WO2022264913A1 - Equipment for warming liquefied carbon dioxide and method for warming liquefied carbon dioxide - Google Patents

Equipment for warming liquefied carbon dioxide and method for warming liquefied carbon dioxide Download PDF

Info

Publication number
WO2022264913A1
WO2022264913A1 PCT/JP2022/023260 JP2022023260W WO2022264913A1 WO 2022264913 A1 WO2022264913 A1 WO 2022264913A1 JP 2022023260 W JP2022023260 W JP 2022023260W WO 2022264913 A1 WO2022264913 A1 WO 2022264913A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
heat medium
temperature
liquefied carbon
heat
Prior art date
Application number
PCT/JP2022/023260
Other languages
French (fr)
Japanese (ja)
Inventor
紀之 国分
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to AU2022295393A priority Critical patent/AU2022295393A1/en
Priority to EP22824903.3A priority patent/EP4357232A1/en
Publication of WO2022264913A1 publication Critical patent/WO2022264913A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0115Single phase dense or supercritical, i.e. at high pressure and high density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0155Type of cavity by using natural cavities

Definitions

  • the present invention relates to a temperature raising facility and temperature raising method for liquefied carbon dioxide gas (liquefied CO 2 ) in CCS (Carbon Capture and Storage).
  • CCS carbon dioxide capture and storage
  • CCS liquefied carbon dioxide transportation/injection method
  • the separated and recovered CO2 is compressed and liquefied, temporarily stored in a land tank in the form of liquefied carbon dioxide, loaded from the tank on a liquefied carbon dioxide transport ship, and transported to the storage point.
  • the liquefied carbon dioxide is injected from a liquefied carbon dioxide carrier into the aquifer beneath the seabed.
  • liquefied carbon dioxide for example, -10 ° C / 2.289 MPa ⁇ -50°C/0.684 MPa
  • a predetermined pressure 10 MPa or more
  • the temperature is raised to 0°C or more and press-fitting is performed.
  • Some kind of heat source is required to raise the temperature of the liquefied carbon dioxide gas, but considering the conditions on board the liquefied carbon dioxide gas transport ship, the heat sources that can be used are limited.
  • a hot water boiler is used to generate hot water, and heat is exchanged between the hot water and the liquefied carbon dioxide to raise the temperature of the liquefied carbon dioxide.
  • the hot water boiler consumes a large amount of fuel, which increases the cost, and CO 2 is emitted as the fuel is consumed.
  • the present invention has been made in view of these circumstances, and its purpose is to provide a technique capable of suitably raising the temperature of liquefied carbon dioxide gas in CCS.
  • FIG. 1 is a diagram showing a schematic flow of CCS using the liquefied carbon dioxide gas temperature raising equipment according to the embodiment of the present invention.
  • FIG. 1 shows a liquefied carbon dioxide transport/injection type CCS.
  • Other CCS methods include the submarine pipeline method and the ERD (Extended Reach Drilling) method.
  • the liquefied carbon dioxide loaded on the liquefied carbon dioxide transport ship 100 is pressurized and heated by the liquefied carbon dioxide temperature raising equipment 10 installed on the liquefied carbon dioxide transport ship 100, and then stored at the storage point 102 on the liquefied carbon dioxide transport ship. 100 is forced into the aquifer 114 .
  • the aquifer layer 114 is a layer further below the barrier layer 112 located below the seabed.
  • liquefied carbon dioxide gas is sent to a well head 106 installed on the seabed via an FRP (Flexible Riser Pipe) for connecting seabed equipment.
  • the liquefied carbon dioxide gas is then sent to a Christmas tree 108 via a flowline 107 laid on the seabed.
  • a Christmas tree is a collection of valves that control the pressure of fluids produced from a well.
  • the liquefied carbon dioxide gas is forced into water reservoir 114 .
  • FIG. 2 is a diagram for explaining the liquefied carbon dioxide temperature raising equipment 10 according to the embodiment of the present invention.
  • the liquefied carbon dioxide gas temperature raising equipment 10 pressurizes the liquefied carbon dioxide gas transported by ship (for example, -10°C/2.289 MPa to -50°C/0.684 MPa) into the seabed reservoir (aqueous layer). , and to raise the temperature to prevent blockage due to freezing of surrounding water and formation of CO 2 hydrate when liquefied carbon dioxide is injected into the reservoir.
  • Injection pressure The injection pressure varies depending on the depth of the reservoir, the permeability, and the strength of the shielding layer, but is generally indicated by "Static Head + 3 MPa to breaking pressure of the shielding layer" at the injection point.
  • Static Head + 3 MPa to breaking pressure of the shielding layer at the injection point.
  • the Christmas tree 108 on the seafloor considering the injection depth of 2000m to 3000m, the density of liquefied carbon dioxide gas, and the pressure loss in the well, the Christmas tree 108 on the seafloor (see Fig. 1) has a pressure of about 10MPa to 13MPa. A suitable press-in pressure is obtained.
  • the injection temperature of liquefied carbon dioxide is preferably 0°C or higher.
  • the storage tank 12 stores liquefied carbon dioxide (liquefied CO 2 ).
  • the temperature of the liquefied carbon dioxide may be ⁇ 10° C. to ⁇ 50° C., and the pressure of the liquefied carbon dioxide may be 2.289 MPa to 0.684 MPa.
  • the liquefied carbon dioxide stored in the storage tank 12 is supplied to the boost pump 14 .
  • the boost pump 14 boosts the liquefied carbon dioxide supplied from the storage tank 12 to a predetermined pressure (for example, 10 MPa or higher).
  • the liquefied carbon dioxide gas pressurized by the pressurizing pump 14 is supplied to the heat exchanger 16 for increasing the temperature.
  • the heat medium is input to the shell-side inlet 16c of the temperature raising heat exchanger 16 via the line 33, and is output from the shell-side outlet 16d.
  • the temperature raising heat exchanger 16 performs heat exchange between the liquefied carbon dioxide gas supplied to the tube side and the heat medium supplied to the body side, and raises the liquefied carbon dioxide gas to a predetermined temperature (0° C. or higher). Warm up.
  • the heat medium temperature control unit 30 controls the temperature of the heat medium supplied to the heat medium heater 18 to be equal to or higher than the seawater freezing temperature (-2°C).
  • the heat medium temperature control section 30 includes a control valve 26 and a temperature sensor 28 .
  • the temperature sensor 28 is arranged to detect the temperature of the heat medium after the heat medium output from the shell-side outlet 16d of the heat exchanger 16 and the heat medium from the bypass line 32 are merged. . Based on the value detected by the temperature sensor 28, the control valve 26 determines that the temperature of the heat medium after merging, that is, the temperature of the heat medium supplied to the heat medium drum 22 is the freezing temperature of seawater (-2°C) or higher. The flow rate of the heat medium flowing through the bypass line 32 is controlled so as to
  • the heat medium warmer 18 is supplied with seawater (eg, 5°C or higher) and a heat medium (-2°C or higher), and raises the temperature of the heat medium through heat exchange with the seawater.
  • the heat medium heater 18 is a plate heat exchanger that includes titanium plates that are highly resistant to seawater corrosion and abrasion. Plate heat exchangers are characterized by high heat transfer properties. In the plate-type heat exchanger, the fluids are almost parallel and the heat transfer coefficient is high, and the temperature difference between the fluids is 2°C.
  • Seawater is input to the seawater inlet 18 c of the heat medium heater 18 by the seawater pump 20 and is output from the seawater outlet 18d of the heat medium heater 18 .
  • the heat medium is input to the heat medium inlet 18 a of the heat medium heater 18 and output from the heat medium outlet 18 b of the heat medium heater 18 .
  • the boosting pump 14 boosts the liquefied carbon dioxide gas at -20°C and 1.97 MPa to -20°C and 10.5 MPa.
  • the temperature raising heat exchanger 16 raises the temperature of the liquefied carbon dioxide gas of ⁇ 20° C. and 10.5 MPa supplied to the tube-side inlet 16a to 0° C. (10.2 MPa) by heat exchange with a heat medium of 5° C. do.
  • the outlet of the booster pump 14 becomes -46°C and 10.5 MPa, and the temperature and pressure of other parts are the same. is.
  • the heat medium heater 18 exchanges heat between the seawater and the heat medium.
  • the temperature of the heat medium input to the heat medium inlet 18a of the heat medium heater 18 is set by the heat medium temperature control unit 30 to the freezing temperature of seawater (approximately ⁇ 2° C.) or higher, seawater does not freeze in the heat medium heater 18 .
  • FIG. 3 is a diagram for explaining a liquefied carbon dioxide gas heating facility 40 according to another embodiment of the present invention.
  • the liquefied carbon dioxide gas temperature raising equipment 40 shown in FIG. 3 is different from the liquefied carbon dioxide gas temperature raising equipment 10 shown in FIG.
  • the liquefied carbon dioxide vaporization heat exchanger 42 is a cylindrical multi-tubular heat exchanger, and the cylindrical body and heat transfer tubes are both made of general steel.
  • a portion of the heat medium from the heat medium outlet 18b of the heat medium heater 18 is supplied to the tube side of the heat exchanger 42 for vaporizing liquefied carbon dioxide gas.
  • the heat medium is input to the tube-side inlet 42a of the heat exchanger 42 for vaporizing liquefied carbon dioxide, is output from the tube-side outlet 42b, and joins with the heat medium from the heat exchanger 16 for raising the temperature through the line 34.
  • part of the liquefied carbon dioxide from the storage tank 12 is supplied to the body side of the heat exchanger 42 for vaporizing the liquefied carbon dioxide.
  • the operation of the liquefied carbon dioxide gas temperature raising equipment 40 will be explained by exemplifying specific temperatures.
  • the heat medium heater 18 is supplied with, for example, 7°C seawater and -1°C heat medium (ethylene glycol aqueous solution: freezing temperature -23°C), and raises the temperature of the heat medium to 5°C.
  • the heat medium whose temperature has been raised by the heat medium heater 18 is supplied through the line 33 to the shell-side inlet 16c of the temperature raising heat exchanger 16 .
  • the boosting pump 14 boosts the liquefied carbon dioxide gas at -20°C and 1.97 MPa to -20°C and 10.5 MPa.
  • the temperature raising heat exchanger 16 raises the temperature of the liquefied carbon dioxide gas of ⁇ 20° C. and 10.5 MPa supplied to the tube-side inlet 16a to 0° C. (10.2 MPa) by heat exchange with a heat medium of 5° C. do.
  • Part of the liquefied carbon dioxide gas at -20°C and 1.97 MPa is supplied to the shell-side inlet 42c of the heat exchanger 42 for vaporizing the liquefied carbon dioxide gas.
  • the heat exchanger 42 for vaporizing liquefied carbon dioxide vaporizes the liquefied carbon dioxide supplied to the shell-side inlet 42c by heat exchange with the heat medium of 5° C. supplied to the tube-side inlet 42a, and vaporizes the liquefied carbon dioxide from the shell-side outlet 42d.
  • Output (-20°C, 1.97 MPa).
  • the outlet of the booster pump 14 is set at -46°C and 10.5 MPa
  • the body of the heat exchanger 42 for vaporizing the liquefied carbon dioxide is The temperature at the side outlet 42d is ⁇ 46° C. and 0.80 MPa, and the temperature and pressure at other locations are the same.
  • the present invention can be used for CCS (carbon dioxide capture and storage).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This equipment 10 for warming liquefied carbon dioxide comprises: a heat medium warmer 18 for receiving a supply of seawater and a heat medium and warming the heat medium through heat exchange with the seawater; a warming heat exchanger 16 for warming liquefied carbon dioxide to a prescribed temperature through heat exchange with the heat medium warmed by the heat medium warmer 18; and a heat medium control unit 30 for performing control such that the temperature of the heat medium supplied to the heat medium warmer 18 becomes equal to or greater than the freezing temperature of the seawater.

Description

液化炭酸ガス昇温設備および液化炭酸ガス昇温方法Equipment for raising the temperature of liquefied carbon dioxide and method for raising the temperature of liquefied carbon dioxide
 本発明は、CCS(Carbon Capture and Strage)における液化炭酸ガス(液化CO)の昇温設備および昇温方法に関する。 TECHNICAL FIELD The present invention relates to a temperature raising facility and temperature raising method for liquefied carbon dioxide gas (liquefied CO 2 ) in CCS (Carbon Capture and Storage).
 CCS(二酸化炭素回収・貯留)は、COの発生源(例えば石炭火力発電所の燃焼排ガス)からCOを化学吸収法などで回収し、圧縮して超臨界状態で岩盤などで遮蔽された地下の滞水層(貯留層)に圧入し、貯留するものであり、地球温暖化対策の一つである。(CCSについては例えば特許文献1、2参照)。 CCS (carbon dioxide capture and storage) recovers CO2 from the source of CO2 (e.g. flue gas from a coal-fired power plant) by chemical absorption, compresses it, and shields it with bedrock in a supercritical state. It is injected into an underground aquifer (reservoir) and stored, and is one of the countermeasures against global warming. (For CCS, see Patent Documents 1 and 2, for example).
 CCSには様々な方式があるが、その一つに液化炭酸ガス輸送・圧入方式がある。この方式では、分雛・回収されたCOは圧縮・液化され、一旦、液化炭酸ガスの形で陸上のタンクに貯蔵し、タンクから液化炭酸ガス輸送船に積載し、貯留地点まで船舶輸送される。貯留地点で液化炭酸ガスは、液化炭酸ガス輸送船から海底下の滞水層に圧入される。 There are various methods of CCS, one of which is the liquefied carbon dioxide transportation/injection method. In this method, the separated and recovered CO2 is compressed and liquefied, temporarily stored in a land tank in the form of liquefied carbon dioxide, loaded from the tank on a liquefied carbon dioxide transport ship, and transported to the storage point. be. At the storage point, the liquefied carbon dioxide is injected from a liquefied carbon dioxide carrier into the aquifer beneath the seabed.
特開2011-31154号公報JP 2011-31154 A 特開2012-72012号公報JP 2012-72012 A
 液化炭酸ガスを貯留層(滞水層)に圧入する際には、周囲の水の凍結防止とCOハイドレート形成による閉塞を防止するために、液化炭酸ガス(例えば-10℃/2.289MPa~-50℃/0.684MPa)を所定圧力(10MPa以上)に昇圧後、0℃以上に昇温して圧入が行われる。 When injecting liquefied carbon dioxide into the reservoir (aqueous layer), in order to prevent freezing of the surrounding water and blockage due to CO 2 hydrate formation, liquefied carbon dioxide (for example, -10 ° C / 2.289 MPa ~-50°C/0.684 MPa) is raised to a predetermined pressure (10 MPa or more), and then the temperature is raised to 0°C or more and press-fitting is performed.
 液化炭酸ガスを昇温するためには何らかの熱源が必要となるが、液化炭酸ガス輸送船上という条件を考慮すると、利用可能な熱源は限られる。一つの方法としては、温水ボイラーにより温水を生じさせ、温水と液化炭酸ガスとを熱交換することにより液化炭酸ガスを昇温させる方法が考えられる。しかしながら、この方法の場合、温水ボイラーに大量の燃料を消費するためコストが増大し、また燃料消費に伴ってCOが排出されるという課題がある。 Some kind of heat source is required to raise the temperature of the liquefied carbon dioxide gas, but considering the conditions on board the liquefied carbon dioxide gas transport ship, the heat sources that can be used are limited. As one method, a hot water boiler is used to generate hot water, and heat is exchanged between the hot water and the liquefied carbon dioxide to raise the temperature of the liquefied carbon dioxide. However, in the case of this method, there is a problem that the hot water boiler consumes a large amount of fuel, which increases the cost, and CO 2 is emitted as the fuel is consumed.
 本発明は、こうした状況を鑑みてなされたものであり、その目的は、CCSにおいて液化炭酸ガスを好適に昇温することのできる技術を提供することにある。 The present invention has been made in view of these circumstances, and its purpose is to provide a technique capable of suitably raising the temperature of liquefied carbon dioxide gas in CCS.
 上記課題を解決するために、本発明のある態様の液化炭酸ガス昇温設備は、海水と熱媒体の供給を受け、海水との熱交換により熱媒体を昇温する熱媒体昇温器と、熱媒体昇温器で昇温された熱媒体との熱交換により、液化炭酸ガスを所定の温度に昇温する昇温用熱交換器と、熱媒体昇温器に供給される熱媒体の温度が海水の凍結温度以上となるように制御する熱媒体温度制御部と、を備える。 In order to solve the above-described problems, a liquefied carbon dioxide gas heating facility according to one aspect of the present invention includes a heat medium heater that receives seawater and a heat medium and heats the heat medium through heat exchange with the seawater; A temperature raising heat exchanger that raises the temperature of liquefied carbon dioxide gas to a predetermined temperature by heat exchange with the heat medium heated by the heat medium heater, and the temperature of the heat medium supplied to the heat medium heater and a heat medium temperature control unit that controls so that the temperature is equal to or higher than the freezing temperature of seawater.
 本発明の別の態様は、液化炭酸ガス昇温方法である。この方法は、熱媒体昇温器に海水と熱媒体を供給するステップと、熱媒体昇温器を用いて、海水との熱交換により熱媒体を昇温するステップと、熱媒体との熱交換により液化炭酸ガスを所定の温度に昇温するステップと、熱媒体昇温器に供給される熱媒体の温度が海水の凍結温度以上となるように制御するステップと、を備える。 Another aspect of the present invention is a method for raising the temperature of liquefied carbon dioxide gas. This method includes the steps of supplying seawater and a heat medium to a heat medium heater, raising the temperature of the heat medium by heat exchange with the seawater using the heat medium heater, and exchanging heat with the heat medium. and a step of controlling the temperature of the heat medium supplied to the heat medium heater so that the temperature of the heat medium supplied to the heat medium heater is equal to or higher than the freezing temperature of seawater.
 本発明によれば、CCSにおいて液化炭酸ガスを好適に昇温することのできる技術を提供できる。 According to the present invention, it is possible to provide a technology capable of suitably raising the temperature of liquefied carbon dioxide gas in CCS.
本発明の実施形態に係る液化炭酸ガス昇温設備が用いられるCCSの概略フローを示す図である。1 is a diagram showing a schematic flow of a CCS using a liquefied carbon dioxide gas heating facility according to an embodiment of the present invention; FIG. 本発明の実施形態に係る液化炭酸ガス昇温設備を説明するための図である。It is a figure for demonstrating the liquefied carbon dioxide gas temperature raising equipment which concerns on embodiment of this invention. 本発明の別の実施形態に係る液化炭酸ガス昇温設備を説明するための図である。FIG. 4 is a diagram for explaining a liquefied carbon dioxide gas temperature raising facility according to another embodiment of the present invention;
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。以下の構成は本開示を理解するための例示を目的とするものであり、本開示の範囲は、添付の請求の範囲によってのみ定まる。各図面に示される同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The following arrangements are intended as examples for understanding the present disclosure, the scope of which is defined solely by the appended claims. The same or equivalent constituent elements and members shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Also, in each drawing, some of the members that are not important for explaining the embodiments are omitted.
 図1は、本発明の実施形態に係る液化炭酸ガス昇温設備が用いられるCCSの概略フローを示す図である。図1は、液化炭酸ガス輸送・圧入方式のCCSを示す。CCSには他に、海底パイプライン方式やERD(Extended Reach Drilling)方式などがある。 FIG. 1 is a diagram showing a schematic flow of CCS using the liquefied carbon dioxide gas temperature raising equipment according to the embodiment of the present invention. FIG. 1 shows a liquefied carbon dioxide transport/injection type CCS. Other CCS methods include the submarine pipeline method and the ERD (Extended Reach Drilling) method.
 CCSにおいては、例えば石炭火力発電所の燃焼排ガスなどのCO発生源から、例えば化学吸収法などを用いてCOを分離・回収する。その後、回収したCOを圧縮して液化し、液化炭酸ガスの形で陸上のタンクに貯蔵する。液化炭酸ガスは、タンクから液化炭酸ガス輸送船100に積載され、海洋110上の貯留地点102まで船舶輸送される。 In CCS, for example, CO 2 is separated and captured from a CO 2 generating source such as flue gas of a coal-fired power plant using, for example, a chemical absorption method. The recovered CO2 is then compressed and liquefied and stored in land-based tanks in the form of liquefied carbon dioxide. The liquefied carbon dioxide is loaded from tanks onto a liquefied carbon dioxide carrier 100 and shipped to a storage point 102 on the ocean 110 .
 液化炭酸ガス輸送船100に積載された液化炭酸ガスは、液化炭酸ガス輸送船100に設置された液化炭酸ガス昇温設備10により昇圧および昇温された後、貯留地点102で液化炭酸ガス輸送船100から滞水層114に圧入される。滞水層114は、海底の下に位置する遮断層112よりもさらに下の層である。 The liquefied carbon dioxide loaded on the liquefied carbon dioxide transport ship 100 is pressurized and heated by the liquefied carbon dioxide temperature raising equipment 10 installed on the liquefied carbon dioxide transport ship 100, and then stored at the storage point 102 on the liquefied carbon dioxide transport ship. 100 is forced into the aquifer 114 . The aquifer layer 114 is a layer further below the barrier layer 112 located below the seabed.
 図1に示すCCSでは、液化炭酸ガスは、海底設備接続用FRP(Flexible Riser Pipe)を介して海底に設置されたウェルヘッド(Well Head)106に送られる。その後、液化炭酸ガスは、海底に敷設されたフローライン107を介してクリスマスツリー(Xmas Tree)108に送られる。クリスマスツリーとは、坑井から生産される流体の圧力を制御するバルブの集合体である。クリスマスツリー108において、液化炭酸ガスは滞水層114に圧入される。 In the CCS shown in FIG. 1, liquefied carbon dioxide gas is sent to a well head 106 installed on the seabed via an FRP (Flexible Riser Pipe) for connecting seabed equipment. The liquefied carbon dioxide gas is then sent to a Christmas tree 108 via a flowline 107 laid on the seabed. A Christmas tree is a collection of valves that control the pressure of fluids produced from a well. At Christmas tree 108 , the liquefied carbon dioxide gas is forced into water reservoir 114 .
 上記では、液化炭酸ガス昇温設備10を液化炭酸ガス輸送船100に設置したが、液化炭酸ガス昇温設備10は、洋上に設置した着底式プラットフォームや、洋上に係留した浮体(FSO:Floating Storage and Offloading またはBuoy)に設置されてもよい。 In the above description, the liquefied carbon dioxide gas heating equipment 10 is installed on the liquefied carbon dioxide transport ship 100. Storage and Offloading or Buoy).
 図2は、本発明の実施形態に係る液化炭酸ガス昇温設備10を説明するための図である。液化炭酸ガス昇温設備10は、船舶輸送された液化炭酸ガス(例えば-10℃/2.289MPa~-50℃/0.684MPa)を海底の貯留層(滞水層)に圧入するための昇圧、および貯留層に液化炭酸ガスが圧入されたとき、周囲の水の凍結とCOハイドレート形成による閉塞を防止するための昇温を行う設備である。 FIG. 2 is a diagram for explaining the liquefied carbon dioxide temperature raising equipment 10 according to the embodiment of the present invention. The liquefied carbon dioxide gas temperature raising equipment 10 pressurizes the liquefied carbon dioxide gas transported by ship (for example, -10°C/2.289 MPa to -50°C/0.684 MPa) into the seabed reservoir (aqueous layer). , and to raise the temperature to prevent blockage due to freezing of surrounding water and formation of CO 2 hydrate when liquefied carbon dioxide is injected into the reservoir.
 ここで、CCSにおける圧入条件について説明する。
(1)圧入圧力
 圧入圧力は、貯留層の深さ、浸透率、遮蔽層の強さで異なるが、一般的には圧入地点の「Static Head+3MPa~遮蔽層の破壊圧力」で示される。海底の地下貯留層でのCCSの場合、圧入深度を2000m~3000m、液化炭酸ガスの密度、坑井での圧力損失を考慮すると、海底のクリスマスツリー108(図1参照)で10MPa~13MPa程度が好適な圧入圧力となる。
(2)圧入温度
 液化炭酸ガスが貯留層(滞水層114)に圧入されたとき、周囲の水の凍結防止(0℃以上)とCOハイドレート形成(5℃以下)による閉塞を防止するために昇温して圧入をする必要がある。過去のCCSの実例において0℃で圧入時にCOハイドレート形成による閉塞が起きていないことを考慮すると、液化炭酸ガスの圧入温度は0℃以上が好適である。
Here, the conditions for press-fitting in CCS will be described.
(1) Injection pressure The injection pressure varies depending on the depth of the reservoir, the permeability, and the strength of the shielding layer, but is generally indicated by "Static Head + 3 MPa to breaking pressure of the shielding layer" at the injection point. In the case of CCS in an underground reservoir on the seafloor, considering the injection depth of 2000m to 3000m, the density of liquefied carbon dioxide gas, and the pressure loss in the well, the Christmas tree 108 on the seafloor (see Fig. 1) has a pressure of about 10MPa to 13MPa. A suitable press-in pressure is obtained.
(2) Injection temperature When liquefied carbon dioxide gas is injected into the reservoir (aqueous layer 114), it prevents freezing of the surrounding water (0°C or higher) and blockage due to CO2 hydrate formation (5°C or lower). Therefore, it is necessary to heat up and press fit. Considering that no clogging due to CO 2 hydrate formation occurred during injection at 0°C in past CCS examples, the injection temperature of liquefied carbon dioxide is preferably 0°C or higher.
 図2に示すように、液化炭酸ガス昇温設備10は、貯蔵タンク12と、昇圧ポンプ14と、昇温用熱交換器16と、熱媒体昇温器18と、海水ポンプ20と、熱媒体ドラム22と、熱媒体ポンプ24と、熱媒体温度制御部30と、を備える。 As shown in FIG. 2, the liquefied carbon dioxide gas temperature raising equipment 10 includes a storage tank 12, a boosting pump 14, a temperature raising heat exchanger 16, a heat medium heater 18, a seawater pump 20, a heat medium A drum 22 , a heat medium pump 24 , and a heat medium temperature control section 30 are provided.
 貯蔵タンク12は、液化炭酸ガス(液化CO)を貯蔵する。液化炭酸ガスの温度は-10℃~-50℃であってよく、液化炭酸ガスの圧力は2.289MPa~0.684MPaであってよい。貯蔵タンク12に貯蔵された液化炭酸ガスは、昇圧ポンプ14に供給される。 The storage tank 12 stores liquefied carbon dioxide (liquefied CO 2 ). The temperature of the liquefied carbon dioxide may be −10° C. to −50° C., and the pressure of the liquefied carbon dioxide may be 2.289 MPa to 0.684 MPa. The liquefied carbon dioxide stored in the storage tank 12 is supplied to the boost pump 14 .
 昇圧ポンプ14は、貯蔵タンク12から供給された液化炭酸ガスを所定の圧力(例えば10MPa以上)に昇圧する。昇圧ポンプ14により昇圧された液化炭酸ガスは、昇温用熱交換器16に供給される。 The boost pump 14 boosts the liquefied carbon dioxide supplied from the storage tank 12 to a predetermined pressure (for example, 10 MPa or higher). The liquefied carbon dioxide gas pressurized by the pressurizing pump 14 is supplied to the heat exchanger 16 for increasing the temperature.
 昇温用熱交換器16は、円筒胴内に複数の伝熱管を収めた円筒胴多管式熱交換器である。本実施形態において、昇温用熱交換器の円筒胴および伝熱管はいずれも一般的な鋼鉄製である。昇圧ポンプ14からの液化炭酸ガスは、昇温用熱交換器16の管側に供給される。液化炭酸ガスは、昇温用熱交換器16の管側入口16aに入力され、管側出口16bから出力される。一方、昇温用熱交換器16の胴側には熱媒体が供給される。熱媒体は、ライン33を介して昇温用熱交換器16の胴側入口16cに入力され、胴側出口16dから出力される。昇温用熱交換器16は、管側に供給される液化炭酸ガスと胴側に供給される熱媒体との間で熱交換を行い、液化炭酸ガスを所定の温度(0℃以上)に昇温する。 The temperature raising heat exchanger 16 is a cylindrical multi-tubular heat exchanger that houses a plurality of heat transfer tubes in the cylindrical body. In this embodiment, both the cylindrical body and the heat transfer tubes of the heat exchanger for heating are made of general steel. The liquefied carbon dioxide gas from the booster pump 14 is supplied to the tube side of the heat exchanger 16 for increasing the temperature. The liquefied carbon dioxide gas is input to the tube-side inlet 16a of the temperature raising heat exchanger 16 and is output from the tube-side outlet 16b. On the other hand, a heat medium is supplied to the body side of the heat exchanger 16 for raising the temperature. The heat medium is input to the shell-side inlet 16c of the temperature raising heat exchanger 16 via the line 33, and is output from the shell-side outlet 16d. The temperature raising heat exchanger 16 performs heat exchange between the liquefied carbon dioxide gas supplied to the tube side and the heat medium supplied to the body side, and raises the liquefied carbon dioxide gas to a predetermined temperature (0° C. or higher). Warm up.
 熱媒体としては、昇温用熱交換器16に供給される液化炭酸ガスの温度(-10℃~-50℃)でも凍結しないもの(不凍液)が用いられる。このような熱媒体としては、例えば、エチレングリコール水溶液、プロピレングリコール水溶液、エチレングリコール水溶液とプロピレングリコール水溶液の混合溶液、または炭化水素化合物の溶液を用いることができる。各溶液におけるエチレングリコール、プロピレングリコール、炭化水素化合物などの含有量は、供給される液化炭酸ガスの温度で凍結しないことを条件に設定され、例えばエチレングリコール10wt%以上や、プロピレングリコールの10wt%以上に設定される。これらの溶液は、防錆剤を含むことが好ましい。 As the heat medium, a material (antifreeze) that does not freeze even at the temperature of the liquefied carbon dioxide supplied to the heat exchanger 16 for raising temperature (-10°C to -50°C) is used. As such a heat medium, for example, an ethylene glycol aqueous solution, a propylene glycol aqueous solution, a mixed solution of an ethylene glycol aqueous solution and a propylene glycol aqueous solution, or a solution of a hydrocarbon compound can be used. The content of ethylene glycol, propylene glycol, hydrocarbon compounds, etc. in each solution is set on the condition that they do not freeze at the temperature of the supplied liquefied carbon dioxide gas. is set to These solutions preferably contain a rust inhibitor.
 昇温用熱交換器16の胴側出口16dから出力された熱媒体は、ライン34を介して熱媒体ドラム22に供給される。熱媒体は、その後、熱媒体ポンプ24によって熱媒体昇温器18に供給される。 The heat medium output from the shell-side outlet 16 d of the temperature raising heat exchanger 16 is supplied to the heat medium drum 22 through the line 34 . The heat medium is then supplied to the heat medium warmer 18 by the heat medium pump 24 .
 熱媒体温度制御部30は、熱媒体昇温器18に供給される熱媒体の温度が海水の凍結温度(-2℃)以上となるように制御する。熱媒体温度制御部30は、制御弁26と、温度センサ28とを備える。 The heat medium temperature control unit 30 controls the temperature of the heat medium supplied to the heat medium heater 18 to be equal to or higher than the seawater freezing temperature (-2°C). The heat medium temperature control section 30 includes a control valve 26 and a temperature sensor 28 .
 制御弁26は、図2に示すように、昇温用熱交換器16の胴側入口16cと胴側出口16dとをバイパスするバイパスライン32に設置されている。すなわち、バイパスライン32は、熱媒体昇温器18の熱媒体出口18bと昇温用熱交換器16の胴側入口16cとを接続するライン33と、昇温用熱交換器16の胴側出口16dと熱媒体ドラム22の入口22aとを接続するライン34とをバイパスしている。 As shown in FIG. 2, the control valve 26 is installed in a bypass line 32 that bypasses the shell-side inlet 16c and the shell-side outlet 16d of the heat exchanger 16 for raising temperature. That is, the bypass line 32 consists of a line 33 connecting the heat medium outlet 18b of the heat medium heater 18 and the shell-side inlet 16c of the temperature-raising heat exchanger 16, and a shell-side outlet of the temperature-raising heat exchanger 16. 16d and the line 34 connecting the inlet 22a of the heat medium drum 22 is bypassed.
 温度センサ28は、昇温用熱交換器16の胴側出口16dから出力される熱媒体と、バイパスライン32からの熱媒体とが合流した後の熱媒体の温度を検出するように配置される。制御弁26は、温度センサ28での検出値に基づいて、合流後の熱媒体の温度、すなわち熱媒体ドラム22に供給される熱媒体の温度が、海水の凍結温度(-2℃)以上となるように、バイパスライン32を流れる熱媒体の流量を制御する。 The temperature sensor 28 is arranged to detect the temperature of the heat medium after the heat medium output from the shell-side outlet 16d of the heat exchanger 16 and the heat medium from the bypass line 32 are merged. . Based on the value detected by the temperature sensor 28, the control valve 26 determines that the temperature of the heat medium after merging, that is, the temperature of the heat medium supplied to the heat medium drum 22 is the freezing temperature of seawater (-2°C) or higher. The flow rate of the heat medium flowing through the bypass line 32 is controlled so as to
 熱媒体昇温器18は、海水(例えば5℃以上)と熱媒体(-2℃以上)の供給を受け、海水との熱交換により熱媒体を昇温する。本実施形態において、熱媒体昇温器18は、耐海水腐食性および摩耗性に優れたチタン製プレートを備えるプレート式熱交換器である。プレート式熱交換器は、伝熱特性が高いことが特徴である。プレート式熱交換器においては、流体はほぼ平行量で伝熱係数が高く、場所による偏差が小さく、流体間の温度差2℃で十分熱交換が可能である。海水は、海水ポンプ20によって熱媒体昇温器18の海水入口18cに入力され、熱媒体昇温器18の海水出口18dから出力される。一方、熱媒体は、熱媒体昇温器18の熱媒体入口18aに入力され、熱媒体昇温器18の熱媒体出口18bから出力される。 The heat medium warmer 18 is supplied with seawater (eg, 5°C or higher) and a heat medium (-2°C or higher), and raises the temperature of the heat medium through heat exchange with the seawater. In this embodiment, the heat medium heater 18 is a plate heat exchanger that includes titanium plates that are highly resistant to seawater corrosion and abrasion. Plate heat exchangers are characterized by high heat transfer properties. In the plate-type heat exchanger, the fluids are almost parallel and the heat transfer coefficient is high, and the temperature difference between the fluids is 2°C. Seawater is input to the seawater inlet 18 c of the heat medium heater 18 by the seawater pump 20 and is output from the seawater outlet 18d of the heat medium heater 18 . On the other hand, the heat medium is input to the heat medium inlet 18 a of the heat medium heater 18 and output from the heat medium outlet 18 b of the heat medium heater 18 .
 具体的な温度を例示して液化炭酸ガス昇温設備10の動作を説明する。ここでは、-20℃、1.97MPaの液化炭酸ガスを0℃、10MPaに昇圧・昇温する場合を考える。熱媒体昇温器18は、例えば7℃の海水と-1℃の熱媒体(エチレングリコール水溶液:凍結温度-23℃)の供給を受け、熱媒体を5℃に昇温する。熱媒体昇温器18により昇温された熱媒体は、ライン33を介して昇温用熱交換器16の胴側入口16cに供給される。昇圧ポンプ14は、-20℃、1.97MPaの液化炭酸ガスを-20℃、10.5MPaに昇圧する。昇温用熱交換器16は、管側入口16aに供給された-20℃、10.5MPaの液化炭酸ガスを、5℃の熱媒体との熱交換により0℃(10.2MPa)に昇温する。-46℃、0.80MPaの液化炭酸ガスを0℃、10MPaに昇圧・昇温する場合は、昇圧ポンプ14の出口が-46℃、10.5MPaとなり、それ以外の箇所の温度、圧力は同じである。 The operation of the liquefied carbon dioxide gas temperature raising equipment 10 will be explained by exemplifying specific temperatures. Here, it is assumed that the liquefied carbon dioxide gas at −20° C. and 1.97 MPa is raised to 0° C. and 10 MPa. The heat medium heater 18 is supplied with, for example, 7°C seawater and -1°C heat medium (ethylene glycol aqueous solution: freezing temperature -23°C), and raises the temperature of the heat medium to 5°C. The heat medium whose temperature has been raised by the heat medium heater 18 is supplied through the line 33 to the shell-side inlet 16c of the temperature raising heat exchanger 16 . The boosting pump 14 boosts the liquefied carbon dioxide gas at -20°C and 1.97 MPa to -20°C and 10.5 MPa. The temperature raising heat exchanger 16 raises the temperature of the liquefied carbon dioxide gas of −20° C. and 10.5 MPa supplied to the tube-side inlet 16a to 0° C. (10.2 MPa) by heat exchange with a heat medium of 5° C. do. When the liquefied carbon dioxide gas of -46°C and 0.80 MPa is raised to 0°C and 10 MPa, the outlet of the booster pump 14 becomes -46°C and 10.5 MPa, and the temperature and pressure of other parts are the same. is.
 以上、本実施形態に係る液化炭酸ガス昇温設備10の構成について説明した。本実施形態に係る液化炭酸ガス昇温設備10によれば、海水を利用して液化炭酸ガスの昇温を行っているので、燃料を必要とする温水ボイラーを使用する場合と比較してコストを低減することができ、また排出されるCOも非常に少ない。 The configuration of the liquefied carbon dioxide gas temperature raising equipment 10 according to the present embodiment has been described above. According to the liquefied carbon dioxide gas temperature raising equipment 10 according to the present embodiment, seawater is used to raise the temperature of the liquefied carbon dioxide gas, so the cost is reduced compared to using a hot water boiler that requires fuel. can be reduced and very little CO2 is emitted.
 海水の最低温度は、日本海側では冬期に6℃~8℃(北海では4℃~6℃)となる。このような低温の海水で直接-10℃~-50℃の液化炭酸ガスを熱交換すると、熱交換機内で海水が凍結し、熱交換器が閉塞する虞がある。そこで、本実施形態に係る液化炭酸ガス昇温設備10のように、凍結温度の低い熱媒体と液化炭酸ガスの熱交換とすることにより、熱交換器の閉塞を防ぐことができる。 The lowest seawater temperature is 6-8 ℃ in winter on the Sea of Japan side (4-6 ℃ in the North Sea). Direct heat exchange of liquefied carbon dioxide gas of -10°C to -50°C with such low-temperature seawater may cause the seawater to freeze in the heat exchanger and clog the heat exchanger. Therefore, as in the liquefied carbon dioxide gas temperature raising equipment 10 according to the present embodiment, heat exchange between a heat medium having a low freezing temperature and liquefied carbon dioxide gas can prevent clogging of the heat exchanger.
 熱媒体昇温器18では、海水と熱媒体の熱交換を行っている。しかしながら、本実施形態に係る液化炭酸ガス昇温設備10では、熱媒体温度制御部30によって、熱媒体昇温器18の熱媒体入口18aに入力される熱媒体の温度が海水の凍結温度(約-2℃)以上となるように制御しているので、熱媒体昇温器18内で海水の凍結は発生しない。 The heat medium heater 18 exchanges heat between the seawater and the heat medium. However, in the liquefied carbon dioxide gas temperature raising equipment 10 according to the present embodiment, the temperature of the heat medium input to the heat medium inlet 18a of the heat medium heater 18 is set by the heat medium temperature control unit 30 to the freezing temperature of seawater (approximately −2° C.) or higher, seawater does not freeze in the heat medium heater 18 .
 本実施形態に係る液化炭酸ガス昇温設備10では、昇温用熱交換器16に供給される流体は腐食性が低いため、高価なチタンではなく、一般的な鋼鉄を材料として用いることができる。その結果、円筒胴多管式の昇温用熱交換器16のコストを大幅に低減できる。 In the liquefied carbon dioxide gas temperature raising equipment 10 according to the present embodiment, since the fluid supplied to the temperature raising heat exchanger 16 has low corrosiveness, general steel can be used as a material instead of expensive titanium. . As a result, the cost of the heat exchanger 16 for temperature rise of the cylindrical shell and tube type can be greatly reduced.
 本実施形態に係る液化炭酸ガス昇温設備10において、熱媒体昇温器18は、耐海水腐食性および摩耗性に優れたチタン製プレートを備えるプレート式熱交換器である。チタンを用いるのは耐海水腐食性のためであるが、プレートの厚みは0.4mm~0.7mmと薄いため、チタン製の伝熱管を用いた円筒胴多管式熱交換器と比較して、熱媒体昇温器18は安価である。 In the liquefied carbon dioxide gas temperature raising equipment 10 according to the present embodiment, the heat medium temperature raising device 18 is a plate heat exchanger equipped with titanium plates that are excellent in seawater corrosion resistance and abrasion resistance. Titanium is used for seawater corrosion resistance, but the thickness of the plate is as thin as 0.4 mm to 0.7 mm, so compared to a cylindrical shell and shell heat exchanger using titanium heat transfer tubes. , the heat medium heater 18 is inexpensive.
 図3は、本発明の別の実施形態に係る液化炭酸ガス昇温設備40を説明するための図である。図3に示す液化炭酸ガス昇温設備40は、液化炭酸ガス気化用熱交換器42をさらに備える点が図2に示す液化炭酸ガス昇温設備10と異なる。 FIG. 3 is a diagram for explaining a liquefied carbon dioxide gas heating facility 40 according to another embodiment of the present invention. The liquefied carbon dioxide gas temperature raising equipment 40 shown in FIG. 3 is different from the liquefied carbon dioxide gas temperature raising equipment 10 shown in FIG.
 液化炭酸ガス気化用熱交換器42は、円筒胴多管式熱交換器であり、円筒胴および伝熱管はいずれも一般的な鋼鉄製である。熱媒体昇温器18の熱媒体出口18bからの熱媒体の一部は、液化炭酸ガス気化用熱交換器42の管側に供給される。熱媒体は、液化炭酸ガス気化用熱交換器42の管側入口42aに入力され、管側出口42bから出力されてライン34で昇温用熱交換器16からの熱媒体と合流する。一方、液化炭酸ガス気化用熱交換器42の胴側には貯蔵タンク12からの液化炭酸ガスの一部が供給される。液化炭酸ガスは、液化炭酸ガス気化用熱交換器42の胴側入口42cに入力され、熱媒体と熱交換されて気化され、胴側出口42dから出力される。液化炭酸ガス気化用熱交換器42の胴側出口42dから出力された炭酸ガスは、リターンガスとして貯蔵タンク12に供給される。 The liquefied carbon dioxide vaporization heat exchanger 42 is a cylindrical multi-tubular heat exchanger, and the cylindrical body and heat transfer tubes are both made of general steel. A portion of the heat medium from the heat medium outlet 18b of the heat medium heater 18 is supplied to the tube side of the heat exchanger 42 for vaporizing liquefied carbon dioxide gas. The heat medium is input to the tube-side inlet 42a of the heat exchanger 42 for vaporizing liquefied carbon dioxide, is output from the tube-side outlet 42b, and joins with the heat medium from the heat exchanger 16 for raising the temperature through the line 34. On the other hand, part of the liquefied carbon dioxide from the storage tank 12 is supplied to the body side of the heat exchanger 42 for vaporizing the liquefied carbon dioxide. The liquefied carbon dioxide is input to the shell-side inlet 42c of the heat exchanger 42 for vaporizing the liquefied carbon dioxide, is heat-exchanged with the heat medium, is vaporized, and is output from the shell-side outlet 42d. The carbon dioxide output from the shell-side outlet 42d of the heat exchanger 42 for liquefied carbon dioxide vaporization is supplied to the storage tank 12 as return gas.
 本実施形態に係る液化炭酸ガス昇温設備40においては、液化炭酸ガスの一部を気化させ、リターンがとして貯蔵タンク12に供給することにより、液化炭酸ガスの払い出しによる貯蔵タンク12の圧力低下を防止することができる。 In the liquefied carbon dioxide gas temperature raising equipment 40 according to the present embodiment, part of the liquefied carbon dioxide gas is vaporized and supplied to the storage tank 12 as a return gas, thereby reducing the pressure drop in the storage tank 12 due to the discharge of the liquefied carbon dioxide gas. can be prevented.
 具体的な温度を例示して液化炭酸ガス昇温設備40の動作を説明する。ここでは、-20℃、1.97MPaの液化炭酸ガスを0℃、10MPaに昇圧・昇温する場合を考える。熱媒体昇温器18は、例えば7℃の海水と-1℃の熱媒体(エチレングリコール水溶液:凍結温度-23℃)の供給を受け、熱媒体を5℃に昇温する。熱媒体昇温器18により昇温された熱媒体は、ライン33を介して昇温用熱交換器16の胴側入口16cに供給される。昇圧ポンプ14は、-20℃、1.97MPaの液化炭酸ガスを-20℃、10.5MPaに昇圧する。昇温用熱交換器16は、管側入口16aに供給された-20℃、10.5MPaの液化炭酸ガスを、5℃の熱媒体との熱交換により0℃(10.2MPa)に昇温する。-20℃、1.97MPaの液化炭酸ガスの一部は、液化炭酸ガス気化用熱交換器42の胴側入口42cに供給される。液化炭酸ガス気化用熱交換器42は、胴側入口42cに供給された液化炭酸ガスを、管側入口42aに供給された5℃の熱媒体との熱交換により気化し、胴側出口42dから出力する(-20℃、1.97MPa)。-46℃、0.80MPaの液化炭酸ガスを0℃、10MPaに昇圧・昇温する場合は、昇圧ポンプ14の出口が-46℃、10.5MPa、液化炭酸ガス気化用熱交換器42の胴側出口42dが-46℃、0.80MPaとなり、それ以外の箇所の温度、圧力は同じである。 The operation of the liquefied carbon dioxide gas temperature raising equipment 40 will be explained by exemplifying specific temperatures. Here, it is assumed that the liquefied carbon dioxide gas at −20° C. and 1.97 MPa is raised to 0° C. and 10 MPa. The heat medium heater 18 is supplied with, for example, 7°C seawater and -1°C heat medium (ethylene glycol aqueous solution: freezing temperature -23°C), and raises the temperature of the heat medium to 5°C. The heat medium whose temperature has been raised by the heat medium heater 18 is supplied through the line 33 to the shell-side inlet 16c of the temperature raising heat exchanger 16 . The boosting pump 14 boosts the liquefied carbon dioxide gas at -20°C and 1.97 MPa to -20°C and 10.5 MPa. The temperature raising heat exchanger 16 raises the temperature of the liquefied carbon dioxide gas of −20° C. and 10.5 MPa supplied to the tube-side inlet 16a to 0° C. (10.2 MPa) by heat exchange with a heat medium of 5° C. do. Part of the liquefied carbon dioxide gas at -20°C and 1.97 MPa is supplied to the shell-side inlet 42c of the heat exchanger 42 for vaporizing the liquefied carbon dioxide gas. The heat exchanger 42 for vaporizing liquefied carbon dioxide vaporizes the liquefied carbon dioxide supplied to the shell-side inlet 42c by heat exchange with the heat medium of 5° C. supplied to the tube-side inlet 42a, and vaporizes the liquefied carbon dioxide from the shell-side outlet 42d. Output (-20°C, 1.97 MPa). When the liquefied carbon dioxide gas of -46°C and 0.80 MPa is raised to 0°C and 10 MPa, the outlet of the booster pump 14 is set at -46°C and 10.5 MPa, and the body of the heat exchanger 42 for vaporizing the liquefied carbon dioxide is The temperature at the side outlet 42d is −46° C. and 0.80 MPa, and the temperature and pressure at other locations are the same.
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the examples. It should be understood by those skilled in the art that this embodiment is merely an example, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are within the scope of the present invention. .
 本発明は、CCS(二酸化炭素回収・貯留)に利用できる。 The present invention can be used for CCS (carbon dioxide capture and storage).
 10,40 液化炭酸ガス昇温設備、 12 貯蔵タンク、 14 昇圧ポンプ、 16 昇温用熱交換器、 18 熱媒体昇温器、 20 海水ポンプ、 22 熱媒体ドラム、 26 制御弁、 28 温度センサ、 30 熱媒体温度制御部、 32 バイパスライン、 42 液化炭酸ガス気化用熱交換器、 100 液化CO2輸送船。 10, 40 liquefied carbon dioxide gas heating equipment, 12 storage tank, 14 booster pump, 16 temperature raising heat exchanger, 18 heat medium heater, 20 seawater pump, 22 heat medium drum, 26 control valve, 28 temperature sensor, 30 heat medium temperature control unit, 32 bypass line, 42 liquefied carbon dioxide vaporization heat exchanger, 100 liquefied CO2 transport ship.

Claims (7)

  1.  海水と熱媒体の供給を受け、前記海水との熱交換により前記熱媒体を昇温する熱媒体昇温器と、
     前記熱媒体昇温器で昇温された前記熱媒体との熱交換により、液化炭酸ガスを所定の温度に昇温する昇温用熱交換器と、
     前記熱媒体昇温器に供給される前記熱媒体の温度が前記海水の凍結温度以上となるように制御する熱媒体温度制御部と、
     を備えることを特徴とする液化炭酸ガス昇温設備。
    a heat medium heater that receives seawater and a heat medium and raises the temperature of the heat medium through heat exchange with the seawater;
    a heat exchanger for raising the temperature of liquefied carbon dioxide gas to a predetermined temperature by exchanging heat with the heat medium heated by the heat medium heater;
    a heat medium temperature control unit that controls the temperature of the heat medium supplied to the heat medium heater to be equal to or higher than the freezing temperature of the seawater;
    A liquefied carbon dioxide gas temperature raising facility comprising:
  2.  前記昇温用熱交換器は、円筒胴内に複数の伝熱管を収めた円筒胴多管式熱交換器であり、
     前記液化炭酸ガスは、前記昇温用熱交換器の前記伝熱管側に供給され、
     前記熱媒体昇温器からの前記熱媒体は、前記昇温用熱交換器の前記円筒胴側に供給される、ことを特徴とする請求項1に記載の液化炭酸ガス昇温設備。
    The heat exchanger for raising temperature is a cylindrical shell and tube heat exchanger containing a plurality of heat transfer tubes in a cylindrical shell,
    The liquefied carbon dioxide gas is supplied to the heat transfer tube side of the temperature raising heat exchanger,
    2. The equipment for raising the temperature of liquefied carbon dioxide gas according to claim 1, wherein the heat medium from the heat medium heater is supplied to the cylindrical body side of the heat exchanger for temperature rise.
  3.  前記昇温用熱交換器の前記円筒胴および前記伝熱管はいずれも鋼鉄製であることを特徴とする請求項2に記載の液化炭酸ガス昇温設備。 The equipment for raising the temperature of liquefied carbon dioxide gas according to claim 2, wherein the cylindrical body and the heat transfer tubes of the heat exchanger for raising temperature are both made of steel.
  4.  前記熱媒体は、エチレングリコール水溶液、プロピレングリコール水溶液、エチレングリコール水溶液とプロピレングリコール水溶液の混合溶液、または炭化水素化合物の溶液であることを特徴とする請求項1から3のいずれかに記載の液化炭酸ガス昇温設備。 4. The liquefied carbonic acid according to any one of claims 1 to 3, wherein the heat medium is an ethylene glycol aqueous solution, a propylene glycol aqueous solution, a mixed solution of an ethylene glycol aqueous solution and a propylene glycol aqueous solution, or a solution of a hydrocarbon compound. Gas heating equipment.
  5.  前記熱媒体昇温器は、チタン製プレートを備えるプレート式熱交換器であることを特徴とする請求項1から4のいずれかに記載の液化炭酸ガス昇温設備。 The equipment for raising the temperature of liquefied carbon dioxide gas according to any one of claims 1 to 4, characterized in that the heat medium heater is a plate-type heat exchanger provided with titanium plates.
  6.  前記昇温用熱交換器に供給するための前記液化炭酸ガスを貯蔵する貯蔵タンクと、
     前記貯蔵タンクからの前記液化炭酸ガスの一部と、前記熱媒体昇温器からの前記熱媒体の一部の供給を受け、前記熱媒体との熱交換により前記液化炭酸ガスを気化する液化炭酸ガス気化用熱交換器と、をさらに備え、
     前記液化炭酸ガス気化用熱交換器で気化された炭酸ガスは、前記貯蔵タンクに供給されることを特徴とする請求項1から5のいずれかに記載の液化炭酸ガス昇温設備。
    a storage tank for storing the liquefied carbon dioxide gas to be supplied to the temperature raising heat exchanger;
    Liquefied carbon dioxide that receives a portion of the liquefied carbon dioxide from the storage tank and a portion of the heat medium from the heat medium heater, and evaporates the liquefied carbon dioxide by heat exchange with the heat medium. and a heat exchanger for gas vaporization,
    6. The liquefied carbon dioxide heating equipment according to any one of claims 1 to 5, wherein the carbon dioxide vaporized by the heat exchanger for vaporizing the liquefied carbon dioxide is supplied to the storage tank.
  7.  熱媒体昇温器に海水と熱媒体を供給するステップと、
     前記熱媒体昇温器を用いて、前記海水との熱交換により前記熱媒体を昇温するステップと、
     前記熱媒体との熱交換により液化炭酸ガスを所定の温度に昇温するステップと、
     前記熱媒体昇温器に供給される前記熱媒体の温度が前記海水の凍結温度以上となるように制御するステップと、
     を備えることを特徴とする液化炭酸ガス昇温方法。
    a step of supplying seawater and a heat medium to the heat medium heater;
    a step of raising the temperature of the heat medium by heat exchange with the seawater using the heat medium warmer;
    a step of raising the temperature of the liquefied carbon dioxide gas to a predetermined temperature by heat exchange with the heat medium;
    a step of controlling the temperature of the heat medium supplied to the heat medium warmer to be equal to or higher than the freezing temperature of the seawater;
    A method for raising the temperature of a liquefied carbon dioxide gas, comprising:
PCT/JP2022/023260 2021-06-17 2022-06-09 Equipment for warming liquefied carbon dioxide and method for warming liquefied carbon dioxide WO2022264913A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022295393A AU2022295393A1 (en) 2021-06-17 2022-06-09 Equipment for warming liquefied carbon dioxide and method for warming liquefied carbon dioxide
EP22824903.3A EP4357232A1 (en) 2021-06-17 2022-06-09 Equipment for warming liquefied carbon dioxide and method for warming liquefied carbon dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-101217 2021-06-17
JP2021101217A JP2023000414A (en) 2021-06-17 2021-06-17 Liquefied carbon dioxide temperature rising facility and liquefied carbon dioxide temperature rising method

Publications (1)

Publication Number Publication Date
WO2022264913A1 true WO2022264913A1 (en) 2022-12-22

Family

ID=84527497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023260 WO2022264913A1 (en) 2021-06-17 2022-06-09 Equipment for warming liquefied carbon dioxide and method for warming liquefied carbon dioxide

Country Status (4)

Country Link
EP (1) EP4357232A1 (en)
JP (1) JP2023000414A (en)
AU (1) AU2022295393A1 (en)
WO (1) WO2022264913A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618109B1 (en) * 2023-03-22 2024-01-03 한국철도기술연구원 Concentric multi-tube cryogenic vaporizer for preventing freezing of heating medium and method of preventing freezing of heating medium using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917549A (en) * 1972-06-12 1974-02-16
JPS6341795A (en) * 1986-08-06 1988-02-23 Kobe Steel Ltd Multi-tubed, cylindrical heat exchanger
JPH07241459A (en) * 1994-03-03 1995-09-19 Mitsubishi Heavy Ind Ltd Method for introducing carbon dioxide into deep sea and device therefor
JP2002340296A (en) * 2001-05-16 2002-11-27 Sumitomo Precision Prod Co Ltd Liquefied gas vaporizing and heating device
JP2009078228A (en) * 2007-09-26 2009-04-16 National Maritime Research Institute Method and apparatus for throwing carbon dioxide into deep sea
JP2009185959A (en) * 2008-02-08 2009-08-20 Showa Tansan Co Ltd Device and method for collecting vaporization heat from liquefied carbon dioxide
JP2011031154A (en) 2009-07-31 2011-02-17 National Institute Of Advanced Industrial Science & Technology Storage of carbon dioxide in shallow aquifer
JP2012072012A (en) 2010-09-28 2012-04-12 Tokyo Electric Power Co Inc:The Method and system of transportation of carbon dioxide
JP2017120125A (en) * 2015-12-28 2017-07-06 株式会社神戸製鋼所 Intermediate medium type carburetor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917549A (en) * 1972-06-12 1974-02-16
JPS6341795A (en) * 1986-08-06 1988-02-23 Kobe Steel Ltd Multi-tubed, cylindrical heat exchanger
JPH07241459A (en) * 1994-03-03 1995-09-19 Mitsubishi Heavy Ind Ltd Method for introducing carbon dioxide into deep sea and device therefor
JP2002340296A (en) * 2001-05-16 2002-11-27 Sumitomo Precision Prod Co Ltd Liquefied gas vaporizing and heating device
JP2009078228A (en) * 2007-09-26 2009-04-16 National Maritime Research Institute Method and apparatus for throwing carbon dioxide into deep sea
JP2009185959A (en) * 2008-02-08 2009-08-20 Showa Tansan Co Ltd Device and method for collecting vaporization heat from liquefied carbon dioxide
JP2011031154A (en) 2009-07-31 2011-02-17 National Institute Of Advanced Industrial Science & Technology Storage of carbon dioxide in shallow aquifer
JP2012072012A (en) 2010-09-28 2012-04-12 Tokyo Electric Power Co Inc:The Method and system of transportation of carbon dioxide
JP2017120125A (en) * 2015-12-28 2017-07-06 株式会社神戸製鋼所 Intermediate medium type carburetor

Also Published As

Publication number Publication date
JP2023000414A (en) 2023-01-04
AU2022295393A1 (en) 2024-01-25
EP4357232A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP4600840B2 (en) ship
JP3742841B2 (en) Regasification of LNG in transport ships
CN102686930B (en) A plant for regasification of LNG
US20100229573A1 (en) Floating lng storage and re-gasification unit and method for re-gasification of lng on said unit
BR0106738B1 (en) Method for the efficient production, transport, storage and distribution of natural gas to a point of sale.
WO2022264913A1 (en) Equipment for warming liquefied carbon dioxide and method for warming liquefied carbon dioxide
WO2007039480A1 (en) Liquefied natural gas regasification plant and method with heat recovery
CN109357159B (en) Cryogenic supercritical fluid regasification experimental system and working method
KR101599312B1 (en) Liquefied natural gas regasification apparatus
CN101260972A (en) A cargo evaporation device for use when unloading ships
KR101246064B1 (en) Apparatus for regasification of liquefied natural gas
KR101903762B1 (en) Liquefied gas regasification system
US20070095077A1 (en) LNG by-pass for open rack vaporizer during LNG regasification
KR20110123056A (en) Having underground storage apparatus liquid carbon dioxide transport vessel
KR101873774B1 (en) Liquefied gas regasification system
KR101588223B1 (en) Heating exchange system of Low pressure feed water heater
JPH07265687A (en) Apparatus for throwing liquid carbon dioxide into depth of sea
EP4212697A1 (en) System and method for optimized withdrawal of fluid for long term storage in a subterranean void from storage tanks
KR20090059762A (en) Regasification system of lngc
WO2024062303A1 (en) Apparatus and method for storing carbon dioxide
NO346899B1 (en) A ship and a method for bringing liquified gas from an onshore terminal across a sea to a subsurface permanent storage reservoir
KR20150062566A (en) Lng regasification facility using waste heat of ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022295393

Country of ref document: AU

Ref document number: AU2022295393

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022824903

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022295393

Country of ref document: AU

Date of ref document: 20220609

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022824903

Country of ref document: EP

Effective date: 20240117