WO2022264876A1 - Valve - Google Patents

Valve Download PDF

Info

Publication number
WO2022264876A1
WO2022264876A1 PCT/JP2022/022911 JP2022022911W WO2022264876A1 WO 2022264876 A1 WO2022264876 A1 WO 2022264876A1 JP 2022022911 W JP2022022911 W JP 2022022911W WO 2022264876 A1 WO2022264876 A1 WO 2022264876A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gap
space
rod
axial direction
Prior art date
Application number
PCT/JP2022/022911
Other languages
French (fr)
Japanese (ja)
Inventor
亮一 百枝
渉 高橋
康平 福留
啓吾 白藤
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2023529801A priority Critical patent/JPWO2022264876A1/ja
Publication of WO2022264876A1 publication Critical patent/WO2022264876A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings

Definitions

  • the present invention relates to a valve that controls working fluid.
  • Valves used to control working fluid in various industrial fields have a valve seat and a valve element that can be separated from and attached to the valve seat. Pressure and flow rate can be controlled.
  • Such valves include a spool valve in which a spool, which is a valve body, moves parallel to an opening, which is a valve seat, a butterfly valve, in which a valve body has a pivot shaft, and a
  • a typical valve form is a lift valve that moves perpendicularly to the valve.
  • lift valves are the most suitable for flow rate and pressure control.
  • lift valves include capacity control valves for variable capacity compressors used in air conditioning systems for automobiles.
  • a variable displacement compressor includes a rotating shaft that is driven to rotate by an engine, a swash plate that is connected to the rotating shaft so that the inclination angle can be changed, and a compression piston that is connected to the swash plate. By changing the angle, the stroke amount of the piston is changed to control the discharge amount of the fluid.
  • the inclination angle of the swash plate is determined by using a displacement control valve that is driven to open and close by electromagnetic force. By appropriately controlling the pressure in the control chamber while utilizing the control pressure Pc in the control chamber containing the swash plate, the pressure can be changed continuously.
  • the displacement control valve of Patent Document 1 includes a valve housing in which a primary pressure space through which a control fluid having a control pressure Pc passes and a secondary pressure space through which a control fluid having a suction pressure Ps passes; a valve seat provided between a secondary pressure space and a valve body having a valve contact portion provided in the primary pressure space and a rod portion provided in a back space on the side of the solenoid and capable of contacting and separating from the valve seat;
  • the control pressure Pc of the control chamber is adjusted by moving the valve element by the electromagnetic force generated at .
  • valve housing is formed with a communication passage that communicates the secondary pressure space and the back space.
  • the secondary pressure space and the back space can be made to have the same pressure by the communication passage, and no pressure difference occurs on both sides in the axial direction of the valve body. can be controlled.
  • the rod portion of the valve body is inserted into a guide hole provided between the primary pressure space and the back space in the valve housing, and the rod portion is guided in the guide hole. It is designed to slide stably.
  • the fluid in the primary pressure space of the control pressure Pc will flow between the outer peripheral surface of the rod portion and the inner peripheral surface of the guide hole.
  • the control pressure Pc in the primary pressure space cannot be controlled with high accuracy due to a slight leakage into the back space through the space between the .
  • the present invention has been made with attention paid to such problems, and an object of the present invention is to provide a valve that can reduce the leakage of working fluid between the back space and one space.
  • the valve of the present invention is a valve housing having a primary pressure space, a secondary pressure space, and a rear space adjacent to one of the primary pressure space and the secondary pressure space; a valve seat disposed between the primary pressure space and the secondary pressure space; a rod inserted through a guide hole of the valve housing provided between the one space and the back space and axially driven by a drive source; a valve body that is seated or separated from the valve seat by driving the rod; a communication means for communicating between the back space and the other of the primary pressure space and the secondary pressure space, A gap connecting the one space and the back space is formed between the rod and the valve housing, and the gap has a bent portion. According to this, pressure loss of the working fluid occurs when the direction of the working fluid flowing through the gap formed between the rod and the valve housing changes at the bent portion. Leakage of working fluid to the back space can be reduced.
  • a channel cross-sectional area of the bent portion may be the smallest when the valve is closed. According to this, the flow passage cross-sectional area of the bent portion changes according to the valve opening, and since the flow passage cross-sectional area is the smallest when the valve is closed, the pressure of the working fluid generated at the bent portion when the valve is closed is loss can be increased.
  • the pair of axially facing surfaces constituting the bent portion may be spaced apart in the axial direction. According to this, since the pair of axially facing surfaces of the rod and the valve housing do not contact each other when the valve is closed, the valve body can be reliably seated on the valve seat.
  • the side surface of the rod and the side surface of the valve housing may be the pair of axially opposed surfaces. According to this, since the curved portion is formed at the entrance or the exit of the gap, it is possible to effectively prevent the working fluid from flowing into or out of the gap.
  • the pair of axially facing surfaces may be orthogonal to the axial direction. According to this, it is possible to increase the pressure loss of the working fluid that occurs at the bent portion. Also, the pair of radially facing surfaces that are continuous with the pair of axially facing surfaces can be ensured to be long in the axial direction.
  • the bent portion may be crank-shaped. According to this, since the direction of flow of the working fluid changes on both sides in the radial direction between the pair of axially facing surfaces, the pressure loss of the working fluid can be increased.
  • the effective pressure-receiving area of the rod may be equal to the effective pressure-receiving area of the valve. According to this, since the force due to the fluid pressure in the back space acting on the rod and the force due to the fluid pressure in the other space acting on the valve body are canceled, the fluid in the back space and the other space The valve body can be moved with high precision regardless of the pressure.
  • FIG. 1 is a cross-sectional view showing a displacement control valve in Example 1 according to the present invention
  • FIG. 4 is an enlarged cross-sectional view of a main part showing a gap between a guide hole and a rod when the valve is closed
  • FIG. 4 is a schematic diagram showing working fluid flowing through a gap
  • FIG. 4 is an enlarged cross-sectional view of a main part showing a state in which the displacement control valve is closed
  • FIG. 4 is an enlarged cross-sectional view of a main part showing a state in which the capacity control valve is opened
  • 4 is an enlarged cross-sectional view of a main part showing Modification 1 of the capacity control valve of Embodiment 1.
  • FIG. 4 is a cross-sectional view showing Modification 2 of the capacity control valve of Embodiment 1.
  • FIG. FIG. 5 is an enlarged cross-sectional view of a main part showing a displacement control valve according to Embodiment 2 of the present invention;
  • a form for implementing the valve according to the present invention will be described below based on an embodiment. Although the embodiment will be described with a displacement control valve as an example, it can also be applied to other uses.
  • FIG. 1 A displacement control valve according to Embodiment 1 will be described with reference to FIGS. 1 to 5.
  • FIG. the left and right sides of the capacity control valve are defined as viewed from the front side of FIG. Specifically, the left side of the paper where the valve housing 10 is arranged is the left side of the displacement control valve, and the right side of the paper where the solenoid 80 is arranged is the right side of the displacement control valve.
  • the displacement control valve of the present invention is incorporated in a variable displacement compressor (not shown) used in an air conditioning system of an automobile or the like, and variably controls the pressure of a working fluid (hereinafter simply referred to as "fluid") that is a refrigerant. It is. As a result, the discharge amount of the variable displacement compressor is adjusted, and the air conditioning system is adjusted to achieve the target cooling capacity.
  • a working fluid hereinafter simply referred to as "fluid”
  • variable capacity compressor has a casing with a discharge chamber, a suction chamber, a control chamber, and a plurality of cylinders.
  • the variable capacity compressor is provided with a communication passage that directly communicates the discharge chamber and the control chamber.
  • This communication passage is provided with a fixed orifice 9 for balancing the pressures of the discharge chamber and the control chamber (see FIG. 1).
  • the variable displacement compressor includes a rotating shaft that is rotatably driven by an engine (not shown) installed outside a casing, a swash plate that is tiltably connected to the rotating shaft by a hinge mechanism in a control chamber, and a swash plate. a plurality of pistons connected to the plate and fitted reciprocally within each cylinder.
  • the pressure in the control chamber is determined by using a displacement control valve V1 that is driven to open and close by electromagnetic force. It is appropriately controlled using the control pressure Pc of the control chamber containing the plate.
  • the stroke amount of the piston changes as the inclination angle of the swash plate changes, and the discharge amount of the variable displacement compressor changes.
  • the displacement control valve V1 of the first embodiment which is incorporated in the variable displacement compressor, changes depending on the current applied to a coil 86 that constitutes a solenoid 80 as a drive source.
  • the valve 50 opens and closes.
  • the control pressure Pc in the control chamber is variably controlled by controlling the opening and closing of the valve 50 to change the flow rate flowing out from the control chamber to the suction chamber.
  • the discharge fluid at the discharge pressure Pd of the discharge chamber is constantly supplied to the control chamber through the fixed orifice 9, so that the control pressure Pc in the control chamber can be increased by closing the valve 50 in the displacement control valve V1. It has become.
  • the valve 50 is composed of a contact portion 54 as a valve element and a valve seat 40a.
  • the contact portion 54 is provided on the valve portion 51 of the movable body 56 .
  • the valve seat 40 a is provided on a cylindrical valve seat member 40 .
  • the valve seat member 40 is press-fitted into the communication hole portion 10b of the valve housing 10 and fixed.
  • a tapered contact portion 54 is formed on the right side of the valve portion 51 in the axial direction.
  • the valve 50 is opened and closed by moving the contact portion 54 into contact with and away from the valve seat 40a in the axial direction.
  • the capacity control valve V1 is mainly composed of a valve housing 10 and a valve seat member 40 made of a metal material, a solenoid 80 as a drive source, and a movable body 56. As shown in FIG.
  • the movable body 56 is composed of a rod portion 20 as a rod element and a valve portion 51 as a valve element.
  • the rod portion 20 extends axially.
  • the valve portion 51 is formed at the axial left end of the rod portion 20 .
  • the valve portion 51 has a large diameter portion 53 and a contact portion 54 .
  • the large diameter portion 53 has a larger diameter than the rod portion 20 .
  • the contact portion 54 has a tapered shape that gradually decreases in diameter from the large diameter portion 53 toward the rod portion 20 on the right side in the axial direction.
  • valve portion 51 is arranged on the left side of the valve seat member 40 in the axial direction.
  • the rod portion 20 is inserted through the valve seat member 40 and extends to the right in the axial direction.
  • the rod portion 20 is formed with a first small diameter portion 21, a large diameter portion 22, and a second small diameter portion 23 in order from the left side in the axial direction.
  • the second small diameter portion 23 is slightly larger in diameter than the first small diameter portion 21 .
  • the large diameter portion 22 has a larger diameter than the second small diameter portion 23 .
  • the first small diameter portion 21 and the second small diameter portion 23 may have the same diameter, or the first small diameter portion 21 may have a larger diameter than the second small diameter portion 23 .
  • the large-diameter portion 22 is inserted through a guide hole 10e provided in the valve housing 10, which will be described later. A specific structure of the large diameter portion 22 will be described in detail later.
  • a primary pressure space S1 is formed on the axial left side of the valve housing 10, and the primary pressure space S1 communicates with the control chamber through an inlet port 11 that opens axially leftward.
  • a secondary pressure space S2 is formed axially to the right of the primary pressure space S1 in the valve housing 10, and the secondary pressure space S2 communicates with the discharge chamber through an outlet port 12 penetrating in the radial direction.
  • a recess 10a is formed in the valve housing 10.
  • the recess 10a is recessed axially rightward from the left end in the axial direction and is open at the left end in the axial direction.
  • the inlet port 11 is an opening at the left end in the axial direction of the recess 10a.
  • the axial left end of the valve housing 10 is closed by a structural member (not shown) forming a control chamber.
  • a space surrounded by this component and the recess 10a is a primary pressure space S1.
  • valve housing 10 is formed with a recess 10c that is recessed leftward in the axial direction on the inner diameter side of the right end in the axial direction.
  • a guide hole 10e and a communicating hole portion 10b are formed between the recessed portion 10a and the recessed portion 10c so as to communicate with each other in the axial direction.
  • the communication hole portion 10b has a smaller diameter than the recesses 10a and 10c.
  • the guide hole 10e has a diameter smaller than that of the communication hole portion 10b.
  • a space surrounded by the communication hole portion 10b serves as a secondary pressure space S2.
  • valve housing 10 has an annular inner land 10f (see FIG. 2) extending radially inwardly between the communication hole portion 10b and the recess portion 10c.
  • the guide hole 10e is provided on the surface of the inner land 10f and extends in the axial direction.
  • the valve seat member 40 includes a tubular portion 41 and an annular convex portion 42 (see FIGS. 4 and 5).
  • the cylindrical portion 41 extends cylindrically in the axial direction.
  • the annular convex portion 42 protrudes radially outward from the axial left end of the cylindrical portion 41 .
  • the inner diameter of the tubular portion 41 is formed to be larger than that of the first small diameter portion 21 of the rod portion 20 .
  • the valve seat member 40 is hermetically fixed to the valve housing 10 by being press-fitted from the left in the axial direction into the communication hole 10b penetrating the bottom of the recess 10a.
  • the annular projection 42 abuts against the bottom end surface 10d (see FIGS. 4 and 5) of the recess 10a, the valve seat member 40 is prevented from being excessively inserted into the communication hole 10b. are axially positioned.
  • valve seat member 40 is formed with a valve seat 40a on the inner diameter side of the left end in the axial direction.
  • the valve seat 40a has a tapered shape whose diameter gradually decreases toward the right side in the axial direction.
  • a flange portion 82d of the center post 82 is internally fitted and fixed to the concave portion 10c of the valve housing 10 from the axial right side. Furthermore, the valve housing 10, the center post 82, and the casing 81 are integrally connected by fitting and fixing the casing 81 from the right side in the axial direction.
  • a through hole 13 is formed in the valve housing 10 as a communication means extending in the axial direction.
  • the through-holes 13 are open to the bottom surfaces of the recesses 10a and 10c at both ends in the axial direction.
  • This through hole 13 is formed to have a constant cross section.
  • the solenoid 80 is mainly composed of a casing 81, a center post 82, a rod portion 20, a movable iron core 84, a coil spring 85, a coil 86 and a sleeve 87.
  • the casing 81 has a recess 81b and a through hole 81a.
  • the recessed portion 81b is recessed from the axial left side of the casing 81 toward the right side.
  • the through hole 81a is formed extending axially rightward from the bottom of the recess 81b.
  • the center post 82 has a substantially cylindrical shape made of a rigid body that is a magnetic material such as iron or silicon steel. Specifically, the center post 82 includes an axially extending cylindrical portion 82b and an annular flange portion 82d. The cylindrical portion 82b has an insertion hole 82c. The rod portion 20 is inserted through the insertion hole 82c so as to reciprocate in the axial direction. The flange portion 82d extends radially from the outer peripheral surface of the left end portion of the cylindrical portion 82b in the axial direction.
  • the cylindrical portion 82b is inserted into the through hole 81a of the casing 81 from the axial left side.
  • the center post 82 is positioned with respect to the valve housing 10 and the casing 81 by axially holding the flange portion 82 d between the bottom of the recess 10 c of the valve housing 10 and the bottom of the recess 81 b of the casing 81 .
  • the axial right end of the rod portion 20 is inserted and fixed to the movable core 84 .
  • the coil spring 85 is a compression spring and is arranged between the center post 82 and the movable iron core 84.
  • the axial left end of the coil spring 85 is fitted into a recess 82e formed in the axial right end of the cylindrical portion 82b of the center post 82.
  • the coil spring 85 urges the movable iron core 84 axially rightward, which is the valve closing direction of the valve 50 .
  • a coil 86 is an excitation coil wound around the outside of the center post 82 via a bobbin.
  • the sleeve 87 has a cylindrical shape with a bottom. A part of the center post 82 , the movable iron core 84 , the coil spring 85 and a part of the rod portion 20 are housed in the sleeve 87 .
  • the back space S3 inside the solenoid 80 is mainly the space inside the sleeve 87 on the back side of the valve portion 51 separated from the secondary pressure space S2. Specifically, it includes the space between the recess 10 c and the left end of the center post 82 , the space inside the center post 82 , and the left and right spaces of the movable iron core 84 inside the sleeve 87 .
  • FIG. 1 the structures of the large diameter portion 22 of the rod portion 20 and the guide hole 10e of the valve housing 10 will be described with reference to FIGS. 2 and 3.
  • FIG. 1 the structures of the large diameter portion 22 of the rod portion 20 and the guide hole 10e of the valve housing 10 will be described with reference to FIGS. 2 and 3.
  • the large-diameter portion 22 is formed with a first portion 24, a second portion 25, and a third portion 26 in order from the right side in the axial direction.
  • the first portion 24 and the second portion 25 are arranged within the guide hole 10e.
  • the third portion 26 is arranged on the left side of the guide hole 10e in the axial direction, that is, in the secondary pressure space S2.
  • the first portion 24 has a smaller diameter than the second portion 25.
  • the second portion 25 has a smaller diameter than the third portion 26 . That is, the diameter of the large diameter portion 22 increases stepwise from the right side in the axial direction toward the left side in the axial direction.
  • the outer peripheral surface 24a of the first portion 24, the outer peripheral surface 25a of the second portion 25, and the outer peripheral surface 26a of the third portion 26 are axial portions extending parallel to each other in the axial direction.
  • a right end surface 25b of the second portion 25 and a right end surface 26b of the third portion 26 are radial portions extending in the radial direction.
  • the right end surface 25b of the second portion 25 extends radially perpendicular to the outer peripheral surface 24a of the first portion 24 and the outer peripheral surface 25a of the second portion 25.
  • a right end surface 26b of the third portion 26 extends radially perpendicular to the outer peripheral surface 25a of the second portion 25 and the outer peripheral surface 26a of the third portion 26 .
  • a tapered surface portion 27 (see FIG. 2) is formed between the outer peripheral surface 26a of the third portion 26 and the first small diameter portion 21 of the rod portion 20, the diameter of which decreases toward the left in the axial direction.
  • a first portion 14, a second portion 15, and a third portion 16 are formed in the valve housing 10 in order from the right side in the axial direction, and these portions 14, 15, and 16 define the guide hole 10e.
  • the inner peripheral surface 14a of the first portion 14 extends from the right surface of the inner land 10f in parallel with the outer peripheral surface 24a of the first portion 24 of the large-diameter portion 22, and then slopes so as to reduce its diameter leftward in the axial direction. extended.
  • the inner peripheral surface 15a of the second portion 15 extends parallel to the outer peripheral surface 24a of the first portion 24 of the large diameter portion 22 from the axial left end of the inner peripheral surface 14a.
  • a left end surface 15b of the second portion 15 extends perpendicularly to the outer diameter direction from the axial left end of the inner peripheral surface 15a.
  • the left end face 15b extends parallel to the right end face 25b of the second portion 25. That is, the right end surface 25b and the left end surface 15b are a pair of axially opposed surfaces that face each other in the axial direction.
  • the inner peripheral surface 15a and the outer peripheral surface 24a form a pair of radially facing surfaces facing each other in the radial direction.
  • the inner peripheral surface 16a of the third portion 16 extends axially leftward from the outer diameter end of the left end surface 15b in parallel with the outer peripheral surface 25a of the second portion 25 of the large diameter portion 22 .
  • a left end surface 16b of the third portion 16 extends perpendicularly to the outer diameter direction from the left end of the inner peripheral surface 16a. In other words, the left end surface 16b is the left end side surface of the inner land 10f.
  • the left end face 16b extends parallel to the right end face 26b of the third portion 26. That is, the right end surface 26b and the left end surface 16b are a pair of axially opposed surfaces that face each other in the axial direction.
  • the inner peripheral surface 16a and the outer peripheral surface 25a form a pair of radially facing surfaces facing each other in the radial direction.
  • a gap S10 is formed connecting the secondary pressure space S2 and the rear space S3.
  • the portion between the outer peripheral surface 24a of the first portion 24 and the inner peripheral surface 14a of the first portion 14 is defined as the first gap S11
  • the outer peripheral surface 24a of the first portion 24 and the second portion 15 are defined as the first gap S11.
  • the second gap S12 is the portion between the inner peripheral surface 15a of the second portion 25
  • the third gap S13 is the portion between the right end surface 25b of the second portion 25 and the left end surface 15b of the second portion 15, and the outer periphery of the second portion 25
  • a portion between the surface 25a and the inner peripheral surface 16a of the third portion 16 is defined as a fourth gap S14
  • a portion between the right end surface 26b of the third portion 26 and the left end surface 16b of the third portion 16 is defined as a fifth gap S15. described as.
  • the gap S10 is formed with a plurality of bent portions E bent in a substantially L shape. Specifically, a bent portion E1 is formed by the second gap S12 and the third gap S13. A bent portion E2 is formed by the third gap S13 and the fourth gap S14. A bent portion E3 is formed by the fourth gap S14 and the fifth gap S15.
  • the second gap S12, the third gap S13, and the fourth gap S14 in the gap S10, that is, the bent portion E1 and the bent portion E2 form a crank shape.
  • the second gap S12 extends axially rightward from the inner diameter side of the third gap S13
  • the fourth gap S14 extends axially leftward from the outer diameter side of the third gap S13.
  • the second gap S12 and the fourth gap S14 are minute gaps.
  • the inner peripheral surface 15a of the second portion 15 and the inner peripheral surface 16a of the third portion 16 of the valve housing 10 slide on the outer peripheral surface 24a of the first portion 24 and the outer peripheral surface 25a of the second portion 25 of the rod portion 20. It is a guide part that guides movement.
  • the non-energized state of the displacement control valve V1 will be described. As shown in FIGS. 1 and 4, when the displacement control valve V1 is in a non-energized state, the movable iron core 84 is pressed axially rightward by the biasing force of the coil spring 85, that is, in the valve closing direction. The contact portion 54 of the valve portion 51 is seated on the valve seat 40a, and the valve 50 is closed.
  • valve portion 51 which is also tapered to expand axially leftward, contacts the valve seat 40a, which is tapered to expand axially leftward.
  • the contact part 54 contacts and is seated.
  • the right end surface 25b of the second portion 25 of the rod portion 20 and the left end surface 15b of the second portion 15 of the valve housing 10 are axially separated by a slight axial distance ⁇ 13. away. Further, the right end surface 26b of the third portion 26 of the rod portion 20 and the left end surface 16b of the third portion 16 of the valve housing 10 are separated in the axial direction by a slight axial distance ⁇ 15.
  • the axial distances ⁇ 13, ⁇ 15 are longer than the radial distances ⁇ 12, ⁇ 14 ( ⁇ 13, ⁇ 15> ⁇ 12, ⁇ 14).
  • the right end face 25b of the rod portion 20 and the left end face 15b of the valve housing 10, and the right end face 26b of the rod portion 20 and the left end face 16b of the valve housing 10 are the most in the movable region of the movable body 56. Axial proximity. In other words, when the valve 50 is closed, the channel cross-sectional areas of the third gap S13 and the fifth gap S15 are the smallest.
  • the working fluid in the primary pressure space S1 acts on the left end surface of the valve portion 51 in the axial direction. Since the primary pressure space S1 and the back space S3 communicate with each other through the through hole 13 provided in the valve housing 10, the working fluid in the primary pressure space S1 flows into the back space S3. .
  • a force F rod F sp substantially acts on the valve portion 51 with the rightward direction as positive.
  • the valve portion 51 is pressed in the valve closing direction to close the valve 50 .
  • the energized state of the capacity control valve V1 will be described.
  • the electromagnetic force (F sol ) generated by applying a current to the solenoid 80 is the force F rod (F sol > F rod )
  • the movable iron core 84 is pulled toward the center post 82, that is, toward the left in the axial direction, and the movable body 56 fixed to the movable iron core 84 moves toward the left in the axial direction, that is, in the valve opening direction.
  • the contact portion 54 of the valve portion 51 is separated from the valve seat 40a, and the valve 50 is opened.
  • the right end face 25b of the rod portion 20 and the left end face 15b of the valve housing 10 are axially separated by an axial distance ⁇ 13'. Further, the right end surface 26b of the rod portion 20 and the left end surface 16b of the valve housing 10 are axially separated by an axial distance ⁇ 15'.
  • the axial distances ⁇ 13' and ⁇ 15' when the valve is open are longer than the axial distances ⁇ 13 and ⁇ 15 when the valve is closed ( ⁇ 13, ⁇ 15 ⁇ 13', ⁇ 15'). Also, the axial distances ⁇ 13' and ⁇ 15' are the same distance.
  • the radial distance ⁇ 12 of the second gap S12 and the radial distance ⁇ 14 of the fourth gap S14 do not change regardless of the opening of the valve 50.
  • an electromagnetic force acts on the valve portion 51 to the left in the axial direction, and a force F rod acts to the right in the axial direction (that is, when the right direction is positive, the force F rod - F sol at work).
  • the displacement control valve V1 is controlled by the valve opening of the valve 50, which is adjusted by the balance between the electromagnetic force (F sol ) of the solenoid 80 and the biasing force (F sp ) of the coil spring 85.
  • the pressure P1 of the working fluid in S1 can be controlled accordingly.
  • the working fluid flowing through the first gap S11 flows into the second gap S12, which has a flow passage cross-sectional area smaller than that of the first gap S11, as indicated by an arrow FL2. Since the second gap S12 functions as a throttle, pressure loss occurs in the working fluid flowing through the second gap S12 due to friction between the outer peripheral surface 24a of the first portion 24 and the inner peripheral surface 15a of the second portion 15. .
  • the working fluid flowing through the second gap S12 flows into the third gap S13, which has a flow passage cross-sectional area larger than that of the first gap S11, as indicated by an arrow FL3.
  • the working fluid flowing in the axial direction along the second gap S12 is deflected at approximately 90 degrees toward the third gap S13 extending in the radially outer direction, pressure loss in the working fluid increases.
  • a vortex is generated in the vicinity of the connecting portion between the second gap S12 and the third gap S13. Illustrations of vortices are the same thereafter.
  • the working fluid flowing through the third gap S13 flows into the fourth gap S14, which has a flow passage cross-sectional area smaller than that of the third gap S13, as indicated by an arrow FL4.
  • the working fluid flowing in the outer diameter direction along the third gap S13 is deflected at approximately 90 degrees toward the axially extending fourth gap S14, pressure loss occurs in the working fluid.
  • the fourth gap S14 functions as a throttle, the working fluid flowing through the fourth gap S14 experiences pressure loss due to friction between the outer peripheral surface 25a of the second portion 25 and the inner peripheral surface 16a of the third portion 16. occurs.
  • the working fluid flowing through the fourth gap S14 flows into the fifth gap S15, which has a flow passage cross-sectional area larger than that of the fourth gap S14, as indicated by an arrow FL5.
  • the working fluid axially flowing along the fourth gap S14 is deflected at approximately 90 degrees toward the fifth gap S15 extending in the radially outer direction, pressure loss occurs in the working fluid.
  • the gap S10 is formed between the rod portion 20 and the valve housing 10 to connect the secondary pressure space S2 and the rear space S3.
  • This gap S10 has a bent portion E and is at least partially defined by a guide hole 10e.
  • the second gap S12, the third gap S13, and the fourth gap S14 are defined by the inner peripheral surface of the valve housing 10 and the outer peripheral surface of the rod portion 20 that form the guide hole 10e.
  • a plurality of bends E1 to E3 are formed in the gap S10, and pressure loss occurs in the working fluid at each of the bends E1 to E3, so that the fluid pressure of the working fluid increases toward the secondary pressure space S2. Decrease gradually.
  • the fifth gap S15 closest to the secondary pressure space S2 in the gap S10 the pressure difference between the fluid pressure and the fluid pressure in the secondary pressure space S2 is almost eliminated. A state in which there is almost no fluid leakage can be achieved.
  • the channel cross-sectional areas of the bent portions E1 to E3 are the smallest.
  • the flow channel cross-sectional areas of the bends E1 to E3 change according to the valve opening degree, and when the valve 50 is closed, the flow channel cross-sectional areas of the third gap S13 and the fifth gap S15 Since it is the smallest, it is possible to increase the pressure loss of the working fluid that occurs at the bent portion when the valve is closed.
  • valve 50 when the valve 50 is closed, the right end surface 25b of the second portion 25 of the rod portion 20 and the left end surface 15b of the second portion 15 of the valve housing 10 are separated in the axial direction. Similarly, the right end face 26b of the third portion 26 of the rod portion 20 and the left end face 16b of the third portion 16 of the valve housing 10 are axially separated from each other. According to this, when the valve 50 is closed, the right end face 25b and the left end face 15b, and the right end face 26b and the left end face 16b do not come into contact with each other, so that the valve portion 51 can be reliably seated on the valve seat 40a.
  • the right end surface 25b of the second portion 25 of the rod portion 20 and the second portion 15 of the valve housing 10 are positioned between the outer peripheral surface of the rod portion 20 and the inner peripheral surface of the valve housing 10 forming the guide hole 10e.
  • a left end face 15b is formed between the outer peripheral surface of the rod portion 20 and the inner peripheral surface of the valve housing 10 forming the guide hole 10e.
  • the bent portions E1 and E2 are respectively formed on both sides in the radial direction of the third gap S13 formed between the right end face 25b and the left end face 15b.
  • S13 and the fourth gap S14 are crank-shaped, and the direction of flow of the working fluid changes at each of the bent portions E1 and E2, so the pressure loss of the working fluid can be increased.
  • the right end surface 26b which is the side surface of the rod portion 20, and the left end surface 16b, which is the side surface of the valve housing 10, face each other in the axial direction. According to this, since the bent portion E3 is formed on the outlet side of the gap S10, that is, on the side of the secondary pressure space S2, it is possible to effectively prevent the working fluid from flowing out of the gap S10 into the secondary pressure space S2. can.
  • the right end faces 25b, 26b of the rod portion 20 and the left end faces 15b, 16b of the valve housing 10 are orthogonal to the axial direction. That is, the pressure loss of the working fluid can be increased at the bends E1 to E3 including the right end faces 25b, 26b and the left end faces 15b, 16b.
  • the sealing performance of the gap S10 is improved.
  • the effective pressure receiving area B of the large diameter portion 22 that is, the effective pressure receiving area B of the rod portion 20 is equal to the effective pressure receiving area A of the valve portion 51 , that is, the effective pressure receiving area A of the valve 50 . According to this, the force due to the fluid pressure in the back space S3 acting on the rod portion 20 and the force due to the fluid pressure in the primary pressure space S1 acting on the valve portion 51 are canceled.
  • the primary pressure The movable body 56 can be moved accurately regardless of the fluid pressure in the space S1, the secondary pressure space S2, and the back space S3.
  • the outer peripheral surface of the large diameter portion 22 and the guide hole 10e increase in diameter in a stepped manner toward the left side in the axial direction. According to this, the assembly is completed by inserting the movable body 56 into the guide hole 10e from the left side in the axial direction, so that the displacement control valve V1 can be easily assembled.
  • the left end surface 15b of the valve housing 10 and the right end surface 25b of the rod portion 20, and the left end surface 16b of the valve housing 10 and the right end surface 26b of the rod portion 20, which are surfaces facing each other in the axial direction
  • the opposing surface may be inclined in the axial direction.
  • the primary pressure space, the secondary pressure space, and the rear space are formed in this order from the left in the axial direction. position may be reversed.
  • Fig. 6 shows Modified Example 1 in which the arrangement of the primary pressure space S1' and the secondary pressure space S2' is opposite to that of Example 1 in the axial direction.
  • a normally closed valve has been described, but the valve is not limited to this, and may be a normally open valve.
  • the valve is not limited to this, and may be a normally open valve.
  • the coil spring 851 between the movable iron core 84 and the sleeve 87, the contact portion 54 of the valve portion 51 is separated from the valve seat 40a when the current is not supplied, and the valve 501 is opened.
  • Example 2 is shown in FIG.
  • an inner land 10g extending in the radial direction is formed between the recess 10a and the communication hole 10b in the valve housing 10.
  • a through hole 10h is formed through the inner land 10g in the axial direction.
  • the guide hole 101e of the valve housing 10 is formed so as to increase in diameter in a stepwise manner toward the right side in the axial direction.
  • the inner peripheral surface of the valve housing 10 forming the guide hole 101e has two surfaces 102 extending in the axial direction and one surface 103 extending radially between the axial surfaces 102.
  • the movable body 561 has a valve portion 511 at its left end in the axial direction.
  • the valve portion 511 has a larger diameter than the through hole 10h.
  • the valve portion 511 is arranged on the axial right side of the inner land 10g, that is, in the secondary pressure space S2.
  • the movable body 561 is biased leftward in the axial direction by a coil spring (not shown). As a result, the left end surface 511a of the valve portion 511 comes into contact with the edge portion 511b, which is the valve seat of the through hole 10h in the inner land 10g, and the valve 502 is closed.
  • the left end surface 511a of the valve portion 511 and the edge portion 511b of the through hole 10h in the inner land 10g constitute the valve 502. As shown in FIG.
  • the outer peripheral surface of the insertion portion 221 of the rod portion 201 which is inserted through the guide hole 101e, is formed so as to increase in diameter stepwise toward the right side in the axial direction.
  • the outer peripheral surface of the insertion portion 221 has two surfaces 202 extending in the axial direction and one surface 203 extending radially between the surfaces 202 in the axial direction.
  • the rod portion 201 has a facing surface 204 axially facing the right surface 10j of the inner land 10f of the valve housing 10 .
  • the surface 102 of the valve housing 10 and the surface 202 of the insertion portion 221 are radially opposed surfaces that face each other in the radial direction. Further, the surface 103 of the valve housing 10 and the surface 203 of the insertion portion 221, and the right surface 10j of the valve housing 10 and the opposed surface 204 of the rod portion 201 are axially opposed surfaces that face each other in the axial direction.
  • the surface 103 of the valve housing 10 and the surface 203 of the insertion portion 221 are closest to each other in the movable area of the movable body 561 and face each other.
  • the right surface 10j of the valve housing 10 and the opposing surface 204 of the rod portion 201 are arranged closest to each other in the movable area of the movable body 561 so as to face each other.
  • valve element and the rod element are integrated
  • the configuration is not limited to this, and the valve element and the rod element may be configured as separate members.
  • the valve element has been exemplified as having a tapered shape, it can be freely changed.
  • the coil spring 85 is a push spring, but it may be a pull spring, for example. Further, the spring is not limited to the coil spring, and a leaf spring or the like may be used.
  • the coil spring is arranged in the back space, but the place where the biasing means is arranged may be freely changed.
  • the biasing means may be arranged in the primary pressure space or the secondary pressure space.
  • the effective pressure-receiving area of the valve element and the effective pressure-receiving area of the rod element are equal. good too.
  • valve is a capacity control valve
  • it may be an expansion valve or the like arranged between the condenser and the evaporator in an air conditioning system, for example.
  • the communication means is a through-hole provided in the valve housing, but the communication means is not limited to this, and the communication means is a communication passage that directly communicates the back space and the control chamber.
  • the diameter of the outer peripheral surface of the insertion portion of the rod and the guide hole increased or decreased in a stepwise manner toward the left side in the axial direction. As long as a portion is formed, it does not have to be expanded or contracted stepwise. Moreover, the outer peripheral surface of the insertion portion of the rod and the number of stages of the guide holes may be freely changed.
  • the through holes provided in the valve housing itself are used as the guide holes, but the valve housing may be formed of a plurality of members.
  • the valve housing may be formed of a valve housing main body and a cylindrical body fitted and fixed to the valve housing main body, and the through hole of the cylindrical body may serve as the guide hole.
  • the flow channel cross-sectional area of the bent portion is the smallest when the valve is closed. It may be smaller.
  • valve housing 10e guide hole 11 inlet port 12 outlet port 13 through hole (communication means) 15a inner peripheral surface (radial facing surface) 15b Left end surface (axially opposed surface) 16a inner peripheral surface (diametrically opposed surface) 16b Left end surface (axially facing surface) 20 rod part (rod element, rod) 22 large-diameter portion 24a outer peripheral surface (radially facing surface) 25a outer peripheral surface (radial facing surface) 25b Right end surface (axially facing surface) 26b Right end surface (axially facing surface) 40 valve seat member 40a valve seat 50 valve 51 valve portion (valve element, valve body) 54 contact part 56 movable body 80 solenoid (driving source) 201 rod part (rod element, rod) 221 insertion parts 501, 502 valve 511 valve part (valve element, valve body) 511a Left end face 511b End (valve seat) 561 movable bodies A, B effective pressure receiving areas E, E1, E2, E3 bending portions S1, S1' primary pressure spaces S2, S2' secondary pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Provided is a valve capable of reducing leakage of a working fluid between a back space and one space. A gap S10 connecting one space S2 and a back space S3 is formed between a rod 20 and a valve housing 10, and the gap S10 has a bent portion E.

Description

valve
 本発明は、作動流体を制御する弁に関する。 The present invention relates to a valve that controls working fluid.
 様々な産業分野で作動流体の制御を行うために利用されている弁は、弁座と、弁座に対して離接可能な弁体を備え、弁開度が調節されることで作動流体の圧力や流量が制御可能となっている。 Valves used to control working fluid in various industrial fields have a valve seat and a valve element that can be separated from and attached to the valve seat. Pressure and flow rate can be controlled.
 このような弁には、弁座である開口に対して平行に弁体であるスプールが移動するスプール弁、弁体が回動軸を有するバタフライ弁、さらには弁体が弁座である開口に対して直交するように移動するリフト弁が代表的な弁形態として挙げられる。これらの弁の中でも流量や圧力制御に最も適した弁がリフト弁である。 Such valves include a spool valve in which a spool, which is a valve body, moves parallel to an opening, which is a valve seat, a butterfly valve, in which a valve body has a pivot shaft, and a A typical valve form is a lift valve that moves perpendicularly to the valve. Among these valves, lift valves are the most suitable for flow rate and pressure control.
 リフト弁として、例えば、自動車等の空調システムに用いられる容量可変型圧縮機の容量制御弁が挙げられる。容量可変型圧縮機は、エンジンにより回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。 Examples of lift valves include capacity control valves for variable capacity compressors used in air conditioning systems for automobiles. A variable displacement compressor includes a rotating shaft that is driven to rotate by an engine, a swash plate that is connected to the rotating shaft so that the inclination angle can be changed, and a compression piston that is connected to the swash plate. By changing the angle, the stroke amount of the piston is changed to control the discharge amount of the fluid. The inclination angle of the swash plate is determined by using a displacement control valve that is driven to open and close by electromagnetic force. By appropriately controlling the pressure in the control chamber while utilizing the control pressure Pc in the control chamber containing the swash plate, the pressure can be changed continuously.
 特許文献1の容量制御弁は、制御圧力Pcの制御流体が通過する1次圧空間と吸入圧力Psの制御流体が通過する2次圧空間とが形成されたバルブハウジングと、1次圧空間と2次圧空間との間に設けられた弁座と、弁当接部分が1次圧空間にロッド部分がソレノイド側の背面空間に設けられ弁座に接離可能な弁体と、を備え、ソレノイドで発生する電磁力により弁体を移動させることで、制御室の制御圧力Pcの調整を行っている。 The displacement control valve of Patent Document 1 includes a valve housing in which a primary pressure space through which a control fluid having a control pressure Pc passes and a secondary pressure space through which a control fluid having a suction pressure Ps passes; a valve seat provided between a secondary pressure space and a valve body having a valve contact portion provided in the primary pressure space and a rod portion provided in a back space on the side of the solenoid and capable of contacting and separating from the valve seat; The control pressure Pc of the control chamber is adjusted by moving the valve element by the electromagnetic force generated at .
 また、バルブハウジングには2次圧空間と背面空間とを連通する連通路が形成されている。これによれば、連通路により2次圧空間と背面空間とを同圧とすることができ、弁体の軸方向両側で圧力差が生じないため、ソレノイドへの印加電流に応じた精密なロッドの制御を行うことができるようになっている。 In addition, the valve housing is formed with a communication passage that communicates the secondary pressure space and the back space. According to this, the secondary pressure space and the back space can be made to have the same pressure by the communication passage, and no pressure difference occurs on both sides in the axial direction of the valve body. can be controlled.
国際公開第2020/110925号(第10頁、第3図)WO 2020/110925 (page 10, Figure 3)
 特許文献1の容量制御弁にあっては、バルブハウジングにおける1次圧空間と背面空間との間に設けられたガイド孔に弁体のロッド部分が挿入されており、ロッド部分はガイド孔にガイドされて安定的に摺動するようになっている。しかしながら、ロッド部分の外周面とガイド孔の内周面との間は微小な隙間となっているので、制御圧力Pcの1次圧空間の流体がロッド部分の外周面とガイド孔の内周面との間を通じて背面空間に僅かに漏れ出し、1次圧空間の制御圧力Pcを高い精度で制御することができない虞があった。 In the capacity control valve of Patent Document 1, the rod portion of the valve body is inserted into a guide hole provided between the primary pressure space and the back space in the valve housing, and the rod portion is guided in the guide hole. It is designed to slide stably. However, since there is a minute gap between the outer peripheral surface of the rod portion and the inner peripheral surface of the guide hole, the fluid in the primary pressure space of the control pressure Pc will flow between the outer peripheral surface of the rod portion and the inner peripheral surface of the guide hole. There is a possibility that the control pressure Pc in the primary pressure space cannot be controlled with high accuracy due to a slight leakage into the back space through the space between the .
 本発明は、このような問題点に着目してなされたもので、背面空間と一方の空間との間の作動流体の漏れを少なくすることができる弁を提供することを目的とする。 The present invention has been made with attention paid to such problems, and an object of the present invention is to provide a valve that can reduce the leakage of working fluid between the back space and one space.
 前記課題を解決するために、本発明の弁は、
 1次圧空間、2次圧空間、前記1次圧空間及び前記2次圧空間のうち一方の空間に隣接する背面空間を有するバルブハウジングと、
 前記1次圧空間と前記2次圧空間との間に配設される弁座と、
 前記一方の空間と前記背面空間との間に設けられた前記バルブハウジングのガイド孔に挿通され駆動源により軸方向に駆動されるロッドと、
 前記ロッドの駆動により前記弁座に着座または離座する弁体と、
 前記背面空間と前記1次圧空間及び前記2次圧空間のうち他方の空間とを連通する連通手段と、を備えた弁であって、
 前記ロッドと前記バルブハウジングとの間には、前記一方の空間と前記背面空間とを繋ぐ隙間が形成されており、前記隙間は屈曲部を有している。
 これによれば、ロッドとバルブハウジングとの間に形成される隙間を流れる作動流体の向きが屈曲部で変わる際に作動流体の圧力損失が生じるため、背面空間から一方の空間または一方の空間から背面空間への作動流体の漏れを少なくすることができる。
In order to solve the above problems, the valve of the present invention is
a valve housing having a primary pressure space, a secondary pressure space, and a rear space adjacent to one of the primary pressure space and the secondary pressure space;
a valve seat disposed between the primary pressure space and the secondary pressure space;
a rod inserted through a guide hole of the valve housing provided between the one space and the back space and axially driven by a drive source;
a valve body that is seated or separated from the valve seat by driving the rod;
a communication means for communicating between the back space and the other of the primary pressure space and the secondary pressure space,
A gap connecting the one space and the back space is formed between the rod and the valve housing, and the gap has a bent portion.
According to this, pressure loss of the working fluid occurs when the direction of the working fluid flowing through the gap formed between the rod and the valve housing changes at the bent portion. Leakage of working fluid to the back space can be reduced.
 前記弁の閉弁時において、前記屈曲部の流路断面積が最も小さくなっていてもよい。
 これによれば、屈曲部の流路断面積は弁開度に応じて変化するものであり、閉弁時にその流路断面積が最も小さいので、閉弁時において屈曲部で生じる作動流体の圧力損失を大きくすることができる。
A channel cross-sectional area of the bent portion may be the smallest when the valve is closed.
According to this, the flow passage cross-sectional area of the bent portion changes according to the valve opening, and since the flow passage cross-sectional area is the smallest when the valve is closed, the pressure of the working fluid generated at the bent portion when the valve is closed is loss can be increased.
 前記弁の閉弁時において、前記屈曲部を構成する軸方向に対向する一対の軸方向対向面は軸方向に離間していてもよい。
 これによれば、弁の閉弁時においてロッドとバルブハウジングの一対の軸方向対向面同士が接触しないため、弁体を弁座に確実に着座させることができる。
When the valve is closed, the pair of axially facing surfaces constituting the bent portion may be spaced apart in the axial direction.
According to this, since the pair of axially facing surfaces of the rod and the valve housing do not contact each other when the valve is closed, the valve body can be reliably seated on the valve seat.
 前記ロッドの側面と前記バルブハウジングの側面とは前記一対の軸方向対向面であってもよい。
 これによれば、隙間における入口または出口に屈曲部が形成されるので隙間への作動流体の流出または流入を効果的に阻害することができる。
The side surface of the rod and the side surface of the valve housing may be the pair of axially opposed surfaces.
According to this, since the curved portion is formed at the entrance or the exit of the gap, it is possible to effectively prevent the working fluid from flowing into or out of the gap.
 前記一対の軸方向対向面は、軸方向に直交していてもよい。
 これによれば、屈曲部で生じる作動流体の圧力損失を大きくすることができる。また、一対の軸方向対向面に連続する一対の径方向対向面を軸方向に長く確保できる。
The pair of axially facing surfaces may be orthogonal to the axial direction.
According to this, it is possible to increase the pressure loss of the working fluid that occurs at the bent portion. Also, the pair of radially facing surfaces that are continuous with the pair of axially facing surfaces can be ensured to be long in the axial direction.
 前記屈曲部はクランク形状をなしていてもよい。
 これによれば、一対の軸方向対向面間の径方向両側で作動流体の流れの向きが変わるので、作動流体の圧力損失を大きくすることができる。
The bent portion may be crank-shaped.
According to this, since the direction of flow of the working fluid changes on both sides in the radial direction between the pair of axially facing surfaces, the pressure loss of the working fluid can be increased.
 前記ロッドの有効受圧面積は前記弁の有効受圧面積と等しくなっていてもよい。
 これによれば、ロッドに作用する背面空間内の流体圧による力と、弁体に作用する他方の空間内の流体圧による力と、がキャンセルされるため、背面空間および他方の空間内の流体圧によらず、精度よく弁体を移動させることができる。
The effective pressure-receiving area of the rod may be equal to the effective pressure-receiving area of the valve.
According to this, since the force due to the fluid pressure in the back space acting on the rod and the force due to the fluid pressure in the other space acting on the valve body are canceled, the fluid in the back space and the other space The valve body can be moved with high precision regardless of the pressure.
本発明に係る実施例1における容量制御弁を示す断面図である。1 is a cross-sectional view showing a displacement control valve in Example 1 according to the present invention; FIG. 閉弁時におけるガイド孔とロッドとの隙間を示す要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part showing a gap between a guide hole and a rod when the valve is closed; 隙間を流れる作動流体を示す概略図である。FIG. 4 is a schematic diagram showing working fluid flowing through a gap; 容量制御弁が閉弁された様子を示す要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part showing a state in which the displacement control valve is closed; 容量制御弁が開弁された様子を示す要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part showing a state in which the capacity control valve is opened; 実施例1の容量制御弁の変形例1を示す要部拡大断面図である。4 is an enlarged cross-sectional view of a main part showing Modification 1 of the capacity control valve of Embodiment 1. FIG. 実施例1の容量制御弁の変形例2を示す断面図である。4 is a cross-sectional view showing Modification 2 of the capacity control valve of Embodiment 1. FIG. 本発明の実施例2における容量制御弁を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing a displacement control valve according to Embodiment 2 of the present invention;
 本発明に係る弁を実施するための形態を実施例に基づいて以下に説明する。尚、実施例は容量制御弁を例にして説明するが、その他の用途にも適用可能である。 A form for implementing the valve according to the present invention will be described below based on an embodiment. Although the embodiment will be described with a displacement control valve as an example, it can also be applied to other uses.
 実施例1に係る容量制御弁につき、図1から図5を参照して説明する。以下、図1の正面側から見て左右側を容量制御弁の左右側として説明する。詳しくは、バルブハウジング10が配置される紙面左側を容量制御弁の左側、ソレノイド80が配置される紙面右側を容量制御弁の右側として説明する。 A displacement control valve according to Embodiment 1 will be described with reference to FIGS. 1 to 5. FIG. In the following description, the left and right sides of the capacity control valve are defined as viewed from the front side of FIG. Specifically, the left side of the paper where the valve housing 10 is arranged is the left side of the displacement control valve, and the right side of the paper where the solenoid 80 is arranged is the right side of the displacement control valve.
 本発明の容量制御弁は、自動車等の空調システムに用いられる図示しない容量可変型圧縮機に組み込まれ、冷媒である作動流体(以下、単に「流体」と表記する。)の圧力を可変制御するものである。これにより、容量可変型圧縮機の吐出量が調整され、空調システムは目標の冷却能力となるように調整される。 The displacement control valve of the present invention is incorporated in a variable displacement compressor (not shown) used in an air conditioning system of an automobile or the like, and variably controls the pressure of a working fluid (hereinafter simply referred to as "fluid") that is a refrigerant. It is. As a result, the discharge amount of the variable displacement compressor is adjusted, and the air conditioning system is adjusted to achieve the target cooling capacity.
 先ず、容量可変型圧縮機について説明する。容量可変型圧縮機は、吐出室と、吸入室と、制御室と、複数のシリンダと、を備えるケーシングを有している。尚、容量可変型圧縮機には、吐出室と制御室とを直接連通する連通路が設けられている。この連通路には吐出室と制御室との圧力を平衡調整させるための固定オリフィス9が設けられている(図1参照)。 First, the variable capacity compressor will be explained. A variable displacement compressor has a casing with a discharge chamber, a suction chamber, a control chamber, and a plurality of cylinders. The variable capacity compressor is provided with a communication passage that directly communicates the discharge chamber and the control chamber. This communication passage is provided with a fixed orifice 9 for balancing the pressures of the discharge chamber and the control chamber (see FIG. 1).
 また、容量可変型圧縮機は、ケーシングの外部に設置される図示しないエンジンにより回転駆動される回転軸と、制御室内において回転軸に対してヒンジ機構により傾斜可能に連結される斜板と、斜板に連結され各々のシリンダ内において往復動自在に嵌合された複数のピストンと、を備えている。制御室内の圧力は、電磁力により開閉駆動される容量制御弁V1を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、適宜制御される。これにより、斜板の傾斜角度の変化に伴ってピストンのストローク量が変化し、容量可変型圧縮機の吐出量は変化する。 The variable displacement compressor includes a rotating shaft that is rotatably driven by an engine (not shown) installed outside a casing, a swash plate that is tiltably connected to the rotating shaft by a hinge mechanism in a control chamber, and a swash plate. a plurality of pistons connected to the plate and fitted reciprocally within each cylinder. The pressure in the control chamber is determined by using a displacement control valve V1 that is driven to open and close by electromagnetic force. It is appropriately controlled using the control pressure Pc of the control chamber containing the plate. As a result, the stroke amount of the piston changes as the inclination angle of the swash plate changes, and the discharge amount of the variable displacement compressor changes.
 図1に示されるように、容量可変型圧縮機に組み込まれる本実施例1の容量制御弁V1は、駆動源としてのソレノイド80を構成するコイル86に通電する電流に応じて、容量制御弁V1における弁50が開閉する。弁50の開閉制御により、制御室から吸入室に流出する流量が変化することで制御室内の制御圧力Pcが可変制御される。尚、吐出室の吐出圧力Pdの吐出流体が固定オリフィス9を介して制御室に常時供給されており、容量制御弁V1における弁50を閉塞させることにより制御室内の制御圧力Pcを上昇させられるようになっている。 As shown in FIG. 1, the displacement control valve V1 of the first embodiment, which is incorporated in the variable displacement compressor, changes depending on the current applied to a coil 86 that constitutes a solenoid 80 as a drive source. , the valve 50 opens and closes. The control pressure Pc in the control chamber is variably controlled by controlling the opening and closing of the valve 50 to change the flow rate flowing out from the control chamber to the suction chamber. In addition, the discharge fluid at the discharge pressure Pd of the discharge chamber is constantly supplied to the control chamber through the fixed orifice 9, so that the control pressure Pc in the control chamber can be increased by closing the valve 50 in the displacement control valve V1. It has become.
 図1に示されるように、本実施例1の容量制御弁V1において、弁50は、弁体としての当接部54と、弁座40aと、により構成されている。当接部54は可動体56の弁部51に設けられている。弁座40aは、筒状の弁座部材40に設けられている。弁座部材40はバルブハウジング10の連通孔部10bに圧入固定されている。 As shown in FIG. 1, in the displacement control valve V1 of the first embodiment, the valve 50 is composed of a contact portion 54 as a valve element and a valve seat 40a. The contact portion 54 is provided on the valve portion 51 of the movable body 56 . The valve seat 40 a is provided on a cylindrical valve seat member 40 . The valve seat member 40 is press-fitted into the communication hole portion 10b of the valve housing 10 and fixed.
 弁部51の軸方向右側には、テーパ状の当接部54が形成されている。当接部54が弁座40aに対し軸方向に接離することで、弁50が開閉するようになっている。 A tapered contact portion 54 is formed on the right side of the valve portion 51 in the axial direction. The valve 50 is opened and closed by moving the contact portion 54 into contact with and away from the valve seat 40a in the axial direction.
 次いで、容量制御弁V1の構造について説明する。容量制御弁V1は、金属材料により形成されたバルブハウジング10及び弁座部材40と、駆動源としてのソレノイド80と、可動体56と、から主に構成されている。 Next, the structure of the displacement control valve V1 will be explained. The capacity control valve V1 is mainly composed of a valve housing 10 and a valve seat member 40 made of a metal material, a solenoid 80 as a drive source, and a movable body 56. As shown in FIG.
 図1及び図2に示されるように、可動体56は、ロッド要素としてのロッド部20と、弁要素としての弁部51と、から構成されている。ロッド部20は軸方向に延びている。弁部51はロッド部20の軸方向左端に形成されている。 As shown in FIGS. 1 and 2, the movable body 56 is composed of a rod portion 20 as a rod element and a valve portion 51 as a valve element. The rod portion 20 extends axially. The valve portion 51 is formed at the axial left end of the rod portion 20 .
 弁部51は、大径部53と、当接部54と、を備えている。大径部53は、ロッド部20よりも大径である。当接部54は大径部53から軸方向右側のロッド部20に向けて漸次縮径するテーパ状を成している。 The valve portion 51 has a large diameter portion 53 and a contact portion 54 . The large diameter portion 53 has a larger diameter than the rod portion 20 . The contact portion 54 has a tapered shape that gradually decreases in diameter from the large diameter portion 53 toward the rod portion 20 on the right side in the axial direction.
 また、弁部51は、弁座部材40よりも軸方向左側に配置されている。ロッド部20は弁座部材40に挿通されて軸方向右側に延びている。 Also, the valve portion 51 is arranged on the left side of the valve seat member 40 in the axial direction. The rod portion 20 is inserted through the valve seat member 40 and extends to the right in the axial direction.
 ロッド部20には、軸方向左側から順に第1小径部21、大径部22、第2小径部23が形成されている。 The rod portion 20 is formed with a first small diameter portion 21, a large diameter portion 22, and a second small diameter portion 23 in order from the left side in the axial direction.
 第2小径部23は第1小径部21よりも若干大径である。大径部22は第2小径部23よりも大径である。尚、第1小径部21および第2小径部23が同径、または第1小径部21が第2小径部23よりも大径であってもよい。 The second small diameter portion 23 is slightly larger in diameter than the first small diameter portion 21 . The large diameter portion 22 has a larger diameter than the second small diameter portion 23 . The first small diameter portion 21 and the second small diameter portion 23 may have the same diameter, or the first small diameter portion 21 may have a larger diameter than the second small diameter portion 23 .
 大径部22は、バルブハウジング10に設けられた後述するガイド孔10eに挿通されている。尚、大径部22の具体的な構造については後に詳述する。 The large-diameter portion 22 is inserted through a guide hole 10e provided in the valve housing 10, which will be described later. A specific structure of the large diameter portion 22 will be described in detail later.
 バルブハウジング10の軸方向左側には1次圧空間S1が形成されており、1次圧空間S1は軸方向左側に開口する入口ポート11を通じて制御室と連通している。バルブハウジング10における1次圧空間S1よりも軸方向右側には2次圧空間S2が形成されており、2次圧空間S2は径方向に貫通する出口ポート12を通じて吐出室と連通している。 A primary pressure space S1 is formed on the axial left side of the valve housing 10, and the primary pressure space S1 communicates with the control chamber through an inlet port 11 that opens axially leftward. A secondary pressure space S2 is formed axially to the right of the primary pressure space S1 in the valve housing 10, and the secondary pressure space S2 communicates with the discharge chamber through an outlet port 12 penetrating in the radial direction.
 バルブハウジング10には、軸方向左端から軸方向右方に凹み、軸方向左端が開口した凹部10aが形成されている。凹部10aの軸方向左端の開口が入口ポート11となっている。バルブハウジング10の軸方向左端は、図示しない制御室を構成する構成部材により閉塞されている。この構成部材および凹部10aで囲まれた空間が1次圧空間S1となっている。 A recess 10a is formed in the valve housing 10. The recess 10a is recessed axially rightward from the left end in the axial direction and is open at the left end in the axial direction. The inlet port 11 is an opening at the left end in the axial direction of the recess 10a. The axial left end of the valve housing 10 is closed by a structural member (not shown) forming a control chamber. A space surrounded by this component and the recess 10a is a primary pressure space S1.
 また、バルブハウジング10には、軸方向右端の内径側が軸方向左方に凹む凹部10cが形成されている。凹部10aと凹部10cとの間には軸方向に連通するガイド孔10eおよび連通孔部10bが形成されている。この連通孔部10bは、凹部10a,10cよりも小径である。ガイド孔10eは連通孔部10bよりも小径である。連通孔部10bで囲まれた空間が2次圧空間S2となっている。 In addition, the valve housing 10 is formed with a recess 10c that is recessed leftward in the axial direction on the inner diameter side of the right end in the axial direction. A guide hole 10e and a communicating hole portion 10b are formed between the recessed portion 10a and the recessed portion 10c so as to communicate with each other in the axial direction. The communication hole portion 10b has a smaller diameter than the recesses 10a and 10c. The guide hole 10e has a diameter smaller than that of the communication hole portion 10b. A space surrounded by the communication hole portion 10b serves as a secondary pressure space S2.
 また、バルブハウジング10は、連通孔部10bと凹部10cとの間において内径方向に延びる環状の内ランド10f(図2参照)を有している。ガイド孔10eは内ランド10fの表面に設けられており、軸方向に延びている。 In addition, the valve housing 10 has an annular inner land 10f (see FIG. 2) extending radially inwardly between the communication hole portion 10b and the recess portion 10c. The guide hole 10e is provided on the surface of the inner land 10f and extends in the axial direction.
 弁座部材40は、筒状部41と、環状凸部42と、を備えている(図4及び図5参照)。筒状部41は軸方向に筒状に延びている。環状凸部42は筒状部41の軸方向左端から外径方向に突出している。尚、筒状部41の内径はロッド部20の第1小径部21よりも大径に形成されている。 The valve seat member 40 includes a tubular portion 41 and an annular convex portion 42 (see FIGS. 4 and 5). The cylindrical portion 41 extends cylindrically in the axial direction. The annular convex portion 42 protrudes radially outward from the axial left end of the cylindrical portion 41 . The inner diameter of the tubular portion 41 is formed to be larger than that of the first small diameter portion 21 of the rod portion 20 .
 この弁座部材40は、凹部10aの底に貫通する連通孔部10bに軸方向左方から圧入されることによりバルブハウジング10に密封状に固定されている。また、凹部10aの底端面10d(図4及び図5参照)に環状凸部42が当接することで弁座部材40の連通孔部10bへの過挿入が防止されているとともに、弁座部材40の軸方向の位置決めがなされている。 The valve seat member 40 is hermetically fixed to the valve housing 10 by being press-fitted from the left in the axial direction into the communication hole 10b penetrating the bottom of the recess 10a. In addition, since the annular projection 42 abuts against the bottom end surface 10d (see FIGS. 4 and 5) of the recess 10a, the valve seat member 40 is prevented from being excessively inserted into the communication hole 10b. are axially positioned.
 また、弁座部材40には、軸方向左端の内径側に弁座40aが形成されている。弁座40aは、軸方向右側に向けて漸次縮径するテーパ形状を成している。 In addition, the valve seat member 40 is formed with a valve seat 40a on the inner diameter side of the left end in the axial direction. The valve seat 40a has a tapered shape whose diameter gradually decreases toward the right side in the axial direction.
 バルブハウジング10の凹部10cには、センタポスト82のフランジ部82dが軸方向右方から内嵌固定されている。さらにその軸方向右方からケーシング81が外嵌固定されることによりバルブハウジング10、センタポスト82、ケーシング81が一体に接続されている。 A flange portion 82d of the center post 82 is internally fitted and fixed to the concave portion 10c of the valve housing 10 from the axial right side. Furthermore, the valve housing 10, the center post 82, and the casing 81 are integrally connected by fitting and fixing the casing 81 from the right side in the axial direction.
 バルブハウジング10には、軸方向に延びる連通手段としての貫通孔13が形成されている。貫通孔13は、軸方向両端の凹部10a,10cの底面にそれぞれ開口している、すなわち、1次圧空間S1とソレノイド80内の背面空間S3に連通している。この貫通孔13は、断面一定に形成されている。 A through hole 13 is formed in the valve housing 10 as a communication means extending in the axial direction. The through-holes 13 are open to the bottom surfaces of the recesses 10a and 10c at both ends in the axial direction. This through hole 13 is formed to have a constant cross section.
 図1に示されるように、ソレノイド80は、ケーシング81と、センタポスト82と、ロッド部20と、可動鉄心84と、コイルスプリング85と、コイル86と、スリーブ87と、から主に構成されている。 As shown in FIG. 1, the solenoid 80 is mainly composed of a casing 81, a center post 82, a rod portion 20, a movable iron core 84, a coil spring 85, a coil 86 and a sleeve 87. there is
 ケーシング81は、凹部81bと、貫通孔81aと、を備えている。凹部81bはケーシング81の軸方向左側から右側に向けて凹んで形成されている。貫通孔81aは凹部81bの底から軸方向右側に延びて形成されている。 The casing 81 has a recess 81b and a through hole 81a. The recessed portion 81b is recessed from the axial left side of the casing 81 toward the right side. The through hole 81a is formed extending axially rightward from the bottom of the recess 81b.
 センタポスト82は、鉄やケイ素鋼等の磁性材料である剛体から形成された略円筒形状を成している。詳しくは、センタポスト82は、軸方向に延びる円筒部82bと、環状のフランジ部82dとを備えている。円筒部82bは挿通孔82cを有している。挿通孔82cには、ロッド部20が軸方向に往復動自在に挿通されている。フランジ部82dは円筒部82bの軸方向左端部の外周面から外径方向に延びている。 The center post 82 has a substantially cylindrical shape made of a rigid body that is a magnetic material such as iron or silicon steel. Specifically, the center post 82 includes an axially extending cylindrical portion 82b and an annular flange portion 82d. The cylindrical portion 82b has an insertion hole 82c. The rod portion 20 is inserted through the insertion hole 82c so as to reciprocate in the axial direction. The flange portion 82d extends radially from the outer peripheral surface of the left end portion of the cylindrical portion 82b in the axial direction.
 円筒部82bはケーシング81の貫通孔81aに対して軸方向左方から挿入されている。センタポスト82は、フランジ部82dがバルブハウジング10の凹部10cの底と、ケーシング81の凹部81bの底で軸方向に狭持されることで、バルブハウジング10及びケーシング81に対して位置決めされる。 The cylindrical portion 82b is inserted into the through hole 81a of the casing 81 from the axial left side. The center post 82 is positioned with respect to the valve housing 10 and the casing 81 by axially holding the flange portion 82 d between the bottom of the recess 10 c of the valve housing 10 and the bottom of the recess 81 b of the casing 81 .
 可動鉄心84は、ロッド部20の軸方向右端部が挿嵌・固定されている。 The axial right end of the rod portion 20 is inserted and fixed to the movable core 84 .
 コイルスプリング85は、押しバネであり、センタポスト82と可動鉄心84との間に配置されている。コイルスプリング85の軸方向左端はセンタポスト82における円筒部82bの軸方向右端に形成された凹部82e内に嵌合している。すなわち、コイルスプリング85は可動鉄心84を弁50の閉弁方向である軸方向右方に付勢している。 The coil spring 85 is a compression spring and is arranged between the center post 82 and the movable iron core 84. The axial left end of the coil spring 85 is fitted into a recess 82e formed in the axial right end of the cylindrical portion 82b of the center post 82. As shown in FIG. That is, the coil spring 85 urges the movable iron core 84 axially rightward, which is the valve closing direction of the valve 50 .
 コイル86は、センタポスト82の外側にボビンを介して巻き付けられた励磁用のコイルである。 A coil 86 is an excitation coil wound around the outside of the center post 82 via a bobbin.
 スリーブ87は、有底筒状を成している。このスリーブ87には、センタポスト82の一部、可動鉄心84、コイルスプリング85およびロッド部20の一部が収納されている。 The sleeve 87 has a cylindrical shape with a bottom. A part of the center post 82 , the movable iron core 84 , the coil spring 85 and a part of the rod portion 20 are housed in the sleeve 87 .
 ソレノイド80内の背面空間S3は、2次圧空間S2と仕切られた弁部51の背面側の主にスリーブ87内の空間である。詳しくは凹部10cとセンタポスト82左端との間の空間、センタポスト82内の空間、スリーブ87内の可動鉄心84左右の空間を含んでいる。 The back space S3 inside the solenoid 80 is mainly the space inside the sleeve 87 on the back side of the valve portion 51 separated from the secondary pressure space S2. Specifically, it includes the space between the recess 10 c and the left end of the center post 82 , the space inside the center post 82 , and the left and right spaces of the movable iron core 84 inside the sleeve 87 .
 次に、ロッド部20の大径部22およびバルブハウジング10のガイド孔10eの構造について図2および図3に基づいて説明する。 Next, the structures of the large diameter portion 22 of the rod portion 20 and the guide hole 10e of the valve housing 10 will be described with reference to FIGS. 2 and 3. FIG.
 図2および図3に示されるように、大径部22には、軸方向右側から順に、第1部位24、第2部位25、第3部位26が形成されている。第1部位24および第2部位25は、ガイド孔10e内に配置されている。また、第3部位26はガイド孔10eよりも軸方向左側、すなわち2次圧空間S2内に配置されている。 As shown in FIGS. 2 and 3, the large-diameter portion 22 is formed with a first portion 24, a second portion 25, and a third portion 26 in order from the right side in the axial direction. The first portion 24 and the second portion 25 are arranged within the guide hole 10e. Further, the third portion 26 is arranged on the left side of the guide hole 10e in the axial direction, that is, in the secondary pressure space S2.
 第1部位24は第2部位25よりも小径である。第2部位25は第3部位26よりも小径である。すなわち、大径部22は、軸方向右側から軸方向左側に向かうにつれて階段状に拡径されている。 The first portion 24 has a smaller diameter than the second portion 25. The second portion 25 has a smaller diameter than the third portion 26 . That is, the diameter of the large diameter portion 22 increases stepwise from the right side in the axial direction toward the left side in the axial direction.
 第1部位24の外周面24a、第2部位25の外周面25a、第3部位26の外周面26aは、軸方向に互いに平行に延びる軸方向部位である。第2部位25の右端面25b、第3部位26の右端面26bは、径方向に延びる径方向部位である。 The outer peripheral surface 24a of the first portion 24, the outer peripheral surface 25a of the second portion 25, and the outer peripheral surface 26a of the third portion 26 are axial portions extending parallel to each other in the axial direction. A right end surface 25b of the second portion 25 and a right end surface 26b of the third portion 26 are radial portions extending in the radial direction.
 詳しくは、第2部位25の右端面25bは、第1部位24の外周面24aと第2部位25の外周面25aに対して直交して径方向に延びている。第3部位26の右端面26bは、第2部位25の外周面25aと第3部位26の外周面26aに対して直交して径方向に延びている。 Specifically, the right end surface 25b of the second portion 25 extends radially perpendicular to the outer peripheral surface 24a of the first portion 24 and the outer peripheral surface 25a of the second portion 25. As shown in FIG. A right end surface 26b of the third portion 26 extends radially perpendicular to the outer peripheral surface 25a of the second portion 25 and the outer peripheral surface 26a of the third portion 26 .
 また、第3部位26の外周面26aとロッド部20の第1小径部21との間には、軸方向左側に向けて縮径するテーパ面部27(図2参照。)が形成されている。 A tapered surface portion 27 (see FIG. 2) is formed between the outer peripheral surface 26a of the third portion 26 and the first small diameter portion 21 of the rod portion 20, the diameter of which decreases toward the left in the axial direction.
 バルブハウジング10には、軸方向右側から順に、第1部位14、第2部位15、第3部位16が形成され、これらの部位14,15,16によってガイド孔10eが区画されている。 A first portion 14, a second portion 15, and a third portion 16 are formed in the valve housing 10 in order from the right side in the axial direction, and these portions 14, 15, and 16 define the guide hole 10e.
 第1部位14の内周面14aは、内ランド10fの右面から大径部22の第1部位24の外周面24aと平行に延びた後、軸方向左側に向けて縮径するように傾斜して延びている。 The inner peripheral surface 14a of the first portion 14 extends from the right surface of the inner land 10f in parallel with the outer peripheral surface 24a of the first portion 24 of the large-diameter portion 22, and then slopes so as to reduce its diameter leftward in the axial direction. extended.
 第2部位15の内周面15aは、内周面14aの軸方向左端から大径部22の第1部位24の外周面24aと平行に延びている。また、第2部位15の左端面15bは、内周面15aの軸方向左端から外径方向に直交して延びている。 The inner peripheral surface 15a of the second portion 15 extends parallel to the outer peripheral surface 24a of the first portion 24 of the large diameter portion 22 from the axial left end of the inner peripheral surface 14a. A left end surface 15b of the second portion 15 extends perpendicularly to the outer diameter direction from the axial left end of the inner peripheral surface 15a.
 詳しくは、左端面15bは、第2部位25の右端面25bと平行に延びている。すなわち、右端面25bと左端面15bとは、軸方向に対向する一対の軸方向対向面となっている。また、内周面15aと外周面24aとは、径方向に対向する一対の径方向対向面となっている。 Specifically, the left end face 15b extends parallel to the right end face 25b of the second portion 25. That is, the right end surface 25b and the left end surface 15b are a pair of axially opposed surfaces that face each other in the axial direction. In addition, the inner peripheral surface 15a and the outer peripheral surface 24a form a pair of radially facing surfaces facing each other in the radial direction.
 第3部位16の内周面16aは、左端面15bの外径端から軸方向左側に向けて大径部22の第2部位25の外周面25aと平行に延びている。また、第3部位16の左端面16bは、内周面16aの左端から外径方向に直交して延びている。言い換えれば、左端面16bは、内ランド10fの左端側面である。 The inner peripheral surface 16a of the third portion 16 extends axially leftward from the outer diameter end of the left end surface 15b in parallel with the outer peripheral surface 25a of the second portion 25 of the large diameter portion 22 . A left end surface 16b of the third portion 16 extends perpendicularly to the outer diameter direction from the left end of the inner peripheral surface 16a. In other words, the left end surface 16b is the left end side surface of the inner land 10f.
 また、左端面16bは、第3部位26の右端面26bと平行に延びている。すなわち、右端面26bと左端面16bとは、軸方向に対向する一対の軸方向対向面となっている。また、内周面16aと外周面25aとは、径方向に対向する一対の径方向対向面となっている。 Further, the left end face 16b extends parallel to the right end face 26b of the third portion 26. That is, the right end surface 26b and the left end surface 16b are a pair of axially opposed surfaces that face each other in the axial direction. In addition, the inner peripheral surface 16a and the outer peripheral surface 25a form a pair of radially facing surfaces facing each other in the radial direction.
 ロッド部20の大径部22における第1部位24、第2部位25、第3部位26と、バルブハウジング10の第1部位14、第2部位15、第3部位16と、の間には、2次圧空間S2と背面空間S3とを繋ぐ隙間S10が形成されている。 Between the first portion 24, the second portion 25 and the third portion 26 of the large diameter portion 22 of the rod portion 20 and the first portion 14, the second portion 15 and the third portion 16 of the valve housing 10, A gap S10 is formed connecting the secondary pressure space S2 and the rear space S3.
 尚、以下、隙間S10において、第1部位24の外周面24aと第1部位14の内周面14aとの間の部位を第1隙間S11、第1部位24の外周面24aと第2部位15の内周面15aとの間の部位を第2隙間S12、第2部位25の右端面25bと第2部位15の左端面15bとの間の部位を第3隙間S13、第2部位25の外周面25aと第3部位16の内周面16aとの間の部位を第4隙間S14、第3部位26の右端面26bと第3部位16の左端面16bとの間の部位を第5隙間S15として説明する。 Hereinafter, in the gap S10, the portion between the outer peripheral surface 24a of the first portion 24 and the inner peripheral surface 14a of the first portion 14 is defined as the first gap S11, and the outer peripheral surface 24a of the first portion 24 and the second portion 15 are defined as the first gap S11. The second gap S12 is the portion between the inner peripheral surface 15a of the second portion 25, the third gap S13 is the portion between the right end surface 25b of the second portion 25 and the left end surface 15b of the second portion 15, and the outer periphery of the second portion 25 A portion between the surface 25a and the inner peripheral surface 16a of the third portion 16 is defined as a fourth gap S14, and a portion between the right end surface 26b of the third portion 26 and the left end surface 16b of the third portion 16 is defined as a fifth gap S15. described as.
 隙間S10には、複数の略L字に曲がる屈曲部Eが形成されている。詳しくは、第2隙間S12と第3隙間S13とで屈曲部E1が形成されている。第3隙間S13と第4隙間S14とで屈曲部E2が形成されている。第4隙間S14と第5隙間S15とで屈曲部E3が形成されている。 The gap S10 is formed with a plurality of bent portions E bent in a substantially L shape. Specifically, a bent portion E1 is formed by the second gap S12 and the third gap S13. A bent portion E2 is formed by the third gap S13 and the fourth gap S14. A bent portion E3 is formed by the fourth gap S14 and the fifth gap S15.
 隙間S10における第2隙間S12、第3隙間S13、第4隙間S14の部分、すなわち屈曲部E1および屈曲部E2によりクランク形状を成している。言い換えれば、第3隙間S13の内径側から軸方向右側に第2隙間S12が延びており、第3隙間S13の外径側から軸方向左側に第4隙間S14が延びている。 The second gap S12, the third gap S13, and the fourth gap S14 in the gap S10, that is, the bent portion E1 and the bent portion E2 form a crank shape. In other words, the second gap S12 extends axially rightward from the inner diameter side of the third gap S13, and the fourth gap S14 extends axially leftward from the outer diameter side of the third gap S13.
 また、第2隙間S12における外周面24aと内周面15aとの径方向距離Δ12と、第4隙間S14における外周面25aと内周面16aとの径方向距離Δ14との長さは略同じである(Δ12=Δ14)。尚、第2隙間S12の径方向距離Δ12と第4隙間S14の径方向距離Δ14とが異なっていてもよい。 Further, the radial distance Δ12 between the outer peripheral surface 24a and the inner peripheral surface 15a in the second gap S12 and the radial distance Δ14 between the outer peripheral surface 25a and the inner peripheral surface 16a in the fourth gap S14 are substantially the same. There is (Δ12=Δ14). Note that the radial distance Δ12 of the second gap S12 and the radial distance Δ14 of the fourth gap S14 may be different.
 また、第2隙間S12、第4隙間S14は微小隙間である。そして、バルブハウジング10の第2部位15の内周面15aと第3部位16の内周面16aは、ロッド部20の第1部位24の外周面24aと第2部位25の外周面25aを摺動ガイドするガイド部となっている。 Also, the second gap S12 and the fourth gap S14 are minute gaps. The inner peripheral surface 15a of the second portion 15 and the inner peripheral surface 16a of the third portion 16 of the valve housing 10 slide on the outer peripheral surface 24a of the first portion 24 and the outer peripheral surface 25a of the second portion 25 of the rod portion 20. It is a guide part that guides movement.
 次いで、容量制御弁V1の開閉動作について説明する。 Next, the opening/closing operation of the capacity control valve V1 will be described.
 先ず、容量制御弁V1の非通電状態について説明する。図1及び図4に示されるように、容量制御弁V1は、非通電状態において、可動鉄心84がコイルスプリング85の付勢力により軸方向右方、すなわち閉弁方向へと押圧されることで、弁部51の当接部54が弁座40aに着座し、弁50が閉塞されている。 First, the non-energized state of the displacement control valve V1 will be described. As shown in FIGS. 1 and 4, when the displacement control valve V1 is in a non-energized state, the movable iron core 84 is pressed axially rightward by the biasing force of the coil spring 85, that is, in the valve closing direction. The contact portion 54 of the valve portion 51 is seated on the valve seat 40a, and the valve 50 is closed.
 詳しくは、軸方向左側に向けて拡開するようにテーパ状に形成される弁座40aに対して、同じく軸方向左側に向けて拡開するようにテーパ状に形成される弁部51の当接部54が接触して着座するようになっている。 Specifically, the valve portion 51, which is also tapered to expand axially leftward, contacts the valve seat 40a, which is tapered to expand axially leftward. The contact part 54 contacts and is seated.
 このときには、図3に示されるように、ロッド部20における第2部位25の右端面25bと、バルブハウジング10における第2部位15の左端面15bと、が軸方向に僅かに軸方向距離Δ13だけ離間している。また、ロッド部20における第3部位26の右端面26bと、バルブハウジング10における第3部位16の左端面16bと、が軸方向に僅かに軸方向距離Δ15だけ離間している。 At this time, as shown in FIG. 3, the right end surface 25b of the second portion 25 of the rod portion 20 and the left end surface 15b of the second portion 15 of the valve housing 10 are axially separated by a slight axial distance Δ13. away. Further, the right end surface 26b of the third portion 26 of the rod portion 20 and the left end surface 16b of the third portion 16 of the valve housing 10 are separated in the axial direction by a slight axial distance Δ15.
 軸方向距離Δ13と軸方向距離Δ15の長さは略同じである(Δ13=Δ15)。尚、本実施例では、軸方向距離Δ13と軸方向距離Δ15の長さは略同じであるが、異なっていてもよい。 The lengths of the axial distance Δ13 and the axial distance Δ15 are substantially the same (Δ13=Δ15). In this embodiment, the lengths of the axial distance Δ13 and the axial distance Δ15 are substantially the same, but they may be different.
 また、弁50の閉弁時において、軸方向距離Δ13,Δ15は径方向距離Δ12,Δ14よりも長くなっている(Δ13,Δ15>Δ12,Δ14)。 Also, when the valve 50 is closed, the axial distances Δ13, Δ15 are longer than the radial distances Δ12, Δ14 (Δ13, Δ15>Δ12, Δ14).
 また、弁50の閉弁時には、可動体56の可動領域において、ロッド部20の右端面25bとバルブハウジング10の左端面15b、ロッド部20の右端面26bとバルブハウジング10の左端面16bが最も軸方向に近接している。言い換えれば、弁50の閉弁時には、第3隙間S13および第5隙間S15の流路断面積が最も小さくなっている。 When the valve 50 is closed, the right end face 25b of the rod portion 20 and the left end face 15b of the valve housing 10, and the right end face 26b of the rod portion 20 and the left end face 16b of the valve housing 10 are the most in the movable region of the movable body 56. Axial proximity. In other words, when the valve 50 is closed, the channel cross-sectional areas of the third gap S13 and the fifth gap S15 are the smallest.
 図4に戻って、弁50の閉弁時には、弁部51の有効受圧面積A、大径部22の有効受圧面積B、軸方向右向きを正として、弁部51には、1次圧空間S1内の作動流体の圧力P1による力(FP1)=(P1×(A-B))と、2次圧空間S2内の作動流体の圧力P2による力(FP2)=-(P2×(A-B))と、コイルスプリング85の付勢力(Fsp)とが作用している(すなわち、右向きを正として、弁部51には、力Frod=FP1-FP2+Fspが作用している)。 Returning to FIG. 4, when the valve 50 is closed, the effective pressure-receiving area A of the valve portion 51, the effective pressure-receiving area B of the large-diameter portion 22, and the right axial direction are positive, and the valve portion 51 has a primary pressure space S1 The force (F P1 ) due to the pressure P1 of the working fluid in the secondary pressure space S2 (F P1 )=(P1×(AB)) and the force (F P2 ) due to the pressure P2 of the working fluid in the secondary pressure space S2=−(P2×(A −B)) and the biasing force (F sp ) of the coil spring 85 (that is, the force F rod =F P1 −F P2 +F sp acts on the valve portion 51, with the right direction being positive). ing).
 このとき、弁部51の軸方向左端面には1次圧空間S1内の作動流体が作用している。尚、1次圧空間S1と背面空間S3とは、バルブハウジング10に設けられた貫通孔13により連通しているので、背面空間S3には1次圧空間S1内の作動流体が流入している。 At this time, the working fluid in the primary pressure space S1 acts on the left end surface of the valve portion 51 in the axial direction. Since the primary pressure space S1 and the back space S3 communicate with each other through the through hole 13 provided in the valve housing 10, the working fluid in the primary pressure space S1 flows into the back space S3. .
 このように、1次圧空間S1と背面空間S3とに流入する作動流体は、入口ポート11から供給される同一の1次圧P1の作動流体である。また、弁部51の有効受圧面積Aと大径部22の有効受圧面積Bとは等しい(A=B)ため、作動流体の圧力P1,P2により弁部51に作用する力(FP1),(FP2)はいずれもほぼゼロとなる。 Thus, the working fluid flowing into the primary pressure space S1 and the back space S3 is the working fluid supplied from the inlet port 11 and having the same primary pressure P1. Further, since the effective pressure receiving area A of the valve portion 51 and the effective pressure receiving area B of the large diameter portion 22 are equal (A=B), the forces acting on the valve portion 51 due to the pressures P1 and P2 of the working fluid (F P1 ), (F P2 ) are both nearly zero.
 すなわち、右向きを正として、弁部51には、実質的に力Frod=Fspが作用している。これにより弁部51が閉弁方向へと押圧されて弁50が閉塞されている。 That is, a force F rod =F sp substantially acts on the valve portion 51 with the rightward direction as positive. As a result, the valve portion 51 is pressed in the valve closing direction to close the valve 50 .
 次に、容量制御弁V1の通電状態について説明する。図5に示されるように、容量制御弁V1は、通電状態(すなわち通常制御時、いわゆるデューティ制御時)において、ソレノイド80に電流が印加されることにより発生する電磁力(Fsol)が力Frodを上回る(Fsol>Frod)と、可動鉄心84がセンタポスト82側、すなわち軸方向左側に引き寄せられ、可動鉄心84に固定された可動体56が軸方向左方、すなわち開弁方向へ共に移動することにより、弁部51の当接部54が弁座40aから離間し、弁50が開放される。 Next, the energized state of the capacity control valve V1 will be described. As shown in FIG. 5, when the displacement control valve V1 is energized (that is, during normal control, so-called duty control), the electromagnetic force (F sol ) generated by applying a current to the solenoid 80 is the force F rod (F sol > F rod ), the movable iron core 84 is pulled toward the center post 82, that is, toward the left in the axial direction, and the movable body 56 fixed to the movable iron core 84 moves toward the left in the axial direction, that is, in the valve opening direction. By moving together, the contact portion 54 of the valve portion 51 is separated from the valve seat 40a, and the valve 50 is opened.
 弁50の開弁時には、ロッド部20の右端面25bとバルブハウジング10の左端面15bとが軸方向に軸方向距離Δ13’だけ離間する。また、ロッド部20の右端面26bとバルブハウジング10の左端面16bとが軸方向に軸方向距離Δ15’だけ離間する。開弁時の軸方向距離Δ13’,Δ15’は閉弁時の軸方向距離Δ13,Δ15よりも長い(Δ13,Δ15<Δ13’,Δ15’)。また、軸方向距離Δ13’,Δ15’は同距離である。 When the valve 50 is open, the right end face 25b of the rod portion 20 and the left end face 15b of the valve housing 10 are axially separated by an axial distance Δ13'. Further, the right end surface 26b of the rod portion 20 and the left end surface 16b of the valve housing 10 are axially separated by an axial distance Δ15'. The axial distances Δ13' and Δ15' when the valve is open are longer than the axial distances Δ13 and Δ15 when the valve is closed (Δ13, Δ15<Δ13', Δ15'). Also, the axial distances Δ13' and Δ15' are the same distance.
 一方、第2隙間S12の径方向距離Δ12、第4隙間S14の径方向距離Δ14は、弁50の開度によらず変化しない。 On the other hand, the radial distance Δ12 of the second gap S12 and the radial distance Δ14 of the fourth gap S14 do not change regardless of the opening of the valve 50.
 またこのとき、弁部51には、軸方向左方に電磁力(Fsol)、軸方向右方に力Frodが作用している(すなわち、右向きを正として、弁部51には、力Frod-Fsolが作用している)。 At this time, an electromagnetic force (F sol ) acts on the valve portion 51 to the left in the axial direction, and a force F rod acts to the right in the axial direction (that is, when the right direction is positive, the force F rod - F sol at work).
 このように、容量制御弁V1は、ソレノイド80の電磁力(Fsol)と、コイルスプリング85の付勢力(Fsp)とのバランスにより調整される弁50の弁開度により、1次圧空間S1内の作動流体の圧力P1を適宜制御することができる。 Thus, the displacement control valve V1 is controlled by the valve opening of the valve 50, which is adjusted by the balance between the electromagnetic force (F sol ) of the solenoid 80 and the biasing force (F sp ) of the coil spring 85. The pressure P1 of the working fluid in S1 can be controlled accordingly.
 次いで、閉弁状態時における隙間S10内での作動流体の流れについて説明する。 Next, the flow of the working fluid within the gap S10 when the valve is closed will be described.
 図3に戻って、弁50の閉弁時には、矢印FL1に示すように第1隙間S11において作動流体が軸方向左側、すなわち高圧側の背面空間S3から低圧側の2次圧空間S2に向けて流れる。尚、図3において、矢印の太さ、長さは説明の便宜上、極端に示している。 Returning to FIG. 3, when the valve 50 is closed, the working fluid flows in the first gap S11 to the left in the axial direction, that is, from the high-pressure side rear space S3 toward the low-pressure side secondary pressure space S2 as indicated by the arrow FL1. flow. In addition, in FIG. 3, the thickness and length of the arrows are shown extremely for convenience of explanation.
 第1隙間S11を流れる作動流体は、矢印FL2に示すように第1隙間S11よりも流路断面積が小さい第2隙間S12に流入する。第2隙間S12は絞りとして機能しているため、第2隙間S12を流れる作動流体には、第1部位24の外周面24aと第2部位15の内周面15aとの摩擦により圧力損失が生じる。 The working fluid flowing through the first gap S11 flows into the second gap S12, which has a flow passage cross-sectional area smaller than that of the first gap S11, as indicated by an arrow FL2. Since the second gap S12 functions as a throttle, pressure loss occurs in the working fluid flowing through the second gap S12 due to friction between the outer peripheral surface 24a of the first portion 24 and the inner peripheral surface 15a of the second portion 15. .
 第2隙間S12を流れる作動流体は矢印FL3に示すように第1隙間S11よりも流路断面積が大きい第3隙間S13に流入する。第2隙間S12に沿って軸方向に流れる作動流体が外径方向に延びる第3隙間S13に向けて略90度に変向されるときに、作動流体に圧力損失が生じる大きくなる。説明の便宜上、第2隙間S12と第3隙間S13の接続部分近傍で渦が生じることを例として示している。以降も渦の図示は同様である。 The working fluid flowing through the second gap S12 flows into the third gap S13, which has a flow passage cross-sectional area larger than that of the first gap S11, as indicated by an arrow FL3. When the working fluid flowing in the axial direction along the second gap S12 is deflected at approximately 90 degrees toward the third gap S13 extending in the radially outer direction, pressure loss in the working fluid increases. For convenience of explanation, it is shown as an example that a vortex is generated in the vicinity of the connecting portion between the second gap S12 and the third gap S13. Illustrations of vortices are the same thereafter.
 第3隙間S13を流れる作動流体は矢印FL4に示すように第3隙間S13よりも流路断面積が小さい第4隙間S14に流入する。第3隙間S13に沿って外径方向に流れる作動流体が軸方向に延びる第4隙間S14に向けて略90度に変向されるときに、作動流体に圧力損失が生じる。 The working fluid flowing through the third gap S13 flows into the fourth gap S14, which has a flow passage cross-sectional area smaller than that of the third gap S13, as indicated by an arrow FL4. When the working fluid flowing in the outer diameter direction along the third gap S13 is deflected at approximately 90 degrees toward the axially extending fourth gap S14, pressure loss occurs in the working fluid.
 また、第4隙間S14は絞りとして機能しているため、第4隙間S14を流れる作動流体には、第2部位25の外周面25aと第3部位16の内周面16aとの摩擦により圧力損失が生じる。 Further, since the fourth gap S14 functions as a throttle, the working fluid flowing through the fourth gap S14 experiences pressure loss due to friction between the outer peripheral surface 25a of the second portion 25 and the inner peripheral surface 16a of the third portion 16. occurs.
 第4隙間S14を流れる作動流体は、矢印FL5に示すように第4隙間S14よりも流路断面積が大きい第5隙間S15に流入する。第4隙間S14に沿って軸方向に流れる作動流体が外径方向に延びる第5隙間S15に向けて略90度に変向されるときに、作動流体に圧力損失が生じる。 The working fluid flowing through the fourth gap S14 flows into the fifth gap S15, which has a flow passage cross-sectional area larger than that of the fourth gap S14, as indicated by an arrow FL5. When the working fluid axially flowing along the fourth gap S14 is deflected at approximately 90 degrees toward the fifth gap S15 extending in the radially outer direction, pressure loss occurs in the working fluid.
 以上説明したように、ロッド部20とバルブハウジング10との間には、2次圧空間S2と背面空間S3とを繋ぐ隙間S10が形成されている。この隙間S10は屈曲部Eを有し、少なくとも一部がガイド孔10eにより区画されている。第2隙間S12、第3隙間S13、第4隙間S14は、ガイド孔10eを構成するバルブハウジング10の内周面とロッド部20の外周面により区画されている。 As described above, the gap S10 is formed between the rod portion 20 and the valve housing 10 to connect the secondary pressure space S2 and the rear space S3. This gap S10 has a bent portion E and is at least partially defined by a guide hole 10e. The second gap S12, the third gap S13, and the fourth gap S14 are defined by the inner peripheral surface of the valve housing 10 and the outer peripheral surface of the rod portion 20 that form the guide hole 10e.
 これによれば、高圧側である背面空間S3から2次圧空間S2に向かって隙間S10を流れる作業流体の向きが屈曲部Eで変わる際に作動流体の圧力損失が生じるため、背面空間S3から2次圧空間S2への作動流体の漏れを少なくすることができる。 According to this, when the direction of the working fluid flowing through the gap S10 from the back space S3 on the high pressure side toward the secondary pressure space S2 changes at the bend E, pressure loss of the working fluid occurs. Leakage of the working fluid to the secondary pressure space S2 can be reduced.
 また、隙間S10には複数の屈曲部E1~E3が形成されており、各屈曲部E1~E3で作動流体に圧力損失が生じることで、2次圧空間S2に向かうにつれて作業流体の流体圧が漸次低下する。そして、隙間S10における最も2次圧空間S2側の第5隙間S15においては、その流体圧と2次圧空間S2内の流体圧との圧力差がほとんどなくなるため、2次圧空間S2への作動流体の漏れがほとんどない状態とすることができる。 In addition, a plurality of bends E1 to E3 are formed in the gap S10, and pressure loss occurs in the working fluid at each of the bends E1 to E3, so that the fluid pressure of the working fluid increases toward the secondary pressure space S2. Decrease gradually. In the fifth gap S15 closest to the secondary pressure space S2 in the gap S10, the pressure difference between the fluid pressure and the fluid pressure in the secondary pressure space S2 is almost eliminated. A state in which there is almost no fluid leakage can be achieved.
 また、弁50の閉弁時において、各屈曲部E1~E3の流路断面積が最も小さくなっている。具体的には、屈曲部E1~E3の流路断面積は弁開度に応じて変化するものであり、弁50の閉弁時には、第3隙間S13および第5隙間S15の流路断面積が最も小さくなっているため、閉弁時において屈曲部で生じる作動流体の圧力損失を大きくすることができる。 Also, when the valve 50 is closed, the channel cross-sectional areas of the bent portions E1 to E3 are the smallest. Specifically, the flow channel cross-sectional areas of the bends E1 to E3 change according to the valve opening degree, and when the valve 50 is closed, the flow channel cross-sectional areas of the third gap S13 and the fifth gap S15 Since it is the smallest, it is possible to increase the pressure loss of the working fluid that occurs at the bent portion when the valve is closed.
 また、弁50の閉弁時において、ロッド部20における第2部位25の右端面25bとバルブハウジング10における第2部位15の左端面15bと、が軸方向に離間している。また、同様にロッド部20における第3部位26の右端面26bと、バルブハウジング10における第3部位16の左端面16bと、が軸方向に離間している。これによれば、弁50の閉弁時において、右端面25bと左端面15b、右端面26bと左端面16b同士が接触しないため、弁部51を弁座40aに確実に着座させることができる。 Also, when the valve 50 is closed, the right end surface 25b of the second portion 25 of the rod portion 20 and the left end surface 15b of the second portion 15 of the valve housing 10 are separated in the axial direction. Similarly, the right end face 26b of the third portion 26 of the rod portion 20 and the left end face 16b of the third portion 16 of the valve housing 10 are axially separated from each other. According to this, when the valve 50 is closed, the right end face 25b and the left end face 15b, and the right end face 26b and the left end face 16b do not come into contact with each other, so that the valve portion 51 can be reliably seated on the valve seat 40a.
 また、ロッド部20の外周面とガイド孔10eを構成するバルブハウジング10の内周面との間に、ロッド部20における第2部位25の右端面25bと、バルブハウジング10における第2部位15の左端面15bとが形成されている。これによれば、右端面25bと左端面15bとの間で形成される第3隙間S13の径方向両側に屈曲部E1,E2がそれぞれ形成される、言い換えれば、第2隙間S12、第3隙間S13、第4隙間S14はクランク形状を成しており、各屈曲部E1,E2で作動流体の流れの向きが変わるので、作動流体の圧力損失を大きくすることができる。 Further, between the outer peripheral surface of the rod portion 20 and the inner peripheral surface of the valve housing 10 forming the guide hole 10e, the right end surface 25b of the second portion 25 of the rod portion 20 and the second portion 15 of the valve housing 10 are positioned. A left end face 15b is formed. According to this, the bent portions E1 and E2 are respectively formed on both sides in the radial direction of the third gap S13 formed between the right end face 25b and the left end face 15b. S13 and the fourth gap S14 are crank-shaped, and the direction of flow of the working fluid changes at each of the bent portions E1 and E2, so the pressure loss of the working fluid can be increased.
 また、ロッド部20の側面である右端面26bとバルブハウジング10の側面である左端面16bとが軸方向に対向している。これによれば、隙間S10における出口側、すなわち2次圧空間S2側に屈曲部E3が形成されるので隙間S10から2次圧空間S2に作動流体が流出することを効果的に阻害することができる。 Also, the right end surface 26b, which is the side surface of the rod portion 20, and the left end surface 16b, which is the side surface of the valve housing 10, face each other in the axial direction. According to this, since the bent portion E3 is formed on the outlet side of the gap S10, that is, on the side of the secondary pressure space S2, it is possible to effectively prevent the working fluid from flowing out of the gap S10 into the secondary pressure space S2. can.
 また、ロッド部20の右端面25b,26bおよびバルブハウジング10の左端面15b,16bは、軸方向に直交している。すなわち、右端面25b,26b及び左端面15b,16bを含む屈曲部E1~E3で作動流体の圧力損失を大きくすることができる。 The right end faces 25b, 26b of the rod portion 20 and the left end faces 15b, 16b of the valve housing 10 are orthogonal to the axial direction. That is, the pressure loss of the working fluid can be increased at the bends E1 to E3 including the right end faces 25b, 26b and the left end faces 15b, 16b.
 さらに、左端面15b,16bに連続する内周面15a、16aの軸方向の長さ、右端面25b,26bに連続する外周面24a,25aの軸方向の長さ、すなわち絞り空間である第2隙間S12、第4隙間S14の軸方向の長さを長く確保することができるので、隙間S10の密封性が向上する。 Furthermore, the axial length of the inner peripheral surfaces 15a and 16a that are continuous with the left end surfaces 15b and 16b, the axial length of the outer peripheral surfaces 24a and 25a that are continuous with the right end surfaces 25b and 26b, that is, the second Since the axial length of the gap S12 and the fourth gap S14 can be ensured long, the sealing performance of the gap S10 is improved.
 また、大径部22の有効受圧面積B、すなわちロッド部20の有効受圧面積Bは、弁部51の有効受圧面積A、すなわち弁50の有効受圧面積Aと等しくなっている。これによれば、ロッド部20に作用する背面空間S3内の流体圧による力と、弁部51に作用する1次圧空間S1内の流体圧による力と、がキャンセルされる。加えて、ロッド部20に作用する2次圧空間S2内の流体圧による力と、弁部51に作用する2次圧空間S2内の流体圧による力と、がキャンセルされるため、1次圧空間S1、2次圧空間S2および背面空間S3内の流体圧によらず、精度よく可動体56を移動させることができる。 Also, the effective pressure receiving area B of the large diameter portion 22 , that is, the effective pressure receiving area B of the rod portion 20 is equal to the effective pressure receiving area A of the valve portion 51 , that is, the effective pressure receiving area A of the valve 50 . According to this, the force due to the fluid pressure in the back space S3 acting on the rod portion 20 and the force due to the fluid pressure in the primary pressure space S1 acting on the valve portion 51 are canceled. In addition, since the force due to the fluid pressure in the secondary pressure space S2 acting on the rod portion 20 and the force due to the fluid pressure in the secondary pressure space S2 acting on the valve portion 51 are canceled, the primary pressure The movable body 56 can be moved accurately regardless of the fluid pressure in the space S1, the secondary pressure space S2, and the back space S3.
 また、大径部22の外周面およびガイド孔10eは、軸方向左側に向かうにつれて階段状に拡径している。これによれば、軸方向左側から可動体56をガイド孔10eに挿通することで組み立てが完了するため、容量制御弁V1の組み立てを簡便に行うことができる。 In addition, the outer peripheral surface of the large diameter portion 22 and the guide hole 10e increase in diameter in a stepped manner toward the left side in the axial direction. According to this, the assembly is completed by inserting the movable body 56 into the guide hole 10e from the left side in the axial direction, so that the displacement control valve V1 can be easily assembled.
 尚、前記実施例1では、軸方向に対向し合う対向面であるバルブハウジング10の左端面15bとロッド部20の右端面25b、バルブハウジング10の左端面16bとロッド部20の右端面26bが軸方向に対して直交する形態を例示したが、前記対向面は軸方向に傾斜していてもよい。 In the first embodiment, the left end surface 15b of the valve housing 10 and the right end surface 25b of the rod portion 20, and the left end surface 16b of the valve housing 10 and the right end surface 26b of the rod portion 20, which are surfaces facing each other in the axial direction, Although the configuration orthogonal to the axial direction is illustrated, the opposing surface may be inclined in the axial direction.
 また、前記実施例1では、軸方向左から順に1次圧空間、2次圧空間、背面空間が形成されている形態を例示したが、これに限らず、1次圧空間と2次圧空間の位置が逆でもよい。参考までに、1次圧空間S1’と2次圧空間S2’の配置が軸方向において実施例1とは反対となった変形例1を図6に示す。 In the first embodiment, the primary pressure space, the secondary pressure space, and the rear space are formed in this order from the left in the axial direction. position may be reversed. For reference, Fig. 6 shows Modified Example 1 in which the arrangement of the primary pressure space S1' and the secondary pressure space S2' is opposite to that of Example 1 in the axial direction.
 また、前記実施例では、ノーマルクローズ型の弁について説明したが、これに限られず、ノーマルオープン型の弁であってもよい。参考までに、コイルスプリング851が可動鉄心84とスリーブ87との間に配置されることで、非通電時に弁部51の当接部54が弁座40aから離間して弁501が開弁する変形例2を図7に示す。 Also, in the above embodiment, a normally closed valve has been described, but the valve is not limited to this, and may be a normally open valve. For reference, by arranging the coil spring 851 between the movable iron core 84 and the sleeve 87, the contact portion 54 of the valve portion 51 is separated from the valve seat 40a when the current is not supplied, and the valve 501 is opened. Example 2 is shown in FIG.
 次に、実施例2に係る容量制御弁につき、図8を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。 Next, a displacement control valve according to Embodiment 2 will be described with reference to FIG. It should be noted that descriptions of configurations that are the same as those of the first embodiment will be omitted.
 図8に示されるように実施例2の容量制御弁V2は、バルブハウジング10における凹部10aと連通孔部10bとの間に内径方向に延びる内ランド10gが形成されている。この内ランド10gには、軸方向に貫通する貫通孔10hが形成されている。 As shown in FIG. 8, in the displacement control valve V2 of the second embodiment, an inner land 10g extending in the radial direction is formed between the recess 10a and the communication hole 10b in the valve housing 10. As shown in FIG. A through hole 10h is formed through the inner land 10g in the axial direction.
 また、バルブハウジング10のガイド孔101eは、軸方向右側に向けて階段状に拡径するように形成されている。詳しくは、ガイド孔101eを構成するバルブハウジング10の内周面は、軸方向に延びる2つの面102と、軸方向の面102の間で径方向に延びる1つの面103と、を有している。 Further, the guide hole 101e of the valve housing 10 is formed so as to increase in diameter in a stepwise manner toward the right side in the axial direction. Specifically, the inner peripheral surface of the valve housing 10 forming the guide hole 101e has two surfaces 102 extending in the axial direction and one surface 103 extending radially between the axial surfaces 102. there is
 可動体561は、軸方向左端部が弁部511となっている。弁部511は貫通孔10hよりも大径を成している。この弁部511は内ランド10gよりも軸方向右側、すなわち2次圧空間S2内に配置されている。 The movable body 561 has a valve portion 511 at its left end in the axial direction. The valve portion 511 has a larger diameter than the through hole 10h. The valve portion 511 is arranged on the axial right side of the inner land 10g, that is, in the secondary pressure space S2.
 可動体561は、図示しないコイルスプリングにより軸方向左側に付勢されている。これにより、弁部511の左端面511aは、内ランド10gにおける貫通孔10hの弁座である縁部511bに接触し、弁502が閉弁する。このように本実施例2では、弁部511の左端面511aと内ランド10gにおける貫通孔10hの縁部511bとが弁502を構成している。 The movable body 561 is biased leftward in the axial direction by a coil spring (not shown). As a result, the left end surface 511a of the valve portion 511 comes into contact with the edge portion 511b, which is the valve seat of the through hole 10h in the inner land 10g, and the valve 502 is closed. Thus, in the second embodiment, the left end surface 511a of the valve portion 511 and the edge portion 511b of the through hole 10h in the inner land 10g constitute the valve 502. As shown in FIG.
 ロッド部201におけるガイド孔101eに挿通される挿通部位221の外周面は、軸方向右側に向けて階段状に拡径するように形成されている。詳しくは、挿通部位221の外周面は、軸方向に延びる2つの面202と、軸方向の面202の間で径方向に延びる1つの面203と、を有している。また、ロッド部201は、バルブハウジング10の内ランド10fの右面10jと軸方向に対向する対向面204を有している。 The outer peripheral surface of the insertion portion 221 of the rod portion 201, which is inserted through the guide hole 101e, is formed so as to increase in diameter stepwise toward the right side in the axial direction. Specifically, the outer peripheral surface of the insertion portion 221 has two surfaces 202 extending in the axial direction and one surface 203 extending radially between the surfaces 202 in the axial direction. Moreover, the rod portion 201 has a facing surface 204 axially facing the right surface 10j of the inner land 10f of the valve housing 10 .
 バルブハウジング10の面102と挿通部位221の面202はそれぞれ径方向に対向する径方向対向面である。またバルブハウジング10の面103と挿通部位221の面203、バルブハウジング10の右面10jとロッド部201の対向面204はそれぞれ軸方向に対向する軸方向対向面である。 The surface 102 of the valve housing 10 and the surface 202 of the insertion portion 221 are radially opposed surfaces that face each other in the radial direction. Further, the surface 103 of the valve housing 10 and the surface 203 of the insertion portion 221, and the right surface 10j of the valve housing 10 and the opposed surface 204 of the rod portion 201 are axially opposed surfaces that face each other in the axial direction.
 弁502の閉弁時には、バルブハウジング10の面103と、挿通部位221の面203と、が可動体561の可動領域において最も近接して対向配置されている。また、バルブハウジング10の右面10jと、ロッド部201の対向面204と、が可動体561の可動領域において最も近接して対向配置されている。 When the valve 502 is closed, the surface 103 of the valve housing 10 and the surface 203 of the insertion portion 221 are closest to each other in the movable area of the movable body 561 and face each other. In addition, the right surface 10j of the valve housing 10 and the opposing surface 204 of the rod portion 201 are arranged closest to each other in the movable area of the movable body 561 so as to face each other.
 このように、ロッド部201とバルブハウジング10との間の隙間に複数の屈曲部が形成されるので、該隙間を作動流体が流れるときに圧力損失が生じ、弁502の閉弁時において背面空間S3から2次圧空間S2に作動流体が漏れることを抑制できる。 In this way, since a plurality of bent portions are formed in the gap between the rod portion 201 and the valve housing 10, pressure loss occurs when the working fluid flows through the gap, and the back space when the valve 502 is closed. It is possible to suppress the working fluid from leaking from S3 to the secondary pressure space S2.
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and any changes or additions within the scope of the present invention are included in the present invention. be
 例えば、前記実施例1,2では、弁要素とロッド要素とが一体である構成を例示したが、これに限られず、弁要素とロッド要素が別部材で構成されていてもよい。また、弁要素はテーパ形状をなす形態を例示したが、自由に変更できる。 For example, in Examples 1 and 2, the configuration in which the valve element and the rod element are integrated was exemplified, but the configuration is not limited to this, and the valve element and the rod element may be configured as separate members. Also, although the valve element has been exemplified as having a tapered shape, it can be freely changed.
 また、前記実施例1では、コイルスプリング85が押しバネである形態を例示したが、例えば引きバネであってもよい。また、コイルスプリングに限られず、板バネ等であってもよい。 Also, in the first embodiment, the coil spring 85 is a push spring, but it may be a pull spring, for example. Further, the spring is not limited to the coil spring, and a leaf spring or the like may be used.
 また、前記実施例1,2では、コイルスプリングが背面空間に配置されている形態を例示したが、付勢手段が配置される場所は自由に変更してもよい。例えば、付勢手段は1次圧空間または2次圧空間に配置されていてもよい。 Also, in the first and second embodiments, the coil spring is arranged in the back space, but the place where the biasing means is arranged may be freely changed. For example, the biasing means may be arranged in the primary pressure space or the secondary pressure space.
 また、前記実施例1,2では、弁要素の有効受圧面積とロッド要素の有効受圧面積とが等しい形態を例示したが、弁要素の有効受圧面積とロッド要素の有効受圧面積とが異なっていてもよい。 In the first and second embodiments, the effective pressure-receiving area of the valve element and the effective pressure-receiving area of the rod element are equal. good too.
 また、前記実施例1,2では、弁が容量制御弁である例を説明したが、例えば、空調システムにおいて凝縮器と蒸発器との間に配置される膨張弁等であってもよい。 Also, in the first and second embodiments, the example in which the valve is a capacity control valve has been described, but it may be an expansion valve or the like arranged between the condenser and the evaporator in an air conditioning system, for example.
 また、前記実施例1,2では、連通手段がバルブハウジングに設けられた貫通孔である形態を例示したが、これに限られず、連通手段は背面空間と制御室が直接連通する連通路であってもよい。 In the first and second embodiments, the communication means is a through-hole provided in the valve housing, but the communication means is not limited to this, and the communication means is a communication passage that directly communicates the back space and the control chamber. may
 また、前記実施例1,2では、ロッドの挿通部位の外周面とガイド孔とが軸方向左側に向かうにつれて階段状に拡径または縮径していたが、ロッドとバルブハウジングとの隙間に屈曲部が形成されていれば、階段状に拡径または縮径していなくてもよい。また、ロッドの挿通部位の外周面およびガイド孔の段数は自由に変更してもよい。 Further, in Examples 1 and 2, the diameter of the outer peripheral surface of the insertion portion of the rod and the guide hole increased or decreased in a stepwise manner toward the left side in the axial direction. As long as a portion is formed, it does not have to be expanded or contracted stepwise. Moreover, the outer peripheral surface of the insertion portion of the rod and the number of stages of the guide holes may be freely changed.
 また、前記実施例1,2では、バルブハウジング自体に設けられた貫通孔をガイド孔としていたが、バルブハウジングは複数の部材から形成されていてもよい。例えば、バルブハウジングが、バルブハウジング本体とこのバルブハウジング本体に内嵌固定される筒体とから形成されており、筒体の貫通孔がガイド孔となっていてもよい。 Also, in the first and second embodiments, the through holes provided in the valve housing itself are used as the guide holes, but the valve housing may be formed of a plurality of members. For example, the valve housing may be formed of a valve housing main body and a cylindrical body fitted and fixed to the valve housing main body, and the through hole of the cylindrical body may serve as the guide hole.
 また、前記実施例1,2では、ロッドとバルブハウジングとの隙間に屈曲部が複数形成されている形態を例示したが、隙間に少なくとも1つの屈曲部が形成されていればよい。 In addition, in Examples 1 and 2, the form in which a plurality of bent portions are formed in the gap between the rod and the valve housing was exemplified, but at least one bent portion may be formed in the gap.
 また、前記実施例1,2では、弁の閉弁時において、屈曲部の流路断面積が最も小さくなっている形態を例示したが、弁の開弁時に屈曲部の流路断面積が最も小さくなっていてもよい。 Further, in Examples 1 and 2, the flow channel cross-sectional area of the bent portion is the smallest when the valve is closed. It may be smaller.
10       バルブハウジング
10e      ガイド孔
11       入口ポート
12       出口ポート
13       貫通孔(連通手段)
15a      内周面(径方向対向面)
15b      左端面(軸方向対向面)
16a      内周面(径方向対向面)
16b      左端面(軸方向対向面)
20       ロッド部(ロッド要素、ロッド)
22       大径部
24a      外周面(径方向対向面)
25a      外周面(径方向対向面)
25b      右端面(軸方向対向面)
26b      右端面(軸方向対向面)
40       弁座部材
40a      弁座
50       弁
51       弁部(弁要素、弁体)
54       当接部
56       可動体
80       ソレノイド(駆動源)
201      ロッド部(ロッド要素、ロッド)
221      挿通部位
501,502  弁
511      弁部(弁要素、弁体)
511a     左端面
511b     端部(弁座)
561      可動体
A,B      有効受圧面積
E,E1,E2,E3  屈曲部
S1,S1’   1次圧空間
S2,S2’   2次圧空間
S3       背面空間
S10      隙間
S11      第1隙間
S12      第2隙間
S13      第3隙間
S14      第4隙間
S15      第5隙間
V1,V2    容量制御弁
10 valve housing 10e guide hole 11 inlet port 12 outlet port 13 through hole (communication means)
15a inner peripheral surface (radial facing surface)
15b Left end surface (axially opposed surface)
16a inner peripheral surface (diametrically opposed surface)
16b Left end surface (axially facing surface)
20 rod part (rod element, rod)
22 large-diameter portion 24a outer peripheral surface (radially facing surface)
25a outer peripheral surface (radial facing surface)
25b Right end surface (axially facing surface)
26b Right end surface (axially facing surface)
40 valve seat member 40a valve seat 50 valve 51 valve portion (valve element, valve body)
54 contact part 56 movable body 80 solenoid (driving source)
201 rod part (rod element, rod)
221 insertion parts 501, 502 valve 511 valve part (valve element, valve body)
511a Left end face 511b End (valve seat)
561 movable bodies A, B effective pressure receiving areas E, E1, E2, E3 bending portions S1, S1' primary pressure spaces S2, S2' secondary pressure spaces S3 rear space S10 gap S11 first gap S12 second gap S13 third Gap S14 Fourth gap S15 Fifth gap V1, V2 Capacity control valve

Claims (7)

  1.  1次圧空間、2次圧空間、前記1次圧空間及び前記2次圧空間のうち一方の空間に隣接する背面空間を有するバルブハウジングと、
     前記1次圧空間と前記2次圧空間との間に配設される弁座と、
     前記一方の空間と前記背面空間との間に設けられた前記バルブハウジングのガイド孔に挿通され駆動源により軸方向に駆動されるロッドと、
     前記ロッドの駆動により前記弁座に着座または離座する弁体と、
     前記背面空間と前記1次圧空間及び前記2次圧空間のうち他方の空間とを連通する連通手段と、を備えた弁であって、
     前記ロッドと前記バルブハウジングとの間には、前記一方の空間と前記背面空間とを繋ぐ隙間が形成されており、前記隙間は屈曲部を有している弁。
    a valve housing having a primary pressure space, a secondary pressure space, and a rear space adjacent to one of the primary pressure space and the secondary pressure space;
    a valve seat disposed between the primary pressure space and the secondary pressure space;
    a rod inserted through a guide hole of the valve housing provided between the one space and the back space and axially driven by a drive source;
    a valve body that is seated or separated from the valve seat by driving the rod;
    a communication means for communicating between the back space and the other of the primary pressure space and the secondary pressure space,
    A valve, wherein a gap connecting the one space and the back space is formed between the rod and the valve housing, and the gap has a bent portion.
  2.  前記弁の閉弁時において、前記屈曲部の流路断面積が最も小さくなっている請求項1に記載の弁。 The valve according to claim 1, wherein the channel cross-sectional area of the bent portion is the smallest when the valve is closed.
  3.  前記弁の閉弁時において、前記屈曲部を構成する軸方向に対向する一対の軸方向対向面は軸方向に離間している請求項1に記載の弁。 2. The valve according to claim 1, wherein a pair of axially opposing surfaces forming said bent portion are axially separated from each other when said valve is closed.
  4.  前記ロッドの側面と前記バルブハウジングの側面とは前記一対の軸方向対向面である請求項3に記載の弁。 The valve according to claim 3, wherein the side surface of the rod and the side surface of the valve housing are the pair of axially opposed surfaces.
  5.  前記一対の軸方向対向面は、軸方向に直交している請求項3に記載の弁。 The valve according to claim 3, wherein the pair of axially opposed surfaces are orthogonal to the axial direction.
  6.  前記屈曲部はクランク形状をなしている請求項1に記載の弁。 The valve according to claim 1, wherein said bend has a crank shape.
  7.  前記ロッドの有効受圧面積は前記弁の有効受圧面積と等しくなっている請求項1ないし6のいずれかに記載の弁。 The valve according to any one of claims 1 to 6, wherein the effective pressure-receiving area of said rod is equal to the effective pressure-receiving area of said valve.
PCT/JP2022/022911 2021-06-16 2022-06-07 Valve WO2022264876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529801A JPWO2022264876A1 (en) 2021-06-16 2022-06-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021100471 2021-06-16
JP2021-100471 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022264876A1 true WO2022264876A1 (en) 2022-12-22

Family

ID=84527404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022911 WO2022264876A1 (en) 2021-06-16 2022-06-07 Valve

Country Status (2)

Country Link
JP (1) JPWO2022264876A1 (en)
WO (1) WO2022264876A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010259A1 (en) * 2019-07-12 2021-01-21 イーグル工業株式会社 Capacity control valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010259A1 (en) * 2019-07-12 2021-01-21 イーグル工業株式会社 Capacity control valve

Also Published As

Publication number Publication date
JPWO2022264876A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
EP3835578B1 (en) Capacity control valve
KR102420987B1 (en) capacity control valve
EP3744978A1 (en) Capacity control valve
JP7162995B2 (en) capacity control valve
JP7114203B2 (en) capacity control valve
EP3677820A1 (en) Electromagnetic valve
EP3892856A1 (en) Displacement control valve
JP7341621B2 (en) capacity control valve
WO2020218284A1 (en) Capacity control valve
WO2022264876A1 (en) Valve
JP7237919B2 (en) capacity control valve
JP7391486B2 (en) capacity control valve
US12012948B2 (en) Capacity control valve
EP4219994A1 (en) Valve
WO2022131053A1 (en) Valve
EP4141302A1 (en) Capacity control valve
WO2022044880A1 (en) Valve
WO2022153950A1 (en) Valve
JP7289604B2 (en) capacity control valve
WO2020204135A1 (en) Capacity control valve
WO2022030312A1 (en) Valve
US20230279952A1 (en) Valve
WO2020204133A1 (en) Capacity control valve
EP3892855A1 (en) Displacement control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529801

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824868

Country of ref document: EP

Kind code of ref document: A1