WO2022264795A1 - Methane number estimation device, gas engine control device, and methane number estimation method - Google Patents

Methane number estimation device, gas engine control device, and methane number estimation method Download PDF

Info

Publication number
WO2022264795A1
WO2022264795A1 PCT/JP2022/021939 JP2022021939W WO2022264795A1 WO 2022264795 A1 WO2022264795 A1 WO 2022264795A1 JP 2022021939 W JP2022021939 W JP 2022021939W WO 2022264795 A1 WO2022264795 A1 WO 2022264795A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
methane number
gas
engine
gas engine
Prior art date
Application number
PCT/JP2022/021939
Other languages
French (fr)
Japanese (ja)
Inventor
浩明 坪川
真人 三橋
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Publication of WO2022264795A1 publication Critical patent/WO2022264795A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/02Engines characterised by means for increasing operating efficiency
    • F02B43/04Engines characterised by means for increasing operating efficiency for improving efficiency of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a device for estimating the methane number of gas fuel supplied to a gas engine, a control device for a gas engine including the device for estimating the methane number, and a method for estimating the methane number.
  • gas properties differ depending on the production area of natural gas.
  • a typical control device for controlling the operating state of a conventional gas engine has not been able to detect changes in gas properties (for example, methane number) of gas fuel supplied to the gas engine. Therefore, when the properties of the gas fuel supplied to the gas engine change, such as when switching the gas fuel, the gas engine deviates from the appropriate operating range, resulting in abnormal combustion such as knocking or misfiring. There is fear.
  • a valve is provided in the gas fuel supply system so that the plurality of gas fuels are not mixed up, and one of the plurality of gas fuels is selected. It has been the practice to supply gas engines exclusively with gas fuel. When switching the gas fuel, the gas engine is stopped, various parameters are changed so as to correspond to the new gas fuel, and then the gas engine is restarted. Since it is not preferable to operate the gas engine intermittently in terms of efficiency, it is desired to operate the gas engine continuously even when the gas fuel is switched.
  • Patent Document 1 a calorimeter that detects the calorific value of gas fuel supplied to the cylinder and a gas chromatograph that detects the composition of the gas fuel supplied to the cylinder calculate the methane number based on the detected value, It discloses changing the ignition timing based on the calculated methane number.
  • Special sensors such as calorimeters and gas chromatographs are not normally equipped with gas engines, so the installation and management of special sensors may increase the manufacturing cost and management cost of the gas engine. be.
  • an object of at least one embodiment of the present disclosure is to provide a methane number estimation device capable of estimating the methane number without using a special sensor during operation of the gas engine, a gas engine control device, and a methane number estimator.
  • the purpose is to provide a method for estimating the price.
  • a methane number estimation device includes: A methane number estimation device for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder, a first association information acquisition unit that acquires first association information in which ignition timing, knocking intensity, and methane number of supplied gas fuel are associated in advance in the gas engine; an ignition timing acquisition unit that acquires a target ignition timing that is the ignition timing in the target gas engine; a knocking intensity acquisition unit that acquires the target knocking intensity, which is the knocking intensity in a cycle including the target ignition timing of the target gas engine; a methane number estimating unit that estimates a methane number of the gas fuel supplied to the cylinder in the target gas engine from the target ignition timing and the target knocking intensity based on the first association information.
  • a gas engine control device includes: the methane number estimation device; an ignition timing control unit configured to control a target ignition timing, which is the ignition timing of the target gas engine, according to the methane number of the gas fuel estimated by the methane number estimation device.
  • a methane number estimation method includes: A methane number estimation method for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder, a first association information acquiring step unit for acquiring first association information in which the ignition timing, the knocking intensity, and the methane number of the supplied gas fuel are associated in advance in the gas engine; an ignition timing acquisition step of acquiring a target ignition timing, which is the ignition timing in the target gas engine; a knocking intensity acquisition step of acquiring the target knocking intensity, which is the knocking intensity in a cycle including the target ignition timing of the target gas engine; a methane number estimation step of estimating a methane number of the gas fuel supplied to the cylinder in the target gas engine from the target ignition timing and the target knocking intensity based on the first association information.
  • a methane number estimating device capable of estimating the methane number without using a special sensor during operation of the gas engine are provided.
  • FIG. 1 is a schematic configuration diagram of an engine system including a gas engine control device according to an embodiment of the present disclosure
  • FIG. 1 is a schematic configuration diagram of a gas fuel supply system in one embodiment of the present disclosure
  • FIG. 4 is a flow diagram of a methane number estimation method according to the first embodiment of the present disclosure
  • FIG. 4 is an explanatory diagram for explaining the relationship between knocking intensity and ignition timing in one cylinder
  • FIG. 4 is an explanatory diagram for explaining a method of estimating a methane number using a specific knocking intensity
  • FIG. 7 is a flow diagram of a methane number estimation method according to a second embodiment of the present disclosure
  • It is a figure which shows the relationship between the methane number and calorific value for every production center of gas fuel.
  • FIG. 10 is a flow diagram of a methane number estimation method according to a third embodiment of the present disclosure
  • FIG. 4 is a diagram showing changes in in-cylinder pressure with respect to crank angle
  • FIG. 4 is an explanatory diagram for explaining the relationship between the methane number of gas fuel supplied to the gas engine and the ignition timing of the gas engine;
  • expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained.
  • the shape including the part etc. shall also be represented.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • symbol may be attached
  • FIG. 1 is a schematic configuration diagram of an engine system including a gas engine control device according to an embodiment of the present disclosure.
  • a methane number estimating device 1 (1A, 1B, 1C) is a target gas engine 2 having at least one cylinder 21, which is a gas engine 2t. It is a device for estimating the methane number MNt.
  • the target gas engine 2t is the target gas engine 2 for which the methane number of the gas fuel supplied by the methane number estimation device 1 is estimated.
  • the word "target" or the symbol t may be attached to the parameters and the like for the target gas engine 2t in order to distinguish them from the gas engines 2 other than the target gas engine 2t.
  • the methane number estimation device 1 is mounted on a control device 3 that controls the operation and combustion of the gas engine 2 .
  • the engine system 4 injects gas fuel into the target gas engine 2t, the target control device 3t which is the control device 3 of the target gas engine 2t, and the cylinder 21 of the target gas engine 2t.
  • the target gas engine 2t has a plurality of cylinders 21.
  • the gas fuel injection device 41 and the ignition device 42 are individually provided for each cylinder 21 .
  • the target gas engine 2t(2) is configured to generate power by burning gas fuel inside.
  • the engine system 4 further comprises a generator 43 connected to the drive shaft 22 of the subject gas engine 2t.
  • the power generator 43 is configured to receive power generated by the target gas engine 2t via the drive shaft 22 and generate power using the power transmitted from the target gas engine 2t.
  • the engine system 4 includes a knocking sensor 44 provided for each cylinder 21 of the target gas engine 2t(2) and an in-cylinder pressure sensor 45 provided for each cylinder 21 of the target gas engine 2t(2).
  • the knocking sensor 44 and the in-cylinder pressure sensor 45 are measuring devices mounted on a normal gas engine.
  • the engine system 4 is not equipped with special sensors such as a calorimeter and a gas chromatograph.
  • the knocking sensor 44 is configured to generate electricity according to the vibration of the cylinder 21 to which it is attached.
  • the knocking sensor 44 vibrates a weight incorporated in the sensor according to the vibration of the cylinder 21 to which it is attached, and the vibration of the weight applies force to the piezoelectric element (piezoelectric ceramics) to generate electricity. Let When knocking occurs, the vibration is greater than normal, so the electric force generated by the piezoelectric element increases.
  • the target control device 3t(3) it is possible to detect whether or not knocking occurs in the cylinder 21 to which the knocking sensor 44 is mounted.
  • the in-cylinder pressure sensor 45 is configured to generate electricity according to the pressure inside the cylinder 21 to which it is attached.
  • the in-cylinder pressure sensor 45 uses a piezoelectric element, a strain gauge, or the like as a pressure detection element. By monitoring the electrical quantity generated by the in-cylinder pressure sensor 45 with the target control device 3t(3), the pressure inside the cylinder 21 to which the in-cylinder pressure sensor 45 is mounted can be monitored.
  • the target control device 3t(3) is composed of an engine control unit for controlling the operation of each device provided in the engine system 4 such as the target gas engine 2t, the gas fuel injection device 41, the ignition device 42, and the like.
  • the target control device 3t(3) includes an engine control unit 31, a combustion control unit 32, a combustion diagnosis unit 33, a gas fuel supply amount control unit 34, and an ignition timing control unit 35, as shown in FIG. , and the methane number estimation device 1 .
  • information regarding the operation of the target gas engine 2t is sent from each device included in the engine system 4, such as the target gas engine 2t, to each part of the target control device 3t (3) such as the methane number estimation device 1. ing.
  • the information about the operation of the target gas engine 2t includes, for example, the rotation speed of the target gas engine 2t, engine (generator 43) output, engine (generator 43) load, inlet pressure, outlet pressure, inlet temperature, outlet Temperature or pressure ratio, crank angle of cylinder 21, detection value of knocking sensor 44, detection value of in-cylinder pressure sensor 45, and the like are included.
  • the combustion diagnosis unit 33 is configured to be able to execute combustion diagnosis of each cylinder 21 in the target gas engine 2t based on information regarding the operation of the target gas engine 2t, such as the detection value of the knocking sensor 44 and the detection value of the in-cylinder pressure sensor 45. It is The combustion control unit 32 determines the gas fuel supplied to each cylinder 21 in the target gas engine 2t based on the result of the combustion diagnosis sent from the combustion diagnosis unit 33 and the information sent from each part of the target control device 3t(3). and the ignition timing of each cylinder 21 in the target gas engine 2t.
  • the gas fuel supply amount control unit 34 controls valves provided in the gas fuel supply system 5 so that the gas fuel supply amount determined by the combustion control unit 32 is supplied to each cylinder 21 in the target gas engine 2t. It is configured to control the opening and closing of the gas fuel injection device 41 .
  • the ignition timing control unit 35 is configured to control the ignition timing of the ignition device 42 so that the ignition device 42 ignites at the ignition timing determined by the combustion control unit 32 .
  • the engine control unit 31 is configured to control the operation and stop of the target gas engine 2t based on the information regarding the operation of the target gas engine 2t and the information sent from each part of the target control device 3t(3).
  • FIG. 2 is a schematic configuration diagram of a gas fuel supply system in one embodiment of the present disclosure.
  • the gas fuel supply system 5 includes a first gas fuel storage device (in the illustrated example, a gas fuel storage tank) 51 that stores a first gas fuel, and the first gas fuel A second gas fuel storage device (in the illustrated example, a gas fuel storage tank) 52 that stores a second gas fuel having a different methane number, and a target gas engine 2 t (specifically, from the first gas fuel storage device 51 , the first gas fuel supply line 53 for sending the first gas fuel to the gas fuel injection device 41) in the target gas engine 2t, and the second gas fuel storage device 52 to the target gas engine 2t (specifically , the second gas fuel supply line 54 for sending the second gas fuel to the gas fuel injection device 41) in the target gas engine 2t, and the supply source of the gas fuel sent to the target gas engine 2t, the first gas and a switching device 55 configured to be switchable between the fuel storage device 51 and the second gas
  • the second gas fuel supply line 54 joins the first gas fuel supply line 53 at the junction 56 .
  • the switching device 55 includes a first valve 551 provided on the upstream side (first gas fuel storage device 51 side) of the confluence portion 56 of the first gas fuel supply line 53 , and a second gas fuel supply line 54 . and a second valve 552 provided on the upstream side (second gas fuel storage device 52 side) of the confluence portion 56 of the gas.
  • Each of the first valve 551 and the second valve 552 moves a valve body that opens and closes the gas fuel supply path, thereby controlling the gas supplied to the downstream side (the target gas engine 2t side) of the valve body. It is possible to adjust the flow rate of fuel.
  • the gas fuel stored in the first gas fuel storage device 51 consists of the first liquefied gas.
  • the gas fuel stored in the second gas fuel storage device 52 is composed of a second liquefied gas having a methane number different from that of the first liquefied gas.
  • the gas fuel In the solid line portion in FIG. 2, the gas fuel is in a liquid state, and in the dotted line portion in FIG. 2, the gas fuel is in a gaseous state.
  • the first gas fuel supply line 53 is connected to the first valve 551 after the first liquefied gas extracted from the first gas fuel storage device 51 by the first pump 531 is vaporized by the first vaporization device 532 .
  • the second gas fuel supply line 54 is connected to the second valve 552 after the second liquefied gas extracted from the second gas fuel storage device 52 by the second pump 541 is vaporized by the second vaporizer 542 .
  • FIG. 3 is a flow diagram of a methane number estimation method according to the first embodiment of the present disclosure.
  • the methane number estimation method 100 according to some embodiments is a method for estimating the target methane number MNt described above.
  • the methane number estimation method 100 includes, as shown in FIG. 3, a first association information acquisition step S101, an ignition timing acquisition step S102, a knocking intensity acquisition step S103, and a methane number estimation step S104.
  • first correlation information acquisition step S101, ignition timing acquisition step S102, knocking intensity acquisition step S103, methane number estimation step S104 is performed by the estimation device 1 (1A).
  • the methane number estimation device 1 (1A) is configured to be able to execute a first association information acquisition step S101, an ignition timing acquisition step S102, a knocking intensity acquisition step S103, and a methane number estimation step S104. It is supposed to be done.
  • Some steps in the methane number estimation method 100 may be performed by a device or device other than the methane number estimation device 1 (1A), or may be performed manually.
  • first association information AI1 in which the ignition timing IT, the knocking intensity KI, and the methane number MN of the supplied gas fuel are associated in advance in the gas engine 2 can be acquired. done.
  • the first association information acquisition unit 11 executes the first association information acquisition step S101.
  • the first association information AI1 is created in advance and stored in the database section 46 prior to the first association information acquisition step S101.
  • the first association information acquisition section 11 acquires the first association information AI1 from the database section 46 .
  • the database unit 46 is provided outside the methane number estimation device 1 in the embodiment shown in FIG. 3, but is provided inside the methane number estimation device 1 in some other embodiments. may In addition, the database unit 46 may be provided inside the control device 3, or may be provided at a remote location from the gas engine 2 and the control device 3, and communicated with the methane number estimation device 1 via a network line or the like. It may be provided so as to be communicable.
  • the first association information AI1 indicates the correspondence between the ignition timing IT in the gas engine 2, the knocking intensity KI in the gas engine 2, and the methane number MN of the gas fuel supplied to the gas engine 2. It is sufficient if the methane number MN corresponding to the ignition timing IT and the knocking intensity KI, which are the input information, can be obtained as the output information when the ignition timing IT and the knocking intensity KI are used as input information.
  • the target ignition timing ITt which is the ignition timing IT in the target gas engine 2t
  • the ignition timing obtaining section 12 executes the ignition timing obtaining step S102.
  • the ignition timing acquisition unit 12 acquires the target ignition timing ITt from the combustion control unit 32, the ignition timing control unit 35, and the like.
  • the target knocking intensity KIt which is the knocking intensity KI in the cycle including the target ignition timing ITt of the target gas engine 2t, is acquired.
  • the knocking intensity acquiring section 13 executes the knocking intensity acquiring step S103.
  • the target knocking intensity KIt is calculated by a known method using parameters generally measured in the engine system 4 (for example, the detected value of the knocking sensor 44 and the detected value of the in-cylinder pressure sensor 45).
  • the knocking intensity acquisition unit 13 acquires the detection value of the knocking sensor 44 and the detection value of the in-cylinder pressure sensor 45, and from the detection values of the knocking sensor 44, the horizontal axis is the crank angle and the vertical axis is pressure. form a waveform that The knocking intensity acquisition unit 13 uses the detected value of the in-cylinder pressure sensor 45 to remove the low-frequency component from the above waveform, and then uses the maximum pressure amplitude in each cycle as the target knocking intensity KIt. Note that when the combustion diagnosis unit 33 calculates the target knocking intensity KIt, the knocking intensity acquisition unit 13 may acquire the target knocking intensity KIt calculated by the combustion diagnosis unit 33 .
  • the target methane number MNt is estimated from the target ignition timing ITt and the target knocking intensity KIt based on the above-described first association information AI1.
  • the methane number estimation unit 14 executes the methane number estimation step S104. Specifically, the methane number estimation unit 14, based on the first association information AI1 acquired by the first association information acquisition unit 11, the target ignition timing ITt acquired by the ignition timing acquisition unit 12 and the knocking intensity acquisition unit A target methane number MNt is estimated from the target knocking intensity KIt obtained by 13 .
  • the target ignition timing can be estimated from ITt and the target knocking intensity KIt.
  • the ignition timing IT and the knocking intensity KI can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above method, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
  • the above-described methane number estimation device 1 (1A) includes, as shown in FIG. Based on an ignition timing acquiring unit 12 that acquires the target ignition timing ITt, a knocking intensity acquiring unit 13 that acquires the target knocking intensity KIt in the cycle including the above-described target ignition timing ITt, and the above-described first association information AI1. , and a methane number estimation unit 14 for estimating a target methane number MNt from the target ignition timing ITt and the target knocking intensity KIt.
  • the target ignition timing can be estimated from ITt and the target knocking intensity KIt.
  • the ignition timing IT and the knocking intensity KI can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above configuration, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
  • FIG. 4 is an explanatory diagram for explaining the relationship between knocking intensity and ignition timing in one cylinder.
  • FIG. 5 is an explanatory diagram for explaining a methane number estimation method using a specific knocking intensity.
  • the above-described methane number estimating unit 14 (methane number estimating step S104), as shown in FIG. From the target ignition timing ITt1 in the cycle including the target knocking intensity KIt1 when reaching the knocking intensity KIs of and the target knocking intensity KIt1 when reaching the specific knocking intensity KIs, based on the first association information AI1, the target The methane number (target methane number MNt) of the gas fuel supplied to the cylinder 21 in the gas engine 2t is estimated.
  • FIG. 4 shows changes in knocking intensity KI and ignition timing IT with respect to time T of one cylinder 21 under constant load conditions in which the target engine load ELt of the target gas engine 2t is constant.
  • the knocking intensity KI amplitude width
  • the knocking intensity KI gradually increases and exceeds a specific knocking intensity KIs.
  • the horizontal axis represents the ignition timing IT of one cylinder 21 of the target gas engine 2t, and the knocking intensity KI of the one cylinder 21 of the target gas engine 2t.
  • a graph with a vertical axis is shown. The above graph includes a first curve C1 showing the relationship between the ignition timing IT and the knocking intensity KI for a gaseous fuel having a first methane number, and a gas fuel having a second methane number higher than the first methane number.
  • a second curve C2 representing the relationship between ignition timing IT and knocking intensity KI in fuel is shown.
  • the first curve C1 and the second curve C2 are included in the first association information AI1 described above.
  • the methane number estimating section 14 (methane number estimating step S104) described above continues until the target knocking intensity KIt reaches a specific knocking intensity KIs in one cylinder 21 of the target gas engine 2t.
  • the ignition timing controller 35 is instructed to advance the target ignition timing ITt from the set ignition timing ITs set in advance.
  • the methane number estimating unit 14 (methane number estimating step S104) described above performs the target A knocking intensity KIt1 and a target ignition timing ITt1 are obtained.
  • the specific knocking intensity KIs As the specific knocking intensity KIs is set higher, the difference in the target ignition timing ITt for each gas fuel can be increased. Therefore, the accuracy of estimating the target methane number MNt can be improved, but the possibility of knocking may increase. . According to the above configuration, by estimating the target methane number MNt using the target knocking intensity KIt1 and the target ignition timing ITt1 in the cycle in which the specific knocking intensity KIs is reached, knocking of the target gas engine 2t is suppressed, The target methane number MNt can be estimated with high accuracy.
  • the target methane number MNt estimated by the methane number estimation unit 14 is sent to the combustion control unit 32 .
  • the combustion control unit 32 determines the ignition timing of each cylinder 21 in the target gas engine 2t based on the target methane number MNt estimated by the methane number estimation unit 14 .
  • the ignition timing control unit 35 adjusts the ignition timing of the ignition device 42 based on the target methane number MNt estimated by the methane number estimation unit 14 so that the ignition device 42 ignites at the ignition timing determined by the combustion control unit 32. configured to control. That is, the ignition timing control section 35 is configured to control the target ignition timing ITt according to the target methane number MNt estimated by the methane number estimating section 14 .
  • At least one of the methane number estimating device 1 and the control device 3 calculates the target methane number MNt estimated by the methane number estimating unit 14 in one cylinder 21 of the target gas engine 2t. may be reflected in other cylinders 21 than the one cylinder 21 described above. In this case, the influence of performance change of the target gas engine 2t when estimating the target methane number MNt can be reduced.
  • the methane number estimation device 1 may estimate the target methane number MNt for each cylinder 21 of the target gas engine 2t. In this case, an appropriate target methane number MNt can be estimated for each cylinder 21, so that variations in combustion for each cylinder 21 can be suppressed.
  • FIG. 6 is a flow diagram of a methane number estimation method according to the second embodiment of the present disclosure.
  • the methane number estimation method 200 according to some embodiments is a method for estimating the target methane number MNt described above.
  • the methane number estimation method 200 includes, as shown in FIG. 6, a second association information acquisition step S201, an engine load acquisition step S202, a gas supply amount acquisition step S203, and a methane number estimation step S204. .
  • some steps in the methane number estimation method 200 is performed by the value estimation device 1 (1B).
  • the methane number estimation device 1 (1B) is configured to be able to execute a second association information acquisition step S201, an engine load acquisition step S202, a gas supply amount acquisition step S203, and a methane number estimation step S204. is to be performed.
  • Some steps in the methane number estimation method 200 may be performed by a device or device other than the methane number estimation device 1 (1B), or may be performed manually.
  • the second association information AI2 in which the engine load EL, the gas supply amount FS of the gas fuel to be supplied, and the methane number MN of the gas fuel in the gas engine 2 are associated in advance is obtained. Acquisition is done.
  • the second association information acquisition unit 61 executes the second association information acquisition step S201.
  • the second association information AI2 is created in advance and stored in the database unit 46 prior to the second association information acquisition step S201.
  • the second association information acquisition section 61 acquires the second association information AI2 from the database section 46 .
  • the second association information AI2 is between the engine load EL in the gas engine 2, the gas supply amount FS of the gas fuel supplied to the gas engine 2, and the methane number MN of the gas fuel supplied to the gas engine 2.
  • the methane number MN corresponding to the input information ie, the engine load EL and the gas supply amount FS, can be obtained as output information. If it is
  • FIG. 7 is a diagram showing the relationship between the methane number and the calorific value for each production area of gas fuel.
  • FIG. 7 shows a graph in which the horizontal axis is the calorific value and the vertical axis is the methane number, and the gas fuel is plotted for each production area on this graph. As shown in FIG. 7, the methane number tends to decrease as the calorific value increases.
  • FIG. 8 is a diagram showing the relationship between the engine load in the gas engine for each gas fuel and the gas supply amount of the gas fuel supplied to the gas engine.
  • FIG. 8 shows a graph in which the horizontal axis represents the engine load in the gas engine and the vertical axis represents the gas supply amount of the gas fuel supplied to the gas engine.
  • the graph includes a first straight line SL1 indicating the relationship between the engine load and the gas supply amount in a gas fuel having a first methane number, and a second methane number higher than the first methane number. and a second straight line SL2 showing the relationship between the engine load and the gas supply amount in gas fuel.
  • the amount of gas supplied tends to increase as the engine load increases.
  • the second association information AI2 includes information indicating the correlation between the gas supply amount, the calorific value, and the methane number.
  • the target engine load ELt which is the engine load EL of the target gas engine 2t
  • the engine load acquisition unit 62 executes the engine load acquisition step S202.
  • the engine load acquisition unit 62 includes the target gas engine 2t, the generator 43 connected to the target gas engine 2t so as to be able to transmit power, sensors normally attached to the target gas engine 2t, the engine control unit 31, the combustion control unit 32, and the like. acquires the target engine load ELt from.
  • the engine load EL and the target engine load ELt may be the load of a generator connected to the gas engine 2 so as to be able to transmit power.
  • the load of the generator 43 described above may be acquired as the target engine load ELt.
  • the target gas supply amount FSt which is the gas supply amount FS during the period in which the target engine load ELt of the target gas engine 2t is acquired, is acquired.
  • the gas supply amount acquisition unit 63 executes the gas supply amount acquisition step S203.
  • the gas supply amount acquisition unit 63 acquires the target gas supply amount FSt from the target gas engine 2t, a sensor normally attached to the target gas engine 2t, the combustion control unit 32, the gas fuel supply amount control unit 34, and the like.
  • the target methane number MNt is estimated from the target engine load ELt and the target gas supply amount FSt based on the above-described second association information AI2.
  • the methane number estimation unit 64 performs the methane number estimation step S204. Specifically, the methane number estimation unit 64 acquires the target engine load ELt and the gas supply amount acquired by the engine load acquisition unit 62 based on the second association information AI2 acquired by the second association information acquisition unit 61. A target methane number MNt is estimated from the target gas supply amount FSt acquired by the unit 63 .
  • the target engine The target methane number MNt can be estimated from the load ELt and the target gas supply amount FSt.
  • the engine load EL and the gas supply amount FS can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above method, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
  • the above-described methane number estimation device 1 (1B) includes, as shown in FIG. a gas supply amount acquisition unit 63 for acquiring the target gas supply amount FSt during the period in which the above-described target engine load ELt was acquired; and the above-described second association information AI2. and a methane number estimation unit 64 for estimating the target methane number MNt from the target engine load ELt and the target gas supply amount FSt based on.
  • the target engine The target methane number MNt can be estimated from the load ELt and the target gas supply amount FSt.
  • the engine load EL and the gas supply amount FS can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above configuration, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
  • FIG. 9 is a flow diagram of a methane number estimation method according to the third embodiment of the present disclosure.
  • the methane number estimation method 300 according to some embodiments is a method for estimating the target methane number MNt described above.
  • the methane number estimation method 300 includes, as shown in FIG. and a value estimation step S305.
  • the methane number estimation method 300 is performed by the methane number estimation device 1 (1C).
  • the methane number estimation device 1 (1C) is configured to be able to execute a third association information acquisition step S301, a heat release amount acquisition step S302, a supply amount acquisition step S303, a lower calorific value calculation step S304, and a methane number estimation step S305. are designed to perform these steps.
  • Some steps in the methane number estimation method 300 may be performed by a device or device other than the methane number estimation device 1 (1C), or may be performed manually.
  • third association information AI3 in which the lower heating value LHV and the methane number MN of the supplied gas fuel are associated in advance is acquired.
  • the third association information acquisition unit 71 executes the third association information acquisition step S301.
  • the third association information AI3 is created in advance and stored in the database section 46 prior to the third association information acquisition step S301.
  • the third association information acquisition section 71 acquires the third association information AI3 from the database section 46 .
  • the third association information AI3 indicates the correspondence between the lower calorific value LHV in the gas engine 2 and the methane number MN of the gas fuel supplied to the gas engine 2, and the lower calorific value LHV is input. Any information may be used as long as the methane number MN corresponding to the lower heating value LHV, which is input information, can be obtained as output information.
  • the target heat release amount QCt which is the heat release amount QC per cycle in the target gas engine 2t, is acquired.
  • the heat release amount acquisition unit 72 executes the heat release amount acquisition step S302.
  • FIG. 10 is a diagram showing changes in in-cylinder pressure with respect to crank angle.
  • FIG. 10 shows a graph in which the horizontal axis is the crank angle ⁇ and the vertical axis is the in-cylinder pressure.
  • This graph shows a waveform PCA formed from the average value of the detection values of the plurality of in-cylinder pressure sensors 45 when the target gas engine 2t burns the gas fuel, and a waveform PCA when the target gas engine 2t does not burn the gas fuel.
  • a waveform PCM formed from the detected value of the in-cylinder pressure sensor 45 is shown.
  • the heat release amount acquisition unit 72 derives the target heat release amount QCt per cycle from the waveform formed from the detection value of the in-cylinder pressure sensor 45 .
  • the target heat release amount QCt per cycle can be derived by a known method from changes in the cylinder internal pressure and changes in the internal volume of the cylinder 21 per cycle.
  • the heat release rate for each crank angle ⁇ is derived from changes in the cylinder internal pressure and the change in the internal volume of the cylinder 21 per cycle, and by integrating the heat release rate for each crank angle ⁇ , A target heat release amount QCt per cycle is calculated.
  • the target supply amount MFt which is the supply amount MF per cycle of the gas fuel supplied to the target gas engine 2t during the period in which the target heat release amount QCt is acquired.
  • the supply amount acquisition unit 73 executes the supply amount acquisition step S303.
  • the supply amount acquisition unit 73 acquires the target supply amount MFt from the target gas engine 2t, a sensor normally attached to the target gas engine 2t, the combustion control unit 32, the gas fuel supply amount control unit 34, and the like.
  • the target lower calorific value LHVt which is the lower calorific value LHV in the target gas engine 2t, is calculated from the target heat release quantity QCt and the target supply quantity MFt.
  • the lower heating value calculator 74 executes the lower heating value calculation step S304.
  • the lower heating value calculation unit 74 uses the following equation (1) to determine the target heat release amount QCt acquired by the heat release amount acquisition unit 72 and the target heat release amount QCt acquired by the supply amount acquisition unit 73
  • a target lower heating value LHVt is calculated from the supply amount MFt.
  • LHVt (QCt+Qhl)/MFt (1)
  • Qhl in the above formula (1) is heat loss and may be a constant.
  • the lower heating value calculation unit 74 acquires the target lower heating value LHVt estimated by using a filter such as a Kalman filter on the target lower heating value LHVt calculated by the above equation (1). It may be the target lower heating value LHVt.
  • FIG. 11 is a diagram showing the relationship between the lower heating value and the methane number of gas fuel.
  • FIG. 11 is a graph in which the horizontal axis is the lower heating value LHV and the vertical axis is the methane number MN of the gas fuel. This graph plots the gas fuel for each production area and shows the regression line RL formed from the plot. As shown in FIG. 11, the methane number tends to decrease as the lower heating value LHV increases.
  • the target methane number MNt is estimated from the target lower heating value LHVt based on the above-described third association information AI3.
  • the methane number estimation unit 75 performs the methane number estimation step S305. Specifically, the methane number estimating unit 75, based on the third association information AI3 acquired by the third association information acquisition unit 71, from the target lower heating value LHVt calculated by the lower heating value calculation unit 74, the target Estimate the methane number MNt.
  • the target methane number MNt can be estimated.
  • the lower heating value LHV can be calculated from the heat release amount QC and the supply amount MF, which can be obtained from a sensor or the like that is normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above method, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
  • the above-described methane number estimation device 1 (1C) includes, as shown in FIG. a heat release amount acquisition unit 72 for acquiring the target heat release amount QCt, a supply amount acquisition unit 73 for acquiring the target supply amount MFt during the period in which the above-described target heat release amount QCt is acquired, and the above-described target heat release amount QCt and a lower heating value calculation unit 74 that calculates the target lower heating value LHVt from the above-described target supply amount MFt, and the target methane number MNt is estimated from the target lower heating value LHVt based on the above-described third association information AI3. and a methane number estimator 75 that
  • the target methane number MNt can be estimated.
  • the lower heating value LHV can be calculated from the heat release amount QC and the supply amount MF, which can be obtained from a sensor or the like normally mounted on the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above configuration, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
  • Each of the first association information AI1, the second association information AI2, and the third association information AI3 includes a list, a table, a map, a function, and a machine learning including models of Each of the first association information AI1, the second association information AI2, and the third association information AI3 may be created based on steady-state test data, past actual values other than steady-state test data, experimental values, It may be created based on numerical analysis results and the like.
  • Each of the above-described first association information AI1, second association information AI2, and third association information AI3 is obtained not only from the information acquired from the target gas engine 2t, but also from the gas engines 2 other than the target gas engine 2t. may contain information that is Further, each of the first association information AI1, the second association information AI2, and the third association information AI3 does not include information acquired from the target gas engine 2t, and is acquired from the gas engine 2 other than the target gas engine 2t. may contain only information that is In these cases, it is desirable that the gas engines 2 other than the target gas engine 2t whose information is to be acquired are of the same or similar model as the target gas engine 2t.
  • the control device 3 of the gas engine 2 according to some embodiments, as shown in FIG. and an ignition timing control unit 35 configured to control the target ignition timing ITt, which is the ignition timing IT of the target gas engine 2t, according to the target methane number MNt of the gas fuel.
  • FIG. 12 is an explanatory diagram for explaining the relationship between the methane number of gas fuel supplied to the gas engine and the ignition timing of the gas engine.
  • the higher the methane number MN the more the ignition timing IT can be advanced.
  • the ignition timing control unit 35 advances the target ignition timing ITt by that amount, and when the target methane number MNt decreases, advances the target ignition timing ITt by that amount. is retarded, it is possible to operate the target gas engine 2t with high efficiency.
  • the control device 3 of the gas engine 2 causes the ignition timing control unit 35 to adjust the ignition timing of the target gas engine 2t according to the methane number MNt of the gas fuel estimated by the methane number estimation device 1.
  • the target ignition timing ITt which is IT
  • the methane number MNt of the gas fuel can be continuously estimated and the target ignition timing ITt can be continuously adjusted when switching the gas fuel. Efficient continuous operation is possible.
  • the methane number estimating device 1 is configured such that the supplied gas fuel is a mixed gas of the first boil-off gas and the vaporized gas of the first liquefied gas, the vaporized gas of the second liquefied gas and the second boil-off gas.
  • the target methane number can be estimated for any of a mixed gas of gases, or a mixed gas of a vaporized gas obtained by vaporizing the first liquefied gas and a vaporized gas obtained by vaporizing the second liquefied gas. Therefore, the target gas engine 2t equipped with the control device 3 can be operated continuously with high efficiency even when the above-described mixed gas is supplied as gas fuel.
  • control device 3 and the methane number estimation device 1 (1A, 1B, 1C) described above may be configured by a computer (microcomputer) including a processor, a memory (RAM), an auxiliary storage unit, an interface, and the like. .
  • the processing contents of the control device 3 and the methane number estimation device 1 (1A, 1B, 1C) may be implemented as a program executed by a processor and stored in an auxiliary storage unit.
  • the processing contents of the methane number estimation device 1 (1A, 1B, 1C) are implemented as a program executed by a processor mounted on the control device 3, and stored in an auxiliary storage unit mounted on the control device 3. may be During program execution, these programs are expanded in memory.
  • the processor is adapted to read the program from memory and execute the instructions contained in the program.
  • a methane number estimation device (1A(1)) for estimating the methane number (MNt) of gas fuel supplied to a target gas engine (2t), which is a gas engine (2) having at least one cylinder (21), First obtaining first association information (AI1) in which ignition timing (IT), knocking intensity (KI), and methane number (MN) of supplied gas fuel are associated in advance in a gas engine (2) an association information acquisition unit (11) of an ignition timing acquisition unit (12) that acquires a target ignition timing (ITt) that is the ignition timing (IT) in the target gas engine (2t); a knocking intensity acquisition unit (13) for acquiring a target knocking intensity (KIt) that is the knocking intensity (KI) in a cycle including the target ignition timing (ITt) of the target gas engine (2t); The gas fuel supplied to the cylinder (21) in the target gas engine (2t) from the target ignition timing (ITt) and the target knocking intensity (KIt) based on
  • the target methane number MNt (the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) can be estimated from the target ignition timing (ITt) and the target knocking intensity (KIt).
  • the ignition timing (IT) and the knocking intensity (KI) can be obtained from a sensor or the like that is normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above configuration 1), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
  • the methane number estimation device (1A) according to 1) above, The methane number estimation unit (14) Under constant load conditions in which the engine load (ELt) of the target gas engine (2t) is constant, the target knocking intensity (KIt1) when the specific knocking intensity is reached, and the target knocking intensity (KIt1) when the specific knocking intensity is reached supplied to the cylinder (21) in the target gas engine (2t) from the target ignition timing (ITt1) in the cycle including the target knocking intensity (KIt1) based on the first association information (AI1) Estimate the methane number (MNt) of the gas fuel.
  • the engine load (ELt) of the target gas engine (2t) is constant, the target knocking intensity (KIt1) when the specific knocking intensity is reached, and the target knocking intensity (KIt1) when the specific knocking intensity is reached supplied to the cylinder (21) in the target gas engine (2t) from the target ignition timing (ITt1) in the cycle including the target knocking intensity (KIt1) based on the first association information (AI1) Estimate the
  • the target methane number (MNt) As the specific knocking intensity is set higher, the difference in the target ignition timing (ITt1) for each gas fuel can be increased, so the accuracy of estimating the target methane number (MNt) can be improved, but the possibility of knocking increases. There is fear.
  • the target methane number (MNt) by estimating the target methane number (MNt) using the target knocking intensity (KIt1) and the target ignition timing (ITt1) in the cycle in which the specific knocking intensity is reached, the target gas engine ( 2t), while suppressing the knocking, the target methane number (MNt) can be estimated with high accuracy.
  • a methane number estimation device (1B(1)) for estimating the methane number (MNt) of gas fuel supplied to a target gas engine (2t), which is a gas engine (2) having at least one cylinder (21), Second association information (AI2) in which the engine load (EL), the gas supply amount (FS) of the gas fuel to be supplied, and the methane number (MN) of the gas fuel are associated in advance in the gas engine (2), a second association information acquisition unit (61) that acquires an engine load acquisition unit (62) that acquires a target engine load (ELt) that is the engine load (EL) in the target gas engine (2t); a gas supply amount acquisition unit (63) for acquiring a target gas supply amount (FSt), which is the gas supply amount (FS) during the period in which the target engine load (ELt) of the target gas engine (2t) was acquired; The gas supplied to the cylinder (21) in the target gas engine (2t) from the target engine load (EL
  • the second association indicating the relationship between the engine load (EL), the gas supply amount (FS) of the gas fuel to be supplied, and the methane number (MN) is calculated from the target engine load (ELt) and the target gas supply amount (FSt). can be estimated.
  • the engine load (EL) and the gas supply amount (FS) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above configuration 3), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
  • a methane number estimation device (1C(1)) according to at least one embodiment of the present disclosure, A methane number estimation device (1C) for estimating the methane number (MNt) of gas fuel supplied to a target gas engine (2t), which is a gas engine (2) having at least one cylinder (21), A third association information acquisition unit that acquires third association information (AI3) in which the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel are associated in advance in the gas engine (2).
  • a target gas engine (2t) which is a gas engine (2) having at least one cylinder (21)
  • a third association information acquisition unit that acquires third association information (AI3) in which the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel are associated in advance in the gas engine (2).
  • a heat release amount acquisition unit (72) for acquiring a target heat release amount (QCt), which is a heat release amount (QC) per cycle in the target gas engine (2t);
  • Supply amount acquisition for acquiring a target supply amount (MFt), which is a supply amount (MF) per cycle of the gas fuel supplied to the target gas engine (2t) during the period in which the target heat release amount (QCt) was acquired a part (73);
  • the third association information (AI3) indicating the relationship between the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel in the gas engine (2) is used.
  • the target methane number (MNt, the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) can be estimated from the target lower heating value (LHVt).
  • the lower heating value (LHV) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t) from the heat release amount (QC) and the supply amount (MF). can be calculated. Therefore, according to the above configuration 4), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
  • a control device (3) for a gas engine (2) according to at least one embodiment of the present disclosure A methane number estimation device (1 (1A, 1B, 1C)) according to any one of 1) to 4) above;
  • the target ignition timing (ITt), which is the ignition timing (IT) of the target gas engine (2t) is controlled according to the methane number (MNt) of the gas fuel estimated by the methane number estimation device (1).
  • an ignition timing control unit (35) configured as follows.
  • the methane number (MNt) of the gas fuel can be continuously estimated when switching the gas fuel, and the target ignition timing (ITt) can be continuously adjusted, so when switching the gas fuel, the target gas engine (2t) Continuous operation with high efficiency is possible without stopping the
  • the methane number (target methane number MNt) of the gas fuel supplied to the cylinder (21) in the target gas engine (2t) is calculated from the target ignition timing (ITt) and target knocking intensity (KIt).
  • the ignition timing (IT) and the knocking intensity (KI) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above method 6), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
  • the second association indicating the relationship between the engine load (EL), the gas supply amount (FS) of the gas fuel supplied, and the methane number (MN) is calculated from the target engine load (ELt) and the target gas supply amount (FSt). can be estimated.
  • the engine load (EL) and the gas supply amount (FS) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above method 7), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
  • AI3 third association information
  • the third association information (AI3) indicating the relationship between the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel in the gas engine (2) is used.
  • the target methane number (MNt, the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) can be estimated from the target lower heating value (LHVt).
  • the lower heating value (LHV) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t) from the heat release amount (QC) and the supply amount (MF). can be calculated. Therefore, according to the above method 8), the target methane number (MNt) can be estimated during operation of the target gas engine (2t) without using a special sensor such as a calorimeter.

Abstract

This methane number estimation device estimates a methane number of gas fuel supplied to a gas engine of interest, and is provided with: a first association information acquisition unit that acquires first association information in which ignition timing, knocking strength, and a methane number of supplied gas fuel in the gas engine are associated with each other in advance; an ignition timing acquisition unit that acquires ignition timing of interest representing ignition timing in the gas engine of interest; a knocking strength acquisition unit that acquires a knocking strength of interest representing a knocking strength in a cycle including the ignition timing of interest of the gas engine of interest; and a methane number estimation unit that estimates a methane number of the gas fuel supplied to a cylinder of the gas engine of interest, from the ignition timing of interest and the knocking strength of interest, on the basis of the first association information.

Description

メタン価の推定装置、ガスエンジンの制御装置およびメタン価の推定方法Methane number estimation device, gas engine controller, and method for estimating methane number
 本開示は、ガスエンジンに供給されるガス燃料のメタン価の推定装置、該メタン価の推定装置を備えるガスエンジンの制御装置、およびメタン価の推定方法に関する。
 本願は、2021年6月16日に日本国特許庁に出願された特願2021-100293号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a device for estimating the methane number of gas fuel supplied to a gas engine, a control device for a gas engine including the device for estimating the methane number, and a method for estimating the methane number.
This application claims priority based on Japanese Patent Application No. 2021-100293 filed with the Japan Patent Office on June 16, 2021, the contents of which are incorporated herein.
 例えば、天然ガスの産地ごとにガス性状(例えば、メタン価)が異なることが知られている。従来のガスエンジンの運転状態を制御する一般的な制御装置は、ガスエンジンに供給されるガス燃料のガス性状(例えば、メタン価)の変化を捉えることができなかった。このため、ガス燃料の切り替え時などのような、ガスエンジンに供給されるガス燃料のガス性状が変化したときに、ガスエンジンの適切な運転領域から外れて、ノッキングや失火などの異常燃焼が生じる虞がある。 For example, it is known that gas properties (eg, methane number) differ depending on the production area of natural gas. A typical control device for controlling the operating state of a conventional gas engine has not been able to detect changes in gas properties (for example, methane number) of gas fuel supplied to the gas engine. Therefore, when the properties of the gas fuel supplied to the gas engine change, such as when switching the gas fuel, the gas engine deviates from the appropriate operating range, resulting in abnormal combustion such as knocking or misfiring. There is fear.
 上記ガスエンジンにおいて、メタン価の異なる複数のガス燃料を使用する場合には、複数のガス燃料が混同しないように、ガス燃料の供給系統に弁を設けて、複数のガス燃料のうちの1つのガス燃料のみをガスエンジンに供給することが行われていた。ガス燃料を切り替える際には、ガスエンジンを停止し、新たなガス燃料に対応するように各種パラメータを変更した後に、ガスエンジンを再起動させていた。ガスエンジンを断続運転することは効率上好ましくはないため、ガス燃料を切り替える際にもガスエンジンを連続運転させることが望まれている。 In the above gas engine, when using a plurality of gas fuels with different methane values, a valve is provided in the gas fuel supply system so that the plurality of gas fuels are not mixed up, and one of the plurality of gas fuels is selected. It has been the practice to supply gas engines exclusively with gas fuel. When switching the gas fuel, the gas engine is stopped, various parameters are changed so as to correspond to the new gas fuel, and then the gas engine is restarted. Since it is not preferable to operate the gas engine intermittently in terms of efficiency, it is desired to operate the gas engine continuously even when the gas fuel is switched.
 ガス燃料を切り替える際にもガスエンジンを連続運転させるための方策として、ガス燃料を切り替える前にガスエンジンにおけるガス燃料の点火時期を安全側に変更することが考えられる。この場合には、ガスエンジンの出力や燃費性能の低下を招く虞がある。よって、ガスエンジンに供給されるガス燃料のガス性状(例えば、メタン価)の変化を取得することが望まれている。 As a measure to keep the gas engine running continuously even when switching the gas fuel, it is conceivable to change the ignition timing of the gas fuel in the gas engine to the safe side before switching the gas fuel. In this case, there is a possibility that the output of the gas engine and the fuel consumption performance will be lowered. Therefore, it is desired to acquire changes in gas properties (eg, methane number) of gas fuel supplied to gas engines.
特許第6002235号公報Japanese Patent No. 6002235
 特許文献1には、気筒に供給されるガス燃料の発熱量を検出するカロリーメータや、気筒に供給されるガス燃料の組成を検出するガスクロマトグラフィなどの検出値に基づいてメタン価を算出し、算出したメタン価に基づいて点火時期を変更することが開示されている。カロリーメータやガスクロマトグラフィなどの特別なセンサは、通常のガスエンジンに備えられた機器ではないため、特別なセンサの設置や管理のためにガスエンジンの製造コストや管理コストの増大化を招く虞がある。 In Patent Document 1, a calorimeter that detects the calorific value of gas fuel supplied to the cylinder and a gas chromatograph that detects the composition of the gas fuel supplied to the cylinder calculate the methane number based on the detected value, It discloses changing the ignition timing based on the calculated methane number. Special sensors such as calorimeters and gas chromatographs are not normally equipped with gas engines, so the installation and management of special sensors may increase the manufacturing cost and management cost of the gas engine. be.
 上述した事情に鑑みて、本開示の少なくとも一実施形態の目的は、ガスエンジンの運転時に、特別なセンサを用いることなくメタン価を推定可能なメタン価の推定装置、ガスエンジンの制御装置およびメタン価の推定方法を提供することにある。 In view of the circumstances described above, an object of at least one embodiment of the present disclosure is to provide a methane number estimation device capable of estimating the methane number without using a special sensor during operation of the gas engine, a gas engine control device, and a methane number estimator. The purpose is to provide a method for estimating the price.
 本開示の一実施形態にかかるメタン価の推定装置は、
 少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定装置であって、
 ガスエンジンにおける、点火時期とノッキング強度と供給されるガス燃料のメタン価とが予め関連付けられた第1の関連付け情報、を取得する第1の関連付け情報取得部と、
 前記対象ガスエンジンにおける前記点火時期である対象点火時期を取得する点火時期取得部と、
 前記対象ガスエンジンの前記対象点火時期を含むサイクルにおける前記ノッキング強度である対象ノッキング強度を取得するノッキング強度取得部と、
 前記第1の関連付け情報に基づいて、前記対象点火時期および前記対象ノッキング強度から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定部と、を備える。
A methane number estimation device according to an embodiment of the present disclosure includes:
A methane number estimation device for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
a first association information acquisition unit that acquires first association information in which ignition timing, knocking intensity, and methane number of supplied gas fuel are associated in advance in the gas engine;
an ignition timing acquisition unit that acquires a target ignition timing that is the ignition timing in the target gas engine;
a knocking intensity acquisition unit that acquires the target knocking intensity, which is the knocking intensity in a cycle including the target ignition timing of the target gas engine;
a methane number estimating unit that estimates a methane number of the gas fuel supplied to the cylinder in the target gas engine from the target ignition timing and the target knocking intensity based on the first association information.
 本開示の一実施形態にかかるガスエンジンの制御装置は、
 前記メタン価の推定装置と、
 前記メタン価の推定装置で推定された前記ガス燃料のメタン価に応じて、前記対象ガスエンジンの点火時期である対象点火時期を制御するように構成された点火時期制御部と、を備える。
A gas engine control device according to an embodiment of the present disclosure includes:
the methane number estimation device;
an ignition timing control unit configured to control a target ignition timing, which is the ignition timing of the target gas engine, according to the methane number of the gas fuel estimated by the methane number estimation device.
 本開示の一実施形態にかかるメタン価の推定方法は、
 少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定方法であって、
 ガスエンジンにおける、点火時期とノッキング強度と供給されるガス燃料のメタン価とが予め関連付けられた第1の関連付け情報、を取得する第1の関連付け情報取得ステップ部と、
 前記対象ガスエンジンにおける前記点火時期である対象点火時期を取得する点火時期取得ステップと、
 前記対象ガスエンジンの前記対象点火時期を含むサイクルにおける前記ノッキング強度である対象ノッキング強度を取得するノッキング強度取得ステップと、
 前記第1の関連付け情報に基づいて、前記対象点火時期および前記対象ノッキング強度から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定ステップと、を備える。
A methane number estimation method according to an embodiment of the present disclosure includes:
A methane number estimation method for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
a first association information acquiring step unit for acquiring first association information in which the ignition timing, the knocking intensity, and the methane number of the supplied gas fuel are associated in advance in the gas engine;
an ignition timing acquisition step of acquiring a target ignition timing, which is the ignition timing in the target gas engine;
a knocking intensity acquisition step of acquiring the target knocking intensity, which is the knocking intensity in a cycle including the target ignition timing of the target gas engine;
a methane number estimation step of estimating a methane number of the gas fuel supplied to the cylinder in the target gas engine from the target ignition timing and the target knocking intensity based on the first association information.
 本開示の少なくとも一実施形態によれば、ガスエンジンの運転時に、特別なセンサを用いることなくメタン価を推定可能なメタン価の推定装置、ガスエンジンの制御装置およびメタン価の推定方法が提供される。 According to at least one embodiment of the present disclosure, a methane number estimating device, a gas engine control device, and a methane number estimating method capable of estimating the methane number without using a special sensor during operation of the gas engine are provided. be.
本開示の一実施形態にかかるガスエンジンの制御装置を備えるエンジンシステムの概略構成図である。1 is a schematic configuration diagram of an engine system including a gas engine control device according to an embodiment of the present disclosure; FIG. 本開示の一実施形態におけるガス燃料供給系統の概略構成図である。1 is a schematic configuration diagram of a gas fuel supply system in one embodiment of the present disclosure; FIG. 本開示の第1の実施形態にかかるメタン価の推定方法のフロー図である。FIG. 4 is a flow diagram of a methane number estimation method according to the first embodiment of the present disclosure; 一気筒におけるノッキング強度と点火時期との関係を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining the relationship between knocking intensity and ignition timing in one cylinder; 特定のノッキング強度を用いたメタン価の推定方法を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a method of estimating a methane number using a specific knocking intensity; 本開示の第2の実施形態にかかるメタン価の推定方法のフロー図である。FIG. 7 is a flow diagram of a methane number estimation method according to a second embodiment of the present disclosure; ガス燃料の産地毎のメタン価と発熱量との関係を示す図である。It is a figure which shows the relationship between the methane number and calorific value for every production center of gas fuel. ガス燃料毎のガスエンジンにおけるエンジン負荷とガスエンジンに供給されるガス燃料のガス供給量との関係を示す図である。It is a figure which shows the relationship between the engine load in the gas engine for every gas fuel, and the gas supply amount of the gas fuel supplied to a gas engine. 本開示の第3の実施形態にかかるメタン価の推定方法のフロー図である。FIG. 10 is a flow diagram of a methane number estimation method according to a third embodiment of the present disclosure; クランク角に対する筒内圧の変化を示す図である。FIG. 4 is a diagram showing changes in in-cylinder pressure with respect to crank angle; 低位発熱量とガス燃料のメタン価との関係を示す図である。It is a figure which shows the relationship between a lower calorific value and the methane number of gas fuel. ガスエンジンに供給されるガス燃料のメタン価とガスエンジンの点火時期との関係を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining the relationship between the methane number of gas fuel supplied to the gas engine and the ignition timing of the gas engine;
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
Several embodiments of the present disclosure will now be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiment or shown in the drawings are not meant to limit the scope of the present disclosure, but are merely illustrative examples. No.
For example, expressions denoting relative or absolute arrangements such as "in a direction", "along a direction", "parallel", "perpendicular", "center", "concentric" or "coaxial" are strictly not only represents such an arrangement, but also represents a state of relative displacement with a tolerance or an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which express that things are in the same state, not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. The shape including the part etc. shall also be represented.
On the other hand, the expressions "comprising", "including", or "having" one component are not exclusive expressions excluding the presence of other components.
In addition, the same code|symbol may be attached|subjected about the same structure and description may be abbreviate|omitted.
(エンジンシステム)
 図1は、本開示の一実施形態にかかるガスエンジンの制御装置を備えるエンジンシステムの概略構成図である。
 幾つかの実施形態にかかるメタン価の推定装置1(1A、1B、1C)は、少なくとも1つの気筒21を有するガスエンジン2である対象ガスエンジン2tに供給されるガス燃料のメタン価である対象メタン価MNtを推定する装置である。ここで、対象ガスエンジン2tは、メタン価の推定装置1により供給されるガス燃料のメタン価が推定される対象のガスエンジン2である。以下、対象ガスエンジン2tを対象とするパラメータなどについては、対象ガスエンジン2t以外のガスエンジン2と区別するために「対象」の語や符号tを付すことがある。
(engine system)
FIG. 1 is a schematic configuration diagram of an engine system including a gas engine control device according to an embodiment of the present disclosure.
A methane number estimating device 1 (1A, 1B, 1C) according to some embodiments is a target gas engine 2 having at least one cylinder 21, which is a gas engine 2t. It is a device for estimating the methane number MNt. Here, the target gas engine 2t is the target gas engine 2 for which the methane number of the gas fuel supplied by the methane number estimation device 1 is estimated. Hereinafter, the word "target" or the symbol t may be attached to the parameters and the like for the target gas engine 2t in order to distinguish them from the gas engines 2 other than the target gas engine 2t.
 図示される実施形態では、メタン価の推定装置1は、ガスエンジン2の運転制御や燃焼制御を行う制御装置3に搭載されている。エンジンシステム4は、図1に示されるように、対象ガスエンジン2tと、対象ガスエンジン2tの制御装置3である対象制御装置3tと、対象ガスエンジン2tにおける気筒21の内部にガス燃料を噴射するように構成されたガス燃料噴射装置(図示例では、燃焼噴射弁)41と、ガス燃料噴射装置41にガス燃料を供給するためのガス燃料供給系統5(図2参照)と、対象ガスエンジン2tにおける気筒21の内部のガス燃料を含む気体(混合気)に点火する点火装置(図示例では、点火プラグ)42と、を備える。 In the illustrated embodiment, the methane number estimation device 1 is mounted on a control device 3 that controls the operation and combustion of the gas engine 2 . As shown in FIG. 1, the engine system 4 injects gas fuel into the target gas engine 2t, the target control device 3t which is the control device 3 of the target gas engine 2t, and the cylinder 21 of the target gas engine 2t. A gas fuel injection device (combustion injection valve in the illustrated example) 41 configured as above, a gas fuel supply system 5 (see FIG. 2) for supplying gas fuel to the gas fuel injection device 41, and a target gas engine 2t and an ignition device (in the illustrated example, a spark plug) 42 that ignites the gas (air-fuel mixture) containing the gas fuel inside the cylinder 21 in the .
 図示される実施形態では、対象ガスエンジン2tは、複数の気筒21を有する。ガス燃料噴射装置41や点火装置42は、気筒21毎に個別に設けられる。 In the illustrated embodiment, the target gas engine 2t has a plurality of cylinders 21. The gas fuel injection device 41 and the ignition device 42 are individually provided for each cylinder 21 .
 対象ガスエンジン2t(2)は、内部でガス燃料を燃焼させることで動力を発生させるように構成されている。図示される実施形態では、エンジンシステム4は、対象ガスエンジン2tの駆動シャフト22に接続された発電機43をさらに備える。発電機43は、駆動シャフト22を介して対象ガスエンジン2tが発生させた動力が伝達され、対象ガスエンジン2tから伝達された動力により発電するように構成されている。 The target gas engine 2t(2) is configured to generate power by burning gas fuel inside. In the illustrated embodiment, the engine system 4 further comprises a generator 43 connected to the drive shaft 22 of the subject gas engine 2t. The power generator 43 is configured to receive power generated by the target gas engine 2t via the drive shaft 22 and generate power using the power transmitted from the target gas engine 2t.
(エンジンシステムに搭載される測定機器)
 エンジンシステム4は、対象ガスエンジン2t(2)の気筒21毎に設けられるノッキングセンサ44と、対象ガスエンジン2t(2)の気筒21毎に設けられる筒内圧センサ45と、を備える。ノッキングセンサ44や筒内圧センサ45は、通常のガスエンジンに搭載される測定機器である。エンジンシステム4には、カロリーメータやガスクロマトグラフィなどの特別なセンサは搭載されていない。
(Measuring equipment installed in the engine system)
The engine system 4 includes a knocking sensor 44 provided for each cylinder 21 of the target gas engine 2t(2) and an in-cylinder pressure sensor 45 provided for each cylinder 21 of the target gas engine 2t(2). The knocking sensor 44 and the in-cylinder pressure sensor 45 are measuring devices mounted on a normal gas engine. The engine system 4 is not equipped with special sensors such as a calorimeter and a gas chromatograph.
 ノッキングセンサ44は、装着された気筒21の振動に応じた電気を発生させるように構成されている。或る実施形態では、ノッキングセンサ44は、装着された気筒21の振動に応じてセンサに内蔵された重りが振動し、重りの振動により圧電素子(圧電セラミックス)に力が加わることで電気を発生させる。ノッキング発生時には通常時よりも振動が大きくなるため、圧電素子が発生させる電気力が増大する。ノッキングセンサ44で生じる電気量を対象制御装置3t(3)でモニタリングすることで、ノッキングセンサ44が装着された気筒21におけるノッキングの発生の有無を検知できる。 The knocking sensor 44 is configured to generate electricity according to the vibration of the cylinder 21 to which it is attached. In one embodiment, the knocking sensor 44 vibrates a weight incorporated in the sensor according to the vibration of the cylinder 21 to which it is attached, and the vibration of the weight applies force to the piezoelectric element (piezoelectric ceramics) to generate electricity. Let When knocking occurs, the vibration is greater than normal, so the electric force generated by the piezoelectric element increases. By monitoring the electrical quantity generated by the knocking sensor 44 with the target control device 3t(3), it is possible to detect whether or not knocking occurs in the cylinder 21 to which the knocking sensor 44 is mounted.
 筒内圧センサ45は、装着された気筒21の内部の圧力に応じた電気を発生させるように構成されている。或る実施形態では、筒内圧センサ45は、圧電素子や歪ゲージなどを圧力検出素子として用いる。筒内圧センサ45で生じる電気量を対象制御装置3t(3)でモニタリングすることで、筒内圧センサ45が装着された気筒21の内部の圧力を監視できる。 The in-cylinder pressure sensor 45 is configured to generate electricity according to the pressure inside the cylinder 21 to which it is attached. In one embodiment, the in-cylinder pressure sensor 45 uses a piezoelectric element, a strain gauge, or the like as a pressure detection element. By monitoring the electrical quantity generated by the in-cylinder pressure sensor 45 with the target control device 3t(3), the pressure inside the cylinder 21 to which the in-cylinder pressure sensor 45 is mounted can be monitored.
(ガスエンジンの制御装置)
 対象制御装置3t(3)は、対象ガスエンジン2tやガス燃料噴射装置41、点火装置42などのエンジンシステム4が備える各装置の運転を制御するためのエンジンコントロールユニットからなる。対象制御装置3t(3)は、図1に示されるように、エンジン制御部31と、燃焼制御部32と、燃焼診断部33と、ガス燃料供給量制御部34と、点火時期制御部35と、上記メタン価の推定装置1と、を備える。
(Gas engine controller)
The target control device 3t(3) is composed of an engine control unit for controlling the operation of each device provided in the engine system 4 such as the target gas engine 2t, the gas fuel injection device 41, the ignition device 42, and the like. The target control device 3t(3) includes an engine control unit 31, a combustion control unit 32, a combustion diagnosis unit 33, a gas fuel supply amount control unit 34, and an ignition timing control unit 35, as shown in FIG. , and the methane number estimation device 1 .
 例えば、メタン価の推定装置1などの対象制御装置3t(3)の各部には、対象ガスエンジン2tなどのエンジンシステム4が備える各装置から対象ガスエンジン2tの運転に関する情報が送られるようになっている。上記対象ガスエンジン2tの運転に関する情報には、例えば、対象ガスエンジン2tの回転数、エンジン(発電機43の)出力、エンジン(発電機43の)負荷、入口圧力、出口圧力、入口温度、出口温度、若しくは圧力比、気筒21のクランク角、ノッキングセンサ44の検出値、又は筒内圧センサ45の検出値などが含まれる。 For example, information regarding the operation of the target gas engine 2t is sent from each device included in the engine system 4, such as the target gas engine 2t, to each part of the target control device 3t (3) such as the methane number estimation device 1. ing. The information about the operation of the target gas engine 2t includes, for example, the rotation speed of the target gas engine 2t, engine (generator 43) output, engine (generator 43) load, inlet pressure, outlet pressure, inlet temperature, outlet Temperature or pressure ratio, crank angle of cylinder 21, detection value of knocking sensor 44, detection value of in-cylinder pressure sensor 45, and the like are included.
 燃焼診断部33は、ノッキングセンサ44の検出値、筒内圧センサ45の検出値などの対象ガスエンジン2tの運転に関する情報に基づいて、対象ガスエンジン2tにおける各気筒21の燃焼診断を実行可能に構成されている。燃焼制御部32は、燃焼診断部33から送られた燃焼診断の結果や対象制御装置3t(3)の各部から送られる情報に基づいて、対象ガスエンジン2tにおける各気筒21に供給されるガス燃料の供給量や対象ガスエンジン2tにおける各気筒21の点火時期を決定するように構成されている。 The combustion diagnosis unit 33 is configured to be able to execute combustion diagnosis of each cylinder 21 in the target gas engine 2t based on information regarding the operation of the target gas engine 2t, such as the detection value of the knocking sensor 44 and the detection value of the in-cylinder pressure sensor 45. It is The combustion control unit 32 determines the gas fuel supplied to each cylinder 21 in the target gas engine 2t based on the result of the combustion diagnosis sent from the combustion diagnosis unit 33 and the information sent from each part of the target control device 3t(3). and the ignition timing of each cylinder 21 in the target gas engine 2t.
 ガス燃料供給量制御部34は、燃焼制御部32において決定されたガス燃料の供給量が、対象ガスエンジン2tにおける各気筒21に供給されるように、ガス燃料供給系統5に設けられた弁やガス燃料噴射装置41の開閉を制御するように構成されている。点火時期制御部35は、燃焼制御部32において決定された点火時期に点火装置42が点火するように、点火装置42の点火時期を制御するように構成されている。 The gas fuel supply amount control unit 34 controls valves provided in the gas fuel supply system 5 so that the gas fuel supply amount determined by the combustion control unit 32 is supplied to each cylinder 21 in the target gas engine 2t. It is configured to control the opening and closing of the gas fuel injection device 41 . The ignition timing control unit 35 is configured to control the ignition timing of the ignition device 42 so that the ignition device 42 ignites at the ignition timing determined by the combustion control unit 32 .
 エンジン制御部31は、対象ガスエンジン2tの運転に関する情報や対象制御装置3t(3)の各部から送られる情報に基づいて、対象ガスエンジン2tの運転や停止を制御するように構成されている。 The engine control unit 31 is configured to control the operation and stop of the target gas engine 2t based on the information regarding the operation of the target gas engine 2t and the information sent from each part of the target control device 3t(3).
(ガス燃料供給系統)
 図2は、本開示の一実施形態におけるガス燃料供給系統の概略構成図である。図2に示されるように、ガス燃料供給系統5は、第1のガス燃料を貯留する第1のガス燃料貯留装置(図示例では、ガス燃料貯留タンク)51と、第1のガス燃料とはメタン価が異なる第2のガス燃料を貯留する第2のガス燃料貯留装置(図示例では、ガス燃料貯留タンク)52と、第1のガス燃料貯留装置51から対象ガスエンジン2t(具体的には、対象ガスエンジン2tにおけるガス燃料噴射装置41)に第1のガス燃料を送るための第1のガス燃料供給ライン53と、第2のガス燃料貯留装置52から対象ガスエンジン2t(具体的には、対象ガスエンジン2tにおけるガス燃料噴射装置41)に第2のガス燃料を送るための第2のガス燃料供給ライン54と、対象ガスエンジン2tに送られるガス燃料の供給元を、第1のガス燃料貯留装置51又は第2のガス燃料貯留装置52に切り替え可能に構成され切り替え装置55と、を備える。
(gas fuel supply system)
FIG. 2 is a schematic configuration diagram of a gas fuel supply system in one embodiment of the present disclosure. As shown in FIG. 2, the gas fuel supply system 5 includes a first gas fuel storage device (in the illustrated example, a gas fuel storage tank) 51 that stores a first gas fuel, and the first gas fuel A second gas fuel storage device (in the illustrated example, a gas fuel storage tank) 52 that stores a second gas fuel having a different methane number, and a target gas engine 2 t (specifically, from the first gas fuel storage device 51 , the first gas fuel supply line 53 for sending the first gas fuel to the gas fuel injection device 41) in the target gas engine 2t, and the second gas fuel storage device 52 to the target gas engine 2t (specifically , the second gas fuel supply line 54 for sending the second gas fuel to the gas fuel injection device 41) in the target gas engine 2t, and the supply source of the gas fuel sent to the target gas engine 2t, the first gas and a switching device 55 configured to be switchable between the fuel storage device 51 and the second gas fuel storage device 52 .
 図示される実施形態では、第2のガス燃料供給ライン54は、合流部56において第1のガス燃料供給ライン53に合流している。切り替え装置55は、第1のガス燃料供給ライン53の合流部56よりも上流側(第1のガス燃料貯留装置51側)に設けられる第1の弁551と、第2のガス燃料供給ライン54の合流部56よりも上流側(第2のガス燃料貯留装置52側)に設けられる第2の弁552と、を含む。第1の弁551および第2の弁552の夫々は、ガス燃料の供給路を開閉する弁体を可動させることで、上記弁体よりも下流側(対象ガスエンジン2t側)に供給されるガス燃料の流量を調整可能である。 In the illustrated embodiment, the second gas fuel supply line 54 joins the first gas fuel supply line 53 at the junction 56 . The switching device 55 includes a first valve 551 provided on the upstream side (first gas fuel storage device 51 side) of the confluence portion 56 of the first gas fuel supply line 53 , and a second gas fuel supply line 54 . and a second valve 552 provided on the upstream side (second gas fuel storage device 52 side) of the confluence portion 56 of the gas. Each of the first valve 551 and the second valve 552 moves a valve body that opens and closes the gas fuel supply path, thereby controlling the gas supplied to the downstream side (the target gas engine 2t side) of the valve body. It is possible to adjust the flow rate of fuel.
 図2に示される実施形態では、第1のガス燃料貯留装置51に貯留されるガス燃料は、第1の液化ガスからなる。第2のガス燃料貯留装置52に貯留されるガス燃料は、第1の液化ガスとはメタン価が異なる第2の液化ガスからなる。図2中の実線部において、ガス燃料は液体状であり、図2中の点線部において、ガス燃料は気体状である。 In the embodiment shown in FIG. 2, the gas fuel stored in the first gas fuel storage device 51 consists of the first liquefied gas. The gas fuel stored in the second gas fuel storage device 52 is composed of a second liquefied gas having a methane number different from that of the first liquefied gas. In the solid line portion in FIG. 2, the gas fuel is in a liquid state, and in the dotted line portion in FIG. 2, the gas fuel is in a gaseous state.
 第1のガス燃料供給ライン53は、第1のポンプ531により第1のガス燃料貯留装置51から抜き出した第1の液化ガスを、第1の気化装置532で気化させた後に第1の弁551に導くための第1の液化ガス供給ライン533と、第1のガス燃料貯留装置51内で第1の液化ガスが気化した第1のボイルオフガスを第1の弁551に導くための第1のボイルオフガス供給ライン534と、を含む。 The first gas fuel supply line 53 is connected to the first valve 551 after the first liquefied gas extracted from the first gas fuel storage device 51 by the first pump 531 is vaporized by the first vaporization device 532 . A first liquefied gas supply line 533 for leading to and a first boil-off gas obtained by vaporizing the first liquefied gas in the first gas fuel storage device 51 to the first valve 551. and a boil-off gas supply line 534 .
 第2のガス燃料供給ライン54は、第2のポンプ541により第2のガス燃料貯留装置52から抜き出した第2の液化ガスを、第2の気化装置542で気化させた後に第2の弁552に導くための第2の液化ガス供給ライン543と、第2のガス燃料貯留装置52内で第2の液化ガスが気化した第2のボイルオフガスを第2の弁552に導くための第2のボイルオフガス供給ライン544と、を含む。 The second gas fuel supply line 54 is connected to the second valve 552 after the second liquefied gas extracted from the second gas fuel storage device 52 by the second pump 541 is vaporized by the second vaporizer 542 . A second liquefied gas supply line 543 for leading to and a second boil-off gas obtained by vaporizing the second liquefied gas in the second gas fuel storage device 52 to the second valve 552. and a boil-off gas supply line 544 .
(第1のメタン価の推定方法)
 図3は、本開示の第1の実施形態にかかるメタン価の推定方法のフロー図である。
 幾つかの実施形態にかかるメタン価の推定方法100は、上述した対象メタン価MNtを推定するための方法である。メタン価の推定方法100は、図3に示されるように、第1の関連付け情報取得ステップS101と、点火時期取得ステップS102と、ノッキング強度取得ステップS103と、メタン価推定ステップS104と、を備える。
(First methane number estimation method)
FIG. 3 is a flow diagram of a methane number estimation method according to the first embodiment of the present disclosure.
The methane number estimation method 100 according to some embodiments is a method for estimating the target methane number MNt described above. The methane number estimation method 100 includes, as shown in FIG. 3, a first association information acquisition step S101, an ignition timing acquisition step S102, a knocking intensity acquisition step S103, and a methane number estimation step S104.
 図示される実施形態では、メタン価の推定方法100における幾つかのステップ(第1の関連付け情報取得ステップS101、点火時期取得ステップS102、ノッキング強度取得ステップS103、メタン価推定ステップS104)は、メタン価の推定装置1(1A)により行われる。メタン価の推定装置1(1A)は、第1の関連付け情報取得ステップS101、点火時期取得ステップS102、ノッキング強度取得ステップS103およびメタン価推定ステップS104を実行可能に構成されており、これらのステップを行うようになっている。なお、メタン価の推定方法100における幾つかのステップは、メタン価の推定装置1(1A)以外の装置や機器により行われてもよいし、手動により行うようにしてもよい。 In the illustrated embodiment, several steps (first correlation information acquisition step S101, ignition timing acquisition step S102, knocking intensity acquisition step S103, methane number estimation step S104) in the methane number estimation method 100 are is performed by the estimation device 1 (1A). The methane number estimation device 1 (1A) is configured to be able to execute a first association information acquisition step S101, an ignition timing acquisition step S102, a knocking intensity acquisition step S103, and a methane number estimation step S104. It is supposed to be done. Some steps in the methane number estimation method 100 may be performed by a device or device other than the methane number estimation device 1 (1A), or may be performed manually.
 第1の関連付け情報取得ステップS101では、ガスエンジン2における、点火時期ITとノッキング強度KIと供給されるガス燃料のメタン価MNとが予め関連付けられた第1の関連付け情報AI1、を取得することが行われる。図示される実施形態では、第1の関連付け情報取得部11が、第1の関連付け情報取得ステップS101を実行する。第1の関連付け情報AI1は、第1の関連付け情報取得ステップS101よりも前に予め作成され、データベース部46に記憶されている。第1の関連付け情報取得部11は、データベース部46から第1の関連付け情報AI1を取得する。 In the first association information acquisition step S101, first association information AI1 in which the ignition timing IT, the knocking intensity KI, and the methane number MN of the supplied gas fuel are associated in advance in the gas engine 2 can be acquired. done. In the illustrated embodiment, the first association information acquisition unit 11 executes the first association information acquisition step S101. The first association information AI1 is created in advance and stored in the database section 46 prior to the first association information acquisition step S101. The first association information acquisition section 11 acquires the first association information AI1 from the database section 46 .
 データベース部46は、図3に示される実施形態では、メタン価の推定装置1の外部に設けられているが、他の幾つかの実施形態では、メタン価の推定装置1の内部に設けられていてもよい。また、データベース部46は、制御装置3の内部に設けられていてもよいし、ガスエンジン2や制御装置3から遠隔地に設けられて、ネットワーク回線などを介して、メタン価の推定装置1と通信可能に設けられていてもよい。 The database unit 46 is provided outside the methane number estimation device 1 in the embodiment shown in FIG. 3, but is provided inside the methane number estimation device 1 in some other embodiments. may In addition, the database unit 46 may be provided inside the control device 3, or may be provided at a remote location from the gas engine 2 and the control device 3, and communicated with the methane number estimation device 1 via a network line or the like. It may be provided so as to be communicable.
 第1の関連付け情報AI1は、ガスエンジン2における点火時期ITと、ガスエンジン2におけるノッキング強度KIと、ガスエンジン2に供給されるガス燃料のメタン価MNと、の間の対応関係を示すものであり、点火時期ITおよびノッキング強度KIを入力情報とした際に、入力情報である点火時期ITおよびノッキング強度KIに対応するメタン価MNを出力情報として取得できるものであればよい。 The first association information AI1 indicates the correspondence between the ignition timing IT in the gas engine 2, the knocking intensity KI in the gas engine 2, and the methane number MN of the gas fuel supplied to the gas engine 2. It is sufficient if the methane number MN corresponding to the ignition timing IT and the knocking intensity KI, which are the input information, can be obtained as the output information when the ignition timing IT and the knocking intensity KI are used as input information.
 点火時期取得ステップS102では、対象ガスエンジン2tにおける点火時期ITである対象点火時期ITtを取得することが行われる。図示される実施形態では、点火時期取得部12が、点火時期取得ステップS102を実行する。点火時期取得部12は、燃焼制御部32や点火時期制御部35などから対象点火時期ITtを取得する。 In the ignition timing acquisition step S102, the target ignition timing ITt, which is the ignition timing IT in the target gas engine 2t, is acquired. In the illustrated embodiment, the ignition timing obtaining section 12 executes the ignition timing obtaining step S102. The ignition timing acquisition unit 12 acquires the target ignition timing ITt from the combustion control unit 32, the ignition timing control unit 35, and the like.
 ノッキング強度取得ステップS103では、対象ガスエンジン2tの対象点火時期ITtを含むサイクルにおけるノッキング強度KIである対象ノッキング強度KItを取得することが行われる。図示される実施形態では、ノッキング強度取得部13が、ノッキング強度取得ステップS103を実行する。 In the knocking intensity acquisition step S103, the target knocking intensity KIt, which is the knocking intensity KI in the cycle including the target ignition timing ITt of the target gas engine 2t, is acquired. In the illustrated embodiment, the knocking intensity acquiring section 13 executes the knocking intensity acquiring step S103.
 対象ノッキング強度KItは、エンジンシステム4において一般的に測定されるパラメータ(例えば、ノッキングセンサ44の検出値および筒内圧センサ45の検出値)を用いて公知の手法により算出される。或る実施形態では、ノッキング強度取得部13は、ノッキングセンサ44の検出値および筒内圧センサ45の検出値を取得し、ノッキングセンサ44の検出値から横軸をクランク角とし、縦軸を圧力とする波形を形成する。ノッキング強度取得部13は、上記波形から筒内圧センサ45の検出値を用いて低周波成分を除去した後の、各サイクルにおける最大圧力振幅を対象ノッキング強度KItとしている。なお、燃焼診断部33が対象ノッキング強度KItを算出している場合には、ノッキング強度取得部13は、燃焼診断部33が算出した対象ノッキング強度KItを取得してもよい。 The target knocking intensity KIt is calculated by a known method using parameters generally measured in the engine system 4 (for example, the detected value of the knocking sensor 44 and the detected value of the in-cylinder pressure sensor 45). In one embodiment, the knocking intensity acquisition unit 13 acquires the detection value of the knocking sensor 44 and the detection value of the in-cylinder pressure sensor 45, and from the detection values of the knocking sensor 44, the horizontal axis is the crank angle and the vertical axis is pressure. form a waveform that The knocking intensity acquisition unit 13 uses the detected value of the in-cylinder pressure sensor 45 to remove the low-frequency component from the above waveform, and then uses the maximum pressure amplitude in each cycle as the target knocking intensity KIt. Note that when the combustion diagnosis unit 33 calculates the target knocking intensity KIt, the knocking intensity acquisition unit 13 may acquire the target knocking intensity KIt calculated by the combustion diagnosis unit 33 .
 メタン価推定ステップS104では、上述した第1の関連付け情報AI1に基づいて、対象点火時期ITtおよび対象ノッキング強度KItから、対象メタン価MNtを推定することが行われる。図示される実施形態では、メタン価推定部14が、メタン価推定ステップS104を実行する。具体的には、メタン価推定部14が、第1の関連付け情報取得部11が取得した第1の関連付け情報AI1に基づいて、点火時期取得部12が取得した対象点火時期ITtおよびノッキング強度取得部13が取得した対象ノッキング強度KItから、対象メタン価MNtを推定する。 In the methane number estimation step S104, the target methane number MNt is estimated from the target ignition timing ITt and the target knocking intensity KIt based on the above-described first association information AI1. In the illustrated embodiment, the methane number estimation unit 14 executes the methane number estimation step S104. Specifically, the methane number estimation unit 14, based on the first association information AI1 acquired by the first association information acquisition unit 11, the target ignition timing ITt acquired by the ignition timing acquisition unit 12 and the knocking intensity acquisition unit A target methane number MNt is estimated from the target knocking intensity KIt obtained by 13 .
 上記の方法によれば、ガスエンジン2における、点火時期ITとノッキング強度KIと供給されるガス燃料のメタン価MNとの関係性を示す第1の関連付け情報AI1を利用することで、対象点火時期ITtおよび対象ノッキング強度KItから、対象メタン価MNtを推定できる。点火時期ITやノッキング強度KIは、対象ガスエンジン2tの運転時において対象ガスエンジン2tに通常装着されるセンサなどから取得可能である。よって、上記の方法によれば、対象ガスエンジン2tの運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価MNtを推定可能である。 According to the above method, by using the first association information AI1 indicating the relationship between the ignition timing IT, the knocking intensity KI, and the methane number MN of the supplied gas fuel in the gas engine 2, the target ignition timing The target methane number MNt can be estimated from ITt and the target knocking intensity KIt. The ignition timing IT and the knocking intensity KI can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above method, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
 幾つかの実施形態では、上述したメタン価の推定装置1(1A)は、図3に示されるように、上述した第1の関連付け情報AI1を取得する第1の関連付け情報取得部11と、上述した対象点火時期ITtを取得する点火時期取得部12と、上述した対象点火時期ITtを含むサイクルにおける対象ノッキング強度KItを取得するノッキング強度取得部13と、上述した第1の関連付け情報AI1に基づいて、対象点火時期ITtおよび対象ノッキング強度KItから、対象メタン価MNtを推定するメタン価推定部14と、を備える。 In some embodiments, the above-described methane number estimation device 1 (1A) includes, as shown in FIG. Based on an ignition timing acquiring unit 12 that acquires the target ignition timing ITt, a knocking intensity acquiring unit 13 that acquires the target knocking intensity KIt in the cycle including the above-described target ignition timing ITt, and the above-described first association information AI1. , and a methane number estimation unit 14 for estimating a target methane number MNt from the target ignition timing ITt and the target knocking intensity KIt.
 上記の構成によれば、ガスエンジン2における、点火時期ITとノッキング強度KIと供給されるガス燃料のメタン価MNとの関係性を示す第1の関連付け情報AI1を利用することで、対象点火時期ITtおよび対象ノッキング強度KItから、対象メタン価MNtを推定できる。点火時期ITやノッキング強度KIは、対象ガスエンジン2tの運転時において対象ガスエンジン2tに通常装着されるセンサなどから取得可能である。よって、上記の構成によれば、対象ガスエンジン2tの運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価MNtを推定可能である。 According to the above configuration, by using the first association information AI1 indicating the relationship between the ignition timing IT, the knocking intensity KI, and the methane number MN of the supplied gas fuel in the gas engine 2, the target ignition timing The target methane number MNt can be estimated from ITt and the target knocking intensity KIt. The ignition timing IT and the knocking intensity KI can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above configuration, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
 図4は、一気筒におけるノッキング強度と点火時期との関係を説明するための説明図である。図5は、特定のノッキング強度を用いたメタン価の推定方法を説明するための説明図である。
 幾つかの実施形態では、上述したメタン価推定部14(メタン価推定ステップS104)は、図5に示されるように、対象ガスエンジン2tの対象エンジン負荷ELtが一定である一定負荷条件において、特定のノッキング強度KIsに到達したときの対象ノッキング強度KIt1、および特定のノッキング強度KIsに到達したときの対象ノッキング強度KIt1を含むサイクルにおける対象点火時期ITt1から、第1の関連付け情報AI1に基づいて、対象ガスエンジン2tにおける気筒21に供給されたガス燃料のメタン価(対象メタン価MNt)を推定する。
FIG. 4 is an explanatory diagram for explaining the relationship between knocking intensity and ignition timing in one cylinder. FIG. 5 is an explanatory diagram for explaining a methane number estimation method using a specific knocking intensity.
In some embodiments, the above-described methane number estimating unit 14 (methane number estimating step S104), as shown in FIG. From the target ignition timing ITt1 in the cycle including the target knocking intensity KIt1 when reaching the knocking intensity KIs of and the target knocking intensity KIt1 when reaching the specific knocking intensity KIs, based on the first association information AI1, the target The methane number (target methane number MNt) of the gas fuel supplied to the cylinder 21 in the gas engine 2t is estimated.
 図4は、対象ガスエンジン2tの対象エンジン負荷ELtが一定である一定負荷条件における、一つの気筒21の時間Tの経過に対する、ノッキング強度KIと点火時期ITの変化が示されている。図4に示されるように、点火時期ITを徐々に進角させると、ノッキング強度KI(振幅幅)が徐々に増大し、特定のノッキング強度KIsを超える。 FIG. 4 shows changes in knocking intensity KI and ignition timing IT with respect to time T of one cylinder 21 under constant load conditions in which the target engine load ELt of the target gas engine 2t is constant. As shown in FIG. 4, when the ignition timing IT is gradually advanced, the knocking intensity KI (amplitude width) gradually increases and exceeds a specific knocking intensity KIs.
 図5では、対象ガスエンジン2tの対象エンジン負荷ELtが一定である一定負荷条件において、対象ガスエンジン2tの一つの気筒21の点火時期ITを横軸とし、上記一つの気筒21のノッキング強度KIを縦軸とするグラフが示されている。上記グラフには、第1のメタン価を有するガス燃料における点火時期ITとノッキング強度KIとの関係を示す第1の曲線C1と、第1のメタン価よりも高い第2のメタン価を有するガス燃料における点火時期ITとノッキング強度KIとの関係を示す第2の曲線C2と、が示されている。第1の曲線C1や第2の曲線C2は、上述した第1の関連付け情報AI1に含まれる。 In FIG. 5, under constant load conditions where the target engine load ELt of the target gas engine 2t is constant, the horizontal axis represents the ignition timing IT of one cylinder 21 of the target gas engine 2t, and the knocking intensity KI of the one cylinder 21 of the target gas engine 2t. A graph with a vertical axis is shown. The above graph includes a first curve C1 showing the relationship between the ignition timing IT and the knocking intensity KI for a gaseous fuel having a first methane number, and a gas fuel having a second methane number higher than the first methane number. A second curve C2 representing the relationship between ignition timing IT and knocking intensity KI in fuel is shown. The first curve C1 and the second curve C2 are included in the first association information AI1 described above.
 上述したメタン価推定部14(メタン価推定ステップS104)は、図5に示されるように、対象ガスエンジン2tの一つの気筒21において、対象ノッキング強度KItが特定のノッキング強度KIsに到達するまで、予め設定された設定点火時期ITsから対象点火時期ITtを進角させるように、点火時期制御部35に対して指示する。 As shown in FIG. 5, the methane number estimating section 14 (methane number estimating step S104) described above continues until the target knocking intensity KIt reaches a specific knocking intensity KIs in one cylinder 21 of the target gas engine 2t. The ignition timing controller 35 is instructed to advance the target ignition timing ITt from the set ignition timing ITs set in advance.
 上述したメタン価推定部14(メタン価推定ステップS104)は、図5に示されるように、対象ノッキング強度KItが特定のノッキング強度KIsに到達した(特定のノッキング強度KIsを上回った)サイクルにおける対象ノッキング強度KIt1および対象点火時期ITt1を求める。上述したメタン価推定部14(メタン価推定ステップS104)は、第1の曲線C1の特定のノッキング強度KIsにおける点火時期ITc1および第2の曲線C2の特定のノッキング強度KIsにおける点火時期ITc2から、対象点火時期ITt1の割合を求め、対象点火時期ITt1の割合と第1のメタン価と第2のメタン価から対象メタン価MNtを算出できる。 As shown in FIG. 5, the methane number estimating unit 14 (methane number estimating step S104) described above performs the target A knocking intensity KIt1 and a target ignition timing ITt1 are obtained. The methane number estimating unit 14 (methane number estimating step S104) described above calculates the target The ratio of the ignition timing ITt1 is obtained, and the target methane number MNt can be calculated from the ratio of the target ignition timing ITt1, the first methane number, and the second methane number.
 特定のノッキング強度KIsを高く設定するほど、ガス燃料毎の対象点火時期ITtの差を大きくできるため、対象メタン価MNtの推定精度の向上が図れるが、ノッキングが生じる可能性が高くなる虞がある。上記の構成によれば、特定のノッキング強度KIsに到達したサイクルにおける対象ノッキング強度KIt1や対象点火時期ITt1を用いて対象メタン価MNtを推定することで、対象ガスエンジン2tのノッキングを抑制しつつ、対象メタン価MNtの推定精度を高いものにすることができる。 As the specific knocking intensity KIs is set higher, the difference in the target ignition timing ITt for each gas fuel can be increased. Therefore, the accuracy of estimating the target methane number MNt can be improved, but the possibility of knocking may increase. . According to the above configuration, by estimating the target methane number MNt using the target knocking intensity KIt1 and the target ignition timing ITt1 in the cycle in which the specific knocking intensity KIs is reached, knocking of the target gas engine 2t is suppressed, The target methane number MNt can be estimated with high accuracy.
 メタン価推定部14が推定した対象メタン価MNtは、燃焼制御部32に送られる。燃焼制御部32は、メタン価推定部14が推定した対象メタン価MNtに基づいて、対象ガスエンジン2tにおける各気筒21の点火時期を決定する。点火時期制御部35は、メタン価推定部14が推定した対象メタン価MNtに基づいて、燃焼制御部32において決定された点火時期に点火装置42が点火するように、点火装置42の点火時期を制御するように構成されている。つまり、点火時期制御部35は、メタン価推定部14が推定した対象メタン価MNtに応じて、対象点火時期ITtを制御するように構成されている。 The target methane number MNt estimated by the methane number estimation unit 14 is sent to the combustion control unit 32 . The combustion control unit 32 determines the ignition timing of each cylinder 21 in the target gas engine 2t based on the target methane number MNt estimated by the methane number estimation unit 14 . The ignition timing control unit 35 adjusts the ignition timing of the ignition device 42 based on the target methane number MNt estimated by the methane number estimation unit 14 so that the ignition device 42 ignites at the ignition timing determined by the combustion control unit 32. configured to control. That is, the ignition timing control section 35 is configured to control the target ignition timing ITt according to the target methane number MNt estimated by the methane number estimating section 14 .
 幾つかの実施形態では、メタン価の推定装置1又は制御装置3の少なくとも一方は、対象ガスエンジン2tの一つの気筒21においてメタン価推定部14が推定した対象メタン価MNtを、対象ガスエンジン2tの上記一つの気筒21以外の他の気筒21に反映させてもよい。この場合には、対象メタン価MNtを推定する際の対象ガスエンジン2tの性能変化の影響を小さくできる。 In some embodiments, at least one of the methane number estimating device 1 and the control device 3 calculates the target methane number MNt estimated by the methane number estimating unit 14 in one cylinder 21 of the target gas engine 2t. may be reflected in other cylinders 21 than the one cylinder 21 described above. In this case, the influence of performance change of the target gas engine 2t when estimating the target methane number MNt can be reduced.
 幾つかの実施形態では、メタン価の推定装置1は、対象ガスエンジン2tの気筒21毎に対象メタン価MNtを推定してもよい。この場合には、気筒21毎に適切な対象メタン価MNtを推定できるため、気筒21毎の燃焼のばらつきを抑制できる。 In some embodiments, the methane number estimation device 1 may estimate the target methane number MNt for each cylinder 21 of the target gas engine 2t. In this case, an appropriate target methane number MNt can be estimated for each cylinder 21, so that variations in combustion for each cylinder 21 can be suppressed.
(第2のメタン価の推定方法)
 図6は、本開示の第2の実施形態にかかるメタン価の推定方法のフロー図である。
 幾つかの実施形態にかかるメタン価の推定方法200は、上述した対象メタン価MNtを推定するための方法である。メタン価の推定方法200は、図6に示されるように、第2の関連付け情報取得ステップS201と、エンジン負荷取得ステップS202と、ガス供給量取得ステップS203と、メタン価推定ステップS204と、を備える。
(Second methane number estimation method)
FIG. 6 is a flow diagram of a methane number estimation method according to the second embodiment of the present disclosure.
The methane number estimation method 200 according to some embodiments is a method for estimating the target methane number MNt described above. The methane number estimation method 200 includes, as shown in FIG. 6, a second association information acquisition step S201, an engine load acquisition step S202, a gas supply amount acquisition step S203, and a methane number estimation step S204. .
 図示される実施形態では、メタン価の推定方法200における幾つかのステップ(第2の関連付け情報取得ステップS201、エンジン負荷取得ステップS202、ガス供給量取得ステップS203、メタン価推定ステップS204)は、メタン価の推定装置1(1B)により行われる。メタン価の推定装置1(1B)は、第2の関連付け情報取得ステップS201、エンジン負荷取得ステップS202、ガス供給量取得ステップS203およびメタン価推定ステップS204を実行可能に構成されており、これらのステップを行うようになっている。なお、メタン価の推定方法200における幾つかのステップは、メタン価の推定装置1(1B)以外の装置や機器により行われてもよいし、手動により行うようにしてもよい。 In the illustrated embodiment, some steps in the methane number estimation method 200 (second association information acquisition step S201, engine load acquisition step S202, gas supply amount acquisition step S203, methane number estimation step S204) is performed by the value estimation device 1 (1B). The methane number estimation device 1 (1B) is configured to be able to execute a second association information acquisition step S201, an engine load acquisition step S202, a gas supply amount acquisition step S203, and a methane number estimation step S204. is to be performed. Some steps in the methane number estimation method 200 may be performed by a device or device other than the methane number estimation device 1 (1B), or may be performed manually.
 第2の関連付け情報取得ステップS201では、ガスエンジン2における、エンジン負荷ELと供給されるガス燃料のガス供給量FSとガス燃料のメタン価MNとが予め関連付けられた第2の関連付け情報AI2、を取得することが行われる。図示される実施形態では、第2の関連付け情報取得部61が、第2の関連付け情報取得ステップS201を実行する。第2の関連付け情報AI2は、第2の関連付け情報取得ステップS201よりも前に予め作成され、データベース部46に記憶されている。第2の関連付け情報取得部61は、データベース部46から第2の関連付け情報AI2を取得する。 In the second association information acquisition step S201, the second association information AI2 in which the engine load EL, the gas supply amount FS of the gas fuel to be supplied, and the methane number MN of the gas fuel in the gas engine 2 are associated in advance is obtained. Acquisition is done. In the illustrated embodiment, the second association information acquisition unit 61 executes the second association information acquisition step S201. The second association information AI2 is created in advance and stored in the database unit 46 prior to the second association information acquisition step S201. The second association information acquisition section 61 acquires the second association information AI2 from the database section 46 .
 第2の関連付け情報AI2は、ガスエンジン2におけるエンジン負荷ELと、ガスエンジン2に供給されるガス燃料のガス供給量FSと、ガスエンジン2に供給されるガス燃料のメタン価MNと、の間の対応関係を示すものであり、エンジン負荷ELおよびガス供給量FSを入力情報とした際に、入力情報であるエンジン負荷ELおよびガス供給量FSに対応するメタン価MNを出力情報として取得できるものであればよい。 The second association information AI2 is between the engine load EL in the gas engine 2, the gas supply amount FS of the gas fuel supplied to the gas engine 2, and the methane number MN of the gas fuel supplied to the gas engine 2. When the engine load EL and the gas supply amount FS are used as input information, the methane number MN corresponding to the input information, ie, the engine load EL and the gas supply amount FS, can be obtained as output information. If it is
 図7は、ガス燃料の産地毎のメタン価と発熱量との関係を示す図である。図7では、発熱量を横軸とし、メタン価を縦軸とするグラフが示されており、このグラフ上に産地毎にガス燃料がプロットされている。図7に示されるように、発熱量の増加に伴い、メタン価が低減する傾向がある。 FIG. 7 is a diagram showing the relationship between the methane number and the calorific value for each production area of gas fuel. FIG. 7 shows a graph in which the horizontal axis is the calorific value and the vertical axis is the methane number, and the gas fuel is plotted for each production area on this graph. As shown in FIG. 7, the methane number tends to decrease as the calorific value increases.
 図8は、ガス燃料毎のガスエンジンにおけるエンジン負荷とガスエンジンに供給されるガス燃料のガス供給量との関係を示す図である。図8では、ガスエンジンにおけるエンジン負荷を横軸とし、ガスエンジンに供給されるガス燃料のガス供給量を縦軸とするグラフが示されている。上記グラフには、第1のメタン価を有するガス燃料における上記エンジン負荷と上記ガス供給量との関係を示す第1の直線SL1と、第1のメタン価よりも高い第2のメタン価を有するガス燃料における上記エンジン負荷と上記ガス供給量との関係を示す第2の直線SL2と、が示されている。図8に示されるように、エンジン負荷の増加に伴い、ガス供給量が増加する傾向がある。 FIG. 8 is a diagram showing the relationship between the engine load in the gas engine for each gas fuel and the gas supply amount of the gas fuel supplied to the gas engine. FIG. 8 shows a graph in which the horizontal axis represents the engine load in the gas engine and the vertical axis represents the gas supply amount of the gas fuel supplied to the gas engine. The graph includes a first straight line SL1 indicating the relationship between the engine load and the gas supply amount in a gas fuel having a first methane number, and a second methane number higher than the first methane number. and a second straight line SL2 showing the relationship between the engine load and the gas supply amount in gas fuel. As shown in FIG. 8, the amount of gas supplied tends to increase as the engine load increases.
 一般的に、発熱量の増加に伴い、ガス供給量が低減する傾向がある。以上から、ガス供給量と発熱量とメタン価との間には、一定の相関がある。発熱量の増加に伴い、ガス供給量とメタン価とが低減する傾向がある。第2の関連付け情報AI2には、ガス供給量と発熱量とメタン価との間の相関を示す情報が含まれる。 Generally, gas supply tends to decrease as the calorific value increases. From the above, there is a certain correlation between the gas supply amount, the calorific value, and the methane number. As the calorific value increases, the gas supply rate and methane number tend to decrease. The second association information AI2 includes information indicating the correlation between the gas supply amount, the calorific value, and the methane number.
 エンジン負荷取得ステップS202では、対象ガスエンジン2tにおけるエンジン負荷ELである対象エンジン負荷ELtを取得することが行われる。図示される実施形態では、エンジン負荷取得部62が、エンジン負荷取得ステップS202を実行する。エンジン負荷取得部62は、対象ガスエンジン2tや対象ガスエンジン2tから動力を伝達可能に接続された発電機43、対象ガスエンジン2tに通常装着されるセンサ、エンジン制御部31、燃焼制御部32などから対象エンジン負荷ELtを取得する。なお、上記エンジン負荷ELや対象エンジン負荷ELtは、ガスエンジン2に動力を伝達可能に接続された発電機の負荷であってもよい。エンジン負荷取得ステップS202では、上述した発電機43の負荷を対象エンジン負荷ELtとして取得してもよい。 In the engine load acquisition step S202, the target engine load ELt, which is the engine load EL of the target gas engine 2t, is acquired. In the illustrated embodiment, the engine load acquisition unit 62 executes the engine load acquisition step S202. The engine load acquisition unit 62 includes the target gas engine 2t, the generator 43 connected to the target gas engine 2t so as to be able to transmit power, sensors normally attached to the target gas engine 2t, the engine control unit 31, the combustion control unit 32, and the like. acquires the target engine load ELt from. The engine load EL and the target engine load ELt may be the load of a generator connected to the gas engine 2 so as to be able to transmit power. In the engine load acquisition step S202, the load of the generator 43 described above may be acquired as the target engine load ELt.
 ガス供給量取得ステップS203では、対象ガスエンジン2tの対象エンジン負荷ELtを取得した期間におけるガス供給量FSである対象ガス供給量FStを取得することが行われる。図示される実施形態では、ガス供給量取得部63が、ガス供給量取得ステップS203を実行する。ガス供給量取得部63は、対象ガスエンジン2tや対象ガスエンジン2tに通常装着されるセンサ、燃焼制御部32、ガス燃料供給量制御部34などから対象ガス供給量FStを取得する。 In the gas supply amount acquisition step S203, the target gas supply amount FSt, which is the gas supply amount FS during the period in which the target engine load ELt of the target gas engine 2t is acquired, is acquired. In the illustrated embodiment, the gas supply amount acquisition unit 63 executes the gas supply amount acquisition step S203. The gas supply amount acquisition unit 63 acquires the target gas supply amount FSt from the target gas engine 2t, a sensor normally attached to the target gas engine 2t, the combustion control unit 32, the gas fuel supply amount control unit 34, and the like.
 メタン価推定ステップS204では、上述した第2の関連付け情報AI2に基づいて、対象エンジン負荷ELtおよび対象ガス供給量FStから、対象メタン価MNtを推定することが行われる。図示される実施形態では、メタン価推定部64が、メタン価推定ステップS204を実行する。具体的には、メタン価推定部64が、第2の関連付け情報取得部61が取得した第2の関連付け情報AI2に基づいて、エンジン負荷取得部62が取得した対象エンジン負荷ELtおよびガス供給量取得部63が取得した対象ガス供給量FStから、対象メタン価MNtを推定する。 In the methane number estimation step S204, the target methane number MNt is estimated from the target engine load ELt and the target gas supply amount FSt based on the above-described second association information AI2. In the illustrated embodiment, the methane number estimation unit 64 performs the methane number estimation step S204. Specifically, the methane number estimation unit 64 acquires the target engine load ELt and the gas supply amount acquired by the engine load acquisition unit 62 based on the second association information AI2 acquired by the second association information acquisition unit 61. A target methane number MNt is estimated from the target gas supply amount FSt acquired by the unit 63 .
 上記の方法によれば、ガスエンジン2における、エンジン負荷ELと供給されるガス燃料のガス供給量FSとメタン価MNとの関係性を示す第2の関連付け情報AI2を利用することで、対象エンジン負荷ELtおよび対象ガス供給量FStから、対象メタン価MNtを推定できる。エンジン負荷ELやガス供給量FSは、対象ガスエンジン2tの運転時において対象ガスエンジン2tに通常装着されるセンサなどから取得可能である。よって、上記の方法によれば、対象ガスエンジン2tの運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価MNtを推定可能である。 According to the above method, by using the second association information AI2 indicating the relationship between the engine load EL, the gas supply amount FS of the supplied gas fuel, and the methane number MN in the gas engine 2, the target engine The target methane number MNt can be estimated from the load ELt and the target gas supply amount FSt. The engine load EL and the gas supply amount FS can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above method, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
 幾つかの実施形態では、上述したメタン価の推定装置1(1B)は、図6に示されるように、上述した第2の関連付け情報AI2を取得する第2の関連付け情報取得部61と、上述した対象エンジン負荷ELtを取得するエンジン負荷取得部62と、上述した対象エンジン負荷ELtを取得した期間における対象ガス供給量FStを取得するガス供給量取得部63と、上述した第2の関連付け情報AI2に基づいて、対象エンジン負荷ELtおよび対象ガス供給量FStから、対象メタン価MNtを推定するメタン価推定部64と、を備える。 In some embodiments, the above-described methane number estimation device 1 (1B) includes, as shown in FIG. a gas supply amount acquisition unit 63 for acquiring the target gas supply amount FSt during the period in which the above-described target engine load ELt was acquired; and the above-described second association information AI2. and a methane number estimation unit 64 for estimating the target methane number MNt from the target engine load ELt and the target gas supply amount FSt based on.
 上記の構成によれば、ガスエンジン2における、エンジン負荷ELと供給されるガス燃料のガス供給量FSとメタン価MNとの関係性を示す第2の関連付け情報AI2を利用することで、対象エンジン負荷ELtおよび対象ガス供給量FStから、対象メタン価MNtを推定できる。エンジン負荷ELやガス供給量FSは、対象ガスエンジン2tの運転時において対象ガスエンジン2tに通常装着されるセンサなどから取得可能である。よって、上記の構成によれば、対象ガスエンジン2tの運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価MNtを推定可能である。 According to the above configuration, by using the second association information AI2 indicating the relationship between the engine load EL, the gas supply amount FS of the supplied gas fuel, and the methane number MN in the gas engine 2, the target engine The target methane number MNt can be estimated from the load ELt and the target gas supply amount FSt. The engine load EL and the gas supply amount FS can be obtained from a sensor or the like normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above configuration, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
(第3のメタン価の推定方法)
 図9は、本開示の第3の実施形態にかかるメタン価の推定方法のフロー図である。
 幾つかの実施形態にかかるメタン価の推定方法300は、上述した対象メタン価MNtを推定するための方法である。メタン価の推定方法300は、図9に示されるように、第3の関連付け情報取得ステップS301と、熱発生量取得ステップS302と、供給量取得ステップS303と、低位発熱量算出ステップS304と、メタン価推定ステップS305と、を備える。
(Third methane number estimation method)
FIG. 9 is a flow diagram of a methane number estimation method according to the third embodiment of the present disclosure.
The methane number estimation method 300 according to some embodiments is a method for estimating the target methane number MNt described above. The methane number estimation method 300 includes, as shown in FIG. and a value estimation step S305.
 図示される実施形態では、メタン価の推定方法300における幾つかのステップ(第3の関連付け情報取得ステップS301、熱発生量取得ステップS302、供給量取得ステップS303、低位発熱量算出ステップS304、メタン価推定ステップS305)は、メタン価の推定装置1(1C)により行われる。メタン価の推定装置1(1C)は、第3の関連付け情報取得ステップS301、熱発生量取得ステップS302、供給量取得ステップS303、低位発熱量算出ステップS304およびメタン価推定ステップS305を実行可能に構成されており、これらのステップを行うようになっている。なお、メタン価の推定方法300における幾つかのステップは、メタン価の推定装置1(1C)以外の装置や機器により行われてもよいし、手動により行うようにしてもよい。 In the illustrated embodiment, several steps in the methane number estimation method 300 (third association information acquisition step S301, heat release amount acquisition step S302, supply amount acquisition step S303, lower calorific value calculation step S304, methane number The estimation step S305) is performed by the methane number estimation device 1 (1C). The methane number estimation device 1 (1C) is configured to be able to execute a third association information acquisition step S301, a heat release amount acquisition step S302, a supply amount acquisition step S303, a lower calorific value calculation step S304, and a methane number estimation step S305. are designed to perform these steps. Some steps in the methane number estimation method 300 may be performed by a device or device other than the methane number estimation device 1 (1C), or may be performed manually.
 第3の関連付け情報取得ステップS301では、低位発熱量LHVと供給されるガス燃料のメタン価MNとが予め関連付けられた第3の関連付け情報AI3、を取得することが行われる。図示される実施形態では、第3の関連付け情報取得部71が、第3の関連付け情報取得ステップS301を実行する。第3の関連付け情報AI3は、第3の関連付け情報取得ステップS301よりも前に予め作成され、データベース部46に記憶されている。第3の関連付け情報取得部71は、データベース部46から第3の関連付け情報AI3を取得する。 In the third association information acquisition step S301, third association information AI3 in which the lower heating value LHV and the methane number MN of the supplied gas fuel are associated in advance is acquired. In the illustrated embodiment, the third association information acquisition unit 71 executes the third association information acquisition step S301. The third association information AI3 is created in advance and stored in the database section 46 prior to the third association information acquisition step S301. The third association information acquisition section 71 acquires the third association information AI3 from the database section 46 .
 第3の関連付け情報AI3は、ガスエンジン2における低位発熱量LHVと、ガスエンジン2に供給されるガス燃料のメタン価MNと、の間の対応関係を示すものであり、低位発熱量LHVを入力情報とした際に、入力情報である低位発熱量LHVに対応するメタン価MNを出力情報として取得できるものであればよい。 The third association information AI3 indicates the correspondence between the lower calorific value LHV in the gas engine 2 and the methane number MN of the gas fuel supplied to the gas engine 2, and the lower calorific value LHV is input. Any information may be used as long as the methane number MN corresponding to the lower heating value LHV, which is input information, can be obtained as output information.
 熱発生量取得ステップS302では、対象ガスエンジン2tにおける1サイクルあたりの熱発生量QCである対象熱発生量QCtを取得することが行われる。図示される実施形態では、熱発生量取得部72が、熱発生量取得ステップS302を実行する。 In the heat release amount acquisition step S302, the target heat release amount QCt, which is the heat release amount QC per cycle in the target gas engine 2t, is acquired. In the illustrated embodiment, the heat release amount acquisition unit 72 executes the heat release amount acquisition step S302.
 図10は、クランク角に対する筒内圧の変化を示す図である。図10では、クランク角θを横軸とし、筒内圧を縦軸とするグラフが示されている。このグラフには、対象ガスエンジン2tにおいてガス燃料を燃焼させた場合における複数の筒内圧センサ45の検出値の平均値から形成された波形PCAと、対象ガスエンジン2tにおいてガス燃料を燃焼させない場合における筒内圧センサ45の検出値から形成された波形PCMとが示されている。 FIG. 10 is a diagram showing changes in in-cylinder pressure with respect to crank angle. FIG. 10 shows a graph in which the horizontal axis is the crank angle θ and the vertical axis is the in-cylinder pressure. This graph shows a waveform PCA formed from the average value of the detection values of the plurality of in-cylinder pressure sensors 45 when the target gas engine 2t burns the gas fuel, and a waveform PCA when the target gas engine 2t does not burn the gas fuel. A waveform PCM formed from the detected value of the in-cylinder pressure sensor 45 is shown.
 熱発生量取得部72は、筒内圧センサ45の検出値から形成された波形から1サイクルあたりの対象熱発生量QCtを導出する。1サイクルあたりの対象熱発生量QCtは、1サイクルあたりの筒内圧の変化や気筒21内容積の変化から、公知の手法により導出可能である。或る実施形態では、1サイクルあたりの筒内圧の変化や気筒21内容積の変化から、クランク角θ毎の熱発生速度を導出し、クランク角θ毎の熱発生速度を積分することで、1サイクルあたりの対象熱発生量QCtを算出する。 The heat release amount acquisition unit 72 derives the target heat release amount QCt per cycle from the waveform formed from the detection value of the in-cylinder pressure sensor 45 . The target heat release amount QCt per cycle can be derived by a known method from changes in the cylinder internal pressure and changes in the internal volume of the cylinder 21 per cycle. In one embodiment, the heat release rate for each crank angle θ is derived from changes in the cylinder internal pressure and the change in the internal volume of the cylinder 21 per cycle, and by integrating the heat release rate for each crank angle θ, A target heat release amount QCt per cycle is calculated.
 供給量取得ステップS303では、対象熱発生量QCtを取得した期間における対象ガスエンジン2tに供給されるガス燃料の1サイクルあたりの供給量MFである対象供給量MFtを取得することが行われる。図示される実施形態では、供給量取得部73が、供給量取得ステップS303を実行する。供給量取得部73は、対象ガスエンジン2tや対象ガスエンジン2tに通常装着されるセンサ、燃焼制御部32、ガス燃料供給量制御部34などから対象供給量MFtを取得する。 In the supply amount acquisition step S303, the target supply amount MFt, which is the supply amount MF per cycle of the gas fuel supplied to the target gas engine 2t during the period in which the target heat release amount QCt is acquired, is acquired. In the illustrated embodiment, the supply amount acquisition unit 73 executes the supply amount acquisition step S303. The supply amount acquisition unit 73 acquires the target supply amount MFt from the target gas engine 2t, a sensor normally attached to the target gas engine 2t, the combustion control unit 32, the gas fuel supply amount control unit 34, and the like.
 低位発熱量算出ステップS304では、対象熱発生量QCtと対象供給量MFtから、対象ガスエンジン2tにおける低位発熱量LHVである対象低位発熱量LHVtを算出することが行われる。図示される実施形態では、低位発熱量算出部74が、低位発熱量算出ステップS304を実行する。 In the lower calorific value calculation step S304, the target lower calorific value LHVt, which is the lower calorific value LHV in the target gas engine 2t, is calculated from the target heat release quantity QCt and the target supply quantity MFt. In the illustrated embodiment, the lower heating value calculator 74 executes the lower heating value calculation step S304.
 図示される実施形態では、低位発熱量算出部74は、以下の式(1)を用いて、熱発生量取得部72で取得した対象熱発生量QCtと、供給量取得部73で取得した対象供給量MFtから、対象低位発熱量LHVtを算出する。
LHVt = (QCt+Qhl)/MFt ・・・(1)
 なお、上記式(1)におけるQhlは、熱損失であり、定数としてもよい。
In the illustrated embodiment, the lower heating value calculation unit 74 uses the following equation (1) to determine the target heat release amount QCt acquired by the heat release amount acquisition unit 72 and the target heat release amount QCt acquired by the supply amount acquisition unit 73 A target lower heating value LHVt is calculated from the supply amount MFt.
LHVt=(QCt+Qhl)/MFt (1)
Qhl in the above formula (1) is heat loss and may be a constant.
 なお、低位発熱量算出部74は、上記式(1)で算出した対象低位発熱量LHVtにカルマンフィルターなどのフィルタを用いて推定した対象低位発熱量LHVtを、低位発熱量算出部74で取得する対象低位発熱量LHVtとしてもよい。 The lower heating value calculation unit 74 acquires the target lower heating value LHVt estimated by using a filter such as a Kalman filter on the target lower heating value LHVt calculated by the above equation (1). It may be the target lower heating value LHVt.
 図11は、低位発熱量とガス燃料のメタン価との関係を示す図である。図11では、低位発熱量LHVを横軸とし、ガス燃料のメタン価MNを縦軸とするグラフである。このグラフには、産地ごとのガス燃料がプロットされており、プロットから形成された回帰直線RLが示されている。図11に示されるように、低位発熱量LHVの増大に伴い、メタン価が低減する傾向がある。 Fig. 11 is a diagram showing the relationship between the lower heating value and the methane number of gas fuel. FIG. 11 is a graph in which the horizontal axis is the lower heating value LHV and the vertical axis is the methane number MN of the gas fuel. This graph plots the gas fuel for each production area and shows the regression line RL formed from the plot. As shown in FIG. 11, the methane number tends to decrease as the lower heating value LHV increases.
 メタン価推定ステップS305では、上述した第3の関連付け情報AI3に基づいて、対象低位発熱量LHVtから、対象メタン価MNtを推定することが行われる。図示される実施形態では、メタン価推定部75が、メタン価推定ステップS305を実行する。具体的には、メタン価推定部75が、第3の関連付け情報取得部71が取得した第3の関連付け情報AI3に基づいて、低位発熱量算出部74が算出した対象低位発熱量LHVtから、対象メタン価MNtを推定する。 In the methane number estimation step S305, the target methane number MNt is estimated from the target lower heating value LHVt based on the above-described third association information AI3. In the illustrated embodiment, the methane number estimation unit 75 performs the methane number estimation step S305. Specifically, the methane number estimating unit 75, based on the third association information AI3 acquired by the third association information acquisition unit 71, from the target lower heating value LHVt calculated by the lower heating value calculation unit 74, the target Estimate the methane number MNt.
 上記の方法によれば、ガスエンジン2における、低位発熱量LHVと供給されるガス燃料のメタン価MNとの関係性を示す第3の関連付け情報AI3を利用することで、対象低位発熱量LHVtから、対象メタン価MNtを推定できる。低位発熱量LHVは、対象ガスエンジン2tの運転時において対象ガスエンジン2tに通常装着されるセンサなどから取得できる、上記熱発生量QCおよび上記供給量MFから算出できる。よって、上記の方法によれば、対象ガスエンジン2tの運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価MNtを推定可能である。 According to the above method, by using the third association information AI3 indicating the relationship between the lower calorific value LHV and the methane number MN of the supplied gas fuel in the gas engine 2, from the target lower calorific value LHVt , the target methane number MNt can be estimated. The lower heating value LHV can be calculated from the heat release amount QC and the supply amount MF, which can be obtained from a sensor or the like that is normally attached to the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above method, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
 幾つかの実施形態では、上述したメタン価の推定装置1(1C)は、図9に示されるように、上述した第3の関連付け情報AI3を取得する第3の関連付け情報取得部71と、上述した対象熱発生量QCtを取得する熱発生量取得部72と、上述した対象熱発生量QCtを取得した期間における対象供給量MFtを取得する供給量取得部73と、上述した対象熱発生量QCtと上述した対象供給量MFtから、対象低位発熱量LHVtを算出する低位発熱量算出部74と、上述した第3の関連付け情報AI3に基づいて、対象低位発熱量LHVtから、対象メタン価MNtを推定するメタン価推定部75と、を備える。 In some embodiments, the above-described methane number estimation device 1 (1C) includes, as shown in FIG. a heat release amount acquisition unit 72 for acquiring the target heat release amount QCt, a supply amount acquisition unit 73 for acquiring the target supply amount MFt during the period in which the above-described target heat release amount QCt is acquired, and the above-described target heat release amount QCt and a lower heating value calculation unit 74 that calculates the target lower heating value LHVt from the above-described target supply amount MFt, and the target methane number MNt is estimated from the target lower heating value LHVt based on the above-described third association information AI3. and a methane number estimator 75 that
 上記の構成によれば、ガスエンジン2における、低位発熱量LHVと供給されるガス燃料のメタン価MNとの関係性を示す第3の関連付け情報AI3を利用することで、対象低位発熱量LHVtから、対象メタン価MNtを推定できる。低位発熱量LHVは、対象ガスエンジン2tの運転時において対象ガスエンジン2tに通常装着されるセンサなどから取得できる、熱発生量QCおよび供給量MFから算出できる。よって、上記の構成によれば、対象ガスエンジン2tの運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価MNtを推定可能である。 According to the above configuration, by using the third association information AI3 indicating the relationship between the lower calorific value LHV and the methane number MN of the supplied gas fuel in the gas engine 2, from the target lower calorific value LHVt , the target methane number MNt can be estimated. The lower heating value LHV can be calculated from the heat release amount QC and the supply amount MF, which can be obtained from a sensor or the like normally mounted on the target gas engine 2t during operation of the target gas engine 2t. Therefore, according to the above configuration, the target methane number MNt can be estimated during operation of the target gas engine 2t without using a special sensor such as a calorie meter.
 上述した第1の関連付け情報AI1、第2の関連付け情報AI2および第3の関連付け情報AI3の夫々には、上記入力情報と上記出力情報との対応関係を示すリストや表、マップ、関数、機械学習のモデルなどが含まれる。第1の関連付け情報AI1、第2の関連付け情報AI2および第3の関連付け情報AI3の夫々は、定常試験データを基に作成してもよいし、定常試験データ以外の過去の実績値や実験値、数値解析結果などを基に作成してもよい。 Each of the first association information AI1, the second association information AI2, and the third association information AI3 includes a list, a table, a map, a function, and a machine learning including models of Each of the first association information AI1, the second association information AI2, and the third association information AI3 may be created based on steady-state test data, past actual values other than steady-state test data, experimental values, It may be created based on numerical analysis results and the like.
 上述した第1の関連付け情報AI1、第2の関連付け情報AI2および第3の関連付け情報AI3の夫々は、対象ガスエンジン2tから取得される情報だけでなく、対象ガスエンジン2t以外のガスエンジン2から取得される情報を含んでいてもよい。また、第1の関連付け情報AI1、第2の関連付け情報AI2および第3の関連付け情報AI3の夫々は、対象ガスエンジン2tから取得される情報を含まずに対象ガスエンジン2t以外のガスエンジン2から取得される情報のみを含んでいてもよい。これらの場合には、情報を取得する対象ガスエンジン2t以外のガスエンジン2は、対象ガスエンジン2tと同一機種や類似機種であることが望ましい。 Each of the above-described first association information AI1, second association information AI2, and third association information AI3 is obtained not only from the information acquired from the target gas engine 2t, but also from the gas engines 2 other than the target gas engine 2t. may contain information that is Further, each of the first association information AI1, the second association information AI2, and the third association information AI3 does not include information acquired from the target gas engine 2t, and is acquired from the gas engine 2 other than the target gas engine 2t. may contain only information that is In these cases, it is desirable that the gas engines 2 other than the target gas engine 2t whose information is to be acquired are of the same or similar model as the target gas engine 2t.
 幾つかの実施形態にかかるガスエンジン2の制御装置3は、図1に示されるように、上述したメタン価の推定装置1(1A、1B、1C)と、メタン価の推定装置1で推定されたガス燃料の対象メタン価MNtに応じて、対象ガスエンジン2tの点火時期ITである対象点火時期ITtを制御するように構成された点火時期制御部35と、を備える。 The control device 3 of the gas engine 2 according to some embodiments, as shown in FIG. and an ignition timing control unit 35 configured to control the target ignition timing ITt, which is the ignition timing IT of the target gas engine 2t, according to the target methane number MNt of the gas fuel.
 図12は、ガスエンジンに供給されるガス燃料のメタン価とガスエンジンの点火時期との関係を説明するための説明図である。図12に示されるように、メタン価MNが高ければ、その分だけ点火時期ITを進角させることができる。点火時期制御部35は、対象メタン価MNtが高くなった場合には、その分だけ対象点火時期ITtを進角させ、対象メタン価MNtが低くなった場合には、その分だけ対象点火時期ITtを遅角させることで、対象ガスエンジン2tの高効率での運転が可能となる。 FIG. 12 is an explanatory diagram for explaining the relationship between the methane number of gas fuel supplied to the gas engine and the ignition timing of the gas engine. As shown in FIG. 12, the higher the methane number MN, the more the ignition timing IT can be advanced. When the target methane number MNt increases, the ignition timing control unit 35 advances the target ignition timing ITt by that amount, and when the target methane number MNt decreases, advances the target ignition timing ITt by that amount. is retarded, it is possible to operate the target gas engine 2t with high efficiency.
 上記の構成によれば、ガスエンジン2の制御装置3は、点火時期制御部35において、メタン価の推定装置1で推定されたガス燃料のメタン価MNtに応じて、対象ガスエンジン2tの点火時期ITである対象点火時期ITtを制御することで、対象ガスエンジン2tにおける気筒21に供給されるガス燃料のメタン価(対象メタン価MNt)の変化に応じた対象ガスエンジン2tの燃焼制御が可能となる。この場合には、ガス燃料の切り替え時に連続してガス燃料のメタン価MNtを推定し、連続して対象点火時期ITtを調整できるため、ガス燃料の切り替え時に対象ガスエンジン2tを停止させずに高効率での連続運転が可能となる。 According to the above configuration, the control device 3 of the gas engine 2 causes the ignition timing control unit 35 to adjust the ignition timing of the target gas engine 2t according to the methane number MNt of the gas fuel estimated by the methane number estimation device 1. By controlling the target ignition timing ITt, which is IT, it is possible to control the combustion of the target gas engine 2t according to the change in the methane number (target methane number MNt) of the gas fuel supplied to the cylinder 21 of the target gas engine 2t. Become. In this case, the methane number MNt of the gas fuel can be continuously estimated and the target ignition timing ITt can be continuously adjusted when switching the gas fuel. Efficient continuous operation is possible.
 メタン価の推定装置1は、供給されるガス燃料が、第1の液化ガスを気化した気化ガスと第1のボイルオフガスの混合ガス、第2の液化ガスを気化した気化ガスと第2のボイルオフガスの混合ガス、又は第1の液化ガスを気化した気化ガスと第2の液化ガスを気化した気化ガスの混合ガスの何れにおいても対象メタン価を推定可能である。このため、上記制御装置3を備える対象ガスエンジン2tは、上述した混合ガスがガス燃料として供給された場合においても、高効率での連続運転が可能である。 The methane number estimating device 1 is configured such that the supplied gas fuel is a mixed gas of the first boil-off gas and the vaporized gas of the first liquefied gas, the vaporized gas of the second liquefied gas and the second boil-off gas. The target methane number can be estimated for any of a mixed gas of gases, or a mixed gas of a vaporized gas obtained by vaporizing the first liquefied gas and a vaporized gas obtained by vaporizing the second liquefied gas. Therefore, the target gas engine 2t equipped with the control device 3 can be operated continuously with high efficiency even when the above-described mixed gas is supplied as gas fuel.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。なお、上述した制御装置3やメタン価の推定装置1(1A、1B、1C)は、プロセッサ、メモリ(RAM)、補助記憶部及びインターフェース等を含む計算機(マイクロコンピュータ)によって構成されていてもよい。制御装置3やメタン価の推定装置1(1A、1B、1C)による処理内容は、プロセッサにより実行されるプログラムとして実装され、補助記憶部に記憶されていてもよい。また、メタン価の推定装置1(1A、1B、1C)による処理内容は、制御装置3に搭載されたプロセッサにより実行されるプログラムとして実装され、制御装置3に搭載された補助記憶部に記憶されていてもよい。プログラム実行時には、これらのプログラムはメモリに展開される。プロセッサは、メモリからプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。 The present disclosure is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these forms are combined as appropriate. The control device 3 and the methane number estimation device 1 (1A, 1B, 1C) described above may be configured by a computer (microcomputer) including a processor, a memory (RAM), an auxiliary storage unit, an interface, and the like. . The processing contents of the control device 3 and the methane number estimation device 1 (1A, 1B, 1C) may be implemented as a program executed by a processor and stored in an auxiliary storage unit. Further, the processing contents of the methane number estimation device 1 (1A, 1B, 1C) are implemented as a program executed by a processor mounted on the control device 3, and stored in an auxiliary storage unit mounted on the control device 3. may be During program execution, these programs are expanded in memory. The processor is adapted to read the program from memory and execute the instructions contained in the program.
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。 The contents described in the several embodiments described above can be understood, for example, as follows.
1)本開示の少なくとも一実施形態にかかるメタン価の推定装置(1A(1))は、
 少なくとも1つの気筒(21)を備えるガスエンジン(2)である対象ガスエンジン(2t)に供給されるガス燃料のメタン価(MNt)を推定するメタン価の推定装置(1A)であって、
 ガスエンジン(2)における、点火時期(IT)とノッキング強度(KI)と供給されるガス燃料のメタン価(MN)とが予め関連付けられた第1の関連付け情報(AI1)、を取得する第1の関連付け情報取得部(11)と、
 前記対象ガスエンジン(2t)における前記点火時期(IT)である対象点火時期(ITt)を取得する点火時期取得部(12)と、
 前記対象ガスエンジン(2t)の前記対象点火時期(ITt)を含むサイクルにおける前記ノッキング強度(KI)である対象ノッキング強度(KIt)を取得するノッキング強度取得部(13)と、
 前記第1の関連付け情報(AI1)に基づいて、前記対象点火時期(ITt)および前記対象ノッキング強度(KIt)から、前記対象ガスエンジン(2t)における前記気筒(21)に供給された前記ガス燃料のメタン価(MNt)を推定するメタン価推定部(14)と、を備える。
1) A methane number estimation device (1A(1)) according to at least one embodiment of the present disclosure,
A methane number estimation device (1A) for estimating the methane number (MNt) of gas fuel supplied to a target gas engine (2t), which is a gas engine (2) having at least one cylinder (21),
First obtaining first association information (AI1) in which ignition timing (IT), knocking intensity (KI), and methane number (MN) of supplied gas fuel are associated in advance in a gas engine (2) an association information acquisition unit (11) of
an ignition timing acquisition unit (12) that acquires a target ignition timing (ITt) that is the ignition timing (IT) in the target gas engine (2t);
a knocking intensity acquisition unit (13) for acquiring a target knocking intensity (KIt) that is the knocking intensity (KI) in a cycle including the target ignition timing (ITt) of the target gas engine (2t);
The gas fuel supplied to the cylinder (21) in the target gas engine (2t) from the target ignition timing (ITt) and the target knocking intensity (KIt) based on the first association information (AI1) a methane number estimator (14) for estimating the methane number (MNt) of
 上記1)の構成によれば、ガスエンジン(2)における、点火時期(IT)とノッキング強度(KI)と供給されるガス燃料のメタン価(MN)との関係性を示す第1の関連付け情報(AI1)を利用することで、対象点火時期(ITt)および対象ノッキング強度(KIt)から、対象メタン価MNt(対象ガスエンジン2tにおける気筒21に供給されたガス燃料のメタン価)を推定できる。点火時期(IT)やノッキング強度(KI)は、対象ガスエンジン(2t)の運転時において対象ガスエンジン(2t)に通常装着されるセンサなどから取得可能である。よって、上記1)の構成によれば、対象ガスエンジン(2t)の運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価(MNt)を推定可能である。 According to the configuration 1) above, the first association information indicating the relationship between the ignition timing (IT), the knocking intensity (KI), and the methane number (MN) of the supplied gas fuel in the gas engine (2). By using (AI1), the target methane number MNt (the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) can be estimated from the target ignition timing (ITt) and the target knocking intensity (KIt). The ignition timing (IT) and the knocking intensity (KI) can be obtained from a sensor or the like that is normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above configuration 1), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
2)幾つかの実施形態では、上記1)に記載のメタン価の推定装置(1A)であって、
 前記メタン価推定部(14)は、
 前記対象ガスエンジン(2t)のエンジン負荷(ELt)が一定である一定負荷条件において、特定のノッキング強度に到達したときの前記対象ノッキング強度(KIt1)、および前記特定のノッキング強度に到達したときの前記対象ノッキング強度(KIt1)を含むサイクルにおける前記対象点火時期(ITt1)から、前記第1の関連付け情報(AI1)に基づいて、前記対象ガスエンジン(2t)における前記気筒(21)に供給された前記ガス燃料のメタン価(MNt)を推定する。
2) In some embodiments, the methane number estimation device (1A) according to 1) above,
The methane number estimation unit (14)
Under constant load conditions in which the engine load (ELt) of the target gas engine (2t) is constant, the target knocking intensity (KIt1) when the specific knocking intensity is reached, and the target knocking intensity (KIt1) when the specific knocking intensity is reached supplied to the cylinder (21) in the target gas engine (2t) from the target ignition timing (ITt1) in the cycle including the target knocking intensity (KIt1) based on the first association information (AI1) Estimate the methane number (MNt) of the gas fuel.
 特定のノッキング強度を高く設定するほど、ガス燃料毎の対象点火時期(ITt1)の差を大きくできるため、対象メタン価(MNt)の推定精度の向上が図れるが、ノッキングが生じる可能性が高くなる虞がある。上記2)の構成によれば、特定のノッキング強度に到達したサイクルにおける対象ノッキング強度(KIt1)や対象点火時期(ITt1)を用いて対象メタン価(MNt)を推定することで、対象ガスエンジン(2t)のノッキングを抑制しつつ、対象メタン価(MNt)の推定精度を高いものにすることができる。 As the specific knocking intensity is set higher, the difference in the target ignition timing (ITt1) for each gas fuel can be increased, so the accuracy of estimating the target methane number (MNt) can be improved, but the possibility of knocking increases. There is fear. According to the above configuration 2), by estimating the target methane number (MNt) using the target knocking intensity (KIt1) and the target ignition timing (ITt1) in the cycle in which the specific knocking intensity is reached, the target gas engine ( 2t), while suppressing the knocking, the target methane number (MNt) can be estimated with high accuracy.
3)本開示の少なくとも一実施形態にかかるメタン価の推定装置(1B(1))は、
 少なくとも1つの気筒(21)を備えるガスエンジン(2)である対象ガスエンジン(2t)に供給されるガス燃料のメタン価(MNt)を推定するメタン価の推定装置(1B)であって、
 ガスエンジン(2)における、エンジン負荷(EL)と供給されるガス燃料のガス供給量(FS)と前記ガス燃料のメタン価(MN)とが予め関連付けられた第2の関連付け情報(AI2)、を取得する第2の関連付け情報取得部(61)と、
 前記対象ガスエンジン(2t)における前記エンジン負荷(EL)である対象エンジン負荷(ELt)を取得するエンジン負荷取得部(62)と、
 前記対象ガスエンジン(2t)の前記対象エンジン負荷(ELt)を取得した期間における前記ガス供給量(FS)である対象ガス供給量(FSt)を取得するガス供給量取得部(63)と、
 前記第2の関連付け情報(AI2)に基づいて、前記対象エンジン負荷(ELt)および前記対象ガス供給量(FSt)から、前記対象ガスエンジン(2t)における前記気筒(21)に供給された前記ガス燃料のメタン価(MNt)を推定するメタン価推定部(64)と、を備える。
3) A methane number estimation device (1B(1)) according to at least one embodiment of the present disclosure,
A methane number estimation device (1B) for estimating the methane number (MNt) of gas fuel supplied to a target gas engine (2t), which is a gas engine (2) having at least one cylinder (21),
Second association information (AI2) in which the engine load (EL), the gas supply amount (FS) of the gas fuel to be supplied, and the methane number (MN) of the gas fuel are associated in advance in the gas engine (2), a second association information acquisition unit (61) that acquires
an engine load acquisition unit (62) that acquires a target engine load (ELt) that is the engine load (EL) in the target gas engine (2t);
a gas supply amount acquisition unit (63) for acquiring a target gas supply amount (FSt), which is the gas supply amount (FS) during the period in which the target engine load (ELt) of the target gas engine (2t) was acquired;
The gas supplied to the cylinder (21) in the target gas engine (2t) from the target engine load (ELt) and the target gas supply amount (FSt) based on the second association information (AI2) and a methane number estimator (64) for estimating the methane number (MNt) of the fuel.
 上記3)の構成によれば、ガスエンジン(2)における、エンジン負荷(EL)と供給されるガス燃料のガス供給量(FS)とメタン価(MN)との関係性を示す第2の関連付け情報(AI2)を利用することで、対象エンジン負荷(ELt)および対象ガス供給量(FSt)から、対象メタン価(MNt、対象ガスエンジン2tにおける気筒21に供給されたガス燃料のメタン価)を推定できる。エンジン負荷(EL)やガス供給量(FS)は、対象ガスエンジン(2t)の運転時において対象ガスエンジン(2t)に通常装着されるセンサなどから取得可能である。よって、上記3)の構成によれば、対象ガスエンジン(2t)の運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価(MNt)を推定可能である。 According to the configuration of 3) above, in the gas engine (2), the second association indicating the relationship between the engine load (EL), the gas supply amount (FS) of the gas fuel to be supplied, and the methane number (MN) By using the information (AI2), the target methane number (MNt, the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) is calculated from the target engine load (ELt) and the target gas supply amount (FSt). can be estimated. The engine load (EL) and the gas supply amount (FS) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above configuration 3), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
4)本開示の少なくとも一実施形態にかかるメタン価の推定装置(1C(1))は、
 少なくとも1つの気筒(21)を備えるガスエンジン(2)である対象ガスエンジン(2t)に供給されるガス燃料のメタン価(MNt)を推定するメタン価の推定装置(1C)であって、
 ガスエンジン(2)における、低位発熱量(LHV)と供給されるガス燃料のメタン価(MN)とが予め関連付けられた第3の関連付け情報(AI3)、を取得する第3の関連付け情報取得部(71)と、
 前記対象ガスエンジン(2t)における1サイクルあたりの熱発生量(QC)である対象熱発生量(QCt)を取得する熱発生量取得部(72)と、
 前記対象熱発生量(QCt)を取得した期間における前記対象ガスエンジン(2t)に供給されるガス燃料の1サイクルあたりの供給量(MF)である対象供給量(MFt)を取得する供給量取得部(73)と、
 前記対象熱発生量(QCt)と前記対象供給量(MFt)から、前記対象ガスエンジン(2t)における低位発熱量(LHV)である対象低位発熱量(LHVt)を算出する低位発熱量算出部(74)と、
 前記第3の関連付け情報(AI3)に基づいて、前記対象低位発熱量(LHVt)から、前記対象ガスエンジン(2t)における前記気筒(21)に供給された前記ガス燃料のメタン価(MNt)を推定するメタン価推定部(75)と、を備える。
4) A methane number estimation device (1C(1)) according to at least one embodiment of the present disclosure,
A methane number estimation device (1C) for estimating the methane number (MNt) of gas fuel supplied to a target gas engine (2t), which is a gas engine (2) having at least one cylinder (21),
A third association information acquisition unit that acquires third association information (AI3) in which the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel are associated in advance in the gas engine (2). (71) and
a heat release amount acquisition unit (72) for acquiring a target heat release amount (QCt), which is a heat release amount (QC) per cycle in the target gas engine (2t);
Supply amount acquisition for acquiring a target supply amount (MFt), which is a supply amount (MF) per cycle of the gas fuel supplied to the target gas engine (2t) during the period in which the target heat release amount (QCt) was acquired a part (73);
A lower calorific value calculation unit ( 74) and
Based on the third association information (AI3), the methane number (MNt) of the gas fuel supplied to the cylinder (21) in the target gas engine (2t) is calculated from the target lower heating value (LHVt) and a methane number estimator (75) for estimating.
 上記4)の構成によれば、ガスエンジン(2)における、低位発熱量(LHV)と供給されるガス燃料のメタン価(MN)との関係性を示す第3の関連付け情報(AI3)を利用することで、対象低位発熱量(LHVt)から、対象メタン価(MNt、対象ガスエンジン2tにおける気筒21に供給されたガス燃料のメタン価)を推定できる。低位発熱量(LHV)は、対象ガスエンジン(2t)の運転時において対象ガスエンジン(2t)に通常装着されるセンサなどから取得できる、上記熱発生量(QC)および上記供給量(MF)から算出できる。よって、上記4)の構成によれば、対象ガスエンジン(2t)の運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価(MNt)を推定可能である。 According to the configuration of 4) above, the third association information (AI3) indicating the relationship between the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel in the gas engine (2) is used. By doing so, the target methane number (MNt, the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) can be estimated from the target lower heating value (LHVt). The lower heating value (LHV) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t) from the heat release amount (QC) and the supply amount (MF). can be calculated. Therefore, according to the above configuration 4), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
5)本開示の少なくとも一実施形態にかかるガスエンジン(2)の制御装置(3)は、
 上記1)から4)までの何れかに記載のメタン価の推定装置(1(1A、1B、1C))と、
 前記メタン価の推定装置(1)で推定された前記ガス燃料のメタン価(MNt)に応じて、前記対象ガスエンジン(2t)の点火時期(IT)である対象点火時期(ITt)を制御するように構成された点火時期制御部(35)と、を備える。
5) A control device (3) for a gas engine (2) according to at least one embodiment of the present disclosure,
A methane number estimation device (1 (1A, 1B, 1C)) according to any one of 1) to 4) above;
The target ignition timing (ITt), which is the ignition timing (IT) of the target gas engine (2t), is controlled according to the methane number (MNt) of the gas fuel estimated by the methane number estimation device (1). and an ignition timing control unit (35) configured as follows.
 上記5)の構成によれば、ガスエンジン(2)の制御装置(3)は、点火時期制御部(35)において、メタン価の推定装置(1)で推定されたガス燃料のメタン価(MNt)に応じて、対象ガスエンジン(2t)の点火時期(IT)である対象点火時期(ITt)を制御することで、対象ガスエンジン(2t)における気筒(21)に供給されるガス燃料のメタン価(MNt)の変化に応じた対象ガスエンジン(2t)の燃焼制御が可能となる。この場合には、ガス燃料の切り替え時に連続してガス燃料のメタン価(MNt)を推定し、連続して対象点火時期(ITt)を調整できるため、ガス燃料の切り替え時に対象ガスエンジン(2t)を停止させずに高効率での連続運転が可能となる。 According to the above configuration 5), the control device (3) of the gas engine (2), in the ignition timing control section (35), the methane number (MNt ), by controlling the target ignition timing (ITt), which is the ignition timing (IT) of the target gas engine (2t), the gas fuel methane supplied to the cylinder (21) in the target gas engine (2t) It becomes possible to control the combustion of the target gas engine (2t) according to the change in the valence (MNt). In this case, the methane number (MNt) of the gas fuel can be continuously estimated when switching the gas fuel, and the target ignition timing (ITt) can be continuously adjusted, so when switching the gas fuel, the target gas engine (2t) Continuous operation with high efficiency is possible without stopping the
6)本開示の少なくとも一実施形態にかかるメタン価の推定方法(100)は、
 少なくとも1つの気筒(21)を備えるガスエンジン(2)である対象ガスエンジン(2t)に供給されるガス燃料のメタン価(MNt)を推定するメタン価の推定方法(100)であって、
 ガスエンジン(2)における、点火時期(IT)とノッキング強度(KI)と供給されるガス燃料のメタン価(MN)とが予め関連付けられた第1の関連付け情報(AI1)、を取得する第1の関連付け情報取得ステップ(S101)と、
 前記対象ガスエンジン(2t)における前記点火時期(IT)である対象点火時期(ITt)を取得する点火時期取得ステップ(S102)と、
 前記対象ガスエンジン(2t)の前記対象点火時期(ITt)を含むサイクルにおける前記ノッキング強度(KI)である対象ノッキング強度(KIt)を取得するノッキング強度取得ステップ(S103)と、
 前記第1の関連付け情報(AI1)に基づいて、前記対象点火時期(ITt)および前記対象ノッキング強度(KIt)から、前記対象ガスエンジン(2t)における前記気筒(21)に供給された前記ガス燃料のメタン価(MNt)を推定するメタン価推定ステップ(S104)と、を備える。
6) A methane number estimation method (100) according to at least one embodiment of the present disclosure,
A methane number estimation method (100) for estimating the methane number (MNt) of a gas fuel supplied to a target gas engine (2t), which is a gas engine (2) comprising at least one cylinder (21), comprising:
First obtaining first association information (AI1) in which ignition timing (IT), knocking intensity (KI), and methane number (MN) of supplied gas fuel are associated in advance in a gas engine (2) An association information acquisition step (S101) of
an ignition timing acquisition step (S102) for acquiring a target ignition timing (ITt) that is the ignition timing (IT) in the target gas engine (2t);
a knocking intensity acquisition step (S103) of acquiring a target knocking intensity (KIt) that is the knocking intensity (KI) in a cycle including the target ignition timing (ITt) of the target gas engine (2t);
The gas fuel supplied to the cylinder (21) in the target gas engine (2t) from the target ignition timing (ITt) and the target knocking intensity (KIt) based on the first association information (AI1) and a methane number estimation step (S104) for estimating the methane number (MNt) of.
 上記6)の方法によれば、ガスエンジン(2)における、点火時期(ITt)とノッキング強度(KI)と供給されるガス燃料のメタン価(MN)との関係性を示す第1の関連付け情報(AI1)を利用することで、対象点火時期(ITt)および対象ノッキング強度(KIt)から、対象ガスエンジン(2t)における気筒(21)に供給されたガス燃料のメタン価(対象メタン価MNt)を推定できる。点火時期(IT)やノッキング強度(KI)は、対象ガスエンジン(2t)の運転時において対象ガスエンジン(2t)に通常装着されるセンサなどから取得可能である。よって、上記6)の方法によれば、対象ガスエンジン(2t)の運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価(MNt)を推定可能である。 According to the method 6) above, the first association information indicating the relationship between the ignition timing (ITt), the knocking intensity (KI), and the methane number (MN) of the supplied gas fuel in the gas engine (2) By using (AI1), the methane number (target methane number MNt) of the gas fuel supplied to the cylinder (21) in the target gas engine (2t) is calculated from the target ignition timing (ITt) and target knocking intensity (KIt). can be estimated. The ignition timing (IT) and the knocking intensity (KI) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above method 6), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
7)本開示の少なくとも一実施形態にかかるメタン価の推定方法(200)は、
 少なくとも1つの気筒(21)を備えるガスエンジン(2)である対象ガスエンジン(2t)に供給されるガス燃料のメタン価(MNt)を推定するメタン価の推定方法(200)であって、
 ガスエンジン(2)における、エンジン負荷(EL)と供給されるガス燃料のガス供給量(FS)と前記ガス燃料のメタン価(MN)とが予め関連付けられた第2の関連付け情報(AI2)、を取得する第2の関連付け情報取得ステップ(S201)と、
 前記対象ガスエンジン(2t)における前記エンジン負荷(EL)である対象エンジン負荷(ELt)を取得するエンジン負荷取得ステップ(S202)と、
 前記対象ガスエンジン(2t)の前記対象エンジン負荷(ELt)を取得した期間における前記ガス供給量(FS)である対象ガス供給量(FSt)を取得するガス供給量取得ステップ(S203)と、
 前記第2の関連付け情報(AI2)に基づいて、前記対象エンジン負荷(ELt)および前記対象ガス供給量(FSt)から、前記対象ガスエンジン(2t)における前記気筒(21)に供給された前記ガス燃料のメタン価(MNt)を推定するメタン価推定ステップ(S204)と、を備える。
7) A methane number estimation method (200) according to at least one embodiment of the present disclosure,
A methane number estimation method (200) for estimating the methane number (MNt) of a gas fuel supplied to a target gas engine (2t), which is a gas engine (2) comprising at least one cylinder (21), comprising:
Second association information (AI2) in which the engine load (EL), the gas supply amount (FS) of the gas fuel to be supplied, and the methane number (MN) of the gas fuel are associated in advance in the gas engine (2), a second association information acquisition step (S201) for acquiring
an engine load acquisition step (S202) for acquiring a target engine load (ELt), which is the engine load (EL) in the target gas engine (2t);
A gas supply amount acquisition step (S203) for acquiring a target gas supply amount (FSt), which is the gas supply amount (FS) during the period in which the target engine load (ELt) of the target gas engine (2t) was acquired;
The gas supplied to the cylinder (21) in the target gas engine (2t) from the target engine load (ELt) and the target gas supply amount (FSt) based on the second association information (AI2) and a methane number estimation step (S204) for estimating the methane number (MNt) of the fuel.
 上記7)の方法によれば、ガスエンジン(2)における、エンジン負荷(EL)と供給されるガス燃料のガス供給量(FS)とメタン価(MN)との関係性を示す第2の関連付け情報(AI2)を利用することで、対象エンジン負荷(ELt)および対象ガス供給量(FSt)から、対象メタン価(MNt、対象ガスエンジン2tにおける気筒21に供給されたガス燃料のメタン価)を推定できる。エンジン負荷(EL)やガス供給量(FS)は、対象ガスエンジン(2t)の運転時において対象ガスエンジン(2t)に通常装着されるセンサなどから取得可能である。よって、上記7)の方法によれば、対象ガスエンジン(2t)の運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価(MNt)を推定可能である。 According to the method of 7) above, in the gas engine (2), the second association indicating the relationship between the engine load (EL), the gas supply amount (FS) of the gas fuel supplied, and the methane number (MN) By using the information (AI2), the target methane number (MNt, the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) is calculated from the target engine load (ELt) and the target gas supply amount (FSt). can be estimated. The engine load (EL) and the gas supply amount (FS) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t). Therefore, according to the above method 7), the target methane number (MNt) can be estimated without using a special sensor such as a calorimeter while the target gas engine (2t) is in operation.
8)本開示の少なくとも一実施形態にかかるメタン価の推定方法(300)は、
 少なくとも1つの気筒(21)を備えるガスエンジン(2)である対象ガスエンジン(2t)に供給されるガス燃料のメタン価(MNt)を推定するメタン価の推定方法(300)であって、
 ガスエンジン(2)における、低位発熱量(LHV)と供給されるガス燃料のメタン価(MN)とが予め関連付けられた第3の関連付け情報(AI3)、を取得する第3の関連付け情報取得ステップ(S301)と、
 前記対象ガスエンジン(2t)における1サイクルあたりの熱発生量(QC)である対象熱発生量(QCt)を取得する熱発生量取得ステップ(S302)と、
 前記対象熱発生量(QCt)を取得した期間における前記対象ガスエンジン(2t)に供給されるガス燃料の1サイクルあたりの供給量(MF)である対象供給量(MFt)を取得する供給量取得ステップ(S303)と、
 前記対象熱発生量(QCt)と前記対象供給量(MFt)から、前記対象ガスエンジン(2t)における低位発熱量(LHV)である対象低位発熱量(LHVt)を算出する低位発熱量算出ステップ(S304)と、
 前記第3の関連付け情報(AI1)に基づいて、前記対象低位発熱量(LHVt)から、前記対象ガスエンジン(2t)における前記気筒(21)に供給された前記ガス燃料のメタン価(MNt)を推定するメタン価推定ステップ(S305)と、を備える。
8) A method for estimating methane number (300) according to at least one embodiment of the present disclosure,
A methane number estimation method (300) for estimating the methane number (MNt) of gas fuel supplied to a target gas engine (2t), which is a gas engine (2) comprising at least one cylinder (21), comprising:
A third association information acquisition step of acquiring third association information (AI3) in which the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel are associated in advance in the gas engine (2). (S301);
A heat release amount acquisition step (S302) for acquiring a target heat release amount (QCt), which is a heat release amount (QC) per cycle in the target gas engine (2t);
Supply amount acquisition for acquiring a target supply amount (MFt), which is a supply amount (MF) per cycle of the gas fuel supplied to the target gas engine (2t) during the period in which the target heat release amount (QCt) was acquired a step (S303);
A lower calorific value calculation step ( S304) and
Based on the third association information (AI1), the methane number (MNt) of the gas fuel supplied to the cylinder (21) in the target gas engine (2t) is calculated from the target lower heating value (LHVt) and an estimating methane number estimation step (S305).
 上記8)の方法によれば、ガスエンジン(2)における、低位発熱量(LHV)と供給されるガス燃料のメタン価(MN)との関係性を示す第3の関連付け情報(AI3)を利用することで、対象低位発熱量(LHVt)から、対象メタン価(MNt、対象ガスエンジン2tにおける気筒21に供給されたガス燃料のメタン価)を推定できる。低位発熱量(LHV)は、対象ガスエンジン(2t)の運転時において対象ガスエンジン(2t)に通常装着されるセンサなどから取得できる、上記熱発生量(QC)および上記供給量(MF)から算出できる。よって、上記8)の方法によれば、対象ガスエンジン(2t)の運転時に、カロリーメータなどの特別なセンサを用いることなく対象メタン価(MNt)を推定可能である。 According to the method of 8) above, the third association information (AI3) indicating the relationship between the lower heating value (LHV) and the methane number (MN) of the supplied gas fuel in the gas engine (2) is used. By doing so, the target methane number (MNt, the methane number of the gas fuel supplied to the cylinder 21 in the target gas engine 2t) can be estimated from the target lower heating value (LHVt). The lower heating value (LHV) can be obtained from a sensor or the like normally attached to the target gas engine (2t) during operation of the target gas engine (2t) from the heat release amount (QC) and the supply amount (MF). can be calculated. Therefore, according to the above method 8), the target methane number (MNt) can be estimated during operation of the target gas engine (2t) without using a special sensor such as a calorimeter.
1,1A~1C メタン価の推定装置
2      ガスエンジン
2t     対象ガスエンジン
3      制御装置
3t     対象制御装置
4      エンジンシステム
5      ガス燃料供給系統
11     第1の関連付け情報取得部
12     点火時期取得部
13     ノッキング強度取得部
14     メタン価推定部
21     気筒
22     駆動シャフト
31     エンジン制御部
32     燃焼制御部
33     燃焼診断部
34     ガス燃料供給量制御部
35     点火時期制御部
41     燃料噴射弁
41     ガス燃料噴射装置
42     点火装置
43     発電機
44     ノッキングセンサ
45     筒内圧センサ
46     データベース部
51     第1のガス燃料貯留装置
52     第2のガス燃料貯留装置
53     第1のガス燃料供給ライン
54     第2のガス燃料供給ライン
55     切り替え装置
56     合流部
61     第2の関連付け情報取得部
62     エンジン負荷取得部
63     ガス供給量取得部
64     メタン価推定部
71     第3の関連付け情報取得部
72     熱発生量取得部
73     供給量取得部
74     低位発熱量算出部
75     メタン価推定部
100,200,300 メタン価の推定方法
AI1    第1の関連付け情報
AI2    第2の関連付け情報
AI3    第3の関連付け情報
EL     エンジン負荷
ELt    対象エンジン負荷
FS     ガス供給量
FSt    対象ガス供給量
IT,ITc1,ITc2 点火時期
ITs    設定点火時期
ITt,ITt1 対象点火時期
KI,KIs ノッキング強度
KIt,KIt1 対象ノッキング強度
LHV    低位発熱量
LHVt   対象低位発熱量
MF     供給量
MFt    対象供給量
MN     メタン価
MNt    対象メタン価
QC     熱発生量
QCt    対象熱発生量
S101   第1の関連付け情報取得ステップ
S102   点火時期取得ステップ
S103   ノッキング強度取得ステップ
S104   メタン価推定ステップ
S201   第2の関連付け情報取得ステップ
S202   エンジン負荷取得ステップ
S203   ガス供給量取得ステップ
S204   メタン価推定ステップ
S301   第3の関連付け情報取得ステップ
S302   熱発生量取得ステップ
S303   供給量取得ステップ
S304   低位発熱量算出ステップ
S305   メタン価推定ステップ

 
1, 1A to 1C Methane number estimation device 2 Gas engine 2t Target gas engine 3 Control device 3t Target control device 4 Engine system 5 Gas fuel supply system 11 First association information acquisition unit 12 Ignition timing acquisition unit 13 Knocking intensity acquisition unit 14 Methane number estimation unit 21 Cylinder 22 Drive shaft 31 Engine control unit 32 Combustion control unit 33 Combustion diagnosis unit 34 Gas fuel supply amount control unit 35 Ignition timing control unit 41 Fuel injection valve 41 Gas fuel injection device 42 Ignition device 43 Generator 44 knocking sensor 45 in-cylinder pressure sensor 46 database unit 51 first gas fuel storage device 52 second gas fuel storage device 53 first gas fuel supply line 54 second gas fuel supply line 55 switching device 56 junction 61 second associated information acquisition unit 62 engine load acquisition unit 63 gas supply amount acquisition unit 64 methane number estimation unit 71 third association information acquisition unit 72 heat release amount acquisition unit 73 supply amount acquisition unit 74 lower calorific value calculation unit 75 methane number estimation Units 100, 200, 300 Methane number estimation method AI1 First association information AI2 Second association information AI3 Third association information EL Engine load ELt Target engine load FS Gas supply amount FSt Target gas supply amount IT, ITc1, ITc2 Ignition timing ITs Set ignition timing ITt, ITt1 Target ignition timing KI, KIs Knocking intensity KIt, KIt1 Target knocking intensity LHV Lower heating value LHVt Target lower heating value MF Supply amount MFt Target supply amount MN Methane value MNt Target methane value QC Heat release amount QCt Target heat release amount S101 First correlation information acquisition step S102 Ignition timing acquisition step S103 Knocking intensity acquisition step S104 Methane number estimation step S201 Second association information acquisition step S202 Engine load acquisition step S203 Gas supply amount acquisition step S204 Methane number estimation step S301 Third association information acquisition step S302 Heat release amount acquisition step S303 Supply amount acquisition step S304 Lower heating value calculation step S305 Methane number estimation step

Claims (8)

  1.  少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定装置であって、
     ガスエンジンにおける、点火時期とノッキング強度と供給されるガス燃料のメタン価とが予め関連付けられた第1の関連付け情報、を取得する第1の関連付け情報取得部と、
     前記対象ガスエンジンにおける前記点火時期である対象点火時期を取得する点火時期取得部と、
     前記対象ガスエンジンの前記対象点火時期を含むサイクルにおける前記ノッキング強度である対象ノッキング強度を取得するノッキング強度取得部と、
     前記第1の関連付け情報に基づいて、前記対象点火時期および前記対象ノッキング強度から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定部と、を備える、
    メタン価の推定装置。
    A methane number estimation device for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
    a first association information acquisition unit that acquires first association information in which ignition timing, knocking intensity, and methane number of supplied gas fuel are associated in advance in the gas engine;
    an ignition timing acquisition unit that acquires a target ignition timing that is the ignition timing in the target gas engine;
    a knocking intensity acquisition unit that acquires the target knocking intensity, which is the knocking intensity in a cycle including the target ignition timing of the target gas engine;
    a methane number estimation unit that estimates the methane number of the gas fuel supplied to the cylinder in the target gas engine from the target ignition timing and the target knocking intensity based on the first association information;
    Methane number estimator.
  2.  前記メタン価推定部は、
     前記対象ガスエンジンのエンジン負荷が一定である一定負荷条件において、特定のノッキング強度に到達したときの前記対象ノッキング強度、および前記特定のノッキング強度に到達したときの前記対象ノッキング強度を含むサイクルにおける前記対象点火時期から、前記第1の関連付け情報に基づいて、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定する、
    請求項1に記載のメタン価の推定装置。
    The methane number estimation unit
    In a constant load condition in which the engine load of the target gas engine is constant, the target knocking intensity when the specific knocking intensity is reached, and the target knocking intensity in a cycle including the target knocking intensity when the specific knocking intensity is reached. estimating the methane number of the gas fuel supplied to the cylinder in the target gas engine from the target ignition timing based on the first association information;
    The apparatus for estimating methane number according to claim 1.
  3.  少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定装置であって、
     ガスエンジンにおける、エンジン負荷と供給されるガス燃料のガス供給量と前記ガス燃料のメタン価とが予め関連付けられた第2の関連付け情報、を取得する第2の関連付け情報取得部と、
     前記対象ガスエンジンにおける前記エンジン負荷である対象エンジン負荷を取得するエンジン負荷取得部と、
     前記対象ガスエンジンの前記対象エンジン負荷を取得した期間における前記ガス供給量である対象ガス供給量を取得するガス供給量取得部と、
     前記第2の関連付け情報に基づいて、前記対象エンジン負荷および前記対象ガス供給量から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定部と、を備える、
    メタン価の推定装置。
    A methane number estimation device for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
    a second association information acquisition unit that acquires second association information in which the engine load, the gas supply amount of the gas fuel to be supplied, and the methane number of the gas fuel are associated in advance in the gas engine;
    an engine load acquisition unit that acquires a target engine load that is the engine load in the target gas engine;
    a gas supply amount acquisition unit that acquires a target gas supply amount, which is the gas supply amount during a period in which the target engine load of the target gas engine is acquired;
    a methane number estimating unit that estimates the methane number of the gas fuel supplied to the cylinder in the target gas engine from the target engine load and the target gas supply amount based on the second association information. ,
    Methane number estimator.
  4.  少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定装置であって、
     ガスエンジンにおける、低位発熱量と供給されるガス燃料のメタン価とが予め関連付けられた第3の関連付け情報、を取得する第3の関連付け情報取得部と、
     前記対象ガスエンジンにおける1サイクルあたりの熱発生量である対象熱発生量を取得する熱発生量取得部と、
     前記対象熱発生量を取得した期間における前記対象ガスエンジンに供給されるガス燃料の1サイクルあたりの供給量である対象供給量を取得する供給量取得部と、
     前記対象熱発生量と前記対象供給量から、前記対象ガスエンジンにおける低位発熱量である対象低位発熱量を算出する低位発熱量算出部と、
     前記第3の関連付け情報に基づいて、前記対象低位発熱量から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定部と、を備える、
    メタン価の推定装置。
    A methane number estimation device for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
    a third association information acquisition unit that acquires third association information in which the lower calorific value and the methane number of the supplied gas fuel are associated in advance in the gas engine;
    a heat release amount acquisition unit that acquires a target heat release amount, which is the amount of heat release per cycle in the target gas engine;
    a supply amount acquisition unit that acquires a target supply amount that is a supply amount per cycle of the gas fuel supplied to the target gas engine during the period in which the target heat release amount is acquired;
    a lower calorific value calculation unit that calculates a target lower calorific value, which is a lower calorific value in the target gas engine, from the target heat release amount and the target supply amount;
    a methane number estimating unit that estimates the methane number of the gas fuel supplied to the cylinder in the target gas engine from the target lower heating value based on the third association information;
    Methane number estimator.
  5.  請求項1乃至4の何れか1項に記載のメタン価の推定装置と、
     前記メタン価の推定装置で推定された前記ガス燃料のメタン価に応じて、前記対象ガスエンジンの点火時期である対象点火時期を制御するように構成された点火時期制御部と、を備える、
    ガスエンジンの制御装置。
    a methane number estimation device according to any one of claims 1 to 4;
    an ignition timing control unit configured to control the target ignition timing, which is the ignition timing of the target gas engine, according to the methane number of the gas fuel estimated by the methane number estimation device;
    Gas engine controller.
  6.  少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定方法であって、
     ガスエンジンにおける、点火時期とノッキング強度と供給されるガス燃料のメタン価とが予め関連付けられた第1の関連付け情報、を取得する第1の関連付け情報取得ステップと、
     前記対象ガスエンジンにおける前記点火時期である対象点火時期を取得する点火時期取得ステップと、
     前記対象ガスエンジンの前記対象点火時期を含むサイクルにおける前記ノッキング強度である対象ノッキング強度を取得するノッキング強度取得ステップと、
     前記第1の関連付け情報に基づいて、前記対象点火時期および前記対象ノッキング強度から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定ステップと、を備える、
    メタン価の推定方法。
    A methane number estimation method for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
    a first association information acquiring step of acquiring first association information in which ignition timing, knocking intensity, and methane number of supplied gas fuel are associated in advance in the gas engine;
    an ignition timing acquisition step of acquiring a target ignition timing, which is the ignition timing in the target gas engine;
    a knocking intensity acquisition step of acquiring the target knocking intensity, which is the knocking intensity in a cycle including the target ignition timing of the target gas engine;
    a methane number estimation step of estimating the methane number of the gas fuel supplied to the cylinder in the target gas engine from the target ignition timing and the target knocking intensity based on the first association information;
    Method for estimating methane number.
  7.  少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定方法であって、
     ガスエンジンにおける、エンジン負荷と供給されるガス燃料のガス供給量と前記ガス燃料のメタン価とが予め関連付けられた第2の関連付け情報、を取得する第2の関連付け情報取得ステップと、
     前記対象ガスエンジンにおける前記エンジン負荷である対象エンジン負荷を取得するエンジン負荷取得ステップと、
     前記対象ガスエンジンの前記対象エンジン負荷を取得した期間における前記ガス供給量である対象ガス供給量を取得するガス供給量取得ステップと、
     前記第2の関連付け情報に基づいて、前記対象エンジン負荷および前記対象ガス供給量から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定ステップと、を備える、
    メタン価の推定方法。
    A methane number estimation method for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
    a second association information acquisition step of acquiring second association information in which the engine load, the gas supply amount of the gas fuel to be supplied, and the methane number of the gas fuel are associated in advance in the gas engine;
    an engine load acquiring step of acquiring a target engine load that is the engine load in the target gas engine;
    a gas supply amount acquiring step of acquiring a target gas supply amount, which is the gas supply amount during a period in which the target engine load of the target gas engine is acquired;
    a methane number estimation step of estimating the methane number of the gas fuel supplied to the cylinder in the target gas engine from the target engine load and the target gas supply amount based on the second association information. ,
    Method for estimating methane number.
  8.  少なくとも1つの気筒を備えるガスエンジンである対象ガスエンジンに供給されるガス燃料のメタン価を推定するメタン価の推定方法であって、
     ガスエンジンにおける、低位発熱量と供給されるガス燃料のメタン価とが予め関連付けられた第3の関連付け情報、を取得する第3の関連付け情報取得ステップと、
     前記対象ガスエンジンにおける1サイクルあたりの熱発生量である対象熱発生量を取得する熱発生量取得ステップと、
     前記対象熱発生量を取得した期間における前記対象ガスエンジンに供給されるガス燃料の1サイクルあたりの供給量である対象供給量を取得する供給量取得ステップと、
     前記対象熱発生量と前記対象供給量から、前記対象ガスエンジンにおける低位発熱量である対象低位発熱量を算出する低位発熱量算出ステップと、
     前記第3の関連付け情報に基づいて、前記対象低位発熱量から、前記対象ガスエンジンにおける前記気筒に供給された前記ガス燃料のメタン価を推定するメタン価推定ステップと、を備える、
    メタン価の推定方法。
    A methane number estimation method for estimating the methane number of gas fuel supplied to a target gas engine, which is a gas engine having at least one cylinder,
    a third association information acquisition step of acquiring third association information in which the lower calorific value and the methane number of the supplied gas fuel are associated in advance in the gas engine;
    a heat release amount acquiring step of acquiring a target heat release amount, which is the amount of heat release per cycle in the target gas engine;
    A supply amount acquisition step of acquiring a target supply amount, which is a supply amount per cycle of the gas fuel supplied to the target gas engine during the period in which the target heat release amount is acquired;
    a lower calorific value calculation step of calculating a target lower calorific value, which is a lower calorific value in the target gas engine, from the target heat release amount and the target supply amount;
    a methane number estimation step of estimating the methane number of the gas fuel supplied to the cylinder in the target gas engine from the target lower heating value based on the third association information;
    Method for estimating methane number.
PCT/JP2022/021939 2021-06-16 2022-05-30 Methane number estimation device, gas engine control device, and methane number estimation method WO2022264795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021100293A JP2022191833A (en) 2021-06-16 2021-06-16 Methane number estimation device, gas engine control device, and methane number estimation method
JP2021-100293 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022264795A1 true WO2022264795A1 (en) 2022-12-22

Family

ID=84527456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021939 WO2022264795A1 (en) 2021-06-16 2022-05-30 Methane number estimation device, gas engine control device, and methane number estimation method

Country Status (2)

Country Link
JP (1) JP2022191833A (en)
WO (1) WO2022264795A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148187A (en) * 2001-11-12 2003-05-21 Tokyo Gas Co Ltd Device and method for controlling internal combustion engine
JP2005016475A (en) * 2003-06-27 2005-01-20 Nissan Motor Co Ltd Valve clearance amount estimation device for internal combustion engine
WO2014054081A1 (en) * 2012-10-05 2014-04-10 川崎重工業株式会社 Combustion stabilizing device for gas engine
US20160010581A1 (en) * 2014-07-11 2016-01-14 Caterpillar Motoren Gmbh & Co. Kg Method for controlling an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148187A (en) * 2001-11-12 2003-05-21 Tokyo Gas Co Ltd Device and method for controlling internal combustion engine
JP2005016475A (en) * 2003-06-27 2005-01-20 Nissan Motor Co Ltd Valve clearance amount estimation device for internal combustion engine
WO2014054081A1 (en) * 2012-10-05 2014-04-10 川崎重工業株式会社 Combustion stabilizing device for gas engine
US20160010581A1 (en) * 2014-07-11 2016-01-14 Caterpillar Motoren Gmbh & Co. Kg Method for controlling an internal combustion engine

Also Published As

Publication number Publication date
JP2022191833A (en) 2022-12-28

Similar Documents

Publication Publication Date Title
US20170101948A1 (en) Monitoring an engine by means of cylinder pressure sensors, preferably in lean gas engines with a flushed prechamber
EP2927467B1 (en) Gas or dual fuel engine
KR20160089871A (en) Systems and methods for estimating fuel quality in an engine
CN104797799A (en) Method and device for detecting autoignitions on the basis of measured and estimated internal cylinder pressure values of an internal combustion engine
JP2008095680A (en) Compensating for varying fuel and air properties in ion signal
CA2794117C (en) Method and system for detecting and diagnosing a gaseous fuel leak in a dual fuel internal combustion engine system
Gasbarro et al. Development of the control and acquisition system for a natural-gas spark-ignition engine test bench
CN106687676B (en) Method for starting a dual fuel engine
CN104781523A (en) Method and device for detecting autoignitions on basis of measured and estimated internal cylinder pressure values of internal combustion engine
AU2019212304B2 (en) Leak detection in a hydrogen fuelled vehicle
US20070119242A1 (en) Method and device for operating an internal combustion engine
US20160215749A1 (en) Control device of internal combustion engine
US9435284B2 (en) In-range sensor fault diagnostic system and method
WO2022264795A1 (en) Methane number estimation device, gas engine control device, and methane number estimation method
US10533512B2 (en) Control device for internal combustion engine
JP5496004B2 (en) Engine misfire detection apparatus and method
KR20140124951A (en) Gas fuel pressure control method for dual fuel engine
CN105814297A (en) Diagnostic system for internal combustion engine
KR20160041522A (en) Cylinder start of combustion balancing system and method by control pilot oil quantity of dual fuel engine
Bengtsson et al. Control of homogeneous charge compression ignition (HCCI) engine dynamics
KR101945582B1 (en) Method of and a control system for controlling the operation of an internal combustion piston engine
JP2005226621A (en) Engine system including instrumentation engine and operation method thereof
KR20140127454A (en) Cylinder balancing system and method by control duration of combustion of dual fuel engine
KR101745106B1 (en) Apparatus and Method for preventing starting-off
KR20140132826A (en) Cylinder balancing system and method by control start of combustion of dual fuel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE