WO2022265453A1 - 굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법 - Google Patents

굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2022265453A1
WO2022265453A1 PCT/KR2022/008630 KR2022008630W WO2022265453A1 WO 2022265453 A1 WO2022265453 A1 WO 2022265453A1 KR 2022008630 W KR2022008630 W KR 2022008630W WO 2022265453 A1 WO2022265453 A1 WO 2022265453A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
cold
temperature
excluding
Prior art date
Application number
PCT/KR2022/008630
Other languages
English (en)
French (fr)
Inventor
김상현
구민서
김은영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US18/570,064 priority Critical patent/US20240141454A1/en
Priority to CN202280043486.XA priority patent/CN117500951A/zh
Priority to EP22825376.1A priority patent/EP4357476A1/en
Publication of WO2022265453A1 publication Critical patent/WO2022265453A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high yield ratio ultra-high strength steel sheet having excellent bending properties and a manufacturing method thereof.
  • ultra-high strength steel can be manufactured by the tempering method.
  • the yield ratio is very high, but the temperature difference in the width and length directions A problem of deterioration of the shape quality of the coil may occur, and problems such as material defects and workability deterioration may occur depending on the part when processing a roll forming part.
  • the elongation of the steel sheet generally decreases as the strength of the steel sheet increases, the forming processability deteriorates, so the application as a material for cold stamping is limited.
  • HPF method hot press forming
  • a material is formed at a relatively easy temperature at a high temperature and then the required strength is secured through water cooling between a die and the material.
  • HPF method is widely used in manufacturing parts because it can secure high strength compared to the same thickness, but there are problems in application due to excessive equipment investment and increase in process costs, so it is necessary to develop materials for cold stamping. . Therefore, it is required to develop a cold-rolled steel sheet that is suitable for use as a material for cold stamping, has high strength and a high yield ratio in order to secure crash performance, and has excellent bending properties.
  • it is intended to provide a high yield ratio ultra-high strength steel sheet having excellent bending properties and a method for manufacturing the same.
  • the R value defined in the following relational expression 1 is 0.12 to 0.27
  • the average number of carbides per 1 ⁇ m 2 area is 40 or less, and the average length of the long axis of carbides is 300 nm or less,
  • a steel sheet having a yield ratio of greater than 0.73 can be provided.
  • the steel sheet may further include two or more of chromium (Cr): 0.01 to 0.2%, molybdenum (Mo): 0.01 to 0.2%, and boron (B): 0.005% or less (excluding 0%).
  • Cr chromium
  • Mo molybdenum
  • B boron
  • the steel sheet may further include one or more of titanium (Ti): 0.1% or less (excluding 0%) and niobium (Nb): 0.1% or less (excluding 0%).
  • the steel sheet may include 99 area% or more of martensite or tempered martensite as a microstructure.
  • the steel sheet has a tensile strength of 1300 MPa or more, and a bending property (R/t) of less than 4 (where R is the minimum bending radius at which cracks do not occur in the bent portion after a 90° bending test, and t is the thickness of the steel sheet.) can be
  • It is possible to provide a steel sheet manufacturing method comprising the steps of reheating and overaging by heating the secondary cooled steel sheet to a temperature range of greater than secondary cooling end temperature + 30 ° C and less than 270 ° C and holding for 1 to 20 minutes.
  • the cold-rolled steel sheet may further include two or more of chromium (Cr): 0.01 to 0.2%, molybdenum (Mo): 0.01 to 0.2%, and boron (B): 0.005% or less (excluding 0%).
  • Cr chromium
  • Mo molybdenum
  • B boron
  • the cold-rolled steel sheet may further include one or more of titanium (Ti): 0.1% or less (excluding 0%) and niobium (Nb): 0.1% or less (excluding 0%).
  • a step of cold rolling the cooled and wound steel sheet at a reduction ratio of 30 to 80% may be included.
  • a step of pickling the cooled and rolled steel sheet with hydrochloric acid may be further included.
  • the alloy composition and processing conditions were optimized.
  • the present inventors strictly control the content of component elements such as C, Mn, Si, P, and S, and optimize the conditions of the secondary cooling and reheating and overaging process of continuous annealing, thereby securing basic welding characteristics and bending characteristics And it was confirmed that high strength could be secured, and the present invention was completed.
  • % indicating the content of each element is based on weight.
  • Carbon (C) is an interstitial solid-solution element, and is the most effective and important element in improving the strength of steel, and is an element that must be added in order to secure the strength of martensitic steel.
  • carbon (C) is preferably added in an amount of 0.1% or more, more preferably 0.12% or more.
  • the content exceeds 0.3%, the martensite strength may be increased, but carbides are easily generated and coarsened in the continuous annealing process, so that the ductility may be reduced and the bending properties may be inferior.
  • Manganese (Mn) is an element that is easy to secure final martensite by suppressing ferrite formation and promoting austenite formation in composite structure steel.
  • Mn band manganese band
  • it may be included more preferably at 2.1% or less.
  • the lower limit may be limited to 1.0%.
  • a more preferred lower limit may be 1.4%.
  • the lower limit can be limited to 0.05%. More preferably, it may contain 0.09% or more.
  • silicon (Si) is a ferrite stabilizing element, and when its content exceeds 1.0%, ferrite is generated during cooling in a continuous annealing furnace, which may weaken the strength.
  • the upper limit may be limited to 1.0%. More preferably, the upper limit can be limited to 0.6%.
  • Phosphorus (P) 0.1% or less
  • Phosphorus (P) is an impurity element included in steel, and the content of 0% is excluded in consideration of the case where it is inevitably included during the manufacturing process. However, if the content of phosphorus (P) exceeds 0.1%, weldability deteriorates and brittleness of steel may occur, so the upper limit may be limited to 0.1%. A more preferable upper limit may be 0.03%.
  • S Sulfur
  • S is an impurity that is unavoidably included in steel. Since it is an element that impairs the ductility and weldability of steel sheets, it is desirable to keep the content as low as possible. Therefore, it is recommended to limit the content of sulfur (S) to 0.03% or less. desirable. More preferably, it may be limited to 0.005% or less. On the other hand, 0% is excluded in consideration of the case inevitably included during the manufacturing process.
  • Aluminum (Al) may be added to remove oxygen in molten steel and, like Si, is an element that stabilizes ferrite.
  • it is a component capable of improving the hardenability of the final martensitic steel by increasing the C content in austenite, it is preferable to add 0.01% or more of the content.
  • the content exceeds 0.5%, ferrite is generated during cooling in a continuous annealing furnace, and strength may be weakened.
  • the AlN formation may cause cracks in the slab and inhibit hot rolling properties, and the upper limit may be limited to 0.5%.
  • the steel of the present invention may include remaining iron (Fe) and unavoidable impurities in addition to the above-described composition. Since unavoidable impurities may be unintentionally incorporated in the normal manufacturing process, they cannot be excluded. Since these impurities are known to anyone skilled in the steel manufacturing field, not all of them are specifically mentioned in this specification.
  • Steel according to one aspect of the present invention further includes two or more of chromium (Cr): 0.01-0.2%, molybdenum (Mo): 0.01-0.2%, boron (B): 0.005% or less (excluding 0%). can do.
  • Cr chromium
  • Mo molybdenum
  • B boron
  • Chromium (Cr) is a component added to improve the hardenability of steel and secure high strength, and is useful in manufacturing ultra-high strength steel having pure martensite by suppressing formation of bainite. Therefore, it is preferable to add 0.01% or more of chromium (Cr) in order to secure the above-mentioned effect. However, if the content is excessive, there is a problem in that the cost of ferroalloy increases, so the upper limit may be limited to 0.2%, more preferably 0.1%.
  • Molybdenum (Mo) is an element that improves hardenability of steel, like Cr, and is preferably added in an amount of 0.01% or more to obtain a hardenability effect. However, if the content exceeds 0.2%, the amount of alloy input is excessive and there is a problem of increasing the cost of ferroalloy, so it is preferable to limit the upper limit to 0.2%, more preferably to 0.1%.
  • Boron (B) is an element that suppresses the transformation of austenite into ferrite during the continuous annealing process, and is an element that is effective in improving the hardenability of martensite, such as Cr and Mo, even when added in a very small amount.
  • the content of boron (B) exceeds 0.005%, the Fe 23 (B, C) 6 precipitated phase is precipitated at the austenite grain boundary, thereby promoting ferrite formation, so it is preferable to limit to 0.005%. .
  • Steel according to one aspect of the present invention may further include one or more of titanium (Ti): 0.1% or less (excluding 0%), niobium (Nb): 0.1% or less (excluding 0%).
  • Ti titanium
  • Nb niobium
  • Titanium (Ti) is a fine carbide forming element, and is an element that contributes to securing yield strength and tensile strength.
  • titanium (Ti) is scavenged by precipitating N in steel as TiN. To this end, it is preferable to add 48/14*[N] or more in chemical equivalent. It is preferred to add titanium (Ti).
  • the content exceeds 0.1%, coarse carbides are precipitated, strength and elongation may be reduced by reducing the amount of carbon in steel, and nozzle clogging may occur during casting, so the upper limit is set to 0.1%. It is desirable to limit
  • Niobium (Nb) is an element that is segregated at austenite grain boundaries, suppresses coarsening of austenite grains during annealing heat treatment, and contributes to an increase in strength by forming fine carbides.
  • the niobium (Nb) content exceeds 0.1%, the precipitation of coarse carbonitrides increases, there is a concern that the strength and elongation may decrease due to the reduction in the amount of carbon in steel, the workability of the base material decreases, and the manufacturing cost increases. There may be a problem with Therefore, the upper limit is preferably limited to 0.1%.
  • the steel according to one aspect of the present invention may have an R value of 0.12 to 0.27 defined in the following relational expression 1.
  • Relational Equation 1 is a complex relationship of Ceq1 and Ceq2 representing welding characteristics according to the content of each element.
  • R value of Relational Equation 1 is 0.12 to 0.27, the desired physical properties in the present invention including welding characteristics can be secured.
  • the R value defined in relational expression 1 is less than 0.12, it is difficult to secure the strength required in the present invention, whereas when the R value exceeds 0.27, among physical properties, particularly welding properties may be deteriorated.
  • the lower limit of the more preferable R value may be 0.17, and the upper limit of the more preferable R value may be 0.25, more preferably 0.20.
  • % representing the fraction of the microstructure is based on the area unless otherwise specified.
  • the steel according to one aspect of the present invention may include 99 area% or more of martensite or tempered martensite as a microstructure, the number of carbides per 1 ⁇ m 2 area is 40 or less, and the average length of the long axis of the carbide may be 300 nm or less there is.
  • martensite or tempered martensite may be included as a microstructure in order to secure a high-strength and high-yield ratio cold-rolled steel sheet, and it is preferable to include 99% or more to secure a high strength level of 1.3G or higher.
  • the number of carbides in order to secure excellent bending properties, it is preferable to control the number of carbides to 40 or less, more preferably 35 or less.
  • the average length of the long axis of the carbide is preferably 300 nm or less, more preferably 200 nm or less.
  • the number of carbides of the present invention is the average of the number of carbides in the 1 ⁇ m 2 area (average of 10 areas) in the x10,000 SEM image, and the long axis length of the carbide is measured and displayed in x30,000 to x100,000 images on the TEM bright field will be.
  • Steel according to one aspect of the present invention can be produced by heat treatment, primary cooling, secondary cooling, reheating, and overaging of a cold-rolled steel sheet satisfying the above-described alloy composition.
  • a cold-rolled steel sheet satisfying the alloy composition of the present invention can be prepared.
  • the cold-rolled steel sheet of the present invention can be manufactured under normal processing conditions, preferably by reheating, hot rolling, cooling, winding and cold rolling a steel slab under the conditions described below.
  • a steel slab satisfying the alloy composition of the present invention can be reheated to a temperature range of 1100 to 1300 ° C.
  • Reheating may be performed to smoothly perform the subsequent hot rolling process and to sufficiently secure target physical properties. If the reheating temperature is less than 1100 ° C, there may be a problem in that the hot rolling load increases rapidly, and if the temperature exceeds 1300 ° C, the amount of surface scale increases, which reduces the yield of the material and causes surface defects, which adversely affects the final quality. can
  • the reheated steel slab may be hot rolled at a finish hot rolling temperature of Ar3 or higher.
  • the finish hot rolling temperature can be limited to Ar3 (the temperature at which ferrite begins to appear during austenite cooling) or higher. This is because there is a risk of malfunction due to fluctuations in hot rolling load.
  • the hot-rolled steel sheet After cooling the hot-rolled steel sheet to a temperature range of 700° C. or lower, it may be wound.
  • the coiling temperature exceeds 700° C., an excessive oxide film is formed on the surface of the steel sheet, which may cause defects.
  • the lower the coiling temperature the higher the strength of the hot-rolled steel sheet, and there is a disadvantage that the rolling load of the cold rolling, which is a subsequent process, increases.
  • the lower limit is not particularly limited in the present invention.
  • the oxide layer formed on the surface of the coiled steel sheet may be removed by a pickling process.
  • the cooled and wound steel sheet may be cold rolled at a reduction ratio of 30 to 80%.
  • the reduction ratio of cold rolling is less than 30%, it is difficult to secure the target thickness, and there is a concern that austenite generation and final physical properties may be affected during annealing heat treatment due to the remaining hot-rolled crystal grains.
  • the reduction ratio exceeds 80%, there is a problem that the material deviation of the final steel sheet may occur due to uneven rolling reduction in the length and width directions from work hardening that occurs during cold rolling, and the target thickness due to the rolling load. may be difficult to obtain.
  • the cold-rolled steel sheet may be heat-treated at a temperature of Ac3 or higher for 30 seconds or more.
  • heat treatment may be performed to secure an austenite fraction of 100% through austenite single phase annealing.
  • austenite fraction 100% through the heat treatment, it is possible to prevent a decrease in strength due to ferrite formation during annealing.
  • primary cooling may be performed at an average cooling rate of 1 to 10 °C/s to a temperature range of 500 to 750 °C.
  • the cooling rate is less than 1°C/s, it may be difficult to secure the target strength due to the formation of ferrite during cooling.
  • the cooling rate exceeds 10°C/s, average cooling during the second cooling As the rate decreases, the fraction of other low-temperature transformation phases other than martensite increases, making it difficult to finally secure the target strength.
  • phase such as ferrite and bainite may be formed and the strength may decrease, and when the temperature exceeds 750 ° C, there may be problems in the actual production line.
  • the primary cooled steel sheet may be secondary cooled at an average cooling rate of 20 to 80 °C/s to a temperature of Ms-190 °C or less.
  • the present invention in order to secure 99% or more of martensite or tempered martensite, during secondary cooling, it is preferable to rapidly cool below the martensite transformation finish temperature (Martensite Finish Temperature, Mf). In the present invention, it is preferable to specifically cool to a temperature of Ms-190°C or lower. In the present invention, it is possible to form a sufficiently hard martensitic structure, and the secondary cooling end temperature is limited to Ms-190 ° C or less in order to secure the effect of increasing the yield strength by carbide precipitation during subsequent tempering. In addition, since the bendability may be deteriorated when the tempering temperature is high, it is intended to secure bending characteristics by limiting the secondary cooling end temperature to enable sufficient tempering without raising the tempering temperature too much. When the cooling end temperature exceeds Ms-190° C., it is difficult to secure desired physical properties because the fraction of martensite or tempered martensite is not sufficiently secured.
  • the secondary cooling may be reheated and overaged by heating the secondary cooling end temperature to a temperature range exceeding +30 ° C and less than 270 ° C and holding for 1 to 20 minutes.
  • the present invention is intended to improve toughness by changing hard martensite having a high dislocation density formed during secondary cooling to tempered martensite through reheating and overaging.
  • the lower limit of the reheating temperature is limited to a temperature of 30 ° C. or higher compared to the secondary cooling end temperature. At this time, the yield strength increases due to the fine carbides formed, but when the reheating and overaging temperature is less than the secondary cooling end temperature + 30 ° C, it is difficult to obtain the desired effect.
  • the temperature is 270 ° C. or higher, there is a problem in that the bending properties are inferior due to coarsening of carbides.
  • the steel of the present invention prepared as described above has a tensile strength of 1300 MPa or more, a yield ratio of more than 0.73, and a bending property (R/t) of less than 4 (where R is a crack that does not occur in the bent portion after a 90° bending test). is the bending radius, and t is the thickness of the steel sheet.), it may have excellent bending properties while having a high yield ratio.
  • a steel slab having the composition shown in Table 1 below was heated at 1100 to 1300 ° C, finished hot-rolled at 850 to 950 ° C, which is a temperature of Ar3 or higher, wound in a temperature range of 400 to 700 ° C, and cold at 45 to 65%.
  • a cold-rolled steel sheet was manufactured by applying the reduction ratio.
  • primary and secondary cooling were performed under the conditions shown in Table 2 below.
  • the first cooling rate was 2 ⁇ 4 °C / s
  • the second cooling rate was applied at 25 ⁇ 60 °C / s.
  • the values of yield strength (YS), tensile strength (TS), yield ratio (YS/TS), total elongation (T-El), and uniform elongation (U-El) are based on JIS standards ( Gauge length width x length: 25x50mm, specimen total length: 200 ⁇ 260mm), and then measured by performing a tensile test under the condition of a test speed of 28mm/min.
  • the bending characteristics (R/t) were measured by processing the same cold-rolled steel sheet into a width of 100 mm x length of 30 mm, and then performing a 90° bending test under the condition of a test speed of 100 mm/min, and then using a microscope to examine cracks in the bend. After confirming, the R/t value was obtained by dividing the minimum bending radius (R) at which cracks did not occur by the thickness (t) of the test piece.
  • Comparative Examples 1, 2, 4, 5, 7 and 8 in which the secondary cooling end temperature does not satisfy the Ms-190 ° C. or less, which is the condition of the present invention, do not satisfy the yield ratio and bending characteristics aimed at in the present invention And the tensile strength also did not achieve the target.
  • Comparative Examples 1 to 9 are examples in which a reheating step is not included, and quenching and tempering are included as essential processes in the present invention, but the above examples are examples in which aging is performed at a temperature during cooling without reheating. That is, in the above examples, martensitic hardenability may be lowered, and since there is no tempering process, the yield strength is very inferior, so that the desired strength cannot be obtained.
  • Comparative Examples 10 to 21 which did not satisfy the upper or lower limit conditions proposed in the present invention, were inferior in yield ratio and bending properties aimed at in the present invention.
  • the yield strength cannot be sufficiently increased, and examples that do not satisfy the upper limit temperature condition of 270 ° C. for reheating and overaging do not secure bending properties due to the formation of coarse carbides.
  • Comparative Examples 22 and 23 are examples that satisfy all of the manufacturing conditions proposed in the present invention, but do not satisfy the alloy composition proposed in the present invention. Therefore, the examples above not only did not satisfy the desired microstructure fraction, but also failed to secure the desired strength.
  • FIG. 1 (a) and (b) are SEM microstructure photographs (x10.000) of Inventive Example 15 and Comparative Example 21 according to an embodiment of the present invention. Both (a) and (b) of FIG. 1 show tempered martensite as a microstructure, and it can be confirmed that carbide in the form of rice grains is formed on the microstructure. On the other hand, in the case of (b), it can be confirmed that the carbide per unit area is formed on the microstructure in excess of the range proposed in the present invention, and the size is also excessively large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 고항복비 초고강도 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 고강도 및 고항복비를 가지며, 굽힘 특성이 우수한 강판 및 그 제조방법에 관한 것이다.

Description

굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법
본 발명은 굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법에 관한 것이다.
최근 자동차 분야에서는 유럽을 필두로 한 선진국에서 연비규제 및 성능 향상을 이유로 차체 무게를 경량화하려는 연구가 활발히 진행 중이며, 철강의 경우 이러한 자동차사의 경량화 요구에 대응하기 위해 경쟁소재(Mg, Al, CFRP 등) 대비 동일 등급에서 고강도화 및 강판 두께를 더욱 감소시키는 등의 노력을 하고 있다. 또한, 경량화와 더불어, 자동차 승객 및 보행자에 대한 안전규제 강화로 인해 차체 소재의 안정성과 고강도화도 요구되고 있는 추세이다.
한편, 차체의 안정성과 충격특성 향상을 위해 BIW (Body-in-white) 구조 부재에 항복강도가 우수한 고강도강의 채용이 늘어나고 있으며, 이러한 구조 부재는 인장강도 대비 항복강도, 즉, 항복비(항복강도/인장강도)가 높을수록 충격에너지 흡수에 유리한 특징을 가지고 있다.
항복강도를 높이기 위한 대표적인 제조방법으로 연속소둔 시, 수냉을 활용하는 방법이 있다. 냉연강판을 이상역 또는 단상역 소둔 이후에 상온 수준까지 급냉한 후, 템퍼링 방식에 의해 초고강도강을 제조할 수 있는데, 이러한 경우, 항복비는 매우 높으나, 폭방향 및 길이방향의 온도편차에 의해 코일의 형상 품질이 열화되는 문제가 발생하고, 롤포밍 부품 가공 시, 부위에 따른 재질불량, 작업성 저하 등의 문제가 발생할 수 있다. 또한, 일반적으로 강판의 강도가 증가할수록 연신율이 감소하여 성형 가공성이 저하되는 문제점이 있으므로 냉간 스탬핑용 소재로써 적용은 제한적이다.
상기 문제점들을 극복하기 위하여 상대적으로 성형이 용이한 고온에서 소재를 성형한 후, 다이와 소재 간의 수냉을 통해 요구 강도를 확보하는 열간프레스 성형(Hot Press Forming, HPF 공법)이 개발되고 있다. 이는, 동일한 두께 대비 높은 강도를 확보할 수 있기 때문에 부품 제조에 HPF 공법을 많이 이용하고 있으나, 과도한 설비 투자비와 공정비용의 증가로 인해 적용에 문제점이 있어, 냉간 스탬핑용 소재의 개발이 필요한 실정이다. 따라서, 냉간 스탬핑용 소재로써 사용이 적합하고, 충돌 성능 확보를 위해 고강도 및 고항복비를 가지며, 굽힘 특성이 우수한 냉연강판의 개발이 요구된다.
본 발명의 일 측면에 따르면 굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.1~0.3%, 망간(Mn): 1.0~2.3%, 실리콘(Si): 0.05~1.0%, 인(P): 0.1% 이하, 황(S): 0.03% 이하, 알루미늄(Al): 0.01~0.5%, 잔부 Fe 및 불가피한 불순물을 포함하고,
하기 관계식 1에서 정의되는 R 값이 0.12~0.27이고,
1μm2 면적당 탄화물의 평균 개수가 40개 이하이고, 탄화물 장축의 평균 길이가 300nm 이하이며,
항복비가 0.73 초과인 강판을 제공할 수 있다.
[관계식 1]
Figure PCTKR2022008630-appb-img-000001
Figure PCTKR2022008630-appb-img-000002
Figure PCTKR2022008630-appb-img-000003
(여기서, [C], [Mn], [Si], [P], [S], [Cr], [Mo], [V], [Nb], [Cu] 및 [Ni]은 각 원소의 중량%이다.)
상기 강판은 크롬(Cr): 0.01~0.2%, 몰리브덴(Mo): 0.01~0.2%, 보론(B): 0.005% 이하(0%는 제외) 중 2종 이상을 더 포함할 수 있다.
상기 강판은 티타늄(Ti): 0.1% 이하(0%는 제외), 니오븀(Nb): 0.1% 이하(0%는 제외) 중 1종 이상을 더 포함할 수 있다.
상기 강판은 미세조직으로 마르텐사이트 또는 템퍼드 마르텐사이트를 99면적% 이상으로 포함할 수 있다.
상기 강판은 인장강도가 1300MPa 이상이고, 굽힘 특성(R/t)이 4 미만(여기서, R은 90˚굽힘 시험 후 굽힘부에 크랙이 발생하지 않는 최소 굽힘 반경이고, t는 강판 두께이다.)일 수 있다.
본 발명의 다른 일 측면은, 중량%로, 탄소(C): 0.1~0.3%, 망간(Mn): 1.0~2.3%, 실리콘(Si): 0.05~1.0%, 인(P): 0.1% 이하, 황(S): 0.03% 이하, 알루미늄(Al): 0.01~0.5%, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 관계식 1에서 정의되는 R 값이 0.12~0.27인 냉연강판을 준비하는 단계;
상기 냉연강판을 Ac3이상의 온도에서 30초 이상 열처리하는 단계;
상기 열처리 후 500~750℃의 온도범위까지 1~10℃/s의 평균 냉각속도로 1차 냉각하는 단계;
상기 1차 냉각된 강판을 Ms-190℃ 이하의 온도까지 20~80℃/s의 평균 냉각속도로 2차 냉각하는 단계; 및
상기 2차 냉각된 강판을 2차 냉각종료온도+30℃ 초과 270℃ 미만의 온도범위까지 가열하여 1~20분 유지하는 재가열 및 과시효하는 단계를 포함하는 강판 제조방법을 제공할 수 있다.
[관계식 1]
Figure PCTKR2022008630-appb-img-000004
Figure PCTKR2022008630-appb-img-000005
Figure PCTKR2022008630-appb-img-000006
(여기서, [C], [Mn], [Si], [P], [S], [Cr], [Mo], [V], [Nb], [Cu] 및 [Ni]은 각 원소의 중량%이다.)
상기 냉연강판은 크롬(Cr): 0.01~0.2%, 몰리브덴(Mo): 0.01~0.2%, 보론(B): 0.005% 이하(0%는 제외) 중 2종 이상을 더 포함할 수 있다.
상기 냉연강판은 티타늄(Ti): 0.1% 이하(0%는 제외), 니오븀(Nb): 0.1% 이하(0%는 제외) 중 1종 이상을 더 포함할 수 있다.
상기 냉연강판을 준비하는 단계는,
강 슬라브를 1100~1300℃의 온도범위로 재가열하는 단계;
상기 재가열된 강 슬라브를 Ar3 이상의 마무리 열간압연 온도로 열간압연하는 단계;
상기 열간압연된 강판을 700℃ 이하의 온도범위로 냉각 및 권취하는 단계; 및
상기 냉각 및 권취된 강판을 30~80%의 압하율로 냉간압연하는 단계를 포함할 수 있다.
상기 냉각 및 권취된 강판을 염산으로 산세하는 단계를 더 포함할 수 있다.
본 발명의 일 측면에 따르면 고강도 및 고항복비를 가지며, 굽힘 특성이 우수한 강판 및 그 제조방법을 제공할 수 있다.
본 발명의 다른 일 측면에 따르면 BIW (Body-in-white) 구조 부재로 적용될 수 있는 강판 및 그 제조방법을 제공할 수 있다.
도 1의 (a) 및 (b)는 본 발명의 일 실시예에 따른 발명예 15와 비교예 21의 SEM 미세조직 사진(x10.000)이다.
이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 구현예들은 당해 발명이 속하는 기술분야에서 통상의 기술자에게 본 발명을 더욱 상세하게 설명하기 위하여 제공되는 것이다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명에서는 고강도 및 고항복비를 가지며, 굽힘 특성이 우수한 강판을 제공하기 위하여, 합금조성 및 공정조건을 최적화하였다. 특히, 본 발명자는 C, Mn, Si, P, S 등 성분 원소의 함량을 엄격히 제어하고, 연속 소둔의 2차 냉각 및 재가열 및 과시효 공정의 조건을 최적화함으로써, 기본적인 용접 특성을 확보하면서도 굽힘 특성 및 고강도를 확보할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이하에서는, 본 발명의 강 조성에 대해 자세히 설명한다.
본 발명에서 특별히 달리 언급하지 않는 한 각 원소의 함량을 표시하는 %는 중량을 기준으로 한다.
본 발명의 일 측면에 따르는 강은 중량%로, 탄소(C): 0.1~0.3%, 망간(Mn): 1.0~2.3%, 실리콘(Si): 0.05~1.0%, 인(P): 0.1% 이하, 황(S): 0.03% 이하, 알루미늄(Al): 0.01~0.5%, 잔부 Fe 및 불가피한 불순물을 포함할 수 있다.
탄소(C): 0.1~0.3%
탄소(C)는 침입형 고용원소로, 강의 강도를 향상시키는데 가장 효과적이고 중요한 원소이며, 마르텐사이트 강의 강도 확보를 위해 필수로 첨가해야 하는 원소이다. 본 발명에서 목표하는 항복비와 인장강도를 만족하는 초고강도 강을 얻으려면 탄소(C)가 0.1% 이상 첨가되는 것이 바람직하며, 보다 바람직하게는 0.12% 이상 첨가될 수 있다. 다만, 그 함량이 0.3%를 초과할 경우 마르텐사이트 강도가 높아질 수 있으나, 연속 소둔 과정에서 탄화물 생성이 용이하고 조대화되기 쉬워서 연성 저하와 더하여 굽힘 특성이 열위해질 수 있다. 또한, 탄소(C) 함량의 증가는 용접성을 저해하는 문제점이 있으므로, 그 상한을 0.3%로 제한하는 것이 바람직하다. 보다 바람직하게는 상한이 0.28%일 수 있다.
망간(Mn): 1.0~2.3%
망간(Mn)은 복합조직강에서 페라이트 생성을 억제하고 오스테나이트 생성을 촉진함으로써 최종 마르텐사이트 확보에 용이한 원소이다. 다만, 그 함량이 2.3%를 초과할 경우, 두께 방향으로 망간(Mn)이 편석되어 슬라브 내 망간 띠(Mn band)의 형성이 쉬워 연주 크랙과 더불어 압연공정 시, 결함 발생이 높아지는 문제점이 있다. 따라서, 보다 바람직하게는 2.1% 이하로 포함할 수 있다. 반면, 그 함량이 1.0% 미만일 경우, 초고강도강에서의 강도 확보가 어렵기 때문에 하한을 1.0%로 제한할 수 있다. 보다 바람직한 하한은 1.4%일 수 있다.
실리콘(Si): 0.05~1.0%
실리콘(Si)은 마르텐사이트 강에서 냉각 이후 재가열 및 과시효 단계에서 탄화물 생성을 억제하고 탄화물 크기를 제어하는 역할을 하므로 그 하한을 0.05%로 제한할 수 있다. 보다 바람직하게는 0.09% 이상 포함할 수 있다. 다만, 실리콘(Si)은 페라이트 안정화 원소로, 그 함량이 1.0%를 초과할 경우, 연속 소둔로에서 냉각 시 페라이트가 생성되어 강도를 약화시킬 수 있다. 더하여, 가열로 중에 Si계 산화물이 형성되어 표면 산화의 문제가 있을 수 있으므로, 그 상한을 1.0%로 제한할 수 있다. 보다 바람직하게는 그 상한을 0.6%로 제한할 수 있다.
인(P): 0.1% 이하
인(P)은 강 중에 포함되는 불순물 원소로, 제조과정 중에 불가피하게 포함되는 경우를 고려하여 함량 0%는 제외한다. 다만, 인(P)의 함량이 0.1%를 초과하면 용접성이 악화되고, 강의 취성이 발생할 우려가 있으므로, 상한을 0.1%로 제한할 수 있다. 보다 바람직한 상한은 0.03%일 수 있다.
황(S): 0.03% 이하
황(S)은 P와 마찬가지로 강 중 불가피하게 포함되는 불순물로, 강판의 연성과 용접성을 저해하는 원소이므로 가능한 함량을 낮게 관리하는 것이 바람직하므로 황(S)의 함량을 0.03% 이하로 제한하는 것이 바람직하다. 더욱 바람직하게는 0.005% 이하로 제한할 수 있다. 한편, 제조과정 중에 불가피하게 포함되는 경우를 고려하여 0%는 제외한다.
알루미늄(Al): 0.01~0.5%
알루미늄(Al)은 용강 내 산소 제거를 위해 첨가될 수 있으며, Si과 동일하게 페라이트를 안정화시키는 원소이다. 또한, 오스테나이트 내의 C 함량을 증가시켜 최종 마르텐사이트 강의 경화능을 향상시킬 수 있는 성분이므로 그 함량을 0.01% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 0.5%를 초과할 경우, 연속 소둔로에서 냉각 시에 페라이트가 생성되어 강도를 약화시킬 수 있다. 뿐만 아니라, AlN 형성으로 인해 주편 크랙을 유발할 수 있고, 열간압연성을 저해하는 문제가 있어, 그 상한을 0.5%로 제한할 수 있다.
본 발명의 강은, 상술한 조성 이외에 나머지 철(Fe) 및 불가피한 불순물을 포함할 수 있다. 불가피한 불순물은 통상의 제조공정에서 의도되지 않게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이러한 불순물들은 통상의 철강제조분야의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명의 일 측면에 따르는 강은 크롬(Cr): 0.01~0.2%, 몰리브덴(Mo): 0.01~0.2%, 보론(B): 0.005% 이하(0%는 제외) 중 2종 이상을 더 포함할 수 있다.
크롬(Cr): 0.01~0.2%
크롬(Cr)은 강의 경화능을 향상시키고 고강도를 확보하기 위하여 첨가되는 성분으로, 베이나이트 생성을 억제하여 순수 마르텐사이트를 갖는 초고강도 강 제조에 유용하다. 따라서, 전술한 효과를 확보하기 위하여 크롬(Cr)을 0.01% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과도하게 되면 합금철 원가가 상승하는 문제가 있으므로, 그 상한을 0.2%로 제한할 수 있으며, 보다 바람직하게는 0.1%로 제한할 수 있다.
몰리브덴(Mo): 0.01~0.2%
몰리브덴(Mo)은 Cr과 마찬가지로 강의 경화능을 향상시키는 원소로, 경화능 효과를 얻기 위하여 0.01% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 0.2%를 초과하면 합금 투입량이 과도하여 합금철 원가 상승의 문제가 있으므로, 그 상한을 0.2%로 제한하는 것이 바람직하고, 보다 바람직하게는 0.1%로 제한할 수 있다.
보론(B): 0.005% 이하(0%는 제외)
보론(B)은 연속 소둔 과정에서의 오스테나이트가 페라이트로의 변태를 억제하는 원소로, 극소량 첨가로도 Cr, Mo와 같이 마르텐사이트의 경화능을 향상시키는데 효과적인 원소이다. 다만, 보론(B)의 함량이 0.005%를 초과하면 Fe23(B,C)6 석출상이 오스테나이트 결정립계로 석출됨에 따라 페라이트 생성 촉진 작용을 하게 되므로, 그 상한을 0.005%로 제한하는 것이 바람직하다.
본 발명의 일 측면에 따르는 강은 티타늄(Ti): 0.1% 이하(0%는 제외), 니오븀(Nb): 0.1% 이하(0%는 제외) 중 1종 이상을 더 포함할 수 있다.
티타늄(Ti): 0.1% 이하(0%는 제외)
티타늄(Ti)은 미세 탄화물 형성원소로, 항복강도 및 인장강도의 확보에 기여하는 원소이다. 또한, 티타늄(Ti)은 강 중 N을 TiN으로 석출시켜서 scavenging을 하는데 이를 위해서는 화학당량적으로 48/14*[N] 이상을 첨가하는 것이 바람직하며, B 첨가 시, 그 첨가 효과를 극대화하기 위하여 티타늄(Ti)을 첨가하는 것이 바람직하다. 그러나, 그 함량이 0.1%를 초과하면 조대한 탄화물이 석출되고, 강 중 탄소량 저감에 의하여 강도 및 연신율의 감소가 이루어질 수 있으며, 연주 시, 노즐 막힘을 야기할 수 있으므로 그 상한을 0.1%로 제한하는 것이 바람직하다.
니오븀(Nb): 0.1% 이하(0%는 제외)
니오븀(Nb)은 오스테나이트 입계에 편석되어 소둔 열처리 시, 오스테나이트 결정립의 조대화를 억제하고, 미세한 탄화물을 형성하여 강도 증가에 기여하는 원소이다. 다만, 니오븀(Nb) 함량이 0.1%를 초과하면 조대한 탄질화물의 석출이 증대하고, 강 중 탄소량 저감에 의하여 강도 및 연신율이 감소될 우려가 있으며, 모재의 가공성이 저하되고, 제조원가가 상승하는 문제점이 있을 수 있다. 따라서, 그 상한은 0.1%로 제한하는 것이 바람직하다.
본 발명의 일 측면에 따르는 강은 하기 관계식 1에서 정의되는 R 값이 0.12~0.27일 수 있다.
관계식 1은 각 원소의 함량에 따른 용접 특성을 나타내는 Ceq1과 Ceq2의 복합관계식으로, 관계식 1의 R 값이 0.12~0.27일 때, 용접특성을 포함하는 본 발명에서 목적하는 물성을 확보할 수 있다.
관계식 1에서 정의되는 R 값이 0.12 미만일 경우, 본 발명에서 요구하는 강도의 확보에 어려움이 있는 반면, R 값이 0.27을 초과할 경우, 물성 중 특히 용접 특성이 저하될 수 있다. 본 발명에서 보다 바람직한 R 값의 하한은 0.17일 수 있으며, 보다 바람직한 R 값의 상한은 0.25, 보다 바람직하게는 0.20일 수 있다.
[관계식 1]
Figure PCTKR2022008630-appb-img-000007
Figure PCTKR2022008630-appb-img-000008
Figure PCTKR2022008630-appb-img-000009
(여기서, [C], [Mn], [Si], [P], [S], [Cr], [Mo], [V], [Nb], [Cu] 및 [Ni]은 각 원소의 중량%이다.)
이하에서는, 본 발명의 강 미세조직에 대해 자세히 설명한다.
본 발명에서 특별히 달리 언급하지 않는 한 미세조직의 분율을 표시하는 %는 면적을 기준으로 한다.
본 발명의 일 측면에 따르는 강은 미세조직으로 마르텐사이트 또는 템퍼드 마르텐사이트를 99면적% 이상 포함할 수 있으며, 1μm2 면적당 탄화물의 개수가 40개 이하이고, 탄화물 장축의 평균 길이가 300nm 이하일 수 있다.
본 발명에서는 고강도 및 고항복비 냉연강판을 확보하기 위하여 마르텐사이트 또는 템퍼드 마르텐사이트를 미세조직으로 포함할 수 있으며, 1.3G급 이상 높은 강도 수준을 확보하기 위하여 99% 이상 포함하는 것이 바람직하다.
또한, 우수한 굽힘 특성을 확보하기 위하여 탄화물의 개수를 40개 이하로 제어하는 것이 바람직하며, 보다 바람직하게는 35개 이하일 수 있다.
더하여, 상기 효과를 더욱 효과적으로 확보하기 위하여, 상기 탄화물의 장축의 평균 길이는 300nm 이하인 것이 바람직하며, 보다 바람직하게는 200nm 이하일 수 있다.
본 발명의 탄화물 개수는, x10,000 SEM 이미지에서 1μm2 영역의 탄화물 개수의 평균(10개 영역 평균)을 나타낸 것이며, 탄화물 장축 길이는 TEM 명시야상 x30,000~x100,000 이미지에서 측정하여 나타낸 것이다.
이하에서는, 본 발명의 강 제조방법에 대해 자세히 설명한다.
본 발명의 일 측면에 따르는 강은 상술한 합금조성을 만족하는 냉연강판을 열처리, 1차 냉각, 2차 냉각, 재가열 및 과시효하여 제조될 수 있다.
냉연강판 준비
본 발명의 합금조성을 만족하는 냉연강판을 준비할 수 있다.
본 발명의 냉연강판은 통상의 공정조건으로 제조될 수 있으며, 바람직하게는 아래에서 설명하는 조건으로 강 슬라브를 재가열, 열간압연, 냉각, 권취 및 냉간압연하여 제조될 수 있다.
재가열
본 발명의 합금조성을 만족하는 강 슬라브를 1100~1300℃의 온도범위로 재가열할 수 있다.
재가열은 후속하는 열간압연 공정을 원활히 수행하고, 목표로 하는 물성을 충분히 확보하기 위하여 행할 수 있다. 재가열 온도가 1100℃ 미만이면 열간압연 하중이 급격히 증가하는 문제가 있을 수 있으며, 그 온도가 1300℃를 초과하면 표면 스케일 양이 증가하여 재료의 수율이 저하되고 표면결함을 야기하여 최종 품질에 악영향을 줄 수 있다.
열간압연
상기 재가열된 강 슬라브를 Ar3 이상의 마무리 열간압연 온도로 열간압연할 수 있다.
본 발명에서는 마무리 열간압연 온도를 Ar3 (오스테나이트 냉각 시, 페라이트가 출현하기 시작하는 온도) 이상으로 제한할 수 있는데, 이는 Ar3 미만에서는 페라이트와 오스테나이트 2상역 혹은 페라이트역 압연이 이루어져 혼립조직이 만들어질 수 있으며, 열간압연 하중의 변동으로 인한 오작의 우려가 있기 때문이다.
냉각 및 권취
상기 열간압연된 강판을 700℃ 이하의 온도범위로 냉각 후 권취할 수 있다.
권취온도가 700℃를 초과하면 강판 표면의 산화막이 과다하게 생성되어 결함을 유발할 수 있다. 권취온도가 낮아질수록 열연강판의 강도가 높아져서, 후공정인 냉간압연의 압연하중이 높아지는 단점이 있으나, 실제 생산을 불가능하게 만드는 요인이 아니므로 본 발명에서는 하한을 특별히 제한하지 않는다.
또한, 본 발명에서는 후속 공정인 냉간압연을 행하기에 앞서, 상기 권취된 강판의 표면에 형성된 산화층을 산세공정으로 제거할 수 있다.
냉간압연
상기 냉각 및 권취된 강판을 30~80%의 압하율로 냉간압연할 수 있다.
냉간압연의 압하율이 30% 미만일 경우, 목표하는 두께 확보가 어려울 뿐 아니라, 열간압연 결정립의 잔존으로 인해 소둔 열처리 시, 오스테나이트 생성 및 최종 물성에 영향을 미칠 우려가 있다. 반면, 압하율이 80%를 초과하면 냉간압연 시, 발생하는 가공경화로부터 길이 및 폭 방향으로 압연되는 압하량 불균일로 인해 최종 강판의 재질 편차가 발생할 수 있는 문제가 있고, 압연부하로 인해 목표 두께의 확보가 어려울 수 있다.
열처리
상기 냉연강판을 Ac3 이상의 온도에서 30초 이상 열처리할 수 있다.
본 발명에서는 오스테나이트 단상역 소둔을 통해 오스테나이트 분율을 100%로 확보하기 위하여 열처리를 행할 수 있다. 상기 열처리를 통해 오스테나이트 분율을 100%로 확보함으로써 소둔 시 페라이트 형성으로 인한 강도 하락을 방지할 수 있다.
Ac3=910-203√([C])-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]
(여기서, [C], [Ni], [Si], [V], [Mo] 및 [W]는 각 원소의 중량%이다.)
1차 냉각
상기 열처리 후 500~750℃의 온도범위까지 1~10℃/s의 평균 냉각속도로 1차 냉각할 수 있다.
1차 냉각 시, 냉각속도가 1℃/s 미만이면 냉각 시, 페라이트 생성으로 인해 목표하는 강도의 확보가 어려울 수 있으며, 반면, 그 속도가 10℃/s를 초과하면 2차 냉각 시, 평균 냉각속도가 저하되어 마르텐사이트 이외에 다른 저온변태상의 분율이 증가하여 최종적으로 목표하는 강도의 확보가 어려울 수 있다.
1차 냉각 시, 온도가 500℃ 미만일 경우, 페라이트, 베이나이트와 같은 상이 형성되어 강도가 저하될 우려가 있으며, 그 온도가 750℃를 초과하면 실제 생산라인에서의 문제점이 있을 수 있다.
2차 냉각
상기 1차 냉각된 강판을 Ms-190℃ 이하의 온도까지 20~80℃/s의 평균 냉각속도로 2차 냉각할 수 있다.
본 발명에서는 99% 이상의 마르텐사이트 또는 템퍼드 마르텐사이트를 확보하기 위하여 2차 냉각 시, 마르텐사이트 변태 종료 온도(Martensite Finish Temperature, Mf) 이하로 빠르게 냉각을 하는 것이 바람직하다. 본 발명에서는 구체적으로 Ms-190℃ 이하의 온도로 냉각하는 것이 바람직하다. 본 발명에서는 충분히 경한 마르텐사이트 조직의 형성이 가능하고, 이후 템퍼링 시, 탄화물 석출에 의한 항복강도 상승 효과를 확보하기 위하여 2차 냉각종료온도를 Ms-190℃ 이하로 제한하였다. 또한, 템퍼링 온도가 높아질 경우 굽힘성이 열위해질 수 있으므로, 상기 2차 냉각종료온도를 제한함으로써 템퍼링 온도를 많이 상승하지 않고서도 충분한 템퍼링을 가능하도록 하여, 굽힘 특성을 확보하고자 한다. 냉각종료온도가 Ms-190℃를 초과할 경우 마르텐사이트 또는 템퍼드 마르텐사이트의 분율이 충분히 확보되지 않아 목적하는 물성을 확보하기 어렵다.
한편, 2차 냉각 시, 평균 냉각속도가 20℃/s 미만이면, 1차 냉각 구간부터 2차 냉각 시, 일부 베이나이트 조직이 형성될 수 있고, 80℃/s를 초과하면 2차 냉각 시점에서 급격한 마르텐사이트 변태속도로 인해 강판의 표면 형상 열위 및 폭 방향으로의 재질 편차 문제가 생길 수 있다.
Ms=539-423[C]-30.4[Mn]-16.1[Si]-59.9[P]+43.6[Al]-17.1[Ni]-12.1[Cr]+7.5[Mo]
(여기서, [C], [Mn], [Si], [P], [Al], [Ni], [Cr] 및 [Mo]는 각 원소의 중량%이다.)
재가열 및 과시효
상기 2차 냉각된 강판을 2차 냉각종료온도+30℃ 초과 270℃ 미만의 온도범위까지 가열하여 1~20분 유지하는 재가열 및 과시효할 수 있다.
본 발명에서는 2차 냉각 시에 형성된 전위밀도가 높고 경한 마르텐사이트를 재가열 및 과시효를 통해 템퍼드 마르텐사이트로 변화시켜 인성을 개선하고자 한다. 본 발명에서는 템퍼링 효과를 충분히 확보하기 위하여 재가열 온도의 하한을 2차 냉각종료온도 대비 30℃ 이상의 온도로 제한한다. 이 때, 형성되는 미세 탄화물로 인해 항복강도가 상승하는데, 재가열 및 과시효 온도가 2차 냉각종료온도+30℃ 미만일 경우, 상기 목적하는 효과를 얻기 어렵다. 반면, 그 온도가 270℃ 이상일 경우, 탄화물이 조대화되어 굽힘 특성이 열위해지는 문제가 있다.
한편, 유지시간이 1분 미만이면 마르텐사이트가 템퍼드 마르텐사이트로 충분히 변화되지 못하여 인성을 충분히 확보하기 어려우며, 그 시간이 20분을 초과하면 과시효되어 생성된 탄화물이 조대해질 수 있어 굽힘 특성 및 재질에 악영향이 있을 수 있다.
이와 같이 제조된 본 발명의 강은 인장강도가 1300MPa 이상이고, 항복비가 0.73 초과이며, 굽힘 특성(R/t)이 4 미만(여기서, R은 90˚굽힘 시험 후 굽힘부에 크랙이 발생하지 않는 굽힘 반경이고, t는 강판 두께이다.)으로, 고항복비를 가지면서 굽힘 특성이 우수한 특성을 구비할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 아래의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다.
(실시예)
하기 표 1의 조성을 갖는 강 슬라브를 1100~1300℃에서 가열하고, Ar3 이상의 온도인 850~950℃에서 마무리 열간압연을 행하였으며, 400~700℃의 온도범위에서 권취하고, 45~65%의 냉간압하율을 적용하여 냉연강판을 제조하였다. 이어서, 800~900℃ 온도범위에서 100~400초 동안 열처리 후, 하기 표 2에 기재된 조건으로 1차 및 2차 냉각을 수행하였다. 이때, 1차 냉각속도는 2~4℃/s, 2차 냉각속도는 25~60℃/s로 적용하였다. 다음으로 표 2의 조건으로 재가열하고 1~20분 과시효하여 강판을 제조하였다.
또한, 하기 표 1에는 각 원소 함량에 따른 Ac3, Ms 온도 및 관계식 1의 값을 계산하여 나타내었다.
Figure PCTKR2022008630-appb-img-000010
Ac3=910-203√([C])-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]
(여기서, [C], [Ni], [Si], [V], [Mo] 및 [W]는 각 원소의 중량%이다.)
Ms=539-423[C]-30.4[Mn]-16.1[Si]-59.9[P]+43.6[Al]-17.1[Ni]-12.1[Cr]+7.5[Mo]
(여기서, [C], [Mn], [Si], [P], [Al], [Ni], [Cr] 및 [Mo]는 각 원소의 중량%이다.)
[관계식 1]
Figure PCTKR2022008630-appb-img-000011
Figure PCTKR2022008630-appb-img-000012
Figure PCTKR2022008630-appb-img-000013
(여기서, [C], [Mn], [Si], [P], [S], [Cr], [Mo], [V], [Nb], [Cu] 및 [Ni]은 각 원소의 중량%이다.)
Figure PCTKR2022008630-appb-img-000014
하기 표 3에는 각 시편의 미세조직을 관찰하고, 물성을 측정하여 나타내었다. 미세조직은 SEM 사진을 통해 확인하였으며, 탄화물 개수는 x10,000 SEM 이미지에서 1μm2 영역의 탄화물 개수의 평균(10개 영역 평균)을 나타내었으며, 탄화물 장축 길이는 TEM 명시야상 x30,000~x100,000 이미지에서 측정하여 나타내었다. 또한, 항복강도(YS), 인장강도(TS), 항복비(YS/TS), 총 연신율(T-El), 균일 연신율(U-El)의 값은 연속소둔이 완료된 냉연강판을 JIS 규격(gauge length 폭x길이: 25x50mm, 시편 전체 길이: 200~260mm)으로 가공한 후, 시험속도 28mm/min의 조건으로 인장시험을 행하여 측정되었다. 더하여, 굽힘 특성(R/t)은 동일한 냉연강판을 폭 100mm x 길이 30mm 로 시편가공을 한 후, 시험속도 100mm/min의 조건으로 90˚굽힘 시험을 한 후, 현미경을 이용하여 굽힘부의 크랙을 확인하여서 크랙이 발생되지 않는 최소 굽힘 반경(R)을 시험편의 두께(t)로 나누어서 R/t값을 구하였고, 그 값이 4 미만이면 O, 4 이상이면 X로 나타내었다.
Figure PCTKR2022008630-appb-img-000015
Figure PCTKR2022008630-appb-img-000016
* M: 마르텐사이트, TM: 템퍼드 마르텐사이트
표 3에 나타난 바와 같이, 본 발명의 합금조성 및 제조조건을 만족하는 발명예 1 내지 25는 본 발명에서 제안하는 미세조직 및 탄화물 특징을 만족 하였으며, 본 발명에서 목적으로 하는 물성을 확보하였다.
한편, 2차 냉각종료 온도가 본원발명 조건인 Ms-190℃ 이하를 만족하지 않는 비교예 1, 2, 4, 5, 7 및 8은 본원발명에서 목표로 하는 항복비와 굽힘 특성을 만족하지 못하였으며 인장강도 또한 목표하는 바를 달성하지 못하였다.
특히, 비교예 1 내지 9는 재가열 단계가 미포함된 예시로, 본 발명에서는 퀜칭 및 템퍼링을 필수 공정으로 포함하고 있으나, 상기 예시들은 재가열 없이, 냉각 중 온도에서 시효를 한 예시이다. 즉, 상기 예시들은 마르텐사이트 경화능이 저하될 수 있으며, 템퍼링 공정이 없으므로 항복강도가 매우 열위하여 목적하는 강도를 얻을 수 없었다.
또한, 재가열 및 과시효 시, 본 발명에서 제안하는 상한 또는 하한 조건을 만족하지 못하는 비교예 10 내지 21은 본 발명에서 목적하는 항복비 및 굽힘 특성이 열위하였다. 특히, 하한을 만족하지 못한 경우 충분한 항복강도의 상승이 이루어지지 못하며, 재가열 및 과시효의 상한 온도 조건인 270℃ 미만을 만족하지 못한 예시들은 조대한 탄화물 형성에 의해 굽힘 특성을 확보하지 못하였다.
비교예 22 및 23은 본 발명에서 제안하는 제조조건을 모두 만족하고 있으나, 본 발명에서 제안하는 합금조성을 만족하지 못하는 예시이다. 따라서, 상기 예시들은 목적하는 미세조직 분율을 만족하지 못하였을 뿐 아니라, 이로 인해 목적하는 강도를 확보하지 못하였다.
도 1의 (a) 및 (b)는 본 발명의 일 실시예에 따른 발명예 15와 비교예 21의 SEM 미세조직 사진(x10.000)이다. 도 1의 (a)와 (b) 모두 미세조직으로는 템퍼드 마르텐사이트를 나타내고 있으며 미세조직 상에 쌀알 형태의 탄화물이 형성된 것을 확인할 수 있다. 한편, (b)의 경우, 미세조직 상에 단위 면적당 탄화물이 본 발명에서 제안하는 범위를 초과하여 형성되었으며, 그 크기 또한 과도하게 크게 형성된 것을 확인할 수 있다.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.

Claims (10)

  1. 중량%로, 탄소(C): 0.1~0.3%, 망간(Mn): 1.0~2.3%, 실리콘(Si): 0.05~1.0%, 인(P): 0.1% 이하, 황(S): 0.03% 이하, 알루미늄(Al): 0.01~0.5%, 잔부 Fe 및 불가피한 불순물을 포함하고,
    하기 관계식 1에서 정의되는 R 값이 0.12~0.27이고,
    1μm2 면적당 탄화물의 평균 개수가 40개 이하이고, 탄화물 장축의 평균 길이가 300nm 이하이며,
    항복비가 0.73 초과인 강판.
    [관계식 1]
    Figure PCTKR2022008630-appb-img-000017
    Figure PCTKR2022008630-appb-img-000018
    Figure PCTKR2022008630-appb-img-000019
    (여기서, [C], [Mn], [Si], [P], [S], [Cr], [Mo], [V], [Nb], [Cu] 및 [Ni]은 각 원소의 중량%이다.)
  2. 제1항에 있어서,
    상기 강판은 크롬(Cr): 0.01~0.2%, 몰리브덴(Mo): 0.01~0.2%, 보론(B): 0.005% 이하(0%는 제외) 중 2종 이상을 더 포함하는 강판.
  3. 제1항에 있어서,
    상기 강판은 티타늄(Ti): 0.1% 이하(0%는 제외), 니오븀(Nb): 0.1% 이하(0%는 제외) 중 1종 이상을 더 포함하는 강판.
  4. 제1항에 있어서,
    상기 강판은 미세조직으로 마르텐사이트 또는 템퍼드 마르텐사이트를 99면적% 이상으로 포함하는 강판.
  5. 제1항에 있어서,
    상기 강판은 인장강도가 1300MPa 이상이고, 굽힘 특성(R/t)이 4 미만(여기서, R은 90˚굽힘 시험 후 굽힘부에 크랙이 발생하지 않는 최소 굽힘 반경이고, t는 강판 두께이다.)인 강판.
  6. 중량%로, 탄소(C): 0.1~0.3%, 망간(Mn): 1.0~2.3%, 실리콘(Si): 0.05~1.0%, 인(P): 0.1% 이하, 황(S): 0.03% 이하, 알루미늄(Al): 0.01~0.5%, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 관계식 1에서 정의되는 R 값이 0.12~0.27인 냉연강판을 준비하는 단계;
    상기 냉연강판을 Ac3이상의 온도에서 30초 이상 열처리하는 단계;
    상기 열처리 후 500~750℃의 온도범위까지 1~10℃/s의 평균 냉각속도로 1차 냉각하는 단계;
    상기 1차 냉각된 강판을 Ms-190℃ 이하의 온도까지 20~80℃/s의 평균 냉각속도로 2차 냉각하는 단계; 및
    상기 2차 냉각된 강판을 2차 냉각종료온도+30℃ 초과 270℃ 미만의 온도범위까지 가열하여 1~20분 유지하는 재가열 및 과시효하는 단계를 포함하는 강판 제조방법.
    [관계식 1]
    Figure PCTKR2022008630-appb-img-000020
    Figure PCTKR2022008630-appb-img-000021
    Figure PCTKR2022008630-appb-img-000022
    (여기서, [C], [Mn], [Si], [P], [S], [Cr], [Mo], [V], [Nb], [Cu] 및 [Ni]은 각 원소의 중량%이다.)
  7. 제6항에 있어서,
    상기 냉연강판은 크롬(Cr): 0.01~0.2%, 몰리브덴(Mo): 0.01~0.2%, 보론(B): 0.005% 이하(0%는 제외) 중 2종 이상을 더 포함하는 강판.
  8. 제6항에 있어서,
    상기 냉연강판은 티타늄(Ti): 0.1% 이하(0%는 제외), 니오븀(Nb): 0.1% 이하(0%는 제외) 중 1종 이상을 더 포함하는 강판.
  9. 제6항에 있어서,
    상기 냉연강판을 준비하는 단계는,
    강 슬라브를 1100~1300℃의 온도범위로 재가열하는 단계;
    상기 재가열된 강 슬라브를 Ar3 이상의 마무리 열간압연 온도로 열간압연하는 단계;
    상기 열간압연된 강판을 700℃ 이하의 온도범위로 냉각 및 권취하는 단계; 및
    상기 냉각 및 권취된 강판을 30~80%의 압하율로 냉간압연하는 단계를 포함하는 강판 제조방법.
  10. 제9항에 있어서,
    상기 냉각 및 권취된 강판을 염산으로 산세하는 단계를 더 포함하는 강판 제조방법.
PCT/KR2022/008630 2021-06-18 2022-06-17 굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법 WO2022265453A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/570,064 US20240141454A1 (en) 2021-06-18 2022-06-17 Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
CN202280043486.XA CN117500951A (zh) 2021-06-18 2022-06-17 弯曲特性优异的高屈强比超高强度钢板及其制造方法
EP22825376.1A EP4357476A1 (en) 2021-06-18 2022-06-17 Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0079154 2021-06-18
KR1020210079154A KR20220169497A (ko) 2021-06-18 2021-06-18 굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2022265453A1 true WO2022265453A1 (ko) 2022-12-22

Family

ID=84527236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008630 WO2022265453A1 (ko) 2021-06-18 2022-06-17 굽힘 특성이 우수한 고항복비 초고강도 강판 및 그 제조방법

Country Status (5)

Country Link
US (1) US20240141454A1 (ko)
EP (1) EP4357476A1 (ko)
KR (1) KR20220169497A (ko)
CN (1) CN117500951A (ko)
WO (1) WO2022265453A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203550A (ja) * 2008-01-31 2009-09-10 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2009242816A (ja) * 2008-03-28 2009-10-22 Jfe Steel Corp 高強度鋼板とその製造方法
US20200181729A1 (en) * 2017-06-20 2020-06-11 Arcelormittal Zinc-coated steel sheet with high resistance spot weldability
KR20210019440A (ko) * 2018-06-12 2021-02-22 티센크루프 스틸 유럽 악티엔게젤샤프트 평강 제품 및 그 제조 방법
JP6874919B1 (ja) * 2019-08-06 2021-05-19 Jfeスチール株式会社 高強度薄鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203550A (ja) * 2008-01-31 2009-09-10 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2009242816A (ja) * 2008-03-28 2009-10-22 Jfe Steel Corp 高強度鋼板とその製造方法
US20200181729A1 (en) * 2017-06-20 2020-06-11 Arcelormittal Zinc-coated steel sheet with high resistance spot weldability
KR20210019440A (ko) * 2018-06-12 2021-02-22 티센크루프 스틸 유럽 악티엔게젤샤프트 평강 제품 및 그 제조 방법
JP6874919B1 (ja) * 2019-08-06 2021-05-19 Jfeスチール株式会社 高強度薄鋼板およびその製造方法

Also Published As

Publication number Publication date
US20240141454A1 (en) 2024-05-02
EP4357476A1 (en) 2024-04-24
KR20220169497A (ko) 2022-12-28
CN117500951A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2017222189A1 (ko) 항복강도가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2017111456A1 (ko) 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법
WO2018117501A1 (ko) 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2017111407A1 (ko) 고항복비형 고강도 냉연강판 및 그 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017105026A1 (ko) 화성처리성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2017171366A1 (ko) 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2018117711A1 (ko) 굽힘가공성과 구멍확장성이 우수한 냉연강판 및 그 제조방법
WO2017111398A1 (ko) 저온인성 및 수소유기균열 저항성이 우수한 후판 강재 및 그 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2018117466A1 (ko) 용접성이 우수한 전봉강관용 열연강판 및 이의 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2019125018A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2018117539A1 (ko) 용접성 및 연성이 우수한 고강도 열연강판 및 이의 제조방법
WO2022086050A1 (ko) 연성이 우수한 초고강도 강판 및 그 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18570064

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023577678

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280043486.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022825376

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022825376

Country of ref document: EP

Effective date: 20240118