WO2022265024A1 - Visual field testing method, visual field testing device, and visual field testing program - Google Patents

Visual field testing method, visual field testing device, and visual field testing program Download PDF

Info

Publication number
WO2022265024A1
WO2022265024A1 PCT/JP2022/023857 JP2022023857W WO2022265024A1 WO 2022265024 A1 WO2022265024 A1 WO 2022265024A1 JP 2022023857 W JP2022023857 W JP 2022023857W WO 2022265024 A1 WO2022265024 A1 WO 2022265024A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
visual field
points
estimated
sensitivity
Prior art date
Application number
PCT/JP2022/023857
Other languages
French (fr)
Japanese (ja)
Inventor
ちから 中村
大志 青木
照生 堀川
日佐雄 大澤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2022265024A1 publication Critical patent/WO2022265024A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types

Definitions

  • the technology of the present disclosure relates to a visual field inspection method, a visual field inspection device, and a visual field inspection program.
  • Japanese Patent No. 5048284 discloses a visual field test device that tests the sensitivity of an eye to be examined to a light stimulus. A visual field inspection apparatus that does not place a burden on the subject is desired.
  • a visual field inspection method includes steps of measuring sensitivities of a plurality of first inspection points in a visual field range to obtain a first inspection result; and setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case.
  • a visual field inspection apparatus includes a processor, the processor measuring sensitivities of a plurality of first inspection points in a visual field range to obtain a first inspection result; estimating a case based on one test result; and setting a plurality of second test points different from the plurality of first test points in the visual field range based on the estimated case. conduct.
  • a program is provided in a computer, measuring the sensitivity of a plurality of first inspection points in a visual field range to obtain a first inspection result, and based on the first inspection result, estimating a case; and setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case.
  • FIG. 1 is a block diagram of an ophthalmic system 100;
  • FIG. 2 is a block diagram showing the configuration of a perimeter 110.
  • FIG. 3 is a functional block diagram of a CPU 22 of the perimeter 110;
  • FIG. 2 is an explanatory diagram showing the structure of an eye 12 to be examined;
  • FIG. 19 is an image of a region of interest 190 in a normal fundus.
  • FIG. 3 is a schematic diagram showing an inspection point set 200, which is a set of inspection points to which index light is presented in an inspection target area 190; It is a visual field sensitivity map showing the results of a visual field test of a normal fundus.
  • FIG. 10 is an explanatory diagram showing that initial inspection points are set from an inspection point set 200; It is an explanatory view showing the result of inspecting the initial inspection points.
  • FIG. 9 is an explanatory diagram showing a case where additional inspection points are set based on inspection results;
  • FIG. 11 is an explanatory diagram showing a case where additional inspection points are set;
  • FIG. 4 is a schematic diagram showing an example of a visual field defect pan in estimation of a case;
  • FIG. 2 is a schematic diagram showing a case where the visual field examination area is subdivided into areas 220, 222, 224, 226, 228 and 230; 4 is a flowchart of visual field inspection processing executed by a CPU 22 of the perimeter 110.
  • FIG. 9 is a flow chart of processing for estimating and interpolating visual field sensitivities of all inspection points in step 136 of FIG. 8.
  • FIG. It is a figure which shows the update process of a cumulative function.
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another diagram showing update processing of the cumulative function;
  • FIG. 11 is another
  • FIG. 10 is an explanatory diagram showing a luminance value-percentage of correct answer curve showing the relationship between the luminance value and the probability f a,b ( ⁇ ) that an inspection point of the optic nerve of the subject's eye 12 recognizes the index light of the luminance value.
  • FIG. 3 is a schematic diagram showing the relationship between inspection points (including uninspected points and inspected points) and the estimated brightness value of each inspection point;
  • FIG. 10 is a schematic diagram showing an example of inspection results at each inspection point when there is no abnormality; It is the schematic which showed the example of the visual field sensitivity map in the case of no abnormality.
  • FIG. 4 is a schematic diagram showing setting of additional inspection points when there is no abnormality;
  • FIG. 11 is a schematic diagram showing an example of test results for each test point when the upper region 202 is a nasal perforation;
  • FIG. 11 is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 is nasal perforation;
  • FIG. 11 is a schematic diagram showing the setting of additional test points when the upper region 202 is a nasal perforation;
  • FIG. 11 is a schematic diagram showing an example of test results at each test point when the upper region 202 has a temporal wedge-shaped defect.
  • FIG. 4 is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 has a temporal wedge-shaped defect;
  • FIG. 11 is a schematic diagram showing an example of setting additional inspection points when the upper region 202 has a temporal wedge-shaped defect.
  • FIG. 10 is a schematic diagram showing an example of inspection results for each inspection point in the case of nose-side stairs; It is a schematic diagram showing an example of a visual field sensitivity map when the lower region 204 is the nose-side stairs.
  • FIG. 11 is a schematic diagram showing an example of setting additional inspection points in the case of nose-side stairs; 4 is a graph showing the estimated luminance value of each inspection point in the total inspection point set;
  • FIG. 17B is a graph obtained by adding reliability to the graph of FIG. 17A; It is a figure which shows the visual field sensitivity map 510M.
  • FIG. 10 is a diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the prior art.
  • FIG. 10 is a diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the prior art.
  • FIG. 10 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the prior art.
  • FIG. 10 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the prior art.
  • FIG. 4 is a diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the present embodiment.
  • FIG. 9 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the present embodiment.
  • FIG. 9 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the present embodiment.
  • FIG. 10 is a diagram illustrating a method of interpolating estimated luminance values of uninspected points; 4 is a graph showing estimated luminance values and reliability obtained in the present embodiment.
  • the ophthalmic system 100 includes a static visual field test device (hereinafter referred to as a "perimeter”) 110, a management server device (hereinafter referred to as a "server”) 140, and an image display device (hereinafter referred to as a " viewer”) 150.
  • a static visual field test device hereinafter referred to as a "perimeter” 110
  • a management server device hereinafter referred to as a "server”
  • viewer an image display device
  • the perimeter 110 is an example of the "visual field inspection device" of the technology of the present disclosure.
  • the perimeter 110 is a device for examining the visual field sensitivity (brightness value) of the subject's eye to be examined, which will be described later in detail, and is used for diagnosing glaucoma, retinitis pigmentosa, and the like.
  • the visual field sensitivity is the intensity (luminance value: luminance (dB)) of the index light that reaches the inspection point to be inspected in the optic nerve that exists in the retina of the subject's eye and is recognized by the subject.
  • luminance value luminance (dB)
  • the larger the luminance value expressed in dB the smaller the intensity of the index light reaching the inspection point.
  • the smaller the brightness value expressed in dB the greater the intensity of the index light reaching the inspection point. That is, the larger the luminance value expressed in dB, the darker the index light, and the smaller the luminance value expressed in dB, the brighter the index light.
  • the server 140 stores the visual field sensitivity test results (estimated sensitivity, etc.) of the subject's eye to be examined by the perimeter 110 in association with the patient ID.
  • the viewer 150 displays medical information such as the visual field sensitivity test results of the subject's eye acquired from the server 140 .
  • the perimeter 110, the server 140, and the viewer 150 are interconnected via the network 130.
  • the configuration of the perimeter 110 is shown in FIG. 1
  • the horizontal direction is the "X direction”
  • the vertical direction to the horizontal plane is the “Y direction”
  • the perimeter 110 includes a control device 10, an index presentation section 30, an external storage device 40, an input/display section 50, and a response section 60.
  • the control device 10 has a CPU (Central Processing Unit) 12, a ROM (Read-Only Memory) 14, a RAM (Random Access Memory) 16, and an input/output (I/O) port 18. are interconnected by a bus 20;
  • the ROM 14 stores a visual field inspection program, which will be described later.
  • the CPU 12 is an example of the "processor" of the technology of the present disclosure.
  • a processor executes a visual field test program.
  • the I/O port 18 is connected to an index presentation unit 30, an external storage device 40, a communication interface (I/F) 45, an input/display unit 50, and a response unit 60.
  • I/F communication interface
  • the input/display unit 50 has a graphic operator interface that displays images and receives various instructions from the operator.
  • Graphic operator interfaces include touch panel displays.
  • the response unit 60 includes a switch (not shown) operated by the subject (patient) and a transmission unit.
  • the subject recognizes the index light during the visual field test, which will be described later, the subject turns on the switch.
  • the switch When the switch is turned on, the transmitter transmits a recognition signal indicating that the subject has recognized the index light to the control device 10 .
  • a communication interface (I/F) 45 is connected to the server 140 and the viewer 150 via the network 130 .
  • the index presenting unit 30 presents indices (specifically, projects light) to a dome 30D whose hemispherical inner surface is a reflecting surface, and to inspection points at a plurality of positions on the inner surface of the dome 30D. device.
  • the projection device presents indices at a plurality of points (index presentation points) at different positions on the inner surface of the dome 30D at different times. do.
  • the index presenting point corresponds to the retina of the subject's eye.
  • the index light from the index presentation point reaches the examination point on the retina of the eye 12 to be examined. As described above, the subject who recognizes the index light turns on the switch, and the transmitter transmits the recognition signal to the control device 10 .
  • the configuration of the index presentation unit 30 is not limited to the configuration including the dome 30D and the projection device.
  • a configuration in which a point on the inner surface of the dome 30D emits light by itself, or a configuration in which an inspection point on the retina of the subject's eye 12 is directly irradiated with index light can be employed as the configuration of the index presentation unit 30. .
  • the server 140 and viewer 150 are equipped with a computer equipped with a CPU, RAM, ROM, etc., an input device, a display, an external storage device, and the like.
  • FIG. 1 A functional block diagram of the CPU 22 of the perimeter 110 is shown in FIG. Various functions realized by executing the visual field inspection program by the CPU 22 of the perimeter 110 will be described.
  • the visual field inspection program has an inspection point setting function, an image processing function and a processing function.
  • the CPU 22 executes the visual field inspection program having these functions, the CPU 22 functions as an inspection point setting section 72, an image processing section 74 and a processing section 76, as shown in FIG.
  • FIG. 4A is an explanatory diagram showing the structure of the eye 12 to be examined.
  • the eyeball constituting the eye 12 to be examined has a substantially spherical shape surrounded by the sclera 170 .
  • a choroid 172 Inside the sclera 170 is a choroid 172 , further inside the choroid 172 is a retina 174 , and the eyeball covered with the retina 174 is filled with a gel-like vitreous body 176 .
  • Visual cells are arranged in a plane in the retina 174, and the visual cells convert visual images (optical information) into neural signals (electrical signals). Neural signals acquired by visual cells are transmitted from the optic disc 184 through the optic nerve 182 to the brain.
  • the macula 178 is an area where visual cells are densely arranged in the retina 174, and the central fovea 180 corresponding to the center of the macula 178 has the most densely arranged visual cells, so the resolution is the highest in the visual field. expensive. Also, since the optic papilla 184 is a site where the optic nerve 182 converges, there are no visual cells. As a result, the area on retina 174 where optic disc 184 resides becomes blind spot 186 .
  • the visual field sensitivity of the subject's eye 12 is measured, and the area where visual cells are significantly arranged on the retina 174 of the fundus is defined as the inspection target area 190 .
  • FIG. 4B is an image of the inspection target area 190 in the normal fundus of the right eye.
  • the horizontal line across the image is the horizontal meridian 206, which is the boundary between the upper region 202 and the lower region 204 of the visual field test area when setting additional test points based on test data.
  • FIG. 4C is a schematic diagram showing an inspection point set 200, which is a set of inspection points to which index light is presented, in the inspection target area 190.
  • an inspection point set 200 which is a set of inspection points to which index light is presented, in the inspection target area 190.
  • a thinning inspection is performed in which index light is presented to some selected inspection points to obtain the reaction of the subject, and the index light is used.
  • the luminance values of inspection points not presented are interpolated by a technique such as Gaussian process regression.
  • Gaussian process regression there are cases in which the continuity between the upper region 202 and the lower region 204 is weak in diseases of the fundus.
  • a case means a case of visual field defect in glaucoma. Specifically, there are cases of nasal perforation, nasal steps, temporal wedge defects, and arcuate scotoma.
  • FIG. 4D is a visual field sensitivity map showing the results of a visual field test of the normal fundus of the right eye.
  • areas with low luminance values indicating visual field sensitivity are shown as dark areas.
  • a dark area 188 is also present in FIG. 4D and corresponds to the optic disc 184 which is the blind spot 186 .
  • initial inspection points shown in gray are set from the inspection point set 200 as shown in FIG. 5A.
  • the same initial test points are set regardless of the presence or absence of past diagnostic data for the subject, and whether or not there is past diagnostic data.
  • Initial inspection points may be set according to the data. For example, if past diagnostic data describes the presence of an area with low visual field sensitivity, the initial inspection points may be set intensively in an area including the area. Also, the initial inspection points do not need to be set vertically symmetrically as shown in FIG. 5A, but may be set asymmetrically.
  • FIG. 5B is an explanatory diagram showing the result of inspecting the initial inspection points.
  • inspection points indicated by black triangles are visual field sensitivity poor points where the visual field sensitivity is equal to or less than a predetermined threshold value, and other inspection points are visual field sensitivity appropriate points where the visual field sensitivity exceeds the predetermined threshold value. be.
  • FIG. 5C is an explanatory diagram showing an example of setting additional inspection points based on inspection results.
  • the deteriorated region 210 where the visual field sensitivity defect points are concentrated in the upper region 202 is recognized, so the additional inspection points indicated by the pentagons are preferentially set in the upper region 202 rather than the lower region 204 .
  • FIG. 5D is an explanatory diagram showing a case where additional inspection points are set. As shown in FIG. 5D, new additional inspection points indicated by hexagons are preferentially set in areas where many visual field sensitivity defects exist.
  • FIG. 6 is a schematic diagram showing an example of a visual field defect pan in estimating a case.
  • the visual field sensitivity defect point 300 exists in the area 212 close to the nose side of the right eye, it is estimated to be nasal perforation.
  • the visual field sensitivity defect point 302 exists in the region 214 close to the ear side of the right eye, it is estimated to be an ear-side wedge-shaped defect.
  • the visual field test area may be subdivided into areas 220, 222, 224, 226, 228, and 230, for example, as shown in FIG.
  • FIG. 8 shows a flowchart of visual field inspection processing executed by the CPU 12 of the perimeter 110 .
  • the visual field inspection process shown in the flowchart of FIG. 8 is realized by the CPU 12 executing the visual field inspection program.
  • the visual field inspection process is started when the operator operates a start button (not shown) displayed on the input/display unit 50 .
  • the image processing unit 74 displays an input screen for the patient ID on the input/display unit 50 .
  • a patient ID is input to the input/display unit 50 by the operator.
  • the processing unit 76 acquires a patient ID.
  • the inspection point setting unit 72 inquires of the server 140 whether the visual field sensitivity inspection result corresponding to the acquired patient ID is stored. That is, an inquiry is made as to whether the visual field sensitivity test result is stored in correspondence with the acquired patient ID.
  • the inspection point setting unit 72 acquires the inquiry result from the server 140, and determines whether or not there is past data of the visual field sensitivity inspection result corresponding to the patient ID based on the acquired inquiry result.
  • the past data is data corresponding to each subject and inspection points of each subject.
  • the past data are, for example, the patient's visual field sensitivity, the estimated sensitivity of each inspection point, the number of inspections, and a cumulative function, which will be described later.
  • the past data may be acquired data of all inspections performed in the past, or may be data updated after the latest inspection.
  • step 104 If it is determined in step 104 that there is past data of visual field sensitivity test results corresponding to the patient ID, then in step 106 the processing unit 76 extracts the test results from the past data corresponding to the input patient ID. The latest estimated sensitivity (visual field sensitivity) and the number of inspections of each inspection point in the point set 200 are read. On the other hand, if it is determined in step 104 that there is no past data of visual field sensitivity test results corresponding to the patient ID, then in step 108 the processing unit 76 predefines each test point in the test point set 200. read the specified luminance value.
  • the predetermined brightness value is, for example, a reference value for each inspection point in the inspection point set 200 for normal eyes.
  • the inspection point setting unit 72 sets a set of initial inspection points as shown in FIG. 5A. Then, at step 112 , the inspection point setting unit 72 selects the luminance value of the index light to be presented at the initial inspection point set at step 110 . In step 112, the brightness value may be selected randomly, selected by an operator, or automatically selected based on historical data, for example.
  • the inspection point setting unit 72 initializes the cumulative function.
  • the cumulative function is a function that indicates the relationship between the luminance value of the index light and the number of inspections. More specifically, it is a function that associates the luminance value of each index light with the cumulative number of times used in inspection. .
  • the initialization of the cumulative function is a process of zeroing the number of inspections corresponding to each luminance value as shown in FIG. 10A. The cumulative function will be described later with reference to FIGS. 10A-10I.
  • the inspection point setting unit 72 selects one inspection point from the set of initial inspection points set at step 110 .
  • This inspection point may be randomly selected from a set of initial inspection points, may be selected by an operator, or may be automatically selected based on historical data.
  • the inspection point setting unit 72 acquires the cumulative number of inspections of the inspection point selected at step 116 .
  • the cumulative number of inspections can be extracted from a cumulative function to be described later, but the cumulative number of inspections may be held as data independent of the cumulative function.
  • step 120 it is determined whether or not the cumulative number of inspections is 1 or more. At step 120, if the cumulative number of inspections is one or more, the procedure proceeds to step 122, and if the cumulative number of inspections is not one or more, the procedure proceeds to step .
  • the inspection point setting unit 72 presents index light to the inspection point selected at step 116 with a luminance value based on the cumulative function.
  • the inspection point setting unit 72 sets the brightness value of the index light to be presented from the range of brightness values extracted from the cumulative function.
  • the luminance value of the index light to be presented may be set by randomly extracting from the extracted luminance value range, or may be set by extracting an arbitrarily determined value.
  • the inspection point setting unit 72 may extract the brightness value of the index light to be presented from the range, such as the median value or the 3/4 value in the range.
  • the inspection point setting unit 72 controls the projection device so that the index light is incident on the inspection point selected in step 116 with the extracted luminance value.
  • step 124 the subject is presented with the index light having the initial brightness value set in step 112.
  • the inspection point setting unit 72 acquires the subject's reaction.
  • the subject recognizes the index light presented in step 126, the subject switches on the responder 60.
  • FIG. A recognition signal is thereby sent to the control device 10 . If the subject does not recognize the indicator light even if it is presented, the subject does not turn on the switch of the response unit 60 .
  • the inspection point setting unit 72 determines whether or not the subject recognizes the index light based on whether or not the recognition signal has been transmitted before a predetermined time has elapsed since the index light was presented. For example, if the recognition signal is transmitted before the elapse of a predetermined time from when the index light is presented, the inspection point setting unit 72 may indicate that the subject recognizes the index light. to get If the recognition signal is not transmitted even after the predetermined time has passed, the subject's reaction that the subject did not recognize the index is acquired.
  • the inspection point setting unit 72 saves the subject's reaction acquired in step 126 in the external storage device 40 .
  • the inspection point setting unit 72 updates the cumulative function.
  • the processing from step 116 to step 128 is repeated, and the update processing of the cumulative function in step 128 is also repeated. Also, the cumulative number of inspection points is updated.
  • index lights with different brightness values are presented a plurality of times to each inspection point belonging to the set of inspection points set in step 110, and the subject's response to each indicator light is presented. , update the cumulative function corresponding to each test point based on the subject's response at each presentation. A specific description will be given below.
  • the cumulative function if there is no past data, the cumulative number of inspections before inspection is 0 for each luminance value as shown in FIG. 10A, and the cumulative function does not exist.
  • the subject is presented with index light with an initial luminance value of 28 dB.
  • the inspection point setting unit 72 sets the number of inspections for each luminance value in the range defined by the boundary of 28 dB, that is, the range of 28 dB or more, as shown in FIG. 10B. , is increased by a predetermined amount.
  • the predetermined amount to be increased is 1, for example. Therefore, as shown in FIG. 10B, the number of inspections for each luminance value in the range of 28 dB or more is one.
  • the reason why the number of inspections for each luminance value in the range of 28 dB or more is 1 is as follows. If the subject does not recognize the index light of 28 dB, it is presumed that the subject cannot recognize the index light with a luminance value higher than 28 dB, that is, the light darker than the presented index light. Therefore, it is presumed that the subject's reaction would be that he could not recognize the index with a luminance value greater than 28 dB for this inspection point where the index light of 28 dB was presented.
  • the subject's reaction is assumed without actually being tested, so the number of times of testing is increased by 1 assuming that it has been tested.
  • the predetermined amount to be increased may be a different value depending on each luminance value. For example, when the subject does not recognize the index light of 28 dB, the number of inspections is increased by 1 for each luminance value in the range of 28 dB to less than 32 dB, and the number of inspections is increased by 2 for each luminance value in the range of 32 dB to less than 36 dB.
  • the number of tests may be increased by 3 for each luminance value in the range of 36 dB or more.
  • This is based on the assumption that the examinee will not be able to recognize all of the 28 dB index light, as well as the 32 dB index light and the 36 dB index light that are presented in a pseudo manner. This corresponds to performing an operation of increasing the number of inspections for each luminance value by 1 with respect to the inspection of .
  • step 1208 if the number of inspections is the first, the cumulative function is updated as shown in FIG. 10B.
  • step 130 it is determined whether or not the visual field sensitivity can be estimated with sufficient accuracy for the set of inspection points set in step 116.
  • the cumulative function draws a downwardly convex linear shape as shown in FIG. .
  • the cumulative function does not have a downwardly convex linear shape as shown in FIG. 10B, so the visual field sensitivity cannot be estimated with sufficient accuracy.
  • index lights with different luminance values are presented to the inspection points selected in step 116 to acquire the subject's reaction.
  • the cumulative function is updated according to the brightness value of the index light and the subject's reaction.
  • step 122 from the cumulative function (see FIG. 10B), for example, 16 dB is extracted from the range of luminance values in which the number of inspections is less than 1, as shown in FIG. is presented.
  • the inspection point setting unit 72 increases the number of inspections for each luminance value within the range defined by 16 dB (range of 16 dB or more) by a predetermined amount (for example, 1). Therefore, as shown in FIG.
  • the cumulative function is updated so that the number of inspections is 1 for luminance values from 16 dB to less than 28 dB, and the number of inspections is 2 for luminance values in the range of 28 dB or more.
  • FIG. 10E it is necessary to search (check) whether or not a range of luminance values smaller than 16 dB can be recognized.
  • step 120 By repeating the processing from step 120 to step 128 in this manner and updating the cumulative function as shown in FIGS. .
  • the upper and lower limits of the range of luminance values that need to be searched (inspected) are determined, and a downwardly convex linear cumulative function can be created.
  • the index light with a brightness value of 12 dB is presented to the inspection point selected in step 116 to obtain the subject's reaction. do.
  • the cumulative function of the inspection point selected in step 116 is as shown in FIG. 10I, it is expected that the subject's visual field sensitivity value at this inspection point is around 12 dB. In this way, it is determined whether the visual field sensitivity of the inspection point selected in step 116 can be estimated.
  • step 104 of FIG. 8 determines whether there is no past data as described above.
  • step 104 of FIG. 8 determines whether there is past data.
  • step 122 determines the cumulative function and visual field sensitivity estimated value for each inspection point in the inspection point set 200 in the past data. Either or both are used.
  • the average value of 30 dB is presented.
  • the inspection point setting unit 72 determines whether or not the determination conditions are satisfied.
  • the determination condition in step 132 is whether or not it is determined in step 128 that the visual field sensitivity can be estimated for all inspection points belonging to the set of initial inspection points set in step 110 . If it is determined in step 132 that visual field sensitivities can be estimated for all inspection points, the process proceeds to step 134;
  • the inspection point setting unit 72 reads the inspection data obtained in the procedure up to step 132. Then, in step 136 , the inspection point setting unit 72 determines the overall visual field sensitivity, that is, the visual field sensitivity for each inspection point in the inspection point set 200 based on the cumulative function obtained for each inspection point in the inspection point set 200 . Perform data interpolation to estimate sensitivity (estimated luminance value).
  • the inspection point setting unit 72 estimates the visual field sensitivity (estimated brightness value) for each inspection point in the inspection point set 200 including the initial inspection points.
  • the inspection point setting unit 72 uses a stochastic process to estimate an estimated brightness value of an uninspected point from the estimated brightness value of each inspected point, and sets a confidence value representing the likelihood of the estimated brightness value of the estimated uninspected point. Estimate degrees.
  • the inspection point setting unit 72 numerically obtains the estimated luminance value of the uninspected points.
  • the stochastic process in this case is called a "stochastic field".
  • the inspection point setting unit 72 uses a stochastic process or a random field to estimate the estimated brightness value of an uninspected point from the estimated brightness value of each inspected point, and uses the stochastic process or random field to , to estimate the reliability of the estimated brightness values of the estimated uninspected points.
  • GPR Gaussian Process Regression
  • the reliability is numerical data representing the likelihood of the estimated luminance value of the estimated uninspected points. Specifically, the reliability is numerical data indicating the possible range of the visual field sensitivity of the uninspected point centered on the estimated luminance value of the uninspected point.
  • FIG. 9 shows a flowchart of the process of estimating and interpolating the visual field sensitivity of the entire inspection points in step 136 of FIG.
  • the inspection point setting unit 72 calculates the estimated brightness value of each inspected point. Specifically, first, in order to calculate the estimated luminance value (visual field sensitivity) of each inspected point, the inspection point setting unit 72 sets the index light of the luminance value with respect to the luminance value shown in FIG. A luminance value-percentage of correct answer curve showing the relationship between the probability f a,b ( ⁇ ) of recognition by the inspection point of the optic nerve of the subject's eye 12 is used.
  • the luminance value-correct answer rate curve is defined by the following formula. In the following formula, ⁇ is the brightness value used in each inspection at the inspection point.
  • a is a constant greater than 0, and b is a value included in R (R is the set of all real numbers).
  • the inspection point setting unit 72 obtains the likelihood L(a, b) of each inspected point from the following equation using the equation representing the curve. More specifically, for example, in the first inspection at a certain inspected point, the luminance value is 20 dB, and if the reaction of the subject is recognized (Yes), the inspection point setting unit 72 Use the probability f a,b (20). In the second inspection, when the luminance value is 24 dB and the subject's reaction is not recognized (No), the inspection point setting unit 72 sets (1-f a,b (24)). use. In the third inspection, the luminance value is 16 dB, and if the subject's reaction is recognized (Yes), the inspection point setting unit 72 uses the probability f a,b (16). For each inspected point, the inspection point setting unit 72 uses the product of values corresponding to the results of all inspections as described above, and obtains b that maximizes the likelihood (a, b).
  • b obtained for each inspected point be the estimated luminance value of each inspected point.
  • 21 dB is calculated as the estimated luminance value
  • 19.6 dB is calculated as the estimated luminance value
  • 31.5 dB is calculated as an estimated luminance value.
  • the inspection point setting unit 72 uses Gaussian process regression to calculate the estimated luminance value of each uninspected point that has not been inspected. Specifically, for each uninspected point, the inspection point setting unit 72 uses the estimated brightness value of each inspected point to calculate an estimated brightness value E[X(x*)
  • K(x, x') of k* D in Equation 4 and K(x, x') in KD in Equation 5 is the following Gaussian RBF kernel (radial basis function kernel).
  • ⁇ 1 and ⁇ 2 are real numbers.
  • Each of x 1 , x 2 , . . . Denote X N and x 1 , x 2 , . . .
  • Each of XN is the XY coordinates of the location of the inspected point.
  • the x' of K(x, x') is the XY coordinates of each uninspected point x*.
  • y1 , y2, . . . YN is the estimated luminance value of each inspected point.
  • D] of each uninspected point obtained as described above is the average luminance value of each uninspected point estimated from the estimated luminance value of each inspected point. value.
  • step 305 using Gaussian process regression, the inspection point setting unit 72 determines the reliability of the estimated brightness value of each uninspected point that has not been inspected, from the following equation: variance V[X(x*)
  • step 305 ends, the processing of step 136 in FIG. 8 ends.
  • FIG. 12 is a diagram showing the relationship between inspection points (including uninspected points and inspected points) and the estimated luminance value of each inspection point.
  • the estimated brightness values of the inspected points x 2 , x 3 , x 5 , . . .
  • the uninspected points x1 , x4 , x6 , x7 , x8 , ...) and their reliability are obtained.
  • the colored area around the curve indicates the range of error. If the width of the colored area is small, the reliability of the estimated luminance value is high, and if the width of the colored area is large, the reliability of the estimated luminance value is high. low.
  • uninspected point (x 4 ) is adjacent to inspected point (x 3 , x 5 ) and relatively close to inspected point (x 3 , x 5 ).
  • the unchecked point (x 8 ) is relatively far from the checked point (x 5 ). Therefore, the error range of the estimated luminance value of the uninspected point (x 4 ) is relatively small and the reliability value is high, and the error range of the estimated luminance value of the uninspected point (x 8 ) is relatively large and the reliability is high. low.
  • the inspection point setting unit 72 determines whether additional inspection is necessary.
  • the necessity of additional inspection is determined based on the error range of the estimated luminance value.
  • step 138 if there is an inspection point whose error range exceeds a predetermined range among the inspection points for which the estimated brightness value has been calculated, it is determined that additional inspection is necessary.
  • the predetermined range in step 138 is specifically determined through a test of estimated luminance value calculation.
  • step 138 If it is determined in step 138 that additional inspection is not required, the process is terminated, and if additional inspection is required, the procedure proceeds to step 140.
  • the inspection point setting unit 72 sets a set of additional inspection points.
  • the glaucoma case of the subject is estimated based on the test results of the initial test points, and additional test points are set according to the estimated case.
  • Case estimation and setting of additional test points may be performed using, for example, the control device 10 that has been machine-learned by an RNN (Regressive Neural Network) or the like. In machine learning using RNN or the like, the control device 10 is trained by using test results for each case as teacher data.
  • RNN Regressive Neural Network
  • FIG. 13A is a schematic diagram showing an example of inspection results for each inspection point when there is no abnormality. If all of the initial test points indicated by squares in FIG. 13A are normal, it is assumed that there is only a dark area 188 corresponding to the optic papilla 184, which is the blind spot 186, in the visual field sensitivity map shown in FIG. 13B. Then, as shown in FIG. 13C, the same number of additional inspection points indicated by pentagons are set in the upper area 202 where the initial inspection points are sparse and the lower area 204 where the initial inspection points are sparse.
  • FIG. 14A is a schematic diagram showing an example of test results for each test point when the upper region 202 is nasal perforation. As shown in FIG. 14A, if the visual field sensitivity defect indicated by the triangle is prominent in the nasal region 202N of the upper region 202, there is a possibility that the nasal perforation of the upper region 202 has occurred.
  • FIG. 14B is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 is a nasal perforation. If there is a possibility of nasal perforation of the upper region 202 in step 140, it is assumed that the visual field sensitivity points are distributed as shown in FIG. 14B. Then, as shown in FIG. 14C, the same number of additional inspection points indicated by pentagons are set in the upper area 202 where the initial inspection points are sparse and the lower area 204 where the initial inspection points are sparse.
  • FIG. 15A is a schematic diagram showing an example of inspection results at each inspection point when the upper region 202 has a temporal wedge-shaped defect.
  • FIG. 15A when the visual field sensitivity defect points indicated by triangles are conspicuous in the ear-side region 202E of the upper region 202, there is a possibility that the ear-side wedge-shaped defect of the upper region 202 is present.
  • FIG. 15B is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 has a temporal wedge-shaped defect. If in step 140 there is a possibility of an ear-side wedge-shaped defect in the upper region 202, it is assumed that the visual field sensitivity defect points are distributed as shown in FIG. 15B. Then, as shown in FIG. 15C, additional test points are set in the upper region 202 where the initial test points are sparse and the lower region 204 where the initial test points are sparse. Since the sensitivity of the visual field region on the side is low, the inspection point setting unit 72 preferentially sets additional inspection points indicated by pentagons in the ear-side region 204E of the upper region 202 .
  • FIG. 16A is a schematic diagram showing an example of inspection results for each inspection point in the case of nose-side stairs. As shown in FIG. 16A , if the visual field sensitivity defect points indicated by triangles are conspicuous in the nose-side region 204N of the lower region 204, there is a possibility that the nose-side steps of the lower region 204 are present.
  • FIG. 16B is a schematic diagram showing an example of a visual field sensitivity map when the lower region 204 is the nose-side stairs.
  • step 140 if there is a possibility of nasal steps in the lower region 204, it is assumed that the visual field sensitivity points are distributed as shown in FIG. 16B.
  • additional inspection points indicated by pentagons are set in the upper area 202 where the initial inspection points are sparse and the lower area 204 where the initial inspection points are sparse.
  • diseases such as arcuate scotoma, paracentral scotoma, horizontal hemianopia-like visual field, and central residual visual field.
  • additional test points may be set according to the determined disease.
  • the inspection point setting unit 72 selects the brightness value of the index light to be presented at the additional inspection points set at step 140 .
  • the brightness value may be selected randomly, selected by an operator, or automatically selected based on historical data, for example.
  • one inspection point is selected from the set of additional inspection points set in step 140.
  • the inspection points to be selected may be randomly selected from a set of additional inspection points, may be selected by the operator, or may be automatically selected based on historical data.
  • the cumulative number of inspections for one inspection point selected at step 144 is obtained.
  • the cumulative number of inspections can be extracted from the aforementioned cumulative function, but the cumulative number of inspections may be held as data independent of the cumulative function.
  • step 148 it is determined whether or not the cumulative number of inspections is 1 or more. At step 148, if the cumulative number of inspections is 1 or more, the procedure proceeds to step 150; otherwise, the procedure proceeds to step 152.
  • step 150 index light is presented to the inspection point selected in step 144 with a luminance value based on the cumulative function.
  • the inspection point setting unit 72 sets the brightness value of the index light to be presented from the range of brightness values extracted from the cumulative function.
  • the luminance value of the index light to be presented may be set by randomly extracting from the extracted luminance value range, or may be set by extracting an arbitrarily determined value.
  • the inspection point setting unit 72 may extract the brightness value of the index light to be presented from the range, such as the median value or the 3/4 value in the range.
  • the inspection point setting unit 72 controls the projection device so that the index light is incident on the inspection point selected in step 144 with the extracted luminance value.
  • step 152 the subject is presented with the index light having the initial brightness value set at step 142.
  • the inspection point setting unit 72 acquires the subject's reaction.
  • the subject When the subject recognizes the index light presented in step 154, the subject switches on the response unit 60.
  • FIG. A recognition signal is thereby sent to the control device 10 . If the subject does not recognize the indicator light even if it is presented, the subject does not turn on the switch of the response unit 60 .
  • the inspection point setting unit 72 determines whether or not the subject recognizes the index light based on whether or not the recognition signal has been transmitted before a predetermined time has elapsed since the index light was presented. For example, if the recognition signal is transmitted before the elapse of a predetermined time from when the index light is presented, the inspection point setting unit 72 may indicate that the subject recognizes the index light. to get If the recognition signal is not transmitted even after the predetermined time has passed, the subject's reaction that the subject did not recognize the index is acquired.
  • the inspection point setting unit 72 saves the subject's reaction acquired in step 154 in the external storage device 40 .
  • the inspection point setting unit 72 updates the cumulative function.
  • the processing from step 144 to step 156 is repeated, and the update processing of the cumulative function in step 156 is also repeated. Also, the cumulative number of inspection points is updated.
  • index lights with different brightness values are presented a plurality of times to each inspection point belonging to the set of additional inspection points set in step 140, and the subject's response to each indicator light is presented.
  • the cumulative function corresponding to each test point is updated based on the subject's response at each presentation, as in step 128 above.
  • the inspection point setting unit 72 determines whether the visual field sensitivity of the inspection point selected at step 144 can be estimated with sufficient accuracy.
  • the cumulative function draws a downwardly convex linear shape as shown in FIG. 10I, and it is determined whether or not the brightness of the index light recognized by the subject can be estimated.
  • the inspection point setting unit 72 determines whether or not the determination conditions are satisfied.
  • the judgment condition in step 160 is whether or not the visual field sensitivity performed in step 158 can be estimated for the additional inspection points set in step 140 .
  • the visual field sensitivity can be estimated for the additional inspection points, then go to step 162;
  • step 162 the inspection data obtained in the procedure up to step 160 are read.
  • step 164 the inspection point setting unit 72 determines the overall visual field sensitivity, that is, the visual field sensitivity for each inspection point in the inspection point set 200 based on the cumulative function obtained for each inspection point in the inspection point set 200 .
  • Data interpolation for estimating sensitivity is performed in the same manner as in step 136 described above.
  • the image processor 74 computes the cumulative function of each inspected point and each additional inspection point, if performed, the estimated luminance value of each inspection point in the total inspection point set, and an estimate of the uninspected points. Create screen data for visualizing the reliability of luminance values.
  • FIG. 17A there is a graph showing the estimated brightness value of each inspection point in the set of all inspection points.
  • FIG. 17B a graph obtained by adding the reliability of the estimated brightness value at the uninspected point to the graph showing the estimated brightness value of each inspection point in the set of all inspection points, centering on the visual field sensitivity. is.
  • a visual field sensitivity map is an example of a visual field sensitivity distribution display method.
  • the visual field sensitivity map displays the distribution of visual field sensitivity data of a plurality of inspection points included in the inspection point set.
  • a visual field sensitivity map may be generated for the entire inspection point set, or may be generated for a part of the inspection point set.
  • the visual field sensitivity map also includes reliability data.
  • the visual field sensitivity map 510M is a map in which * is added to an image simulating the fundus of the subject's eye 12, and inspection points whose visual field sensitivity is less than a predetermined value (dB). This is screen data.
  • the visual field sensitivity map 510M is screen data that can display a range 510 of inspection points whose reliability is equal to or higher than a predetermined value with a dotted line. Further, for example, among the inspection points in the set of all inspection points, uninspected points are displayed in a color different from that of inspected points and additional inspection points. , screen data that can display the reliability of the estimated brightness value of the uninspected point.
  • the horizontal axis indicates the number of inspections
  • the vertical axis indicates the difference between the correct value of sensitivity and the estimated sensitivity. 0 on the vertical axis means that there is no difference between the correct value and the estimated value, and the estimated value is highly accurate.
  • FIGS. 19A to 19C show the required number of inspections to ensure sufficient accuracy in the visual field test results when randomly selecting light intensities at three different points on the optic nerve of the fundus of the subject's eye.
  • FIGS. 20A to 20C show the number of inspections required to ensure sufficient accuracy when the method of this embodiment is applied to three different points on the optic nerve of the fundus of the subject's eye.
  • the reliability of the interpolated values is not considered.
  • the reliability of the interpolated value is not considered.
  • the reliability of the estimated brightness value is estimated along with the estimated brightness value of the uninspected points.
  • the horizontal axis indicates each inspection point
  • the vertical axis indicates the corresponding estimated brightness value of each inspection point.
  • the dotted line is the correct value line
  • the solid line is the estimated luminance value line
  • the reliability is shown as a width around the estimated luminance value.
  • the degree of reliability is shown, so according to this embodiment, the operator can recognize the likelihood of the estimated luminance value.
  • Gaussian process regression is used as the stochastic process, and the Gaussian RBF kernel is used.
  • the stochastic process is not limited to Gaussian process regression, and for example, the following polynomial kernel may be used.
  • c is a real number and p is a positive integer.
  • Kv is a modified Bessel function of the second kind
  • v is a real number
  • ⁇ (v) is a gamma function
  • the inspection point setting unit 72 estimates the estimated luminance value of the uninspected points, and estimates the reliability of the estimated luminance values of the estimated uninspected points.
  • the technology of the present disclosure is not limited to this.
  • the inspection point setting unit 72 calculates the range of possible values of the estimated brightness value of each uninspected point from the estimated brightness value of each inspected point, and determines the value (for example, the central value) within the calculated range. , may be calculated as the estimated luminance value of each uninspected point.
  • each stochastic process described above is the same for each inspection point in the entire inspection point set, the technology of the present disclosure is not limited to this.
  • different stochastic processes may be used for the central region of a predetermined range including the center of the fundus and for the peripheral region around the central region.
  • the untested point for which the estimated brightness value is interpolated is located in the range where the index light reaches through the pupil of the eye 12 to be inspected, but the range adjacent to the reach range, that is, the index light does not reach
  • the estimated luminance value may be estimated even for points at positions where visual field inspection is not possible.
  • image processing may be performed only by a hardware configuration such as FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Integrated Circuit). A part of the image processing may be performed by a software configuration, and the rest of the image processing may be performed by a hardware configuration.
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the technology of the present disclosure includes the following technology, as it includes cases where visual field test processing is realized by software configuration using a computer and cases where it is not.
  • a processing unit that measures the sensitivity of a plurality of first inspection points in a visual field range and obtains a first inspection result; setting an inspection point for estimating a case based on the first inspection result and setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case; Department and A visual field test device comprising:
  • an inspection point setting unit estimates a case based on the first inspection result, and determines a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case.
  • a computer program product for testing a visual field comprising:
  • the computer program product comprises a computer readable storage medium that is not itself a transitory signal;
  • the computer-readable storage medium stores a program, Said program to the computer, measuring the sensitivity of a plurality of first inspection points in the field of view to obtain a first inspection result; estimating a case based on the first test result; setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case;
  • a computer program product that causes the execution of
  • control device 10 is an example of the "computer program product" of the technology of the present disclosure.
  • the technology disclosed in the present specification is a method for inspecting an eye to be inspected, in which light is presented at a plurality of light intensities to an inspection point set on the retina of the eye to be inspected, and the retina detecting the sensitivity at the inspection point of; estimating the sensitivity at a site other than the inspection point based on the detected sensitivity at the inspection point; and evaluating the reliability of the estimated sensitivity and a method comprising:

Abstract

This visual field testing method comprises: a step for measuring the sensitivity of a plurality of first test points in a visual field range to obtain a first test result; a step for inferring a medical condition on the basis of the first test result; and a step for setting a plurality of second test points that are different from the plurality of first test points in the visual field range on the basis of the inferred medical condition.

Description

視野検査方法、視野検査装置、および視野検査プログラムVisual field inspection method, visual field inspection device, and visual field inspection program
 本開示の技術は、視野検査方法、視野検査装置、および視野検査プログラムに関する。 The technology of the present disclosure relates to a visual field inspection method, a visual field inspection device, and a visual field inspection program.
 特許第5048284号公報には、被検眼への光刺激に対する感度を検査する視野検査装置が開示されている。被検者に負担を掛けない視野検査装置が望まれている。 Japanese Patent No. 5048284 discloses a visual field test device that tests the sensitivity of an eye to be examined to a light stimulus. A visual field inspection apparatus that does not place a burden on the subject is desired.
 本開示の技術の第1の態様の視野検査方法は、視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得るステップと、前記第1検査結果に基づいて、症例を推定するステップと、前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定するステップと、を含む。 A visual field inspection method according to a first aspect of the technology of the present disclosure includes steps of measuring sensitivities of a plurality of first inspection points in a visual field range to obtain a first inspection result; and setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case.
 本開示の技術の第2の態様の視野検査装置は、プロセッサを備え、前記プロセッサは、視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得るステップと、前記第1検査結果に基づいて、症例を推定するステップと、前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定するステップと、を行う。 A visual field inspection apparatus according to a second aspect of the technology of the present disclosure includes a processor, the processor measuring sensitivities of a plurality of first inspection points in a visual field range to obtain a first inspection result; estimating a case based on one test result; and setting a plurality of second test points different from the plurality of first test points in the visual field range based on the estimated case. conduct.
 本開示の技術の第3の態様のプログラムは、コンピュータに、視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得るステップと、前記第1検査結果に基づいて、症例を推定するステップと、前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定するステップと、を実行させる。 A program according to a third aspect of the technology of the present disclosure is provided in a computer, measuring the sensitivity of a plurality of first inspection points in a visual field range to obtain a first inspection result, and based on the first inspection result, estimating a case; and setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case.
眼科システム100のブロック図である。1 is a block diagram of an ophthalmic system 100; FIG. 視野計110の構成を示すブロック図である。2 is a block diagram showing the configuration of a perimeter 110. FIG. 視野計110のCPU22の機能ブロック図である。3 is a functional block diagram of a CPU 22 of the perimeter 110; FIG. 被検眼12の構造を示した説明図である。2 is an explanatory diagram showing the structure of an eye 12 to be examined; FIG. 正常な眼底における検査対象領域190の画像である。19 is an image of a region of interest 190 in a normal fundus. 検査対象領域190において、指標光が提示される検査点の集合である検査点集合200を示した概略図である。FIG. 3 is a schematic diagram showing an inspection point set 200, which is a set of inspection points to which index light is presented in an inspection target area 190; 正常な眼底の視野検査の結果を示す視野感度マップである。It is a visual field sensitivity map showing the results of a visual field test of a normal fundus. 検査点集合200から初期検査点を設定したことを示す説明図である。FIG. 10 is an explanatory diagram showing that initial inspection points are set from an inspection point set 200; 初期検査点を検査した結果を示した説明図である。It is an explanatory view showing the result of inspecting the initial inspection points. 検査結果に基づいて追加検査点を設定した場合を示した説明図である。FIG. 9 is an explanatory diagram showing a case where additional inspection points are set based on inspection results; さらに追加検査点を設定した場合を示した説明図である。FIG. 11 is an explanatory diagram showing a case where additional inspection points are set; 症例の推定における視野欠損パーンの例を示した概略図である。FIG. 4 is a schematic diagram showing an example of a visual field defect pan in estimation of a case; 視野検査領域を、領域220、222、224、226、228、230に細分化した場合を示した概略図である。FIG. 2 is a schematic diagram showing a case where the visual field examination area is subdivided into areas 220, 222, 224, 226, 228 and 230; 視野計110のCPU22が実行する視野検査処理のフローチャートである。4 is a flowchart of visual field inspection processing executed by a CPU 22 of the perimeter 110. FIG. 図8のステップ136の検査点全体の視野感度を推定して補間する処理のフローチャートである。FIG. 9 is a flow chart of processing for estimating and interpolating visual field sensitivities of all inspection points in step 136 of FIG. 8. FIG. 累積関数の更新処理を示す図である。It is a figure which shows the update process of a cumulative function. 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 累積関数の更新処理を示す他の図である。FIG. 11 is another diagram showing update processing of the cumulative function; 輝度値に対するその輝度値の指標光を被検者の被検眼12の視神経の検査点が認識する確率fa,b(θ)の関係を示す輝度値-正答率曲線を示した説明図である。FIG. 10 is an explanatory diagram showing a luminance value-percentage of correct answer curve showing the relationship between the luminance value and the probability f a,b (θ) that an inspection point of the optic nerve of the subject's eye 12 recognizes the index light of the luminance value. . 検査点(未検査点と検査済点とを含む)と、各検査点の推定輝度値との関係を示す概略図である。FIG. 3 is a schematic diagram showing the relationship between inspection points (including uninspected points and inspected points) and the estimated brightness value of each inspection point; 異常なしの場合の各々の検査点の検査結果の例を示した概略図である。FIG. 10 is a schematic diagram showing an example of inspection results at each inspection point when there is no abnormality; 異常なしの場合の視野感度マップの例を示した概略図である。It is the schematic which showed the example of the visual field sensitivity map in the case of no abnormality. 異常なしの場合の追加検査点の設定を示した概略図である。FIG. 4 is a schematic diagram showing setting of additional inspection points when there is no abnormality; 上部領域202が鼻側穿破の場合の各々の検査点の検査結果の例を示した概略図である。FIG. 11 is a schematic diagram showing an example of test results for each test point when the upper region 202 is a nasal perforation; 上部領域202が鼻側穿破の場合の視野感度マップの例を示した概略図である。FIG. 11 is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 is nasal perforation; 上部領域202が鼻側穿破の場合の追加検査点の設定を示した概略図である。FIG. 11 is a schematic diagram showing the setting of additional test points when the upper region 202 is a nasal perforation; 上部領域202が耳側楔状欠損の場合の各々の検査点の検査結果の例を示した概略図である。FIG. 11 is a schematic diagram showing an example of test results at each test point when the upper region 202 has a temporal wedge-shaped defect. 上部領域202が耳側楔状欠損の場合の視野感度マップの例を示した概略図である。FIG. 4 is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 has a temporal wedge-shaped defect; 上部領域202が耳側楔状欠損の場合の追加検査点の設定の例を示した概略図である。FIG. 11 is a schematic diagram showing an example of setting additional inspection points when the upper region 202 has a temporal wedge-shaped defect. 鼻側階段の場合の各々の検査点の検査結果の例を示した概略図である。FIG. 10 is a schematic diagram showing an example of inspection results for each inspection point in the case of nose-side stairs; 下部領域204が鼻側階段の場合の視野感度マップの例を示した概略図である。It is a schematic diagram showing an example of a visual field sensitivity map when the lower region 204 is the nose-side stairs. 鼻側階段の場合の追加検査点の設定の例を示した概略図である。FIG. 11 is a schematic diagram showing an example of setting additional inspection points in the case of nose-side stairs; 全検査点集合の各検査点の推定輝度値を示すグラフである。4 is a graph showing the estimated luminance value of each inspection point in the total inspection point set; 図17Aのグラフに信頼度が追加されたグラフである。FIG. 17B is a graph obtained by adding reliability to the graph of FIG. 17A; 視野感度マップ510Mを示す図である。It is a figure which shows the visual field sensitivity map 510M. 従来技術における、検査回数と、感度の正しい値と推定される感度との差と、の関係を示す図である。FIG. 10 is a diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the prior art. 従来技術における、検査回数と、感度の正しい値と推定される感度との差と、の関係を示す他の図である。FIG. 10 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the prior art. 従来技術における、検査回数と、感度の正しい値と推定される感度との差と、の関係を示す他の図である。FIG. 10 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the prior art. 本実施の形態における、検査回数と、感度の正しい値と推定される感度との差と、の関係を示す図である。FIG. 4 is a diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the present embodiment. 本実施の形態における、検査回数と、感度の正しい値と推定される感度との差と、の関係を示す他の図である。FIG. 9 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the present embodiment. 本実施の形態における、検査回数と、感度の正しい値と推定される感度との差と、の関係を示す他の図である。FIG. 9 is another diagram showing the relationship between the number of inspections and the difference between the correct value of sensitivity and the estimated sensitivity in the present embodiment. 未検査点の推定輝度値を補間する方法を説明する図である。FIG. 10 is a diagram illustrating a method of interpolating estimated luminance values of uninspected points; 本実施の形態において求められる推定輝度値と信頼度とを示すグラフである。4 is a graph showing estimated luminance values and reliability obtained in the present embodiment.
 以下、図面を参照して本開示の技術の実施の形態を詳細に説明する。 Hereinafter, embodiments of the technology of the present disclosure will be described in detail with reference to the drawings.
 図1を参照して、眼科システム100の構成を説明する。図1に示すように、眼科システム100は、静的視野検査装置(以下、「視野計」という)110と、管理サーバ装置(以下、「サーバ」という)140と、画像表示装置(以下、「ビューワ」という)150と、を備えている。 The configuration of the ophthalmic system 100 will be described with reference to FIG. As shown in FIG. 1, the ophthalmic system 100 includes a static visual field test device (hereinafter referred to as a "perimeter") 110, a management server device (hereinafter referred to as a "server") 140, and an image display device (hereinafter referred to as a " viewer") 150.
 視野計110は、本開示の技術の「視野検査装置」の一例である。 The perimeter 110 is an example of the "visual field inspection device" of the technology of the present disclosure.
 視野計110は、詳細には後述する被検者の被検眼の視野感度(輝度値)を検査する機器であり、緑内障および網膜色素変性症等の診断に用いられる。 The perimeter 110 is a device for examining the visual field sensitivity (brightness value) of the subject's eye to be examined, which will be described later in detail, and is used for diagnosing glaucoma, retinitis pigmentosa, and the like.
 ここで、視野感度とは、被検眼の網膜に存在する視神経における検査対象となる検査点に到達し、被検者により認識された指標光の強度(輝度値:luminance(dB))である。なお、dBで表される輝度値が大きいほど、検査点に到達する指標光の強度が小さい。言い換えると、dBで表される輝度値が小さいほど、検査点に到達する指標光の強度は大きい。すなわち、dBで表される輝度値が大きいほど指標光は暗く、dBで表される輝度値が小さいほど指標光は明るい。 Here, the visual field sensitivity is the intensity (luminance value: luminance (dB)) of the index light that reaches the inspection point to be inspected in the optic nerve that exists in the retina of the subject's eye and is recognized by the subject. Note that the larger the luminance value expressed in dB, the smaller the intensity of the index light reaching the inspection point. In other words, the smaller the brightness value expressed in dB, the greater the intensity of the index light reaching the inspection point. That is, the larger the luminance value expressed in dB, the darker the index light, and the smaller the luminance value expressed in dB, the brighter the index light.
 サーバ140は、視野計110によって被検者の被検眼の視野感度の検査結果(推定感度等)を、患者IDに対応づけて記憶する。ビューワ150は、サーバ140から取得した被検眼の視野感度の検査結果等の医療情報を表示する。 The server 140 stores the visual field sensitivity test results (estimated sensitivity, etc.) of the subject's eye to be examined by the perimeter 110 in association with the patient ID. The viewer 150 displays medical information such as the visual field sensitivity test results of the subject's eye acquired from the server 140 .
 視野計110、サーバ140、およびビューワ150は、ネットワーク130を介して、相互に接続されている。 The perimeter 110, the server 140, and the viewer 150 are interconnected via the network 130.
 図2には、視野計110の構成が示されている。 The configuration of the perimeter 110 is shown in FIG.
 視野計110が水平面に設置された場合の水平方向を「X方向」、水平面に対する垂直方向を「Y方向」とし、被検眼12の前眼部の瞳孔の中心と眼球の中心とを結ぶ方向を「Z方向」とする。従って、X方向、Y方向、およびZ方向は互いに垂直である。 When the perimeter 110 is installed on a horizontal plane, the horizontal direction is the "X direction", the vertical direction to the horizontal plane is the "Y direction", and the direction connecting the center of the pupil of the anterior segment of the subject's eye 12 and the center of the eyeball. Let it be "Z direction". Therefore, the X, Y and Z directions are perpendicular to each other.
 図2に示すように、視野計110は、制御装置10、指標提示部30、外部記憶装置40、入力/表示部50、および応答部60を備えている。 As shown in FIG. 2, the perimeter 110 includes a control device 10, an index presentation section 30, an external storage device 40, an input/display section 50, and a response section 60.
 制御装置10は、CPU(Central Processing Unit(中央処理装置))12、ROM(Read-Only memory)14、RAM(Random Access Memory)16、および入出力(I/O)ポート18を有し、これらがバス20により相互に接続されている、コンピュータを備えている。ROM14には、後述する視野検査プログラムが記憶されている。 The control device 10 has a CPU (Central Processing Unit) 12, a ROM (Read-Only Memory) 14, a RAM (Random Access Memory) 16, and an input/output (I/O) port 18. are interconnected by a bus 20; The ROM 14 stores a visual field inspection program, which will be described later.
 CPU12は、本開示の技術の「プロセッサ」の一例である。プロセッサは、視野検査プログラムを実行する。 The CPU 12 is an example of the "processor" of the technology of the present disclosure. A processor executes a visual field test program.
 I/Oポート18には、指標提示部30、外部記憶装置40、通信インターフェース(I/F)45、入力/表示部50、および応答部60が接続されている。 The I/O port 18 is connected to an index presentation unit 30, an external storage device 40, a communication interface (I/F) 45, an input/display unit 50, and a response unit 60.
 入力/表示部50は、画像を表示したりオペレータから各種指示を受け付けたりするグラフィックオペレータインターフェースを有する。グラフィックオペレータインターフェースとしては、タッチパネル・ディスプレイが挙げられる。 The input/display unit 50 has a graphic operator interface that displays images and receives various instructions from the operator. Graphic operator interfaces include touch panel displays.
 応答部60は、被検者(患者)により操作される図示しないスイッチと送信部とを備えている。後述する視野検査の際に、指標光を認識した場合に、被検者は、スイッチをオンする。送信部は、スイッチがオンされると、被検者が指標光を認識したことを示す認識信号を制御装置10に送信する。 The response unit 60 includes a switch (not shown) operated by the subject (patient) and a transmission unit. When the subject recognizes the index light during the visual field test, which will be described later, the subject turns on the switch. When the switch is turned on, the transmitter transmits a recognition signal indicating that the subject has recognized the index light to the control device 10 .
 通信インターフェース(I/F)45は、ネットワーク130を介してサーバ140、およびビューワ150に接続されている。 A communication interface (I/F) 45 is connected to the server 140 and the viewer 150 via the network 130 .
 指標提示部30は、半球の内面が反射面であるドーム30Dと、ドーム30Dの内面の複数の位置の検査点に、指標を提示する(具体的には、光を投影する)、図示しない投影装置とを備えている。後述する視野検査のための視野検査プログラムに従った制御装置10による制御に従って、投影装置は、ドーム30Dの内面の異なる複数の位置の点(指標提示点)に、時間をずらして、指標を提示する。指標提示点は、被検眼の網膜に対応している。指標提示点からの指標光は、被検眼12の網膜における検査点に到達する。上記のように、指標光を認識した被検者はスイッチをオンし、送信部は、認識信号を制御装置10に送信する。 The index presenting unit 30 presents indices (specifically, projects light) to a dome 30D whose hemispherical inner surface is a reflecting surface, and to inspection points at a plurality of positions on the inner surface of the dome 30D. device. Under the control of the control device 10 according to a visual field test program for visual field test, which will be described later, the projection device presents indices at a plurality of points (index presentation points) at different positions on the inner surface of the dome 30D at different times. do. The index presenting point corresponds to the retina of the subject's eye. The index light from the index presentation point reaches the examination point on the retina of the eye 12 to be examined. As described above, the subject who recognizes the index light turns on the switch, and the transmitter transmits the recognition signal to the control device 10 .
 なお、本開示の技術では、指標提示部30の構成は、ドーム30Dと投影装置とを備える構成に限定されない。本開示の技術では、例えば、ドーム30Dの内面の点が自発光する構成や、被検眼12の網膜の検査点に指標光を直接照射する構成が、指標提示部30の構成として採用可能である。 Note that, in the technology of the present disclosure, the configuration of the index presentation unit 30 is not limited to the configuration including the dome 30D and the projection device. In the technique of the present disclosure, for example, a configuration in which a point on the inner surface of the dome 30D emits light by itself, or a configuration in which an inspection point on the retina of the subject's eye 12 is directly irradiated with index light can be employed as the configuration of the index presentation unit 30. .
 サーバ140およびビューワ150は、CPU、RAM、ROM等を備えたコンピュータ、入力装置、ディスプレイ、および外部記憶装置等を備えている。 The server 140 and viewer 150 are equipped with a computer equipped with a CPU, RAM, ROM, etc., an input device, a display, an external storage device, and the like.
 図3に、視野計110のCPU22の機能ブロック図を示す。視野計110のCPU22が視野検査プログラムを実行することで実現される各種機能について説明する。視野検査プログラムは、検査点設定機能、画像処理機能および処理機能を備えている。CPU22がこの各機能を有する視野検査プログラムを実行することで、CPU22は、図3に示すように、検査点設定部72、画像処理部74および処理部76として機能する。 A functional block diagram of the CPU 22 of the perimeter 110 is shown in FIG. Various functions realized by executing the visual field inspection program by the CPU 22 of the perimeter 110 will be described. The visual field inspection program has an inspection point setting function, an image processing function and a processing function. When the CPU 22 executes the visual field inspection program having these functions, the CPU 22 functions as an inspection point setting section 72, an image processing section 74 and a processing section 76, as shown in FIG.
 図4Aは、被検眼12の構造を示した説明図である。被検眼12を構成する眼球は、強膜170で囲まれた略球状を呈する。強膜170の内側には脈絡膜172が、さらに脈絡膜172の内側には網膜174があり、網膜174で覆われた眼球内部にはゲル状の硝子体176が満たされている。 FIG. 4A is an explanatory diagram showing the structure of the eye 12 to be examined. The eyeball constituting the eye 12 to be examined has a substantially spherical shape surrounded by the sclera 170 . Inside the sclera 170 is a choroid 172 , further inside the choroid 172 is a retina 174 , and the eyeball covered with the retina 174 is filled with a gel-like vitreous body 176 .
 網膜174は視覚細胞が面状に並んでおり、視覚細胞は視覚的な映像(光情報)を神経信号(電気信号)に変換する。視覚細胞によって得られた神経信号は、視神経乳頭184から視神経182を介して脳へと伝達される。 Visual cells are arranged in a plane in the retina 174, and the visual cells convert visual images (optical information) into neural signals (electrical signals). Neural signals acquired by visual cells are transmitted from the optic disc 184 through the optic nerve 182 to the brain.
 網膜174において視覚細胞が密に配置されている領域が黄斑178であり、黄斑178の中心に相当する中心窩180は、視覚細胞が最も密に配置されているため、視野の中で最も解像度が高い。また、視神経乳頭184は、視神経182が集束している部位であるから、視覚細胞が存在しない。その結果、視神経乳頭184が存在する網膜174上の領域は盲点186となる。 The macula 178 is an area where visual cells are densely arranged in the retina 174, and the central fovea 180 corresponding to the center of the macula 178 has the most densely arranged visual cells, so the resolution is the highest in the visual field. expensive. Also, since the optic papilla 184 is a site where the optic nerve 182 converges, there are no visual cells. As a result, the area on retina 174 where optic disc 184 resides becomes blind spot 186 .
 本実施形態では、被検眼12の視野感度を測定するが、眼底の網膜174上で視覚細胞が有意に配置されている領域を検査対象領域190とする。 In this embodiment, the visual field sensitivity of the subject's eye 12 is measured, and the area where visual cells are significantly arranged on the retina 174 of the fundus is defined as the inspection target area 190 .
 図4Bは、右目の正常な眼底における検査対象領域190の画像である。画像を横切る水平線は水平経線206であり、検査データに基づいて追加検査点を設定する際における視野検査領域の上部領域202と下部領域204との境界線である。 FIG. 4B is an image of the inspection target area 190 in the normal fundus of the right eye. The horizontal line across the image is the horizontal meridian 206, which is the boundary between the upper region 202 and the lower region 204 of the visual field test area when setting additional test points based on test data.
 図4Cは、検査対象領域190において、指標光が提示される検査点の集合である検査点集合200を示した概略図である。検査点集合200に含まれる検査点は多数存在するので、本実施形態では、選択したいくつかの検査点に指標光を提示して被検者の反応を取得する間引き検査を行い、指標光を提示しない検査点の輝度値は、ガウス過程回帰等の手法によって補間する。また、眼底の疾患には、上部領域202と下部領域204とで連続性が希薄な症例がある。従って、追加検査点を設定する場合、検査結果から推測される症例に応じて追加検査点を上部領域202と下部領域204とに各々別個に設定する。
 ここで、症例とは、緑内障における視野欠損の症例を意味する。具体的には、鼻側穿破、鼻側階段、耳側楔状欠損、弓状暗点などの症例が存在する。
FIG. 4C is a schematic diagram showing an inspection point set 200, which is a set of inspection points to which index light is presented, in the inspection target area 190. As shown in FIG. Since there are a large number of inspection points included in the inspection point set 200, in the present embodiment, a thinning inspection is performed in which index light is presented to some selected inspection points to obtain the reaction of the subject, and the index light is used. The luminance values of inspection points not presented are interpolated by a technique such as Gaussian process regression. In addition, there are cases in which the continuity between the upper region 202 and the lower region 204 is weak in diseases of the fundus. Therefore, when setting the additional examination points, the additional examination points are separately set in the upper region 202 and the lower region 204 according to the cases inferred from the examination results.
Here, a case means a case of visual field defect in glaucoma. Specifically, there are cases of nasal perforation, nasal steps, temporal wedge defects, and arcuate scotoma.
 図4Dは、右目の正常な眼底の視野検査の結果を示す視野感度マップである。視野感度マップにおいて、視野感度を示す輝度値が低い領域は暗部となって示される。図4Dにも暗部188が存在するが、この暗部188は、盲点186である視神経乳頭184に対応するものである。 FIG. 4D is a visual field sensitivity map showing the results of a visual field test of the normal fundus of the right eye. In the visual field sensitivity map, areas with low luminance values indicating visual field sensitivity are shown as dark areas. A dark area 188 is also present in FIG. 4D and corresponds to the optic disc 184 which is the blind spot 186 .
 図5A~5Dは、視野検査の概略を示した説明図である。本実施形態では、視野検査が開始されると、図5Aに示したように、検査点集合200からグレーで示された初期検査点が設定される。基本的に初期検査点は、被検者の過去の診断データの有無によらず、過去の診断データがある場合もない場合も同じ初期検査点が設定されるが、被検者の過去の診断データに応じて初期検査点を設定してもよい。例えば、過去の診断データに、視野感度が低い領域が存在することが記載されている場合は、当該領域を含む領域に初期検査点を重点的に設定してもよい。また、初期検査点は図5Aのように上下対称に設定する必要はなく、非対称に設定しても良い。 5A to 5D are explanatory diagrams showing the outline of the visual field test. In this embodiment, when the visual field inspection is started, initial inspection points shown in gray are set from the inspection point set 200 as shown in FIG. 5A. Basically, the same initial test points are set regardless of the presence or absence of past diagnostic data for the subject, and whether or not there is past diagnostic data. Initial inspection points may be set according to the data. For example, if past diagnostic data describes the presence of an area with low visual field sensitivity, the initial inspection points may be set intensively in an area including the area. Also, the initial inspection points do not need to be set vertically symmetrically as shown in FIG. 5A, but may be set asymmetrically.
 図5Bは、初期検査点を検査した結果を示した説明図である。図5Bにおいて、黒い三角形で示された検査点は、視野感度が所定の閾値以下となった視野感度不良点であり、他の検査点は視野感度が所定の閾値を超えた視野感度適正点である。 FIG. 5B is an explanatory diagram showing the result of inspecting the initial inspection points. In FIG. 5B, inspection points indicated by black triangles are visual field sensitivity poor points where the visual field sensitivity is equal to or less than a predetermined threshold value, and other inspection points are visual field sensitivity appropriate points where the visual field sensitivity exceeds the predetermined threshold value. be.
 図5Cは、検査結果に基づいて追加検査点を設定した場合の一例を示した説明図である。図5Cでは、上部領域202に視野感度不良点が集中している悪化領域210が認められるので、五角形で示した追加検査点は、下部領域204よりも上部領域202へ優先的に設定する。 FIG. 5C is an explanatory diagram showing an example of setting additional inspection points based on inspection results. In FIG. 5C , the deteriorated region 210 where the visual field sensitivity defect points are concentrated in the upper region 202 is recognized, so the additional inspection points indicated by the pentagons are preferentially set in the upper region 202 rather than the lower region 204 .
 図5Dは、さらに追加検査点を設定した場合を示した説明図である。図5Dに示したように、六角形で示した新たな追加検査点は、視野感度不良点が多く存在する領域へ優先的に設定する。 FIG. 5D is an explanatory diagram showing a case where additional inspection points are set. As shown in FIG. 5D, new additional inspection points indicated by hexagons are preferentially set in areas where many visual field sensitivity defects exist.
 後述するように、本実施形態では、視野感度不良点の分布に基づいて被検者の被検眼の疾患の症例を推定する。図6は、症例の推定における視野欠損パーンの例を示した概略図である。例えば、右目の鼻側に近い領域212に視野感度不良点300が存在する場合は、鼻側穿破と推定する。また、右目の耳側に近い領域214に視野感度不良点302が存在する場合は、耳側楔状欠損と推定する。 As will be described later, in this embodiment, cases of disease in the subject's eye to be examined are estimated based on the distribution of points of poor visual field sensitivity. FIG. 6 is a schematic diagram showing an example of a visual field defect pan in estimating a case. For example, if the visual field sensitivity defect point 300 exists in the area 212 close to the nose side of the right eye, it is estimated to be nasal perforation. Also, if the visual field sensitivity defect point 302 exists in the region 214 close to the ear side of the right eye, it is estimated to be an ear-side wedge-shaped defect.
 また、視野検査領域は、図7に示したように、例えば、領域220、222、224、226、228、230に細分化してもよい。 Also, the visual field test area may be subdivided into areas 220, 222, 224, 226, 228, and 230, for example, as shown in FIG.
 図8には、視野計110のCPU12が実行する視野検査処理のフローチャートが示されている。CPU12が視野検査プログラムを実行することで、図8のフローチャートに示された視野検査処理が実現される。当該視野検査処理は、入力/表示部50に表示された図示しないスタートボタンがオペレータにより操作された場合にスタートする。 FIG. 8 shows a flowchart of visual field inspection processing executed by the CPU 12 of the perimeter 110 . The visual field inspection process shown in the flowchart of FIG. 8 is realized by the CPU 12 executing the visual field inspection program. The visual field inspection process is started when the operator operates a start button (not shown) displayed on the input/display unit 50 .
 ステップ100で、画像処理部74は、入力/表示部50に、患者IDの入力画面を表示する。オペレータにより入力/表示部50に、患者IDが入力される。ステップ102で、処理部76は、患者IDを取得する。 At step 100 , the image processing unit 74 displays an input screen for the patient ID on the input/display unit 50 . A patient ID is input to the input/display unit 50 by the operator. At step 102, the processing unit 76 acquires a patient ID.
 ステップ104で、検査点設定部72は、サーバ140に、取得した患者IDに対応して視野感度の検査結果が記憶されているのかを問い合わせる。すなわち、取得した患者IDに対応して、視野感度の検査結果が記憶されているかを問い合わせる。検査点設定部72は、サーバ140からの問い合わせ結果を取得し、取得した問い合わせ結果に基づいて、患者IDに対応して視野感度の検査結果の過去データがあるか否かを判断する。過去データは、被検者毎、および各被検者の検査点に応じたデータである。過去データは、例えば、当該患者の視野感度や、後述する各検査点の推定感度、検査回数、及び累積関数である。過去データは、過去に行われた全検査の取得データでもよく、最新の検査後に更新されたデータであってもよい。 At step 104, the inspection point setting unit 72 inquires of the server 140 whether the visual field sensitivity inspection result corresponding to the acquired patient ID is stored. That is, an inquiry is made as to whether the visual field sensitivity test result is stored in correspondence with the acquired patient ID. The inspection point setting unit 72 acquires the inquiry result from the server 140, and determines whether or not there is past data of the visual field sensitivity inspection result corresponding to the patient ID based on the acquired inquiry result. The past data is data corresponding to each subject and inspection points of each subject. The past data are, for example, the patient's visual field sensitivity, the estimated sensitivity of each inspection point, the number of inspections, and a cumulative function, which will be described later. The past data may be acquired data of all inspections performed in the past, or may be data updated after the latest inspection.
 ステップ104で、患者IDに対応して視野感度の検査結果の過去データがあると判断された場合には、ステップ106で、処理部76は、入力された患者IDに対応する過去データから、検査点集合200の各検査点の最新の推定感度(視野感度)および検査回数を読み込む。一方、ステップ104で、患者IDに対応して視野感度の検査結果の過去データがないと判断された場合には、ステップ108で、処理部76は、検査点集合200の各検査点について予め規定された輝度値を読み込む。予め規定された輝度値は、例えば正常眼における検査点集合200の各検査点についての参考値である。 If it is determined in step 104 that there is past data of visual field sensitivity test results corresponding to the patient ID, then in step 106 the processing unit 76 extracts the test results from the past data corresponding to the input patient ID. The latest estimated sensitivity (visual field sensitivity) and the number of inspections of each inspection point in the point set 200 are read. On the other hand, if it is determined in step 104 that there is no past data of visual field sensitivity test results corresponding to the patient ID, then in step 108 the processing unit 76 predefines each test point in the test point set 200. read the specified luminance value. The predetermined brightness value is, for example, a reference value for each inspection point in the inspection point set 200 for normal eyes.
 ステップ110で、検査点設定部72は、図5Aに示したような初期検査点の集合を設定する。そして、ステップ112では、検査点設定部72は、ステップ110で設定した初期検査点に提示する指標光の輝度値を選択する。ステップ112において、輝度値は、例えばランダムに選択されてもよく、操作者により選択されてもよく、過去データに基づいて自動的に選択されてもよい。 At step 110, the inspection point setting unit 72 sets a set of initial inspection points as shown in FIG. 5A. Then, at step 112 , the inspection point setting unit 72 selects the luminance value of the index light to be presented at the initial inspection point set at step 110 . In step 112, the brightness value may be selected randomly, selected by an operator, or automatically selected based on historical data, for example.
 ステップ114では、検査点設定部72は、累積関数の初期化を行う。累積関数とは、指標光の輝度値と検査回数との関係を示した関数であり、より具体的には、各指標光の輝度値に対し検査で用いられた累積回数を対応させる関数である。そして、累積関数の初期化は、図10Aに示したように各輝度値に対応する検査回数をゼロにする処理である。累積関数については、図10A~図10Iを用いて後述する。 At step 114, the inspection point setting unit 72 initializes the cumulative function. The cumulative function is a function that indicates the relationship between the luminance value of the index light and the number of inspections. More specifically, it is a function that associates the luminance value of each index light with the cumulative number of times used in inspection. . The initialization of the cumulative function is a process of zeroing the number of inspections corresponding to each luminance value as shown in FIG. 10A. The cumulative function will be described later with reference to FIGS. 10A-10I.
 ステップ116では、検査点設定部72は、ステップ110で設定した初期検査点の集合から検査点を1つ選択する。この検査点は、初期検査点の集合からランダムに選択されてもよく、操作者により選択されてもよく、過去データに基づいて自動的に選択されてもよい。 At step 116 , the inspection point setting unit 72 selects one inspection point from the set of initial inspection points set at step 110 . This inspection point may be randomly selected from a set of initial inspection points, may be selected by an operator, or may be automatically selected based on historical data.
 ステップ118では、検査点設定部72は、ステップ116で選択した検査点の累積検査回数を取得する。累積検査回数は、後述する累積関数から抽出できるが、累積検査回数として累積関数とは独立したデータとして保持してもよい。 At step 118 , the inspection point setting unit 72 acquires the cumulative number of inspections of the inspection point selected at step 116 . The cumulative number of inspections can be extracted from a cumulative function to be described later, but the cumulative number of inspections may be held as data independent of the cumulative function.
 ステップ120では、累積検査回数が1以上であるか否かを判定する。ステップ120で、累積検査回数が1以上の場合は手順をステップ122に移行し、累積検査回数が1以上でない場合は手順をステップ124に移行する。 At step 120, it is determined whether or not the cumulative number of inspections is 1 or more. At step 120, if the cumulative number of inspections is one or more, the procedure proceeds to step 122, and if the cumulative number of inspections is not one or more, the procedure proceeds to step .
 ステップ122では、検査点設定部72は、ステップ116で選択した検査点に対して累積関数に基づく輝度値で指標光を提示する。検査点設定部72は、累積関数から抽出された輝度値の範囲から、提示する指標光の輝度値を設定する。本開示の技術において、提示する指標光の輝度値は、抽出された輝度値の範囲から、ランダムに抽出して設定してもよく、任意に定められた値を抽出して設定してもよい。例えば、検査点設定部72は、当該範囲から、提示する指標光の輝度値を、当該範囲の中の中央値又は3/4の値等を抽出してもよい。次に、検査点設定部72は、抽出した輝度値で指標光がステップ116で選択した検査点に入射されるように、投影装置を制御する。 At step 122, the inspection point setting unit 72 presents index light to the inspection point selected at step 116 with a luminance value based on the cumulative function. The inspection point setting unit 72 sets the brightness value of the index light to be presented from the range of brightness values extracted from the cumulative function. In the technique of the present disclosure, the luminance value of the index light to be presented may be set by randomly extracting from the extracted luminance value range, or may be set by extracting an arbitrarily determined value. . For example, the inspection point setting unit 72 may extract the brightness value of the index light to be presented from the range, such as the median value or the 3/4 value in the range. Next, the inspection point setting unit 72 controls the projection device so that the index light is incident on the inspection point selected in step 116 with the extracted luminance value.
 ステップ124では、ステップ112で設定した初期輝度値の指標光が被検者に提示される。 In step 124, the subject is presented with the index light having the initial brightness value set in step 112.
 ステップ126では、検査点設定部72は被検者の反応を取得する。ステップ126で提示された指標光を被検者が認識した場合には、被検者は応答部60のスイッチをオンする。これにより認識信号が制御装置10に送信される。指標光が提示されても被検者が認識しなかった場合には、被検者は応答部60のスイッチをオンしない。検査点設定部72は、指標光を提示した時から所定時間経過する前に、認識信号が送信されたか否かで、被検者が指標光を認識したか否かを判定する。例えば、検査点設定部72は、指標光を提示した時から所定時間経過する前に、認識信号が送信された場合には、被検者が指標光を認識した、との被検者の反応を取得する。上記所定時間経過しても認識信号が送信されなかった場合には、被検者は指標を認識しなかった、との被検者の反応を取得する。検査点設定部72は、ステップ126で取得した被検者の反応を外部記憶装置40に保存する。 At step 126, the inspection point setting unit 72 acquires the subject's reaction. When the subject recognizes the index light presented in step 126, the subject switches on the responder 60. FIG. A recognition signal is thereby sent to the control device 10 . If the subject does not recognize the indicator light even if it is presented, the subject does not turn on the switch of the response unit 60 . The inspection point setting unit 72 determines whether or not the subject recognizes the index light based on whether or not the recognition signal has been transmitted before a predetermined time has elapsed since the index light was presented. For example, if the recognition signal is transmitted before the elapse of a predetermined time from when the index light is presented, the inspection point setting unit 72 may indicate that the subject recognizes the index light. to get If the recognition signal is not transmitted even after the predetermined time has passed, the subject's reaction that the subject did not recognize the index is acquired. The inspection point setting unit 72 saves the subject's reaction acquired in step 126 in the external storage device 40 .
 ステップ128で、検査点設定部72は、累積関数を更新する。本実施形態では、ステップ116からステップ128の処理が繰り返され、ステップ128における累積関数の更新処理も繰り返される。また、累積検査点回数も更新される。ステップ116からステップ128の処理を繰り返すことにより、ステップ110で設定された検査点の集合に属する各検査点に対して異なる輝度値の指標光を複数回提示し、各々の指標光に対する被検者の応答が得られるので、各提示における被検者の応答に基づいて各検査点に対応する累積関数を更新する。以下、具体的に説明する。 At step 128, the inspection point setting unit 72 updates the cumulative function. In this embodiment, the processing from step 116 to step 128 is repeated, and the update processing of the cumulative function in step 128 is also repeated. Also, the cumulative number of inspection points is updated. By repeating the processing from step 116 to step 128, index lights with different brightness values are presented a plurality of times to each inspection point belonging to the set of inspection points set in step 110, and the subject's response to each indicator light is presented. , update the cumulative function corresponding to each test point based on the subject's response at each presentation. A specific description will be given below.
 累積関数は、過去データがない場合、検査前の累積検査回数は、図10Aに示すように各輝度値について0であり、累積関数は存在しない。ステップ124の処理により、例えば、初期輝度値が28dBの指標光が被検者に提示される。被検者が当該指標光を認識しなかった場合、検査点設定部72は、図10Bに示すように、28dBを境界として定まる範囲、即ち、28dB以上の範囲の各輝度値についての検査回数を、所定量増加させる。増加させる所定量としては例えば、1である。よって、図10Bに示すように、28dB以上の範囲の各輝度値についての検査回数は1となる。 As for the cumulative function, if there is no past data, the cumulative number of inspections before inspection is 0 for each luminance value as shown in FIG. 10A, and the cumulative function does not exist. By the processing of step 124, for example, the subject is presented with index light with an initial luminance value of 28 dB. When the subject does not recognize the index light, the inspection point setting unit 72 sets the number of inspections for each luminance value in the range defined by the boundary of 28 dB, that is, the range of 28 dB or more, as shown in FIG. 10B. , is increased by a predetermined amount. The predetermined amount to be increased is 1, for example. Therefore, as shown in FIG. 10B, the number of inspections for each luminance value in the range of 28 dB or more is one.
 ここで、図10Bにおいて、28dBの輝度値しか提示していないのに、28dB以上の範囲の各輝度値についての検査回数を1としたのは、次の理由からである。28dBの指標光を被検者が認識しなかった場合、当該被検者は、28dBより大きい輝度値の指標光、すなわち提示した指標光より暗い光は認識できないものと推定される。そのため、28dBの指標光を提示したこの検査点については28dBより大きい輝度値の指標についても認識できなかったという被検者の反応が得られると推定される。よって、28dBより大きい輝度値については、実際に検査をするまでもなく被検者の反応が想定されるため、検査したものとみなして検査回数を1増加させる。増加させる所定量としては、各輝度値に応じて異なる値でもよい。例えば、28dBの指標光を被検者が認識しなかった場合、28dB以上32dB未満の範囲の各輝度値について検査回数を1増加させ、32dB以上36dB未満の範囲の各輝度値について検査回数を2増加させ、36dB以上の範囲の各輝度値について検査回数を3増加させてもよい。これは、28dBの指標光に加えて、疑似的に32dBの指標光と36dBの指標光を提示した場合に、当該被検者がすべて認識できないことを想定し、疑似的な検査を含む3回の検査に対して、上記した各輝度値についての検査回数を1増加させる操作を行ったことに相当する。 Here, in FIG. 10B, although only the luminance value of 28 dB is presented, the reason why the number of inspections for each luminance value in the range of 28 dB or more is 1 is as follows. If the subject does not recognize the index light of 28 dB, it is presumed that the subject cannot recognize the index light with a luminance value higher than 28 dB, that is, the light darker than the presented index light. Therefore, it is presumed that the subject's reaction would be that he could not recognize the index with a luminance value greater than 28 dB for this inspection point where the index light of 28 dB was presented. Therefore, for a luminance value greater than 28 dB, the subject's reaction is assumed without actually being tested, so the number of times of testing is increased by 1 assuming that it has been tested. The predetermined amount to be increased may be a different value depending on each luminance value. For example, when the subject does not recognize the index light of 28 dB, the number of inspections is increased by 1 for each luminance value in the range of 28 dB to less than 32 dB, and the number of inspections is increased by 2 for each luminance value in the range of 32 dB to less than 36 dB. The number of tests may be increased by 3 for each luminance value in the range of 36 dB or more. This is based on the assumption that the examinee will not be able to recognize all of the 28 dB index light, as well as the 32 dB index light and the 36 dB index light that are presented in a pseudo manner. This corresponds to performing an operation of increasing the number of inspections for each luminance value by 1 with respect to the inspection of .
 ステップ128では、検査回数が1回目の場合、図10Bに示したように累積関数が更新される。 At step 128, if the number of inspections is the first, the cumulative function is updated as shown in FIG. 10B.
 ステップ130では、ステップ116で設定された検査点の集合に対し視野感度が十分な精度で推定可能か否かを判定する。本実施形態では、後述するように、累積関数が図10Iのように下に凸の線形を描き、被検者が認識できた指標光の輝度が十分な精度で推定可能か否かを判定する。検査回数が1の場合、累積関数は図10Bのように下に凸の線形とはならないので、視野感度を十分な精度で推定できない。 In step 130, it is determined whether or not the visual field sensitivity can be estimated with sufficient accuracy for the set of inspection points set in step 116. In this embodiment, as will be described later, the cumulative function draws a downwardly convex linear shape as shown in FIG. . When the number of inspections is 1, the cumulative function does not have a downwardly convex linear shape as shown in FIG. 10B, so the visual field sensitivity cannot be estimated with sufficient accuracy.
 ステップ130で視野感度が十分な精度で推定可能かを判定するには、ステップ116で選択した検査点に対して、異なる輝度値の指標光を提示して被検者の反応を取得し、提示した指標光の輝度値及び被検者の反応に応じて累積関数を更新する。 In order to determine in step 130 whether the visual field sensitivity can be estimated with sufficient accuracy, index lights with different luminance values are presented to the inspection points selected in step 116 to acquire the subject's reaction. The cumulative function is updated according to the brightness value of the index light and the subject's reaction.
 例えば、図10Bに示す結果が得られた場合、図10Cに示すように、ステップ116で選択した検査点について、28dBより小さい輝度値の範囲を認識できるか否かは不明なので、28dBより小さい輝度値の範囲を認識できるか否かを探索(検査)する必要がある。 For example, when the result shown in FIG. 10B is obtained, as shown in FIG. It is necessary to search (test) whether the range of values is recognized.
 そこで、上記繰り返しにより、ステップ122で、累積関数(図10B参照)から、検査回数が1未満である輝度値の範囲から、図10Dに示すように、例えば、16dBが抽出され、16dBの輝度値の指標光が提示されたとする。そして、被検者が、16dBの輝度値の指標光を認識しなかったとする。この場合、上記理由により、検査点設定部72は、16dBを境界として定まる範囲(16dB以上の範囲)の各輝度値についての検査回数を所定量(例えば、1)増加させる。よって、図10Dに示すように、16dBから28dB未満の輝度値についての検査回数は1となり、28dB以上の範囲の輝度値についての検査回数は2となるように、累積関数が更新される。この場合、図10Eに示すように、16dBより小さい輝度値の範囲を認識できるか否かを探索(検査)する必要がある。 Therefore, by repeating the above, in step 122, from the cumulative function (see FIG. 10B), for example, 16 dB is extracted from the range of luminance values in which the number of inspections is less than 1, as shown in FIG. is presented. Suppose that the subject did not recognize the index light with a luminance value of 16 dB. In this case, for the reason described above, the inspection point setting unit 72 increases the number of inspections for each luminance value within the range defined by 16 dB (range of 16 dB or more) by a predetermined amount (for example, 1). Therefore, as shown in FIG. 10D, the cumulative function is updated so that the number of inspections is 1 for luminance values from 16 dB to less than 28 dB, and the number of inspections is 2 for luminance values in the range of 28 dB or more. In this case, as shown in FIG. 10E, it is necessary to search (check) whether or not a range of luminance values smaller than 16 dB can be recognized.
 このようにステップ120からステップ128の処理を繰り返して、累積関数を図10F、10G、10H、10Iのように更新することにより、探索(検査)する必要のある輝度値の範囲が狭くなっていく。その結果、探索(検査)する必要のある輝度値の範囲の上限値と下限値が定められ、下に凸の線形となる累積関数を作成することができる。 By repeating the processing from step 120 to step 128 in this manner and updating the cumulative function as shown in FIGS. . As a result, the upper and lower limits of the range of luminance values that need to be searched (inspected) are determined, and a downwardly convex linear cumulative function can be created.
 ステップ116で選択した検査点の累積関数が図10Iのような状態になった場合、次に12dBの輝度値の指標光をステップ116で選択した検査点に提示して被検者の反応を取得する。しかしながら、ステップ116で選択した検査点の累積関数が図10Iのような状態であれば、この検査点における被検者の視野感度値は12dB付近であることが予想される。このようにして、ステップ116で選択した検査点の視野感度が推定可能であるかを判定する。  When the cumulative function of the inspection point selected in step 116 is in the state shown in FIG. 10I, next, the index light with a brightness value of 12 dB is presented to the inspection point selected in step 116 to obtain the subject's reaction. do. However, if the cumulative function of the inspection point selected in step 116 is as shown in FIG. 10I, it is expected that the subject's visual field sensitivity value at this inspection point is around 12 dB. In this way, it is determined whether the visual field sensitivity of the inspection point selected in step 116 can be estimated. 
 以上、図10Aから図10Iを用いて説明した例は、上記のように過去データがない場合の例である。一方、図8のステップ104で、過去データがあると判断された場合には、当該患者IDに対応して検査点集合200の各検査点について累積関数と視野感度の推定値とが存在する。この場合、図8のステップ104の処理が実行されると、ステップ104は肯定判定となり、ステップ122では、上記過去データにおける検査点集合200の各検査点についての累積関数および視野感度の推定値のいずれか又は両方が用いられる。提示する指標項の輝度値の選択方法は、例えば、累積関数の値が最も小さい輝度値が32dBであって視野感度の推定値が28dBであった場合にこれら平均値である30dBを提示する。 The examples described above using FIGS. 10A to 10I are examples in which there is no past data as described above. On the other hand, if it is determined in step 104 of FIG. 8 that there is past data, there is a cumulative function and an estimated value of visual field sensitivity for each inspection point in the inspection point set 200 corresponding to the patient ID. In this case, when the process of step 104 in FIG. 8 is executed, step 104 is determined affirmatively, and step 122 determines the cumulative function and visual field sensitivity estimated value for each inspection point in the inspection point set 200 in the past data. Either or both are used. As for the method of selecting the brightness value of the index term to be presented, for example, when the brightness value with the smallest value of the cumulative function is 32 dB and the estimated value of the visual field sensitivity is 28 dB, the average value of 30 dB is presented.
 ステップ132では、検査点設定部72は、判定条件を充足するか否かを判定する。ステップ132での判定条件は、ステップ110で設定した初期検査点の集合に属するすべての検査点に対し、ステップ128で視野感度が推定可能であると判定されたか否かである。ステップ132で、すべての検査点に対し視野感度が推定可能であると判定した場合ステップ134に移行し、そうでない場合は、ステップ116に移行して、ステップ116からステップ130の手順を行う。  At step 132, the inspection point setting unit 72 determines whether or not the determination conditions are satisfied. The determination condition in step 132 is whether or not it is determined in step 128 that the visual field sensitivity can be estimated for all inspection points belonging to the set of initial inspection points set in step 110 . If it is determined in step 132 that visual field sensitivities can be estimated for all inspection points, the process proceeds to step 134; 
 ステップ134では、検査点設定部72は、ステップ132までの手順で得た検査データを読み込む。そして、ステップ136では、検査点設定部72は、検査点集合200の中の各検査点について得られた累積関数に基づいて、全体の視野感度、即ち、検査点集合200の各検査点について視野感度(推定輝度値)を推定するデータ補間を行う。 At step 134, the inspection point setting unit 72 reads the inspection data obtained in the procedure up to step 132. Then, in step 136 , the inspection point setting unit 72 determines the overall visual field sensitivity, that is, the visual field sensitivity for each inspection point in the inspection point set 200 based on the cumulative function obtained for each inspection point in the inspection point set 200 . Perform data interpolation to estimate sensitivity (estimated luminance value).
 本実施形態では、検査点設定部72は、初期検査点を含む検査点集合200の各検査点について視野感度(推定輝度値)を推定する。検査点設定部72は、確率過程を用いて、各検査済点の推定輝度値から、未検査点の推定輝度値を推定すると共に、推定した未検査点の推定輝度値の確からしさを表す信頼度を推定する。 In this embodiment, the inspection point setting unit 72 estimates the visual field sensitivity (estimated brightness value) for each inspection point in the inspection point set 200 including the initial inspection points. The inspection point setting unit 72 uses a stochastic process to estimate an estimated brightness value of an uninspected point from the estimated brightness value of each inspected point, and sets a confidence value representing the likelihood of the estimated brightness value of the estimated uninspected point. Estimate degrees.
 本実施形態では、検査点設定部72は、未検査点の推定輝度値を数値的に求めている。この場合の確率過程を、「確率場」と称する。本実施形態では、検査点設定部72は、確率過程または確率場を用いて、各検査済点の推定輝度値から、未検査点の推定輝度値を推定し、確率過程または確率場を用いて、推定した未検査点の推定輝度値の信頼度を推定する。 In this embodiment, the inspection point setting unit 72 numerically obtains the estimated luminance value of the uninspected points. The stochastic process in this case is called a "stochastic field". In this embodiment, the inspection point setting unit 72 uses a stochastic process or a random field to estimate the estimated brightness value of an uninspected point from the estimated brightness value of each inspected point, and uses the stochastic process or random field to , to estimate the reliability of the estimated brightness values of the estimated uninspected points.
 本実施形態では、確率過程として、ガウス過程回帰(GPR: Gaussian Process Regression)が用いる。なお、本開示の技術では、確率過程として、ガウス過程回帰に限定されない。確率過程のその他の例として、t過程回帰などがあげられる。 In this embodiment, Gaussian Process Regression (GPR) is used as the stochastic process. Note that the technique of the present disclosure is not limited to Gaussian process regression as the stochastic process. Another example of a stochastic process is t-process regression.
 上記のように信頼度は、推定した未検査点の推定輝度値の確からしさを表す数値データである。具体的には、信頼度は、推定した未検査点の推定輝度値の値を中心とした、未検査点の視野感度の取り得る範囲を示した数値データである。 As described above, the reliability is numerical data representing the likelihood of the estimated luminance value of the estimated uninspected points. Specifically, the reliability is numerical data indicating the possible range of the visual field sensitivity of the uninspected point centered on the estimated luminance value of the uninspected point.
 図9には、図8のステップ136の検査点全体の視野感度を推定して補間する処理のフローチャートが示されている。図9に示すように、ステップ301で、検査点設定部72は、各検査済点の推定輝度値を算出する。具体的には、まず、検査点設定部72は、各検査済点の推定輝度値(視野感度)を算出するため、図11に示す、輝度値に対するその輝度値の指標光を被検者の被検眼12の視神経の検査点が認識する確率fa,b(θ)の関係を示す輝度値-正答率曲線を用いる。輝度値-正答率曲線は以下の式により規定される。下記の式において、θは、検査点における各検査で用いた輝度値である。 FIG. 9 shows a flowchart of the process of estimating and interpolating the visual field sensitivity of the entire inspection points in step 136 of FIG. As shown in FIG. 9, at step 301, the inspection point setting unit 72 calculates the estimated brightness value of each inspected point. Specifically, first, in order to calculate the estimated luminance value (visual field sensitivity) of each inspected point, the inspection point setting unit 72 sets the index light of the luminance value with respect to the luminance value shown in FIG. A luminance value-percentage of correct answer curve showing the relationship between the probability f a,b (θ) of recognition by the inspection point of the optic nerve of the subject's eye 12 is used. The luminance value-correct answer rate curve is defined by the following formula. In the following formula, θ is the brightness value used in each inspection at the inspection point.
Figure JPOXMLDOC01-appb-M000001

 
Figure JPOXMLDOC01-appb-M000001

 
 下記のように、aは0より大きい定数であり、bは、R(Rは実数全体の集合である)に含まれる値である。 As shown below, a is a constant greater than 0, and b is a value included in R (R is the set of all real numbers).
Figure JPOXMLDOC01-appb-M000002

 
Figure JPOXMLDOC01-appb-M000002

 
 検査点設定部72は、上記曲線を示す式を用いて、各検査済点の尤度L(a,b)を以下の式から求める。より具体的に説明すると、例えば、ある検査済点において1回目の検査では、輝度値が20dBであり、被検者の反応が認識した(Yes)の場合には、検査点設定部72は、確率fa,b(20)を用いる。2回目の検査では、輝度値が24dBであり、被検者の反応が認識しなかった(No)の場合には、検査点設定部72は、(1-fa,b(24))を用いる。3回目の検査では、輝度値が16dBであり、被検者の反応が認識した(Yes)の場合には、検査点設定部72は、確率fa,b(16)を用いる。検査点設定部72は、検査済点毎に、以上のように全ての検査の結果に応じた値の積を用い、尤度(a,b)が最大となる b を求める。 The inspection point setting unit 72 obtains the likelihood L(a, b) of each inspected point from the following equation using the equation representing the curve. More specifically, for example, in the first inspection at a certain inspected point, the luminance value is 20 dB, and if the reaction of the subject is recognized (Yes), the inspection point setting unit 72 Use the probability f a,b (20). In the second inspection, when the luminance value is 24 dB and the subject's reaction is not recognized (No), the inspection point setting unit 72 sets (1-f a,b (24)). use. In the third inspection, the luminance value is 16 dB, and if the subject's reaction is recognized (Yes), the inspection point setting unit 72 uses the probability f a,b (16). For each inspected point, the inspection point setting unit 72 uses the product of values corresponding to the results of all inspections as described above, and obtains b that maximizes the likelihood (a, b).
Figure JPOXMLDOC01-appb-M000003

 
Figure JPOXMLDOC01-appb-M000003

 
 各検査済み点に対して求めたbを、各検査済点の推定輝度値とする。例えば、検査済点(x)では、推定輝度値として、21dBが算出され、検査済点(x)では、推定輝度値として、19.6dBが算出され、検査済点(x)では、推定輝度値として、31.5dBが算出される。 Let b obtained for each inspected point be the estimated luminance value of each inspected point. For example, at the inspected point (x 2 ), 21 dB is calculated as the estimated luminance value, at the inspected point (x 3 ), 19.6 dB is calculated as the estimated luminance value, and at the inspected point (x 5 ) , 31.5 dB is calculated as an estimated luminance value.
 ステップ303で、検査点設定部72は、ガウス過程回帰を用いて、検査されなかった各未検査点の推定輝度値を算出する。具体的には、検査点設定部72は、各未検査点について、各検査済点の推定輝度値を用いて、以下の式から、推定輝度値E[X(x*)|D]を算出する。 At step 303, the inspection point setting unit 72 uses Gaussian process regression to calculate the estimated luminance value of each uninspected point that has not been inspected. Specifically, for each uninspected point, the inspection point setting unit 72 uses the estimated brightness value of each inspected point to calculate an estimated brightness value E[X(x*)|D] from the following equation. do.
Figure JPOXMLDOC01-appb-M000004

 
Figure JPOXMLDOC01-appb-M000004

 
Figure JPOXMLDOC01-appb-M000005

 
Figure JPOXMLDOC01-appb-M000005

 
Figure JPOXMLDOC01-appb-M000006

 
Figure JPOXMLDOC01-appb-M000006

 
Figure JPOXMLDOC01-appb-M000007

 
Figure JPOXMLDOC01-appb-M000007

 
 数4のk*および数5のKのK(x,x’)は、以下のGaussian RBFカーネル(Radial basis function kernel)である。下記の式において、θ1、θ2は実数である。 K(x, x') of k* D in Equation 4 and K(x, x') in KD in Equation 5 is the following Gaussian RBF kernel (radial basis function kernel). In the formula below, θ 1 and θ 2 are real numbers.
Figure JPOXMLDOC01-appb-M000008

 
Figure JPOXMLDOC01-appb-M000008

 
 K(x、x')のxは、各x、x、...Xを示し、x、x、...Xの各々は、検査済点の位置のXY座標である。 Each of x 1 , x 2 , . . . Denote X N and x 1 , x 2 , . . . Each of XN is the XY coordinates of the location of the inspected point.
 K(x、x')のx’は、各未検査点x*のXY座標である。 The x' of K(x, x') is the XY coordinates of each uninspected point x*.
 Yのy1、y2、...Yは、各検査済点の推定輝度値である。 y1 , y2, . . . YN is the estimated luminance value of each inspected point.
 以上のように求められる各未検査点の推定輝度値E[X(x*)|D]は、各未検査点の、各検査済点の推定輝度値から推定される輝度値の平均的な値である。 The estimated luminance value E[X(x*)|D] of each uninspected point obtained as described above is the average luminance value of each uninspected point estimated from the estimated luminance value of each inspected point. value.
 ステップ305で、検査点設定部72は、ガウス過程回帰を用いて、検査されなかった各未検査点の推定輝度値の信頼度として、以下の式から分散V[X(x*)|D]を算出する。 In step 305, using Gaussian process regression, the inspection point setting unit 72 determines the reliability of the estimated brightness value of each uninspected point that has not been inspected, from the following equation: variance V[X(x*)|D] Calculate
Figure JPOXMLDOC01-appb-M000009

 
Figure JPOXMLDOC01-appb-M000009

 
 k**は、下記の通りである。 k ** is as follows.
Figure JPOXMLDOC01-appb-M000010

 
Figure JPOXMLDOC01-appb-M000010

 
 ステップ305の処理が終了すると、図8のステップ136の処理が終了する。 When the processing of step 305 ends, the processing of step 136 in FIG. 8 ends.
 図12には、検査点(未検査点と検査済点とを含む)と、各検査点の推定輝度値との関係を示す図である。図8のステップ136の処理が終了すると、例えば、図12に示すように、各検査済点(x、x、x、...)の推定輝度値が求められ、未検査点(x、x、x、x、x、...)の推定輝度値およびその信頼度が求められる。図12において、曲線の周囲に存在する着色領域は、誤差の範囲を示し、着色領域の幅が小さいと推定輝度値の信頼度は高く、着色領域の幅が大きいと推定輝度値の信頼度が低い。 FIG. 12 is a diagram showing the relationship between inspection points (including uninspected points and inspected points) and the estimated luminance value of each inspection point. When the process of step 136 in FIG. 8 is completed, for example, as shown in FIG. 12, the estimated brightness values of the inspected points (x 2 , x 3 , x 5 , . . . ) are obtained, and the uninspected points ( x1 , x4 , x6 , x7 , x8 , ...) and their reliability are obtained. In FIG. 12, the colored area around the curve indicates the range of error. If the width of the colored area is small, the reliability of the estimated luminance value is high, and if the width of the colored area is large, the reliability of the estimated luminance value is high. low.
 図12に示すように、例えば、未検査点(x)は、検査済点(x、x)に隣接し、検査済点(x、x)に比較的近い。しかし、未検査点(x)は、検査済点(x)から比較的遠い。よって、未検査点(x)の推定輝度値の誤差の範囲は比較的小さく信頼度の値は高く、未検査点(x)の推定輝度値の誤差の範囲は比較的大きく信頼度は低い。 As shown in FIG. 12, for example, uninspected point (x 4 ) is adjacent to inspected point (x 3 , x 5 ) and relatively close to inspected point (x 3 , x 5 ). However, the unchecked point (x 8 ) is relatively far from the checked point (x 5 ). Therefore, the error range of the estimated luminance value of the uninspected point (x 4 ) is relatively small and the reliability value is high, and the error range of the estimated luminance value of the uninspected point (x 8 ) is relatively large and the reliability is high. low.
 ステップ138では、検査点設定部72は、追加検査が必要か否かを判定する。追加検査の要否は、推定輝度値の誤差の範囲に基づいて行う。ステップ138では、推定輝度値を算出した検査点の中に、誤差の範囲が所定範囲を超える検査点が存在する場合、追加検査が必要と判定する。ステップ138における所定範囲は、推定輝度値算出の試験を通じて具体的に決定する。 At step 138, the inspection point setting unit 72 determines whether additional inspection is necessary. The necessity of additional inspection is determined based on the error range of the estimated luminance value. In step 138, if there is an inspection point whose error range exceeds a predetermined range among the inspection points for which the estimated brightness value has been calculated, it is determined that additional inspection is necessary. The predetermined range in step 138 is specifically determined through a test of estimated luminance value calculation.
 ステップ138で、追加検査を要しないと判定した場合は処理を終了し、追加検査を要する場合は手順をステップ140に移行する。 If it is determined in step 138 that additional inspection is not required, the process is terminated, and if additional inspection is required, the procedure proceeds to step 140.
 ステップ140では、検査点設定部72は、追加検査点の集合を設定する。本実施形態では、初期検査点の検査結果に基づいて被検者の緑内障における症例を推定し、推定した症例に応じて追加検査点を設定する。症例の推定と、追加検査点の設定は、例えば、RNN(回帰型ニューラルネットワーク)等による機械学習済みの制御装置10を用いて行ってもよい。RNN等による機械学習においては、各々の症例に係る検査結果を教師データに用い、制御装置10を学習させる。 At step 140, the inspection point setting unit 72 sets a set of additional inspection points. In this embodiment, the glaucoma case of the subject is estimated based on the test results of the initial test points, and additional test points are set according to the estimated case. Case estimation and setting of additional test points may be performed using, for example, the control device 10 that has been machine-learned by an RNN (Regressive Neural Network) or the like. In machine learning using RNN or the like, the control device 10 is trained by using test results for each case as teacher data.
 図13Aは、異常なしの場合の各々の検査点の検査結果の例を示した概略図である。図13Aに四角形で示した初期検査点のいずれもが正常な場合は、図13Bに示した視野感度マップにおいて盲点186である視神経乳頭184に対応する暗部188が存在するのみであると推定する。そして、図13Cに示したように、上部領域202の初期検査点が疎な領域と下部領域204の初期検査点が疎な領域とに五角形で示した同数の追加検査点を設定する。 FIG. 13A is a schematic diagram showing an example of inspection results for each inspection point when there is no abnormality. If all of the initial test points indicated by squares in FIG. 13A are normal, it is assumed that there is only a dark area 188 corresponding to the optic papilla 184, which is the blind spot 186, in the visual field sensitivity map shown in FIG. 13B. Then, as shown in FIG. 13C, the same number of additional inspection points indicated by pentagons are set in the upper area 202 where the initial inspection points are sparse and the lower area 204 where the initial inspection points are sparse.
 図14Aは、上部領域202が鼻側穿破の場合の各々の検査点の検査結果の例を示した概略図である。図14Aに示したように、上部領域202の鼻側領域202Nに三角形で示した視野感度不良点が顕著な場合は、上部領域202の鼻側穿破の可能性がある。 FIG. 14A is a schematic diagram showing an example of test results for each test point when the upper region 202 is nasal perforation. As shown in FIG. 14A, if the visual field sensitivity defect indicated by the triangle is prominent in the nasal region 202N of the upper region 202, there is a possibility that the nasal perforation of the upper region 202 has occurred.
 図14Bは、上部領域202が鼻側穿破の場合の視野感度マップの例を示した概略図である。ステップ140で上部領域202の鼻側穿破の可能性がある場合には、視野感度不良点が図14Bに示したように分布していると推定する。そして、図14Cに示したように、上部領域202の初期検査点が疎な領域と下部領域204の初期検査点が疎な領域とに五角形で示した同数の追加検査点を設定する。 FIG. 14B is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 is a nasal perforation. If there is a possibility of nasal perforation of the upper region 202 in step 140, it is assumed that the visual field sensitivity points are distributed as shown in FIG. 14B. Then, as shown in FIG. 14C, the same number of additional inspection points indicated by pentagons are set in the upper area 202 where the initial inspection points are sparse and the lower area 204 where the initial inspection points are sparse.
 図15Aは、上部領域202が耳側楔状欠損の場合の各々の検査点の検査結果の例を示した概略図である。図15Aに示したように、上部領域202の耳側領域202Eに三角形で示した視野感度不良点が顕著な場合は、上部領域202の耳側楔状欠損の可能性がある。 FIG. 15A is a schematic diagram showing an example of inspection results at each inspection point when the upper region 202 has a temporal wedge-shaped defect. As shown in FIG. 15A , when the visual field sensitivity defect points indicated by triangles are conspicuous in the ear-side region 202E of the upper region 202, there is a possibility that the ear-side wedge-shaped defect of the upper region 202 is present.
 図15Bは、上部領域202が耳側楔状欠損の場合の視野感度マップの例を示した概略図である。ステップ140で上部領域202の耳側楔状欠損の可能性がある場合には、視野感度不良点が図15Bに示したように分布していると推定する。そして、図15Cに示したように、上部領域202の初期検査点が疎な領域と下部領域204の初期検査点が疎な領域とに追加検査点を各々設定するが、耳側楔状欠損では耳側の視野領域の感度が低いことから、検査点設定部72は、上部領域202の耳側領域204Eへ優先的に五角形で示した追加検査点を設定する。 FIG. 15B is a schematic diagram showing an example of a visual field sensitivity map when the upper region 202 has a temporal wedge-shaped defect. If in step 140 there is a possibility of an ear-side wedge-shaped defect in the upper region 202, it is assumed that the visual field sensitivity defect points are distributed as shown in FIG. 15B. Then, as shown in FIG. 15C, additional test points are set in the upper region 202 where the initial test points are sparse and the lower region 204 where the initial test points are sparse. Since the sensitivity of the visual field region on the side is low, the inspection point setting unit 72 preferentially sets additional inspection points indicated by pentagons in the ear-side region 204E of the upper region 202 .
 図16Aは、鼻側階段の場合の各々の検査点の検査結果の例を示した概略図である。図16Aに示したように、下部領域204の鼻側領域204Nに三角形で示した視野感度不良点が顕著な場合は、下部領域204の鼻側階段の可能性がある。 FIG. 16A is a schematic diagram showing an example of inspection results for each inspection point in the case of nose-side stairs. As shown in FIG. 16A , if the visual field sensitivity defect points indicated by triangles are conspicuous in the nose-side region 204N of the lower region 204, there is a possibility that the nose-side steps of the lower region 204 are present.
 図16Bは、下部領域204が鼻側階段の場合の視野感度マップの例を示した概略図である。ステップ140で下部領域204の鼻側階段の可能性がある場合には、視野感度不良点が図16Bに示したように分布していると推定する。そして、図16Cに示したように、上部領域202の初期検査点が疎な領域と下部領域204の初期検査点が疎な領域とに五角形で示した追加検査点を各々設定する。また、以上説明した、鼻側穿破、耳側楔状欠損、及び鼻側階段に加えて、弓状暗点、傍中心暗点、水平半盲様視野、及び中心残存視野等の疾患についても判定し、判定した疾患に応じて追加検査点を設定してもよい。 FIG. 16B is a schematic diagram showing an example of a visual field sensitivity map when the lower region 204 is the nose-side stairs. In step 140, if there is a possibility of nasal steps in the lower region 204, it is assumed that the visual field sensitivity points are distributed as shown in FIG. 16B. Then, as shown in FIG. 16C, additional inspection points indicated by pentagons are set in the upper area 202 where the initial inspection points are sparse and the lower area 204 where the initial inspection points are sparse. In addition to the above-described nasal perforation, temporal wedge-shaped defect, and nasal staircase, we also determined diseases such as arcuate scotoma, paracentral scotoma, horizontal hemianopia-like visual field, and central residual visual field. However, additional test points may be set according to the determined disease.
 ステップ142では、検査点設定部72は、ステップ140で設定した追加検査点に提示する指標光の輝度値を選択する。ステップ142において、輝度値は、例えばランダムに選択されてもよく、操作者により選択されてもよく、過去データに基づいて自動的に選択されてもよい。 At step 142 , the inspection point setting unit 72 selects the brightness value of the index light to be presented at the additional inspection points set at step 140 . In step 142, the brightness value may be selected randomly, selected by an operator, or automatically selected based on historical data, for example.
 ステップ144では、ステップ140で設定した追加検査点の集合から検査点を1つ選択する。選択する検査点は、追加検査点の集合からランダムに選択されてもよく、操作者により選択されてもよく、過去データに基づいて自動的に選択されてもよい。 In step 144, one inspection point is selected from the set of additional inspection points set in step 140. The inspection points to be selected may be randomly selected from a set of additional inspection points, may be selected by the operator, or may be automatically selected based on historical data.
 ステップ146では、ステップ144で選択した1つの検査点の累積検査回数を取得する。累積検査回数は、前述の累積関数から抽出できるが、累積検査回数として累積関数とは独立したデータとして保持してもよい。 At step 146, the cumulative number of inspections for one inspection point selected at step 144 is obtained. The cumulative number of inspections can be extracted from the aforementioned cumulative function, but the cumulative number of inspections may be held as data independent of the cumulative function.
 ステップ148では、累積検査回数が1以上であるか否かを判定する。ステップ148で、累積検査回数が1以上の場合は手順をステップ150に移行し、累積検査回数が1以上でない場合は手順をステップ152に移行する。 At step 148, it is determined whether or not the cumulative number of inspections is 1 or more. At step 148, if the cumulative number of inspections is 1 or more, the procedure proceeds to step 150; otherwise, the procedure proceeds to step 152.
 ステップ150では、ステップ144で選択した検査点に対して累積関数に基づく輝度値で指標光を提示する。検査点設定部72は、累積関数から抽出された輝度値の範囲から、提示する指標光の輝度値を設定する。本開示の技術において、提示する指標光の輝度値は、抽出された輝度値の範囲から、ランダムに抽出して設定してもよく、任意に定められた値を抽出して設定してもよい。例えば、検査点設定部72は、当該範囲から、提示する指標光の輝度値を、当該範囲の中の中央値又は3/4の値等を抽出してもよい。次に、検査点設定部72は、抽出した輝度値で指標光がステップ144で選択した検査点に入射されるように、投影装置を制御する。 In step 150, index light is presented to the inspection point selected in step 144 with a luminance value based on the cumulative function. The inspection point setting unit 72 sets the brightness value of the index light to be presented from the range of brightness values extracted from the cumulative function. In the technique of the present disclosure, the luminance value of the index light to be presented may be set by randomly extracting from the extracted luminance value range, or may be set by extracting an arbitrarily determined value. . For example, the inspection point setting unit 72 may extract the brightness value of the index light to be presented from the range, such as the median value or the 3/4 value in the range. Next, the inspection point setting unit 72 controls the projection device so that the index light is incident on the inspection point selected in step 144 with the extracted luminance value.
 ステップ152では、ステップ142で設定した初期輝度値の指標光が被検者に提示される。 At step 152, the subject is presented with the index light having the initial brightness value set at step 142.
 ステップ154では、検査点設定部72は被検者の反応を取得する。ステップ154で提示された指標光を被検者が認識した場合には、被検者は応答部60のスイッチをオンする。これにより認識信号が制御装置10に送信される。指標光が提示されても被検者が認識しなかった場合には、被検者は応答部60のスイッチをオンしない。検査点設定部72は、指標光を提示した時から所定時間経過する前に、認識信号が送信されたか否かで、被検者が指標光を認識したか否かを判定する。例えば、検査点設定部72は、指標光を提示した時から所定時間経過する前に、認識信号が送信された場合には、被検者が指標光を認識した、との被検者の反応を取得する。上記所定時間経過しても認識信号が送信されなかった場合には、被検者は指標を認識しなかった、との被検者の反応を取得する。検査点設定部72は、ステップ154で取得した被検者の反応を外部記憶装置40に保存する。 At step 154, the inspection point setting unit 72 acquires the subject's reaction. When the subject recognizes the index light presented in step 154, the subject switches on the response unit 60. FIG. A recognition signal is thereby sent to the control device 10 . If the subject does not recognize the indicator light even if it is presented, the subject does not turn on the switch of the response unit 60 . The inspection point setting unit 72 determines whether or not the subject recognizes the index light based on whether or not the recognition signal has been transmitted before a predetermined time has elapsed since the index light was presented. For example, if the recognition signal is transmitted before the elapse of a predetermined time from when the index light is presented, the inspection point setting unit 72 may indicate that the subject recognizes the index light. to get If the recognition signal is not transmitted even after the predetermined time has passed, the subject's reaction that the subject did not recognize the index is acquired. The inspection point setting unit 72 saves the subject's reaction acquired in step 154 in the external storage device 40 .
 ステップ156で、検査点設定部72は、累積関数を更新する。本実施形態では、ステップ144からステップ156の処理が繰り返され、ステップ156における累積関数の更新処理も繰り返される。また、累積検査点回数も更新される。ステップ144からステップ156の処理を繰り返すことにより、ステップ140で設定した追加検査点の集合に属する各検査点に対して異なる輝度値の指標光を複数回提示し、各々の指標光に対する被検者の応答が得られるので、各提示における被検者の応答に基づいて各検査点に対応する累積関数を前述のステップ128と同様に更新する。 At step 156, the inspection point setting unit 72 updates the cumulative function. In this embodiment, the processing from step 144 to step 156 is repeated, and the update processing of the cumulative function in step 156 is also repeated. Also, the cumulative number of inspection points is updated. By repeating the processing from step 144 to step 156, index lights with different brightness values are presented a plurality of times to each inspection point belonging to the set of additional inspection points set in step 140, and the subject's response to each indicator light is presented. , the cumulative function corresponding to each test point is updated based on the subject's response at each presentation, as in step 128 above.
 ステップ158では、検査点設定部72は、ステップ144で選択した検査点の視野感度が十分な精度で推定可能か否かを判定する。本実施形態では、ステップ130と同様に、累積関数が図10Iのように下に凸の線形を描き、被検者が認識できた指標光の輝度が推定可能か否かを判定する。 At step 158, the inspection point setting unit 72 determines whether the visual field sensitivity of the inspection point selected at step 144 can be estimated with sufficient accuracy. In this embodiment, as in step 130, the cumulative function draws a downwardly convex linear shape as shown in FIG. 10I, and it is determined whether or not the brightness of the index light recognized by the subject can be estimated.
 ステップ160では、検査点設定部72は、判定条件を充足するか否かを判定する。ステップ160での判定条件は、ステップ140で設定した追加検査点に対し、ステップ158で行う視野感度が推定可能であるか否かである。ステップ140で、追加検査点に対し視野感度が推定可能である場合はステップ162に移行し、そうでない場合はステップ144に移行して、ステップ144からステップ158の手順を行う。 At step 160, the inspection point setting unit 72 determines whether or not the determination conditions are satisfied. The judgment condition in step 160 is whether or not the visual field sensitivity performed in step 158 can be estimated for the additional inspection points set in step 140 . At step 140, if the visual field sensitivity can be estimated for the additional inspection points, then go to step 162;
 ステップ162では、ステップ160までの手順で得た検査データを読み込む。そして、ステップ164では、検査点設定部72は、検査点集合200の中の各検査点について得られた累積関数に基づいて、全体の視野感度、即ち、検査点集合200の各検査点について視野感度(推定輝度値)を推定するデータ補間を前述のステップ136と同様に行う。 In step 162, the inspection data obtained in the procedure up to step 160 are read. Then, in step 164 , the inspection point setting unit 72 determines the overall visual field sensitivity, that is, the visual field sensitivity for each inspection point in the inspection point set 200 based on the cumulative function obtained for each inspection point in the inspection point set 200 . Data interpolation for estimating sensitivity (estimated luminance value) is performed in the same manner as in step 136 described above.
 ステップ166で、画像処理部74は、各検査済点と実行されていれば各追加検査点との各々の累積関数、全検査点集合の各検査点の推定輝度値、および未検査点の推定輝度値の信頼度を可視化するための画面データを作成する。 At step 166, the image processor 74 computes the cumulative function of each inspected point and each additional inspection point, if performed, the estimated luminance value of each inspection point in the total inspection point set, and an estimate of the uninspected points. Create screen data for visualizing the reliability of luminance values.
 具体的には、画面データとしては、第1に、図17Aに示すように、全検査点集合の各検査点の推定輝度値を示すグラフがある。 Specifically, as the screen data, first, as shown in FIG. 17A, there is a graph showing the estimated brightness value of each inspection point in the set of all inspection points.
 第2に、図17Bに示すように、全検査点集合の各検査点の推定輝度値を示すグラフに、未検査点における推定輝度値の信頼度を、当該視野感度を中心として、追加したグラフである。 Secondly, as shown in FIG. 17B, a graph obtained by adding the reliability of the estimated brightness value at the uninspected point to the graph showing the estimated brightness value of each inspection point in the set of all inspection points, centering on the visual field sensitivity. is.
 第3に、図18に示すように、視野感度マップである。視野感度マップは、視野感度分布の表示方法の一例である。視野感度マップは、検査点集合に含まれる複数の検査点の視野感度データの分布を表示したものである。視野感度マップは検査点集合全体について生成してもよく、検査点集合の一部について生成してもよい。なお、視野感度マップには、信頼度のデータも含まれる。具体的には、図18に示すように、視野感度マップ510Mは、被検眼12の眼底を模擬した画像に、視野感度が所定値(dB)未満の検査点に、※が付されたマップの画面のデータである。また、視野感度マップ510Mは、信頼度が所定値以上の検査点の範囲510を点線で表示可能な画面データである。また、例えば、全検査点集合の各検査点の中で、未検査点については、検査済点および追加検査点の色とは異なる色で表示し、例えば、未検査点にカーソルが位置した場合、未検査点の推定輝度値の信頼度を表示可能な画面のデータでもよい。 Thirdly, as shown in FIG. 18, it is a visual field sensitivity map. A visual field sensitivity map is an example of a visual field sensitivity distribution display method. The visual field sensitivity map displays the distribution of visual field sensitivity data of a plurality of inspection points included in the inspection point set. A visual field sensitivity map may be generated for the entire inspection point set, or may be generated for a part of the inspection point set. Note that the visual field sensitivity map also includes reliability data. Specifically, as shown in FIG. 18, the visual field sensitivity map 510M is a map in which * is added to an image simulating the fundus of the subject's eye 12, and inspection points whose visual field sensitivity is less than a predetermined value (dB). This is screen data. Also, the visual field sensitivity map 510M is screen data that can display a range 510 of inspection points whose reliability is equal to or higher than a predetermined value with a dotted line. Further, for example, among the inspection points in the set of all inspection points, uninspected points are displayed in a color different from that of inspected points and additional inspection points. , screen data that can display the reliability of the estimated brightness value of the uninspected point.
 以上のように、本実施形態では、検査点集合200の中の各検査点について、累積関数を更新することで、探索(検査)する必要のある輝度値の範囲を徐々に絞り込んでいくことにより、ランダムに指標光の輝度値を設定する場合よりも視野検査を短時間で完了することが可能となっている。以下、累積関数を用いた本実施形態が効果的であることを、図19Aから図20Cを参照して説明する。図19Aから図20Cの各々では、横軸は、検査回数、縦軸は、感度の正しい値と、推定される感度との差を示している。縦軸における0は、正しい値と推定値との差がなく、推定値の精度が良いことを意味している。 As described above, in this embodiment, by updating the cumulative function for each inspection point in the inspection point set 200, the range of luminance values that need to be searched (inspected) is gradually narrowed down. , it is possible to complete the visual field test in a shorter time than in the case of randomly setting the luminance value of the index light. The effectiveness of this embodiment using the cumulative function will be described below with reference to FIGS. 19A to 20C. In each of FIGS. 19A to 20C, the horizontal axis indicates the number of inspections, and the vertical axis indicates the difference between the correct value of sensitivity and the estimated sensitivity. 0 on the vertical axis means that there is no difference between the correct value and the estimated value, and the estimated value is highly accurate.
 図19Aから図19Cには、被検眼の眼底の視神経の異なる3点における、ランダムに光強度を選択した際に、視野検査の結果に十分な精度を担保するための必要な検査回数を示している。図20Aから図20Cには、被検眼の眼底の視神経の異なる3点における、本実施形態の方法を適用した際の、十分な精度を担保するための必要な検査回数が示されている。 FIGS. 19A to 19C show the required number of inspections to ensure sufficient accuracy in the visual field test results when randomly selecting light intensities at three different points on the optic nerve of the fundus of the subject's eye. there is FIGS. 20A to 20C show the number of inspections required to ensure sufficient accuracy when the method of this embodiment is applied to three different points on the optic nerve of the fundus of the subject's eye.
 ランダムに輝度値を選択する場合(図19Aから図19C)では、70から80回の検査が必要であるのに対し、本実施形態(図20Aから図20C)の方法で輝度値を選択すると3から15回の検査で十分である。よって、本実施形態の方法によれば、検査回数削減に寄与することが理解できる。 70 to 80 inspections are required when randomly selecting luminance values (FIGS. 19A to 19C). 15 tests are sufficient. Therefore, it can be understood that the method of the present embodiment contributes to reduction in the number of inspections.
 図21に示すような、未検査点の推定輝度値を線形補間する方法である場合には、補間値の信頼度は考慮されていない。例えば、2つの未検査点の推定輝度値を直線で結ぶことで補間したり、スプライン法(多項式を用いて補間)したりする方法である場合には、補間値の信頼度は考慮されない。 In the case of the method of linearly interpolating the estimated brightness values of uninspected points as shown in FIG. 21, the reliability of the interpolated values is not considered. For example, in the case of a method of interpolating by connecting the estimated brightness values of two uninspected points with a straight line or using a spline method (interpolation using a polynomial), the reliability of the interpolated value is not considered.
 これに対し、本実施形態では、未検査点の推定輝度値と共に、推定輝度値の信頼度も推定している。具体的には、図22には、横軸に、各検査点、縦軸に、各検査点の対応する推定輝度値が示されている。点線が正しい値の線であり、実線は推定輝度値の線であり、信頼度が、推定輝度値を中心に幅として示されている。図22に示すように、信頼度が示されているので、本実施形態によれば、推定輝度値の確からしさをオペレータに認識させることができる。 On the other hand, in the present embodiment, the reliability of the estimated brightness value is estimated along with the estimated brightness value of the uninspected points. Specifically, in FIG. 22, the horizontal axis indicates each inspection point, and the vertical axis indicates the corresponding estimated brightness value of each inspection point. The dotted line is the correct value line, the solid line is the estimated luminance value line, and the reliability is shown as a width around the estimated luminance value. As shown in FIG. 22, the degree of reliability is shown, so according to this embodiment, the operator can recognize the likelihood of the estimated luminance value.
 以上説明した実施の形態では、確率過程として、ガウス過程回帰が用いられ、Gaussian RBFカーネルが用いられている。本開示の技術では、確率過程として、ガウス過程回帰に限定されず、例えば、以下の多項式カーネルを用いてもよい。下記の式において、cは、実数であり、pは、正の整数である。 In the embodiment described above, Gaussian process regression is used as the stochastic process, and the Gaussian RBF kernel is used. In the technology of the present disclosure, the stochastic process is not limited to Gaussian process regression, and for example, the following polynomial kernel may be used. In the formula below, c is a real number and p is a positive integer.
Figure JPOXMLDOC01-appb-M000011

 
Figure JPOXMLDOC01-appb-M000011

 
 また、以下のMaternカーネルを用いてもよい。下記の式において、Kvは、第二種変形ベッセル関数であり、vは、実数であり、Γ(v)は、ガンマ関数である。 Also, the following Matern kernel may be used. In the equations below, Kv is a modified Bessel function of the second kind, v is a real number, and Γ(v) is a gamma function.
Figure JPOXMLDOC01-appb-M000012

 
Figure JPOXMLDOC01-appb-M000012

 
 本実施形態の図8のステップ136では、検査点設定部72は、未検査点の推定輝度値を推定し、推定した未検査点の推定輝度値の信頼度を推定する。本開示の技術はこれに限定されない。検査点設定部72は、各検査済点の推定輝度値から、各未検査点の推定輝度値の取り得る値の範囲を計算し、計算した範囲の中の値(例えば、中央の値)を、各未検査点の推定輝度値として計算してもよい。 At step 136 in FIG. 8 of the present embodiment, the inspection point setting unit 72 estimates the estimated luminance value of the uninspected points, and estimates the reliability of the estimated luminance values of the estimated uninspected points. The technology of the present disclosure is not limited to this. The inspection point setting unit 72 calculates the range of possible values of the estimated brightness value of each uninspected point from the estimated brightness value of each inspected point, and determines the value (for example, the central value) within the calculated range. , may be calculated as the estimated luminance value of each uninspected point.
 上記の各確率過程は、全検査点集合の各検査点について同じであるが、本開示の技術はこれに限定されない。例えば、眼底の中心を含む所定範囲の中心領域と、中心領域の周辺の周辺領域とで、異なる確率過程を用いるようにしてもよい。 Although each stochastic process described above is the same for each inspection point in the entire inspection point set, the technology of the present disclosure is not limited to this. For example, different stochastic processes may be used for the central region of a predetermined range including the center of the fundus and for the peripheral region around the central region.
 また、推定輝度値が補間される未検査点は、指標光が被検眼12の瞳孔を介して到達する範囲に位置するが、当該到達する範囲に隣接する範囲、即ち、指標光が到達しない、つまり、視野検査できない位置の点についても、推定輝度値を推定してもよい。 In addition, the untested point for which the estimated brightness value is interpolated is located in the range where the index light reaches through the pupil of the eye 12 to be inspected, but the range adjacent to the reach range, that is, the index light does not reach In other words, the estimated luminance value may be estimated even for points at positions where visual field inspection is not possible.
 以上説明した各例では、コンピュータを利用したソフトウェア構成により視野検査処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、画像処理が実行されるようにしてもよい。画像処理のうちの一部の処理がソフトウェア構成により実行され、残りの処理がハードウェア構成によって実行されるようにしてもよい。 In each of the examples described above, the case where visual field test processing is realized by a software configuration using a computer has been exemplified, but the technology of the present disclosure is not limited to this. For example, instead of a software configuration using a computer, image processing may be performed only by a hardware configuration such as FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Integrated Circuit). A part of the image processing may be performed by a software configuration, and the rest of the image processing may be performed by a hardware configuration.
 このように本開示の技術は、コンピュータを利用したソフトウェア構成により視野検査処理が実現される場合とされない場合とを含むので、以下の技術を含む。 In this way, the technology of the present disclosure includes the following technology, as it includes cases where visual field test processing is realized by software configuration using a computer and cases where it is not.
(第1の技術)
 視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得る処理部と、
 前記第1検査結果に基づいて、症例を推定すると共に、前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定する検査点設定部と、
 を備える視野検査装置。
(First technology)
a processing unit that measures the sensitivity of a plurality of first inspection points in a visual field range and obtains a first inspection result;
setting an inspection point for estimating a case based on the first inspection result and setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case; Department and
A visual field test device comprising:
(第2の技術)
処理部が、視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得る処理工程と、
 検査点設定部が、前記第1検査結果に基づいて、症例を推定すると共に、前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定する検査点設定工程と、
 を備える視野検査方法。
(Second technology)
a processing step in which the processing unit measures the sensitivity of a plurality of first inspection points in the visual field range to obtain a first inspection result;
An inspection point setting unit estimates a case based on the first inspection result, and determines a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case. an inspection point setting step for setting
A visual field test method comprising:
 以上の開示内容から以下の技術が提案される。
(第3の技術)
 視野検査するためのコンピュータープログラム製品であって、
 前記コンピュータープログラム製品は、それ自体が一時的な信号ではないコンピュータ可読記憶媒体を備え、
 前記コンピュータ可読記憶媒体には、プログラムが格納されており、
 前記プログラムは、
 コンピュータに、
 視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得るステップと、
 前記第1検査結果に基づいて、症例を推定するステップと、
 前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定するステップと、
 を実行させる、コンピュータープログラム製品。
The following technique is proposed from the above disclosure.
(Third technology)
A computer program product for testing a visual field, comprising:
The computer program product comprises a computer readable storage medium that is not itself a transitory signal;
The computer-readable storage medium stores a program,
Said program
to the computer,
measuring the sensitivity of a plurality of first inspection points in the field of view to obtain a first inspection result;
estimating a case based on the first test result;
setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case;
A computer program product that causes the execution of
 なお、制御装置10は、本開示の技術の「コンピュータープログラム製品」の一例である。 Note that the control device 10 is an example of the "computer program product" of the technology of the present disclosure.
 以上説明した視野検査処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。また、本明細書で開示された技術は、被検眼を検査する方法であって、前記被検眼の網膜上に設定された検査点に対して複数の光強度で光を提示して、前記網膜の前記検査点における感度を検出するステップと、検出された前記検査点における感度に基づいて、前記検査点以外の部位における感度を推定するステップと、前記推定された感度の信頼性を評価するステップと、を含む方法を含む。 The visual field inspection processing described above is just an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps added, and the order of processing may be changed without departing from the scope of the invention. Further, the technology disclosed in the present specification is a method for inspecting an eye to be inspected, in which light is presented at a plurality of light intensities to an inspection point set on the retina of the eye to be inspected, and the retina detecting the sensitivity at the inspection point of; estimating the sensitivity at a site other than the inspection point based on the detected sensitivity at the inspection point; and evaluating the reliability of the estimated sensitivity and a method comprising:
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的にかつ個々に記載された場合と同様に、本明細書中に参照により取り込まれる。 All publications, patent applications and technical standards mentioned herein, as if each individual publication, patent application and technical standard were specifically and individually indicated to be incorporated by reference. incorporated herein by reference.
 なお、日本国特許出願第2021-099540号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-099540 is incorporated herein by reference in its entirety. In addition, all publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, or technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.

Claims (9)

  1.  視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得るステップと、
     前記第1検査結果に基づいて、症例を推定するステップと、
     前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定するステップと、
     を含む視野検査方法。
    measuring the sensitivity of a plurality of first inspection points in the field of view to obtain a first inspection result;
    estimating a case based on the first test result;
    setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case;
    A visual field test method comprising:
  2.  前記複数の第2検査点の感度を測定し、第2検査結果を得るステップと、
     前記第1検査結果と前記第2検査結果とに基づいて、視野感度マップを生成することを特徴とする請求項1に記載の視野検査方法。
    measuring the sensitivity of the plurality of second test points to obtain a second test result;
    2. The visual field inspection method according to claim 1, wherein a visual field sensitivity map is generated based on said first inspection result and said second inspection result.
  3.  前記第1検査結果において感度が所定の閾値以下である検査点の分布パターンに基づいて前記症例を推定する請求項2に記載の視野検査方法。 The visual field inspection method according to claim 2, wherein the case is estimated based on a distribution pattern of inspection points whose sensitivity is equal to or less than a predetermined threshold in the first inspection result.
  4.  前記推定する症例は、鼻側穿破、鼻側階段、耳側楔状欠損、弓状暗点、傍中心暗点、水平半盲様視野、及び中心残存視野のいずれかである請求項3に記載の視野検査方法。 4. The case according to claim 3, wherein the case to be estimated is any one of nasal perforation, nasal step, temporal wedge-shaped defect, arcuate scotoma, paracentral scotoma, horizontal hemianopia-like visual field, and central residual visual field. visual field test method.
  5.  前記視野範囲には、前記第1検査点及び前記第2検査点以外の複数の第3検査点があり、
    前記複数の第3検査点の感度を、前記第1検査結果または/及び前記第2検査結果に基づいて、確率過程を用いて推定する、請求項2~4のいずれか一項に記載の視野検査方法。
    The visual field range includes a plurality of third inspection points other than the first inspection point and the second inspection point,
    The field of view according to any one of claims 2 to 4, wherein the sensitivity of the plurality of third inspection points is estimated using a stochastic process based on the first inspection result or/and the second inspection result. Inspection methods.
  6.  前記確率過程は、ガウス過程である、請求項5に記載の視野検査方法。 The visual field testing method according to claim 5, wherein the stochastic process is a Gaussian process.
  7.  前記複数の第1検査点は、予め設定された複数の初期検査点であることを特徴とする請求項1~6のいずれか1項に記載の視野検査方法。 The visual field inspection method according to any one of claims 1 to 6, wherein the plurality of first inspection points are a plurality of preset initial inspection points.
  8.  プロセッサを備え、
     前記プロセッサは、
     視野範囲において、複数の第1検査点の感度を決定し、第1検査結果を得るステップと、
     前記第1検査結果に基づいて、症例を推定するステップと、
     前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定するステップと、
     を行う、視野検査装置。
    with a processor
    The processor
    determining the sensitivity of a plurality of first test points in the field of view to obtain a first test result;
    estimating a case based on the first test result;
    setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case;
    A visual field tester.
  9.  コンピュータに、
     視野範囲において、複数の第1検査点の感度を測定し、第1検査結果を得るステップと、
     前記第1検査結果に基づいて、症例を推定するステップと、
     前記推定された症例に基づいて、前記視野範囲において、前記複数の第1検査点と異なる複数の第2検査点を設定するステップと、
     を実行させる視野検査プログラム。
    to the computer,
    measuring the sensitivity of a plurality of first inspection points in the field of view to obtain a first inspection result;
    estimating a case based on the first test result;
    setting a plurality of second inspection points different from the plurality of first inspection points in the visual field range based on the estimated case;
    A visual field test program that runs a
PCT/JP2022/023857 2021-06-15 2022-06-14 Visual field testing method, visual field testing device, and visual field testing program WO2022265024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-099540 2021-06-15
JP2021099540 2021-06-15

Publications (1)

Publication Number Publication Date
WO2022265024A1 true WO2022265024A1 (en) 2022-12-22

Family

ID=84527523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023857 WO2022265024A1 (en) 2021-06-15 2022-06-14 Visual field testing method, visual field testing device, and visual field testing program

Country Status (1)

Country Link
WO (1) WO2022265024A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280928A (en) * 1990-03-29 1991-12-11 Topcon Corp Measuring device for visual field

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280928A (en) * 1990-03-29 1991-12-11 Topcon Corp Measuring device for visual field

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ophthalmology Handbook, 4th Edition", 1 March 2006, MEDICAL SCHOOL , JP , ISBN: 4-260-13780-8, article OGUCHI, YOSHIHISA; SAWA, TAKASHI; OTSUKI, HIROSHI; YUZAWA, MITSUKO: "Passage; Ophthalmic Examination Handbook", pages: 158 - 159, XP009542507 *

Similar Documents

Publication Publication Date Title
US7665847B2 (en) Eye mapping
US20200073476A1 (en) Systems and methods for determining defects in visual field of a user
Sevilla et al. Relating retinal morphology and function in aging and early to intermediate age-related macular degeneration subjects
JP5421146B2 (en) Visual field inspection system
JP2018508254A (en) Method and system for automatic vision diagnosis
EP3542704A1 (en) Visual testing using mobile devices
WO2007102844A1 (en) Algorithms and methods for determining aberration-induced symptoms from wave aberration
JPH05502176A (en) A method for diagnosing a person's lack of effective visual field and expanding that effective visual field
JP4717561B2 (en) Ophthalmic examination program, ophthalmic examination apparatus and ophthalmic examination system
US20170360293A1 (en) Determining vision related physical conditions from cross-parameter vision tests
CN115553707A (en) Contrast sensitivity measurement method and device based on eye movement tracking
WO2022265024A1 (en) Visual field testing method, visual field testing device, and visual field testing program
JP3317754B2 (en) Perimeter measurement device
WO2022265023A1 (en) Visual field testing method, visual field testing device, and visual field testing program
EP3402388B1 (en) System and method for performing objective perimetry and diagnosis of patients with retinitis pigmentosa and other ocular diseases
JP2004121707A (en) Method and apparatus for inspecting visual field
KR101722366B1 (en) Subjective refraction system, subjective refraction method and computer readable recording medium recording program for implementing the method
JP7459623B2 (en) Visual field testing method, visual field testing device, and program
WO2021200067A1 (en) Field-of-view test method, field-of-view test device, and program
JP2009136663A (en) Full-field retinal function scanning program
JP2023534211A (en) Eye movement assessment
Vazquez et al. Assessment of visual distortions in age-related macular degeneration: emergence of new approaches
KR102492132B1 (en) Device and Method for Evaluating Visual Function Related to Pupil Reflex
KR20200049195A (en) The method for pre-perimetric glaucoma diagnosis using fundus photographs analysis
JP2021186339A (en) Visual field inspection method, visual field inspection device, and visual field inspection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE