WO2022264597A1 - Robot system - Google Patents

Robot system Download PDF

Info

Publication number
WO2022264597A1
WO2022264597A1 PCT/JP2022/013481 JP2022013481W WO2022264597A1 WO 2022264597 A1 WO2022264597 A1 WO 2022264597A1 JP 2022013481 W JP2022013481 W JP 2022013481W WO 2022264597 A1 WO2022264597 A1 WO 2022264597A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
robot
operation panel
robot system
machine tool
Prior art date
Application number
PCT/JP2022/013481
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 長末
昌昭 中川
秀明 田中
亮太 前田
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2022264597A1 publication Critical patent/WO2022264597A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages

Definitions

  • the present invention relates to an automatic guided vehicle and a robot system equipped with a robot mounted on the automatic guided vehicle.
  • Patent Document 1 a self-propelled robot disclosed in International Publication No. 2018/92222 (Patent Document 1 below) is known.
  • a machine tool system is disclosed that is configured to transport a workpiece to a machine tool of.
  • the self-propelled robot comprises an automatic guided vehicle and a manipulator having degrees of freedom of three or more axes provided on the automatic guided vehicle. , moves to the vicinity of the target position while recognizing its own approximate position, and then recognizes the target or the marker attached to the target by the camera, thereby performing precise positioning.
  • the machine tool system includes a machine tool control unit that sends a work request for each machine tool, and based on the work request for each machine tool sent from the machine tool control unit, each of the plurality of self-propelled robots can work.
  • a self-propelled robot control unit that determines the respective times, and a judgment unit that compares the planned workable time for each self-propelled robot and causes the self-propelled robot with the earlier workable time to perform the requested work.
  • the machine tool and the self-propelled robot automatically determine the workable time of various works, and perform appropriate work. It is said that it is possible to make the appropriate self-propelled robot execute at the appropriate timing.
  • some conventional machine tools have a function of communicating with an external device regarding a drive command for opening/closing a chuck or the completion of an operation for automation.
  • the machine tool needs to be remodeled, such as by adding a function to send work requests, and the cost for constructing the machine tool system increases.
  • the judgment unit controls a plurality of self-propelled robots in an integrated manner, the processing becomes complicated and a special control device called the judgment unit needs to be provided. There was a problem that the cost for constructing the system was high.
  • the self-propelled robot since the self-propelled robot is in a state where it cannot work on the machine tool without a command from the judgment unit, it is in a state in which it is not given the freedom of movement.
  • a self-propelled robot robot system
  • the machine tool is given a function to send out a work request. Since there is no need to provide a special control device such as a judgment unit, the machine tool system can be realized at low cost.
  • the present invention has been made in view of the above circumstances, and aims to provide a robot system capable of autonomously working on a work target.
  • the present invention for solving the above problems is a robot having a camera that captures an image and an end effector that acts on a work object;
  • An automatic guided vehicle equipped with the robot and passing through a work position set for the work object;
  • a robot system comprising the automatic guided vehicle and a control device that controls the robot,
  • the work object has a door that separates a work area set inside from the outside and opens and closes an opening that communicates the work area with the outside, the work position set for the work object is a position where the end effector of the robot can enter the work area;
  • the control device is A door body confirmation process of passing the unmanned guided vehicle to a work position, capturing an image of the door body with the camera, and confirming whether or not the door body is in an open state based on the obtained image;
  • a robot system configured to operate the robot to perform work using the end effector in the work area when it is confirmed that the door is in the open state; It depends.
  • This robot system is configured to work on a work object having a work area inside, the work area of the work object being partitioned from the outside by a door, and the door is the work area and the outside. configured to open and close an opening in communication with the
  • the control device of the robot system When performing work on the work target, the control device of the robot system first causes the automatic guided vehicle to pass through the work position set for the work target, and then moves the door through the camera. An image of the body is captured, and based on the obtained image, door confirmation processing is performed to confirm whether or not the door is in the open state. When the door is in the open state, it is determined that the work object is in a waiting state in which the robot can work. Work (work processing) using the end effector is executed within the area.
  • the robot system of the present invention it is determined whether or not the work object is in the waiting state by confirming whether or not the door is in the open state.
  • the robot is configured to operate and perform the scheduled work on the work object, so that the robot can autonomously work on the work object. can work on Therefore, a system in which the robot system works on a work object can be realized at a lower cost than a conventional machine tool system.
  • the robot system can also work on a work target that does not have a communication function.
  • the control device executes the door body confirmation process and confirms that the door body is in an open state, before starting the work process, Based on the captured image, an operation panel for confirming whether or not the operation panel is located at a closed position that blocks at least a part of the opening in the imaging direction, in other words, at a position overlapping the opening. It is preferable that the operation processing is executed when confirmation processing is executed and it is confirmed that the operation panel is not in the closed position.
  • the control device when it is confirmed in the operation panel confirmation process that the operation panel is located at the closed position, the control device performs the imaged operation before starting the work process. Based on the image, a handle provided on the operation panel is recognized, and after the end effector is engaged with the handle, an operation panel evacuation process is executed to move the operation panel to the outside of the closed position. preferably configured.
  • the work object is a machine tool
  • the machine tool is configured to machine a workpiece within the work area
  • the control device may be configured to cause the robot to perform the work of exchanging the work within the work area (fourth mode).
  • the control device after executing the work process, operates the robot to press a machining start button provided on the operation panel using the end effector. It is good also as the aspect (the 5th aspect) comprised in.
  • the machine tool has a viewing portion made of a transparent member on the door body, and is configured so that the work area can be observed from the outside through the viewing portion,
  • the control device captures an image of the inside of the work area through the visual recognition unit with the camera, and analyzes the obtained image.
  • a mode (sixth mode) configured to execute a machining time estimation process for estimating the remaining machining time until machining of the workpiece is completed may be adopted.
  • the control device after executing the machining time estimation process, causes the automatic guided vehicle to perform the work when the estimated remaining machining time is shorter than a predetermined reference time.
  • a mode (seventh mode) may be adopted in which the machine is made to wait at a position, and when the remaining machining time is longer than the reference time, the machine is moved from the working position to another working position.
  • the work object is a pallet changing device, and pallets are arranged in the work area
  • the control device may be configured to cause the robot to perform a work of exchanging a work attached to a pallet within the work area (eighth mode).
  • the control device recognizes a door close button for closing a door provided on the operation panel based on the imaged image, and performs the end operation.
  • a mode (ninth mode) in which an effector is used to press the door close button is also possible.
  • the robot system of the present invention it is determined whether or not the work object is in the waiting state by checking whether the door is in the open state.
  • the robot is configured to operate to perform the scheduled work on the work object, so that the robot performs the work on the work object in an autonomous state. It can be carried out. Therefore, a system in which a robot system works on an object to be worked can be realized at a lower cost than a conventional machine tool system.
  • FIG. 1 is a plan view showing a production system according to one embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of a production system according to this embodiment
  • FIG. 1 is a perspective view showing a robot system according to this embodiment
  • FIG. 4 is a flow chart showing autonomous work in the robot system of this embodiment.
  • FIG. 4 is an explanatory diagram for explaining autonomous work in the robot system of the embodiment
  • FIG. 4 is an explanatory diagram for explaining autonomous work in the robot system of the embodiment
  • FIG. 5 is a plan view showing a production system according to another embodiment of the invention
  • 8 is a front view seen from the front in FIG. 7, that is, from the robot system side
  • FIG. 9 is a flow chart showing autonomous work in a robot system of another embodiment;
  • the production system 1 of this example includes a robot system 24, a machine tool 10, a material stocker 21 and a product stocker 22 as peripheral devices, and the like. It is composed of a vehicle 35, a robot 25 mounted on the automatic guided vehicle 35, a control device 40 for controlling the robot 25 and the automatic guided vehicle 35, and the like.
  • the machine tool 10 is a compound machining type NC machine tool controlled by a numerical controller (not shown). As shown in FIG. A turret 14 on which tools and the like are arranged, and a tool post 11 having a tool spindle 12 on which a rotary tool 13 and the like are held are provided in the machining area, so that both turning and milling can be performed. It has become.
  • the processing area is separated from the outside by a door (door body) 16 that can be opened and closed.
  • a door door body 16 that can be opened and closed.
  • the front side of the processing area is opened, and the robot 25 can enter the processing area through this opening.
  • the door 16 is provided with a transparent window portion (viewing portion) 16a through which the inside of the processing area can be viewed from the outside.
  • an operation panel 17 which can be rotated in the direction of the arrow shown in FIG.
  • the material stocker 21 is a device for stocking workpieces (materials) to be machined by the machine tool 10, and is arranged to the left of the machine tool 10 in FIG.
  • the product stocker 22 is a device for storing processed works (products or semi-finished products) machined by the machine tool 10, and is arranged on the right side of the machine tool 10 in FIG.
  • the automatic guided vehicle 35 has the robot 25 mounted on a mounting surface 36, which is the top surface thereof, and is provided with an operation panel 37 that can be carried by an operator.
  • the operation panel 37 includes an input/output unit for inputting/outputting data, an operation unit for manually operating the automatic guided vehicle 35 and the robot 25, and a display capable of displaying a screen.
  • the automatic guided vehicle 35 is equipped with a sensor capable of recognizing its own position in the factory (for example, a distance measurement sensor using laser light), and under the control of the control device 40, the machine tool 10 , the machine tool 10, the material stocker 21 and the product stocker 22. through each working position.
  • the control device 40 is arranged inside the automatic guided vehicle 35 .
  • the robot 25 is an articulated robot having three arms, a first arm 26, a second arm 27 and a third arm 28, which are manipulators. , and a support member 30 is attached to the side of the third arm 28 .
  • a pair of cameras 31 and an operation rod 32 are also mounted on the support member 30 as end effectors.
  • the operating rod 32 is provided so that its distal end portion can be expanded and contracted in the axial direction or can be elastically displaced.
  • the robot 25 moves the hand 29, the camera 31, and the operating rod 32 within a three-dimensional space defined by the three orthogonal axes xr , yr , and zr . to move.
  • a coordinate system defined by three orthogonal axes xr , yr , and zr is called a robot coordinate system.
  • the xr axis is set substantially parallel to the front surface of the automatic guided vehicle 35 .
  • the control device 40 includes an operation program storage unit 41, a movement position storage unit 42, an operation posture storage unit 43, a map information storage unit 44, a manual operation control unit 45, an automatic operation control unit 46, a map It is composed of an information generation unit 47 , a position recognition unit 48 and an input/output interface 49 .
  • the control device 40 is connected to the material stocker 21 , product stocker 22 , robot 25 , automatic guided vehicle 35 and operation panel 37 via this input/output interface 49 .
  • the control device 40 is connected to the machine tool 10, the material stocker 21, and the product stocker 22 by communication.
  • the control device 40 is composed of a computer including a CPU, RAM, ROM, etc.
  • the manual operation control unit 45, the automatic operation control unit 46, the map information generation unit 47, the position recognition unit 48, and the input/output interface 49 are computer A program implements that function.
  • the motion program storage unit 41, the movement position storage unit 42, the motion posture storage unit 43, and the map information storage unit 44 are composed of appropriate storage media such as RAM.
  • the manual operation control unit 45 is a functional unit that operates the unmanned guided vehicle 35 and the robot 25 according to operation signals input from the operation panel 37 by the operator. That is, the operator can manually operate the automatic guided vehicle 35 and the robot 25 using the operation panel 37 under the control of the manual operation control unit 45 .
  • the manual operation control unit 45 controls, for example, the automatic guided vehicle 35 from the operation panel 37 in two orthogonal axes (x, r , y r axis) is input, the automatic guided vehicle 35 is moved in the direction corresponding to the input signal by the corresponding distance, and is orthogonal to the xr axis and the yr axis.
  • the automatic guided vehicle 35 is turned according to the input signal.
  • the manual operation control unit 45 moves the tip of the robot 25 by a corresponding distance in a direction corresponding to the input signal. Further, when a signal for opening and closing the hand 29 is input from the operation panel 37, the manual operation control unit 45 opens and closes the hand 29 in response to the input, and receives a signal for operating the camera 31 from the operation panel 37. Then, the camera 31 is operated accordingly.
  • the operation program storage unit 41 stores an automatic operation program for automatically operating the automatic guided vehicle 35 and the robot 25 during automatic production, and stores the automatic guided vehicle 35 when generating factory map information, which will be described later.
  • This is a functional unit that stores a map generation program for operation.
  • the automatic driving program and the map generating program are input from, for example, an input/output unit provided on the operation panel 37 and stored in the operation program storage unit 41 .
  • the automatic operation program includes command codes relating to the movement position as a target position to which the automatic guided vehicle 35 moves, the movement speed, and the orientation of the automatic guided vehicle 35. and a command code for operating the camera 31 are included.
  • the map generation program includes command codes for causing the automatic guided vehicle 35 to travel all over the factory without a track so that the map information generation unit 47 can generate map information.
  • the map information storage unit 44 is a functional unit that stores map information including arrangement information of machines, devices, equipment, etc. (devices, etc.) arranged in the factory where the automatic guided vehicle 35 travels. It is generated by the map information generator 47 .
  • the map information generation unit 47 causes the automatic guided vehicle 35 to travel according to the map generation program stored in the operation program storage unit 41 under the control of the automatic operation control unit 46 of the control device 40, Acquiring spatial information in the factory from the distance data detected by the sensor, and recognizing the planar shape of the equipment etc. installed in the factory, for example, based on the planar shape of the pre-registered equipment etc.
  • the machine tool 10, the material stocker 21, and the product stocker 22 in this example, which are arranged in the factory, are recognized in terms of position, planar shape, etc. (layout information).
  • the map information generating unit 47 stores the obtained spatial information and the arrangement information of the devices, etc. in the map information storage unit 44 as map information of the factory.
  • the position recognition unit 48 recognizes the position and posture of the automatic guided vehicle 35 in the factory based on the distance data detected by the sensor and the map information in the factory stored in the map information storage unit 44. Based on the position and orientation of the automatic guided vehicle 35 recognized by the position recognition section 48 , the operation of the automatic guided vehicle 35 is controlled by the automatic operation control section 46 .
  • the movement position storage unit 42 is a movement position as a specific target position to which the automatic guided vehicle 35 moves, and is a functional unit that stores a specific movement position corresponding to the command code in the operation program. These movement positions include the work positions set for the machine tool 10, the material stocker 21, and the product stocker 22 described above. This movement position is determined, for example, by manually operating the automatic guided vehicle 35 using the operation panel 37 under the control of the manual operation control unit 45 to move it to each target position, and then performing the position recognition. It is set by the operation of storing the position data recognized by the unit 48 in the movement position storage unit 42 . This operation is called a so-called teaching operation.
  • the motion posture storage unit 43 stores data relating to motion postures (motion postures) of the robot 25 that sequentially change as the robot 25 moves in a predetermined order, corresponding to command codes in the motion program. is a functional unit that stores the The data relating to the motion posture is obtained when the robot 25 is manually operated by teaching operation using the operation panel 37 under the control of the manual operation control unit 45 to take each target posture. , the rotation angle data of each joint (motor) of the robot 25 in each posture, and this rotation angle data is stored in the motion posture storage unit 43 as data relating to the motion posture.
  • Specific motion postures of the robot 25 are set in the material stocker 21, the machine tool 10, and the product stocker 22, respectively.
  • each work posture (each take-out posture) for taking out the unprocessed work stored in the material stocker 21 is set.
  • each working posture for removing the machined work from the chuck 15 and mounting the pre-machined work on the chuck 15, that is, each working posture for exchanging the work is set.
  • each work posture is set for storing the machined work taken out from the machine tool 10 into the product stocker 22. As shown in FIG.
  • the automatic operation control unit 46 uses either the automatic operation program or the map generation program stored in the operation program storage unit 41, and operates the automatic guided vehicle 35, the robot 25, the hand 29, and the camera 31 according to the program. This is the functional part to operate. At that time, the data stored in the movement position storage section 42 and the motion posture storage section 43 are used as necessary.
  • the automatic operation control unit 46 operates the automatic guided vehicle 35, the robot 25, the hand 29, and the camera 31 according to the procedure shown in FIG.
  • the automatic operation control unit 46 moves the automatic guided vehicle 35 to the approach position set with respect to the machine tool 10 (step S1).
  • This approach position is a position in front of the working position set for the machine tool 10, and as shown in FIG. .
  • the automatic operation control unit 46 drives the camera 31 to capture an image of the area including the door 16 of the machine tool 10, receives the captured image from the camera 31, analyzes the received image, and detects the door 16. is in an open state, in other words, a process (door (door body) confirmation process) for determining whether the machine tool 10 can be operated (step S2). Then, as shown in FIG. 5, when the door 16 is open, the position of the operation panel 17 is further confirmed from the image, and the processing area formed by opening the door 16 in the imaging direction (This process is referred to as operation panel confirmation processing) (step S3).
  • the automatic operation control unit 46 next drives the robot system 24. Then, the machine tool 10 is caused to perform a work exchange operation (step S4).
  • the automatic operation control unit 46 moves the unmanned guided vehicle 35 to a working position set with respect to the machine tool 10, then causes the tip of the robot 25 to enter the machining area of the machine tool 10, and chucks. 15 is gripped by the hand 29, an unclamp signal is transmitted to the machine tool 10 to cause the chuck 15 to perform an opening operation, and then the tip of the robot 25 is moved within the machining area. , and the machined workpiece gripped by the hand 29 is placed on the placement surface 36 of the automatic guided vehicle 35 .
  • the automatic operation control unit 46 causes the hand 29 to grip the unprocessed workpiece, which is previously taken out from the material stocker 21 and placed on the placing surface 36 of the automatic guided vehicle 35, and then moves the tip of the robot 25. part is moved into the machining area of the machine tool 10 to position the pre-machining workpiece at the gripping position of the chuck 15, then a clamp signal is sent to the machine tool 10 to cause the chuck 15 to execute the closing operation and chuck the workpiece. 15 to grip the pre-machining workpiece, and then the tip of the robot 25 is withdrawn from the machining area.
  • the automatic operation control unit 46 After causing the robot system 24 to perform the work exchange operation as described above, the automatic operation control unit 46 sets the camera 31 provided at the tip of the robot 25 to the imaging posture, and then drives the camera 31. , captures an image including the operation panel 17 and receives the obtained image from the camera 31 . Then, after analyzing the received image and recognizing the position of the start button 19 provided on the operation panel 17, the automatic operation control unit 46 operates the robot 25 to move the tip of the operation rod 32 to the start button 19. to cause the machine tool 10 to perform machining (step S5).
  • the operation panel 17 is provided with an identification graphic 20 so as to have a predetermined positional relationship with respect to the start button 19, and the automatic operation control unit 46 recognizes the position of this identification graphic 20 by image analysis, The position of the start button 19 is recognized based on the position of the identification figure 20 .
  • the camera 31 is a so-called stereo camera, and the relative positional relationship between the camera 31 and the identification figure 20 can be calculated by analyzing the image captured by the stereo camera 31 .
  • the automatic operation control unit 46 drives the camera 31 again to capture an image including the door 16 of the machine tool 10, receives the captured image from the camera 31, and analyzes the received image. It is checked whether the door 16 is closed (step S6), and if the door 16 is closed, it is determined that the machine tool 10 is normally performing machining, and the machine tool 10 is operated. finish work on On the other hand, if it is determined in step S6 that the door 16 is open, it is determined that the machine tool 10 has an abnormality. After completing the work on the object, another work, for example, work on another work object (such as a machine tool) is performed.
  • step S7 determines whether it is the first confirmation (step S7), if it is the first confirmation, next, after the camera 31 captures an image of the machining area through the window 16a (step S8), the image received from the camera 31 is analyzed, and the workpiece is recognized, and the remaining machining time is estimated from the obtained workpiece shape (step S9). Wait (step S7), and if the remaining machining time exceeds the threshold (reference time), finish the work on the machine tool 10 (step S10), and perform other work.
  • the robot system 24 does not perform other work, but waits on the spot, and after the machining in the machine tool 10 is completed, the machine tool 10 performs a work exchange operation.
  • the shape of the workpiece can be recognized by extracting the contour of the workpiece from the captured image, and the remaining machining time can be determined from the relationship between the shape of the workpiece obtained in advance and the remaining machining time by, for example, a pattern matching method. can be estimated.
  • step S3 when it is determined that the operation panel 17 is in the closed position, the automatic operation control unit 46 recognizes the position of the handle 18 provided on the operation panel 17 from the captured image. After that, the robot 25 is operated to engage the hand 29 with the handle 18, and then the robot 25 is operated to move (retreat) the operation panel 17 to the outside of the closed position (Ste S11), the robot system is caused to execute a work exchange operation (step S4).
  • the identification graphic 20 is provided on the operation panel 17, and this identification graphic has a predetermined positional relationship with respect to the handle 18. Therefore, after recognizing the position of this identification figure by image analysis, the automatic driving control unit 46 recognizes the position of the handle 18 based on the position of this identification figure. Also, the relative positional relationship between the camera 31, in other words, the hand 29 and the identification figure can be calculated by analyzing the image.
  • the robot system 24 automatically operates under the control of the automatic operation control unit 46 of the control device 40, and automatically operates the operation program stored in the operation program storage unit 41.
  • a program for automatic operation is executed, and the automatic guided vehicle 35 and the robot 25 are operated according to this program for automatic operation, and unmanned automatic production is executed.
  • the robot system 24 When the robot system 24 performs work on the machine tool 10, it first checks whether the machine tool 10 is in the waiting state by checking whether the door 16 of the machine tool 10 is in the open state. If it is determined that the machine tool 10 is in a waiting state because the door 16 is open, the robot 25 is operated to perform a work exchange operation for the machine tool 10. As configured to run, the robot 25 can work on the machine tool 10 in an autonomous manner.
  • the robot system 24 of the present example can work on the machine tool 10 in an autonomous state. , can be realized at low cost. Incidentally, depending on the content of the work, the robot system 24 can also perform work on a machine tool that does not have a communication function.
  • the position of the operation panel 17 is confirmed, and if it is confirmed that the operation panel 17 is not in the closed position, or When the operation panel 17 is in the closed position, the operation panel 17 is retracted out of the closed position, and then the work exchange operation is executed. and the operation panel 17 can be prevented from interfering with each other.
  • the camera 31 captures an image of the machining area through the window 16a, analyzes the obtained image, and calculates the remaining machining time of the workpiece. is estimated, and if the estimated remaining machining time is within a preset reference, the automatic guided vehicle 35 and the robot 25 are kept waiting at the approach position until the machining in the machine tool 10 is completed. Therefore, the operating efficiency of the robot system 24 can be enhanced.
  • the production system 100 of this example is composed of a robot system 24 and a machine tool 101 .
  • the robot system 24 has the same configuration as that of the first embodiment described above.
  • the machine tool 101 of this example is a so-called horizontal machining center, and includes a bed 102, a column 103, a spindle head 104, a table 105, a pallet changer 120, and the like.
  • the pallet exchange device 120 is composed of a pallet table 121, an exchange arm 122, and the like. are exchanged.
  • the bed 102 and the space above it are surrounded by a cover body 109, and the column 103, the table 105, the pallet table 121, the exchange arm 122, etc. are closed by the cover body 109. It is located in a space.
  • a partition plate 123 is erected on the upper surface of the exchange arm 122, and the space surrounded by the cover body 109 is defined by the partition plate 123 as a processing area where the column 103 and the table 105 are provided. and the outside of the processing area where the pallet table 121 is provided.
  • a setup station is configured by the pallet table 121, the cover body 109 and the partition plate 123 surrounding them.
  • Two doors 110 for opening and closing are provided in a portion facing the partition plate 123 in the cover body 109 constituting the setup station (see FIG. 8). Workpieces can be attached to and detached from the jig J provided on the pallet P on the pallet table 121 through the opening.
  • an operation panel 125 is provided on the right side of the door 110.
  • the operation panel 125 has an open button 126 for opening the door 110 and a button for closing the door 110. and a setup completion button 128 for inputting completion of setup.
  • Graphic 129 is provided.
  • the automatic operation control unit 46 controls the automatic guided vehicle 35, the robot 25, the hand 29, and the camera 31. It is operated according to the procedure shown in FIG.
  • the automatic operation control unit 46 first moves the automatic guided vehicle 35 to the work position set for the setup station (step S21), and then drives the camera 31 to move the door 110 of the machine tool 101.
  • a process door (door body) confirmation process
  • the automatic guided vehicle 35 and the robot 25 are driven to execute the set work exchange operation for the pallet P on the pallet placing table 121 (step S23).
  • the automatic operation control unit 46 sets the camera 31 provided at the tip of the robot 25 to the imaging posture, and then the camera 31 is driven to capture an image including the operation panel 125, and after receiving the obtained image from the camera 31, the position of the close button 127 provided on the operation panel 125 is recognized from this image, and then, The robot 25 is operated to press the tip of the operating rod 32 against the close button 127 to close the door 110 (step S24).
  • the operation panel 125 is provided with the identification graphic 129 so as to have a predetermined positional relationship with respect to the close button 127, and the automatic operation control unit 46 detects the identification graphic 129 by image analysis. After recognizing the position of , the position of the close button 127 is recognized based on the position of the identification figure 129 . Further, as described above, the camera 31 is a so-called stereo camera, and by analyzing the image captured by the stereo camera 31, the relative positional relationship between the camera 31 and the identification figure 129 can be calculated. can be done.
  • the automatic driving control unit 46 drives the camera 31 again to capture an image including the door 110, receives the captured image from the camera 31, analyzes the received image, and closes the door 110. If the door 16 is closed, it is determined that the machine tool 101 is in a normal state, and the tip of the operating rod 32 of the robot 25 is stepped. By pressing the completion button 128 (step S26), the work on the machine tool 101 is completed. On the other hand, if it is determined in step S25 that the door 110 is open, it is determined that the machine tool 101 has an abnormality. Finish working on , and do other work. Further, even if it is confirmed in step S22 that the door 110 is in the closed state, it is impossible to work on the pallet P in the setup station, so the work on the machine tool 101 is terminated. , to do other work.
  • the robot system 24 when the robot system 24 performs work on the machine tool 101, first, whether or not the door 110 of the machine tool 101 is open is checked. is checked to determine whether or not the setup station can be operated. When it is determined that the setup station can be operated because the door 110 is open, the robot 25 is operated. Therefore, the robot 25 can work on the machine tool 101 in an autonomous state.
  • the robot system 24 of the present example can work on the machine tool 101 in an autonomous state. , can be realized at low cost.
  • the machine tools 10 and 101 were illustrated as objects on which the robot system 24 works, but the work objects to which this robot system 24 can be applied are limited to such machine tools 10 and 101. It may be other machine tools, devices other than machine tools, or machines.
  • the robot system 24 is not limited to the configuration of the above example, and other configurations can be applied.

Abstract

The present invention comprises: a robot (25) which is equipped with a camera and an end effector; an unmanned transport vehicle (35) which has the robot (25) mounted thereon and goes through a work position for a work object (10); and a control device (40) which performs control on the unmanned transport vehicle (35) and the robot (25). The work object (10) is provided with a door body that opens and closes an internal work area. The control device (40) executes: a door body confirmation process in which the unmanned transport vehicle (35) is caused to go through the work position so as to cause the camera to capture an image of the door body, and confirmation is made, on the basis of the captured image, as to whether the door body is in an open state; and a work process in which, in the case when the door body has been confirmed to be in an open state, the robot is caused to operate and execute work within the work area using the end effector. Further, on the basis of the captured image, confirmation is made, prior to starting the work process, as to whether or not a control panel is disposed at a blocking position where at least a portion of an opening is blocked in an imaging direction.

Description

ロボットシステムrobot system
 本発明は、無人搬送車、及びこの無人搬送車上に搭載されたロボットを備えたロボットシステムに関する。 The present invention relates to an automatic guided vehicle and a robot system equipped with a robot mounted on the automatic guided vehicle.
 従来、上述したロボットシステムの一例として、国際公開第2018/92222号(下記特許文献1)に開示された自走ロボットが知られており、この特許文献1には、複数の自走ロボットにより複数の工作機械に対して被加工物を搬送するように構成され工作機械システムが開示されている。 Conventionally, as an example of the above-described robot system, a self-propelled robot disclosed in International Publication No. 2018/92222 (Patent Document 1 below) is known. A machine tool system is disclosed that is configured to transport a workpiece to a machine tool of.
 前記自走ロボットは、無人搬送車と、この無人搬送車上に設けられた3軸以上の自由度を持つマニピュレータとを備えて構成され、位置基準情報としての電波やレーザ光を観測することで、自身のおよその位置を認識しながら目標位置付近まで移動し、この後、目標物又は目標物に取り付けられたマーカをカメラにより認識することによって、精密な位置決めをするように構成されている。 The self-propelled robot comprises an automatic guided vehicle and a manipulator having degrees of freedom of three or more axes provided on the automatic guided vehicle. , moves to the vicinity of the target position while recognizing its own approximate position, and then recognizes the target or the marker attached to the target by the camera, thereby performing precise positioning.
 また、前記工作機械システムは、工作機械ごとに作業要求を送出する工作機械制御部と、この工作機械制御部から送出された工作機械ごとの作業要求に基づき、複数の自走ロボットごとに作業可能時刻をそれぞれ決める自走ロボット制御部と、計画された自走ロボットごとの作業可能時刻を比較し、作業可能時刻が早い自走ロボットに要求作業を実行させる判定部とが備えられている。 In addition, the machine tool system includes a machine tool control unit that sends a work request for each machine tool, and based on the work request for each machine tool sent from the machine tool control unit, each of the plurality of self-propelled robots can work. A self-propelled robot control unit that determines the respective times, and a judgment unit that compares the planned workable time for each self-propelled robot and causes the self-propelled robot with the earlier workable time to perform the requested work.
 斯くして、この工作機械システムによれば、オペレータが予め自走ロボットの作業時刻を予測しなくても、工作機械と自走ロボットとで、自動的に各種作業の作業可能時刻を決め、適切なタイミングで適切な自走ロボットに実行させることができる、とのことである。 Thus, according to this machine tool system, even if the operator does not predict the work time of the self-propelled robot in advance, the machine tool and the self-propelled robot automatically determine the workable time of various works, and perform appropriate work. It is said that it is possible to make the appropriate self-propelled robot execute at the appropriate timing.
国際公開第2018/92222号WO2018/92222
 ところが、上述した従来の工作機械システムには、上記のようなメリットがある反面、以下に説明するような問題があった。 However, while the above-mentioned conventional machine tool system has the above advantages, it also has the following problems.
 即ち、従来の工作機械の中には、自動化のために、チャックの開閉等についての駆動指令や動作完了について、外部装置と通信する機能を有するものが存在するが、このような先進的な工作機械においても、更に、作業要求を送出する機能を付与するなど、当該工作機械を改造する必要があり、工作機械システムを構築するためのコストが嵩むという問題があった。 That is, some conventional machine tools have a function of communicating with an external device regarding a drive command for opening/closing a chuck or the completion of an operation for automation. In the machine, there is also the problem that the machine tool needs to be remodeled, such as by adding a function to send work requests, and the cost for constructing the machine tool system increases.
 また、判定部により、複数の自走ロボットを統括的に制御しているため、その処理が複雑になるとともに、判定部という特別な制御装置を設ける必要があるため、この面においても、工作機械システムを構築するためのコストが高くなるという問題があった。 In addition, since the judgment unit controls a plurality of self-propelled robots in an integrated manner, the processing becomes complicated and a special control device called the judgment unit needs to be provided. There was a problem that the cost for constructing the system was high.
 また、自走ロボットは判定部からの指令が無ければ工作機械に対して作業できない状態にあるため、その動作上の自由度が与えられていない状態となっている。 In addition, since the self-propelled robot is in a state where it cannot work on the machine tool without a command from the judgment unit, it is in a state in which it is not given the freedom of movement.
 以上の背景からすれば、自走ロボット(ロボットシステム)が工作機械の状態を判断して、当該工作機械に対して自律的に動作することができれば、作業要求を送出する機能を工作機械に付与する必要が無く、また、判定部という特別な制御装置を設ける必要がないため、上記工作機械システムを低コストで実現することができる。 Based on the above background, if a self-propelled robot (robot system) can determine the state of a machine tool and operate autonomously with respect to the machine tool, the machine tool is given a function to send out a work request. Since there is no need to provide a special control device such as a judgment unit, the machine tool system can be realized at low cost.
 本発明は、以上の実情に鑑みなされたものであって、作業対象物に対して自律的に作業を行うことが可能なロボットシステムの提供を、その目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a robot system capable of autonomously working on a work target.
 上記課題を解決するための本発明は、
 画像を撮像するカメラ、及び作業対象物に対して作用するエンドエフェクタを有するロボットと、
 前記ロボットを搭載し、前記作業対象物に対して設定された作業位置に経由する無人搬送車と、
 前記無人搬送車及びロボットを制御する制御装置とを備えたロボットシステムであって、
 前記作業対象物は、内部に設定された作業領域と外部とを仕切るとともに、前記作業領域と外部とを連通する開口部を開閉する扉体を備え、
 前記作業対象物に対して設定される作業位置は、前記ロボットのエンドエフェクタを前記作業領域内に進入可能な位置であり、
 前記制御装置は、
 前記無人搬送車を作業位置に経由させて、前記カメラにより前記扉体を撮像し、得られた画像を基に、前記扉体が開状態にあるか否かを確認する扉体確認処理と、
 前記扉体が開状態にあると確認されたとき、前記ロボットを動作させて、前記作業領域内で、前記エンドエフェクタを用いた作業を行う作業処理とを実行するように構成されたロボットシステムに係る。
The present invention for solving the above problems is
a robot having a camera that captures an image and an end effector that acts on a work object;
An automatic guided vehicle equipped with the robot and passing through a work position set for the work object;
A robot system comprising the automatic guided vehicle and a control device that controls the robot,
The work object has a door that separates a work area set inside from the outside and opens and closes an opening that communicates the work area with the outside,
the work position set for the work object is a position where the end effector of the robot can enter the work area;
The control device is
A door body confirmation process of passing the unmanned guided vehicle to a work position, capturing an image of the door body with the camera, and confirming whether or not the door body is in an open state based on the obtained image;
a robot system configured to operate the robot to perform work using the end effector in the work area when it is confirmed that the door is in the open state; It depends.
 このロボットシステムは、内部に作業領域を有する作業対象物に対して作業を行うように構成され、当該作業対象物は、その作業領域が扉体によって外部から仕切られ、扉体は作業領域と外部とを連通する開口部を開閉するように構成される。 This robot system is configured to work on a work object having a work area inside, the work area of the work object being partitioned from the outside by a door, and the door is the work area and the outside. configured to open and close an opening in communication with the
 そして、ロボットシステムの制御装置は、当該作業対象物に対して作業を行う際には、まず、無人搬送車を当該作業対象物に対して設定された作業位置に経由させた後、カメラにより扉体を撮像し、得られた画像を基に、扉体が開状態にあるか否かを確認する扉体確認処理を実行する。そして、扉体が開状態にある場合には、当該作業対象物は、ロボットが作業可能な待ち状態にあると判断されるので、前記制御装置は、ロボットを動作させて、作業対象物の作業領域内において、エンドエフェクタを用いた作業(作業処理)を実行させる。 When performing work on the work target, the control device of the robot system first causes the automatic guided vehicle to pass through the work position set for the work target, and then moves the door through the camera. An image of the body is captured, and based on the obtained image, door confirmation processing is performed to confirm whether or not the door is in the open state. When the door is in the open state, it is determined that the work object is in a waiting state in which the robot can work. Work (work processing) using the end effector is executed within the area.
 以上のように、本発明に係るロボットシステムによれば、扉体が開状態にあるか否かを確認することによって、作業対象物が待ち状態にあるか否かを判別し、作業対象物が待ち状態にあると判断された場合には、ロボットを動作させて、当該作業対象物に対して予定された作業を実行するように構成されているので、ロボットは、自律した状態で作業対象物に対して作業を行うことができる。したがって、当該ロボットシステムにより作業対象物に対して作業を行うシステムを、従来の工作機械システムに比べて、低コストで実現することができる。尚、作業内容によっては、当該ロボットシステムは、特に通信機能を有しない作業対象物に対しても作業を実行することができる。 As described above, according to the robot system of the present invention, it is determined whether or not the work object is in the waiting state by confirming whether or not the door is in the open state. When it is determined that the robot is in the waiting state, the robot is configured to operate and perform the scheduled work on the work object, so that the robot can autonomously work on the work object. can work on Therefore, a system in which the robot system works on a work object can be realized at a lower cost than a conventional machine tool system. Incidentally, depending on the content of the work, the robot system can also work on a work target that does not have a communication function.
 上記態様(第1の態様)のロボットシステムにおいて、前記制御装置は、前記扉体確認処理を実行して扉体が開状態にあることが確認された後、前記作業処理を開始する前に、撮像された前記画像を基に、撮像方向において、前記開口部の少なくとも一部を塞ぐ位置である閉塞位置に、言い換えれば、開口部と重なる位置に操作盤があるか否かを確認する操作盤確認処理を実行し、前記操作盤が閉塞位置に無いことが確認されたとき、前記作業処理を実行するように構成されているのが好ましい。 In the robot system of the above aspect (first aspect), after the control device executes the door body confirmation process and confirms that the door body is in an open state, before starting the work process, Based on the captured image, an operation panel for confirming whether or not the operation panel is located at a closed position that blocks at least a part of the opening in the imaging direction, in other words, at a position overlapping the opening. It is preferable that the operation processing is executed when confirmation processing is executed and it is confirmed that the operation panel is not in the closed position.
 この態様(第2の態様)では、操作盤が前記閉塞位置にあるときに、ロボットが作業対象物に対して作業を行うと、ロボットと操作盤が干渉する虞がある。したがって、操作盤が閉塞位置に無いことが確認されたときに、ロボットが作業対象物に対して作業を行うようにすることで、ロボットと操作盤が干渉するのを回避することができる。 In this aspect (second aspect), if the robot works on the work object while the operation panel is in the closed position, there is a risk of interference between the robot and the operation panel. Therefore, when it is confirmed that the operation panel is not in the closed position, the robot can work on the work object, thereby avoiding interference between the robot and the operation panel.
 また、上記第2の態様において、前記制御装置は、前記操作盤確認処理で、前記操作盤が閉塞位置に在ることが確認されたとき、前記作業処理を開始する前に、撮像された前記画像を基に、操作盤に設けられた取手を認識して、前記エンドエフェクタを前記取手に係合させた後、前記操作盤を閉塞位置の外側に移動させる操作盤退避処理を実行するように構成されているのが好ましい。 Further, in the second aspect, when it is confirmed in the operation panel confirmation process that the operation panel is located at the closed position, the control device performs the imaged operation before starting the work process. Based on the image, a handle provided on the operation panel is recognized, and after the end effector is engaged with the handle, an operation panel evacuation process is executed to move the operation panel to the outside of the closed position. preferably configured.
 この態様(第3の態様)では、前記操作盤確認処理において、操作盤が閉塞位置に在ることが確認されたとき、ロボットによって、操作盤を閉塞位置からその外側に移動させるようにしているので、ロボットが作業対象物に対して作業を行う際に、ロボットと操作盤が干渉するのを防止することができる。 In this aspect (third aspect), when it is confirmed that the operation panel is in the closed position in the operation panel confirmation process, the robot moves the operation panel from the closed position to the outside thereof. Therefore, it is possible to prevent the robot from interfering with the operation panel when the robot works on the work object.
 上記第1から第3のいずれかの態様において、前記作業対象物は工作機械であり、該工作機械は前記作業領域内でワークを加工するように構成され、
 前記制御装置は、前記作業処理において、前記ロボットに、前記作業領域内のワークを交換する作業を実行させるように構成された態様(第4の態様)としても良い。
In any one of the first to third aspects, the work object is a machine tool, and the machine tool is configured to machine a workpiece within the work area,
In the work process, the control device may be configured to cause the robot to perform the work of exchanging the work within the work area (fourth mode).
 また、この第4の態様において、前記制御装置は、前記作業処理を実行した後、前記ロボットを動作させて、前記操作盤に設けられた加工開始ボタンを、前記エンドエフェクタを用いて押下するように構成された態様(第5の態様)としても良い。 Further, in the fourth aspect, after executing the work process, the control device operates the robot to press a machining start button provided on the operation panel using the end effector. It is good also as the aspect (the 5th aspect) comprised in.
 上記第4又は第5の態様において、前記工作機械は、その扉体に透明な部材で構成された視認部を有し、該視認部を通して外部から作業領域を観察可能に構成され、
 前記制御装置は、前記扉体確認処理において、前記扉体が閉状態にあることが確認されたとき、前記カメラにより、前記視認部を通して前記作業領域内を撮像し、得られた画像を解析して、ワークの加工が完了するまでの残加工時間を推定する加工時間推定処理を実行するように構成された態様(第6の態様)としても良い。
In the above fourth or fifth aspect, the machine tool has a viewing portion made of a transparent member on the door body, and is configured so that the work area can be observed from the outside through the viewing portion,
When it is confirmed in the door body confirmation process that the door body is in a closed state, the control device captures an image of the inside of the work area through the visual recognition unit with the camera, and analyzes the obtained image. Then, a mode (sixth mode) configured to execute a machining time estimation process for estimating the remaining machining time until machining of the workpiece is completed may be adopted.
 また、この第6の態様において、前記制御装置は、前記加工時間推定処理を実行した後、推定された残加工時間が予め定められた基準時間よりも短いときは、前記無人搬送車を前記作業位置に待機させ、残加工時間が前記基準時間よりも長いときは、前記作業位置から他の作業位置に移動させるように構成された態様(第7の態様)としても良い。 In the sixth aspect, after executing the machining time estimation process, the control device causes the automatic guided vehicle to perform the work when the estimated remaining machining time is shorter than a predetermined reference time. A mode (seventh mode) may be adopted in which the machine is made to wait at a position, and when the remaining machining time is longer than the reference time, the machine is moved from the working position to another working position.
 また、上記第1から第3のいずれかの態様において、前記作業対象物はパレット交換装置であり、前記作業領域内にパレットが配設され、
 前記制御装置は、前記作業処理において、前記ロボットに、前記作業領域内のパレットに取り付けられたワークを交換する作業を実行させるように構成された態様(第8の態様)としても良い。
In any one of the first to third aspects, the work object is a pallet changing device, and pallets are arranged in the work area,
In the work process, the control device may be configured to cause the robot to perform a work of exchanging a work attached to a pallet within the work area (eighth mode).
 そして、この第8の態様において、前記制御装置は、前記作業処理を完了後、撮像された前記画像を基に、操作盤に設けられた扉体を閉じる扉閉ボタンを認識して、前記エンドエフェクタを用いて扉閉ボタンを押下するように構成された態様(第9の態様)としても良い。 In the eighth aspect, after the work processing is completed, the control device recognizes a door close button for closing a door provided on the operation panel based on the imaged image, and performs the end operation. A mode (ninth mode) in which an effector is used to press the door close button is also possible.
 本発明に係るロボットシステムによれば、扉体が開状態にあるか否かを確認することによって、作業対象物が待ち状態にあるか否かを判別し、作業対象物が待ち状態にあると判断された場合には、ロボットを動作させて、当該作業対象物に対して予定された作業を実行するように構成されているので、ロボットは、自律した状態で作業対象物に対して作業を行うことができる。したがって、ロボットシステムにより作業対象物に対して作業を行うシステムを、従来の工作機械システムに比べて、低コストで実現することができる。 According to the robot system of the present invention, it is determined whether or not the work object is in the waiting state by checking whether the door is in the open state. When the determination is made, the robot is configured to operate to perform the scheduled work on the work object, so that the robot performs the work on the work object in an autonomous state. It can be carried out. Therefore, a system in which a robot system works on an object to be worked can be realized at a lower cost than a conventional machine tool system.
本発明の一実施形態に係る生産システムを示した平面図である。1 is a plan view showing a production system according to one embodiment of the present invention; FIG. 本実施形態に係る生産システムの構成を示したブロック図である。1 is a block diagram showing the configuration of a production system according to this embodiment; FIG. 本実施形態に係るロボットシステムを示した斜視図である。1 is a perspective view showing a robot system according to this embodiment; FIG. 本実施形態のロボットシステムにおける自律作業を示したフローチャートである。4 is a flow chart showing autonomous work in the robot system of this embodiment. 本実施形態のロボットシステムにおける自律作業を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining autonomous work in the robot system of the embodiment; 本実施形態のロボットシステムにおける自律作業を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining autonomous work in the robot system of the embodiment; 本発明の他の実施形態に係る生産システムを示した平面図である。FIG. 5 is a plan view showing a production system according to another embodiment of the invention; 図7における前方、即ちロボットシステム側から見た正面図である。8 is a front view seen from the front in FIG. 7, that is, from the robot system side; FIG. 他の実施形態のロボットシステムにおける自律作業を示したフローチャートである。9 is a flow chart showing autonomous work in a robot system of another embodiment;
 以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。 Specific embodiments of the present invention will be described below with reference to the drawings.
(第1の実施形態)
 まず、本発明の第1の実施形態について説明する。図1及び図2に示すように、本例の生産システム1は、ロボットシステム24、工作機械10、周辺装置としての材料ストッカ21及び製品ストッカ22などから構成され、前記ロボットシステム24は、無人搬送車35、この無人搬送車35に搭載されるロボット25、並びにロボット25及び無人搬送車35を制御する制御装置40などから構成される。
(First embodiment)
First, a first embodiment of the present invention will be described. As shown in FIGS. 1 and 2, the production system 1 of this example includes a robot system 24, a machine tool 10, a material stocker 21 and a product stocker 22 as peripheral devices, and the like. It is composed of a vehicle 35, a robot 25 mounted on the automatic guided vehicle 35, a control device 40 for controlling the robot 25 and the automatic guided vehicle 35, and the like.
 前記工作機械10は、数値制御装置(図示せず)によって制御される複合加工型のNC工作機械であって、図5に示すように、ワークを把持するチャック15が装着されるワーク主軸、旋削工具などが配設されるタレット14、並びに回転工具13等が保持される工具主軸12を有する刃物台11などを加工領域内に備えており、旋削加工及びミーリング加工の双方を行うことができるようになっている。 The machine tool 10 is a compound machining type NC machine tool controlled by a numerical controller (not shown). As shown in FIG. A turret 14 on which tools and the like are arranged, and a tool post 11 having a tool spindle 12 on which a rotary tool 13 and the like are held are provided in the machining area, so that both turning and milling can be performed. It has become.
 また、前記加工領域は、開閉可能なドア(扉体)16によって外部と仕切られており、ドア16を開くことによって加工領域の前側が開口され、ロボット25がこの開口から加工領域内に入り込むことができるようになっている。また、このドア16には、外部から加工領域内を視認することができる透明な窓部(視認部)16aが設けられている。更に、ドア16に向かってその右側方には、図1に示す矢示方向に回動可能になった操作盤17が設けられている。 The processing area is separated from the outside by a door (door body) 16 that can be opened and closed. By opening the door 16, the front side of the processing area is opened, and the robot 25 can enter the processing area through this opening. is now possible. Further, the door 16 is provided with a transparent window portion (viewing portion) 16a through which the inside of the processing area can be viewed from the outside. Further, on the right side of the door 16, there is provided an operation panel 17 which can be rotated in the direction of the arrow shown in FIG.
 前記材料ストッカ21は、工作機械10で加工される加工前のワーク(材料)をストックする装置であり、図1において、工作機械10の左隣に配設されている。また、前記製品ストッカ22は、工作機械10で加工された加工済のワーク(製品又は半製品)を収納する装置であり、図1において、工作機械10の右隣に配設されている。 The material stocker 21 is a device for stocking workpieces (materials) to be machined by the machine tool 10, and is arranged to the left of the machine tool 10 in FIG. The product stocker 22 is a device for storing processed works (products or semi-finished products) machined by the machine tool 10, and is arranged on the right side of the machine tool 10 in FIG.
 図1及び図3に示すように、前記無人搬送車35は、その上面である載置面36に前記ロボット25が搭載され、また、オペレータが携帯可能な操作盤37が付設されている。尚、この操作盤37は、データの入出力を行う入出力部、当該無人搬送車35及びロボット25を手動操作する操作部、並びに画面表示可能なディスプレイなどを備えている。 As shown in FIGS. 1 and 3, the automatic guided vehicle 35 has the robot 25 mounted on a mounting surface 36, which is the top surface thereof, and is provided with an operation panel 37 that can be carried by an operator. The operation panel 37 includes an input/output unit for inputting/outputting data, an operation unit for manually operating the automatic guided vehicle 35 and the robot 25, and a display capable of displaying a screen.
 また、無人搬送車35は、工場内における自身の位置を認識可能なセンサ(例えば、レーザ光を用いた距離計測センサ)を備えており、前記制御装置40による制御の下で、前記工作機械10、材料ストッカ21及び製品ストッカ22が配設される領域を含む工場内を無軌道で走行するように構成され、本例では、前記工作機械10、材料ストッカ21及び製品ストッカ22のそれぞれに対して設定された各作業位置に経由する。尚、本例では、前記制御装置40は、この無人搬送車35内に配設されている。 Further, the automatic guided vehicle 35 is equipped with a sensor capable of recognizing its own position in the factory (for example, a distance measurement sensor using laser light), and under the control of the control device 40, the machine tool 10 , the machine tool 10, the material stocker 21 and the product stocker 22. through each working position. Incidentally, in this example, the control device 40 is arranged inside the automatic guided vehicle 35 .
 前記ロボット25は、マニピュレータ部である第1アーム26、第2アーム27及び第3アーム28の3つのアームを備えた多関節型のロボットであり、第3アーム28の先端部にはエンドエフェクタとしてのハンド29が装着され、更に、当該第3アーム28の側部には支持部材30が取り付けられている。そして、この支持部材30には、同じくエンドエフェクタとしての一対のカメラ31及び操作ロッド32が装着されている。尚、本例では、ロボット25が図3に示した姿勢を取るとき、操作ロッド32はカメラ31の上方に位置するとともに、カメラ31及び操作ロッド32は、カメラ31の撮像光軸と操作ロッド32の軸線とが平行になるように配設されている。また、操作ロッド32は、その先端部が軸方向に伸縮可能、或いは、弾性変位可能に設けられている。 The robot 25 is an articulated robot having three arms, a first arm 26, a second arm 27 and a third arm 28, which are manipulators. , and a support member 30 is attached to the side of the third arm 28 . A pair of cameras 31 and an operation rod 32 are also mounted on the support member 30 as end effectors. In this example, when the robot 25 takes the posture shown in FIG. are arranged in parallel with the axis of Further, the operating rod 32 is provided so that its distal end portion can be expanded and contracted in the axial direction or can be elastically displaced.
 そして、ロボット25は、前記制御装置40による制御の下で、これらハンド29、カメラ31及び操作ロッド32をx軸,y軸及びz軸の直交3軸で定義される3次元空間内で移動させる。尚、x軸,y軸及びz軸の直交3軸で定義される座標系をロボット座標系と称する。また、本例では、x軸は無人搬送車35の前面とほぼ平行に設定されている。 Under the control of the control device 40, the robot 25 moves the hand 29, the camera 31, and the operating rod 32 within a three-dimensional space defined by the three orthogonal axes xr , yr , and zr . to move. A coordinate system defined by three orthogonal axes xr , yr , and zr is called a robot coordinate system. Also, in this example, the xr axis is set substantially parallel to the front surface of the automatic guided vehicle 35 .
 前記制御装置40は、図2に示すように、動作プログラム記憶部41、移動位置記憶部42、動作姿勢記憶部43、マップ情報記憶部44、手動運転制御部45、自動運転制御部46、マップ情報生成部47、位置認識部48及び入出力インターフェース49から構成される。そして、制御装置40は、この入出力インターフェース49を介して、前記材料ストッカ21、製品ストッカ22、ロボット25、無人搬送車35及び操作盤37に接続している。尚、制御装置40は、工作機械10、材料ストッカ21及び製品ストッカ22と通信によって接続されている。 As shown in FIG. 2, the control device 40 includes an operation program storage unit 41, a movement position storage unit 42, an operation posture storage unit 43, a map information storage unit 44, a manual operation control unit 45, an automatic operation control unit 46, a map It is composed of an information generation unit 47 , a position recognition unit 48 and an input/output interface 49 . The control device 40 is connected to the material stocker 21 , product stocker 22 , robot 25 , automatic guided vehicle 35 and operation panel 37 via this input/output interface 49 . In addition, the control device 40 is connected to the machine tool 10, the material stocker 21, and the product stocker 22 by communication.
 前記制御装置40は、CPU、RAM、ROMなどを含むコンピュータから構成され、前記手動運転制御部45、自動運転制御部46、マップ情報生成部47、位置認識部48及び入出力インターフェース49は、コンピュータプログラムによってその機能が実現される。また、動作プログラム記憶部41、移動位置記憶部42、動作姿勢記憶部43及びマップ情報記憶部44はRAMなどの適宜記憶媒体から構成される。 The control device 40 is composed of a computer including a CPU, RAM, ROM, etc. The manual operation control unit 45, the automatic operation control unit 46, the map information generation unit 47, the position recognition unit 48, and the input/output interface 49 are computer A program implements that function. The motion program storage unit 41, the movement position storage unit 42, the motion posture storage unit 43, and the map information storage unit 44 are composed of appropriate storage media such as RAM.
 前記手動運転制御部45は、オペレータにより前記操作盤37から入力される操作信号に従って、前記無人搬送車35及びロボット25を動作させる機能部である。即ち、オペレータは、この手動運転制御部45による制御の下で、操作盤37を用いた、前記無人搬送車35及びロボット25の手動操作を実行することができる。 The manual operation control unit 45 is a functional unit that operates the unmanned guided vehicle 35 and the robot 25 according to operation signals input from the operation panel 37 by the operator. That is, the operator can manually operate the automatic guided vehicle 35 and the robot 25 using the operation panel 37 under the control of the manual operation control unit 45 .
 具体的には、手動運転制御部45は、前記操作盤37から、例えば、前記無人搬送車35を、水平面内で当該無人搬送車35に対して設定された直交2軸(x軸、y軸)の各方向に移動させる信号が入力されると、入力された信号に対応する方向に、対応する距離だけ、当該無人搬送車35を移動させ、前記x軸及びy軸と直交するz軸(鉛直軸)回りに旋回させる信号が入力されると、入力された信号に応じて当該無人搬送車35を旋回させる。 Specifically, the manual operation control unit 45 controls, for example, the automatic guided vehicle 35 from the operation panel 37 in two orthogonal axes (x, r , y r axis) is input, the automatic guided vehicle 35 is moved in the direction corresponding to the input signal by the corresponding distance, and is orthogonal to the xr axis and the yr axis. When a signal for turning around the zr axis (vertical axis) is input, the automatic guided vehicle 35 is turned according to the input signal.
 また、操作盤37から、前記ロボット25の先端部(ハンド29、カメラ31及び操作ロッド32)を、前記x軸、y軸及びz軸の各方向に移動させる信号が入力されると、手動運転制御部45は、入力された信号に対応する方向に、対応する距離だけ、ロボット25の先端部を移動させる。また、手動運転制御部45は、操作盤37から前記ハンド29を開閉させる信号が入力されると、これに応じて当該ハンド29を開閉させ、操作盤37から前記カメラ31を動作させる信号が入力されると、これに応じて当該カメラ31を動作させる。 Further, when a signal for moving the tip of the robot 25 (the hand 29, the camera 31, and the operating rod 32) in each of the directions of the xr -axis, the yr -axis, and the zr -axis is input from the operation panel 37, , the manual operation control unit 45 moves the tip of the robot 25 by a corresponding distance in a direction corresponding to the input signal. Further, when a signal for opening and closing the hand 29 is input from the operation panel 37, the manual operation control unit 45 opens and closes the hand 29 in response to the input, and receives a signal for operating the camera 31 from the operation panel 37. Then, the camera 31 is operated accordingly.
 前記動作プログラム記憶部41は、自動生産時に前記無人搬送車35及び前記ロボット25を自動運転するための自動運転用プログラム、並びに後述する工場内のマップ情報を生成する際に前記無人搬送車35を動作させるためのマップ生成用プログラムを記憶する機能部である。自動運転用プログラム及びマップ生成用プログラムは、例えば、前記操作盤37に設けられた入出力部から入力され、当該動作プログラム記憶部41に格納される。 The operation program storage unit 41 stores an automatic operation program for automatically operating the automatic guided vehicle 35 and the robot 25 during automatic production, and stores the automatic guided vehicle 35 when generating factory map information, which will be described later. This is a functional unit that stores a map generation program for operation. The automatic driving program and the map generating program are input from, for example, an input/output unit provided on the operation panel 37 and stored in the operation program storage unit 41 .
 尚、この自動運転用プログラムには、無人搬送車35が移動する目標位置としての移動位置、移動速度及び無人搬送車35の向きに関する指令コードが含まれ、また、ロボット25が順次動作する当該動作に関する指令コード、及び前記カメラ31の操作に関する指令コードが含まれる。また、マップ生成用プログラムは、前記マップ情報生成部47においてマップ情報を生成できるように、無人搬送車35を無軌道で工場内を隈なく走行させるための指令コードが含まれる。 The automatic operation program includes command codes relating to the movement position as a target position to which the automatic guided vehicle 35 moves, the movement speed, and the orientation of the automatic guided vehicle 35. and a command code for operating the camera 31 are included. The map generation program includes command codes for causing the automatic guided vehicle 35 to travel all over the factory without a track so that the map information generation unit 47 can generate map information.
 前記マップ情報記憶部44は、無人搬送車35が走行する工場内に配置される機械、装置、機器など(装置等)の配置情報を含むマップ情報を記憶する機能部であり、このマップ情報は前記マップ情報生成部47によって生成される。 The map information storage unit 44 is a functional unit that stores map information including arrangement information of machines, devices, equipment, etc. (devices, etc.) arranged in the factory where the automatic guided vehicle 35 travels. It is generated by the map information generator 47 .
 前記マップ情報生成部47は、前記制御装置40の自動運転制御部46による制御の下で、前記動作プログラム記憶部41に格納されたマップ生成用プログラムに従って無人搬送車35を走行させた際に、前記センサによって検出される距離データから工場内の空間情報を取得するとともに、工場内に配設される装置等の平面形状を認識し、例えば、予め登録された装置等の平面形状を基に、工場内に配設された具体的な装置、本例では、工作機械10、材料ストッカ21及び製品ストッカ22の位置、平面形状等(配置情報)を認識する。そして、マップ情報生成部47は、得られた空間情報及び装置等の配置情報を工場内のマップ情報として前記マップ情報記憶部44に格納する。 When the map information generation unit 47 causes the automatic guided vehicle 35 to travel according to the map generation program stored in the operation program storage unit 41 under the control of the automatic operation control unit 46 of the control device 40, Acquiring spatial information in the factory from the distance data detected by the sensor, and recognizing the planar shape of the equipment etc. installed in the factory, for example, based on the planar shape of the pre-registered equipment etc. The machine tool 10, the material stocker 21, and the product stocker 22 in this example, which are arranged in the factory, are recognized in terms of position, planar shape, etc. (layout information). Then, the map information generating unit 47 stores the obtained spatial information and the arrangement information of the devices, etc. in the map information storage unit 44 as map information of the factory.
 前記位置認識部48は、前記センサによって検出される距離データ、及び前記マップ情報記憶部44に格納された工場内のマップ情報を基に、工場内における無人搬送車35の位置及び姿勢を認識する機能部であり、この位置認識部48によって認識される無人搬送車35の位置及び姿勢に基づいて、当該無人搬送車35の動作が前記自動運転制御部46によって制御される。 The position recognition unit 48 recognizes the position and posture of the automatic guided vehicle 35 in the factory based on the distance data detected by the sensor and the map information in the factory stored in the map information storage unit 44. Based on the position and orientation of the automatic guided vehicle 35 recognized by the position recognition section 48 , the operation of the automatic guided vehicle 35 is controlled by the automatic operation control section 46 .
 前記移動位置記憶部42は、前記無人搬送車35が移動する具体的な目標位置としての移動位置であって、前記動作プログラム中の指令コードに対応した具体的な移動位置を記憶する機能部であり、この移動位置には、上述した工作機械10、材料ストッカ21及び製品ストッカ22に対して設定される各作業位置が含まれる。尚、この移動位置は、例えば、前記手動運転制御部45による制御の下、前記操作盤37により前記無人搬送車35を手動運転して、目標とする各位置に移動させた後、前記位置認識部48によって認識される位置データを前記移動位置記憶部42に格納する操作によって設定される。この操作は所謂ティーチング操作と呼ばれる。 The movement position storage unit 42 is a movement position as a specific target position to which the automatic guided vehicle 35 moves, and is a functional unit that stores a specific movement position corresponding to the command code in the operation program. These movement positions include the work positions set for the machine tool 10, the material stocker 21, and the product stocker 22 described above. This movement position is determined, for example, by manually operating the automatic guided vehicle 35 using the operation panel 37 under the control of the manual operation control unit 45 to move it to each target position, and then performing the position recognition. It is set by the operation of storing the position data recognized by the unit 48 in the movement position storage unit 42 . This operation is called a so-called teaching operation.
 前記動作姿勢記憶部43は、前記ロボット25が所定の順序で動作することによって順次変化するロボット25の姿勢(動作姿勢)であって、前記動作プログラム中の指令コードに対応した動作姿勢に係るデータを記憶する機能部である。この動作姿勢に係るデータは、前記手動運転制御部45による制御の下で、前記操作盤37を用いたティーチング操作により、当該ロボット25を手動運転して、目標とする各姿勢を取らせたときの、当該各姿勢におけるロボット25の各関節(モータ)の回転角度データであり、この回転角度データが動作姿勢に係るデータとして前記動作姿勢記憶部43に格納される。 The motion posture storage unit 43 stores data relating to motion postures (motion postures) of the robot 25 that sequentially change as the robot 25 moves in a predetermined order, corresponding to command codes in the motion program. is a functional unit that stores the The data relating to the motion posture is obtained when the robot 25 is manually operated by teaching operation using the operation panel 37 under the control of the manual operation control unit 45 to take each target posture. , the rotation angle data of each joint (motor) of the robot 25 in each posture, and this rotation angle data is stored in the motion posture storage unit 43 as data relating to the motion posture.
 ロボット25の具体的な動作姿勢は、前記材料ストッカ21、工作機械10及び製品ストッカ22において、それぞれ設定される。例えば、材料ストッカ21では、当該材料ストッカ21に収納された加工前ワークを取り出すための各作業姿勢(各取出姿勢)が設定される。また、工作機械10では、加工済ワークをチャック15から取り出して、加工前ワークを当該チャック15に装着するための各作業姿勢、即ち、ワークの交換動作のための各作業姿勢が設定される。また、前記製品ストッカ22では、工作機械10から取り出した加工済ワークを当該製品ストッカ22内に収納するための各作業姿勢が設定される。 Specific motion postures of the robot 25 are set in the material stocker 21, the machine tool 10, and the product stocker 22, respectively. For example, in the material stocker 21, each work posture (each take-out posture) for taking out the unprocessed work stored in the material stocker 21 is set. In addition, in the machine tool 10, each working posture for removing the machined work from the chuck 15 and mounting the pre-machined work on the chuck 15, that is, each working posture for exchanging the work is set. Further, in the product stocker 22, each work posture is set for storing the machined work taken out from the machine tool 10 into the product stocker 22. As shown in FIG.
 前記自動運転制御部46は、前記動作プログラム記憶部41に格納された自動運転用プログラム及びマップ生成用プログラムの何れかを用い、当該プログラムに従って無人搬送車35、ロボット25、ハンド29及びカメラ31を動作させる機能部である。その際、前記移動位置記憶部42及び動作姿勢記憶部43に格納されたデータが必要に応じて使用される。 The automatic operation control unit 46 uses either the automatic operation program or the map generation program stored in the operation program storage unit 41, and operates the automatic guided vehicle 35, the robot 25, the hand 29, and the camera 31 according to the program. This is the functional part to operate. At that time, the data stored in the movement position storage section 42 and the motion posture storage section 43 are used as necessary.
 特に、自動運転制御部46は、工作機械10に対するワーク交換作業では、無人搬送車35、ロボット25、ハンド29及びカメラ31を図4に示した手順で動作させる。 In particular, the automatic operation control unit 46 operates the automatic guided vehicle 35, the robot 25, the hand 29, and the camera 31 according to the procedure shown in FIG.
 即ち、自動運転制御部46は、工作機械10に対して設定されたアプローチ位置に無人搬送車35を移動させる(ステップS1)。このアプローチ位置は、工作機械10に対して設定された作業位置の手前に相当する位置であり、図1に示すように、ロボット25は、カメラ31を工作機械10に向けた姿勢を取っている。 That is, the automatic operation control unit 46 moves the automatic guided vehicle 35 to the approach position set with respect to the machine tool 10 (step S1). This approach position is a position in front of the working position set for the machine tool 10, and as shown in FIG. .
 次に、自動運転制御部46は、カメラ31を駆動して工作機械10のドア16を含む領域を撮像するとともに、撮像された画像をカメラ31から受信し、受信した画像を解析してドア16が開状態にあるか否か、言い換えれば、工作機械10に対して作業可能かどうかを判別する処理(ドア(扉体)確認処理)を実行する(ステップS2)。そして、図5に示すように、ドア16が開かれている場合には、更に、当該画像から、操作盤17の位置を確認し、撮像方向において、ドア16が開くことによって形成される加工領域の開口部の少なくとも一部を塞ぐ位置(閉塞位置)に、言い換えれば、開口部と重なる位置に操作盤17があるか否かを確認する処理を行う(この処理を操作盤確認処理という)(ステップS3)。 Next, the automatic operation control unit 46 drives the camera 31 to capture an image of the area including the door 16 of the machine tool 10, receives the captured image from the camera 31, analyzes the received image, and detects the door 16. is in an open state, in other words, a process (door (door body) confirmation process) for determining whether the machine tool 10 can be operated (step S2). Then, as shown in FIG. 5, when the door 16 is open, the position of the operation panel 17 is further confirmed from the image, and the processing area formed by opening the door 16 in the imaging direction (This process is referred to as operation panel confirmation processing) ( step S3).
 そして、操作盤17が前記閉塞位置の外側に在るとき、即ち、操作盤17が加工領域の開口部を閉塞する位置に無いときには、自動運転制御部46は、次に、ロボットシステム24を駆動して、工作機械10に対して、ワークの交換動作を実行させる(ステップS4)。 Then, when the operation panel 17 is outside the closing position, that is, when the operation panel 17 is not in a position to close the opening of the machining area, the automatic operation control unit 46 next drives the robot system 24. Then, the machine tool 10 is caused to perform a work exchange operation (step S4).
 例えば、自動運転制御部46は、無人搬送車35を工作機械10に対して設定された作業位置に移動させた後、ロボット25の先端部を工作機械10の加工領域内に進入させて、チャック15に把持された加工済みのワークをハンド29により把持させた後、工作機械10にアンクランプ信号を送信して、チャック15に開動作を実行させ、ついで、ロボット25の先端部を加工領域内から退出させて、ハンド29に把持した加工済みのワークを無人搬送車35の載置面36上に載置させる。 For example, the automatic operation control unit 46 moves the unmanned guided vehicle 35 to a working position set with respect to the machine tool 10, then causes the tip of the robot 25 to enter the machining area of the machine tool 10, and chucks. 15 is gripped by the hand 29, an unclamp signal is transmitted to the machine tool 10 to cause the chuck 15 to perform an opening operation, and then the tip of the robot 25 is moved within the machining area. , and the machined workpiece gripped by the hand 29 is placed on the placement surface 36 of the automatic guided vehicle 35 .
 次に、自動運転制御部46は、前もって前記材料ストッカ21から取り出して、同じく無人搬送車35の載置面36上に載置した加工前ワークをハンド29により把持させた後、ロボット25の先端部を工作機械10の加工領域内に進入させて、チャック15の把持位置に加工前ワークを位置させた後、工作機械10にクランプ信号を送信して、チャック15に閉動作を実行させてチャック15に加工前ワークを把持させ、この後、ロボット25の先端部を加工領域内から退出させる。 Next, the automatic operation control unit 46 causes the hand 29 to grip the unprocessed workpiece, which is previously taken out from the material stocker 21 and placed on the placing surface 36 of the automatic guided vehicle 35, and then moves the tip of the robot 25. part is moved into the machining area of the machine tool 10 to position the pre-machining workpiece at the gripping position of the chuck 15, then a clamp signal is sent to the machine tool 10 to cause the chuck 15 to execute the closing operation and chuck the workpiece. 15 to grip the pre-machining workpiece, and then the tip of the robot 25 is withdrawn from the machining area.
 以上のようにして、ロボットシステム24にワーク交換動作を実行させた後、自動運転制御部46は、ロボット25の先端部に設けられたカメラ31を撮像姿勢にした後、カメラ31を駆動して、操作盤17が含まれる画像を撮像させ、得られた画像をカメラ31から受信する。そして、自動運転制御部46は、受信した画像を解析して、操作盤17に設けられたスタートボタン19の位置を認識した後、ロボット25を操作して操作ロッド32の先端部をスタートボタン19に押し当てて、工作機械10に加工を実行させる(ステップS5)。 After causing the robot system 24 to perform the work exchange operation as described above, the automatic operation control unit 46 sets the camera 31 provided at the tip of the robot 25 to the imaging posture, and then drives the camera 31. , captures an image including the operation panel 17 and receives the obtained image from the camera 31 . Then, after analyzing the received image and recognizing the position of the start button 19 provided on the operation panel 17, the automatic operation control unit 46 operates the robot 25 to move the tip of the operation rod 32 to the start button 19. to cause the machine tool 10 to perform machining (step S5).
 操作盤17には、スタートボタン19に対して所定の位置関係となるように識別図形20が設けられており、自動運転制御部46は、画像解析によってこの識別図形20の位置を認識した後、この識別図形20の位置を基準にスタートボタン19の位置を認識する。尚、前記カメラ31は所謂ステレオカメラであり、ステレオカメラ31によって撮像された画像を解析することで、カメラ31と識別図形20との間の相対的な位置関係を算出することができる。 The operation panel 17 is provided with an identification graphic 20 so as to have a predetermined positional relationship with respect to the start button 19, and the automatic operation control unit 46 recognizes the position of this identification graphic 20 by image analysis, The position of the start button 19 is recognized based on the position of the identification figure 20 . The camera 31 is a so-called stereo camera, and the relative positional relationship between the camera 31 and the identification figure 20 can be calculated by analyzing the image captured by the stereo camera 31 .
 次に、自動運転制御部46は、再度カメラ31を駆動して工作機械10のドア16を含む画像を撮像させた後、撮像された画像をカメラ31から受信し、受信した画像を解析してドア16が閉状態にあるか否かを確認し(ステップS6)、ドア16が閉状態にある場合には、工作機械10が正常に加工を実行していると判断して、当該工作機械10に対する作業を終了する。一方、ステップS6において、ドア16が開状態にあると判断された場合には、工作機械10に異常が生じていると判断されるため、アラームを出力して(ステップS12)、当該工作機械10に対する作業を終了し、他の作業、例えば他の作業対象物(工作機械など)に対する作業を行う。 Next, the automatic operation control unit 46 drives the camera 31 again to capture an image including the door 16 of the machine tool 10, receives the captured image from the camera 31, and analyzes the received image. It is checked whether the door 16 is closed (step S6), and if the door 16 is closed, it is determined that the machine tool 10 is normally performing machining, and the machine tool 10 is operated. finish work on On the other hand, if it is determined in step S6 that the door 16 is open, it is determined that the machine tool 10 has an abnormality. After completing the work on the object, another work, for example, work on another work object (such as a machine tool) is performed.
 また、前記ステップS2において、工作機械10のドア16が開状態にないと判断される場合には(図6参照)、自動運転制御部46は、更に、最初の確認かどうかを判別し(ステップS7)、最初の確認である場合には、次に、カメラ31により、窓部16aを通して加工領域内の画像を撮像させた後(ステップS8)、カメラ31から受信した画像を解析して、ワークの形状を認識し、得られたワーク形状から残加工時間を推定し(ステップS9)、推定された残加工時間が予め設定された閾値(基準時間)以内であれば、ドア16が開かれるまで待機し(ステップS7)、残加工時間が閾値(基準時間)を超えていれば、当該工作機械10に対する作業を終了して(ステップS10)、他の作業を行う。 If it is determined in step S2 that the door 16 of the machine tool 10 is not open (see FIG. 6), the automatic operation control unit 46 further determines whether it is the first confirmation (step S7), if it is the first confirmation, next, after the camera 31 captures an image of the machining area through the window 16a (step S8), the image received from the camera 31 is analyzed, and the workpiece is recognized, and the remaining machining time is estimated from the obtained workpiece shape (step S9). Wait (step S7), and if the remaining machining time exceeds the threshold (reference time), finish the work on the machine tool 10 (step S10), and perform other work.
 尚、前記基準時間は、ロボットシステム24が他の作業を行うのではなく、その場で待機して、当該工作機械10における加工が完了された後、当該工作機械10に対してワーク交換動作を行う方が効率的であると判断される時間であって、経験的に設定される。また、ワーク形状は、撮像画像からワークの輪郭を抽出することによって認識することができ、残加工時間は、予め取得されたワークの形状と残加工時間との関係から、例えば、パターンマッチング手法によって推定することができる。 During the reference time, the robot system 24 does not perform other work, but waits on the spot, and after the machining in the machine tool 10 is completed, the machine tool 10 performs a work exchange operation. The amount of time it is determined to be more efficient to do, and is set empirically. In addition, the shape of the workpiece can be recognized by extracting the contour of the workpiece from the captured image, and the remaining machining time can be determined from the relationship between the shape of the workpiece obtained in advance and the remaining machining time by, for example, a pattern matching method. can be estimated.
 また、前記ステップS3において、操作盤17が閉塞位置に在ると判断された場合には、自動運転制御部46は、撮像された画像から、操作盤17に設けられた取手18の位置を認識した後、ロボット25を操作してハンド29を当該取手18に係合させ、ついで、ロボット25を動作させて、操作盤17が閉塞位置の外側に位置するように移動(退避)させた後(ステップS11)、ロボットシステムにワーク交換動作を実行させる(ステップS4)。 Further, in step S3, when it is determined that the operation panel 17 is in the closed position, the automatic operation control unit 46 recognizes the position of the handle 18 provided on the operation panel 17 from the captured image. After that, the robot 25 is operated to engage the hand 29 with the handle 18, and then the robot 25 is operated to move (retreat) the operation panel 17 to the outside of the closed position ( Step S11), the robot system is caused to execute a work exchange operation (step S4).
 上述したように、操作盤17には、識別図形20が設けられており、この識別図形は、取手18に対して所定の位置関係を有している。したがって、自動運転制御部46は、画像解析によってこの識別図形の位置を認識した後、この識別図形の位置を基準に取手18の位置を認識する。また、カメラ31、言い換えればハンド29と識別図形との間の相対的な位置関係は、画像を解析することによって算出することができる。 As described above, the identification graphic 20 is provided on the operation panel 17, and this identification graphic has a predetermined positional relationship with respect to the handle 18. Therefore, after recognizing the position of this identification figure by image analysis, the automatic driving control unit 46 recognizes the position of the handle 18 based on the position of this identification figure. Also, the relative positional relationship between the camera 31, in other words, the hand 29 and the identification figure can be calculated by analyzing the image.
 以上のように構成された本例の生産システム1によれば、ロボットシステム24は、前記制御装置40の自動運転制御部46による制御の下で、前記動作プログラム記憶部41に格納された自動運転用プログラムが実行され、この自動運転用プログラムに従って、無人搬送車35及びロボット25が動作されて、無人の自動生産が実行される。 According to the production system 1 of the present example configured as described above, the robot system 24 automatically operates under the control of the automatic operation control unit 46 of the control device 40, and automatically operates the operation program stored in the operation program storage unit 41. A program for automatic operation is executed, and the automatic guided vehicle 35 and the robot 25 are operated according to this program for automatic operation, and unmanned automatic production is executed.
 そして、ロボットシステム24が工作機械10に対して作業を行う際には、まず、工作機械10のドア16が開状態にあるか否かを確認することによって、工作機械10が待ち状態にあるか否かを判別し、ドア16が開状態にあることで、工作機械10が待ち状態にあると判断された場合には、ロボット25を動作させて、当該工作機械10に対してワーク交換動作を実行するように構成されているので、ロボット25は、自律した状態で工作機械10に対して作業を行うことができる。 When the robot system 24 performs work on the machine tool 10, it first checks whether the machine tool 10 is in the waiting state by checking whether the door 16 of the machine tool 10 is in the open state. If it is determined that the machine tool 10 is in a waiting state because the door 16 is open, the robot 25 is operated to perform a work exchange operation for the machine tool 10. As configured to run, the robot 25 can work on the machine tool 10 in an autonomous manner.
 このように、本例のロボットシステム24では、自律した状態で工作機械10に対して作業を行うことができるので、ロボットシステム24及び工作機械10から構成される生産システム1を、従来に比べて、低コストで実現することができる。尚、作業内容によっては、当該ロボットシステム24は、通信機能を有しない工作機械に対しても作業を実行することができる。 As described above, the robot system 24 of the present example can work on the machine tool 10 in an autonomous state. , can be realized at low cost. Incidentally, depending on the content of the work, the robot system 24 can also perform work on a machine tool that does not have a communication function.
 また、本例のロボットシステム24では、ドア16が開状態にあることが確認された後、操作盤17の位置を確認し、操作盤17が閉塞位置に無いことが確認された場合、或いは、操作盤17が閉塞位置に在る場合には、当該操作盤17を閉塞位置の外に退避させた後、ワークの交換動作を実行するように構成されているので、ワーク交換動作にあたり、ロボット25と操作盤17とが干渉するのを回避することができる。 Further, in the robot system 24 of this example, after confirming that the door 16 is open, the position of the operation panel 17 is confirmed, and if it is confirmed that the operation panel 17 is not in the closed position, or When the operation panel 17 is in the closed position, the operation panel 17 is retracted out of the closed position, and then the work exchange operation is executed. and the operation panel 17 can be prevented from interfering with each other.
 また、本例のロボットシステム24では、ドア16が開状態にない場合には、窓部16aを通してカメラ31により加工領域内の画像を撮像し、得られた画像を解析してワークの残加工時間を推定し、推定された残加工時間が予め設定された基準以内であれば、当該工作機械10における加工が完了されるまで、無人搬送車35及びロボット25をアプローチ位置で待機させるようにしているので、当該ロボットシステム24の動作効率を高めることができる。 In addition, in the robot system 24 of this example, when the door 16 is not in the open state, the camera 31 captures an image of the machining area through the window 16a, analyzes the obtained image, and calculates the remaining machining time of the workpiece. is estimated, and if the estimated remaining machining time is within a preset reference, the automatic guided vehicle 35 and the robot 25 are kept waiting at the approach position until the machining in the machine tool 10 is completed. Therefore, the operating efficiency of the robot system 24 can be enhanced.
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図7に示すように、本例の生産システム100は、ロボットシステム24及び工作機械101から構成される。尚、ロボットシステム24は、上述した第1の実施形態に係る構成と同じ構成である。
(Second embodiment)
Next, a second embodiment of the invention will be described. As shown in FIG. 7 , the production system 100 of this example is composed of a robot system 24 and a machine tool 101 . The robot system 24 has the same configuration as that of the first embodiment described above.
 また、本例の工作機械101は、所謂横型のマシニングセンタであって、ベッド102、コラム103、主軸頭104、テーブル105及びパレット交換装置120などを備えている。また、パレット交換装置120は、パレット載置台121及び交換アーム122などから構成され、交換アーム122が180°水平旋回することで、テーブル105上のパレットPと、パレット載置台121上のパレットPとが交換される。 The machine tool 101 of this example is a so-called horizontal machining center, and includes a bed 102, a column 103, a spindle head 104, a table 105, a pallet changer 120, and the like. The pallet exchange device 120 is composed of a pallet table 121, an exchange arm 122, and the like. are exchanged.
 また、工作機械101は、前記ベッド102及びその上方の空間がカバー体109によって囲まれており、前記コラム103、テーブル105、パレット載置台121、交換アーム122などが、このカバー体109によって閉塞された空間内に位置している。また、交換アーム122の上面には、仕切り板123が立設されており、この仕切り板123によって、前記カバー体109によって囲まれた空間内が、前記コラム103及びテーブル105などが設けられる加工領域と、パレット載置台121が設けられる加工領域外とに仕切られている。 In the machine tool 101, the bed 102 and the space above it are surrounded by a cover body 109, and the column 103, the table 105, the pallet table 121, the exchange arm 122, etc. are closed by the cover body 109. It is located in a space. A partition plate 123 is erected on the upper surface of the exchange arm 122, and the space surrounded by the cover body 109 is defined by the partition plate 123 as a processing area where the column 103 and the table 105 are provided. and the outside of the processing area where the pallet table 121 is provided.
 また、前記パレット載置台121、並びにこれらを囲むカバー体109及び仕切り板123によって段取りステーションが構成される。そして、この段取りステーションを構成するカバー体109の内、仕切り板123と対向する部分には、開閉する2枚のドア110が設けられており(図8参照)、このドア110を開くことにより、その開口部を介して、パレット載置台121上のパレットPに設けられた治具Jに対して、ワークの着脱を行うことができるようになっている。 A setup station is configured by the pallet table 121, the cover body 109 and the partition plate 123 surrounding them. Two doors 110 for opening and closing are provided in a portion facing the partition plate 123 in the cover body 109 constituting the setup station (see FIG. 8). Workpieces can be attached to and detached from the jig J provided on the pallet P on the pallet table 121 through the opening.
 また、図8に示すように、前記ドア110の向かって右側方には、操作盤125が設けられており、この操作盤125には、ドア110を開くための開ボタン126、ドア110を閉じるための閉ボタン127、及び段取りを完了したことを入力するための段取完了ボタン128が設けられ、更に、これら開ボタン126、閉ボタン127及び段取完了ボタン128の位置を認識するための識別図形129が設けられている。 As shown in FIG. 8, an operation panel 125 is provided on the right side of the door 110. The operation panel 125 has an open button 126 for opening the door 110 and a button for closing the door 110. and a setup completion button 128 for inputting completion of setup. Graphic 129 is provided.
 この生産システム100では、ロボットシステム24が工作機械101の段取りステーションに対してワークの交換動作を行う際には、自動運転制御部46は、無人搬送車35、ロボット25、ハンド29及びカメラ31を図4に示した手順で動作させる。 In this production system 100, when the robot system 24 performs a work exchange operation for the setup station of the machine tool 101, the automatic operation control unit 46 controls the automatic guided vehicle 35, the robot 25, the hand 29, and the camera 31. It is operated according to the procedure shown in FIG.
 即ち、自動運転制御部46は、まず、段取りステーションに対して設定された作業位置に無人搬送車35を移動させた後(ステップS21)、カメラ31を駆動して工作機械101のドア110を含む領域を撮像し、得られた画像をカメラ31から受信して解析することにより、ドア110が開状態にあるか否か、言い換えれば、段取りステーション内のパレットPに対して作業可能かどうかを判別する処理(ドア(扉体)確認処理)を実行する(ステップS22)。そして、ドア110が開かれている場合には、無人搬送車35及びロボット25を駆動して、パレット載置台121上のパレットPに対して、設定されたワーク交換動作を実行させる(ステップS23)。例えば、ロボット25により加工済みのワークをパレットP上の治具Jから取り外して無人搬送車35の載置面36上に載置した後、同じく載置面36上に予め載置された加工前のワークをロボット25により把持して、パレットP上の治具Jに装着する。尚、このワーク交換動作は、ロボットシステム24と工作機械101との連係動作によって実行される。 That is, the automatic operation control unit 46 first moves the automatic guided vehicle 35 to the work position set for the setup station (step S21), and then drives the camera 31 to move the door 110 of the machine tool 101. By taking an image of the area and receiving and analyzing the obtained image from the camera 31, it is determined whether or not the door 110 is in an open state, in other words, whether or not the pallet P in the setup station can be operated. A process (door (door body) confirmation process) is executed (step S22). Then, when the door 110 is open, the automatic guided vehicle 35 and the robot 25 are driven to execute the set work exchange operation for the pallet P on the pallet placing table 121 (step S23). . For example, after removing the work machined by the robot 25 from the jig J on the pallet P and placing it on the mounting surface 36 of the unmanned guided vehicle 35, it is similarly placed on the mounting surface 36 in advance before processing. is gripped by the robot 25 and mounted on the jig J on the pallet P. Note that this work exchange operation is executed by coordinated operation between the robot system 24 and the machine tool 101 .
 以上のようにして、無人搬送車35及びロボット25にワーク交換動作を実行させた後、自動運転制御部46は、ロボット25の先端部に設けられたカメラ31を撮像姿勢にした後、当該カメラ31を駆動して、操作盤125が含まれる画像を撮像させ、得られた画像をカメラ31から受信した後、この画像から操作盤125に設けられた閉ボタン127の位置を認識し、次いで、ロボット25を操作してその操作ロッド32の先端部を閉ボタン127に押し当てて、ドア110を閉じさせる(ステップS24)。 After causing the unmanned guided vehicle 35 and the robot 25 to perform the work exchange operation as described above, the automatic operation control unit 46 sets the camera 31 provided at the tip of the robot 25 to the imaging posture, and then the camera 31 is driven to capture an image including the operation panel 125, and after receiving the obtained image from the camera 31, the position of the close button 127 provided on the operation panel 125 is recognized from this image, and then, The robot 25 is operated to press the tip of the operating rod 32 against the close button 127 to close the door 110 (step S24).
 尚、上述したように、操作盤125には、閉ボタン127に対して所定の位置関係となるように識別図形129が設けられており、自動運転制御部46は、画像解析によってこの識別図形129の位置を認識した後、この識別図形129の位置を基準に閉ボタン127の位置を認識する。また、上述したように、前記カメラ31は所謂ステレオカメラであり、ステレオカメラ31によって撮像された画像を解析することで、カメラ31と識別図形129との間の相対的な位置関係を算出することができる。 As described above, the operation panel 125 is provided with the identification graphic 129 so as to have a predetermined positional relationship with respect to the close button 127, and the automatic operation control unit 46 detects the identification graphic 129 by image analysis. After recognizing the position of , the position of the close button 127 is recognized based on the position of the identification figure 129 . Further, as described above, the camera 31 is a so-called stereo camera, and by analyzing the image captured by the stereo camera 31, the relative positional relationship between the camera 31 and the identification figure 129 can be calculated. can be done.
 次に、自動運転制御部46は、再度カメラ31を駆動してドア110を含む画像を撮像させた後、撮像された画像をカメラ31から受信し、受信した画像を解析してドア110が閉状態にあるか否かを確認し(ステップS25)、ドア16が閉状態にある場合には、工作機械101が正常な状態にあると判断して、ロボット25の操作ロッド32の先端部を段取完了ボタン128に押し当てて(ステップS26)、当該工作機械101に対する作業を終了する。一方、ステップS25において、ドア110が開状態にあると判断された場合には、工作機械101に異常が生じていると判断されるため、アラームを出力して(ステップS27)、当該工作機械101に対する作業を終了して、他の作業を実行する。また、前記ステップS22において、ドア110が閉状態にあることが確認された場合にも、段取りステーション内のパレットPに対して作業が不可能であるため、当該工作機械101に対する作業を終了して、他の作業を実行する。 Next, the automatic driving control unit 46 drives the camera 31 again to capture an image including the door 110, receives the captured image from the camera 31, analyzes the received image, and closes the door 110. If the door 16 is closed, it is determined that the machine tool 101 is in a normal state, and the tip of the operating rod 32 of the robot 25 is stepped. By pressing the completion button 128 (step S26), the work on the machine tool 101 is completed. On the other hand, if it is determined in step S25 that the door 110 is open, it is determined that the machine tool 101 has an abnormality. Finish working on , and do other work. Further, even if it is confirmed in step S22 that the door 110 is in the closed state, it is impossible to work on the pallet P in the setup station, so the work on the machine tool 101 is terminated. , to do other work.
 以上のように構成された本例の生産システム100によれば、ロボットシステム24が工作機械101に対して作業を行う際には、まず、工作機械101のドア110が開状態にあるか否かを確認することによって、段取りステーションに対して作業可能かどうかを判別し、ドア110が開状態にあることで、段取りステーションに対する作業が可能であると判断された場合には、ロボット25を動作させて、当該工作機械101に対してワーク交換動作を実行するように構成されているので、ロボット25は、自律した状態で工作機械101に対して作業を行うことができる。 According to the production system 100 of this example configured as described above, when the robot system 24 performs work on the machine tool 101, first, whether or not the door 110 of the machine tool 101 is open is checked. is checked to determine whether or not the setup station can be operated. When it is determined that the setup station can be operated because the door 110 is open, the robot 25 is operated. Therefore, the robot 25 can work on the machine tool 101 in an autonomous state.
 このように、本例のロボットシステム24では、自律した状態で工作機械101に対して作業を行うことができるので、ロボットシステム24及び工作機械101から構成される生産システム100を、従来に比べて、低コストで実現することができる。 As described above, the robot system 24 of the present example can work on the machine tool 101 in an autonomous state. , can be realized at low cost.
 以上、本発明の具体的な実施の形態について説明したが、本発明が採り得る態様は、何ら上例のものに限定されるものではない。 Although the specific embodiments of the present invention have been described above, the aspects that the present invention can take are not limited to the above examples.
 例えば、上例では、ロボットシステム24が作業する対象物として、工作機械10,101を例示したが、このロボットシステム24を適用可能な作業対象物は、このような工作機械10,101に限られるものではなく、他の工作機械や、工作機械以外の他の装置、機械であっても良い。 For example, in the above example, the machine tools 10 and 101 were illustrated as objects on which the robot system 24 works, but the work objects to which this robot system 24 can be applied are limited to such machine tools 10 and 101. It may be other machine tools, devices other than machine tools, or machines.
 また、ロボットシステム24も上例の構成に限られるものでは無く、他の構成のものを適用することができる。 Also, the robot system 24 is not limited to the configuration of the above example, and other configurations can be applied.
 繰り返しになるが、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 Again, the above description of the embodiment is illustrative in all respects and is not restrictive. Modifications and modifications are possible for those skilled in the art. The scope of the invention is indicated by the claims rather than the above-described embodiments. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope of claims and equivalents.
 1  生産システム
 10 工作機械
 16 ドア(扉体)
 16a 窓部
 17 操作盤
 21 材料ストッカ
 22 製品ストッカ
 24 ロボットシステム
 25 ロボット
 29 ハンド
 31 カメラ
 32 操作ロッド
 35 無人搬送車
 40 制御装置
 41 動作プログラム記憶部
 42 移動位置記憶部
 43 動作姿勢記憶部
 44 マップ情報記憶部
 45 手動運転制御部
 46 自動運転制御部
 47 マップ情報生成部
 48 位置認識部
 
 
1 production system 10 machine tool 16 door (door body)
16a window portion 17 operation panel 21 material stocker 22 product stocker 24 robot system 25 robot 29 hand 31 camera 32 operation rod 35 unmanned guided vehicle 40 control device 41 operation program storage unit 42 movement position storage unit 43 operation posture storage unit 44 map information storage Unit 45 Manual operation control unit 46 Automatic operation control unit 47 Map information generation unit 48 Position recognition unit

Claims (8)

  1.  画像を撮像するカメラ、及び作業対象物に対して作用するエンドエフェクタを有するロボットと、
     前記ロボットを搭載し、前記作業対象物に対して設定された作業位置に経由する無人搬送車と、
     前記無人搬送車及びロボットを制御する制御装置とを備えたロボットシステムであって、
     前記作業対象物は、内部に設定された作業領域と外部とを仕切るとともに、前記作業領域と外部とを連通する開口部を開閉する扉体を備え、
     前記作業対象物に対して設定される作業位置は、前記ロボットのエンドエフェクタを前記作業領域内に進入可能な位置であり、
     前記制御装置は、
     前記無人搬送車を作業位置に経由させて、前記カメラにより前記扉体を撮像し、得られた画像を基に、前記扉体が開状態にあるか否かを確認する扉体確認処理と、
     前記扉体が開状態にあると確認されたとき、前記ロボットを動作させて、前記作業領域内で、前記エンドエフェクタを用いた作業を行う作業処理とを実行するように構成され、
     更に、前記扉体確認処理を実行して扉体が開状態にあることが確認された後、前記作業処理を開始する前に、撮像された前記画像を基に、撮像方向において、前記開口部の少なくとも一部を塞ぐ位置である閉塞位置に操作盤があるか否かを確認する操作盤確認処理を実行し、前記操作盤が閉塞位置に無いことが確認されたとき、前記作業処理を実行するように構成されていることを特徴とするロボットシステム。
    a robot having a camera that captures an image and an end effector that acts on a work object;
    An automatic guided vehicle equipped with the robot and passing through a work position set for the work object;
    A robot system comprising the automatic guided vehicle and a control device that controls the robot,
    The work object has a door that separates a work area set inside from the outside and opens and closes an opening that communicates the work area with the outside,
    the work position set for the work object is a position where the end effector of the robot can enter the work area;
    The control device is
    A door body confirmation process of passing the unmanned guided vehicle to a work position, capturing an image of the door body with the camera, and confirming whether or not the door body is in an open state based on the obtained image;
    When it is confirmed that the door is in the open state, the robot is operated to perform work using the end effector in the work area,
    Furthermore, after executing the door body confirmation process and confirming that the door body is in the open state, and before starting the work process, based on the imaged image, the opening is detected in the imaging direction. Execute operation panel confirmation processing for confirming whether or not the operation panel is at a closed position, which is a position that blocks at least a part of the operation panel. A robot system characterized by being configured to:
  2.  前記制御装置は、前記操作盤確認処理において、前記操作盤が閉塞位置に在ることが確認されたとき、前記作業処理を開始する前に、撮像された前記画像を基に、操作盤に設けられた取手を認識して、前記エンドエフェクタを前記取手に係合させた後、前記操作盤を閉塞位置の外側に移動させる操作盤退避処理を実行するように構成されていることを特徴とする請求項1記載のロボットシステム。 When it is confirmed in the operation panel confirmation process that the operation panel is in the closed position, the control device is provided on the operation panel based on the imaged image before starting the work process. After recognizing the grip that has been pulled and engaging the end effector with the grip, operation panel evacuation processing is executed to move the operation panel to the outside of the closed position. The robot system according to claim 1.
  3.  前記作業対象物は工作機械であり、該工作機械は前記作業領域内でワークを加工するように構成され、
     前記制御装置は、前記作業処理において、前記ロボットに、前記作業領域内のワークを交換する作業を実行させるように構成された請求項1又は2記載のロボットシステム。
    the work object is a machine tool, the machine tool configured to machine a workpiece within the work area;
    3. The robot system according to claim 1, wherein said control device is configured to cause said robot to perform work of exchanging works within said work area in said work processing.
  4.  前記制御装置は、前記作業処理を実行した後、前記ロボットを動作させて、前記操作盤に設けられた加工開始ボタンを、前記エンドエフェクタを用いて押下するように構成されていることを特徴とする請求項3記載のロボットシステム。 The control device is configured to operate the robot after executing the work processing, and press a processing start button provided on the operation panel using the end effector. 4. The robot system according to claim 3.
  5.  前記工作機械は、その扉体に透明な部材で構成される視認部を有し、該視認部を通して外部から作業領域を観察可能に構成され、
     前記制御装置は、前記扉体確認処理において、前記扉体が閉状態にあることが確認されたとき、前記カメラにより、前記視認部を通して前記作業領域内を撮像し、得られた画像を解析して、ワークの加工が完了するまでの残加工時間を推定する加工時間推定処理を実行するように構成されていることを特徴とする請求項3又は4記載のロボットシステム。
    The machine tool has a viewing portion made of a transparent member on its door body, and is configured so that the work area can be observed from the outside through the viewing portion,
    When it is confirmed in the door body confirmation process that the door body is in a closed state, the control device captures an image of the inside of the work area through the visual recognition unit with the camera, and analyzes the obtained image. 5. The robot system according to claim 3 or 4, further configured to execute machining time estimation processing for estimating a remaining machining time until machining of the workpiece is completed.
  6.  前記制御装置は、前記加工時間推定処理を実行した後、推定された残加工時間が予め定められた基準時間よりも短いときは、前記無人搬送車を前記作業位置に待機させ、残加工時間が前記基準時間よりも長いときは、前記作業位置から他の作業位置に移動させるように構成されていることを特徴とする請求項5記載のロボットシステム。 After executing the machining time estimation process, if the estimated remaining machining time is shorter than a predetermined reference time, the control device causes the automatic guided vehicle to wait at the work position, and the remaining machining time is 6. The robot system according to claim 5, wherein the robot system is configured to move from the work position to another work position when the time is longer than the reference time.
  7.  前記作業対象物はパレット交換装置であり、前記作業領域内にパレットが配設され、
     前記制御装置は、前記作業処理において、前記ロボットに、前記作業領域内のパレットに取り付けられたワークを交換する作業を実行させるように構成された請求項1又は2記載のロボットシステム。
    The work object is a pallet exchange device, and a pallet is arranged in the work area,
    3. The robot system according to claim 1, wherein, in the work process, the control device causes the robot to perform the work of exchanging the work attached to the pallet within the work area.
  8.  前記制御装置は、前記作業処理を完了後、撮像された前記画像を基に、操作盤に設けられた扉体を閉じる扉閉ボタンを認識して、前記エンドエフェクタを用いて扉閉ボタンを押下するように構成されていることを特徴とする請求項7記載のロボットシステム。 After completing the work processing, the control device recognizes a door close button provided on the operation panel for closing the door body based on the imaged image, and presses the door close button using the end effector. 8. The robot system of claim 7, wherein the robot system is configured to:
PCT/JP2022/013481 2021-06-15 2022-03-23 Robot system WO2022264597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-099293 2021-06-15
JP2021099293A JP7012181B1 (en) 2021-06-15 2021-06-15 Robot system

Publications (1)

Publication Number Publication Date
WO2022264597A1 true WO2022264597A1 (en) 2022-12-22

Family

ID=80912373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013481 WO2022264597A1 (en) 2021-06-15 2022-03-23 Robot system

Country Status (2)

Country Link
JP (1) JP7012181B1 (en)
WO (1) WO2022264597A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214903B1 (en) 2022-02-15 2023-01-30 Dmg森精機株式会社 Passive guided vehicles, autonomous guided vehicles, and transport systems equipped with these

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830327A (en) * 1994-07-18 1996-02-02 Fujitsu Ltd Active environment recognition system
JP2001121368A (en) * 1999-10-29 2001-05-08 Okuma Corp Machine tool
JP2003256042A (en) * 2002-03-03 2003-09-10 Tmsuk Co Ltd Security robot
JP2013119925A (en) * 2011-12-08 2013-06-17 Fanuc Ltd Seal structure of damper device
JP2013167988A (en) * 2012-02-15 2013-08-29 Hitachi Ltd Object recognition system and object recognition device
JP2016120580A (en) * 2014-12-25 2016-07-07 ファナック株式会社 Working device with work-piece attaching/detaching means provided with visual sensor for confirming presence or absence of foreign matter
JP2019111643A (en) * 2017-12-05 2019-07-11 サヴィオーク・インコーポレイテッド Apparatus, system and method for secure robot access
CN211163102U (en) * 2019-04-28 2020-08-04 卢滨松 Prevent digit control machine tool of accidental injury
JP2021035708A (en) * 2019-08-30 2021-03-04 Dmg森精機株式会社 Production system
JP6848110B1 (en) * 2020-07-10 2021-03-24 Dmg森精機株式会社 Collaboration system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223196A (en) * 1999-12-01 2001-08-17 Ses Co Ltd Substrate washing system
KR20180015774A (en) * 2015-09-25 2018-02-14 두산로보틱스 주식회사 Method and apparatus for controlling robot
JP6994411B2 (en) * 2018-02-28 2022-01-14 オークマ株式会社 Machine tool system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830327A (en) * 1994-07-18 1996-02-02 Fujitsu Ltd Active environment recognition system
JP2001121368A (en) * 1999-10-29 2001-05-08 Okuma Corp Machine tool
JP2003256042A (en) * 2002-03-03 2003-09-10 Tmsuk Co Ltd Security robot
JP2013119925A (en) * 2011-12-08 2013-06-17 Fanuc Ltd Seal structure of damper device
JP2013167988A (en) * 2012-02-15 2013-08-29 Hitachi Ltd Object recognition system and object recognition device
JP2016120580A (en) * 2014-12-25 2016-07-07 ファナック株式会社 Working device with work-piece attaching/detaching means provided with visual sensor for confirming presence or absence of foreign matter
JP2019111643A (en) * 2017-12-05 2019-07-11 サヴィオーク・インコーポレイテッド Apparatus, system and method for secure robot access
CN211163102U (en) * 2019-04-28 2020-08-04 卢滨松 Prevent digit control machine tool of accidental injury
JP2021035708A (en) * 2019-08-30 2021-03-04 Dmg森精機株式会社 Production system
JP6848110B1 (en) * 2020-07-10 2021-03-24 Dmg森精機株式会社 Collaboration system

Also Published As

Publication number Publication date
JP7012181B1 (en) 2022-02-14
JP2022190834A (en) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2021039829A1 (en) Production system
JP7188880B2 (en) Machine Tools
JP5160700B1 (en) NC machine tool system
US20220331970A1 (en) Robot-mounted moving device, system, and machine tool
WO2022264597A1 (en) Robot system
JP6848110B1 (en) Collaboration system
WO2014123054A1 (en) Robot control device and robot control method
JP6913833B1 (en) Work mounting system
WO2023032400A1 (en) Automatic transport device, and system
JP6832408B1 (en) Production system
WO2022097536A1 (en) Robot-mounted mobile device and positioning control method for system
US20220134577A1 (en) Image processing method, image processing apparatus, robot-mounted transfer device, and system
JP2022530589A (en) Robot-mounted mobile devices, systems and machine tools
WO2022097535A1 (en) Setting method using teaching operation
WO2022195938A1 (en) Robot system positioning accuracy measurement method
JP2020138315A (en) Production system
JP7015949B1 (en) Sticking position measuring device and machine tool equipped with it
JP7338091B1 (en) Automatic work device and system equipped with the same
JP3099197B2 (en) Work delivery device for machine tools
JP2021112809A (en) Production system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE