WO2022264680A1 - Monitoring device and activation method - Google Patents

Monitoring device and activation method Download PDF

Info

Publication number
WO2022264680A1
WO2022264680A1 PCT/JP2022/018131 JP2022018131W WO2022264680A1 WO 2022264680 A1 WO2022264680 A1 WO 2022264680A1 JP 2022018131 W JP2022018131 W JP 2022018131W WO 2022264680 A1 WO2022264680 A1 WO 2022264680A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
monitoring device
circuit
sensor
power
Prior art date
Application number
PCT/JP2022/018131
Other languages
French (fr)
Japanese (ja)
Inventor
東栄治
小嶋隆夫
三田雅樹
丸山剛史
酒井治
岩間成美
佐々木隆一
梅村侑史
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to AU2022293063A priority Critical patent/AU2022293063A1/en
Priority to JP2022544748A priority patent/JP7173417B1/en
Publication of WO2022264680A1 publication Critical patent/WO2022264680A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present disclosure relates to monitoring devices and activation methods.
  • This application claims priority based on Japanese Patent Application No. 2021-99182 filed on June 15, 2021, and incorporates all of its disclosure herein.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2020-222157 discloses the following external wireless terminal. That is, the wireless terminal is a wireless terminal supplied with power from a battery, and includes a processor, a sensor module supplied with power from the battery by the processor during operation, and a plurality of constant current sources connected in parallel. and a battery voltage measuring circuit, wherein the processor receives a measurement request from the parent device and switches conduction states of a plurality of constant current sources of the battery voltage measuring circuit, thereby changing the load current of the battery. The battery voltage output from the battery is measured a plurality of times, the processor receives a measurement execution request from the parent device, supplies power to the sensor module to start it, and the measurement execution request is received from the parent device. Issued by the parent device when the sensor module determines that activation is possible based on the internal resistance of the battery calculated from the battery voltage measured multiple times by changing the load current of the battery.
  • Patent Document 2 International Publication No. 2019/239783 discloses the following external power supply device. That is, the power supply device includes a power supply core provided to surround a power line, and a power supply core wound around the power supply core. a power supply current transformer unit having a power supply coil that generates a current; a power supply unit for supplying power, wherein the power supply core is adapted to allow the current to flow through the power line when the current value of the current flowing through the power line is a predetermined current value equal to or less than the allowable current value of the power line. configured to be magnetically saturated with respect to the magnetic field generated by
  • a monitoring device of the present disclosure includes a power circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, a processor that operates on the power supplied from the power circuit, and a processor that operates on the power. , a current sensor that measures the current flowing through the wire, a start control circuit that starts the processor according to the magnitude of the power generated by the power supply circuit, and a first circuit that the processor starts, The processor activates the current sensor when activated by the activation control circuit, and activates the first circuit based on the current measurement result of the current sensor.
  • the activation method of the present disclosure includes a power supply circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, a processor that operates on the power, and a processor that operates on the power and generates a current flowing through the wire.
  • a start-up method in a monitoring device comprising a current sensor to measure and a first circuit started by the processor, wherein the processor and the current sensor are started according to the magnitude of the power generated by the power supply circuit. and activating the first circuit based on the result of measurement of the current by the current sensor.
  • One aspect of the present disclosure can be implemented not only as a monitoring device including such a characteristic processing unit, but also as a program for causing a computer to execute steps of such characteristic processing. Further, one aspect of the present disclosure can be implemented as a semiconductor integrated circuit that implements part or all of the monitoring device, or can be implemented as a monitoring system that includes the monitoring device.
  • FIG. 1 is a diagram illustrating an example configuration of a monitoring device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a threshold table stored in a storage unit in the monitoring device according to the embodiment of the present disclosure;
  • FIG. 3 is a time chart showing activation timing of each circuit in the monitoring device according to the embodiment of the present disclosure.
  • FIG. 4 is a flow chart defining an example of an operation procedure when activating each circuit in the monitoring device according to the embodiment of the present disclosure.
  • FIG. 5 is a flowchart that defines an example of an operation procedure when the monitoring device according to the embodiment of the present disclosure performs activation determination processing.
  • FIG. 6 is a diagram illustrating an example of a configuration of a monitoring device according to a modification of the embodiment of the present disclosure;
  • a monitoring device equipped with various sensors and collecting measured values of the sensors has been developed as a device that constitutes a sensor network in, for example, M2M (Machine-to-Machine) and IoT (Internet of Things).
  • M2M Machine-to-Machine
  • IoT Internet of Things
  • the present disclosure has been made to solve the above-described problems, and its purpose is to provide a monitoring device and a startup method that can stably operate the monitoring device.
  • a monitoring device operates with a power supply circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, and the power supplied from the power supply circuit.
  • a processor a current sensor that operates on the power and measures the current flowing through the wire, a startup control circuit that starts the processor according to the magnitude of the power generated by the power supply circuit, and the processor that starts up. and a first circuit, wherein the processor activates the current sensor when activated by the activation control circuit, and activates the first circuit based on the current measurement result of the current sensor. do.
  • the processor and the current sensor are activated according to the magnitude of the power generated by the power supply circuit, and the first circuit is activated based on the current measurement result of the current sensor. Since the processor can be started only in a state where the energy harvesting in the environment generates the power necessary for stable operation of the processor, it suppresses the restart of the processor due to insufficient power generated by the energy harvesting. be able to. Therefore, the monitoring device can be stably operated.
  • the current sensor includes a first current transformer attached to the electric wire, and a calculator for calculating a current flowing through the electric wire based on a second induced current obtained by the first current transformer. It may be a configuration including.
  • the monitoring device further includes a second current transformer for obtaining the first induced current, wherein the winding of the second current transformer and the winding of the first current transformer are , may be provided on a common magnetic core.
  • a single magnetic core can be used to both generate power and measure the current flowing through the wire at low cost.
  • the monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor, and the processor compares the measurement result with a first threshold value. and activating the communication unit based on a comparison result between the measurement result and a second threshold value that is larger than the first threshold value. It may be configured to
  • the power generated by the power supply circuit when the power generated by the power supply circuit is relatively small, only the first sensor out of the communication unit and the first sensor is preferentially activated to activate the first sensor.
  • the accumulated measurement results can be transmitted to, for example, an external management device. Missing measurement by one sensor can be reduced.
  • the monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor, and the processor compares the measurement result with a first threshold value. and activating the communication unit based on a comparison result between the measurement result and a second threshold smaller than the first threshold. It may be configured to
  • the monitoring device includes a plurality of the first circuits, the monitoring device further includes a storage unit that stores a plurality of threshold values based on current consumption of each of the first circuits, The processor activates one or more of the first circuits respectively corresponding to the plurality of thresholds based on the result of comparison between the measurement result and the plurality of thresholds. good too.
  • a startup method includes a power supply circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, a processor that operates on the power, and a processor that operates on the power. and a current sensor that measures the current flowing through the wire; and a first circuit that is activated by the processor. activating the processor and the current sensor; and activating the first circuit based on a measurement result of the current by the current sensor.
  • the power supply circuit Since the processor can be started only in a state where the energy harvesting in the environment generates the power necessary for stable operation of the processor, it suppresses the restart of the processor due to insufficient power generated by the energy harvesting. be able to. Therefore, the monitoring device can be stably operated.
  • FIG. 1 is a diagram illustrating an example configuration of a monitoring device according to an embodiment of the present disclosure.
  • monitoring apparatus 101 includes activation control circuit 10, power supply circuit 11, MCU (Micro Controller Unit) 13, storage unit 14, communication unit 21, camera module 22, and external interface unit. 23 , a temperature sensor 24 , a current sensor 25 , and supply switches 31 , 32 , 33 , 34 , 35 .
  • Activation control circuit 10 includes a voltage monitoring circuit 12 , a switch 41 and a load circuit 42 .
  • Each of communication section 21, camera module 22, external interface section 23, and temperature sensor 24 is an example of a first circuit.
  • Temperature sensor 24 is an example of a first sensor.
  • the storage unit 14 is, for example, a non-volatile memory.
  • MCU 13 is an example of a processor.
  • the communication unit 21 is realized by, for example, a communication IC (Integrated Circuit).
  • the switch 41 and the load circuit 42 are connected in series in this order between a node N1 between the power supply circuit 11 and the supply switches 31, 32, 33, 34, 35 and the ground.
  • the switch 41 is, for example, a bipolar transistor or FET (Field Effect Transistor).
  • the monitoring device 101 is provided corresponding to the electric wire 71 .
  • the electric wire 71 may be an overhead transmission line or an underground transmission line.
  • the monitoring device 101 does not have a battery, but operates on power obtained from energy harvesting.
  • the power supply circuit 11 generates electric power from an induced current obtained by electromagnetic induction coupling with the electric wire 71 .
  • the induced current is an example of a first induced current.
  • the power supply circuit 11 converts an induced current obtained through a current transformer 50 attached to the electric wire 71 into DC power necessary for operating each circuit in the monitoring device 101 .
  • CT50 the current transformer 50
  • CT50 includes a magnetic core 51 that clamps the electric wire 71 and a winding 52 wound around the magnetic core 51. Both ends of the winding 52 are connected to the power supply circuit 11 .
  • CT50 is an example of a second current transformer.
  • the power supply circuit 11 receives from the CT 50 an induced current based on the magnetic field generated by the alternating current Iew flowing through the electric wire 71 .
  • the power supply circuit 11 converts the induced current received from the CT 50 into DC power and outputs the obtained DC power.
  • the voltage monitoring circuit 12 , MCU 13 , communication unit 21 , camera module 22 , external interface unit 23 , temperature sensor 24 and current sensor 25 operate with power supplied from power supply circuit 11 .
  • the camera module 22 receives power from the power supply circuit 11 via the supply switch 32 .
  • Camera module 22 for example, periodically captures an area around monitoring device 101 in an activated state, and outputs camera information indicating the obtained image to MCU 13 .
  • the camera module 22 may be configured to perform imaging in response to an imaging request received from the MCU 13 and output camera information to the MCU 13 .
  • Temperature sensor 24 receives power from power supply circuit 11 via supply switch 34 .
  • the temperature sensor 24 periodically measures the temperature around the monitoring device 101 and outputs temperature information indicating the temperature measurement value to the MCU 13 in the activated state.
  • the temperature sensor 24 measures the temperature of the wire 71 as the ambient temperature of the monitoring device 101 .
  • the temperature sensor 24 may be configured to receive a measurement request from the MCU 13 and output temperature information to the MCU 13 as a response to the received measurement request.
  • current sensor 25 includes a current transformer 60 attached to electric wire 71 and a calculator 63 that calculates the current flowing through electric wire 71 , that is, alternating current Iew, based on the induced current obtained by current transformer 60 .
  • the induced current is an example of a second induced current.
  • Calculation unit 63 is implemented by a processor such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), for example.
  • the current transformer 60 (hereinafter referred to as "CT60") includes a magnetic core 61 that clamps the electric wire 71 and a winding 62 wound around the magnetic core 61. Both ends of the winding 62 are connected to the calculator 63 .
  • CT60 is an example of a first current transformer.
  • the calculator 63 receives from the CT 60 an induced current based on the magnetic field generated by the alternating current Iew flowing through the electric wire 71 .
  • the calculator 63 calculates the effective value of the alternating current Iew as the measured current value Im based on the magnitude of the induced current received from the CT 60 , and outputs current information indicating the measured current value Im to the MCU 13 .
  • the calculator 63 receives power from the power supply circuit 11 via the supply switch 35 .
  • Calculation unit 63 for example, periodically calculates alternating current Iew in the activated state, and outputs current information indicating current measurement value Im to MCU 13 .
  • the calculation unit 63 may be configured to receive a measurement request from the MCU 13 and output current information to the MCU 13 as a response to the received measurement request.
  • the communication unit 21 receives power from the power supply circuit 11 via the supply switch 31 .
  • the communication unit 21 transmits temperature information, camera information, and current information to a management device (not shown) outside the monitoring device 101 in the activated state.
  • the MCU 13 when the MCU 13 receives an information transmission request from the management device, the MCU 13 outputs the temperature information received from the temperature sensor 24, the camera information received from the camera module 22, and the current information received from the current sensor 25 to the communication unit 21. do.
  • the MCU 13 may be configured to periodically output temperature information, camera information, and current information to the communication section 21 .
  • the communication unit 21 receives temperature information, camera information and current information from the MCU 13, and wirelessly transmits a wireless signal including a sensor packet storing the received temperature information, camera information and current information to the management device.
  • the communication unit 21 and the management device are, for example, wireless LAN (Local Area Network), LTE (Long Term Evolution), 5G, 920 MHz band ZigBee (registered trademark), Bluetooth (registered trademark), UWB (Ultra Wide Band), etc. Performs wireless communication using a communication protocol.
  • a communication protocol other than the above may be used between the communication unit 21 and the management device.
  • the communication unit 21 may be configured to transmit the temperature information to the management device by wired communication using a wired transmission line such as an Ethernet (registered trademark) cable and a USB (Universal Serial Bus) cable.
  • the temperature information may be transmitted to the management device by PLC (Power Line Communications) communication used.
  • the communication unit 21 may be configured not to transmit part of the temperature information, the camera information, and the current information to the management device.
  • the external interface section 23 receives power from the power supply circuit 11 via the supply switch 33 .
  • the external interface unit 23 is connected to an external device (not shown).
  • the external interface unit 23 transmits a control signal for controlling the external device to the external device in the activated state.
  • the external interface unit 23 transmits a control signal for opening and closing an electronic lock, which is an example of an external device, to an electronic lock, and controls an air conditioner, which is an example of an external device, according to instructions from the MCU 13. For example, a control signal is sent to the air conditioner.
  • the activation control circuit 10 switches the MCU 13 between an activation state and a reset state. More specifically, voltage monitoring circuit 12 outputs to MCU 13 a reset control signal for switching the state of MCU 13 . As an example, the voltage monitoring circuit 12 switches the MCU 13 to the active state by switching the reset control signal output to the MCU 13 from low level to high level, and switches the reset control signal output to the MCU 13 from high level to low level. The MCU 13 is switched from the activation state to the reset state.
  • the voltage monitoring circuit 12 switches the ON state and OFF state of the switch 41 by outputting a switch control signal to the switch 41 .
  • the voltage monitoring circuit 12 synchronizes the reset signal and the switch control signal so that the MCU 13 is reset when the switch 41 is on and the MCU 13 is activated when the switch 41 is off.
  • the MCU 13 controls power supply from the power supply circuit 11 to the communication unit 21, the camera module 22, the external interface unit 23, the temperature sensor 24, and the current sensor 25 in the activated state. More specifically, the MCU 13 outputs supply control signals to the supply switches 31, 32, 33, 34, and 35 to turn the supply switches 31, 32, 33, 34, and 35 on and off, respectively. switch.
  • the activation control circuit 10 activates the MCU 13 according to the amount of power generated by the power supply circuit 11 .
  • the voltage monitoring circuit 12 monitors the output voltage of the power supply circuit 11 and activates the MCU 13 based on the monitoring result.
  • the voltage monitoring circuit 12 monitors the voltage Vout of the node N2 when the switch 41 is in the ON state and the MCU 13 is in the reset state.
  • the MCU 13 is switched from the reset state to the activated state by switching the switch 41 to the OFF state and switching the reset control signal from the low level to the high level.
  • Predetermined time T1 is set, for example, based on the cycle of alternating current Iew flowing through electric wire 71 .
  • the MCU 13 activates the current sensor 25 as it is activated by the activation control circuit 10 . More specifically, when the MCU 13 is activated by the voltage monitoring circuit 12, the MCU 13 outputs a supply control signal to the supply switch 35, thereby switching the supply switch 35 from the supply OFF state to the supply ON state.
  • the current sensor 25 is activated by receiving power from the power supply circuit 11 via the supply switch 35 when the supply switch 35 transitions from the supply OFF state to the supply ON state. After being activated, the current sensor 25 starts measuring the alternating current Iew and periodically outputs current information to the MCU 13 .
  • threshold Th1 is set based on the total current consumption of MCU 13 and current sensor 25 and the resistance value of load circuit 42 . More specifically, the amount of power generated by power supply circuit 11 depends on the effective value of alternating current Iew flowing through wire 71 .
  • Threshold value Th1 for example, when the effective value of alternating current Iew flowing through electric wire 71 is X1 amperes, power supply circuit 11 outputs power obtained by adding power E to the power necessary for the operation of MCU 13 and current sensor 25. , and the voltage of the node N2 when the switch 41 is on.
  • the electric power E is a margin for stably operating the MCU 13 and the current sensor 25, and is set in advance according to the time variation of the effective value of the alternating current Iew.
  • the magnitude of the time variation of the effective value of the alternating current Iew depends on the environment of the installation location of the CT50.
  • the power E is appropriately set according to the environment of the installation location of the CT 50. For example, when the CT 50 is installed in a location where the effective value of the alternating current Iew varies with time, it is set to a large value. When the CT 50 is installed in a place where the time variation of the effective value of the current Iew is small, it is set to a small value. Power E may be zero.
  • the MCU 13 activates other circuits in the monitoring device 101 , that is, the communication section 21 , the camera module 22 , the external interface section 23 and the temperature sensor 24 based on the result of measurement of the alternating current Iew by the current sensor 25 .
  • the MCU 13 receives the current information from the current sensor 25, and based on the current measurement value Im indicated by the received current information, determines whether the communication unit 21 can be activated, whether the camera module 22 can be activated, and whether the external interface can be activated. Activation determination processing for determining whether the unit 23 can be activated and whether the temperature sensor 24 can be activated is performed. That is, the MCU 13 performs activation determination processing based on the energy harvesting capacity of the power supply circuit 11 estimated from the current measurement value Im.
  • FIG. 2 is a diagram showing an example of a threshold table stored in the storage unit of the monitoring device according to the embodiment of the present disclosure.
  • storage unit 14 stores a threshold table TBL showing a plurality of thresholds based on current consumption of communication unit 21, camera module 22, external interface unit 23 and temperature sensor 24. .
  • the threshold table TBL shows the correspondence between one or more circuits to be activated and the thresholds set for the current measurement value Im. Specifically, the threshold value table TBL should activate the temperature sensor 24 when the measured current value Im is equal to or greater than the threshold value Tha, and should activate the temperature sensor 24 when the measured current value Im is equal to or greater than the threshold value Thb.
  • the temperature sensor 24 and the communication unit 21 should be activated, and the temperature sensor 24, the communication unit 21 and the camera module 22 should be activated when the current measurement value Im is equal to or greater than the threshold value Thc, and the current measurement value Im is equal to or greater than the threshold Thd, the temperature sensor 24, communication unit 21, camera module 22, and external interface unit 23 should be activated.
  • Threshold values Tha, Thb, Thc, and Thd in the threshold value table TBL are values of the AC current Iew when the power supply circuit 11 generates power necessary for stably operating one or more corresponding circuits. Set based on actual value.
  • the current consumption of temperature sensor 24 is 100 milliamperes
  • the total current consumption of temperature sensor 24 and communication unit 21 is 125 milliamperes
  • the consumption of temperature sensor 24, communication unit 21 and camera module 22 is 125 milliamperes.
  • the total current is 200 milliamperes
  • the total current consumption of the temperature sensor 24, communication section 21, camera module 22 and external interface section 23 is 250 milliamperes.
  • the power supply circuit 11 can generate power necessary for operating the temperature sensor 24 when the effective value of the alternating current Iew is 80 amperes or more.
  • the threshold Tha is set to 90 amperes, for example. That is, the threshold value Tha is set to a value obtained by adding 10 amperes as a margin Ma to 80 amperes, which is the effective value of the alternating current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24. be done.
  • the power supply circuit 11 can generate power necessary for operating the temperature sensor 24 and the communication unit 21 when the effective value of the alternating current Iew is 100 amperes or more.
  • the threshold Thb is set to 110 amperes, for example. That is, the threshold value Thb is obtained by adding 10 amperes as a margin Mb to 100 amperes, which is the effective value of the alternating current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24 and the communication unit 21. set to the value
  • threshold Thc is set to 170 amperes, for example. That is, the threshold Thc is set to 160 amperes, which is the effective value of the AC current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24, the communication unit 21, and the camera module 22, and the margin Mc It is set to add 10 amps.
  • the power supply circuit 11 can generate power necessary for operating the temperature sensor 24, the communication unit 21, the camera module 22, and the external interface unit 23 when the effective value of the alternating current Iew is 200 amperes or more. do.
  • the threshold Thd is set to 210 amperes, for example. That is, the threshold Thd is 200 amperes, which is the effective value of the alternating current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24, the communication unit 21, the camera module 22, and the external interface unit 23. , plus a margin Md of 10 amperes.
  • margins Ma, Mb, Mc, and Md are not limited to 10 amperes. Also, some or all of the margins Ma, Mb, Mc, and Md may have different values.
  • the MCU 13 when the MCU 13 receives an update request from a management device (not shown) outside the monitoring device 101, the MCU 13 updates the thresholds Tha, Thb, Thc, and Thd in the threshold table TBL according to the received update request.
  • the MCU 13 Based on the result of comparison between the result of measurement by the current sensor 25 and the plurality of threshold values in the threshold value table TBL, the MCU 13 selects the One or a plurality of circuits corresponding to threshold values Tha, Thb, Thc, and Thd are activated.
  • the MCU 13 activates the temperature sensor 24 based on the result of comparison between the measurement result of the current sensor 25 and the threshold value Tha, and the measurement result of the current sensor 25 and the threshold value Thb larger than the threshold value Tha.
  • the communication unit 21 is activated based on the comparison result.
  • Threshold Tha is an example of a first threshold.
  • Threshold Thb is an example of a second threshold.
  • the MCU 13 activates the temperature sensor 24 when the current measurement value Im indicated by the current information received from the current sensor 25 is greater than or equal to the threshold value Tha. Further, the MCU 13 activates the temperature sensor 24 and the communication unit 21 when the current measurement value Im indicated by the current information received from the current sensor 25 is equal to or greater than the threshold value Thb.
  • FIG. 3 is a time chart showing activation timing of each circuit in the monitoring device according to the embodiment of the present disclosure.
  • the horizontal axis is time
  • the vertical axis is the effective value [A] of the alternating current Iew.
  • switch 41 is on and MCU 13 is reset.
  • voltage monitoring circuit 12 detects that voltage Vout at node N2 has become equal to or greater than threshold Th1 when the effective value of alternating current Iew flowing through electric wire 71 becomes equal to or greater than X1 amperes at time t1. This is detected and the MCU 13 is switched from the reset state to the active state. When activated by the voltage monitoring circuit 12, the MCU 13 activates the current sensor 25 by switching the supply switch 35 from the supply OFF state to the supply ON state.
  • the MCU 13 switches the supply switch 34 from the supply off state to the supply on state to turn on the temperature sensor. 24 is further activated.
  • the MCU 13 switches the supply switch 31 from the supply OFF state to the supply ON state, thereby 21 is further activated.
  • the MCU 13 switches the supply switch 32 from the supply OFF state to the supply ON state, thereby turning the camera module on. 22 is further activated.
  • the MCU 13 switches the supply switch 33 from the supply OFF state to the supply ON state, thereby Activating the unit 23 further.
  • the MCU 13 switches the supply switches 31, 32, 33, 34, and 35 in stages as the power supplied from the power supply circuit 11 drops.
  • the active circuit is brought to a halt state.
  • the MCU 13 switches the supply switch 33 from the supply-on state to the supply-off state so that the external interface unit 23 to stop. Further, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or less than the threshold value Thcx, the MCU 13 switches the supply switch 32 from the supply ON state to the supply OFF state, thereby further stopping the camera module 22. to Further, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or less than the threshold value Thbx, the MCU 13 switches the supply switch 31 from the supply ON state to the supply OFF state, thereby further stopping the communication unit 21. to Further, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or less than the threshold value Thax, the MCU 13 switches the supply switch 34 from the supply ON state to the supply OFF state, thereby further stopping the temperature sensor 24. to
  • the threshold Thdx is greater than or equal to the threshold Thc and less than the threshold Thd.
  • threshold Thcx is equal to or greater than threshold Thb and less than threshold Thc.
  • threshold Thbx is equal to or greater than the threshold Tha and less than the threshold Thb.
  • the threshold Thax is greater than or equal to X1 and less than the threshold Tha.
  • the voltage monitoring circuit 12 monitors the power supplied from the power supply circuit 11 to the MCU 13. When the power supplied from the power supply circuit 11 to the MCU 13 becomes less than a predetermined value, the voltage monitoring circuit 12 turns on the switch 41 and outputs a reset control signal. By switching from the high level to the low level, the MCU 13 is switched from the activation state to the reset state.
  • At least one of the thresholds Tha, Thb, Thc, and Thd may be smaller than the value of X1. More specifically, the value of X1 may be greater than at least one of thresholds Tha, Thb, Thc, and Thd depending on the set value of power E1 described above.
  • the value of X1 is greater than threshold Tha and less than threshold Thb.
  • the MCU 13 is switched from the reset state to the activated state by the voltage monitoring circuit 12 at time t1, and activates the current sensor 25 .
  • the MCU 13 further activates the temperature sensor 24 because the current measurement value Im indicated by the current information first received from the current sensor 25 after activation of the current sensor 25 is greater than or equal to the threshold value Tha.
  • a monitoring device includes a computer including a memory, and an arithmetic processing unit such as an MCU in the computer reads a program including part or all of the steps of the following flowcharts and sequences from the memory. Read and execute. Programs for these multiple devices can each be installed from the outside. Programs for these devices are distributed in a state stored in recording media or via communication lines.
  • FIG. 4 is a flow chart defining an example of an operation procedure when activating each circuit in the monitoring device according to the embodiment of the present disclosure.
  • voltage monitoring circuit 12 in monitoring device 101 starts monitoring voltage Vout of node N2 when switch 41 is in the ON state and MCU 13 is in the reset state (step S102).
  • voltage monitoring circuit 12 waits for the state in which voltage Vout of node N2 is equal to or higher than threshold Th1 to continue for a predetermined time T1 (NO in step S104), and voltage Vout of node N2 is equal to or higher than threshold Th1. If this state continues for a predetermined time T1 (YES in step S104), the MCU 13 is switched from the reset state to the activated state (step S106).
  • the MCU 13 activates the current sensor 25 by switching the supply switch 35 from the supply OFF state to the supply ON state (step S108).
  • the MCU 13 performs activation determination processing based on the current measurement value Im indicated by the current information received from the current sensor 25 .
  • step S112 when the power supplied from the power supply circuit 11 to the MCU 13 becomes less than the predetermined value (YES in step S112), the voltage monitoring circuit 12 switches the switch 41 to the ON state and changes the reset control signal from high level to low level. , the MCU 13 is switched from the activation state to the reset state (step S114).
  • the voltage monitoring circuit 12 starts monitoring the voltage Vout of the node N2 again (step S102).
  • FIG. 5 is a flowchart that defines an example of an operation procedure when the monitoring device according to the embodiment of the present disclosure performs activation determination processing.
  • FIG. 5 shows details of step S110 in FIG.
  • MCU 13 waits for current measured value Im to exceed threshold value Tha (NO in step S202), and when current measured value Im exceeds threshold value Tha (step YES in S202), the temperature sensor 24 is activated (step S204).
  • the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thb or the measured current value Im to become equal to or less than the threshold value Thax (NO in step S206 and NO in step S208).
  • the MCU 13 stops the temperature sensor 24 (step S210). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Tha again (NO in step S202).
  • the MCU 13 activates the communication unit 21 when the measured current value Im is equal to or greater than the threshold value Thb (YES in step S206) (step S212).
  • the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thc or the measured current value Im to become equal to or less than the threshold value Thbx (NO in step S214 and NO in step S216).
  • the MCU 13 stops the communication unit 21 (step S218). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thb again, or for the measured current value Im to become equal to or less than the threshold value Thax (NO in step S206 and NO in step S208).
  • the MCU 13 activates the camera module 22 when the current measurement value Im is equal to or greater than the threshold value Thc (YES in step S214) (step S220).
  • the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold Thd or to become equal to or less than the threshold Thcx (NO in step S222 and NO in step S224).
  • the MCU 13 stops the camera module 22 (step S226). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thc again, or the measured current value Im to become equal to or less than the threshold value Thbx (NO in step S214 and NO in step S216).
  • the MCU 13 activates the external interface unit 23 (step S228).
  • the MCU 13 waits for the measured current value Im to become equal to or less than the threshold Thdx (NO in step S230), and when the measured current value Im becomes equal to or less than the threshold Thdx (YES in step S230), the external The interface unit 23 is brought into a stopped state (step S232). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold Thd again, or the measured current value Im to become equal to or less than the threshold Thcx (NO in step S222 and NO in step S224).
  • monitoring device 101 is configured to include the temperature sensor 24, it is not limited to this. Monitoring device 101 may be configured to include other sensors instead of temperature sensor 24 or in addition to temperature sensor 24 . In this case, the MCU 13 activates the other sensor based on the measurement result of the alternating current Iew by the current sensor 25 .
  • the monitoring device 101 is configured to include the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24, it is not limited to this.
  • the monitoring device 101 may be configured without some or all of the communication unit 21 , the camera module 22 , the external interface unit 23 and the temperature sensor 24 .
  • the MCU 13 activates the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24 based on the result of the measurement of the alternating current Iew by the current sensor 25 and the result of comparison with one threshold value. may be
  • the threshold Thd, the threshold Thc, the threshold Thb, and the threshold Tha are larger in this order. value, but is not limited to this.
  • the magnitude relationships among the thresholds Tha, Thb, Thc, and Thd may be interchanged according to the activation priority of the corresponding circuits. For example, when current information among temperature information, camera information, and current information should be preferentially transmitted to a management device (not shown) outside the monitoring device 101, the communication unit 21 is preferentially activated over the temperature sensor 24. Therefore, the threshold Thb is set to a value smaller than the threshold Tha.
  • the current sensor 25 is configured to measure the alternating current Iew via the CT 60, but the configuration is not limited to this.
  • the current sensor 25 may be configured to measure the alternating current Iew flowing through the wire 71 based on the output voltage of the power supply circuit 11 .
  • the current sensor 25 may be configured to measure the alternating current Iew via a magnetic sensor attached to the electric wire 71 .
  • the MCU 13 is configured to perform activation determination processing based on the current measurement value Im indicated by the current information received from the current sensor 25. It is not limited.
  • the MCU 13 may be configured to perform a process of switching the operation mode of the circuit being activated to, for example, a low power consumption operation mode, in addition to the activation determination process, based on the current measurement value Im.
  • the monitoring device 101 is configured to include the voltage monitoring circuit 12, it is not limited to this.
  • the monitoring device 101 may be configured to include a current monitoring circuit instead of the voltage monitoring circuit 12 .
  • the current monitoring circuit monitors the current that is output from the power supply circuit 11 and flows through the load circuit 42, and activates the MCU 13 based on the monitoring result.
  • FIG. 6 is a diagram illustrating an example of a configuration of a monitoring device according to a modification of the embodiment of the present disclosure.
  • monitoring device 102 includes power supply circuit 11A instead of power supply circuit 11 and current sensor 25A instead of current sensor 25, as compared with monitoring device 101 .
  • Current sensor 25A includes a current transformer 80 attached to electric wire 71 and a calculator 63A that calculates alternating current Iew based on the induced current obtained by current transformer 80 .
  • a current transformer 80 (hereinafter referred to as "CT80") includes a magnetic core 81 that clamps an electric wire 71, and windings 82 and 83 wound around the magnetic core 81.
  • a winding 82 of CT 80 and a winding 83 of CT 80 are provided on a common magnetic core 81 .
  • CT80 is an example of a first current transformer and an example of a second current transformer.
  • Both ends of the winding 82 are connected to the power supply circuit 11A. Both ends of the winding 83 are connected to the calculator 63A.
  • the power supply circuit 11A converts the induced current obtained through the CT 80 attached to the electric wire 71 into DC power necessary for the operation of each circuit in the monitoring device 101.
  • a technology that can stably operate a monitoring device is desired. More specifically, a monitoring device equipped with a battery can stably operate for a certain period of time with power supplied from the battery. Battery needs to be replaced. In addition, rechargeable secondary batteries have the problem of deterioration due to repeated charging.
  • the monitoring device may be restarted repeatedly and the monitoring device may not operate stably.
  • the power supply circuit 11 generates electric power from the induced current obtained by electromagnetic induction coupling with the electric wire 71 .
  • the MCU 13 operates with power supplied from the power supply circuit 11 .
  • the current sensor 25 operates with power supplied from the power supply circuit 11 and measures the current flowing through the wire 71 .
  • the activation control circuit 10 activates the MCU 13 according to the amount of power generated by the power supply circuit 11 .
  • the MCU 13 activates the current sensor 25 when activated by the activation control circuit 10, and based on the current measurement result of the current sensor 25, the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24. to start.
  • the processor and the current sensor are activated according to the magnitude of the power generated by the power supply circuit, and the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor are activated based on the current measurement result of the current sensor.
  • the configuration for activating the sensor 24 allows the processor to be activated only in conditions where, for example, the energy harvesting in the power supply circuit generates the power necessary for stable operation of the processor, so that the power generated by the energy harvesting is unnecessary. A restart of the processor due to being sufficient can be suppressed. Therefore, in the embodiment of the present disclosure, it is possible to stably operate the monitoring devices 101 and 102 .
  • activation processing of the MCU 13 and the current sensor 25, and activation processing of the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24 are performed by external It can be performed in the monitoring devices 101 and 102 regardless of the device.
  • a monitoring device a power supply circuit that generates power from a first induced current obtained by electromagnetic inductive coupling with a wire; a processor that operates on the power supplied from the power supply circuit; a current sensor that operates on the power and measures the current flowing through the wire; an activation control circuit that activates the processor according to the magnitude of power generated by the power supply circuit; a first circuit initiated by the processor; The processor activates the current sensor when activated by the activation control circuit, activates the first circuit based on the current measurement result of the current sensor,
  • the monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor, The monitoring device, wherein the communication unit is realized by a communication IC and transmits the measurement result of the first sensor to a management device outside the monitoring device.

Abstract

The present invention comprises: a power supply circuit that generates electric power from a first induced current obtained through electromagnetic induction coupling with an electric wire; a processor that operates with the electric power supplied from the power supply circuit; a current sensor that operates with the electric power, and measures the current flowing through the electric wire; an activation control circuit that activates the processor in accordance with the magnitude of the electric power generated by the power supply circuit; and a first circuit that is activated by the processor. The processor activates the current sensor in response to being activated by the activation control circuit, and activates the first circuit on the basis of the result of measurement of the current by the current sensor.

Description

監視装置および起動方法Monitoring device and activation method
 本開示は、監視装置および起動方法に関する。
 この出願は、2021年6月15日に出願された日本出願特願2021-99182号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present disclosure relates to monitoring devices and activation methods.
This application claims priority based on Japanese Patent Application No. 2021-99182 filed on June 15, 2021, and incorporates all of its disclosure herein.
 特許文献1(特開2020-22217号公報)には、以下のような外付け無線端末が開示されている。すなわち、無線端末は、電池から電源を供給される無線端末であって、プロセッサと、動作時に、前記プロセッサにより前記電池から電源が供給されるセンサモジュールと、複数の定電流源が並列接続された電池電圧測定回路とを有し、前記プロセッサは、親機からの測定要求を受けて、前記電池電圧測定回路の複数の定電流源の導通状態を切り替えることにより、前記電池の負荷電流を変えながら複数回、前記電池の出力する電池電圧を測定し、前記プロセッサは、前記親機からの測定実行要求を受けて、前記センサモジュールに電源を供給して起動し、前記測定実行要求は、前記親機が前記電池の負荷電流を変えて複数回測定した電池電圧から算出される前記電池の内部抵抗に基づき、前記センサモジュールが起動可と判断する場合に、前記親機から発行される。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2020-22217) discloses the following external wireless terminal. That is, the wireless terminal is a wireless terminal supplied with power from a battery, and includes a processor, a sensor module supplied with power from the battery by the processor during operation, and a plurality of constant current sources connected in parallel. and a battery voltage measuring circuit, wherein the processor receives a measurement request from the parent device and switches conduction states of a plurality of constant current sources of the battery voltage measuring circuit, thereby changing the load current of the battery. The battery voltage output from the battery is measured a plurality of times, the processor receives a measurement execution request from the parent device, supplies power to the sensor module to start it, and the measurement execution request is received from the parent device. Issued by the parent device when the sensor module determines that activation is possible based on the internal resistance of the battery calculated from the battery voltage measured multiple times by changing the load current of the battery.
 また、特許文献2(国際公開公報第2019/239783号)には、以下のような外付け電源装置が開示されている。すなわち、電源装置は、電力線を囲むように設けられる電源用コアと、前記電源用コアに巻回され、前記電力線に流れる電流によって前記電源用コアに生じる磁束の変化に基づいて、電磁誘導により誘導電流を生じさせる電源用コイルと、を有する電源用カレントトランス部と、前記電源用カレントトランス部に接続され、前記電源用カレントトランス部で発生した前記誘導電流に基づいて、所定の負荷に対して電力を供給する電源部と、を備え、前記電源用コアは、前記電力線に流れる前記電流の電流値が前記電力線の許容電流値以下の所定の電流値であるときに、前記電力線に流れる前記電流によって生じる磁界に対して磁気飽和するよう構成される。 In addition, Patent Document 2 (International Publication No. 2019/239783) discloses the following external power supply device. That is, the power supply device includes a power supply core provided to surround a power line, and a power supply core wound around the power supply core. a power supply current transformer unit having a power supply coil that generates a current; a power supply unit for supplying power, wherein the power supply core is adapted to allow the current to flow through the power line when the current value of the current flowing through the power line is a predetermined current value equal to or less than the allowable current value of the power line. configured to be magnetically saturated with respect to the magnetic field generated by
特開2020-22217号公報JP 2020-22217 A 国際公開公報第2019/239783号International Publication No. 2019/239783
 本開示の監視装置は、電線との電磁誘導結合により得られる第1の誘導電流から電力を生成する電源回路と、前記電源回路から供給される前記電力で動作するプロセッサと、前記電力で動作し、前記電線を流れる電流を計測する電流センサと、前記電源回路により生成される電力の大きさに応じて前記プロセッサを起動する起動制御回路と、前記プロセッサが起動する第1の回路とを備え、前記プロセッサは、前記起動制御回路により起動されることに伴って前記電流センサを起動し、前記電流センサによる前記電流の計測結果に基づいて前記第1の回路を起動する。 A monitoring device of the present disclosure includes a power circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, a processor that operates on the power supplied from the power circuit, and a processor that operates on the power. , a current sensor that measures the current flowing through the wire, a start control circuit that starts the processor according to the magnitude of the power generated by the power supply circuit, and a first circuit that the processor starts, The processor activates the current sensor when activated by the activation control circuit, and activates the first circuit based on the current measurement result of the current sensor.
 本開示の起動方法は、電線との電磁誘導結合により得られる第1の誘導電流から電力を生成する電源回路と、前記電力で動作するプロセッサと、前記電力で動作し、前記電線を流れる電流を計測する電流センサと、前記プロセッサが起動する第1の回路とを備える監視装置における起動方法であって、前記電源回路により生成される電力の大きさに応じて、前記プロセッサおよび前記電流センサを起動するステップと、前記電流センサによる前記電流の計測結果に基づいて、前記第1の回路を起動するステップとを含む。 The activation method of the present disclosure includes a power supply circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, a processor that operates on the power, and a processor that operates on the power and generates a current flowing through the wire. A start-up method in a monitoring device comprising a current sensor to measure and a first circuit started by the processor, wherein the processor and the current sensor are started according to the magnitude of the power generated by the power supply circuit. and activating the first circuit based on the result of measurement of the current by the current sensor.
 本開示の一態様は、このような特徴的な処理部を備える監視装置として実現され得るだけでなく、かかる特徴的な処理のステップをコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、監視装置の一部または全部を実現する半導体集積回路として実現され得たり、監視装置を含む監視システムとして実現され得る。 One aspect of the present disclosure can be implemented not only as a monitoring device including such a characteristic processing unit, but also as a program for causing a computer to execute steps of such characteristic processing. Further, one aspect of the present disclosure can be implemented as a semiconductor integrated circuit that implements part or all of the monitoring device, or can be implemented as a monitoring system that includes the monitoring device.
図1は、本開示の実施の形態に係る監視装置の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example configuration of a monitoring device according to an embodiment of the present disclosure. 図2は、本開示の実施の形態に係る監視装置における記憶部に保存されているしきい値テーブルの一例を示す図である。FIG. 2 is a diagram illustrating an example of a threshold table stored in a storage unit in the monitoring device according to the embodiment of the present disclosure; 図3は、本開示の実施の形態に係る監視装置における各回路の起動タイミングを示すタイムチャートである。FIG. 3 is a time chart showing activation timing of each circuit in the monitoring device according to the embodiment of the present disclosure. 図4は、本開示の実施の形態に係る監視装置における各回路を起動する際の動作手順の一例を定めたフローチャートである。FIG. 4 is a flow chart defining an example of an operation procedure when activating each circuit in the monitoring device according to the embodiment of the present disclosure. 図5は、本開示の実施の形態に係る監視装置が起動判定処理を行う際の動作手順の一例を定めたフローチャートである。FIG. 5 is a flowchart that defines an example of an operation procedure when the monitoring device according to the embodiment of the present disclosure performs activation determination processing. 図6は、本開示の実施の形態の変形例に係る監視装置の構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of a configuration of a monitoring device according to a modification of the embodiment of the present disclosure;
 従来、たとえばM2M(Machine-to-Machine)およびIoT(Internet of Things)におけるセンサネットワークを構成する装置として、各種センサを備え、センサの計測値を収集する監視装置が開発されている。  Conventionally, a monitoring device equipped with various sensors and collecting measured values of the sensors has been developed as a device that constitutes a sensor network in, for example, M2M (Machine-to-Machine) and IoT (Internet of Things).
 [本開示が解決しようとする課題]
 特許文献1および2に記載の技術を超えて、監視装置を安定して動作させることが可能な技術が望まれる。
[Problems to be Solved by the Present Disclosure]
A technology capable of stably operating a monitoring device is desired beyond the technology described in Patent Documents 1 and 2.
 本開示は、上述の課題を解決するためになされたもので、その目的は、監視装置を安定して動作させることが可能な監視装置および起動方法を提供することである。 The present disclosure has been made to solve the above-described problems, and its purpose is to provide a monitoring device and a startup method that can stably operate the monitoring device.
 [本開示の効果]
 本開示によれば、監視装置を安定して動作させることができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to stably operate the monitoring device.
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
 (1)本開示の実施の形態に係る監視装置は、電線との電磁誘導結合により得られる第1の誘導電流から電力を生成する電源回路と、前記電源回路から供給される前記電力で動作するプロセッサと、前記電力で動作し、前記電線を流れる電流を計測する電流センサと、前記電源回路により生成される電力の大きさに応じて前記プロセッサを起動する起動制御回路と、前記プロセッサが起動する第1の回路とを備え、前記プロセッサは、前記起動制御回路により起動されることに伴って前記電流センサを起動し、前記電流センサによる前記電流の計測結果に基づいて前記第1の回路を起動する。 (1) A monitoring device according to an embodiment of the present disclosure operates with a power supply circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, and the power supplied from the power supply circuit. a processor, a current sensor that operates on the power and measures the current flowing through the wire, a startup control circuit that starts the processor according to the magnitude of the power generated by the power supply circuit, and the processor that starts up. and a first circuit, wherein the processor activates the current sensor when activated by the activation control circuit, and activates the first circuit based on the current measurement result of the current sensor. do.
 このように、電源回路により生成される電力の大きさに応じてプロセッサおよび電流センサを起動し、電流センサによる電流の計測結果に基づいて、第1の回路を起動する構成により、たとえば、電源回路における環境発電によってプロセッサの安定した動作に必要な電力が生成される状態においてのみプロセッサを起動することができるので、環境発電により生成される電力が不十分であることによるプロセッサの再起動を抑制することができる。したがって、監視装置を安定して動作させることができる。 In this manner, the processor and the current sensor are activated according to the magnitude of the power generated by the power supply circuit, and the first circuit is activated based on the current measurement result of the current sensor. Since the processor can be started only in a state where the energy harvesting in the environment generates the power necessary for stable operation of the processor, it suppresses the restart of the processor due to insufficient power generated by the energy harvesting. be able to. Therefore, the monitoring device can be stably operated.
 (2)前記電流センサは、前記電線に取り付けられる第1のカレントトランスと、前記第1のカレントトランスにより得られる第2の誘導電流に基づいて、前記電線を流れる電流を算出する算出部とを含む構成であってもよい。 (2) The current sensor includes a first current transformer attached to the electric wire, and a calculator for calculating a current flowing through the electric wire based on a second induced current obtained by the first current transformer. It may be a configuration including.
 このような構成により、電源回路において生成される電力のエネルギー源の状態をより正確に把握し、当該状態に応じて第1の回路の起動を制御することができる。 With such a configuration, it is possible to more accurately grasp the state of the energy source of the power generated in the power supply circuit, and control activation of the first circuit according to the state.
 (3)前記監視装置は、さらに、前記第1の誘導電流を得るための第2のカレントトランスを備え、前記第2のカレントトランスの巻線と、前記第1のカレントトランスの巻線とは、共通の磁気コアに設けられる構成であってもよい。 (3) The monitoring device further includes a second current transformer for obtaining the first induced current, wherein the winding of the second current transformer and the winding of the first current transformer are , may be provided on a common magnetic core.
 このような構成により、1つの磁気コアを用いて、低コストで、電力の生成および電線を流れる電流の計測の両方を行うことができる。 With this configuration, a single magnetic core can be used to both generate power and measure the current flowing through the wire at low cost.
 (4)前記監視装置は、前記第1の回路として、通信部と、前記電流センサ以外の第1のセンサとを備え、前記プロセッサは、前記計測結果と第1のしきい値との比較結果に基づいて、前記第1のセンサを起動状態にし、前記計測結果と、前記第1のしきい値よりも大きい第2のしきい値との比較結果に基づいて、前記通信部を起動状態にする構成であってもよい。 (4) The monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor, and the processor compares the measurement result with a first threshold value. and activating the communication unit based on a comparison result between the measurement result and a second threshold value that is larger than the first threshold value. It may be configured to
 このような構成により、たとえば、電源回路により生成される電力が比較的小さいときに、通信部および第1のセンサのうちの第1のセンサのみを優先的に起動状態にして当該第1のセンサによる計測結果を蓄積し、電源回路により生成される電力が比較的大きいときに通信部を起動状態にすることにより、蓄積した計測結果をたとえば外部の管理装置に送信することができるので、当該第1のセンサによる欠測を低減することができる。 With such a configuration, for example, when the power generated by the power supply circuit is relatively small, only the first sensor out of the communication unit and the first sensor is preferentially activated to activate the first sensor. By accumulating the measurement results by and activating the communication unit when the power generated by the power supply circuit is relatively large, the accumulated measurement results can be transmitted to, for example, an external management device. Missing measurement by one sensor can be reduced.
 (5)前記監視装置は、前記第1の回路として、通信部と、前記電流センサ以外の第1のセンサとを備え、前記プロセッサは、前記計測結果と第1のしきい値との比較結果に基づいて、前記第1のセンサを起動状態にし、前記計測結果と、前記第1のしきい値よりも小さい第2のしきい値との比較結果に基づいて、前記通信部を起動状態にする構成であってもよい。 (5) The monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor, and the processor compares the measurement result with a first threshold value. and activating the communication unit based on a comparison result between the measurement result and a second threshold smaller than the first threshold. It may be configured to
 このような構成により、たとえば、電源回路により生成される電力が比較的小さいときに、通信部および第1のセンサのうちの通信部のみを優先的に起動状態にすることにより、たとえば電源回路により生成される電力が小さい場合においても電流センサによる計測結果を通信部経由で外部の管理装置に送信することができる。 With such a configuration, for example, when the power generated by the power supply circuit is relatively small, by preferentially activating only the communication unit of the communication unit and the first sensor, for example, the power supply circuit Even if the generated power is small, the result of measurement by the current sensor can be transmitted to the external management device via the communication unit.
 (6)前記監視装置は、複数の前記第1の回路を備え、前記監視装置は、さらに、前記各第1の回路の消費電流に基づく複数のしきい値を記憶する記憶部を備え、前記プロセッサは、前記計測結果と、前記複数のしきい値との比較結果に基づいて、前記複数のしきい値にそれぞれ対応する1または複数の前記第1の回路を起動状態にする構成であってもよい。 (6) The monitoring device includes a plurality of the first circuits, the monitoring device further includes a storage unit that stores a plurality of threshold values based on current consumption of each of the first circuits, The processor activates one or more of the first circuits respectively corresponding to the plurality of thresholds based on the result of comparison between the measurement result and the plurality of thresholds. good too.
 このような構成により、たとえば各回路の起動の優先順位と、各回路の消費電流とに基づいて、各回路の起動を制御することができる。 With such a configuration, it is possible to control activation of each circuit based on, for example, the activation priority of each circuit and the current consumption of each circuit.
 (7)本開示の実施の形態に係る起動方法は、電線との電磁誘導結合により得られる第1の誘導電流から電力を生成する電源回路と、前記電力で動作するプロセッサと、前記電力で動作し、前記電線を流れる電流を計測する電流センサと、前記プロセッサが起動する第1の回路とを備える監視装置における起動方法であって、前記電源回路により生成される電力の大きさに応じて、前記プロセッサおよび前記電流センサを起動するステップと、前記電流センサによる前記電流の計測結果に基づいて、前記第1の回路を起動するステップとを含む。 (7) A startup method according to an embodiment of the present disclosure includes a power supply circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire, a processor that operates on the power, and a processor that operates on the power. and a current sensor that measures the current flowing through the wire; and a first circuit that is activated by the processor. activating the processor and the current sensor; and activating the first circuit based on a measurement result of the current by the current sensor.
 このように、電源回路により生成される電力の大きさに応じてプロセッサおよび電流センサを起動し、電流センサによる電流の計測結果に基づいて、第1の回路を起動する方法により、たとえば、電源回路における環境発電によってプロセッサの安定した動作に必要な電力が生成される状態においてのみプロセッサを起動することができるので、環境発電により生成される電力が不十分であることによるプロセッサの再起動を抑制することができる。したがって、監視装置を安定して動作させることができる。 Thus, by activating the processor and the current sensor according to the magnitude of the power generated by the power supply circuit and activating the first circuit based on the current measurement result of the current sensor, for example, the power supply circuit Since the processor can be started only in a state where the energy harvesting in the environment generates the power necessary for stable operation of the processor, it suppresses the restart of the processor due to insufficient power generated by the energy harvesting. be able to. Therefore, the monitoring device can be stably operated.
 以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Embodiments of the present disclosure will be described below with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. Moreover, at least part of the embodiments described below may be combined arbitrarily.
 [構成および基本動作]
 図1は、本開示の実施の形態に係る監視装置の構成の一例を示す図である。図1を参照して、監視装置101は、起動制御回路10と、電源回路11と、MCU(Micro Controller Unit)13と、記憶部14と、通信部21と、カメラモジュール22と、外部インタフェース部23と、温度センサ24と、電流センサ25と、供給スイッチ31,32,33,34,35とを備える。起動制御回路10は、電圧監視回路12と、スイッチ41と、負荷回路42とを含む。通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24の各々は、第1の回路の一例である。温度センサ24は、第1のセンサの一例である。
[Configuration and basic operation]
FIG. 1 is a diagram illustrating an example configuration of a monitoring device according to an embodiment of the present disclosure. Referring to FIG. 1, monitoring apparatus 101 includes activation control circuit 10, power supply circuit 11, MCU (Micro Controller Unit) 13, storage unit 14, communication unit 21, camera module 22, and external interface unit. 23 , a temperature sensor 24 , a current sensor 25 , and supply switches 31 , 32 , 33 , 34 , 35 . Activation control circuit 10 includes a voltage monitoring circuit 12 , a switch 41 and a load circuit 42 . Each of communication section 21, camera module 22, external interface section 23, and temperature sensor 24 is an example of a first circuit. Temperature sensor 24 is an example of a first sensor.
 記憶部14は、たとえば不揮発性メモリである。MCU13は、プロセッサの一例である。通信部21は、たとえば通信用IC(Integrated Circuit)により実現される。 The storage unit 14 is, for example, a non-volatile memory. MCU 13 is an example of a processor. The communication unit 21 is realized by, for example, a communication IC (Integrated Circuit).
 スイッチ41および負荷回路42は、電源回路11と供給スイッチ31,32,33,34,35との間のノードN1と、グランドとの間においてこの順に直列に接続される。スイッチ41は、たとえば、バイポーラトランジスタまたはFET(Field Effect Transistor)である。 The switch 41 and the load circuit 42 are connected in series in this order between a node N1 between the power supply circuit 11 and the supply switches 31, 32, 33, 34, 35 and the ground. The switch 41 is, for example, a bipolar transistor or FET (Field Effect Transistor).
 監視装置101は、電線71に対応して設けられる。電線71は、架空送電線であってもよいし、地中送電線であってもよい。監視装置101は、電池を備えない代わりに、環境発電により得られる電力により動作する。 The monitoring device 101 is provided corresponding to the electric wire 71 . The electric wire 71 may be an overhead transmission line or an underground transmission line. The monitoring device 101 does not have a battery, but operates on power obtained from energy harvesting.
 (電源回路)
 電源回路11は、電線71との電磁誘導結合により得られる誘導電流から電力を生成する。当該誘導電流は、第1の誘導電流の一例である。たとえば、電源回路11は、電線71に取り付けられるカレントトランス50を介して得られる誘導電流を、監視装置101における各回路の動作に必要な直流電力に変換する。
(Power supply circuit)
The power supply circuit 11 generates electric power from an induced current obtained by electromagnetic induction coupling with the electric wire 71 . The induced current is an example of a first induced current. For example, the power supply circuit 11 converts an induced current obtained through a current transformer 50 attached to the electric wire 71 into DC power necessary for operating each circuit in the monitoring device 101 .
 より詳細には、カレントトランス50(以下、「CT50」と称する。)は、電線71をクランプする磁気コア51と、磁気コア51に巻かれた巻線52とを含む。当該巻線52の両端は、電源回路11に接続される。CT50は、第2のカレントトランスの一例である。 More specifically, the current transformer 50 (hereinafter referred to as "CT50") includes a magnetic core 51 that clamps the electric wire 71 and a winding 52 wound around the magnetic core 51. Both ends of the winding 52 are connected to the power supply circuit 11 . CT50 is an example of a second current transformer.
 電源回路11は、電線71を流れる交流電流Iewにより生じる磁界に基づく誘導電流をCT50から受ける。電源回路11は、CT50から受ける誘導電流を直流電力に変換し、得られた直流電力を出力する。 The power supply circuit 11 receives from the CT 50 an induced current based on the magnetic field generated by the alternating current Iew flowing through the electric wire 71 . The power supply circuit 11 converts the induced current received from the CT 50 into DC power and outputs the obtained DC power.
 電圧監視回路12、MCU13、通信部21、カメラモジュール22、外部インタフェース部23、温度センサ24および電流センサ25は、電源回路11から供給される電力で動作する。 The voltage monitoring circuit 12 , MCU 13 , communication unit 21 , camera module 22 , external interface unit 23 , temperature sensor 24 and current sensor 25 operate with power supplied from power supply circuit 11 .
 (カメラモジュール)
 カメラモジュール22は、供給スイッチ32を介して電源回路11から電力を受ける。カメラモジュール22は、起動状態において、たとえば定期的に、監視装置101の周囲の領域を撮像し、得られた画像を示すカメラ情報をMCU13へ出力する。なお、カメラモジュール22は、MCU13から受けた撮像要求に応答して撮像を行い、カメラ情報をMCU13へ出力する構成であってもよい。
(The camera module)
The camera module 22 receives power from the power supply circuit 11 via the supply switch 32 . Camera module 22 , for example, periodically captures an area around monitoring device 101 in an activated state, and outputs camera information indicating the obtained image to MCU 13 . Note that the camera module 22 may be configured to perform imaging in response to an imaging request received from the MCU 13 and output camera information to the MCU 13 .
 (温度センサ)
 温度センサ24は、供給スイッチ34を介して電源回路11から電力を受ける。温度センサ24は、起動状態において、たとえば定期的に、監視装置101の周囲の温度を計測し、温度計測値を示す温度情報をMCU13へ出力する。たとえば、温度センサ24は、監視装置101の周囲の温度として、電線71の温度を計測する。なお、温度センサ24は、MCU13から計測要求を受けて、受けた計測要求に対する応答として温度情報をMCU13へ出力する構成であってもよい。
(temperature sensor)
Temperature sensor 24 receives power from power supply circuit 11 via supply switch 34 . The temperature sensor 24 periodically measures the temperature around the monitoring device 101 and outputs temperature information indicating the temperature measurement value to the MCU 13 in the activated state. For example, the temperature sensor 24 measures the temperature of the wire 71 as the ambient temperature of the monitoring device 101 . The temperature sensor 24 may be configured to receive a measurement request from the MCU 13 and output temperature information to the MCU 13 as a response to the received measurement request.
 (電流センサ)
 たとえば、電流センサ25は、電線71に取り付けられるカレントトランス60と、カレントトランス60により得られる誘導電流に基づいて、電線71を流れる電流すなわち交流電流Iewを算出する算出部63とを含む。当該誘導電流は、第2の誘導電流の一例である。算出部63は、たとえば、CPU(Central Processing Unit)およびDSP(Digital Signal Processor)等のプロセッサにより実現される。
(current sensor)
For example, current sensor 25 includes a current transformer 60 attached to electric wire 71 and a calculator 63 that calculates the current flowing through electric wire 71 , that is, alternating current Iew, based on the induced current obtained by current transformer 60 . The induced current is an example of a second induced current. Calculation unit 63 is implemented by a processor such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), for example.
 より詳細には、カレントトランス60(以下、「CT60」と称する。)は、電線71をクランプする磁気コア61と、磁気コア61に巻かれた巻線62とを含む。当該巻線62の両端は、算出部63に接続される。CT60は、第1のカレントトランスの一例である。 More specifically, the current transformer 60 (hereinafter referred to as "CT60") includes a magnetic core 61 that clamps the electric wire 71 and a winding 62 wound around the magnetic core 61. Both ends of the winding 62 are connected to the calculator 63 . CT60 is an example of a first current transformer.
 算出部63は、電線71を流れる交流電流Iewにより生じる磁界に基づく誘導電流をCT60から受ける。算出部63は、CT60から受ける誘導電流の大きさに基づいて、交流電流Iewの実効値を電流計測値Imとして算出し、当該電流計測値Imを示す電流情報をMCU13へ出力する。 The calculator 63 receives from the CT 60 an induced current based on the magnetic field generated by the alternating current Iew flowing through the electric wire 71 . The calculator 63 calculates the effective value of the alternating current Iew as the measured current value Im based on the magnitude of the induced current received from the CT 60 , and outputs current information indicating the measured current value Im to the MCU 13 .
 算出部63は、供給スイッチ35を介して電源回路11から電力を受ける。算出部63は、起動状態において、たとえば定期的に交流電流Iewを算出し、電流計測値Imを示す電流情報をMCU13へ出力する。なお、算出部63は、MCU13から計測要求を受けて、受けた計測要求に対する応答として電流情報をMCU13へ出力する構成であってもよい。 The calculator 63 receives power from the power supply circuit 11 via the supply switch 35 . Calculation unit 63 , for example, periodically calculates alternating current Iew in the activated state, and outputs current information indicating current measurement value Im to MCU 13 . The calculation unit 63 may be configured to receive a measurement request from the MCU 13 and output current information to the MCU 13 as a response to the received measurement request.
 (通信部)
 通信部21は、供給スイッチ31を介して電源回路11から電力を受ける。通信部21は、起動状態において、監視装置101の外部における図示しない管理装置へ温度情報、カメラ情報および電流情報を送信する。
(communication department)
The communication unit 21 receives power from the power supply circuit 11 via the supply switch 31 . The communication unit 21 transmits temperature information, camera information, and current information to a management device (not shown) outside the monitoring device 101 in the activated state.
 より詳細には、MCU13は、管理装置から情報送信要求を受信すると、温度センサ24から受けた温度情報、カメラモジュール22から受けたカメラ情報および電流センサ25から受けた電流情報を通信部21へ出力する。なお、MCU13は、温度情報、カメラ情報および電流情報を定期的に通信部21へ出力する構成であってもよい。 More specifically, when the MCU 13 receives an information transmission request from the management device, the MCU 13 outputs the temperature information received from the temperature sensor 24, the camera information received from the camera module 22, and the current information received from the current sensor 25 to the communication unit 21. do. Note that the MCU 13 may be configured to periodically output temperature information, camera information, and current information to the communication section 21 .
 通信部21は、MCU13から温度情報、カメラ情報および電流情報を受けて、受けた温度情報、カメラ情報および電流情報を格納したセンサパケットを含む無線信号を管理装置へ無線送信する。通信部21および管理装置は、たとえば、無線LAN(Local Area Network)、LTE(Long Term Evolution)、5G、920MHz帯のZigBee(登録商標)、Bluetooth(登録商標)およびUWB(Ultra Wide Band)等の通信プロトコルを用いた無線による通信を行う。なお、通信部21および管理装置間において、上記以外の通信プロトコルが用いられてもよい。また、通信部21は、イーサネット(登録商標)ケーブルおよびUSB(Universal Serial Bus)ケーブル等の有線伝送路を用いた有線通信により温度情報を管理装置へ送信する構成であってもよいし、電線を用いたPLC(Power Line Communications)通信により温度情報を管理装置へ送信する構成であってもよい。また、通信部21は、温度情報、カメラ情報および電流情報の一部を管理装置へ送信しない構成であってもよい。 The communication unit 21 receives temperature information, camera information and current information from the MCU 13, and wirelessly transmits a wireless signal including a sensor packet storing the received temperature information, camera information and current information to the management device. The communication unit 21 and the management device are, for example, wireless LAN (Local Area Network), LTE (Long Term Evolution), 5G, 920 MHz band ZigBee (registered trademark), Bluetooth (registered trademark), UWB (Ultra Wide Band), etc. Performs wireless communication using a communication protocol. A communication protocol other than the above may be used between the communication unit 21 and the management device. In addition, the communication unit 21 may be configured to transmit the temperature information to the management device by wired communication using a wired transmission line such as an Ethernet (registered trademark) cable and a USB (Universal Serial Bus) cable. The temperature information may be transmitted to the management device by PLC (Power Line Communications) communication used. Further, the communication unit 21 may be configured not to transmit part of the temperature information, the camera information, and the current information to the management device.
 (外部インタフェース部)
 外部インタフェース部23は、供給スイッチ33を介して電源回路11から電力を受ける。外部インタフェース部23は、図示しない外部装置と接続される。外部インタフェース部23は、起動状態において、外部装置を制御するための制御信号を当該外部装置へ送信する。
(external interface)
The external interface section 23 receives power from the power supply circuit 11 via the supply switch 33 . The external interface unit 23 is connected to an external device (not shown). The external interface unit 23 transmits a control signal for controlling the external device to the external device in the activated state.
 より詳細には、外部インタフェース部23は、MCU13からの指示に従い、外部装置の一例である電子錠を開閉するための制御信号を電子錠へ送信したり、外部装置の一例である空調装置を制御するための制御信号を空調装置へ送信したりする。 More specifically, the external interface unit 23 transmits a control signal for opening and closing an electronic lock, which is an example of an external device, to an electronic lock, and controls an air conditioner, which is an example of an external device, according to instructions from the MCU 13. For example, a control signal is sent to the air conditioner.
 (起動制御回路)
 起動制御回路10は、MCU13の起動状態およびリセット状態を切り替える。より詳細には、電圧監視回路12は、MCU13の状態を切り替えるためのリセット制御信号をMCU13へ出力する。一例として、電圧監視回路12は、MCU13へ出力するリセット制御信号をローレベルからハイレベルに切り替えることによりMCU13を起動状態に切り替え、MCU13へ出力するリセット制御信号をハイレベルからローレベルに切り替えることによりMCU13を起動状態からリセット状態に切り替える。
(Startup control circuit)
The activation control circuit 10 switches the MCU 13 between an activation state and a reset state. More specifically, voltage monitoring circuit 12 outputs to MCU 13 a reset control signal for switching the state of MCU 13 . As an example, the voltage monitoring circuit 12 switches the MCU 13 to the active state by switching the reset control signal output to the MCU 13 from low level to high level, and switches the reset control signal output to the MCU 13 from high level to low level. The MCU 13 is switched from the activation state to the reset state.
 また、電圧監視回路12は、スイッチ制御信号をスイッチ41へ出力することによりスイッチ41のオン状態およびオフ状態を切り替える。 Also, the voltage monitoring circuit 12 switches the ON state and OFF state of the switch 41 by outputting a switch control signal to the switch 41 .
 電圧監視回路12は、スイッチ41がオン状態のときにMCU13がリセット状態となり、かつスイッチ41がオフ状態のときにMCU13が起動状態となるようにリセット信号とスイッチ制御信号とを同期させる。 The voltage monitoring circuit 12 synchronizes the reset signal and the switch control signal so that the MCU 13 is reset when the switch 41 is on and the MCU 13 is activated when the switch 41 is off.
 (MCU)
 MCU13は、起動状態において、電源回路11から通信部21、カメラモジュール22、外部インタフェース部23、温度センサ24および電流センサ25への電力の供給を制御する。より詳細には、MCU13は、供給制御信号を供給スイッチ31,32,33,34,35へ出力することにより、それぞれ供給スイッチ31,32,33,34,35の供給オン状態および供給オフ状態を切り替える。
(MCU)
The MCU 13 controls power supply from the power supply circuit 11 to the communication unit 21, the camera module 22, the external interface unit 23, the temperature sensor 24, and the current sensor 25 in the activated state. More specifically, the MCU 13 outputs supply control signals to the supply switches 31, 32, 33, 34, and 35 to turn the supply switches 31, 32, 33, 34, and 35 on and off, respectively. switch.
 (MCUおよび電流センサの起動)
 起動制御回路10は、電源回路11により生成される電力の大きさに応じてMCU13を起動する。一例として、電圧監視回路12は、電源回路11の出力電圧を監視し、監視結果に基づいてMCU13を起動する。
(Activation of MCU and current sensor)
The activation control circuit 10 activates the MCU 13 according to the amount of power generated by the power supply circuit 11 . As an example, the voltage monitoring circuit 12 monitors the output voltage of the power supply circuit 11 and activates the MCU 13 based on the monitoring result.
 より詳細には、電圧監視回路12は、スイッチ41がオン状態であってMCU13がリセット状態のときに、ノードN2の電圧Voutを監視し、電圧Voutが所定のしきい値Th1以上である状態が所定時間T1継続した場合、スイッチ41をオフ状態に切り替えるとともに、リセット制御信号をローレベルからハイレベルに切り替えることによりMCU13をリセット状態から起動状態に切り替える。所定時間T1は、たとえば電線71を流れる交流電流Iewの周期に基づいて設定される。 More specifically, the voltage monitoring circuit 12 monitors the voltage Vout of the node N2 when the switch 41 is in the ON state and the MCU 13 is in the reset state. When the predetermined time T1 continues, the MCU 13 is switched from the reset state to the activated state by switching the switch 41 to the OFF state and switching the reset control signal from the low level to the high level. Predetermined time T1 is set, for example, based on the cycle of alternating current Iew flowing through electric wire 71 .
 MCU13は、起動制御回路10により起動されることに伴って電流センサ25を起動する。より詳細には、MCU13は、電圧監視回路12により起動されると、供給制御信号を供給スイッチ35へ出力することにより、供給スイッチ35を供給オフ状態から供給オン状態に切り替える。 The MCU 13 activates the current sensor 25 as it is activated by the activation control circuit 10 . More specifically, when the MCU 13 is activated by the voltage monitoring circuit 12, the MCU 13 outputs a supply control signal to the supply switch 35, thereby switching the supply switch 35 from the supply OFF state to the supply ON state.
 電流センサ25は、供給スイッチ35が供給オフ状態から供給オン状態へ遷移することにより、供給スイッチ35経由で電源回路11から電力を受けて起動する。電流センサ25は、起動後、交流電流Iewの計測を開始し、定期的に電流情報をMCU13へ出力する。 The current sensor 25 is activated by receiving power from the power supply circuit 11 via the supply switch 35 when the supply switch 35 transitions from the supply OFF state to the supply ON state. After being activated, the current sensor 25 starts measuring the alternating current Iew and periodically outputs current information to the MCU 13 .
 ここで、しきい値Th1は、MCU13および電流センサ25の消費電流の合計と、負荷回路42の抵抗値とに基づいて設定される。より詳細には、電源回路11により生成される電力量は、電線71を流れる交流電流Iewの実効値に依存する。しきい値Th1は、たとえば電線71を流れる交流電流Iewの実効値がX1アンペアとなることにより、MCU13および電流センサ25の動作に必要な電力に電力Eを加えた電力が電源回路11から出力され、かつスイッチ41がオン状態であるときの、ノードN2の電圧に設定される。電力Eは、MCU13および電流センサ25を安定して動作させるためのマージンであり、交流電流Iewの実効値の時間変動の大きさに応じて予め設定される。具体的には、交流電流Iewの実効値の時間変動の大きさは、CT50の設置場所の環境に依存する。電力Eは、CT50の設置場所の環境に応じて適切に設定され、たとえば、交流電流Iewの実効値の時間変動が大きくなるような場所にCT50が設置される場合、大きな値に設定され、交流電流Iewの実効値の時間変動が小さくなるような場所にCT50が設置される場合、小さな値に設定される。電力Eは、ゼロであってもよい。 Here, threshold Th1 is set based on the total current consumption of MCU 13 and current sensor 25 and the resistance value of load circuit 42 . More specifically, the amount of power generated by power supply circuit 11 depends on the effective value of alternating current Iew flowing through wire 71 . Threshold value Th1, for example, when the effective value of alternating current Iew flowing through electric wire 71 is X1 amperes, power supply circuit 11 outputs power obtained by adding power E to the power necessary for the operation of MCU 13 and current sensor 25. , and the voltage of the node N2 when the switch 41 is on. The electric power E is a margin for stably operating the MCU 13 and the current sensor 25, and is set in advance according to the time variation of the effective value of the alternating current Iew. Specifically, the magnitude of the time variation of the effective value of the alternating current Iew depends on the environment of the installation location of the CT50. The power E is appropriately set according to the environment of the installation location of the CT 50. For example, when the CT 50 is installed in a location where the effective value of the alternating current Iew varies with time, it is set to a large value. When the CT 50 is installed in a place where the time variation of the effective value of the current Iew is small, it is set to a small value. Power E may be zero.
 (他の回路の起動)
 MCU13は、電流センサ25による交流電流Iewの計測結果に基づいて、監視装置101における他の回路、すなわち通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24を起動する。
(activation of other circuits)
The MCU 13 activates other circuits in the monitoring device 101 , that is, the communication section 21 , the camera module 22 , the external interface section 23 and the temperature sensor 24 based on the result of measurement of the alternating current Iew by the current sensor 25 .
 より詳細には、MCU13は、電流センサ25から電流情報を受けて、受けた電流情報が示す電流計測値Imに基づいて、通信部21の起動の可否、カメラモジュール22の起動の可否、外部インタフェース部23の起動の可否、および温度センサ24の起動の可否を判定する起動判定処理を行う。すなわち、MCU13は、電流計測値Imから推定される電源回路11における環境発電能力に基づいて、起動判定処理を行う。 More specifically, the MCU 13 receives the current information from the current sensor 25, and based on the current measurement value Im indicated by the received current information, determines whether the communication unit 21 can be activated, whether the camera module 22 can be activated, and whether the external interface can be activated. Activation determination processing for determining whether the unit 23 can be activated and whether the temperature sensor 24 can be activated is performed. That is, the MCU 13 performs activation determination processing based on the energy harvesting capacity of the power supply circuit 11 estimated from the current measurement value Im.
 図2は、本開示の実施の形態に係る監視装置における記憶部に保存されているしきい値テーブルの一例を示す図である。図2を参照して、記憶部14は、通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24の消費電流に基づく複数のしきい値を示すしきい値テーブルTBLを記憶している。 FIG. 2 is a diagram showing an example of a threshold table stored in the storage unit of the monitoring device according to the embodiment of the present disclosure. Referring to FIG. 2, storage unit 14 stores a threshold table TBL showing a plurality of thresholds based on current consumption of communication unit 21, camera module 22, external interface unit 23 and temperature sensor 24. .
 しきい値テーブルTBLは、起動すべき1または複数の回路と、電流計測値Imに対して設定されるしきい値との対応関係を示している。具体的には、しきい値テーブルTBLは、電流計測値Imがしきい値Tha以上である場合に温度センサ24を起動すべきであり、電流計測値Imがしきい値Thb以上である場合に温度センサ24および通信部21を起動すべきであり、電流計測値Imがしきい値Thc以上である場合に温度センサ24、通信部21およびカメラモジュール22を起動すべきであり、電流計測値Imがしきい値Thd以上である場合に温度センサ24、通信部21、およびカメラモジュール22および外部インタフェース部23を起動すべきであることを示している。 The threshold table TBL shows the correspondence between one or more circuits to be activated and the thresholds set for the current measurement value Im. Specifically, the threshold value table TBL should activate the temperature sensor 24 when the measured current value Im is equal to or greater than the threshold value Tha, and should activate the temperature sensor 24 when the measured current value Im is equal to or greater than the threshold value Thb. The temperature sensor 24 and the communication unit 21 should be activated, and the temperature sensor 24, the communication unit 21 and the camera module 22 should be activated when the current measurement value Im is equal to or greater than the threshold value Thc, and the current measurement value Im is equal to or greater than the threshold Thd, the temperature sensor 24, communication unit 21, camera module 22, and external interface unit 23 should be activated.
 しきい値テーブルTBLにおけるしきい値Tha,Thb,Thc,Thdは、対応の1または複数の回路が安定して動作するために必要な電力が電源回路11により生成されるときの交流電流Iewの実効値に基づいて設定される。 Threshold values Tha, Thb, Thc, and Thd in the threshold value table TBL are values of the AC current Iew when the power supply circuit 11 generates power necessary for stably operating one or more corresponding circuits. Set based on actual value.
 より詳細には、たとえば、温度センサ24の消費電流は100ミリアンペアであり、温度センサ24および通信部21の消費電流の合計は125ミリアンペアであり、温度センサ24、通信部21およびカメラモジュール22の消費電流の合計は200ミリアンペアであり、温度センサ24、通信部21、カメラモジュール22および外部インタフェース部23の消費電流の合計は250ミリアンペアである。 More specifically, for example, the current consumption of temperature sensor 24 is 100 milliamperes, the total current consumption of temperature sensor 24 and communication unit 21 is 125 milliamperes, and the consumption of temperature sensor 24, communication unit 21 and camera module 22 is 125 milliamperes. The total current is 200 milliamperes, and the total current consumption of the temperature sensor 24, communication section 21, camera module 22 and external interface section 23 is 250 milliamperes.
 電源回路11は、交流電流Iewの実効値が80アンペア以上であるときに温度センサ24の動作に必要な電力を生成することができるとする。この場合、しきい値Thaは、たとえば90アンペアに設定される。すなわち、しきい値Thaは、温度センサ24の動作に必要な電力が電源回路11により生成されるときの交流電流Iewの実効値である80アンペアに、マージンMaとして10アンペアを加えた値に設定される。 It is assumed that the power supply circuit 11 can generate power necessary for operating the temperature sensor 24 when the effective value of the alternating current Iew is 80 amperes or more. In this case, the threshold Tha is set to 90 amperes, for example. That is, the threshold value Tha is set to a value obtained by adding 10 amperes as a margin Ma to 80 amperes, which is the effective value of the alternating current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24. be done.
 また、電源回路11は、交流電流Iewの実効値が100アンペア以上であるときに温度センサ24および通信部21の動作に必要な電力を生成することができるとする。この場合、しきい値Thbは、たとえば110アンペアに設定される。すなわち、しきい値Thbは、温度センサ24および通信部21の動作に必要な電力が電源回路11により生成されるときの交流電流Iewの実効値である100アンペアに、マージンMbとして10アンペアを加えた値に設定される。 Also, it is assumed that the power supply circuit 11 can generate power necessary for operating the temperature sensor 24 and the communication unit 21 when the effective value of the alternating current Iew is 100 amperes or more. In this case, the threshold Thb is set to 110 amperes, for example. That is, the threshold value Thb is obtained by adding 10 amperes as a margin Mb to 100 amperes, which is the effective value of the alternating current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24 and the communication unit 21. set to the value
 また、電源回路11は、交流電流Iewの実効値が160アンペア以上であるときに温度センサ24、通信部21およびカメラモジュール22の動作に必要な電力を生成することができるとする。この場合、しきい値Thcは、たとえば170アンペアに設定される。すなわち、しきい値Thcは、温度センサ24、通信部21およびカメラモジュール22の動作に必要な電力が電源回路11により生成されるときの交流電流Iewの実効値である160アンペアに、マージンMcとして10アンペアを加えた値に設定される。 Also, it is assumed that the power supply circuit 11 can generate power necessary for operating the temperature sensor 24, the communication unit 21, and the camera module 22 when the effective value of the alternating current Iew is 160 amperes or more. In this case, threshold Thc is set to 170 amperes, for example. That is, the threshold Thc is set to 160 amperes, which is the effective value of the AC current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24, the communication unit 21, and the camera module 22, and the margin Mc It is set to add 10 amps.
 また、電源回路11は、交流電流Iewの実効値が200アンペア以上であるときに温度センサ24、通信部21、カメラモジュール22および外部インタフェース部23の動作に必要な電力を生成することができるとする。この場合、しきい値Thdは、たとえば210アンペアに設定される。すなわち、しきい値Thdは、温度センサ24、通信部21、カメラモジュール22および外部インタフェース部23の動作に必要な電力が電源回路11により生成されるときの交流電流Iewの実効値である200アンペアに、マージンMdとして10アンペアを加えた値に設定される。 Moreover, the power supply circuit 11 can generate power necessary for operating the temperature sensor 24, the communication unit 21, the camera module 22, and the external interface unit 23 when the effective value of the alternating current Iew is 200 amperes or more. do. In this case, the threshold Thd is set to 210 amperes, for example. That is, the threshold Thd is 200 amperes, which is the effective value of the alternating current Iew when the power supply circuit 11 generates the power necessary for operating the temperature sensor 24, the communication unit 21, the camera module 22, and the external interface unit 23. , plus a margin Md of 10 amperes.
 なお、マージンMa,Mb,Mc,Mdは、10アンペアに限定されない。また、マージンMa,Mb,Mc,Mdの一部または全部は、互いに異なる値であってもよい。 Note that the margins Ma, Mb, Mc, and Md are not limited to 10 amperes. Also, some or all of the margins Ma, Mb, Mc, and Md may have different values.
 たとえば、MCU13は、監視装置101の外部における図示しない管理装置から更新要求を受信すると、受信した更新要求に従って、しきい値テーブルTBLにおけるしきい値Tha,Thb,Thc,Thdを更新する。 For example, when the MCU 13 receives an update request from a management device (not shown) outside the monitoring device 101, the MCU 13 updates the thresholds Tha, Thb, Thc, and Thd in the threshold table TBL according to the received update request.
 MCU13は、電流センサ25による計測結果と、しきい値テーブルTBLおける複数のしきい値との比較結果に基づいて、通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24のうちの、しきい値Tha,Thb,Thc,Thdにそれぞれ対応する1または複数の回路を起動状態にする。 Based on the result of comparison between the result of measurement by the current sensor 25 and the plurality of threshold values in the threshold value table TBL, the MCU 13 selects the One or a plurality of circuits corresponding to threshold values Tha, Thb, Thc, and Thd are activated.
 たとえば、MCU13は、電流センサ25による計測結果としきい値Thaとの比較結果に基づいて温度センサ24を起動状態にし、電流センサ25による計測結果と、しきい値Thaよりも大きいしきい値Thbとの比較結果に基づいて通信部21を起動状態にする。しきい値Thaは、第1のしきい値の一例である。しきい値Thbは、第2のしきい値の一例である。 For example, the MCU 13 activates the temperature sensor 24 based on the result of comparison between the measurement result of the current sensor 25 and the threshold value Tha, and the measurement result of the current sensor 25 and the threshold value Thb larger than the threshold value Tha. The communication unit 21 is activated based on the comparison result. Threshold Tha is an example of a first threshold. Threshold Thb is an example of a second threshold.
 より詳細には、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Tha以上である場合、温度センサ24を起動する。また、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thb以上である場合、温度センサ24および通信部21を起動する。 More specifically, the MCU 13 activates the temperature sensor 24 when the current measurement value Im indicated by the current information received from the current sensor 25 is greater than or equal to the threshold value Tha. Further, the MCU 13 activates the temperature sensor 24 and the communication unit 21 when the current measurement value Im indicated by the current information received from the current sensor 25 is equal to or greater than the threshold value Thb.
 図3は、本開示の実施の形態に係る監視装置における各回路の起動タイミングを示すタイムチャートである。図3において、横軸は時間であり、縦軸は交流電流Iewの実効値[A]である。たとえば、時刻t0において、スイッチ41はオン状態であり、かつMCU13はリセット状態であるものとする。 FIG. 3 is a time chart showing activation timing of each circuit in the monitoring device according to the embodiment of the present disclosure. In FIG. 3, the horizontal axis is time, and the vertical axis is the effective value [A] of the alternating current Iew. For example, at time t0, switch 41 is on and MCU 13 is reset.
 図3を参照して、電圧監視回路12は、時刻t1において、電線71を流れる交流電流Iewの実効値がX1アンペア以上となると、ノードN2の電圧Voutがしきい値Th1以上となったことを検知し、MCU13をリセット状態から起動状態に切り替える。MCU13は、電圧監視回路12により起動されると、供給スイッチ35を供給オフ状態から供給オン状態に切り替えることにより電流センサ25を起動する。 Referring to FIG. 3, voltage monitoring circuit 12 detects that voltage Vout at node N2 has become equal to or greater than threshold Th1 when the effective value of alternating current Iew flowing through electric wire 71 becomes equal to or greater than X1 amperes at time t1. This is detected and the MCU 13 is switched from the reset state to the active state. When activated by the voltage monitoring circuit 12, the MCU 13 activates the current sensor 25 by switching the supply switch 35 from the supply OFF state to the supply ON state.
 次に、MCU13は、時刻t2において、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Tha以上となると、供給スイッチ34を供給オフ状態から供給オン状態に切り替えることにより温度センサ24をさらに起動する。 Next, at time t2, when the measured current value Im indicated by the current information received from the current sensor 25 becomes equal to or greater than the threshold value Tha, the MCU 13 switches the supply switch 34 from the supply off state to the supply on state to turn on the temperature sensor. 24 is further activated.
 次に、MCU13は、時刻t3において、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thb以上となると、供給スイッチ31を供給オフ状態から供給オン状態に切り替えることにより通信部21をさらに起動する。 Next, at time t3, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or greater than the threshold value Thb, the MCU 13 switches the supply switch 31 from the supply OFF state to the supply ON state, thereby 21 is further activated.
 次に、MCU13は、時刻t4において、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thc以上となると、供給スイッチ32を供給オフ状態から供給オン状態に切り替えることによりカメラモジュール22をさらに起動する。 Next, at time t4, when the measured current value Im indicated by the current information received from the current sensor 25 becomes equal to or greater than the threshold value Thc, the MCU 13 switches the supply switch 32 from the supply OFF state to the supply ON state, thereby turning the camera module on. 22 is further activated.
 次に、MCU13は、時刻t5において、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thd以上となると、供給スイッチ33を供給オフ状態から供給オン状態に切り替えることにより外部インタフェース部23をさらに起動する。 Next, at time t5, when the measured current value Im indicated by the current information received from the current sensor 25 becomes equal to or greater than the threshold value Thd, the MCU 13 switches the supply switch 33 from the supply OFF state to the supply ON state, thereby Activating the unit 23 further.
 次に、たとえば、MCU13は、電源回路11から供給される電力が低下した場合、電源回路11から供給される電力の低下に伴って、供給スイッチ31,32,33,34,35を段階的に供給オフ状態に切り替えることにより起動中の回路を停止状態にする。 Next, for example, when the power supplied from the power supply circuit 11 drops, the MCU 13 switches the supply switches 31, 32, 33, 34, and 35 in stages as the power supplied from the power supply circuit 11 drops. By switching to the supply off state, the active circuit is brought to a halt state.
 より詳細には、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thdx以下となると、供給スイッチ33を供給オン状態から供給オフ状態に切り替えることにより外部インタフェース部23を停止状態にする。また、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thcx以下となると、供給スイッチ32を供給オン状態から供給オフ状態に切り替えることによりカメラモジュール22をさらに停止状態にする。また、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thbx以下となると、供給スイッチ31を供給オン状態から供給オフ状態に切り替えることにより通信部21をさらに停止状態にする。また、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imがしきい値Thax以下となると、供給スイッチ34を供給オン状態から供給オフ状態に切り替えることにより温度センサ24をさらに停止状態にする。 More specifically, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or less than the threshold Thdx, the MCU 13 switches the supply switch 33 from the supply-on state to the supply-off state so that the external interface unit 23 to stop. Further, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or less than the threshold value Thcx, the MCU 13 switches the supply switch 32 from the supply ON state to the supply OFF state, thereby further stopping the camera module 22. to Further, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or less than the threshold value Thbx, the MCU 13 switches the supply switch 31 from the supply ON state to the supply OFF state, thereby further stopping the communication unit 21. to Further, when the current measurement value Im indicated by the current information received from the current sensor 25 becomes equal to or less than the threshold value Thax, the MCU 13 switches the supply switch 34 from the supply ON state to the supply OFF state, thereby further stopping the temperature sensor 24. to
 たとえば、しきい値Thdxは、しきい値Thc以上であり、かつしきい値Thd未満である。また、たとえば、しきい値Thcxは、しきい値Thb以上であり、かつしきい値Thc未満である。また、たとえば、しきい値Thbxは、しきい値Tha以上であり、かつしきい値Thb未満である。また、たとえば、しきい値Thaxは、X1以上であり、かつしきい値Tha未満である。 For example, the threshold Thdx is greater than or equal to the threshold Thc and less than the threshold Thd. Also, for example, threshold Thcx is equal to or greater than threshold Thb and less than threshold Thc. Also, for example, the threshold Thbx is equal to or greater than the threshold Tha and less than the threshold Thb. Also, for example, the threshold Thax is greater than or equal to X1 and less than the threshold Tha.
 電圧監視回路12は、電源回路11からMCU13へ供給される電力を監視し、電源回路11からMCU13へ供給される電力が所定値未満となると、スイッチ41をオン状態に切り替えるとともに、リセット制御信号をハイレベルからローレベルに切り替えることによりMCU13を起動状態からリセット状態に切り替える。 The voltage monitoring circuit 12 monitors the power supplied from the power supply circuit 11 to the MCU 13. When the power supplied from the power supply circuit 11 to the MCU 13 becomes less than a predetermined value, the voltage monitoring circuit 12 turns on the switch 41 and outputs a reset control signal. By switching from the high level to the low level, the MCU 13 is switched from the activation state to the reset state.
 なお、しきい値Tha,Thb,Thc,Thdの少なくともいずれか1つは、X1の値よりも小さくてもよい。より詳細には、X1の値は、上述した電力E1の設定値に応じて、しきい値Tha,Thb,Thc,Thdの少なくともいずれか1つよりも大きな値となる場合がある。 At least one of the thresholds Tha, Thb, Thc, and Thd may be smaller than the value of X1. More specifically, the value of X1 may be greater than at least one of thresholds Tha, Thb, Thc, and Thd depending on the set value of power E1 described above.
 たとえば、X1の値は、しきい値Thaよりも大きく、かつしきい値Thb未満である。この場合、MCU13は、時刻t1において、電圧監視回路12によりリセット状態から起動状態に切り替えられ、電流センサ25を起動する。そして、MCU13は、たとえば電流センサ25の起動後に電流センサ25から最初に受けた電流情報が示す電流計測値Imがしきい値Tha以上であることから、温度センサ24をさらに起動する。 For example, the value of X1 is greater than threshold Tha and less than threshold Thb. In this case, the MCU 13 is switched from the reset state to the activated state by the voltage monitoring circuit 12 at time t1, and activates the current sensor 25 . The MCU 13 further activates the temperature sensor 24 because the current measurement value Im indicated by the current information first received from the current sensor 25 after activation of the current sensor 25 is greater than or equal to the threshold value Tha.
 [動作の流れ]
 本開示の実施の形態に係る監視装置は、メモリを含むコンピュータを備え、当該コンピュータにおけるMCU等の演算処理部は、以下のフローチャートおよびシーケンスの各ステップの一部または全部を含むプログラムを当該メモリから読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態でまたは通信回線を介して流通する。
[Flow of operation]
A monitoring device according to an embodiment of the present disclosure includes a computer including a memory, and an arithmetic processing unit such as an MCU in the computer reads a program including part or all of the steps of the following flowcharts and sequences from the memory. Read and execute. Programs for these multiple devices can each be installed from the outside. Programs for these devices are distributed in a state stored in recording media or via communication lines.
 図4は、本開示の実施の形態に係る監視装置における各回路を起動する際の動作手順の一例を定めたフローチャートである。 FIG. 4 is a flow chart defining an example of an operation procedure when activating each circuit in the monitoring device according to the embodiment of the present disclosure.
 図4を参照して、まず、監視装置101における電圧監視回路12は、スイッチ41がオン状態であってMCU13がリセット状態のときに、ノードN2の電圧Voutの監視を開始する(ステップS102)。 Referring to FIG. 4, first, voltage monitoring circuit 12 in monitoring device 101 starts monitoring voltage Vout of node N2 when switch 41 is in the ON state and MCU 13 is in the reset state (step S102).
 次に、電圧監視回路12は、ノードN2の電圧Voutがしきい値Th1以上である状態が所定時間T1継続するのを待ち受け(ステップS104でNO)、ノードN2の電圧Voutがしきい値Th1以上である状態が所定時間T1継続した場合(ステップS104でYES)、MCU13をリセット状態から起動状態に切り替える(ステップS106)。 Next, voltage monitoring circuit 12 waits for the state in which voltage Vout of node N2 is equal to or higher than threshold Th1 to continue for a predetermined time T1 (NO in step S104), and voltage Vout of node N2 is equal to or higher than threshold Th1. If this state continues for a predetermined time T1 (YES in step S104), the MCU 13 is switched from the reset state to the activated state (step S106).
 次に、MCU13は、電圧監視回路12により起動されると、供給スイッチ35を供給オフ状態から供給オン状態に切り替えることにより電流センサ25を起動する(ステップS108)。 Next, when activated by the voltage monitoring circuit 12, the MCU 13 activates the current sensor 25 by switching the supply switch 35 from the supply OFF state to the supply ON state (step S108).
 次に、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imに基づく起動判定処理を行う。 Next, the MCU 13 performs activation determination processing based on the current measurement value Im indicated by the current information received from the current sensor 25 .
 次に、電圧監視回路12は、電源回路11からMCU13へ供給される電力が所定値未満となると(ステップS112でYES)、スイッチ41をオン状態に切り替えるとともに、リセット制御信号をハイレベルからローレベルに切り替えることによりMCU13を起動状態からリセット状態に切り替える(ステップS114)。 Next, when the power supplied from the power supply circuit 11 to the MCU 13 becomes less than the predetermined value (YES in step S112), the voltage monitoring circuit 12 switches the switch 41 to the ON state and changes the reset control signal from high level to low level. , the MCU 13 is switched from the activation state to the reset state (step S114).
 次に、電圧監視回路12は、再びノードN2の電圧Voutの監視を開始する(ステップS102)。 Next, the voltage monitoring circuit 12 starts monitoring the voltage Vout of the node N2 again (step S102).
 図5は、本開示の実施の形態に係る監視装置が起動判定処理を行う際の動作手順の一例を定めたフローチャートである。図5は、図4におけるステップS110の詳細を示している。 FIG. 5 is a flowchart that defines an example of an operation procedure when the monitoring device according to the embodiment of the present disclosure performs activation determination processing. FIG. 5 shows details of step S110 in FIG.
 図5を参照して、まず、MCU13は、電流計測値Imがしきい値Tha以上となるのを待ち受け(ステップS202でNO)、電流計測値Imがしきい値Tha以上となった場合(ステップS202でYES)、温度センサ24を起動する(ステップS204)。 Referring to FIG. 5, first, MCU 13 waits for current measured value Im to exceed threshold value Tha (NO in step S202), and when current measured value Im exceeds threshold value Tha (step YES in S202), the temperature sensor 24 is activated (step S204).
 次に、MCU13は、電流計測値Imがしきい値Thb以上となるか、または、電流計測値Imがしきい値Thax以下となるのを待ち受ける(ステップS206でNOかつステップS208でNO)。 Next, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thb or the measured current value Im to become equal to or less than the threshold value Thax (NO in step S206 and NO in step S208).
 次に、MCU13は、電流計測値Imがしきい値Thax以下となった場合(ステップS208でYES)、温度センサ24を停止状態にする(ステップS210)。そして、MCU13は、電流計測値Imが再びしきい値Tha以上となるのを待ち受ける(ステップS202でNO)。 Next, when the measured current value Im is equal to or less than the threshold value Thax (YES in step S208), the MCU 13 stops the temperature sensor 24 (step S210). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Tha again (NO in step S202).
 一方、MCU13は、電流計測値Imがしきい値Thb以上となった場合(ステップS206でYES)、通信部21を起動する(ステップS212)。 On the other hand, the MCU 13 activates the communication unit 21 when the measured current value Im is equal to or greater than the threshold value Thb (YES in step S206) (step S212).
 次に、MCU13は、電流計測値Imがしきい値Thc以上となるか、または、電流計測値Imがしきい値Thbx以下となるのを待ち受ける(ステップS214でNOかつステップS216でNO)。 Next, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thc or the measured current value Im to become equal to or less than the threshold value Thbx (NO in step S214 and NO in step S216).
 次に、MCU13は、電流計測値Imがしきい値Thbx以下となった場合(ステップS216でYES)、通信部21を停止状態にする(ステップS218)。そして、MCU13は、電流計測値Imが再びしきい値Thb以上となるか、または、電流計測値Imがしきい値Thax以下となるのを待ち受ける(ステップS206でNOかつステップS208でNO)。 Next, when the measured current value Im becomes equal to or less than the threshold value Thbx (YES in step S216), the MCU 13 stops the communication unit 21 (step S218). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thb again, or for the measured current value Im to become equal to or less than the threshold value Thax (NO in step S206 and NO in step S208).
 一方、MCU13は、電流計測値Imがしきい値Thc以上となった場合(ステップS214でYES)、カメラモジュール22を起動する(ステップS220)。 On the other hand, the MCU 13 activates the camera module 22 when the current measurement value Im is equal to or greater than the threshold value Thc (YES in step S214) (step S220).
 次に、MCU13は、電流計測値Imがしきい値Thd以上となるか、または、電流計測値Imがしきい値Thcx以下となるのを待ち受ける(ステップS222でNOかつステップS224でNO)。 Next, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold Thd or to become equal to or less than the threshold Thcx (NO in step S222 and NO in step S224).
 次に、MCU13は、電流計測値Imがしきい値Thcx以下となった場合(ステップS224でYES)、カメラモジュール22を停止状態にする(ステップS226)。そして、MCU13は、電流計測値Imが再びしきい値Thc以上となるか、または、電流計測値Imがしきい値Thbx以下となるのを待ち受ける(ステップS214でNOかつステップS216でNO)。 Next, when the current measurement value Im is equal to or less than the threshold value Thcx (YES in step S224), the MCU 13 stops the camera module 22 (step S226). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold value Thc again, or the measured current value Im to become equal to or less than the threshold value Thbx (NO in step S214 and NO in step S216).
 一方、MCU13は、電流計測値Imがしきい値Thd以上となった場合(ステップS222でYES)、外部インタフェース部23を起動する(ステップS228)。 On the other hand, when the current measurement value Im is equal to or greater than the threshold value Thd (YES in step S222), the MCU 13 activates the external interface unit 23 (step S228).
 次に、MCU13は、電流計測値Imがしきい値Thdx以下となるのを待ち受け(ステップS230でNO)、電流計測値Imがしきい値Thdx以下となった場合(ステップS230でYES)、外部インタフェース部23を停止状態にする(ステップS232)。そして、MCU13は、電流計測値Imが再びしきい値Thd以上となるか、または、電流計測値Imがしきい値Thcx以下となるのを待ち受ける(ステップS222でNOかつステップS224でNO)。 Next, the MCU 13 waits for the measured current value Im to become equal to or less than the threshold Thdx (NO in step S230), and when the measured current value Im becomes equal to or less than the threshold Thdx (YES in step S230), the external The interface unit 23 is brought into a stopped state (step S232). Then, the MCU 13 waits for the measured current value Im to become equal to or greater than the threshold Thd again, or the measured current value Im to become equal to or less than the threshold Thcx (NO in step S222 and NO in step S224).
 なお、本開示の実施の形態に係る監視装置101は、温度センサ24を備える構成であるとしたが、これに限定するものではない。監視装置101は、温度センサ24の代わりに、または温度センサ24に加えて、他のセンサを備える構成であってもよい。この場合、MCU13は、電流センサ25による交流電流Iewの計測結果に基づいて、当該他のセンサを起動する。 Although the monitoring device 101 according to the embodiment of the present disclosure is configured to include the temperature sensor 24, it is not limited to this. Monitoring device 101 may be configured to include other sensors instead of temperature sensor 24 or in addition to temperature sensor 24 . In this case, the MCU 13 activates the other sensor based on the measurement result of the alternating current Iew by the current sensor 25 .
 また、本開示の実施の形態に係る監視装置101は、通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24を備える構成であるとしたが、これに限定するものではない。監視装置101は、通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24の一部または全部を備えない構成であってもよい。また、MCU13は、電流センサ25による交流電流Iewの計測結果と、1つのしきい値との比較結果に基づいて、通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24を起動する構成であってもよい。 Also, although the monitoring device 101 according to the embodiment of the present disclosure is configured to include the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24, it is not limited to this. The monitoring device 101 may be configured without some or all of the communication unit 21 , the camera module 22 , the external interface unit 23 and the temperature sensor 24 . Also, the MCU 13 activates the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24 based on the result of the measurement of the alternating current Iew by the current sensor 25 and the result of comparison with one threshold value. may be
 また、本開示の実施の形態に係る監視装置101では、記憶部14におけるしきい値テーブルTBLにおいて、しきい値Thd、しきい値Thc、しきい値Thbおよびしきい値Thaは、この順に大きい値であるとしたが、これに限定するものではない。しきい値Tha,Thb,Thc,Thdの大小関係は、対応する回路の起動の優先度に応じて入れ替えてもよい。たとえば、監視装置101の外部における図示しない管理装置へ、温度情報、カメラ情報および電流情報のうちの電流情報を優先して送信すべき場合、温度センサ24よりも通信部21を優先して起動するために、しきい値Thbはしきい値Thaよりも小さい値に設定される。 Further, in the monitoring device 101 according to the embodiment of the present disclosure, in the threshold table TBL in the storage unit 14, the threshold Thd, the threshold Thc, the threshold Thb, and the threshold Tha are larger in this order. value, but is not limited to this. The magnitude relationships among the thresholds Tha, Thb, Thc, and Thd may be interchanged according to the activation priority of the corresponding circuits. For example, when current information among temperature information, camera information, and current information should be preferentially transmitted to a management device (not shown) outside the monitoring device 101, the communication unit 21 is preferentially activated over the temperature sensor 24. Therefore, the threshold Thb is set to a value smaller than the threshold Tha.
 また、本開示の実施の形態に係る監視装置101では、電流センサ25は、CT60を介して交流電流Iewを計測する構成であるとしたが、これに限定するものではない。電流センサ25は、電源回路11の出力電圧に基づいて、電線71を流れる交流電流Iewを計測する構成であってもよい。また、電流センサ25は、電線71に取り付けられた磁気センサを介して交流電流Iewを計測する構成であってもよい。 Also, in the monitoring device 101 according to the embodiment of the present disclosure, the current sensor 25 is configured to measure the alternating current Iew via the CT 60, but the configuration is not limited to this. The current sensor 25 may be configured to measure the alternating current Iew flowing through the wire 71 based on the output voltage of the power supply circuit 11 . Also, the current sensor 25 may be configured to measure the alternating current Iew via a magnetic sensor attached to the electric wire 71 .
 また、本開示の実施の形態に係る監視装置101では、MCU13は、電流センサ25から受けた電流情報が示す電流計測値Imに基づいて、起動判定処理を行う構成であるとしたが、これに限定するものではない。MCU13は、電流計測値Imに基づいて、起動判定処理に加えて、起動中の回路の動作モードをたとえば低消費電力の動作モードに切り替える処理を行う構成であってもよい。 Further, in the monitoring device 101 according to the embodiment of the present disclosure, the MCU 13 is configured to perform activation determination processing based on the current measurement value Im indicated by the current information received from the current sensor 25. It is not limited. The MCU 13 may be configured to perform a process of switching the operation mode of the circuit being activated to, for example, a low power consumption operation mode, in addition to the activation determination process, based on the current measurement value Im.
 また、本開示の実施の形態に係る監視装置101は、電圧監視回路12を備える構成であるとしたが、これに限定するものではない。監視装置101は、電圧監視回路12の代わりに、電流監視回路を備える構成であってもよい。当該電流監視回路は、電源回路11から出力されて負荷回路42を流れる電流を監視し、監視結果に基づいてMCU13を起動する。 Also, although the monitoring device 101 according to the embodiment of the present disclosure is configured to include the voltage monitoring circuit 12, it is not limited to this. The monitoring device 101 may be configured to include a current monitoring circuit instead of the voltage monitoring circuit 12 . The current monitoring circuit monitors the current that is output from the power supply circuit 11 and flows through the load circuit 42, and activates the MCU 13 based on the monitoring result.
 <変形例>
 図6は、本開示の実施の形態の変形例に係る監視装置の構成の一例を示す図である。図6を参照して、監視装置102は、監視装置101と比べて、電源回路11の代わりに電源回路11Aを備え、電流センサ25の代わりに電流センサ25Aを備える。電流センサ25Aは、電線71に取り付けられるカレントトランス80と、カレントトランス80により得られる誘導電流に基づいて、交流電流Iewを算出する算出部63Aとを含む。
<Modification>
FIG. 6 is a diagram illustrating an example of a configuration of a monitoring device according to a modification of the embodiment of the present disclosure; Referring to FIG. 6, monitoring device 102 includes power supply circuit 11A instead of power supply circuit 11 and current sensor 25A instead of current sensor 25, as compared with monitoring device 101 . Current sensor 25A includes a current transformer 80 attached to electric wire 71 and a calculator 63A that calculates alternating current Iew based on the induced current obtained by current transformer 80 .
 カレントトランス80(以下、「CT80」と称する。)は、電線71をクランプする磁気コア81と、磁気コア81に巻かれた巻線82,83とを含む。CT80の巻線82と、CT80の巻線83とは、共通の磁気コア81に設けられる。CT80は、第1のカレントトランスの一例であり、かつ第2のカレントトランスの一例である。 A current transformer 80 (hereinafter referred to as "CT80") includes a magnetic core 81 that clamps an electric wire 71, and windings 82 and 83 wound around the magnetic core 81. A winding 82 of CT 80 and a winding 83 of CT 80 are provided on a common magnetic core 81 . CT80 is an example of a first current transformer and an example of a second current transformer.
 巻線82の両端は、電源回路11Aに接続される。巻線83の両端は、算出部63Aに接続される。 Both ends of the winding 82 are connected to the power supply circuit 11A. Both ends of the winding 83 are connected to the calculator 63A.
 電源回路11Aは、電線71に取り付けられるCT80を介して得られる誘導電流を、監視装置101における各回路の動作に必要な直流電力に変換する。 The power supply circuit 11A converts the induced current obtained through the CT 80 attached to the electric wire 71 into DC power necessary for the operation of each circuit in the monitoring device 101.
 ところで、監視装置を安定して動作させることが可能な技術が望まれる。より詳細には、電池を備える監視装置は、電池から供給される電力により一定期間安定して動作することが可能である一方で、時間の経過に伴って電池電圧が低下するのでたとえば定期的に電池を交換する必要がある。また、充電可能な二次電池は、繰り返し充電することにより劣化するという問題がある。 By the way, a technology that can stably operate a monitoring device is desired. More specifically, a monitoring device equipped with a battery can stably operate for a certain period of time with power supplied from the battery. Battery needs to be replaced. In addition, rechargeable secondary batteries have the problem of deterioration due to repeated charging.
 電源として電池を用いることにより生じるこれらの課題を解決するために、環境発電により得られる電力により監視装置を動作する技術が開発されている。 In order to solve these problems caused by using a battery as a power source, technology has been developed to operate a monitoring device using power obtained from energy harvesting.
 しかしながら、環境発電により得られる電力量はエネルギー源の状態に応じて変動するので、監視装置の再起動が繰り返し発生し、監視装置を安定して動作させることができない場合がある。 However, since the amount of power obtained from energy harvesting fluctuates according to the state of the energy source, the monitoring device may be restarted repeatedly and the monitoring device may not operate stably.
 これに対して、本開示の実施の形態に係る監視装置101,102では、電源回路11は、電線71との電磁誘導結合により得られる誘導電流から電力を生成する。MCU13は、電源回路11から供給される電力で動作する。電流センサ25は、電源回路11から供給される電力で動作し、電線71を流れる電流を計測する。起動制御回路10は、電源回路11により生成される電力の大きさに応じてMCU13を起動する。MCU13は、起動制御回路10により起動されることに伴って電流センサ25を起動し、電流センサ25による電流の計測結果に基づいて、通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24を起動する。 On the other hand, in the monitoring devices 101 and 102 according to the embodiment of the present disclosure, the power supply circuit 11 generates electric power from the induced current obtained by electromagnetic induction coupling with the electric wire 71 . The MCU 13 operates with power supplied from the power supply circuit 11 . The current sensor 25 operates with power supplied from the power supply circuit 11 and measures the current flowing through the wire 71 . The activation control circuit 10 activates the MCU 13 according to the amount of power generated by the power supply circuit 11 . The MCU 13 activates the current sensor 25 when activated by the activation control circuit 10, and based on the current measurement result of the current sensor 25, the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24. to start.
 このように、電源回路により生成される電力の大きさに応じてプロセッサおよび電流センサを起動し、電流センサによる電流の計測結果に基づいて、通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24を起動する構成により、たとえば、電源回路における環境発電によってプロセッサの安定した動作に必要な電力が生成される状態においてのみプロセッサを起動することができるので、環境発電により生成される電力が不十分であることによるプロセッサの再起動を抑制することができる。したがって、本開示の実施の形態では、監視装置101,102を安定して動作させることができる。 In this way, the processor and the current sensor are activated according to the magnitude of the power generated by the power supply circuit, and the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor are activated based on the current measurement result of the current sensor. The configuration for activating the sensor 24 allows the processor to be activated only in conditions where, for example, the energy harvesting in the power supply circuit generates the power necessary for stable operation of the processor, so that the power generated by the energy harvesting is unnecessary. A restart of the processor due to being sufficient can be suppressed. Therefore, in the embodiment of the present disclosure, it is possible to stably operate the monitoring devices 101 and 102 .
 また、本開示の実施の形態に係る監視装置101,102では、MCU13および電流センサ25の起動処理、ならびに通信部21、カメラモジュール22、外部インタフェース部23および温度センサ24の起動処理を、外部の装置に依らず監視装置101,102において行うことができる。 Further, in the monitoring devices 101 and 102 according to the embodiment of the present disclosure, activation processing of the MCU 13 and the current sensor 25, and activation processing of the communication unit 21, the camera module 22, the external interface unit 23, and the temperature sensor 24 are performed by external It can be performed in the monitoring devices 101 and 102 regardless of the device.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiments should be considered as examples in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 監視装置であって、
 電線との電磁誘導結合により得られる第1の誘導電流から電力を生成する電源回路と、
 前記電源回路から供給される前記電力で動作するプロセッサと、
 前記電力で動作し、前記電線を流れる電流を計測する電流センサと、
 前記電源回路により生成される電力の大きさに応じて前記プロセッサを起動する起動制御回路と、
 前記プロセッサが起動する第1の回路とを備え、
 前記プロセッサは、前記起動制御回路により起動されることに伴って前記電流センサを起動し、前記電流センサによる前記電流の計測結果に基づいて前記第1の回路を起動し、
 前記監視装置は、前記第1の回路として、通信部と、前記電流センサ以外の第1のセンサとを備え、
 前記通信部は、通信用ICにより実現され、前記第1のセンサによる計測結果を前記監視装置の外部における管理装置へ送信する、監視装置。
The above description includes the features appended below.
[Appendix 1]
A monitoring device,
a power supply circuit that generates power from a first induced current obtained by electromagnetic inductive coupling with a wire;
a processor that operates on the power supplied from the power supply circuit;
a current sensor that operates on the power and measures the current flowing through the wire;
an activation control circuit that activates the processor according to the magnitude of power generated by the power supply circuit;
a first circuit initiated by the processor;
The processor activates the current sensor when activated by the activation control circuit, activates the first circuit based on the current measurement result of the current sensor,
The monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor,
The monitoring device, wherein the communication unit is realized by a communication IC and transmits the measurement result of the first sensor to a management device outside the monitoring device.
 10             起動制御回路
 11,11A         電源回路
 12             電圧監視回路
 13             MCU
 14             記憶部
 21             通信部
 22             カメラモジュール
 23             外部インタフェース部
 24             温度センサ
 25,25A         電流センサ
 31,32,33,34,35 供給スイッチ
 41             スイッチ
 42             負荷回路
 51,61,81       磁気コア
 52,62,82,83    巻線
 50,60,80       CT
 63,63A         算出部
 71             電線
 101,102        監視装置
 N1,N2          ノード
 TBL            しきい値テーブル
REFERENCE SIGNS LIST 10 startup control circuit 11, 11A power supply circuit 12 voltage monitoring circuit 13 MCU
14 storage unit 21 communication unit 22 camera module 23 external interface unit 24 temperature sensor 25, 25A current sensor 31, 32, 33, 34, 35 supply switch 41 switch 42 load circuit 51, 61, 81 magnetic core 52, 62, 82, 83 Winding 50, 60, 80 CT
63, 63A calculator 71 electric wire 101, 102 monitoring device N1, N2 node TBL threshold table

Claims (7)

  1.  監視装置であって、
     電線との電磁誘導結合により得られる第1の誘導電流から電力を生成する電源回路と、
     前記電源回路から供給される前記電力で動作するプロセッサと、
     前記電力で動作し、前記電線を流れる電流を計測する電流センサと、
     前記電源回路により生成される電力の大きさに応じて前記プロセッサを起動する起動制御回路と、
     前記プロセッサが起動する第1の回路とを備え、
     前記プロセッサは、前記起動制御回路により起動されることに伴って前記電流センサを起動し、前記電流センサによる前記電流の計測結果に基づいて前記第1の回路を起動する、監視装置。
    A monitoring device,
    a power supply circuit that generates power from a first induced current obtained by electromagnetic inductive coupling with a wire;
    a processor that operates on the power supplied from the power supply circuit;
    a current sensor that operates on the power and measures the current flowing through the wire;
    an activation control circuit that activates the processor according to the magnitude of power generated by the power supply circuit;
    a first circuit initiated by the processor;
    The monitoring device, wherein the processor activates the current sensor when activated by the activation control circuit, and activates the first circuit based on a measurement result of the current by the current sensor.
  2.  前記電流センサは、
     前記電線に取り付けられる第1のカレントトランスと、
     前記第1のカレントトランスにより得られる第2の誘導電流に基づいて、前記電線を流れる電流を算出する算出部とを含む、請求項1に記載の監視装置。
    The current sensor is
    a first current transformer attached to the electric wire;
    2. The monitoring device according to claim 1, further comprising a calculator that calculates the current flowing through the wire based on the second induced current obtained by the first current transformer.
  3.  前記監視装置は、さらに、
     前記第1の誘導電流を得るための第2のカレントトランスを備え、
     前記第2のカレントトランスの巻線と、前記第1のカレントトランスの巻線とは、共通の磁気コアに設けられる、請求項2に記載の監視装置。
    The monitoring device further
    A second current transformer for obtaining the first induced current,
    3. The monitoring device according to claim 2, wherein windings of said second current transformer and windings of said first current transformer are provided on a common magnetic core.
  4.  前記監視装置は、前記第1の回路として、通信部と、前記電流センサ以外の第1のセンサとを備え、
     前記プロセッサは、前記計測結果と第1のしきい値との比較結果に基づいて、前記第1のセンサを起動状態にし、前記計測結果と、前記第1のしきい値よりも大きい第2のしきい値との比較結果に基づいて、前記通信部を起動状態にする、請求項1から請求項3のいずれか1項に記載の監視装置。
    The monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor,
    The processor activates the first sensor based on a comparison result between the measurement result and a first threshold, and outputs the measurement result and a second sensor larger than the first threshold. The monitoring device according to any one of claims 1 to 3, wherein the communication unit is activated based on the result of comparison with a threshold value.
  5.  前記監視装置は、前記第1の回路として、通信部と、前記電流センサ以外の第1のセンサとを備え、
     前記プロセッサは、前記計測結果と第1のしきい値との比較結果に基づいて、前記第1のセンサを起動状態にし、前記計測結果と、前記第1のしきい値よりも小さい第2のしきい値との比較結果に基づいて、前記通信部を起動状態にする、請求項1から請求項3のいずれか1項に記載の監視装置。
    The monitoring device includes, as the first circuit, a communication unit and a first sensor other than the current sensor,
    The processor activates the first sensor based on a result of comparison between the measurement result and a first threshold, and outputs the measurement result and a second sensor smaller than the first threshold. The monitoring device according to any one of claims 1 to 3, wherein the communication unit is activated based on the result of comparison with a threshold value.
  6.  前記監視装置は、複数の前記第1の回路を備え、
     前記監視装置は、さらに、
     前記各第1の回路の消費電流に基づく複数のしきい値を記憶する記憶部を備え、
     前記プロセッサは、前記計測結果と、前記複数のしきい値との比較結果に基づいて、前記複数のしきい値にそれぞれ対応する1または複数の前記第1の回路を起動状態にする、請求項1から請求項3のいずれか1項に記載の監視装置。
    The monitoring device comprises a plurality of the first circuits,
    The monitoring device further
    A storage unit that stores a plurality of threshold values based on current consumption of each of the first circuits,
    3. The processor activates one or more of the first circuits respectively corresponding to the plurality of thresholds based on the result of comparison between the measurement result and the plurality of thresholds. A monitoring device according to any one of claims 1 to 3.
  7.  電線との電磁誘導結合により得られる第1の誘導電流から電力を生成する電源回路と、前記電力で動作するプロセッサと、前記電力で動作し、前記電線を流れる電流を計測する電流センサと、前記プロセッサが起動する第1の回路とを備える監視装置における起動方法であって、
     前記電源回路により生成される電力の大きさに応じて、前記プロセッサおよび前記電流センサを起動するステップと、
     前記電流センサによる前記電流の計測結果に基づいて、前記第1の回路を起動するステップとを含む、起動方法。
    a power supply circuit that generates power from a first induced current obtained by electromagnetic induction coupling with a wire; a processor that operates on the power; a current sensor that operates on the power and measures the current flowing through the wire; A start-up method in a monitoring device comprising a first circuit that a processor starts,
    activating the processor and the current sensor according to the amount of power generated by the power supply circuit;
    and activating the first circuit based on the measurement result of the current by the current sensor.
PCT/JP2022/018131 2021-06-15 2022-04-19 Monitoring device and activation method WO2022264680A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022293063A AU2022293063A1 (en) 2021-06-15 2022-04-19 Monitoring device and activation method
JP2022544748A JP7173417B1 (en) 2021-06-15 2022-04-19 Monitoring device and activation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021099182 2021-06-15
JP2021-099182 2021-06-15

Publications (1)

Publication Number Publication Date
WO2022264680A1 true WO2022264680A1 (en) 2022-12-22

Family

ID=84527072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018131 WO2022264680A1 (en) 2021-06-15 2022-04-19 Monitoring device and activation method

Country Status (1)

Country Link
WO (1) WO2022264680A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167704A (en) * 2013-02-28 2014-09-11 Saxa Inc Wireless transmitter and wireless communication system
US20140347036A1 (en) * 2013-05-21 2014-11-27 Feelux Co., Ltd. Current monitoring apparatus and current monitoring system using the same
JP2016517261A (en) * 2013-04-04 2016-06-09 テラ エナジー システム ソリューション カンパニー リミテッド Surveillance camera system using electromagnetic induction power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167704A (en) * 2013-02-28 2014-09-11 Saxa Inc Wireless transmitter and wireless communication system
JP2016517261A (en) * 2013-04-04 2016-06-09 テラ エナジー システム ソリューション カンパニー リミテッド Surveillance camera system using electromagnetic induction power supply
US20140347036A1 (en) * 2013-05-21 2014-11-27 Feelux Co., Ltd. Current monitoring apparatus and current monitoring system using the same

Similar Documents

Publication Publication Date Title
KR102391190B1 (en) Method for generating a load of wireless power receiving unit in wireless charge system and the wireless power receiving unit
US10164479B2 (en) Wireless power transmitter and method for controlling wireless power transmitter
AU2016208249B2 (en) Thermal management of self-powered power sensors
TWI547058B (en) Charger, battery module, method and system for identifying and monitoring a charger
US10024885B2 (en) Thermal management of self-powered power sensors
JP6175514B2 (en) POWER CONTROL DEVICE, DEVICE CONTROL DEVICE, AND METHOD
US11710979B2 (en) Method and apparatus for charging a battery with AC power based on state of battery related information
US11652372B2 (en) Wireless power transmitter and wireless power receiver, and operation methods therefor
US9762079B2 (en) Power transmitting and receiving apparatus and method for performing a wireless multi-power transmission
WO2015064473A1 (en) Control device
US10461569B2 (en) Power path information generation device, method for generating power path information, and computer program
CN112134342B (en) Energy storage device, system and control method of energy storage device
JP6191403B2 (en) Power conditioner, solar cell system, and abnormality determination method
JP5754750B2 (en) Wireless sensor terminal
JP7173417B1 (en) Monitoring device and activation method
WO2022264680A1 (en) Monitoring device and activation method
JP2008199735A (en) Wireless ic for wireless ic network
JP4523929B2 (en) Communication terminal device and watt-hour meter incorporating the device
WO2015162887A1 (en) Power conversion device and power conversion system
JP7102104B2 (en) Transmission equipment, wireless power transmission systems, control methods and programs
CN117799437A (en) Storage battery power supplementing method, program and storage medium
CN117578663A (en) Power supply circuit, energy storage system and power supply method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022544748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022293063

Country of ref document: AU

Ref document number: AU2022293063

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022293063

Country of ref document: AU

Date of ref document: 20220419

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE