Vout and the voltages of the first threshold voltage Vth1 and the second threshold voltage Vth2, the control method of the voltage conversion circuit 10 can be implemented in the following two ways.
第一种,若检测到的电压输出端Vout(即第二电压端V2)的输出电压Vout大于第二阈值电压Vth2,也就是说,电压输出端Vout的电压过冲到门限(即第二阈值电压Vth2),则按照非线性控制策略对电压变换电路10进行控制,触发第二模式,电压变换电路10在第二模式下工作。这样一来,电压输入端Vin(即第一电压端V1)可以经过第二开关102和第三开关105直接给电压输出端Vout(即第二电压端V2)进行放电。可以理解的是,电压输出端Vout(即第二电压端V2)的电压逐渐降低。First, if the detected output voltage Vout of the voltage output terminal Vout (ie, the second voltage terminal V2) is greater than the second threshold voltage Vth2, that is, the voltage of the voltage output terminal Vout overshoots to the threshold (ie, the second threshold voltage voltage Vth2), the voltage conversion circuit 10 is controlled according to the nonlinear control strategy, and the second mode is triggered, and the voltage conversion circuit 10 works in the second mode. In this way, the voltage input terminal Vin (ie, the first voltage terminal V1 ) can directly discharge the voltage output terminal Vout (ie, the second voltage terminal V2 ) via the second switch 102 and the third switch 105 . It can be understood that the voltage of the voltage output terminal Vout (that is, the second voltage terminal V2 ) decreases gradually.
第二种,若检测到电压输出端Vout(即第二电压端V2)输出的电压Vout小于或等于第一阈值电压Vth1,则直接按照基本控制策略进行控制,触发第一模式,电压变换电路10在第一模式下工作。In the second type, if it is detected that the voltage Vout output by the voltage output terminal Vout (that is, the second voltage terminal V2) is less than or equal to the first threshold voltage Vth1, the control is directly performed according to the basic control strategy, and the first mode is triggered. The voltage conversion circuit 10 Work in first mode.
以下以电压变换电路10为图13所示的结构,且第一开关管Q1、第二开关管Q2和第三开关管Q3为N型管为例,对电压变换电路10用于作为升压式电压变换电路时,电压变换电路10的控制方法进行具体介绍。电压变换电路10的控制方法具体包括:首先,实时检测电压输出端Vout的电压,并将检测到的电压输出端Vout的电压与第一阈值电压Vth1、第二阈值电压Vth2的电压进行比较。接下来,根据电压输出端Vout的电压与第一阈值电压Vth1、第二阈值电压Vth2的比较结果,电压变换电路10的控制方法可以按照以下两种方式执行。Taking the voltage conversion circuit 10 as the structure shown in FIG. 13, and the first switch tube Q1, the second switch tube Q2 and the third switch tube Q3 as an example, the voltage conversion circuit 10 is used as a step-up When referring to the voltage conversion circuit, the control method of the voltage conversion circuit 10 will be described in detail. The control method of the voltage conversion circuit 10 specifically includes: firstly, detecting the voltage of the voltage output terminal Vout in real time, and comparing the detected voltage of the voltage output terminal Vout with the voltages of the first threshold voltage Vth1 and the second threshold voltage Vth2. Next, according to the comparison result of the voltage of the voltage output terminal Vout with the first threshold voltage Vth1 and the second threshold voltage Vth2, the control method of the voltage conversion circuit 10 can be implemented in the following two ways.
第一种,若检测到的电压输出端Vout(即第二电压端V2)的电压大于第二阈值电压Vth2时,则触发第二模式。具体的,如图13所示,比较器1061输出信号“1”,从而控制第一或门1062和第二或门1063的输出端均输出高电平信号,如图16所示,第二控制端GS2和第三控制端GS3均输入高电平信号,这样一来,第二开关管Q2和第三开关管Q3处于一直导通的状态,这样一来,电压输入端Vin(即第一电压端V1)可以经过第二开关管Q2和第三开关管Q3直接给电压输出端Vout(即第二电压端V2)进行放电。在此过程中,第一开关管Q1可以处于导通状态,也可以处于断开状态。在电压输入端Vin(即第一电压端V1)对电压输出端Vout(即第二电压端V2)进行放电的过程中,电压输出端Vout(即第二电压端V2)的电压会逐渐减小。First, if the detected voltage of the voltage output terminal Vout (that is, the second voltage terminal V2 ) is greater than the second threshold voltage Vth2 , the second mode is triggered. Specifically, as shown in Figure 13, the comparator 1061 outputs a signal "1", thereby controlling the output terminals of the first OR gate 1062 and the second OR gate 1063 to output high-level signals, as shown in Figure 16, the second control Both the terminal GS2 and the third control terminal GS3 input a high-level signal, so that the second switching tube Q2 and the third switching tube Q3 are in the always-on state, so that the voltage input terminal Vin (that is, the first voltage The terminal V1) can directly discharge the voltage output terminal Vout (that is, the second voltage terminal V2) through the second switch tube Q2 and the third switch tube Q3. During this process, the first switching tube Q1 may be in a conducting state, or may be in an off state. In the process of discharging the voltage input terminal Vin (ie, the first voltage terminal V1) to the voltage output terminal Vout (ie, the second voltage terminal V2), the voltage of the voltage output terminal Vout (ie, the second voltage terminal V2) will gradually decrease .
第二种,若检测到电压输出端Vout(即第二电压端V2)的电压小于或等于第一阈值 电压Vth1,则触发第一模式。具体的,比较器1061输出信号“0”,从而第一或门1062输出第三信号端PWM_Q3提供的信号,即高低电平交替变化的脉冲信号,第二或门1063输出第二信号端PWM_Q2提供的信号,即高低电平交替变化的脉冲信号,且第三信号端PWM_Q3提供的信号和第二信号端PWM_Q2提供的信号反相,第一控制端GS1接收到的第一信号端PWM_Q1提供的信号与第二信号端PWM_Q2提供的信号相同,这样一来,第一开关管Q1和第二开关管Q2同时导通或断开,第一开关管Q1和第三开关管Q3交替导通。Second, if it is detected that the voltage at the voltage output terminal Vout (that is, the second voltage terminal V2) is less than or equal to the first threshold voltage Vth1, the first mode is triggered. Specifically, the comparator 1061 outputs a signal "0", so that the first OR gate 1062 outputs the signal provided by the third signal terminal PWM_Q3, that is, a pulse signal with alternating high and low levels, and the second OR gate 1063 outputs the signal provided by the second signal terminal PWM_Q2. The signal, that is, the pulse signal with alternating high and low levels, and the signal provided by the third signal terminal PWM_Q3 and the signal provided by the second signal terminal PWM_Q2 are inverted, and the signal provided by the first signal terminal PWM_Q1 received by the first control terminal GS1 The signal provided by the second signal terminal PWM_Q2 is the same, so that the first switching tube Q1 and the second switching tube Q2 are turned on or off at the same time, and the first switching tube Q1 and the third switching tube Q3 are turned on alternately.
基于上述电压变换电路10的控制方法,由于当负载瞬态变轻时,电压输入端Vin可以直接对电压输出端Vout进行放电,这样便可以大幅提升负载瞬态过冲响应性能。Based on the above-mentioned control method of the voltage conversion circuit 10 , when the transient load becomes lighter, the voltage input terminal Vin can directly discharge the voltage output terminal Vout, thus greatly improving the load transient overshoot response performance.
对图13提供的电压变换电路10与传统boost电路进行仿真,图17a为图13提供的电压变换电路10的仿真结果,图17b为传统boost电路的仿真结果,对比图17a和图17b可以看出,当负载由10A突变到1A时,电压输出端Vout抗瞬态过冲性能收益明显,当设计第二阈值电压Vth2为(Vref+1)V时,其中,Vref为稳态时系统所需的输出电压值,图13提供的电压变换电路10在输出电压过冲到1V时随即进行放电,保证电压输出端Vout输出的电压维持在要求的范围内,而传统boost电路,通过自然泄放电荷实现,无额外干预状态下,过冲电压高达9V左右。此外,对于图17a和图17b的仿真结果可知,本申请电压输出端Vout的电压恢复时间也有明显改善。The voltage conversion circuit 10 provided in FIG. 13 and the traditional boost circuit are simulated. FIG. 17a is the simulation result of the voltage conversion circuit 10 provided in FIG. 13, and FIG. 17b is the simulation result of the traditional boost circuit. It can be seen by comparing FIG. , when the load changes suddenly from 10A to 1A, the anti-transient overshoot performance of the voltage output terminal Vout has obvious benefits. When the second threshold voltage Vth2 is designed to be (Vref+1)V, where Vref is the system required in a steady state Output voltage value, the voltage conversion circuit 10 provided in Figure 13 discharges immediately when the output voltage overshoots to 1V, so as to ensure that the voltage output by the voltage output terminal Vout is maintained within the required range, while the traditional boost circuit achieves this by naturally discharging the charge , without additional intervention, the overshoot voltage is as high as about 9V. In addition, it can be seen from the simulation results of FIG. 17a and FIG. 17b that the voltage recovery time of the voltage output terminal Vout of the present application is also significantly improved.
在此基础上,本申请实施例提供的电压变换电路10在第二模式下工作时,不需要增加额外的功率器件,在第一模式和第二模式下工作,第一控制逻辑电路106均可以实现对第一开关101、第二开关102和第三开关105的控制,因此本实施例实现方案简单,效果优异。On this basis, when the voltage conversion circuit 10 provided by the embodiment of the present application works in the second mode, no additional power devices need to be added, and the first control logic circuit 106 can work in both the first mode and the second mode. The control of the first switch 101 , the second switch 102 and the third switch 105 is realized, so the realization scheme of this embodiment is simple and the effect is excellent.
实施例二Embodiment two
如图18所示,该电压变换电路10包括第一开关101、第二开关102、第一器件103、第二器件104、电容Cfly、第一控制端GS1、第二控制端GS2、第三控制端GS3、第一电压端V1、第二电压端V2和接地端GND。在该实施例二中,第一器件103为电感L,第二器件104为第三开关105。第三开关105耦合在电容Cfly的第一端a与接地端GND之间;电容Cfly的第二端b和电感L的第一端c耦合;电感L的第二端d与第一电压端V1耦合。此处,第一开关101、第二开关102以及电容Cfly的连接关系、第一电压端V1和第二电压端V2均可以参考上述描述,此处不再赘述。As shown in Figure 18, the voltage conversion circuit 10 includes a first switch 101, a second switch 102, a first device 103, a second device 104, a capacitor Cfly, a first control terminal GS1, a second control terminal GS2, a third control terminal terminal GS3 , the first voltage terminal V1 , the second voltage terminal V2 and the ground terminal GND. In the second embodiment, the first device 103 is an inductor L, and the second device 104 is a third switch 105 . The third switch 105 is coupled between the first terminal a of the capacitor Cfly and the ground terminal GND; the second terminal b of the capacitor Cfly is coupled to the first terminal c of the inductor L; the second terminal d of the inductor L is connected to the first voltage terminal V1 coupling. Here, the connection relationship between the first switch 101 , the second switch 102 and the capacitor Cfly, the first voltage terminal V1 and the second voltage terminal V2 can refer to the above description, and will not be repeated here.
在一些示例中,如图19所示,第一开关101包括第一开关管Q1,第一开关管Q1的第一极与第一电压端V1耦合,第二极与电容Cfly的第一端a耦合,第三极与第一控制端GS1耦合。需要说明的是,第一开关101包括但不限于第一开关管Q1,还可以包括与第一开关管Q1并联或串联的其它一个或多个开关管。In some examples, as shown in FIG. 19 , the first switch 101 includes a first switch tube Q1, the first pole of the first switch tube Q1 is coupled to the first voltage terminal V1, and the second pole is connected to the first terminal a of the capacitor Cfly. coupling, and the third pole is coupled with the first control terminal GS1. It should be noted that the first switch 101 includes but is not limited to the first switch transistor Q1 , and may also include one or more other switch transistors connected in parallel or in series with the first switch transistor Q1 .
在一些示例中,如图19所示,第二开关102包括第二开关管Q2;第二开关管Q2的第一极与第二电压端V2耦合,第二极与电容Cfly的第二端b耦合,第三极与第二控制端GS2耦合。需要说明的是,第二开关102包括但不限于第二开关管Q2,还可以包括与第二开关管Q2并联或串联的其它一个或多个开关管。In some examples, as shown in FIG. 19, the second switch 102 includes a second switch tube Q2; the first pole of the second switch tube Q2 is coupled to the second voltage terminal V2, and the second pole is coupled to the second terminal b of the capacitor Cfly. coupling, and the third pole is coupled with the second control terminal GS2. It should be noted that, the second switch 102 includes but is not limited to the second switch tube Q2, and may also include one or more other switch tubes connected in parallel or in series with the second switch tube Q2.
在一些示例中,如图19所示,第三开关105包括第三开关管Q3;第三开关管Q3的 第一极与电容Cfly的第一端a耦合,第二极与接地端GND耦合,第三极与第三控制端GS3耦合。需要说明的是,第三开关105包括但不限于第三开关管Q3,还可以包括与第三开关管Q3并联或串联的其它一个或多个开关管。In some examples, as shown in FIG. 19, the third switch 105 includes a third switching transistor Q3; the first pole of the third switching transistor Q3 is coupled to the first terminal a of the capacitor Cfly, and the second pole is coupled to the ground terminal GND, The third pole is coupled with the third control terminal GS3. It should be noted that the third switch 105 includes but is not limited to the third switch transistor Q3, and may also include one or more other switch transistors connected in parallel or in series with the third switch transistor Q3.
此处,第一开关管Q1、第二开关管Q2、第三开关管Q3的相关介绍,可以参考上述,此处不再赘述。Here, the relevant introduction of the first switching tube Q1, the second switching tube Q2, and the third switching tube Q3 can be referred to above, and will not be repeated here.
基于上述图18和图19提供的电压变换电路10,在第二电压端V2为电压输入端Vin,第一电压端V1为电压输出端Vout的情况下,电压变换电路10可以作为升压式电压变换电路;反之,电压变换电路10也可以作为降压式电压变换电路。在第一电压端V1为电压输入端Vin,第二电压端V2为电压输出端Vout的情况下,同样的,电压变换电路10可以作为升压式电压变换电路;反之,电压变换电路10也可以作为降压式电压变换电路。以下对这四种情况的工作过程分别进行介绍。Based on the voltage conversion circuit 10 provided in Figure 18 and Figure 19 above, when the second voltage terminal V2 is the voltage input terminal Vin, and the first voltage terminal V1 is the voltage output terminal Vout, the voltage conversion circuit 10 can be used as a boost voltage conversion circuit; on the contrary, the voltage conversion circuit 10 can also be used as a step-down voltage conversion circuit. In the case where the first voltage terminal V1 is the voltage input terminal Vin, and the second voltage terminal V2 is the voltage output terminal Vout, similarly, the voltage conversion circuit 10 can be used as a step-up voltage conversion circuit; otherwise, the voltage conversion circuit 10 can also be As a step-down voltage conversion circuit. The working process of these four situations will be introduced respectively below.
第一种,如图20所示,第二电压端V2为电压输入端Vin,第一电压端V1为电压输出端Vout,电压变换电路10为降压式电压变换电路。此时,Vin大于Vout。在此情况下,电压变换电路10在第三模式下输出第三控制信号,第三控制信号用于:在第一阶段,控制第一开关101和第二开关102导通,控制第三开关105断开;在第二阶段,控制第三开关105导通,控制第一开关101和第二开关102断开;其中,第一阶段和第二阶段交替重复。也就是说,第二开关102和第一开关101同时导通或断开,第二开关102和第三开关105反相,互补导通。In the first type, as shown in FIG. 20 , the second voltage terminal V2 is the voltage input terminal Vin, the first voltage terminal V1 is the voltage output terminal Vout, and the voltage conversion circuit 10 is a step-down voltage conversion circuit. At this time, Vin is greater than Vout. In this case, the voltage conversion circuit 10 outputs a third control signal in the third mode, and the third control signal is used to: control the conduction of the first switch 101 and the second switch 102 in the first stage, and control the third switch 105 In the second stage, the third switch 105 is controlled to be turned on, and the first switch 101 and the second switch 102 are controlled to be turned off; wherein, the first stage and the second stage are repeated alternately. That is to say, the second switch 102 and the first switch 101 are turned on or off at the same time, the second switch 102 and the third switch 105 are in reverse phase, and are turned on complementary.
可以理解的是,第一阶段和第二阶段的时长可以根据需要进行设置,第一阶段和第二阶段的时长会影响电压输出端Vout的电压大小。It can be understood that the duration of the first stage and the second stage can be set as required, and the duration of the first stage and the second stage will affect the voltage of the voltage output terminal Vout.
在第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3的情况下,在一些示例中,电压变换电路10还包括与第一控制端GS1耦合的第一信号端PWM_Q1、与第二控制端GS2耦合的第二信号端PWM_Q2,与第三控制端GS3耦合的第三信号端PWM_Q3。如图21所示,当第一信号端PWM_Q1、第二信号端PWM_Q2和第三信号端PWM_Q3均提供高低电平交替变化的脉冲信号,且第一信号端PWM_Q1和第二信号端PWM_Q2提供的信号相同,第一信号端PWM_Q1和第三信号端PWM_Q3提供的信号高低电平反相时,这样可以控制第一开关管Q1和第二开关管Q2同时导通或断开,第二开关管Q2和第三开关管Q3互补导通。In the case where the first switch 101 includes a first switching tube Q1, the second switch 102 includes a second switching tube Q2, and the third switch 105 includes a third switching tube Q3, in some examples, the voltage conversion circuit 10 further includes a second switching tube Q3. A first signal terminal PWM_Q1 coupled to a control terminal GS1 , a second signal terminal PWM_Q2 coupled to a second control terminal GS2 , and a third signal terminal PWM_Q3 coupled to a third control terminal GS3 . As shown in Figure 21, when the first signal terminal PWM_Q1, the second signal terminal PWM_Q2 and the third signal terminal PWM_Q3 all provide pulse signals with alternating high and low levels, and the signals provided by the first signal terminal PWM_Q1 and the second signal terminal PWM_Q2 Similarly, when the high and low levels of the signals provided by the first signal terminal PWM_Q1 and the third signal terminal PWM_Q3 are inverted, this can control the first switch tube Q1 and the second switch tube Q2 to be turned on or off at the same time, and the second switch tube Q2 and the second switch tube Q2 The three switching transistors Q3 are turned on in a complementary manner.
以第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3,第一开关管Q1和第二开关管Q2导通的占空比为D为例,第一电压端V1(即电压输出端Vout)和第二电压端V2(即电压输入端Vin)传输增益函数关系如下:The first switch 101 includes a first switch tube Q1, the second switch 102 includes a second switch tube Q2, the third switch 105 includes a third switch tube Q3, and the duty cycle of the conduction of the first switch tube Q1 and the second switch tube Q2 is Taking the ratio D as an example, the relationship between the transfer gain function of the first voltage terminal V1 (that is, the voltage output terminal Vout) and the second voltage terminal V2 (that is, the voltage input terminal Vin) is as follows:
Figure PCTCN2021101358-appb-000003
Figure PCTCN2021101358-appb-000003
根据上述公式可知,第一电压端V1输出电压的范围为(0.5V2,V2),因此该电压变换电路10可以实现有限范围的降压转换。According to the above formula, it can be seen that the range of the output voltage of the first voltage terminal V1 is (0.5V2, V2), so the voltage conversion circuit 10 can realize a limited range of step-down conversion.
在电压变换电路10作为降压式电压变换电路的情况下,图8提供的电压变换电路为电压增益为(0~0.5)有限范围的降压架构,图18提供的电压变换电路为电压增益为(0.5~1)有限范围的降压架构,图8提供的电压变换电路和图18提供的电压变换电路可以作为相 互之间互补的架构。In the case that the voltage conversion circuit 10 is used as a step-down voltage conversion circuit, the voltage conversion circuit provided in FIG. 8 is a step-down architecture with a limited range of voltage gain (0-0.5), and the voltage conversion circuit provided in FIG. 18 has a voltage gain of (0.5-1) limited-range step-down architecture, the voltage conversion circuit provided in FIG. 8 and the voltage conversion circuit provided in FIG. 18 can be used as complementary architectures.
第二种,如图20所示,第二电压端V2为电压输入端Vin,第一电压端V1为电压输出端Vout,电压变换电路10为升压式电压变换电路。此时,Vout大于Vin。电压变换电路10在第三模式下输出第三控制信号,第三控制信号用于:在第一阶段,控制第二开关102和第三开关105导通,以及控制第一开关101断开;在第二阶段,控制第一开关101导通,以及控制第二开关102和第三开关105断开;其中,第一阶段和第二阶段交替重复。也就是说,第二开关102和第三开关105同时导通或断开,第一开关101和第二开关102交替导通。In the second type, as shown in FIG. 20 , the second voltage terminal V2 is the voltage input terminal Vin, the first voltage terminal V1 is the voltage output terminal Vout, and the voltage conversion circuit 10 is a boost voltage conversion circuit. At this time, Vout is greater than Vin. The voltage conversion circuit 10 outputs a third control signal in the third mode, and the third control signal is used to: in the first stage, control the second switch 102 and the third switch 105 to be turned on, and control the first switch 101 to be turned off; In the second stage, the first switch 101 is controlled to be turned on, and the second switch 102 and the third switch 105 are controlled to be turned off; wherein, the first stage and the second stage are repeated alternately. That is to say, the second switch 102 and the third switch 105 are turned on or off at the same time, and the first switch 101 and the second switch 102 are turned on alternately.
需要说明的是,在第一种和第二种情况下,第二电压端V2(即电压输入端Vin)通过电容Cfly和电感L给第一电压端V1(即电压输出端Vout)进行供电。It should be noted that, in the first and second cases, the second voltage terminal V2 (ie, the voltage input terminal Vin) supplies power to the first voltage terminal V1 (ie, the voltage output terminal Vout) through the capacitor Cfly and the inductor L.
在第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3的情况下,控制第二开关管Q2和第三开关管Q3同时导通或断开,第二开关管Q2和第一开关管Q1互补导通的控制方法可以参考上述第一种,此处不再赘述。在此情况下,电压输入端Vin(即第二电压端V2)和电压输出端Vout(即第一电压端V1)传输增益函数关系如下:In the case where the first switch 101 includes a first switching tube Q1, the second switch 102 includes a second switching tube Q2, and the third switch 105 includes a third switching tube Q3, the second switching tube Q2 and the third switching tube Q3 are controlled simultaneously On or off, the control method for the complementary conduction of the second switching transistor Q2 and the first switching transistor Q1 can refer to the above-mentioned first method, which will not be repeated here. In this case, the transfer gain function relationship between the voltage input terminal Vin (that is, the second voltage terminal V2) and the voltage output terminal Vout (that is, the first voltage terminal V1) is as follows:
Figure PCTCN2021101358-appb-000004
Figure PCTCN2021101358-appb-000004
根据上述公式可知,第一电压端V1输出电压的范围为(V2,+∞),因此该电压变换电路10可以实现无限范围的升压转换。According to the above formula, it can be seen that the range of the output voltage of the first voltage terminal V1 is (V2, +∞), so the voltage conversion circuit 10 can realize an unlimited range of boost conversion.
在上述第一种和第二种情况下,在负载由重载突变为轻载时,电压输出端Vout(即第一电压端V1)可能会出现电压过冲的情况,为了进一步提高电压变换电路10的瞬态过冲响应性能,在一些示例中,如图22所示,电压变换电路10还包括第二控制逻辑电路107,第二控制逻辑电路107与第一控制端GS1、第二控制端GS2和第三控制端GS3耦合。图22中的双S曲线表示第二控制逻辑电路107与第一控制端GS1、第二控制端GS2和第三控制端GS3可以是直接耦合,也可以是通过其它电子元器件间接耦合。第二控制逻辑电路107用于在第三模式下输出第三控制信号和在第四模式下输出第四控制信号。其中,在上述第一种情况下,第三控制信号用于控制第一开关101和第二开关102同时导通或断开,以及控制第三开关105和第一开关101交替导通;在上述第二种情况下,第三控制信号用于控制第二开关102和第三开关105同时导通或断开,以及控制第一开关101和第二开关102交替导通;第四控制信号用于控制第一开关101和第三开关105导通。In the above first and second cases, when the load changes suddenly from heavy load to light load, the voltage output terminal Vout (that is, the first voltage terminal V1) may have voltage overshoot, in order to further improve the voltage conversion circuit 10 transient overshoot response performance. In some examples, as shown in FIG. GS2 is coupled to the third control terminal GS3. The double S-curve in FIG. 22 indicates that the second control logic circuit 107 may be directly coupled to the first control terminal GS1 , the second control terminal GS2 and the third control terminal GS3 , or may be indirectly coupled through other electronic components. The second control logic circuit 107 is used for outputting the third control signal in the third mode and outputting the fourth control signal in the fourth mode. Wherein, in the above-mentioned first case, the third control signal is used to control the first switch 101 and the second switch 102 to be turned on or off at the same time, and to control the third switch 105 and the first switch 101 to be turned on alternately; In the second case, the third control signal is used to control the second switch 102 and the third switch 105 to be turned on or off at the same time, and to control the first switch 101 and the second switch 102 to be turned on alternately; the fourth control signal is used for Control the first switch 101 and the third switch 105 to be turned on.
在电压变换电路10包括第二控制逻辑电路107的情况下,电压变换电路10的控制方法包括:在第三模式下,控制第二控制逻辑电路107输出第三控制信号,在电压变换电路10为降压式电压变换电路的情况下,第三控制信号用于控制第一开关101和第二开关102同时导通或断开,以及控制第一开关101和第三开关105交替导通;在电压变换电路10为升压式电压变换电路的情况下,第三控制信号用于控制第二开关102和第三开关105同时导通或断开,以及控制第一开关101和第二开关102交替导通;在第四模式下,控制第二控制逻辑电路107输出第四控制信号。In the case that the voltage conversion circuit 10 includes a second control logic circuit 107, the control method of the voltage conversion circuit 10 includes: in the third mode, controlling the second control logic circuit 107 to output a third control signal, and the voltage conversion circuit 10 is In the case of a step-down voltage conversion circuit, the third control signal is used to control the first switch 101 and the second switch 102 to be turned on or off at the same time, and to control the first switch 101 and the third switch 105 to be turned on alternately; In the case where the conversion circuit 10 is a step-up voltage conversion circuit, the third control signal is used to control the second switch 102 and the third switch 105 to be turned on or off at the same time, and to control the first switch 101 and the second switch 102 to be turned on alternately. On; in the fourth mode, control the second control logic circuit 107 to output the fourth control signal.
在第四模式下,由于第二控制逻辑电路107输出的第四控制信号,控制第一开关101和第三开关105导通,而第一开关101和第三开关105导通,接地端GND可以通过第一 开关101和第三开关105对电压输出端Vout(即第一电压端V1)进行放电,提供负载能量的快速泄放通道,从而实现快速降压调整,进一步提高了输出瞬态响应性能。In the fourth mode, due to the fourth control signal output by the second control logic circuit 107, the first switch 101 and the third switch 105 are controlled to be turned on, and the first switch 101 and the third switch 105 are turned on, and the ground terminal GND can Discharge the voltage output terminal Vout (that is, the first voltage terminal V1) through the first switch 101 and the third switch 105 to provide a fast discharge channel for load energy, thereby realizing fast step-down adjustment and further improving the output transient response performance .
基于上述,在一些示例中,第二控制逻辑电路107具体用于:在发生以下至少一种场景时,触发第四模式以输出第四控制信号:输出电压过冲、输出快速降压、或快速下电。应当理解到,触发第四模式包括但不限于以上三种场景。Based on the above, in some examples, the second control logic circuit 107 is specifically configured to: trigger the fourth mode to output the fourth control signal when at least one of the following scenarios occurs: output voltage overshoot, output rapid step-down, or rapid Power off. It should be understood that triggering the fourth mode includes but is not limited to the above three scenarios.
在电压变换电路10包括第二控制逻辑电路107的情况下,电压变换电路10的控制方法还包括:在常规工作条件下,触发上述第三模式;在发生以下至少一种场景时,触发第四模式:输出电压过冲、输出快速降压、或快速下电。In the case that the voltage conversion circuit 10 includes the second control logic circuit 107, the control method of the voltage conversion circuit 10 further includes: under normal working conditions, triggering the above-mentioned third mode; when at least one of the following scenarios occurs, triggering the fourth mode Mode: output voltage overshoot, output fast step-down, or fast power-off.
为了使电压变换电路10可以在不同场景下,执行第三模式或第四模式,在一些示例中,如图22所示,第二控制逻辑电路107还可以与第一信号端PWM_Q1、第二信号端PWM_Q2、第三信号端PWM_Q3和多个信号输入端耦合,多个信号输入端例如可以如图22所示,包括信号输入端A、信号输入端B和信号输入端C。In order to enable the voltage conversion circuit 10 to execute the third mode or the fourth mode in different scenarios, in some examples, as shown in FIG. The terminal PWM_Q2 and the third signal terminal PWM_Q3 are coupled to a plurality of signal input terminals. The multiple signal input terminals may include signal input terminal A, signal input terminal B and signal input terminal C as shown in FIG. 22 , for example.
需要说明的是,多个信号输入端可以分别对应不同的场景,例如信号输入端A对应输出电压过冲的场景。又例如,信号输入端B对应输出快速降压的场景。再例如,信号输入端C对应快速下电的场景。在输出电压过冲、输出快速降压、快速下电等场景下,与该场景对应的信号输入端示例性地可以输出高电平信号。It should be noted that the multiple signal input terminals may respectively correspond to different scenarios, for example, the signal input terminal A corresponds to a scenario in which the output voltage overshoots. For another example, the signal input terminal B corresponds to a scenario where the output voltage drops rapidly. For another example, the signal input terminal C corresponds to a scene of rapid power-off. In scenarios such as output voltage overshoot, output rapid step-down, and rapid power-off, the signal input terminal corresponding to the scenario may output a high-level signal, for example.
此处,第一信号端PWM_Q1、第二信号端PWM_Q2和第三信号端PWM_Q3可以用于提供高低电平交替变化的脉冲信号。Here, the first signal terminal PWM_Q1 , the second signal terminal PWM_Q2 and the third signal terminal PWM_Q3 can be used to provide pulse signals with alternating high and low levels.
以下对第二控制逻辑电路107进行示例性介绍。如图23所示,第二控制逻辑电路107包括第三或门1071、第四或门1072和第五或门1073;多个信号输入端例如信号输入端A、信号输入端B和信号输入端C均与第三或门1071的输入端耦合,第三或门1071的输出端与第四或门1072的第一输入端和第五或门1073的第一输入端耦合;第四或门1072的第二输入端与第一信号端PWM_Q1耦合,第四或门1072的输出端与第一控制端GS1耦合;第五或门1073的第二输入端与第三信号端PWM_Q3耦合,第五或门1073的输出端与第三控制端GS3耦合。第二信号端PWM_Q2与第二控制端GS2耦合。图23中的双S曲线表示第四或门1072的输出端与第一控制端GS1、第五或门1073的输出端与第三控制端GS3以及第二信号端PWM_Q2与第二控制端GS2可以是直接耦合,也可以是通过其它电子元器件间接耦合。An exemplary introduction to the second control logic circuit 107 is given below. As shown in Figure 23, the second control logic circuit 107 includes the third OR gate 1071, the fourth OR gate 1072 and the fifth OR gate 1073; a plurality of signal input terminals such as signal input terminal A, signal input terminal B and signal input terminal C is coupled with the input end of the third OR gate 1071, and the output end of the third OR gate 1071 is coupled with the first input end of the fourth OR gate 1072 and the first input end of the fifth OR gate 1073; the fourth OR gate 1072 The second input terminal of the gate is coupled to the first signal terminal PWM_Q1, the output terminal of the fourth OR gate 1072 is coupled to the first control terminal GS1; the second input terminal of the fifth OR gate 1073 is coupled to the third signal terminal PWM_Q3, and the fifth OR gate 1072 is coupled to the third signal terminal PWM_Q3. The output terminal of the gate 1073 is coupled to the third control terminal GS3. The second signal terminal PWM_Q2 is coupled to the second control terminal GS2. The double S-curve in FIG. 23 indicates that the output terminal of the fourth OR gate 1072 and the first control terminal GS1, the output terminal of the fifth OR gate 1073 and the third control terminal GS3, and the second signal terminal PWM_Q2 and the second control terminal GS2 can be It can be directly coupled or indirectly coupled through other electronic components.
可以理解的是,第二控制逻辑电路107包括但不限于图23所示的结构。It can be understood that the second control logic circuit 107 includes but is not limited to the structure shown in FIG. 23 .
以图23所示的结构,且第一开关管Q1、第二开关管Q2和第三开关管Q3为N型管为例,对电压变换电路10的控制方法进行具体介绍。Taking the structure shown in FIG. 23 and the first switch tube Q1 , the second switch tube Q2 and the third switch tube Q3 as an example, the control method of the voltage conversion circuit 10 is specifically introduced.
若多个信号输入端中任意一个输出高电平信号,则触发第四模式,第三或门1071输出信号“1”,从而控制第四或门1072和第五或门1073的输出端均输出高电平信号,这样一来,第一开关管Q1和第三开关管Q3处于导通的状态,因此接地端GND可以通过第一开关管Q1和第三开关管Q3对电压输出端Vout(即第一电压端V1)进行放电,从而可以实现快速降压调整。If any one of the multiple signal input terminals outputs a high-level signal, the fourth mode is triggered, and the third OR gate 1071 outputs a signal "1", thereby controlling the output terminals of the fourth OR gate 1072 and the fifth OR gate 1073 to output High-level signal, in this way, the first switch tube Q1 and the third switch tube Q3 are in a conduction state, so the ground terminal GND can be connected to the voltage output terminal Vout (that is, through the first switch tube Q1 and the third switch tube Q3 The first voltage terminal V1) is discharged, so as to realize fast step-down regulation.
若多个信号输入端均未输出高电平信号,则触发第三模式,第三或门1071输出信号“0”,从而第四或门1072输出第一信号端PWM_Q1提供的信号,即高低电平交替变化的脉冲信号,第五或门1073输出第三信号端PWM_Q3提供的信号,即高低电平交替变化的 脉冲信号,第二信号端PWM_Q2提供高低电平交替变化的脉冲信号,在电压变换电路10为降压式电压变换电路时,第一开关管Q1和第二开关管Q2同时导通或断开,第一开关管Q1和第三开关管Q3交替导通;在电压变换电路10为升压式电压变换电路时,第二开关管Q2和第三开关管Q3同时导通或断开,第一开关管Q1和第二开关管Q2交替导通。If none of the multiple signal input terminals output a high-level signal, the third mode is triggered, and the third OR gate 1071 outputs a signal "0", so that the fourth OR gate 1072 outputs the signal provided by the first signal terminal PWM_Q1, that is, the high-low voltage Alternately changing pulse signal, the fifth OR gate 1073 outputs the signal provided by the third signal terminal PWM_Q3, that is, a pulse signal with alternately changing high and low levels, and the second signal terminal PWM_Q2 provides a pulse signal with alternating high and low levels. When the circuit 10 is a step-down voltage conversion circuit, the first switch tube Q1 and the second switch tube Q2 are turned on or off at the same time, and the first switch tube Q1 and the third switch tube Q3 are turned on alternately; In the step-up voltage conversion circuit, the second switch tube Q2 and the third switch tube Q3 are turned on or off at the same time, and the first switch tube Q1 and the second switch tube Q2 are turned on alternately.
第三种,如图24所示,第一电压端V1为电压输入端Vin,第二电压端V2为电压输出端Vout,电压变换电路10为升压式电压变换电路,此时,Vin小于Vout。在此情况下,电压变换电路10在第三模式输出第三控制信号,第三控制信号用于:在第一阶段,控制第一开关101和第二开关102导通,以及控制第三开关105断开;在第二阶段,控制第三开关105导通,以及控制第二开关102和第一开关101断开;其中,第一阶段和第二阶段交替重复。也就是说,第一开关101和第二开关102同时导通或断开,第二开关102和第三开关105交替导通。The third type, as shown in FIG. 24, the first voltage terminal V1 is the voltage input terminal Vin, the second voltage terminal V2 is the voltage output terminal Vout, and the voltage conversion circuit 10 is a step-up voltage conversion circuit. At this time, Vin is smaller than Vout . In this case, the voltage conversion circuit 10 outputs a third control signal in the third mode, and the third control signal is used to: control the conduction of the first switch 101 and the second switch 102 in the first stage, and control the third switch 105 In the second stage, the third switch 105 is controlled to be turned on, and the second switch 102 and the first switch 101 are controlled to be turned off; wherein, the first stage and the second stage are repeated alternately. That is to say, the first switch 101 and the second switch 102 are turned on or off at the same time, and the second switch 102 and the third switch 105 are turned on alternately.
在第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3的情况下,第一开关管Q1、第二开关管Q2和第三开关管Q3的控制方法可以参考上述第一种情况,此处不再赘述。In the case where the first switch 101 includes a first switching tube Q1, the second switch 102 includes a second switching tube Q2, and the third switch 105 includes a third switching tube Q3, the first switching tube Q1, the second switching tube Q2 and the second switching tube Q2 For the control method of the three-switch transistor Q3, reference may be made to the above-mentioned first case, which will not be repeated here.
以第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3,第一开关管Q1和第二开关管Q2导通的占空比为D为例,第二电压端V2(即电压输出端Vout)和第一电压端V1(即电压输入端Vin)传输增益函数关系如下:The first switch 101 includes a first switch tube Q1, the second switch 102 includes a second switch tube Q2, the third switch 105 includes a third switch tube Q3, and the duty cycle of the conduction of the first switch tube Q1 and the second switch tube Q2 is Taking the ratio D as an example, the transfer gain function relationship between the second voltage terminal V2 (that is, the voltage output terminal Vout) and the first voltage terminal V1 (that is, the voltage input terminal Vin) is as follows:
V2=(2-D)V1V2=(2-D)V1
根据上述公式可知,第二电压端V2输出电压的范围为(V1,2V1),因此该电压变换电路10可以实现有限范围的升压转换。According to the above formula, it can be seen that the range of the output voltage of the second voltage terminal V2 is (V1, 2V1), so the voltage conversion circuit 10 can realize a limited range of boost conversion.
第四种,如图24所示,第一电压端V1为电压输入端Vin,第二电压端V2为电压输出端Vout,电压变换电路10为降压式电压变换电路,此时,Vout小于Vin。在此情况下,电压变换电路10在第三模式输出第三控制信号,第三控制信号用于:在第一阶段,控制第二开关102和第三开关105导通,以及控制第一开关101断开;在第二阶段,控制第一开关101导通,以及控制第二开关102和第三开关105断开;其中,第一阶段和第二阶段交替重复。也就是说,第二开关102和第三开关105同时导通或断开,第一开关101和第二开关102交替导通。Fourth, as shown in FIG. 24, the first voltage terminal V1 is the voltage input terminal Vin, the second voltage terminal V2 is the voltage output terminal Vout, and the voltage conversion circuit 10 is a step-down voltage conversion circuit. At this time, Vout is smaller than Vin . In this case, the voltage conversion circuit 10 outputs a third control signal in the third mode, and the third control signal is used to: control the conduction of the second switch 102 and the third switch 105 in the first stage, and control the first switch 101 In the second stage, the first switch 101 is controlled to be turned on, and the second switch 102 and the third switch 105 are controlled to be turned off; wherein, the first stage and the second stage are repeated alternately. That is to say, the second switch 102 and the third switch 105 are turned on or off at the same time, and the first switch 101 and the second switch 102 are turned on alternately.
在第三种和第四种情况下,电压输入端Vin(即第一电压端V1)通过电容Cfly和电感L给电压输出端Vout(即第二电压端V2)充电。In the third and fourth cases, the voltage input terminal Vin (ie, the first voltage terminal V1 ) charges the voltage output terminal Vout (ie, the second voltage terminal V2 ) through the capacitor Cfly and the inductor L.
在第一开关101包括第一开关管Q1,第二开关102包括第二开关管Q2,第三开关105包括第三开关管Q3的情况下,即控制第二开关管Q2和第三开关管Q3同时导通或断开,第一开关管Q1和第二开关管Q2互补导通,控制方法可以参考上述第一种,此处不再赘述。在此情况下,电压输入端Vin(即第一电压端V1)和电压输出端Vout(即第二电压端V2)传输增益函数关系如下:In the case where the first switch 101 includes a first switching tube Q1, the second switch 102 includes a second switching tube Q2, and the third switch 105 includes a third switching tube Q3, that is, control the second switching tube Q2 and the third switching tube Q3 Simultaneously turned on or off, the first switching tube Q1 and the second switching tube Q2 are turned on complementary, the control method can refer to the first one above, and will not be repeated here. In this case, the transfer gain function relationship between the voltage input terminal Vin (ie, the first voltage terminal V1) and the voltage output terminal Vout (ie, the second voltage terminal V2) is as follows:
V2=D×V1V2=D×V1
根据公式可知,第二电压端V2输出电压的范围为(0,V2),因此该电压变换电路10可以实现无限范围的降压转换。According to the formula, it can be seen that the range of the output voltage of the second voltage terminal V2 is (0, V2 ), so the voltage conversion circuit 10 can realize step-down conversion in an infinite range.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任 何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above is only a specific implementation of the application, but the scope of protection of the application is not limited thereto. Anyone familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the application. Should be covered within the protection scope of this application. Therefore, the protection scope of the present application should be determined by the protection scope of the claims.

Claims (15)

  1. 一种电压变换电路,其特征在于,包括第一开关、第二开关、第一器件、第二器件、电容、第一控制端、第二控制端、第三控制端、第一电压端、第二电压端和接地端;A voltage conversion circuit, characterized by comprising a first switch, a second switch, a first device, a second device, a capacitor, a first control terminal, a second control terminal, a third control terminal, a first voltage terminal, a second Two voltage terminals and a ground terminal;
    所述第一开关耦合在所述第一电压端和所述电容的第一端之间,所述第一开关还与所述第一控制端耦合;所述第二开关耦合在所述电容的第二端和所述第二电压端之间,所述第二开关还与所述第二控制端耦合;The first switch is coupled between the first voltage terminal and the first terminal of the capacitor, and the first switch is also coupled to the first control terminal; the second switch is coupled between the first terminal of the capacitor Between the second terminal and the second voltage terminal, the second switch is also coupled to the second control terminal;
    所述第一器件耦合在所述第一电压端和所述电容的第二端之间,所述第二器件耦合在所述电容的第一端和所述接地端之间;the first device is coupled between the first voltage terminal and the second terminal of the capacitor, the second device is coupled between the first terminal of the capacitor and the ground terminal;
    其中,所述第一器件和所述第二器件中一个为第三开关,另一个为电感;所述第三开关还与所述第三控制端耦合。Wherein, one of the first device and the second device is a third switch, and the other is an inductor; the third switch is also coupled to the third control terminal.
  2. 根据权利要求1所述的电压变换电路,其特征在于,所述第一器件为所述第三开关,所述第二器件为电感。The voltage conversion circuit according to claim 1, wherein the first device is the third switch, and the second device is an inductor.
  3. 根据权利要求2所述的电压变换电路,其特征在于,所述电压变换电路还包括第一控制逻辑电路;所述第一控制逻辑电路与所述第一控制端、所述第二控制端和所述第三控制端耦合;The voltage conversion circuit according to claim 2, wherein the voltage conversion circuit further comprises a first control logic circuit; the first control logic circuit is connected to the first control terminal, the second control terminal and The third control terminal is coupled;
    所述第一控制逻辑电路用于在第一模式下输出第一控制信号和在第二模式下输出第二控制信号;The first control logic circuit is configured to output a first control signal in a first mode and a second control signal in a second mode;
    所述第一控制信号用于控制所述第一开关和所述第二开关同时导通或断开,以及控制所述第三开关和所述第一开关交替导通;The first control signal is used to control the first switch and the second switch to be turned on or off simultaneously, and to control the third switch and the first switch to be turned on alternately;
    所述第二控制信号用于控制所述第二开关和所述第三开关导通。The second control signal is used to control the second switch and the third switch to be turned on.
  4. 根据权利要求3所述的电压变换电路,其特征在于,所述第二电压端为电压输入端,所述第一电压端为电压输出端;The voltage conversion circuit according to claim 3, wherein the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal;
    所述第一控制逻辑电路具体用于:当所述电压输出端的电压大于或等于第一阈值电压时,在所述第一模式下输出所述第一控制信号。The first control logic circuit is specifically configured to: output the first control signal in the first mode when the voltage at the voltage output terminal is greater than or equal to a first threshold voltage.
  5. 根据权利要求4所述的电压变换电路,其特征在于,所述第一控制逻辑电路具体用于:当所述电压输出端的电压小于所述第二阈值电压,在所述第二模式下输出所述第二控制信号;The voltage conversion circuit according to claim 4, wherein the first control logic circuit is specifically configured to: when the voltage at the voltage output terminal is less than the second threshold voltage, output the the second control signal;
    其中,所述第二阈值电压小于或等于所述第一阈值电压。Wherein, the second threshold voltage is less than or equal to the first threshold voltage.
  6. 根据权利要求3所述的电压变换电路,其特征在于,所述第一电压端为电压输入端,所述第二电压端为电压输出端;The voltage conversion circuit according to claim 3, wherein the first voltage terminal is a voltage input terminal, and the second voltage terminal is a voltage output terminal;
    所述第一控制逻辑电路具体用于:当所述电压输出端的电压小于或等于第一阈值电压时,在所述第一模式下输出所述第一控制信号。The first control logic circuit is specifically configured to: output the first control signal in the first mode when the voltage at the voltage output terminal is less than or equal to a first threshold voltage.
  7. 根据权利要求6所述的电压变换电路,其特征在于,所述第一控制逻辑电路具体用于:当所述电压输出端的电压大于所述第二阈值电压时,在所述第二模式下输出所述第二控制信号;The voltage conversion circuit according to claim 6, wherein the first control logic circuit is specifically configured to: when the voltage at the voltage output terminal is greater than the second threshold voltage, output in the second mode said second control signal;
    其中,所述第二阈值电压大于或等于所述第一阈值电压。Wherein, the second threshold voltage is greater than or equal to the first threshold voltage.
  8. 根据权利要求1所述的电压变换电路,其特征在于,所述第一器件为电感,所述第二器件为第三开关。The voltage conversion circuit according to claim 1, wherein the first device is an inductor, and the second device is a third switch.
  9. 根据权利要求8所述的电压变换电路,其特征在于,所述第二电压端为电压输入 端,所述第一电压端为电压输出端;所述电压变换电路还包括第二控制逻辑电路,所述第二控制逻辑电路与所述第一控制端、所述第二控制端和所述第三控制端耦合;The voltage conversion circuit according to claim 8, wherein the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; the voltage conversion circuit further includes a second control logic circuit, The second control logic circuit is coupled to the first control terminal, the second control terminal and the third control terminal;
    所述第二控制逻辑电路用于在第三模式下输出第三控制信号和在第四模式下输出第四控制信号;The second control logic circuit is used to output a third control signal in a third mode and a fourth control signal in a fourth mode;
    所述第三控制信号用于控制所述第一开关和所述第二开关同时导通或断开,以及控制所述第三开关和所述第一开关交替导通;The third control signal is used to control the first switch and the second switch to be turned on or off at the same time, and to control the third switch and the first switch to be turned on alternately;
    所述第四控制信号用于控制所述第一开关和所述第三开关导通。The fourth control signal is used to control the first switch and the third switch to be turned on.
  10. 根据权利要求8所述的电压变换电路,其特征在于,所述第二电压端为电压输入端,所述第一电压端为电压输出端;所述电压变换电路还包括第二控制逻辑电路,所述第二控制逻辑电路与所述第一控制端、所述第二控制端和所述第三控制端耦合;The voltage conversion circuit according to claim 8, wherein the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; the voltage conversion circuit further includes a second control logic circuit, The second control logic circuit is coupled to the first control terminal, the second control terminal and the third control terminal;
    所述第二控制逻辑电路用于在第三模式下输出第三控制信号和在第四模式下输出第四控制信号;The second control logic circuit is used to output a third control signal in a third mode and a fourth control signal in a fourth mode;
    所述第三控制信号用于控制所述第二开关和所述第三开关同时导通或断开,以及控制所述第一开关和所述第二开关交替导通;The third control signal is used to control the second switch and the third switch to be turned on or off simultaneously, and to control the first switch and the second switch to be turned on alternately;
    所述第四控制信号用于控制所述第一开关和所述第三开关导通。The fourth control signal is used to control the first switch and the third switch to be turned on.
  11. 根据权利要求9或10所述的电压变换电路,其特征在于,所述第二控制逻辑电路具体用于:在发生以下至少一种场景时,触发所述第四模式以输出所述第四控制信号:输出电压过冲、输出快速降压、或快速下电。The voltage conversion circuit according to claim 9 or 10, wherein the second control logic circuit is specifically configured to trigger the fourth mode to output the fourth control logic circuit when at least one of the following scenarios occurs: Signals: output voltage overshoot, output rapid step-down, or rapid power-off.
  12. 根据权利要求1-11任一项所述的电压变换电路,其特征在于,所述第一开关、所述第二开关和所述第三开关包括金属-氧化物-半导体MOS管。The voltage conversion circuit according to any one of claims 1-11, wherein the first switch, the second switch and the third switch comprise metal-oxide-semiconductor MOS transistors.
  13. 一种电子设备,其特征在于,包括负载和如权利要求1-12任一项所述的电压变换电路;An electronic device, characterized in that it includes a load and the voltage conversion circuit according to any one of claims 1-12;
    所述负载与所述电压变换电路的第一电压端或第二电压端耦合。The load is coupled to the first voltage terminal or the second voltage terminal of the voltage conversion circuit.
  14. 一种电压变换电路的控制方法,其特征在于,所述电压变换电路包括第一开关、第二开关、第一器件、第二器件、电容、第一控制端、第二控制端、第三控制端、第一电压端、第二电压端和接地端;A method for controlling a voltage conversion circuit, characterized in that the voltage conversion circuit includes a first switch, a second switch, a first device, a second device, a capacitor, a first control terminal, a second control terminal, a third control terminal terminal, a first voltage terminal, a second voltage terminal and a ground terminal;
    所述第一开关耦合在所述第一电压端和所述电容的第一端之间,所述第一开关还与所述第一控制端耦合;所述第二开关耦合在所述电容的第二端和所述第二电压端之间,所述第二开关还与所述第二控制端耦合;The first switch is coupled between the first voltage terminal and the first terminal of the capacitor, and the first switch is also coupled to the first control terminal; the second switch is coupled between the first terminal of the capacitor Between the second terminal and the second voltage terminal, the second switch is also coupled to the second control terminal;
    所述第一器件耦合在所述第一电压端和所述电容的第二端之间,所述第二器件耦合在所述电容的第一端和所述接地端之间;the first device is coupled between the first voltage terminal and the second terminal of the capacitor, the second device is coupled between the first terminal of the capacitor and the ground terminal;
    其中,所述第一器件为所述第三开关,所述第二器件为电感;所述电压变换电路还包括第一控制逻辑电路;所述第一控制逻辑电路与所述第一控制端、所述第二控制端和所述第三控制端耦合;Wherein, the first device is the third switch, and the second device is an inductor; the voltage conversion circuit further includes a first control logic circuit; the first control logic circuit is connected to the first control terminal, The second control terminal is coupled to the third control terminal;
    所述控制方法包括:The control methods include:
    在第一模式下,输出第一控制信号;所述第一控制信号用于控制所述第一开关和所述第二开关同时导通或断开,以及控制所述第三开关和所述第一开关交替导通;In the first mode, a first control signal is output; the first control signal is used to control the first switch and the second switch to be turned on or off at the same time, and to control the third switch and the second switch. A switch is turned on alternately;
    在第二模式下,输出第二控制信号;所述第二控制信号用于控制所述第二开关和所述第三开关导通。In the second mode, a second control signal is output; the second control signal is used to control the conduction of the second switch and the third switch.
  15. 一种电压变换电路的控制方法,其特征在于,所述电压变换电路包括第一开关、第二开关、第一器件、第二器件、电容、第一控制端、第二控制端、第三控制端、第一电压端、第二电压端和接地端;A method for controlling a voltage conversion circuit, characterized in that the voltage conversion circuit includes a first switch, a second switch, a first device, a second device, a capacitor, a first control terminal, a second control terminal, a third control terminal terminal, a first voltage terminal, a second voltage terminal and a ground terminal;
    所述第一开关耦合在所述第一电压端和所述电容的第一端之间,所述第一开关还与所述第一控制端耦合;所述第二开关耦合在所述电容的第二端和所述第二电压端之间,所述第二开关还与所述第二控制端耦合;The first switch is coupled between the first voltage terminal and the first terminal of the capacitor, and the first switch is also coupled to the first control terminal; the second switch is coupled between the first terminal of the capacitor Between the second terminal and the second voltage terminal, the second switch is also coupled to the second control terminal;
    所述第一器件耦合在所述第一电压端和所述电容的第二端之间,所述第二器件耦合在所述电容的第一端和所述接地端之间;the first device is coupled between the first voltage terminal and the second terminal of the capacitor, the second device is coupled between the first terminal of the capacitor and the ground terminal;
    其中,所述第一器件为电感,所述第二器件为第三开关;所述第二电压端为电压输入端,所述第一电压端为电压输出端;所述电压变换电路还包括第二控制逻辑电路;所述第二控制逻辑电路与所述第一控制端、所述第二控制端和所述第三控制端耦合;Wherein, the first device is an inductor, the second device is a third switch; the second voltage terminal is a voltage input terminal, and the first voltage terminal is a voltage output terminal; the voltage conversion circuit also includes a first Two control logic circuits; the second control logic circuit is coupled to the first control terminal, the second control terminal and the third control terminal;
    所述控制方法包括:The control methods include:
    在第三模式下,输出第三控制信号;所述第三控制信号用于控制所述第一开关和所述第二开关同时导通或断开,以及控制所述第三开关和所述第一开关交替导通;或者,所述第三控制信号用于控制所述第二开关和所述第三开关同时导通或断开,以及控制所述第一开关和所述第二开关交替导通;In the third mode, a third control signal is output; the third control signal is used to control the first switch and the second switch to be turned on or off at the same time, and to control the third switch and the second switch. A switch is turned on alternately; or, the third control signal is used to control the second switch and the third switch to be turned on or off at the same time, and to control the first switch and the second switch to be turned on alternately. Pass;
    在第四模式下,输出第四控制信号;所述第四控制信号用于控制所述第一开关和所述第三开关导通。In the fourth mode, a fourth control signal is output; the fourth control signal is used to control the first switch and the third switch to be turned on.
PCT/CN2021/101358 2021-06-21 2021-06-21 Voltage conversion circuit and control method therefor, and electronic device WO2022266819A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180021104.9A CN115769479A (en) 2021-06-21 2021-06-21 Voltage conversion circuit, control method thereof and electronic device
PCT/CN2021/101358 WO2022266819A1 (en) 2021-06-21 2021-06-21 Voltage conversion circuit and control method therefor, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101358 WO2022266819A1 (en) 2021-06-21 2021-06-21 Voltage conversion circuit and control method therefor, and electronic device

Publications (1)

Publication Number Publication Date
WO2022266819A1 true WO2022266819A1 (en) 2022-12-29

Family

ID=84543892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101358 WO2022266819A1 (en) 2021-06-21 2021-06-21 Voltage conversion circuit and control method therefor, and electronic device

Country Status (2)

Country Link
CN (1) CN115769479A (en)
WO (1) WO2022266819A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060273768A1 (en) * 2005-06-06 2006-12-07 Tien-Tzu Chen Light loading control circuit for a buck-boost voltage converter
KR20110034998A (en) * 2009-09-29 2011-04-06 (주)제이디에이테크놀로지 Boost dc/dc converter
CN103095127A (en) * 2013-01-22 2013-05-08 上海艾为电子技术有限公司 Charge pump circuit and electronic equipment
CN108199579A (en) * 2018-01-08 2018-06-22 厦门大学 A kind of high no-load voltage ratio Sofe Switch DC-DC buck converters with coupling inductance
CN111193393A (en) * 2018-11-14 2020-05-22 天津大学青岛海洋技术研究院 Wide-voltage-gain DC/DC converter for energy storage device
CN112511003A (en) * 2020-11-24 2021-03-16 上海交通大学 Bidirectional DC/DC converter and control method thereof
CN112737290A (en) * 2020-12-23 2021-04-30 深圳市航天新源科技有限公司 High-integration non-isolated positive and negative voltage output multi-port converter circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060273768A1 (en) * 2005-06-06 2006-12-07 Tien-Tzu Chen Light loading control circuit for a buck-boost voltage converter
KR20110034998A (en) * 2009-09-29 2011-04-06 (주)제이디에이테크놀로지 Boost dc/dc converter
CN103095127A (en) * 2013-01-22 2013-05-08 上海艾为电子技术有限公司 Charge pump circuit and electronic equipment
CN108199579A (en) * 2018-01-08 2018-06-22 厦门大学 A kind of high no-load voltage ratio Sofe Switch DC-DC buck converters with coupling inductance
CN111193393A (en) * 2018-11-14 2020-05-22 天津大学青岛海洋技术研究院 Wide-voltage-gain DC/DC converter for energy storage device
CN112511003A (en) * 2020-11-24 2021-03-16 上海交通大学 Bidirectional DC/DC converter and control method thereof
CN112737290A (en) * 2020-12-23 2021-04-30 深圳市航天新源科技有限公司 High-integration non-isolated positive and negative voltage output multi-port converter circuit

Also Published As

Publication number Publication date
CN115769479A (en) 2023-03-07

Similar Documents

Publication Publication Date Title
CN107834844B (en) Switched capacitor conversion circuit, charging control system and control method
EP3905477A1 (en) Discharging circuit and electronic device
US10826395B2 (en) Voltage converter, method for controlling voltage converter, and voltage conversion system
CN109274147B (en) Wireless charging receiving device, charging system and terminal
CN110098735B (en) Control method of switch circuit
WO2015035384A1 (en) Battery charger with buck-boost operation
EP3627676B1 (en) Power conversion circuit, and charging apparatus and system
US11791721B2 (en) Multi-mode DC-to-DC power converter
CN111277012A (en) Charging circuit, charging chip and electronic equipment
CN107623440A (en) Voltage conversion circuit and power supply switch circuit
CN104883057A (en) Mobile power converter of boost and linear charging shared power device
WO2022266819A1 (en) Voltage conversion circuit and control method therefor, and electronic device
EP4287480A1 (en) Voltage conversion circuit, charging management module, and electronic device
US20230075326A1 (en) Switched Capacitor Converter and Method Thereof
CN112018901B (en) Wireless charging device and electronic equipment
CN103248222B (en) Pressure boosting type electric voltage converter
WO2022002096A1 (en) Resonant switching capacitor circuit and electronic device
WO2022067701A1 (en) Charging circuit and electronic device
CN220043035U (en) Charging circuit and power supply device
CN112491263B (en) Stepless regulation power supply circuit and method and charging equipment with power supply circuit
CN115833577B (en) Voltage conversion circuit and electronic equipment
CN218386913U (en) Charging receiving circuit
WO2022188048A1 (en) Charge/discharge control device
CN115411814B (en) Automatic voltage compensation charging device and tablet equipment
CN217486191U (en) Charging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE