WO2022265092A1 - Composition for cancer treatment - Google Patents

Composition for cancer treatment Download PDF

Info

Publication number
WO2022265092A1
WO2022265092A1 PCT/JP2022/024277 JP2022024277W WO2022265092A1 WO 2022265092 A1 WO2022265092 A1 WO 2022265092A1 JP 2022024277 W JP2022024277 W JP 2022024277W WO 2022265092 A1 WO2022265092 A1 WO 2022265092A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
nis
mscs
composition
cells
Prior art date
Application number
PCT/JP2022/024277
Other languages
French (fr)
Japanese (ja)
Inventor
幸世 野村
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2023530426A priority Critical patent/JPWO2022265092A1/ja
Publication of WO2022265092A1 publication Critical patent/WO2022265092A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a composition for treating cancer using a combination of mesenchymal stem cells and a radionuclide, and a method for treating cancer using the composition for treatment.
  • cancer treatment is performed by combining various methods such as surgical treatment such as surgery, drug therapy using anticancer drugs, radiation therapy, and immune checkpoint inhibitors. survival rates have also improved.
  • surgical treatment such as surgery, drug therapy using anticancer drugs, radiation therapy, and immune checkpoint inhibitors.
  • survival rates have also improved.
  • intractable cancers such as scirrhous gastric cancer, pancreatic cancer, and triple-negative breast cancer
  • gastrointestinal cancers such as gastric cancer, pancreatic cancer, and colorectal cancer, ovarian cancer, and ureteral cancer have metastasized.
  • peritoneal dissemination that occurs in the In particular, peritoneal dissemination is difficult to remove by surgical operation, and treatment with ordinary chemotherapeutic agents alone has little therapeutic effect and the prognosis is extremely poor.
  • TME tumor microenvironment
  • cancer consists of tumor tissue consisting of tumor cells, interstitial fibroblasts, cells forming blood vessels and lymphatics, infiltrating inflammatory cells, extracellular matrix such as collagen, and physiologically active substances. made up of quality.
  • Cancer stroma grows by highly accumulating and proliferating stromal cells, and mesenchymal stem cells (MSCs) are incorporated during the growth process. MSCs are characterized by high proliferation and have the ability to differentiate into cells that constitute connective tissues such as bone, fat, cartilage and muscle, and play important roles in the maintenance and regeneration of various tissues.
  • MSCs When MSCs are taken into the cancer stroma, they differentiate into various cancer stroma-associated cell types, including tumor vascular cells and cancer-associated fibroblasts (CAF) (for example, see Non-Patent Document 1). see). Due to the ability of MSCs to accumulate in the cancer stroma, MSCs are attracting attention as carriers for delivering cancer therapeutic genes and the like to the tumor microenvironment (see, for example, Non-Patent Document 2). ).
  • CAF cancer-associated fibroblasts
  • Non-Patent Document 3 reports that MSCs expressing sodium iodide symporter (NIS) can also be used to kill cancer cells by delivering radionuclides into the TME (Non-Patent Document 3, Non-Patent Document 4, etc.).
  • NIS is a transmembrane glycoprotein with 13 transmembrane domains that can transport radionuclides such as the radionuclides 131 I, 123 I, 125 I, 124 I, 99m Tc, 188 Re and 211 At. can.
  • Non-Patent Document 3 reports that administration of NIS-expressing MSCs and 131 I to liver cancer model mice resulted in tumor regression.
  • Non-Patent Document 3 a very high dose of 131 I of 55.5 Mbq was used, and it is unrealistic to convert such a high dose to humans. is. Furthermore, multiple doses of 131 I may be necessary because the sensitivity of cells to the cytocidal ⁇ -rays emitted by 131 I varies depending on the cell cycle.
  • NIS-MSCs NIS-expressing MSCs
  • the present invention provides a treatment method that is more practical than currently reported methods in the treatment of cancer using NIS-MSCs, and a therapeutic composition for cancer used in the treatment method Make the provision of goods a problem to be solved.
  • ⁇ nuclides instead of ⁇ -ray emitting nuclides as radionuclides to be combined with NIS-MSC.
  • ⁇ -rays emitted by ⁇ -nuclides are a type of heavy ion beam, and compared to ⁇ -rays, they can impart high energy to a narrower range, so they are thought to exhibit high therapeutic effects locally. Also, unlike ⁇ rays, its cell-killing ability does not depend on the cell cycle. On the other hand, since the cell-killing effect of ⁇ -rays is localized, it was unclear whether ⁇ -nuclides incorporated into NIS-MSCs exert effective killing ability against cancer cells.
  • the present invention is the following (1) to (4).
  • a cancer treatment composition comprising a combination of mesenchymal stem cells expressing a sodium iodide symporter (NIS) and an ⁇ nuclide. composition.
  • NIS sodium iodide symporter
  • composition (2) The composition for cancer treatment according to (1) above, wherein the cancer is peritoneal dissemination.
  • the sign "-" indicates a numerical range including the values on the left and right of it.
  • the present invention enables safer and more effective cancer treatment with less risk of radiation exposure than conventional methods.
  • intractable cancers such as peritoneal dissemination can be effectively treated.
  • FIG. 1 shows the results of counting radiation doses in various organs after administering NIS-MSCs intraperitoneally and 125 I orally to peritoneal dissemination mouse models according to the experimental schedule shown in FIG.
  • Figure 1 shows an image of peritoneal dissemination on the peritoneum after intraperitoneal administration of NIS-MSCs and oral administration of 131 I to a peritoneal dissemination mouse model.
  • A is a control mouse
  • B is an image of the peritoneum of a mouse orally administered with 131I .
  • the image shows the state of peritoneal dissemination on the peritoneum after intraperitoneal administration of NIS-MSC and oral administration of 211 At to a peritoneal dissemination mouse model.
  • A is a control mouse
  • B is an orally administered 211 At
  • C is an image of the peritoneum of a mouse intraperitoneally administered 211 At. The results of examining the survival rate of mice after intraperitoneal administration of NIS-MSCs and 211 At in peritoneal dissemination mouse models are shown.
  • a first embodiment for carrying out the present invention is a composition for treating cancer, comprising mesenchymal stem cells expressing sodium iodide symporter (NIS): MSC) and an ⁇ nuclide are combined to treat cancer (hereinafter also referred to as "the composition according to the present embodiment").
  • NIS is an integral membrane protein of approximately 650 amino acids, has 13 transmembrane domains and functions as an ion pump, pumping one iodide ion (I-) and two sodium ions (Na+) into the cell. It has the function of simultaneously transporting within So far, reports have been made on its utility as a new tool in disease treatment (see, for example, Non-Patent Document 4).
  • the NIS used in the present embodiment may be derived from any animal species depending on the purpose of use.
  • human NIS consisting of the amino acid sequence represented by SEQ ID NO: 1 is preferable, but this It is not limited to arrays.
  • its variants or homologues e.g., consisting of an amino acid sequence having an identity of 90% or more with the amino acid sequence of naturally occurring NIS, simultaneously introducing iodide ions and sodium ions into cells
  • NIS variants or homologues having transport activity for example, NIS variants disclosed in US8852576B2 may be used.
  • MSCs are a type of stem cell that differentiates into mesoderm-derived tissues (e.g., bone, cartilage, fat, blood vessels, cardiomyocytes, etc.), ectoderm-derived nerve cells and glia, and endoderm-derived stem cells. It is a cell with capacity.
  • Human MSCs are characterized, for example, by being positive for cell surface markers such as CD73 and CD105 and negative for myeloid markers such as CD34, CD14, CD45 and MHC class II antigen.
  • MSCs can be harvested from bone marrow, dental pulp, and fat. In addition, depending on the intended use of the collected MSCs, they may be modified, for example, immortalized using SV40 large T antigen or the like.
  • NIS-expressing MSCs can be easily carried out based on common technical knowledge in the relevant technical field.
  • an expression vector containing NIS cDNA under the control of an appropriate promoter e.g., cytomegalovirus-derived promoter (CMV IE promoter), etc.
  • CMV IE promoter cytomegalovirus-derived promoter
  • MSCs containing the expression vector are selected, and NIS-expressing cells among the obtained cell clones can be used as NIS-expressing MSCs (NIS-MSCs).
  • the ⁇ -nuclide used in the present embodiment is preferably a nuclide that emits ⁇ -rays and is taken up into cells by NIS. Although not particularly limited, for example, 211 At is preferable.
  • the composition according to this embodiment is a cancer treatment composition characterized by administering NIS-MSCs and ⁇ nuclides separately.
  • NIS-MSCs accumulate in the cancer stroma and incorporate ⁇ nuclides into the cells, which enables efficient irradiation of ⁇ rays to tumor cells, resulting in the elimination of tumor cells. can be annihilated. That is, a composition administered in combination with NIS-MSCs and ⁇ nuclides can be used for cancer treatment.
  • NIS-MSCs may be suspended in NIS-MSCs or in a solution capable of suspending NIS-MSCs, such as physiological saline or phosphate-buffered saline (PBS).
  • the NIS-MSC suspension may contain pharmaceutically acceptable additives.
  • Suspensions containing NIS-MSCs may be administered to tumor tissue (cancer foci) or tissue in which tumor cells reside, or may be administered intravenously.
  • the administration method of NIS-MSCs is preferably intraperitoneal administration.
  • alpha nuclides are administered after administration of NIS-MSCs.
  • the administration interval between NIS-MSCs and ⁇ nuclides is not particularly limited, but is preferably about 1 to 7 days, for example.
  • the ⁇ nuclide may be administered to a tumor tissue (cancer focus) or a tissue in which tumor cells are present, intravenous administration, or oral administration.
  • the administration frequency of NIS-MSCs and ⁇ nuclides may be one administration or multiple administrations.
  • the administration method of the ⁇ nuclide eg, 211 At
  • the administration method of the ⁇ nuclide is preferably intraperitoneal administration or oral administration, more preferably intraperitoneal administration. Treatment using the compositions of this embodiment can be performed alone or in combination with chemotherapy, radiation therapy, and the like.
  • Cancers to be treated with the composition according to this embodiment are not particularly limited.
  • the composition according to this embodiment may be provided in the form of a kit together with instructions such as an administration method.
  • the composition contained in the kit effectively maintains the activity of the active ingredients (i.e., MSC or NIS-MSC and ⁇ nuclides) for a long period of time, and the ingredients do not adsorb to the inside of the container, and the ingredients are denatured.
  • Each active ingredient is supplied separately in a container made of non-toxic material.
  • alpha nuclides need to be supplied in a suitable form to prevent leakage of radiation.
  • the instructions for use of the kit may be printed on paper or the like, or may be stored and supplied on an electromagnetically readable medium such as a CD-ROM or DVD-ROM.
  • a second embodiment of the present invention is a cancer treatment method (hereinafter also referred to as "treatment method according to this embodiment") comprising administering a composition according to this embodiment to a patient.
  • treatment means to prevent or alleviate the progress and deterioration of the condition in a patient already suffering from cancer, and thereby to prevent or alleviate the progression and deterioration of cancer. It is the action to take.
  • the subject of treatment is not limited to humans, and may be mammals other than humans, such as mice, rats, dogs, cats, domestic animals such as cows, horses, and sheep, and primates such as monkeys, chimpanzees, and gorillas. Humans are particularly preferred.
  • Cancers to be treated by the treatment method of the present embodiment are not particularly limited, but examples include hepatocellular carcinoma, cholangiocarcinoma, renal cell carcinoma, squamous cell carcinoma, and basal cell carcinoma.
  • transitional cell carcinoma transitional cell carcinoma, adenocarcinoma, malignant gastrinoma, malignant melanoma, fibrosarcoma, myxosarcoma, liposarcoma, leiomyosarcoma, rhabdomyosarcoma, malignant teratoma, angiosarcoma, Kaposi's sarcoma, osteosarcoma, chondrosarcoma, lymphoid Vascular sarcoma, malignant meningioma, non-Hodgkin lymphoma, Hodgkin lymphoma, leukemia, brain tumor, neoplasm of epithelial cell origin (epithelial carcinoma), basal cell carcinoma, adenocarcinoma, lip cancer, oral cancer, esophageal cancer, small bowel cancer and gastric cancer gastrointestinal cancer, colon cancer, rectal cancer, liver cancer, bladder cancer, pancreatic cancer, ovarian cancer, cervical cancer, lung cancer, breast cancer, skin cancer
  • YTN16 is a cell line established by the inventors (Yamamoto et al., Cancer Res. 109:1480-1492 2018). Three weeks after administration of YTN16, macroscopically visible peritoneal dissemination had formed on the peritoneum.
  • Mouse mesenchymal stem cells (5 ⁇ 10 6 cells/500 ⁇ L) in which human sodium iodide symporter (NIS) was forcibly expressed in peritoneally disseminated mice ) was administered intraperitoneally three times every other day (Fig. 1).
  • MSCs (NIS-MSCs) in which human NIS (SEQ ID NO: 1) was forcibly expressed were produced according to a previous report (Non-Patent Document 3).
  • the human NIS coding sequence (SEQ ID NO: 2) was inserted into the EcoRI site of pcDNA3.1plasmid (Thermo Fisher Scientific) having a CMV promoter, and C57BL/6 mouse bone marrow-derived MSCs (SV40 large T antigen-immortalized) were transfected using LipofectAMINE Plus (Thermo Fisher Scientific). Cells were then cultured (Mesenchymal Stem Cell Growth medium containing 10% FBS) and then selected in medium containing 1.0 mg/ml neomycin. Among the obtained cell clones, those with high NIS expression were used as NIS-MSCs for experiments.
  • FIG. 1 shows the measurement results of gamma-ray emission counts in several organs including the peritoneum.
  • Black bars and white bars show the results of counting the amount of ⁇ -rays emitted from NIS-MSC-administered mice and MSC-administered mice (without forced expression of NIS), respectively.
  • gray bars indicate the results of counting the amount of ⁇ -rays emitted from mice to which 125 I was not administered.
  • FIG. 2A shows that 125 I accumulates in the peritoneum in the NIS-MSC-administered group. In other various organs, the counts indicated by white bars tended to be slightly higher than the counts indicated by black bars. It is considered that the accumulation in the peritoneum decreased the accumulation in other sites. As described above, it was confirmed that the radionuclide 125 I could be accumulated in the peritoneum where peritoneal dissemination was observed by using NIS-MSCs as a delivery carrier.
  • alpha rays are heavy ion beams, they travel a short distance, cause little damage to surrounding normal cells other than cancer cells, and penetrate only a few cells. In this case, although it is excreted in urine and feces, there is no danger that the patient's body will be exposed to the surrounding people. Therefore, long-term isolation and hospitalization unlike 131 I is not required, and the therapeutic method using ⁇ nuclides disclosed by the present invention is considered to be remarkably superior to the conventional therapeutic methods using ⁇ nuclides.
  • mice were peritoneally seeded in the same manner as in the above experiment.
  • Intraperitoneal administration group Group 3: 211 At combined with an antibody that attaches to cancer cells
  • intraperitoneal administration group Group 4: 211 At combined with an antibody that attaches to cancer cells
  • administered intravenously Administered group Group 5: A non-treated group was established, and the mice were bred until they died, and their survival conditions were observed. The results are shown in the survival curve of FIG. In FIG.
  • the date on the horizontal axis is the number of days after 211 At administration.
  • the state of peritoneal dissemination at the time of administration of 211 At was such that the mice died 10 days later in the case of no treatment.
  • FIG. 5 shows that the 211 At-treated groups (Groups 1-4) had longer survival times than the untreated group (Group 5).
  • the group (Group 1) in which 211 At was administered intraperitoneally after administration of NIS-MSC had the longest survival time.
  • the therapeutic composition according to the present invention is effective in treating cancer, especially intractable cancers (for example, peritoneal dissemination). Therefore, the present invention is expected to be used in the medical field (particularly in the cancer treatment field).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Reproductive Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing a treatment method that is more practical than currently reported methods in cancer treatment using sodium iodide symporter (NIS)-MSCs, and a composition for cancer treatment that is to be used in the treatment method. More particularly, in the present invention, the means for solving the problem is a composition for cancer treatment that is characterized by comprising a combination of mesenchymal stem cells expressing NIS with an α-nuclide.

Description

がん治療用組成物Cancer therapeutic composition
 本発明は、間葉系幹細胞と放射性核種を組み合わせて用いるがん治療用組成物および当該治療用組成物を用いたがんの治療方法に関する。 The present invention relates to a composition for treating cancer using a combination of mesenchymal stem cells and a radionuclide, and a method for treating cancer using the composition for treatment.
 現在、がんの治療は、手術などの外科的治療、抗がん剤を使用した薬物療法、放射線治療、免疫チェックポイント阻害剤など、種々の方法が組み合わされて行われており、がん患者の生存率も向上している。しかしながら、スキルス性胃がん、膵がん、トリプルネガティブ乳がんなどの難治性がんの他、胃がん、膵がん、大腸がんなどの消化器がんや卵巣がん、尿管がんなどから転移して生じる腹膜播種などについては、既存の治療法では満足のいく治療効果が得られないことも多い。特に、腹膜播種は、外科的手術による除去が困難で、通常の化学療法剤による治療だけでは、治療効果が乏しく、その予後は極めて不良である。 Currently, cancer treatment is performed by combining various methods such as surgical treatment such as surgery, drug therapy using anticancer drugs, radiation therapy, and immune checkpoint inhibitors. survival rates have also improved. However, in addition to intractable cancers such as scirrhous gastric cancer, pancreatic cancer, and triple-negative breast cancer, gastrointestinal cancers such as gastric cancer, pancreatic cancer, and colorectal cancer, ovarian cancer, and ureteral cancer have metastasized. For peritoneal dissemination that occurs in the In particular, peritoneal dissemination is difficult to remove by surgical operation, and treatment with ordinary chemotherapeutic agents alone has little therapeutic effect and the prognosis is extremely poor.
 近年、腫瘍微小環境(tumor microenvironment:TME)に着目した新たながんの治療方法の開発が試みられている。いわゆる「がん」は、腫瘍細胞からなる腫瘍組織と、間質線維芽細胞、血管やリンパ管を形成する細胞、浸潤性炎症細胞、コラーゲンなどの細胞外マトリックスおよび生理活性物質からなるがん間質から構成されている。がん間質は、間質細胞の高度な集積とその増殖により成長していくが、その成長過程において、間葉系幹細胞(mesenchymal stem cell::MSC)が取り込まれる。MSCは、高い増殖性を特徴とし、骨、脂肪、軟骨および筋肉などの結合組織を構成する細胞に分化する能力を有しており、様々な組織の維持および再生に重要な役割を果たしている。MSCが、がん間質に取り込まれると、腫瘍血管細胞やがん関連線維芽細胞(cancer associated fibroblast:CAF)を含む様々ながん間質関連細胞型に分化する(例えば非特許文献1を参照のこと)。このようなMSCのがん間質への集積能力により、MSCはがんの治療遺伝子などを腫瘍微小環境に送達させるための担体として、注目を集めている(例えば非特許文献2を参照のこと)。 In recent years, attempts have been made to develop new cancer treatment methods that focus on the tumor microenvironment (TME). So-called "cancer" consists of tumor tissue consisting of tumor cells, interstitial fibroblasts, cells forming blood vessels and lymphatics, infiltrating inflammatory cells, extracellular matrix such as collagen, and physiologically active substances. made up of quality. Cancer stroma grows by highly accumulating and proliferating stromal cells, and mesenchymal stem cells (MSCs) are incorporated during the growth process. MSCs are characterized by high proliferation and have the ability to differentiate into cells that constitute connective tissues such as bone, fat, cartilage and muscle, and play important roles in the maintenance and regeneration of various tissues. When MSCs are taken into the cancer stroma, they differentiate into various cancer stroma-associated cell types, including tumor vascular cells and cancer-associated fibroblasts (CAF) (for example, see Non-Patent Document 1). see). Due to the ability of MSCs to accumulate in the cancer stroma, MSCs are attracting attention as carriers for delivering cancer therapeutic genes and the like to the tumor microenvironment (see, for example, Non-Patent Document 2). ).
 ナトリウム-ヨウ素共輸送体(sodium iodide symporter:NIS)を発現させたMSCは、放射性核種をTME内に送達させて、がん細胞を殺傷するためにも使用できることが報告されている(非特許文献3、非特許文献4など)。NISは、13の膜貫通ドメインを有する膜貫通糖タンパク質で、放射性核種である131I、123I、125I、124I、99mTc、188Reおよび211Atなどの放射性核種の輸送を行うことができる。非特許文献3は、NISを発現させたMSCと、131Iを肝臓がんモデルマウスに投与すると腫瘍が縮退したことを報告している。しかしながら、非特許文献3に開示されるマウスの実験においては、55.5 Mbqに及ぶ非常に高い線量の131Iが使用されており、このような高線量をヒトに換算して用いるのは非現実的である。さらに、131Iが放出する殺細胞能力のあるβ線に対する細胞の感受性は、細胞周期によって異なるため、131Iの投与を複数回行う必要があると考えられる。 It has been reported that MSCs expressing sodium iodide symporter (NIS) can also be used to kill cancer cells by delivering radionuclides into the TME (Non-Patent Document 3, Non-Patent Document 4, etc.). NIS is a transmembrane glycoprotein with 13 transmembrane domains that can transport radionuclides such as the radionuclides 131 I, 123 I, 125 I, 124 I, 99m Tc, 188 Re and 211 At. can. Non-Patent Document 3 reports that administration of NIS-expressing MSCs and 131 I to liver cancer model mice resulted in tumor regression. However, in the mouse experiment disclosed in Non-Patent Document 3, a very high dose of 131 I of 55.5 Mbq was used, and it is unrealistic to convert such a high dose to humans. is. Furthermore, multiple doses of 131 I may be necessary because the sensitivity of cells to the cytocidal β-rays emitted by 131 I varies depending on the cell cycle.
 以上のように、NISを発現させたMSC(以下「NIS-MSC」とも記する)を担体として用いて、放射線核種をがんの病巣に送達させる治療法は、優れた治療効果が多いに期待される方法ではあるが、改良すべき点も多く、解決すべき問題は依然として存在している。 As described above, a treatment method that delivers radionuclides to cancer lesions using NIS-expressing MSCs (hereinafter also referred to as "NIS-MSCs") as a carrier is expected to have many excellent therapeutic effects. However, there are still many points to be improved and problems to be solved still exist.
 上記事情に鑑み、本発明は、NIS-MSCを用いたがんの治療において、現在報告されている方法よりも実用的な治療方法の提供、および当該治療方法において使用するがんの治療用組成物の提供を解決課題とする。 In view of the above circumstances, the present invention provides a treatment method that is more practical than currently reported methods in the treatment of cancer using NIS-MSCs, and a therapeutic composition for cancer used in the treatment method Make the provision of goods a problem to be solved.
 発明者は、NIS-MSCに組み合わせる放射性核種として、β線を放出する核種ではなく、α核種を用いることとした。α核種が放出するα線は、重粒子線の1種で、β線と比べると、狭い範囲に高いエネルギーを付与することができるため、局所的には高い治療効果を発揮すると考えられる。また、β線とは異なり、その殺細胞能力は細胞周期に依存しない。その一方で、α線の殺細胞効果は局所的であることから、NIS-MSCに取り込まれたα核種が、がん細胞に対して有効な殺傷能力を発揮するかどうか、不明であった。
 発明者は、α核種である211Atをマウスの腹膜播種モデルに投与したところ、意外にも、β核種を用いた場合の投与回数(3回)および投与線量(4 MBqまたは10 MBq)よりも少ない投与回数(1回)および投与線量(1.3MBq)で、β線核種と同等またはそれ以上の腫瘍縮効果を発揮することを見出した。
 本発明は以上の知見に基づいて完成されたものである。
The inventors decided to use α nuclides instead of β-ray emitting nuclides as radionuclides to be combined with NIS-MSC. α-rays emitted by α-nuclides are a type of heavy ion beam, and compared to β-rays, they can impart high energy to a narrower range, so they are thought to exhibit high therapeutic effects locally. Also, unlike β rays, its cell-killing ability does not depend on the cell cycle. On the other hand, since the cell-killing effect of α-rays is localized, it was unclear whether α-nuclides incorporated into NIS-MSCs exert effective killing ability against cancer cells.
When the inventor administered 211 At, an α nuclide, to a mouse model of peritoneal dissemination, unexpectedly, the number of administrations (3 times) and the dose (4 MBq or 10 MBq) when using β nuclides were higher. It was found that a small dose (1 time) and dose (1.3MBq) exerted tumor contraction effect equal to or greater than that of β-ray nuclides.
The present invention has been completed based on the above findings.
 すなわち、本発明は以下の(1)~(4)である。
(1)がん治療用組成物であって、ナトリウム-ヨウ素共輸送体(sodium iodide symporter:NIS)を発現する間葉系幹細胞とα核種とを組み合わるせことを特徴とする、がん治療用組成物。
(2)前記がんが、腹膜播種である、上記(1)に記載のがん治療用組成物。
(3)前記間葉系幹細胞を腹腔内投与し、前記α核種を腹腔内投与または経口投与することを特徴とする、上記(1)に記載のがん治療用組成物。
(4)前記α核種が211Atである、上記(1)から(3)までのいずれかに記載のがん治療用組成物。
  なお、本明細書において「~」の符号は、その左右の値を含む数値範囲を示す。
That is, the present invention is the following (1) to (4).
(1) A cancer treatment composition comprising a combination of mesenchymal stem cells expressing a sodium iodide symporter (NIS) and an α nuclide. composition.
(2) The composition for cancer treatment according to (1) above, wherein the cancer is peritoneal dissemination.
(3) The composition for cancer treatment according to (1) above, wherein the mesenchymal stem cells are administered intraperitoneally, and the α nuclide is administered intraperitoneally or orally.
(4) The composition for cancer treatment according to any one of (1) to (3) above, wherein the α nuclide is 211 At.
In this specification, the sign "-" indicates a numerical range including the values on the left and right of it.
 本発明により、従来の方法よりも、被爆のおそれの少ないより安全で、かつ、有効ながんの治療が可能となる。特に、腹膜播種などの難治性のがんにおいても、有効な治療が可能となる。 The present invention enables safer and more effective cancer treatment with less risk of radiation exposure than conventional methods. In particular, even intractable cancers such as peritoneal dissemination can be effectively treated.
腹膜播種マウスモデルを用いて、NIS-MSCおよび放射性核種の組み合わせ投与によるがんの治療効果を確認するための実験スケジュールを示す。Using a peritoneal dissemination mouse model, an experimental schedule for confirming the therapeutic effect of cancer by combined administration of NIS-MSCs and radionuclides is shown. 図1に示す実験スケジュールに従って、腹膜播種マウスモデルにNIS-MSCを腹腔内投与、125Iを経口投与した後、各種臓器における放射線量をカウントした結果を示す。FIG. 1 shows the results of counting radiation doses in various organs after administering NIS-MSCs intraperitoneally and 125 I orally to peritoneal dissemination mouse models according to the experimental schedule shown in FIG. 腹膜播種マウスモデルにNIS-MSCを腹腔内投与、131Iを経口投与した後、腹膜上の腹膜播種の状態を確認したときの画像を示す。Aはコントロールマウス、Bは131Iを経口投与したマウスの腹膜の画像である。Figure 1 shows an image of peritoneal dissemination on the peritoneum after intraperitoneal administration of NIS-MSCs and oral administration of 131 I to a peritoneal dissemination mouse model. A is a control mouse, and B is an image of the peritoneum of a mouse orally administered with 131I . 腹膜播種マウスモデルにNIS-MSCを腹腔内投与、211Atを経口投与した後、腹膜上の腹膜播種の状態を確認したときの画像を示す。Aはコントロールマウス、Bは211Atを経口投与、Cは211Atを腹腔内投与したマウスの腹膜の画像である。The image shows the state of peritoneal dissemination on the peritoneum after intraperitoneal administration of NIS-MSC and oral administration of 211 At to a peritoneal dissemination mouse model. A is a control mouse, B is an orally administered 211 At, and C is an image of the peritoneum of a mouse intraperitoneally administered 211 At. 腹膜播種マウスモデルにNIS-MSCを腹腔内投与、211Atを腹腔内投与した後、マウスの生存率を調べた結果を示す。The results of examining the survival rate of mice after intraperitoneal administration of NIS-MSCs and 211 At in peritoneal dissemination mouse models are shown.
 本発明を実施するための第1の実施形態は、がん治療用組成物であって、ナトリウム-ヨウ素共輸送体(sodium iodide symporter:NIS)を発現する間葉系幹細胞(mesenchymal stem cell::MSC)とα核種とを組み合わせることを特徴とする、がん治療用組成物(以下「本実施形態にかかる組成物」とも記載する)である。
 NISは、約650のアミノ酸からなる内在性膜タンパク質で、13の膜貫通領域を有し、イオンポンプとして機能し、1個のヨウ化物イオン(I-)2個のナトリウムイオン(Na+)を細胞内に同時に輸送する機能を有する。これまでに、疾患治療における新たなツールとしての利用性についての報告が行われている(例えば、非特許文献4を参照のこと)。本実施形態で使用されるNISは、使用目的に応じて、いかなる動物種由来のものを選択しても良く、例えば、配列番号1で表されるアミノ酸配列からなるヒトのNISが好ましいが、この配列に限定されるものではない。また、天然に存在するNISの他、その改変体またはホモログ(例えば、天然由来のNISのアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、ヨウ化物イオンおよびナトリウムイオンを細胞内に同時に輸送する活性を有するNISの改変体またはホモログなど)であってもよく、例えば、US8852576B2に開示されるNIS改変体などを使用してもよい。
A first embodiment for carrying out the present invention is a composition for treating cancer, comprising mesenchymal stem cells expressing sodium iodide symporter (NIS): MSC) and an α nuclide are combined to treat cancer (hereinafter also referred to as "the composition according to the present embodiment").
NIS is an integral membrane protein of approximately 650 amino acids, has 13 transmembrane domains and functions as an ion pump, pumping one iodide ion (I-) and two sodium ions (Na+) into the cell. It has the function of simultaneously transporting within So far, reports have been made on its utility as a new tool in disease treatment (see, for example, Non-Patent Document 4). The NIS used in the present embodiment may be derived from any animal species depending on the purpose of use. For example, human NIS consisting of the amino acid sequence represented by SEQ ID NO: 1 is preferable, but this It is not limited to arrays. In addition to naturally occurring NIS, its variants or homologues (e.g., consisting of an amino acid sequence having an identity of 90% or more with the amino acid sequence of naturally occurring NIS, simultaneously introducing iodide ions and sodium ions into cells) NIS variants or homologues having transport activity), for example, NIS variants disclosed in US8852576B2 may be used.
 MSCとは、幹細胞の1種で中胚葉由来の組織(例えば、骨、軟骨、脂肪、血管、心筋細胞など)の他、外胚葉由来の神経細胞やグリア、内胚葉由来の幹細胞などに分化する能力を有する細胞である。ヒトMSCは、例えば、細胞表面マーカーであるCD73およびCD105などが陽性であり、かつ、骨髄系マーカーのCD34、CD14、CD45およびMHCクラスII抗原などが陰性であることによって特徴付けられる。MSCは、骨髄や歯髄、脂肪から採取することができる。また、採取したMSC使用目的に応じて、改変してもよく、例えば、SV40 large T抗原などを用いて不死化してもよい。 MSCs are a type of stem cell that differentiates into mesoderm-derived tissues (e.g., bone, cartilage, fat, blood vessels, cardiomyocytes, etc.), ectoderm-derived nerve cells and glia, and endoderm-derived stem cells. It is a cell with capacity. Human MSCs are characterized, for example, by being positive for cell surface markers such as CD73 and CD105 and negative for myeloid markers such as CD34, CD14, CD45 and MHC class II antigen. MSCs can be harvested from bone marrow, dental pulp, and fat. In addition, depending on the intended use of the collected MSCs, they may be modified, for example, immortalized using SV40 large T antigen or the like.
 MSC内におけるNISの発現は、当該技術分野における通常の技術常識に基づいて、容易に実施することができる。例えば、NISのcDNAを適当なプロモーター(例えば、サイトメガロウイルス由来のプロモーター(CMV IE promoter)など)の制御下にて発現可能な状態で含む発現ベクターを、MSCにトランスフェクションし、適当な選択マーカーで、当該発現ベクターを含むMSCを選択し、得られた細胞クローンのうちNISを発現する細胞を、NIS発現MSC(NIS-MSC)として用いることができる。 Expression of NIS in MSCs can be easily carried out based on common technical knowledge in the relevant technical field. For example, an expression vector containing NIS cDNA under the control of an appropriate promoter (e.g., cytomegalovirus-derived promoter (CMV IE promoter), etc.) in an expressible state is transfected into MSCs, and an appropriate selection marker is used. , MSCs containing the expression vector are selected, and NIS-expressing cells among the obtained cell clones can be used as NIS-expressing MSCs (NIS-MSCs).
 本実施形態で使用されるα核種は、α線を放出する核種であって、NISによって細胞内に取り込まれるものが好ましく、特に限定はしないが、例えば、211Atなどが好ましい。 The α-nuclide used in the present embodiment is preferably a nuclide that emits α-rays and is taken up into cells by NIS. Although not particularly limited, for example, 211 At is preferable.
 本実施形態にかかる組成物は、NIS-MSCとα核種を別々に投与することを特徴とするがん治療用組成物である。上述の通り、NIS-MSCは、がん間質に集積し、かつ、α核種を細胞内に取り込むため、腫瘍細胞へのα線の効率的な照射を可能ならしめ、その結果、腫瘍細胞を死滅させることができる。すなわち、NIS-MSCとα核種を組み合わせて投与する組成物は、がんの治療に使用することができる。
 ここで、NIS-MSCは、NIS-MSCの他、これを懸濁することができる溶液、例えば、生理食塩水、リン酸緩衝生理食塩水(PBS)などに懸濁されていてもよい。さらに、NIS-MSC懸濁液には、薬学的に許容される添加剤を含んでいてもよい。NIS-MSCを含む懸濁液は、腫瘍組織(がんの病巣)もしくは腫瘍細胞が存在する組織に投与してもよく、または静脈内に投与してもよい。例えば、治療対象のがんが腹膜播種の場合には、NIS-MSCの投与方法は、腹腔内投与が好ましい。
 本実施形態にかかる組成物は、NIS-MSCを投与した後に、α核種を投与する。NIS-MSCとα核種の投与間隔は、特に限定はしないが、例えば、1日~7日程度が好ましい。α核種の投与方法は、腫瘍組織(がんの病巣)もしくは腫瘍細胞が存在する組織への投与、静脈内投与、または経口投与であってもよい。また、NIS-MSCおよびα核種の投与回数は、1回の投与であっても、複数回の投与であってもよい。例えば、治療対象のがんが腹膜播種の場合には、α核種(例えば211Atなど)の投与方法は、腹腔内投与または経口投与が好ましく、腹腔内がより好ましい。
 本実施形態にかかる組成物を用いた治療法は、単独か、または化学療法、放射線療法等と組み合わせて実施することができる。
The composition according to this embodiment is a cancer treatment composition characterized by administering NIS-MSCs and α nuclides separately. As mentioned above, NIS-MSCs accumulate in the cancer stroma and incorporate α nuclides into the cells, which enables efficient irradiation of α rays to tumor cells, resulting in the elimination of tumor cells. can be annihilated. That is, a composition administered in combination with NIS-MSCs and α nuclides can be used for cancer treatment.
Here, NIS-MSCs may be suspended in NIS-MSCs or in a solution capable of suspending NIS-MSCs, such as physiological saline or phosphate-buffered saline (PBS). Furthermore, the NIS-MSC suspension may contain pharmaceutically acceptable additives. Suspensions containing NIS-MSCs may be administered to tumor tissue (cancer foci) or tissue in which tumor cells reside, or may be administered intravenously. For example, when the cancer to be treated is peritoneal dissemination, the administration method of NIS-MSCs is preferably intraperitoneal administration.
In the composition according to this embodiment, alpha nuclides are administered after administration of NIS-MSCs. The administration interval between NIS-MSCs and α nuclides is not particularly limited, but is preferably about 1 to 7 days, for example. The α nuclide may be administered to a tumor tissue (cancer focus) or a tissue in which tumor cells are present, intravenous administration, or oral administration. In addition, the administration frequency of NIS-MSCs and α nuclides may be one administration or multiple administrations. For example, when the cancer to be treated is peritoneal dissemination, the administration method of the α nuclide (eg, 211 At) is preferably intraperitoneal administration or oral administration, more preferably intraperitoneal administration.
Treatment using the compositions of this embodiment can be performed alone or in combination with chemotherapy, radiation therapy, and the like.
 本実施形態にかかる組成物の治療対象となるがん(悪性腫瘍/悪性新生物)としては、特に限定はしないが、例えば、肝細胞癌、胆管細胞癌、腎細胞癌、扁平上皮癌、基底細胞癌、移行細胞癌、腺癌、悪性ガストリノーマ、悪性黒色腫、線維肉腫、粘液肉腫、脂肪肉腫、平滑筋肉腫、横紋筋肉腫、悪性奇形腫、血管肉腫、カポジ肉腫、骨肉腫、軟骨肉腫、リンパ管肉腫、悪性髄膜腫、非ホジキンリンパ腫、ホジキンリンパ腫、白血病、脳腫瘍、上皮細胞由来新生物(上皮癌腫)、基底細胞癌腫、腺癌腫、口唇癌、口腔癌、食道癌、小腸癌および胃癌のような胃腸癌、結腸癌、直腸癌、肝癌、膀胱癌、膵臓癌、卵巣癌、子宮頚癌、肺癌、乳癌、扁平上皮細胞癌および基底細胞癌のような皮膚癌、前立腺癌並びに腎細胞癌腫などの他、これらのがんが転移したがん、例えば、胃がん、膵がん、大腸がんなどの消化器がんや卵巣がん、尿管がんなどから転移して生じる腹膜播種などを挙げることができる。 Cancers (malignant tumors/malignant neoplasms) to be treated with the composition according to this embodiment are not particularly limited. Cell carcinoma, transitional cell carcinoma, adenocarcinoma, malignant gastrinoma, malignant melanoma, fibrosarcoma, myxosarcoma, liposarcoma, leiomyosarcoma, rhabdomyosarcoma, malignant teratoma, angiosarcoma, Kaposi's sarcoma, osteosarcoma, chondrosarcoma , lymphangiosarcoma, malignant meningioma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, leukemia, brain tumor, epithelial cell-derived neoplasm (epithelial carcinoma), basal cell carcinoma, adenocarcinoma, lip cancer, oral cancer, esophageal cancer, small bowel cancer and Gastrointestinal cancer such as gastric cancer, colon cancer, rectal cancer, liver cancer, bladder cancer, pancreatic cancer, ovarian cancer, cervical cancer, lung cancer, breast cancer, skin cancer such as squamous cell carcinoma and basal cell carcinoma, prostate cancer and kidney In addition to cell carcinoma, peritoneal dissemination resulting from the metastasis of these cancers, such as gastric cancer, pancreatic cancer, colorectal cancer, ovarian cancer, ureter cancer, etc. etc. can be mentioned.
 本実施形態にかかる組成物は、投与方法等の説明書と共にキットの形態で提供してもよい。キット中に含まれる組成物は、有効成分(すなわち、MSCもしくはNIS-MSCおよびα核種など)の活性を長期間有効に持続し、成分が容器内側に吸着することなく、また、成分を変質させることのない材質で製造された容器により、有効成分毎、別々に供給される。なお、α核種は放射線の漏洩を防ぐために適した形態で供給される必要がある。
 また、本キットの使用説明は、紙などに印刷されたものであっても、CD-ROMまたはDVD-ROMなどの電磁的に読み取り可能な媒体に保存され、供給されてもよい。
The composition according to this embodiment may be provided in the form of a kit together with instructions such as an administration method. The composition contained in the kit effectively maintains the activity of the active ingredients (i.e., MSC or NIS-MSC and α nuclides) for a long period of time, and the ingredients do not adsorb to the inside of the container, and the ingredients are denatured. Each active ingredient is supplied separately in a container made of non-toxic material. In addition, alpha nuclides need to be supplied in a suitable form to prevent leakage of radiation.
In addition, the instructions for use of the kit may be printed on paper or the like, or may be stored and supplied on an electromagnetically readable medium such as a CD-ROM or DVD-ROM.
 本発明の第2の実施形態は、本実施形態にかかる組成物を患者に投与することを含む、がんの治療方法(以下「本実施形態にかかる治療方法」とも記載する)である。
 ここで「治療」とは、すでにがんに罹患した患者において、その病態の進行および悪化を阻止または緩和することを意味し、これによってがんの進行および悪化を阻止または緩和することを目的とする処置のことである。
 また、治療の対象はヒトに限定されず、ヒト以外の哺乳動物、例えば、マウス、ラット、イヌ、ネコのほか、ウシ、ウマ、ヒツジなど家畜、サル、チンパンジーやゴリラなどの霊長類等であってもよく、特に好ましくは、ヒトである。
A second embodiment of the present invention is a cancer treatment method (hereinafter also referred to as "treatment method according to this embodiment") comprising administering a composition according to this embodiment to a patient.
The term “treatment” as used herein means to prevent or alleviate the progress and deterioration of the condition in a patient already suffering from cancer, and thereby to prevent or alleviate the progression and deterioration of cancer. It is the action to take.
In addition, the subject of treatment is not limited to humans, and may be mammals other than humans, such as mice, rats, dogs, cats, domestic animals such as cows, horses, and sheep, and primates such as monkeys, chimpanzees, and gorillas. Humans are particularly preferred.
 本実施形態の治療方法の対象となるがん(悪性腫瘍/悪性新生物)としては、特に限定はしないが、例えば、肝細胞癌、胆管細胞癌、腎細胞癌、扁平上皮癌、基底細胞癌、移行細胞癌、腺癌、悪性ガストリノーマ、悪性黒色腫、線維肉腫、粘液肉腫、脂肪肉腫、平滑筋肉腫、横紋筋肉腫、悪性奇形腫、血管肉腫、カポジ肉腫、骨肉腫、軟骨肉腫、リンパ管肉腫、悪性髄膜腫、非ホジキンリンパ腫、ホジキンリンパ腫、白血病、脳腫瘍、上皮細胞由来新生物(上皮癌腫)、基底細胞癌腫、腺癌腫、口唇癌、口腔癌、食道癌、小腸癌および胃癌のような胃腸癌、結腸癌、直腸癌、肝癌、膀胱癌、膵臓癌、卵巣癌、子宮頚癌、肺癌、乳癌、扁平上皮細胞癌および基底細胞癌のような皮膚癌、前立腺癌並びに腎細胞癌腫などの他、これらのがんが転移したがん、例えば、胃がん、膵がん、大腸がんなどの消化器がんや卵巣がん、尿管がんなどから転移して生じる腹膜播種などを挙げることができる。 Cancers (malignant tumors/malignant neoplasms) to be treated by the treatment method of the present embodiment are not particularly limited, but examples include hepatocellular carcinoma, cholangiocarcinoma, renal cell carcinoma, squamous cell carcinoma, and basal cell carcinoma. , transitional cell carcinoma, adenocarcinoma, malignant gastrinoma, malignant melanoma, fibrosarcoma, myxosarcoma, liposarcoma, leiomyosarcoma, rhabdomyosarcoma, malignant teratoma, angiosarcoma, Kaposi's sarcoma, osteosarcoma, chondrosarcoma, lymphoid Vascular sarcoma, malignant meningioma, non-Hodgkin lymphoma, Hodgkin lymphoma, leukemia, brain tumor, neoplasm of epithelial cell origin (epithelial carcinoma), basal cell carcinoma, adenocarcinoma, lip cancer, oral cancer, esophageal cancer, small bowel cancer and gastric cancer gastrointestinal cancer, colon cancer, rectal cancer, liver cancer, bladder cancer, pancreatic cancer, ovarian cancer, cervical cancer, lung cancer, breast cancer, skin cancer such as squamous cell carcinoma and basal cell carcinoma, prostate cancer and renal cell carcinoma In addition, cancers that these cancers have metastasized to, for example, gastrointestinal cancers such as gastric cancer, pancreatic cancer, colon cancer, ovarian cancer, and peritoneal dissemination caused by metastasis from ureteral cancer can be mentioned.
 本明細書が英語に翻訳されて、単数形の「a」、「an」および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものも含むものとする。
 以下に実施例を示してさらに本発明の説明を行うが、本実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
When this specification is translated into English and contains the words "a", "an" and "the" in the singular, the singular as well as the plural unless the context clearly indicates otherwise. shall also include those of
EXAMPLES The present invention will be further described below with reference to Examples, but these Examples are merely illustrations of embodiments of the present invention and do not limit the scope of the present invention.
1.放射性核種の腹膜への集積の確認
 C57BL/6 マウス(日本チャールス・リバー株式会社)に、可移植マウス胃癌細胞株 YTN16(1×107細胞)を腹腔内に投与し、腹膜播種を形成させた。YTN16は、発明者らにより樹立された細胞株である(Yamamotoら, Cancer Res. 109:1480-1492 2018.)。YTN16の投与から3週間後、腹膜上に肉眼的に確認可能な腹膜播種が形成していた。腹膜播種を形成したマウスに、ヒトのナトリウム-ヨウ素共輸送体(sodium iodide symporter:NIS)を強制発現させたマウスの間葉系幹細胞(mesenchymal stem cell::MSC)(5×106細胞/500μL)を1日おきに3回、腹腔内に投与した(図1)。
 ヒトNIS(配列番号1)を強制発現させたMSC(NIS-MSC)は既報(非特許文献3)に従って作製した。具体的には、CMVプロモーターを有するpcDNA3.1plasmid(Thermo Fisher Scientific)のEcoRIサイトに、ヒトのNISのコード配列(配列番号2)を挿入し、C57BL/6 マウスの骨髄由来のMSC(SV40 large T抗原で不死化した)に、LipofectAMINE Plus(Thermo Fisher Scientific)を用いてトランスフェクションした。その後、細胞を培養(10 % FBSを含むMesenchymal Stem Cell Growth培地)した後、1.0 mg/mlのネオマイシンを含む培地で、セレクションを行った。得られた細胞クローンのうち、NIS発現の高い細胞クローンをNIS-MSCとして実験に使用した。
1. Confirmation of radionuclide accumulation in the peritoneum C57BL/6 mice (Charles River Laboratories Japan, Inc.) were intraperitoneally injected with the transplantable mouse stomach cancer cell line YTN16 (1×10 7 cells) to form peritoneal dissemination. . YTN16 is a cell line established by the inventors (Yamamoto et al., Cancer Res. 109:1480-1492 2018). Three weeks after administration of YTN16, macroscopically visible peritoneal dissemination had formed on the peritoneum. Mouse mesenchymal stem cells (MSC) (5×10 6 cells/500 μL) in which human sodium iodide symporter (NIS) was forcibly expressed in peritoneally disseminated mice ) was administered intraperitoneally three times every other day (Fig. 1).
MSCs (NIS-MSCs) in which human NIS (SEQ ID NO: 1) was forcibly expressed were produced according to a previous report (Non-Patent Document 3). Specifically, the human NIS coding sequence (SEQ ID NO: 2) was inserted into the EcoRI site of pcDNA3.1plasmid (Thermo Fisher Scientific) having a CMV promoter, and C57BL/6 mouse bone marrow-derived MSCs (SV40 large T antigen-immortalized) were transfected using LipofectAMINE Plus (Thermo Fisher Scientific). Cells were then cultured (Mesenchymal Stem Cell Growth medium containing 10% FBS) and then selected in medium containing 1.0 mg/ml neomycin. Among the obtained cell clones, those with high NIS expression were used as NIS-MSCs for experiments.
 3 回目のMSCの投与 から2日後に、γ線を発する 125I を4MBq経口投与した。以上のNIS-MSCおよび125Iのマウスへの投与を、同じスケジュールで再度行った。その後、125I およびNIS-MSCを各々1回ずつマウスに投与した(図1)。 最後の125I投与から2日後、マウスを安楽死させ、切除した腹膜への125Iの集積の程度は、γ-カウンターで測定した。
 図2に、腹膜を含むいくつかの臓器におけるγ線放出量のカウント数の測定結果を示す。黒色バーおよび白色バーは、各々、NIS-MSCを投与したマウスおよびMSC(NISを強制発現させていない)を投与したマウス由来のγ線放出量をカウントした結果を示す。また、灰色バーは125Iを投与していないマウス由来のγ線放出量をカウントした結果を示す。図2Aから、NIS-MSC 投与群において、125Iが腹膜に集積しているのがわかる。なお、他の各種臓器においては、黒色バーで示すカウント数より、白色バーで示すカウント数の方が若干高い傾向にあったが、これは、NIS-MSCを投与したマウスでは投与した125Iが腹膜に集積した分、他部位への集積が減少したためと考えられる。
 以上の通り、NIS-MSCを送達担体として用いることで、放射性核種の125Iを腹膜播種が認められる腹膜へ集積させることが可能であることが確認できた。
Two days after the third administration of MSCs, 4 MBq of γ-emitting 125 I was administered orally. The above administration of NIS-MSCs and 125 I to mice was repeated on the same schedule. Thereafter, 125 I and NIS-MSCs were administered once each to mice (Fig. 1). Two days after the last 125 I dose, the mice were euthanized and the extent of 125 I accumulation in the excised peritoneum was measured with a γ-counter.
FIG. 2 shows the measurement results of gamma-ray emission counts in several organs including the peritoneum. Black bars and white bars show the results of counting the amount of γ-rays emitted from NIS-MSC-administered mice and MSC-administered mice (without forced expression of NIS), respectively. In addition, gray bars indicate the results of counting the amount of γ-rays emitted from mice to which 125 I was not administered. FIG. 2A shows that 125 I accumulates in the peritoneum in the NIS-MSC-administered group. In other various organs, the counts indicated by white bars tended to be slightly higher than the counts indicated by black bars. It is considered that the accumulation in the peritoneum decreased the accumulation in other sites.
As described above, it was confirmed that the radionuclide 125 I could be accumulated in the peritoneum where peritoneal dissemination was observed by using NIS-MSCs as a delivery carrier.
2.β線を発する放射性核種の腹膜播種への影響の検討
 上記1で記載した腹膜播種マウスモデルと同様のモデルで、殺細胞効果のあるβ線を発する131Iを放射性核種として使用し、上記1の方法と同じ投与スケジュールにて、実験を行った。131Iは、1投与あたり4MBqまたは10MBqを経口投与した。YTN16(1×107細胞)の腹腔内への投与から5週間後にマウスを安楽死させ、腹膜播種の形成状態を観察した。なお、腹膜播種を同様に形成させた群(a群)、および腹膜播種を同様に形成させてNIS-MSCを実験群と同様に投与し、生理食塩水を経口投与した群(b群)、以上2群をコントロールとした。これら2群のコントロール間において、腹膜播種の状態に有意な差は認められなかった。
 131Iを投与したマウスとコントロールマウスの腹膜の画像を図3に示す。コントロールの腹膜の表面には、YTN16細胞からなる結節、すなわち腹膜播種が認められたのに対し(図3A、例えば、丸で囲んだ領域)、131Iを10MBq投与したマウスの腹膜においては、腹膜播種の結節の減少および縮小が観察された(図3B)。
2. Investigation of the effect of β-emitting radionuclides on peritoneal dissemination In a model similar to the peritoneal dissemination mouse model described in 1 above, 131 I, which emits β-rays with a cell-killing effect, was used as a radionuclide. The experiment was conducted with the same administration schedule as the method. 131 I was administered orally at 4 MBq or 10 MBq per dose. Five weeks after the intraperitoneal administration of YTN16 (1×10 7 cells), the mice were euthanized and the formation of peritoneal dissemination was observed. In addition, a group in which peritoneal seeding was formed in the same manner (group a), and a group in which peritoneal seeding was formed in the same manner, NIS-MSCs were administered in the same manner as the experimental group, and physiological saline was orally administered (group b), The above two groups were used as controls. There was no significant difference in peritoneal dissemination status between these two groups of controls.
Images of the peritoneum of 131 I-administered mice and control mice are shown in FIG. Control peritoneal surfaces showed nodules, or peritoneal seeding, composed of YTN16 cells (Fig. 3A, e.g., circled area), whereas in the peritoneum of mice treated with 10 MBq of 131I , peritoneal A reduction and shrinkage of seeding nodules was observed (Fig. 3B).
3.α線を発する放射性核種の腹膜播種への影響の検討
 次に、α線を発する211Atを放射性核種として使用し、上記2と同様の実験を行った。ただし、上記2では、NIS-MSCを3回投与後に131Iを1回投与する手順を2回繰り返した後、さらにNIS-MSCを1回投与後に131Iを1回投与したの対し、211Atを用いた場合は、NIS-MSCの3回投与後に211Atを1回投与(経口投与または腹腔内投与)する、単回投与で実施した。211Atの投与線量は、1.3MBqとした。その結果211Atの経口投与で腹膜播種の減少および縮小効果が認められ(図4B)、腹腔内投与により、より効果的に播種の減少および縮小効果が認められた(図4C)。
3. Investigation of Effect of α-ray Emitting Radionuclide on Peritoneal Dissemination Next, the same experiment as in 2 above was performed using 211 At, which emits α ray, as the radionuclide. However, in 2 above, the procedure of administering NIS-MSCs three times and then administering 131I once was repeated twice, and then NIS- MSCs were administered once and then 131I was administered once. When using , a single dose of 211 At (orally or intraperitoneally) was performed after three doses of NIS-MSCs. The dose of 211 At was 1.3 MBq. As a result, oral administration of 211 At was found to reduce and reduce peritoneal dissemination (Fig. 4B), and intraperitoneal administration more effectively reduced and reduced dissemination (Fig. 4C).
 上記2に示す通り、β核種である131Iを用いる場合には、複数回(上記2では3回)131Iを投与した。これに対し、211Atは1回のみの投与であった。それにも関わらず、211Atの単回投与は、131Iの複数回投与と同等以上の播種の減少および縮小効果を発揮している。特に、図2と図3を比較すると、α核種を用いた方が(図3)播種の減少効果が高いことがわかる。以上のように、α核種である211Atを使用した方が、優れた腫瘍縮退効果が発揮されることが明らかになった。α線は重粒子線であり、DNAを二本鎖切断するとともに、大きなダメージをがん細胞に与え、この効果はβ線と比較し、細胞周期に寄らずに効果を発揮すると考えられる。また、α線は重粒子線であるため、飛距離は短く、がん細胞以外の周囲の正常細胞に与えるダメージは小さく、数個レベルの細胞しか透過しないため、仮に患者さんの腹腔内に投与した場合、尿や便などに混じって排泄されるものの、患者さんの体から周囲の人へ被曝する恐れがない。従って、131Iのような長期の隔離入院も必要なく、本発明によって開示されるα核種を用いた治療法が、従来のβ核種を用いる治療方法よりも格段に優れていると考えられる。 As shown in 2 above, when the β nuclide 131 I was used, 131 I was administered multiple times (three times in 2 above). In contrast, 211 At was administered only once. Nevertheless, a single dose of 211 At exerts a reduction and reduction effect on dissemination equal to or greater than multiple doses of 131 I. In particular, when comparing FIG. 2 and FIG. 3, it can be seen that the use of α nuclides (FIG. 3) has a higher effect of reducing seeding. As described above, it was clarified that the use of 211 At, which is an α nuclide, exhibits a superior tumor regression effect. Alpha rays are heavy ion beams that break DNA double-strands and inflict great damage to cancer cells. Compared to beta rays, this effect is thought to be exerted regardless of the cell cycle. In addition, since alpha rays are heavy ion beams, they travel a short distance, cause little damage to surrounding normal cells other than cancer cells, and penetrate only a few cells. In this case, although it is excreted in urine and feces, there is no danger that the patient's body will be exposed to the surrounding people. Therefore, long-term isolation and hospitalization unlike 131 I is not required, and the therapeutic method using α nuclides disclosed by the present invention is considered to be remarkably superior to the conventional therapeutic methods using β nuclides.
4.211Atによる腹膜播種モデルマウスの生存期間の延長効果
 さらに、211Atによる腹膜播種の治療効果を検証するために、中期実験を行い、腹膜播種モデルマウスの生存期間について検討を行った。具体的には、上記実験と同様にマウスに腹膜播種を形成し、これに対して、Group 1: NIS-MSC投与後に 211At を腹腔内に投与した群、Group 2: Free の 211At を腹腔内に投与した群、Group 3: 211Atとがん細胞につく抗体を結合させて、腹腔内に投与した群、Group 4: 211At とがん細胞につく抗体を結合させて、静脈内に投与した群Group 5: 無治療群を設け、マウスが死亡するまで飼育し、その生存状況を観察した。
 その結果を図5の生存曲線で示した。図5において、横軸の日付は、211At投与後の日数である。211At投与の時点における腹膜播種の状態は、無処置の場合、10日後にはマウスが死亡する程度に進行した状態であった。図5から、無治療群(Group 5)と比較して、211At治療群(Group 1~4)は、生存期間が長いことが分かる。なかでも、NIS-MSCを投与した後に211Atを腹腔内投与した群(Group 1)の生存期間が最も長かった。
4. Effect of 211 At on Prolonging Survival Period of Peritoneal Dissemination Model Mouse Further, in order to verify the therapeutic effect of peritoneal dissemination with 211 At, a mid-term experiment was conducted to examine the survival period of the peritoneal dissemination model mouse. Specifically, mice were peritoneally seeded in the same manner as in the above experiment. Intraperitoneal administration group, Group 3: 211 At combined with an antibody that attaches to cancer cells, and intraperitoneal administration group, Group 4: 211 At combined with an antibody that attaches to cancer cells, administered intravenously Administered group Group 5: A non-treated group was established, and the mice were bred until they died, and their survival conditions were observed.
The results are shown in the survival curve of FIG. In FIG. 5, the date on the horizontal axis is the number of days after 211 At administration. The state of peritoneal dissemination at the time of administration of 211 At was such that the mice died 10 days later in the case of no treatment. FIG. 5 shows that the 211 At-treated groups (Groups 1-4) had longer survival times than the untreated group (Group 5). Among them, the group (Group 1) in which 211 At was administered intraperitoneally after administration of NIS-MSC had the longest survival time.
 以上の結果から、NIS-MSCと211Atを組み合わせて投与する治療方法は、腹膜播種の数を減少させ、その大きさを縮小させることが明らかになった。そして、がんに対する治療効果は、すでに報告されているNIS-MSCおよび131Iとの組み合わせ治療の効果よりも格段に優れていることが確認できた。 These results demonstrate that the combined administration of NIS-MSCs and 211 At reduced the number and size of peritoneal dissemination. It was also confirmed that the therapeutic effect on cancer is significantly superior to the already reported effects of combination therapy with NIS-MSC and 131I .
 本発明にかかる治療組成物は、がん、特に難治性のがん(例えば、腹膜播種など)に治療に効果を示す。従って、本発明は、医学分野(特に、がん治療分野)における利用が期待される。 The therapeutic composition according to the present invention is effective in treating cancer, especially intractable cancers (for example, peritoneal dissemination). Therefore, the present invention is expected to be used in the medical field (particularly in the cancer treatment field).

Claims (4)

  1.  がん治療用組成物であって、ナトリウム-ヨウ素共輸送体(sodium iodide symporter:NIS)を発現する間葉系幹細胞とα核種とを組み合わるせことを特徴とする、がん治療用組成物。 A composition for treating cancer, characterized by combining mesenchymal stem cells expressing a sodium iodide symporter (NIS) and an α nuclide. .
  2.  前記がんが、腹膜播種である、請求項1に記載のがん治療用組成物。 The composition for cancer treatment according to claim 1, wherein the cancer is peritoneal dissemination.
  3.  前記間葉系幹細胞を腹腔内投与し、前記α核種を腹腔内投与または経口投与することを特徴とする、請求項1に記載のがん治療用組成物。 The composition for cancer treatment according to claim 1, wherein the mesenchymal stem cells are administered intraperitoneally, and the α nuclide is administered intraperitoneally or orally.
  4.  前記α核種が211Atである、請求項1から請求項3までのいずれか1項に記載のがん治療用組成物。
     
    4. The composition for cancer treatment according to any one of claims 1 to 3, wherein the alpha nuclide is 211 At.
PCT/JP2022/024277 2021-06-19 2022-06-17 Composition for cancer treatment WO2022265092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530426A JPWO2022265092A1 (en) 2021-06-19 2022-06-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021102080 2021-06-19
JP2021-102080 2021-06-19

Publications (1)

Publication Number Publication Date
WO2022265092A1 true WO2022265092A1 (en) 2022-12-22

Family

ID=84527551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024277 WO2022265092A1 (en) 2021-06-19 2022-06-17 Composition for cancer treatment

Country Status (2)

Country Link
JP (1) JPWO2022265092A1 (en)
WO (1) WO2022265092A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KNOOP KERSTIN, KOLOKYTHAS MARIE, KLUTZ KATHRIN, WILLHAUCK MICHAEL J., WUNDERLICH NATHALIE, DRAGANOVICI DAN, ZACH CHRISTIAN, GILDEH: "Image-guided, Tumor Stroma-targeted 131I Therapy of Hepatocellular Cancer After Systemic Mesenchymal Stem Cell-mediated NIS Gene Delivery", MOLECULAR THERAPY, ELSEVIER INC., US, vol. 19, no. 9, 1 September 2011 (2011-09-01), US , pages 1704 - 1713, XP093015207, ISSN: 1525-0016, DOI: 10.1038/mt.2011.93 *
LUNDH CHARLOTTA, LINDENCRONA ULRIKA, POSTGÅRD PER, CARLSSON THERESE, NILSSON MIKAEL, FORSSELL-ARONSSON EVA: "Radiation-Induced Thyroid Stunning: Differential Effects of 123 I, 131 I, 99m Tc, and 211 At on Iodide Transport and NIS mRNA Expression in Cultured Thyroid Cells", THE JOURNAL OF NUCLEAR MEDICINE, SOCIETY OF NUCLEAR MEDICINE, US, vol. 50, no. 7, 1 July 2009 (2009-07-01), US , pages 1161 - 1167, XP093015211, ISSN: 0161-5505, DOI: 10.2967/jnumed.108.061150 *
MICHAEL J. WILLHAUCK ; BIBI-RANA SHARIF SAMANI ; INGO WOLF ; REINGARD SENEKOWITSCH-SCHMIDTKE ; HANS-JüRGEN STARK ; GEERD J. MEYER: "The potential of 211Astatine for NIS-mediated radionuclide therapy in prostate cancer", EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, SPRINGER, BERLIN, DE, vol. 35, no. 7, 11 April 2008 (2008-04-11), Berlin, DE , pages 1272 - 1281, XP019624170, ISSN: 1619-7089 *
NOMURA, SACHIYO: "Analysis of the treatment for gastric cancer peritoneal metastasis using hyper-selective short lived alpha-emitting radio isotope", 2019 PERFORMANCE REPORT; KAKENHI-PROJECT-19H03510, KAKEN, JP, JP, pages 1 - 1, XP009542992, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-19H03510/19H035102019jisseki/> *
THORSTEN PETRICH, ZEKIYE KORKMAZ, RAMONA WILD, JAVAD MIRZAYAN, GEERD MEYER, STRIPECKE RENATA, KNAPP WOLFRAM, FRANK BENGEL: "Tumor cell toxicity of astatine-211 compared to iodine-131 after transfection of the sodium/iodide-symporter (NIS) gene (Poster 1121)", THE JOURNAL OF NUCLEAR MEDICINE, SOCIETY OF NUCLEAR MEDICINE, US, vol. 53, no. Suppl. 1, 1 May 2012 (2012-05-01), US , pages 1121, XP009541951, ISSN: 0161-5505 *
YUWEI LIU, TADASHI WATABE, KAZUKO KANEDA-NAKASHIMA, KAZUHIRO OOE, YOSHIFUMI SHIRAKAMI, ATSUSHI TOYOSHIMA, EKU SHIMOSEGAWA, TAKASHI: "The comparison of therapeutic effect between [211At]NaAt and [131I]NaI: preclinical study using mice xenograft model of differentiated thyroid cancer", THE JOURNAL OF NUCLEAR MEDICINE, SOCIETY OF NUCLEAR MEDICINE, US, vol. 62, no. 1, 30 April 2021 (2021-04-30), US , pages 1 - 3, XP009541953, ISSN: 0161-5505 *

Also Published As

Publication number Publication date
JPWO2022265092A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
Luetzkendorf et al. Growth inhibition of colorectal carcinoma by lentiviral TRAIL‐transgenic human mesenchymal stem cells requires their substantial intratumoral presence
Greish et al. Silk‐elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors
Yan et al. Suppression of orthotopically implanted hepatocarcinoma in mice by umbilical cord-derived mesenchymal stem cells with sTRAIL gene expression driven by AFP promoter
Al Nakouzi et al. The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer
KR101911964B1 (en) Vesicular stomatitis viruses
KR20210141460A (en) Methods of alleviating liver damage and promoting liver hypertrophy, regeneration and cell engraftment in combination with radiation and/or radiomimic therapy
Segaliny et al. Combinatorial targeting of cancer bone metastasis using mRNA engineered stem cells
Jin et al. Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy
WO2022265092A1 (en) Composition for cancer treatment
CONCANNON et al. Enhancement of x-ray effects on the small intestinal epithelium of dogs by actinomycin D
US20090093429A1 (en) Combination therapy for treating cancer
Van Der Elst et al. Quantitative study of liver metastases from colon cancer in rats after treatment with cyclosporine A
KR20110092270A (en) Composition of inhibiting pathological angiogenesis
Lonyai et al. The promise of Hox11+ stem cells of the spleen for treating autoimmune diseases
EP4151198A1 (en) Gold nanoparticle-containing medicine
Ma et al. Systemic and Local Administration of a Dual-siRNA Complex Efficiently Inhibits Tumor Growth and Bone Invasion in Oral Squamous Cell Carcinoma
EP1254229A1 (en) Vector constructs for gene-therapy mediated radionuclide therapy of undifferentiated and medullary thyroid carcinomas and non-thyroidal tumours and the metastases thereof
He et al. Reconstructing Tumor Microenvironment Using Photoresponsive Cyanobacteria to Reversal Chemoresistance for Robust Chemotherapy
WO2024048652A1 (en) Composition for regeneration of bone and/or cartilage, and composition for treatment and/or prevention of diseases of bone and/or cartilage
JP5108781B2 (en) Treatment of malignant neoplasia
Zhu et al. Different but synergistic effects of bone marrow‑derived VEGFR2+ and VEGFR2‑CD45+ cells during hepatocellular carcinoma progression
Wei et al. Infiltration of blood outgrowth endothelial cells into tumor spheroids: role of matrix metalloproteinases and irradiation
WO2023027132A1 (en) Bone metabolic cell modulator and use thereof
JP2009091348A (en) Method for treatment of cancer
WO2024029331A1 (en) Pharmaceutical composition for treating and/or preventing joint disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530426

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE