WO2022264569A1 - Method for producing valuable metal - Google Patents

Method for producing valuable metal Download PDF

Info

Publication number
WO2022264569A1
WO2022264569A1 PCT/JP2022/011395 JP2022011395W WO2022264569A1 WO 2022264569 A1 WO2022264569 A1 WO 2022264569A1 JP 2022011395 W JP2022011395 W JP 2022011395W WO 2022264569 A1 WO2022264569 A1 WO 2022264569A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
melting
alloy
raw material
melt
Prior art date
Application number
PCT/JP2022/011395
Other languages
French (fr)
Japanese (ja)
Inventor
雄 山下
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CA3222003A priority Critical patent/CA3222003A1/en
Priority to EP22822860.7A priority patent/EP4357470A1/en
Priority to CN202280040849.4A priority patent/CN117441034A/en
Priority to KR1020247000562A priority patent/KR20240019266A/en
Publication of WO2022264569A1 publication Critical patent/WO2022264569A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for producing valuable metals from raw materials such as waste lithium ion batteries.
  • a well-known lithium-ion battery has a structure in which a negative electrode material, a positive electrode material, a separator, and an electrolytic solution are enclosed in an outer can.
  • the outer can is made of metal such as iron (Fe) or aluminum (Al).
  • the negative electrode material is composed of a negative electrode active material (graphite, etc.) adhered to a negative electrode current collector (copper foil, etc.).
  • the positive electrode material is composed of a positive electrode active material (lithium nickelate, lithium cobaltate, etc.) adhered to a positive electrode current collector (aluminum foil, etc.).
  • the separator is made of a polypropylene porous resin film or the like. Electrolyte solutions include electrolytes such as lithium hexafluorophosphate (LiPF 6 ).
  • lithium-ion batteries One of the major uses of lithium-ion batteries is hybrid and electric vehicles. Therefore, it is expected that a large amount of lithium-ion batteries installed in automobiles will be discarded in the future in accordance with the life cycle of automobiles. Also, some lithium-ion batteries are discarded as defective during manufacturing. Such used batteries and defective batteries produced during manufacturing (hereinafter referred to as "waste lithium ion batteries”) are required to be reused as resources.
  • the oxygen input to the bath is adjusted to 10 ⁇ 18 to 10 ⁇ 14 atm for a process for separating cobalt from lithium present in a charge containing lithium ion batteries or battery scrap.
  • the target oxygen pressure is preferred, the upper oxygen pressure (10 -14 atm) eliminates the formation and loss of cobalt oxides in the slag, and the lower oxygen pressure (10 -18 atm) reduces aluminum and carbon (Claim 1 and [0018], etc.).
  • Patent Document 2 describes a method for recovering valuable metals from lithium-ion waste batteries containing nickel and cobalt. That it is possible to adjust the degree of oxidation, that almost the entire amount of aluminum oxide can be separated as slag in the slag separation process, that additional oxidation treatment is performed for a short time in the melting process, that the additional oxidation process can be finely It is stated that the degree of oxidation can be appropriately adjusted (Claim 1, [0033], [0036], etc.).
  • waste lithium-ion batteries contain large amounts of impurities such as carbon (C), aluminum (Al), fluorine (F), phosphorus (P), and iron (Fe).
  • impurities such as carbon (C), aluminum (Al), fluorine (F), phosphorus (P), and iron (Fe).
  • iron has the property of being relatively easily reduced. Therefore, if the degree of reduction is excessively increased for recovering valuable metals, there is a risk that iron will be mixed into the alloy that should be recovered as valuable metals.
  • the degree of reduction is too low, iron can be oxidized and removed as slag, but valuable metals, particularly cobalt, are oxidized and cannot be recovered as alloys. Thus, it was difficult to completely separate iron and cobalt in the melting process, and either the quality of the alloy or the recovery rate of cobalt had to be sacrificed.
  • Patent Document 1 Although the recovery rate of cobalt is high due to the high degree of reduction, a large amount of iron also remains in the alloy. If the amount of iron brought into the treatment in the melting process is larger than that of cobalt, the amount of iron remaining in the alloy increases when trying to increase the recovery rate of cobalt. is required and the processing cost is high. Further, in the technique of Patent Document 2, a dephosphorization step is further provided after the melting step and the slag separation step, and phosphorus is separated from the alloy in the dephosphorization step (claim 1, [0039] ⁇ [0046]).
  • Phosphorus can be removed by such a method, and iron can also be removed to some extent, but the removal amount is not sufficient and a large amount remains in the alloy, which also necessitates removal treatment in a post-process. , the cost is also higher.
  • the present invention has been made in view of such circumstances, and is intended to effectively and efficiently separate impurities, especially iron, contained in raw materials to be treated, and recover valuable metals at a high recovery rate.
  • the purpose is to provide a method that can
  • the inventor of the present invention has made extensive studies in order to solve the above-mentioned problems.
  • Fe which is easily reduced next to cobalt (Co)
  • the mass ratio of Fe/Co in the charge to be charged and treated in the melting process is limited, and the mass ratio obtained by the melting process is reduced.
  • the inventors have found that the iron content in the metal can be reduced while maintaining a high cobalt recovery rate, and have completed the present invention.
  • a first invention of the present invention is a method for producing a valuable metal containing cobalt (Co), comprising the following steps; a preparation step of preparing a raw material containing at least iron (Fe) and a valuable metal; After heating and melting the raw material to form a melt, a melting step of making the melt into a melt containing an alloy and slag, and a slag separating the slag from the melt and recovering the alloy containing valuable metals. and a separation step, wherein the preparation step controls the mass ratio of Fe/Co in the raw material to 0.5 or less, and the melting step controls the Co grade in the slag obtained by heating and melting the raw material. is 1% by mass or less, a method for producing a valuable metal.
  • a second aspect of the present invention is a method for producing a valuable metal according to the first aspect, wherein the Fe content in the alloy obtained by heating and melting the raw materials is 5% by mass or less.
  • a third aspect of the present invention is a method for producing a valuable metal according to the first or second aspect, wherein the raw material includes waste lithium ion batteries.
  • a fourth aspect of the present invention is a method for producing a valuable metal according to the third aspect, wherein the outer can used in the waste lithium ion battery contains iron.
  • a fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the Co in the slag is It is a method for producing valuable metals that adjusts the grade.
  • this embodiment A specific embodiment of the present invention (hereinafter referred to as "this embodiment") will be described below.
  • the present invention is not limited to the following embodiments, and various modifications are possible without changing the gist of the present invention.
  • the method of producing valuable metals according to the present embodiment is a method of separating and recovering valuable metals including cobalt (Co) from raw materials containing valuable metals. Therefore, it can also be called a recovery method for valuable metals.
  • the method according to the present embodiment is mainly a method by a pyrometallurgical process, but may be composed of a pyrometallurgical process and a hydrometallurgical process.
  • the method according to the present embodiment includes the following steps; a step of preparing a charge containing at least iron (Fe) and a valuable metal as a raw material (preparation step); After forming the melt into a melt, there is a process of converting the melt into a melt containing an alloy and slag (melting process), and a process of separating the slag from the resulting melt and recovering the alloy containing valuable metals (slag separation step).
  • This method is characterized by limiting the Fe/Co mass ratio in the raw material in the preparation step and controlling the Co grade in the slag obtained by heating and melting the raw material in the melting step.
  • the valuable metals are those to be recovered, and include at least cobalt (Co) as described above. More specifically, for example, it is at least one metal or alloy selected from the group consisting of copper (Cu), nickel (Ni), cobalt (Co), and combinations thereof.
  • a charge containing valuable metals is prepared as a raw material.
  • the charged material which is a raw material, is a target of treatment for recovering valuable metals, and contains valuable metals including cobalt (Co) in addition to containing at least iron (Fe) as impurities.
  • the charge may contain these components in the form of metals or elements, or in the form of compounds such as oxides. In addition, the charge may contain other inorganic or organic components other than these components.
  • the mass ratio (Fe/Co) of iron (Fe) to cobalt (Co) in the raw material is controlled within a specific range. Specifically, the mass ratio of Fe/Co in the raw material is controlled to 0.5 or less.
  • the mass ratio of Fe/Co in the raw material is greater than 0.5, it becomes difficult to separate cobalt and iron in the melting process, which will be described later, and the quality of iron contained in the alloy obtained by the melting process increases.
  • the Fe/Co mass ratio in the preparation step the iron grade in the resulting alloy can be reduced.
  • the method for adjusting the mass ratio of Fe/Co in the raw material is not particularly limited.
  • the raw material is subjected to treatments such as crushing and magnetic separation to remove iron-containing members. can do.
  • the raw material is not particularly limited. Examples include waste lithium-ion batteries, electronic components containing dielectric materials or magnetic materials, and electronic equipment. Also, the form is not limited as long as it is suitable for the treatment in the subsequent steps. Moreover, the raw material may be adjusted to a suitable form by performing a treatment such as pulverization. Furthermore, unnecessary components such as moisture and organic matter may be removed by subjecting the raw material to heat treatment, separation treatment, or the like.
  • the prepared raw material (charge) is charged into a melting furnace, subjected to a heat melting process to form a melt, and then the melt is made into a melt containing an alloy (metal) and slag. .
  • the melt contains the alloy and slag in a molten state.
  • the melt also includes the alloy and the slag, each in a molten state.
  • the alloy mainly contains valuable metals, and the slag contains other components including impurity elements. Therefore, it becomes possible to separate the valuable metals and the other components respectively as the alloy and the slag. This is because metals with low added value (such as Al) have high affinity for oxygen, whereas valuable metals have low affinity for oxygen.
  • Al aluminum
  • Li lithium
  • carbon C
  • manganese Mn
  • phosphorus P
  • iron iron
  • Co cobalt
  • nickel Ni
  • Cu copper
  • metals with low added value such as Al
  • valuable metals Cu, Ni, Co
  • valuable metals and low value-added metals can be separated in the form of alloys and slag, respectively.
  • iron (Fe) is relatively difficult to be oxidized among impurity elements with low added value, in other words, it is easily reduced, and its properties are valuable. It is similar to cobalt (Co), which is a metal. Therefore, it is difficult to sufficiently effectively separate iron and cobalt with conventional redox control in the melting process.
  • the mass ratio of Fe/Co in the raw material is limited to 0.5 or less in the preparation step, and the raw material is charged into the melting step. .
  • the Co grade in the slag obtained by heat melting the raw material is used as an indicator of the degree of reduction.
  • the degree of reduction is controlled so that the Co grade in the slag is 1% by mass or less. do. This makes it possible to reduce Fe in the obtained alloy while maintaining a high Co recovery rate, and as a result, it is possible to efficiently recover valuable metals.
  • the degree of reduction is controlled by sampling the obtained slag, analyzing the Co grade, and determining whether the Co grade is 1% by mass or less. For example, if the Co grade in the slag exceeds 1% by mass, control is performed to increase the degree of reduction by adding a reducing agent.
  • the method for confirming the Co grade in the slag is not particularly limited, and examples thereof include a method of sampling the slag, pulverizing it, and confirming it with a fluorescent X-ray analyzer. Alternatively, the relationship between the Co grade in the slag and the oxygen concentration in the melt may be confirmed in advance, and the Co grade may be checked by measuring the oxygen concentration in the melt with an oxygen sensor.
  • a method of increasing the degree of reduction (shifting to the reduction side) or a method of decreasing the degree of reduction (shifting to the oxidation side) may be performed by a known method.
  • a method of introducing a reducing agent or an oxidizing agent into the raw material to be subjected to the heating and melting process or into the melt obtained by melting the raw material As the reducing agent, a material having a high carbon grade (graphite powder, graphite grains, coal, coke, etc.), carbon monoxide, or the like can be used.
  • a component having a high carbon grade among the raw materials to be subjected to the heat melting process can also be used as a reducing agent.
  • an oxidizing gas air, oxygen, etc.
  • a material with a low carbon grade can be used as the oxidizing agent.
  • a component having a low carbon grade among the raw materials to be subjected to the heat melting process can also be used as the oxidizing agent.
  • the method of introducing the reducing agent and the oxidizing agent may be performed by a known method.
  • the reducing agent or oxidizing agent is a solid substance, it can be introduced by putting it into the raw material or melt.
  • the reducing agent or oxidizing agent is a gaseous substance, it can be introduced by blowing it through an inlet such as a lance provided in the melting furnace.
  • the timing of introduction of the reducing agent and oxidizing agent is not particularly limited.
  • a reducing agent or an oxidizing agent may be introduced at the stage when the raw materials are melted to form a melt.
  • Flux may be added to the raw material during the heat melting process.
  • the melting temperature can be lowered, and the removal of phosphorus (P), which is an impurity element, can be further promoted.
  • the flux preferably contains an element that takes in impurity elements to form a basic oxide with a low melting point.
  • phosphorus is oxidized to an acidic oxide, the more basic the slag formed by heating and melting, the easier it is to incorporate phosphorus into the slag and remove it.
  • those containing calcium compounds that are inexpensive and stable at room temperature are more preferable. Examples of calcium compounds include calcium oxide (CaO) and calcium carbonate (CaCO 3 ).
  • the heating temperature for heating and melting the raw materials is not particularly limited, it is preferably 1300°C or higher and 1600°C or lower.
  • the valuable metals eg, Cu, Co, Ni
  • the heating temperature exceeds 1600° C., thermal energy is wasted and refractories such as the crucible and furnace walls are rapidly worn, which may reduce productivity.
  • a step may be provided before the melting step to preheat (oxidize and roast) the raw material to obtain a preheated product (oxidized roast).
  • the amount of carbon contained in the raw material to be supplied to the melting process is reduced by preheating the raw material.
  • the carbon can be effectively oxidized and removed, and the heating and melting in the subsequent melting step can be performed. can promote alloy integration of valuable metals in the processing of
  • the valuable metal is reduced and becomes locally molten fine particles. It can be a physical obstacle. If the agglomeration and integration of molten fine particles is hindered, the separation of the produced alloy and slag may be hindered, resulting in a decrease in the recovery rate of valuable metals.
  • the aggregation and integration of the molten fine particles can be efficiently advanced, and the recovery rate of the valuable metal can be improved. It is possible to raise it further.
  • phosphorus is an impurity element that is relatively easily reduced, if carbon is excessively present in the raw material, phosphorus may be reduced and incorporated into the alloy together with the valuable metal. In this respect as well, by removing excess carbon in the raw material in advance by preheating, it is possible to prevent phosphorus from being mixed into the alloy.
  • the carbon content of the preheated product (oxidized roasted product) obtained by preheating is preferably less than 1% by mass.
  • the preheating treatment in the preheating step can be performed at an oxidation degree (oxidative roasting) that can oxidize low-value-added metals (such as Al) contained in the raw material to be subjected to the melting step. desirable.
  • the degree of oxidation can be easily controlled by adjusting the treatment temperature, time and/or atmosphere of preheating. Therefore, in the preheating process, the degree of oxidation can be adjusted more strictly, and variations in oxidation can be suppressed.
  • the degree of oxidation is adjusted as follows. As mentioned above, aluminum (Al), lithium (Li), carbon (C), manganese (Mn), phosphorus (P), iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) are , generally in the order of Al>Li>C>Mn>P>Fe>Co>Ni>Cu.
  • oxidation is allowed to progress until all of the Al is oxidized. Oxidation may be accelerated until some of the iron (Fe) is oxidized, but it is preferable to limit the degree of oxidation to such an extent that cobalt (Co) is not oxidized and distributed to the slag.
  • the preheating process is preferably carried out in the presence of an oxidizing agent.
  • an oxidizing agent is not particularly limited, but an oxygen-containing gas (air, pure oxygen, oxygen-enriched gas, etc.) is preferable because it is easy to handle.
  • the amount of the oxidizing agent to be introduced is preferably, for example, about 1.2 times the chemical equivalent required for oxidizing each substance to be oxidized.
  • the heating temperature for preheating is preferably 700°C or higher and 1100°C or lower. If the temperature is 700° C. or higher, the oxidation efficiency of carbon can be further increased, and the oxidation time can be shortened. Further, by setting the temperature to 1100° C. or less, the thermal energy cost can be suppressed and the efficiency of preheating can be improved. Also, the preheating temperature may be 800° C. or higher or 900° C. or lower.
  • the preheating process can be performed using a known roasting furnace. Moreover, it is preferable to use a furnace (preliminary furnace) different from the melting furnace used in the subsequent melting process, and to carry out the treatment in the preliminarily furnace.
  • a furnace preliminary furnace
  • any type of furnace can be used as long as it is a furnace capable of performing an oxidation treatment inside by supplying an oxidizing agent (such as oxygen) while roasting the raw material to be treated. Examples include conventionally known rotary kilns and tunnel kilns (Haas furnaces).
  • a sulfurization step of sulfurizing the obtained alloy or a pulverization step of pulverizing the obtained sulfide or alloy may be provided.
  • alloys of valuable metals obtained through such pyrometallurgical processes may be subjected to hydrometallurgical processes.
  • hydrometallurgical process impurity components can be further removed, valuable metals (eg, Cu, Ni, Co) can be separated and refined, and each of them can be recovered.
  • treatments in the hydrometallurgical process include known techniques such as neutralization treatment and solvent extraction treatment.
  • the mass ratio of Fe/Co in the raw material to be subjected to the heat melting process is limited in the preparation step, and the Co in the slag obtained in the melting step
  • the quality is controlled and heat melting is applied.
  • the Fe grade in the alloy metal
  • the Fe content of the alloy can be reduced to 5% by mass or less while maintaining the cobalt recovery rate at 90% or more.
  • the "cobalt recovery rate” is calculated according to the following formula (1) using the finally obtained alloy and the content of cobalt contained in the slag.
  • the raw material (charge) is not particularly limited as long as it contains at least a valuable metal including cobalt (Co), but it is preferably a raw material containing waste lithium ion batteries.
  • Waste lithium-ion batteries contain lithium (Li) and valuable metals (Cu, Ni, Co), as well as metals with low added value (Al, Fe, etc.) and carbon components. Therefore, by using raw materials including waste lithium ion batteries, valuable metals can be efficiently separated and recovered.
  • Waste lithium-ion batteries refers not only to used lithium-ion batteries, but also to defective products such as positive electrode materials that make up the battery during the manufacturing process, residues inside the manufacturing process, and lithium-ion waste such as generated scraps. This is a concept that includes waste materials in the battery manufacturing process. Therefore, waste lithium ion batteries can also be called lithium ion battery waste materials.
  • FIG. 1 is a process diagram showing an example of the flow of a method for producing valuable metals from waste lithium ion batteries.
  • this method includes a step of removing the electrolytic solution and outer can of the waste lithium ion battery to obtain the waste battery contents (waste battery pretreatment step S1), and pulverizing the waste battery contents.
  • a step of forming a pulverized product (pulverizing step S2), a step of preheating the pulverized product into a preheated product (preheating step S3), and a step of melting the preheated product into a molten product (melting step S4).
  • slag separation step S5 a step of separating slag from the melt and recovering the alloy. Further, although not shown, after the slag separation step S5, a sulfurization step of sulfurizing the obtained alloy and a pulverization step (second pulverization step) of pulverizing the obtained sulfide or alloy may be provided.
  • Waste lithium-ion batteries contain valuable metals such as nickel (Ni), cobalt (Co), and copper (Cu). Further, the waste lithium ion battery contains iron (Fe) as a constituent material of an outer can, which will be described later, for example. Through the treatment in each step shown in FIG. 1, it is possible to effectively recover valuable metals while separating impurity elements such as iron.
  • the waste battery pretreatment step S1 is performed for the purpose of preventing the waste lithium ion battery from exploding and rendering it harmless, and removing the outer can. Since the lithium ion battery is a closed system, it contains an electrolytic solution and the like inside. Therefore, if the pulverization process is performed as it is, there is a risk of explosion, which is dangerous. It is preferable to perform discharge treatment or electrolytic solution removal treatment by some method.
  • outer cans that constitute lithium-ion batteries are often made of metals such as aluminum (Al) and iron (Fe), and such metal outer cans are relatively easy to collect as they are. is.
  • the specific method of waste battery pretreatment is not particularly limited. For example, there is a method of physically opening a hole in a waste lithium ion battery with a needle-like cutting edge to remove the electrolyte. Another method is to heat the waste lithium ion battery to burn the electrolytic solution to render it harmless.
  • the pulverized material when recovering aluminum and iron contained in the outer can, after pulverizing the removed outer can, the pulverized material may be sieved using a sieve shaker. Since aluminum can be easily pulverized by light pulverization, it can be efficiently recovered. Alternatively, the iron contained in the outer can may be recovered by magnetic separation.
  • the pulverization step S2 the content of the waste lithium ion battery is pulverized to obtain a pulverized material.
  • This step is intended to increase the reaction efficiency in the pyrometallurgical process. By increasing the reaction efficiency, the recovery rate of valuable metals (Cu, Ni, Co) can be increased.
  • the specific crushing method is not particularly limited. It can be pulverized using a conventionally known pulverizer such as a cutter mixer.
  • the waste battery pretreatment step S1, or the waste battery pretreatment step S1 and the crushing step S2 correspond to the preparatory steps described above. That is, the method according to the present embodiment is characterized by controlling the mass ratio (Fe/Co) of iron (Fe) to cobalt (Co) in the raw material to 0.5 or less. By limiting the mass ratio of Fe/Co in this way, it is possible to reduce the iron grade in the alloy (metal) obtained through the heating and melting treatment in the melting step S4, which will be described later.
  • the pulverized product obtained in the crushing step S2 is preheated (oxidizing roasting) to obtain a preheated product (oxidizing roasting product).
  • the details of this step are as described above, and by preheating in the preheating step, even if the raw material supplied to the melting step S4 contains excessive carbon, the carbon is effectively removed by oxidation. and can promote the alloying integration of the valuable metals in the heat-melting process.
  • the preheated material obtained in the preheating step S3 is melted to obtain a molten material.
  • the details of this step are as described above.
  • a raw material having an Fe/Co mass ratio of 0.5 or less is charged into a melting furnace and subjected to a heat melting process, and the heat melting process is performed to obtain Using the Co grade in the slag as an index of the degree of reduction, specifically, the reduction degree is controlled so that the Co grade in the slag is 1% by mass or less.
  • each valuable metal may be separated and refined by subjecting an alloy containing the recovered valuable metal to a hydrometallurgical process.
  • the resulting battery content was pulverized with a pulverizer (trade name: Good Cutter, manufactured by Ujiie Seisakusho Co., Ltd.) to obtain a pulverized product.
  • Iron was removed from the pulverized material obtained by using a sieve and a magnet, and the mass ratio of Fe/Co in the raw material was adjusted to a predetermined value shown in Table 1 below.
  • the generated slag is sampled to analyze the Co grade, and if the Co grade exceeds 1% by mass, a reducing agent is added to control the degree of reduction, and the slag is was made to have a Co grade of 1% by mass or less.
  • the recovered alloy (metal) was subjected to elemental analysis using an ICP analyzer (Agilent5100SUDV, manufactured by Agilent Technologies). Nickel (Ni), cobalt (Co), and copper (Cu), which are valuable metals, and iron (Fe), which is an impurity that is difficult to remove from metals, were the elements to be analyzed. Also, the content (% by mass) of iron in the alloy was defined as the iron grade (Fe grade).
  • the recovery rate of cobalt was determined as follows. That is, it was calculated according to the following formula (1) using the content of cobalt in the alloy and slag determined by elemental analysis.
  • Comparative Example 1 Although the Co recovery rate was high, the Fe content in the alloy exceeded 5% by mass. This is thought to be due to the high Fe/Co ratio in the raw material, and therefore, when the degree of reduction is increased for the purpose of achieving a high Co recovery rate, Fe is also reduced, resulting in an increase in the Fe grade in the alloy. Moreover, in Comparative Examples 2 and 3, although the Fe grade in the alloy was reduced, the Co recovery rate was less than 90%. In Comparative Example 2, since the Fe/Co ratio in the raw material was high, if the degree of reduction was lowered for the purpose of reducing the Fe grade in the alloy, the reduction of Co did not progress, and as a result, the Co recovery rate was low. Also in Comparative Example 3, if the degree of reduction was lowered for the purpose of reducing the Fe grade in the alloy, the reduction of Co did not proceed, and as a result, the Co recovery rate was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention provides a method by which a valuable metal is able to be recovered with a high recovery rate by effectively and efficiently separating impurities, in particular iron, from a starting material to be processed. A method for producing a valuable metal that contains cobalt (Co), the method comprising: a preparation step in which a starting material that contains at least iron (Fe) and a valuable metal is prepared; a melting step in which a melt is obtained by heating and melting the starting material, and the melt is subsequently formed into a molten material that contains an alloy and slag; and a slag separation step in which the slag is separated from the molten material, thereby recovering the alloy that contains the valuable metal. In the preparation step, the Fe/Co mass ratio in the starting material is controlled to 0.5 or less; and in the melting step, the Co content in the slag that is obtained by heating and melting the starting material is set to 1% by mass or less.

Description

有価金属の製造方法Valuable metal manufacturing method
 本発明は、廃リチウムイオン電池等の原料から有価金属を製造する方法に関する。 The present invention relates to a method for producing valuable metals from raw materials such as waste lithium ion batteries.
 近年、軽量で大出力の電池としてリチウムイオン電池が普及している。よく知られているリチウムイオン電池は、外装缶内に負極材と正極材とセパレータと電解液とを封入した構造を有している。ここで、外装缶は、鉄(Fe)やアルミニウム(Al)等の金属からなる。負極材は、負極集電体(銅箔等)に固着させた負極活物質(黒鉛等)からなる。正極材は、正極集電体(アルミニウム箔等)に固着させた正極活物質(ニッケル酸リチウム、コバルト酸リチウム等)からなる。セパレータは、ポリプロピレンの多孔質樹脂フィルム等からなる。電解液は、六フッ化リン酸リチウム(LiPF)等の電解質を含む。 In recent years, lithium-ion batteries have become popular as lightweight, high-output batteries. A well-known lithium-ion battery has a structure in which a negative electrode material, a positive electrode material, a separator, and an electrolytic solution are enclosed in an outer can. Here, the outer can is made of metal such as iron (Fe) or aluminum (Al). The negative electrode material is composed of a negative electrode active material (graphite, etc.) adhered to a negative electrode current collector (copper foil, etc.). The positive electrode material is composed of a positive electrode active material (lithium nickelate, lithium cobaltate, etc.) adhered to a positive electrode current collector (aluminum foil, etc.). The separator is made of a polypropylene porous resin film or the like. Electrolyte solutions include electrolytes such as lithium hexafluorophosphate (LiPF 6 ).
 リチウムイオン電池の主要な用途の一つに、ハイブリッド自動車や電気自動車がある。そのため、自動車のライフサイクルにあわせて、搭載されたリチウムイオン電池が将来的に大量に廃棄される見込みとなっている。また、製造中に不良品として廃棄されるリチウムイオン電池もある。このような使用済み電池や製造中に生じた不良品の電池(以下、「廃リチウムイオン電池」という)を資源として再利用することが求められている。 One of the major uses of lithium-ion batteries is hybrid and electric vehicles. Therefore, it is expected that a large amount of lithium-ion batteries installed in automobiles will be discarded in the future in accordance with the life cycle of automobiles. Also, some lithium-ion batteries are discarded as defective during manufacturing. Such used batteries and defective batteries produced during manufacturing (hereinafter referred to as "waste lithium ion batteries") are required to be reused as resources.
 再利用の手法として、従来、廃リチウムイオン電池を高温炉(熔融炉)で全量熔解する乾式製錬プロセスが提案されている。乾式製錬プロセスは、破砕した廃リチウムイオン電池を熔融処理に付し、コバルト(Co)、ニッケル(Ni)、及び銅(Cu)に代表される回収対象である有価金属と、鉄やアルミニウムに代表される付加価値の低い金属とを、それらの間の酸素親和力の差を利用して分離回収する手法である。この手法では、付加価値の低い金属については極力酸化してスラグとする一方で、有価金属はその酸化を極力抑制して合金として回収する。 As a method of reuse, a pyrometallurgical refining process has been proposed in which the entire amount of waste lithium-ion batteries is melted in a high-temperature furnace (melting furnace). In the pyrometallurgical process, crushed waste lithium-ion batteries are subjected to a melting process to produce valuable metals to be recovered, represented by cobalt (Co), nickel (Ni), and copper (Cu), as well as iron and aluminum. It is a method of separating and recovering typical low value-added metals by utilizing the difference in oxygen affinity between them. In this method, metals with low added value are oxidized as much as possible to form slag, while valuable metals are recovered as alloys by suppressing their oxidation as much as possible.
 このように、酸素親和力の差を利用して有価金属を分離回収する乾式製錬プロセスでは、熔融処理時の酸化還元度のコントロールが非常に重要となる。すなわち、酸化還元度のコントロールが不十分であると、有価金属として回収するはずの合金に不純物が混入する、または、不純物として回収するはずのスラグに酸化した有価金属が取り込まれるといった問題が生じ、これが有価金属の回収率を低下させる。そのため、乾式製錬プロセスでは、熔融炉に空気や酸素等の酸化剤や還元剤を導入して酸化還元度をコントロールすることが従来から行われている。 In this way, in the pyrometallurgical process that separates and recovers valuable metals using the difference in oxygen affinity, it is very important to control the degree of redox during melting. In other words, if the degree of oxidation reduction is insufficiently controlled, there will be problems such as contamination of the alloy to be recovered as valuable metals with impurities, or incorporation of oxidized valuable metals into the slag that is to be recovered as impurities. This reduces the recovery of valuable metals. Therefore, in the pyrometallurgical process, conventionally, an oxidizing agent or reducing agent such as air or oxygen is introduced into the melting furnace to control the degree of redox.
 例えば、特許文献1には、リチウムイオン電池又は電池スクラップを含むチャージ中に存在するリチウムからコバルトを分離するためのプロセスに関して、バスへの酸素入力を調節して10-18~10-14atmの目標酸素圧力とすることが好ましい旨、上限の酸素圧力(10-14atm)によってスラグ中におけるコバルト酸化物の形成及び損失が排除され、また下限の酸素圧力(10-18atm)によってアルミニウム及び炭素等の元素の酸化が保証される旨が記載されている(請求項1及び[0018]等)。 For example, in US Pat. No. 5,400,000, the oxygen input to the bath is adjusted to 10 −18 to 10 −14 atm for a process for separating cobalt from lithium present in a charge containing lithium ion batteries or battery scrap. The target oxygen pressure is preferred, the upper oxygen pressure (10 -14 atm) eliminates the formation and loss of cobalt oxides in the slag, and the lower oxygen pressure (10 -18 atm) reduces aluminum and carbon (Claim 1 and [0018], etc.).
 また、特許文献2には、ニッケルとコバルトを含有するリチウムイオン廃電池から有価金属を回収する方法に関して、予備酸化工程での処理における酸素量、酸化時間及び温度の調整等により、厳密な酸化度の調整が可能である旨、酸化度を調整することによってスラグ分離工程において酸化アルミニウムのほぼ全量をスラグとして分離できる旨、熔融工程において微小時間の追加酸化処理を行う旨、追加酸化工程によって微細に適切な酸化度の調整が可能となる旨、が記載されている(請求項1、[0033]、[0036]等)。 In addition, Patent Document 2 describes a method for recovering valuable metals from lithium-ion waste batteries containing nickel and cobalt. that it is possible to adjust the degree of oxidation, that almost the entire amount of aluminum oxide can be separated as slag in the slag separation process, that additional oxidation treatment is performed for a short time in the melting process, that the additional oxidation process can be finely It is stated that the degree of oxidation can be appropriately adjusted (Claim 1, [0033], [0036], etc.).
特許第6542354号公報Japanese Patent No. 6542354 特許第5853585号公報Japanese Patent No. 5853585
 このように、乾式製錬プロセスでの有価金属回収では、不純物の除去方法として熔融処理時に空気や酸素等を導入して酸化還元度をコントロールすることが提案されているものの、有価金属と不純物の分離性という点で課題が残されている。すなわち、熔融工程における処理で酸化還元度(酸素分圧)をコントロールするだけでなく、装入物の組成も適切にコントロールする必要がある。 In this way, in the recovery of valuable metals in the pyrometallurgical process, it has been proposed to control the degree of redox by introducing air or oxygen during the melting process as a method of removing impurities. Issues remain in terms of separability. That is, it is necessary not only to control the oxidation-reduction degree (oxygen partial pressure) in the treatment in the melting process, but also to appropriately control the composition of the charge.
 例えば、廃リチウムイオン電池は、炭素(C)、アルミニウム(Al)、フッ素(F)、リン(P)、及び鉄(Fe)等の不純物を多量に含む。このうち鉄は、比較的還元されやすいという性質を有する。そのため、有価金属回収のために還元度を上げすぎると、本来は有価金属として回収するはずの合金に鉄が混入するおそれがある。一方で、還元度が過度に低いと、鉄を酸化してスラグとして除去できるものの、有価金属、特にコバルトが酸化されてしまい、これを合金として回収することができなくなる。このように、熔融工程での処理において、鉄とコバルトとを完全に分離するのは難しく、合金の品質とコバルトの回収率のどちらかを犠牲にしなければならなかった。 For example, waste lithium-ion batteries contain large amounts of impurities such as carbon (C), aluminum (Al), fluorine (F), phosphorus (P), and iron (Fe). Of these, iron has the property of being relatively easily reduced. Therefore, if the degree of reduction is excessively increased for recovering valuable metals, there is a risk that iron will be mixed into the alloy that should be recovered as valuable metals. On the other hand, if the degree of reduction is too low, iron can be oxidized and removed as slag, but valuable metals, particularly cobalt, are oxidized and cannot be recovered as alloys. Thus, it was difficult to completely separate iron and cobalt in the melting process, and either the quality of the alloy or the recovery rate of cobalt had to be sacrificed.
 上述した特許文献1の技術では、還元度が高いためコバルトの回収率は高いものの、鉄も多量に合金中に残留することになる。熔融工程での処理に持ち込まれる鉄の量がコバルトに対して大きい場合、コバルトの回収率を高めようとすると合金中に残留する鉄の量も多くなり、後工程で鉄を除去するための処理が必要でその処理コストも高くなる。また、特許文献2の技術では、熔融工程及びスラグ分離工程の後にさらに脱リン工程を設けるもので、その脱リン工程にて合金からのリンの分離を図っている(請求項1、[0039]~[0046])。このような手法によればリンの除去は可能となり、鉄についてもある程度は除去できるものの、その除去量は十分ではなく多量に合金中に残ってしまい、やはり後工程での除去処理の必要が生じ、コストも高くなる。 With the technique of Patent Document 1 mentioned above, although the recovery rate of cobalt is high due to the high degree of reduction, a large amount of iron also remains in the alloy. If the amount of iron brought into the treatment in the melting process is larger than that of cobalt, the amount of iron remaining in the alloy increases when trying to increase the recovery rate of cobalt. is required and the processing cost is high. Further, in the technique of Patent Document 2, a dephosphorization step is further provided after the melting step and the slag separation step, and phosphorus is separated from the alloy in the dephosphorization step (claim 1, [0039] ~[0046]). Phosphorus can be removed by such a method, and iron can also be removed to some extent, but the removal amount is not sufficient and a large amount remains in the alloy, which also necessitates removal treatment in a post-process. , the cost is also higher.
 本発明は、このような実情に鑑みてなされたものであり、処理対象の原料に含まれる不純物、特に鉄を効果的にかつ効率的に分離して、有価金属を高い回収率で回収することができる方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is intended to effectively and efficiently separate impurities, especially iron, contained in raw materials to be treated, and recover valuable metals at a high recovery rate. The purpose is to provide a method that can
 本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、コバルト(Co)に次いで還元され易い鉄(Fe)について、熔融工程での処理に装入して処理する装入物中のFe/Coの質量比を制限し、かつ熔融処理により得られるスラグ中のコバルト品位を制御することで、高いコバルト回収率を維持しながらメタル中の鉄品位を低減できることを見出し、本発明を完成するに至った。 The inventor of the present invention has made extensive studies in order to solve the above-mentioned problems. As a result, with respect to iron (Fe), which is easily reduced next to cobalt (Co), the mass ratio of Fe/Co in the charge to be charged and treated in the melting process is limited, and the mass ratio obtained by the melting process is reduced. By controlling the cobalt content in the slag produced, the inventors have found that the iron content in the metal can be reduced while maintaining a high cobalt recovery rate, and have completed the present invention.
 (1)本発明の第1の発明は、コバルト(Co)を含む有価金属を製造する方法であって、以下の工程;少なくとも鉄(Fe)及び有価金属を含む原料を準備する準備工程と、前記原料を加熱熔融して熔体にした後に、該熔体を合金とスラグとを含む熔融物にする熔融工程と、前記熔融物からスラグを分離して、有価金属を含む合金を回収するスラグ分離工程と、を有し、前記準備工程では、原料中のFe/Coの質量比を0.5以下に制御し、前記熔融工程では、前記原料を加熱熔融して得られるスラグ中のCo品位を1質量%以下とする、有価金属の製造方法である。 (1) A first invention of the present invention is a method for producing a valuable metal containing cobalt (Co), comprising the following steps; a preparation step of preparing a raw material containing at least iron (Fe) and a valuable metal; After heating and melting the raw material to form a melt, a melting step of making the melt into a melt containing an alloy and slag, and a slag separating the slag from the melt and recovering the alloy containing valuable metals. and a separation step, wherein the preparation step controls the mass ratio of Fe/Co in the raw material to 0.5 or less, and the melting step controls the Co grade in the slag obtained by heating and melting the raw material. is 1% by mass or less, a method for producing a valuable metal.
 (2)本発明の第2の発明は、第1の発明において、前記原料を加熱熔融して得られる合金中のFe品位は5質量%以下である、有価金属の製造方法である。 (2) A second aspect of the present invention is a method for producing a valuable metal according to the first aspect, wherein the Fe content in the alloy obtained by heating and melting the raw materials is 5% by mass or less.
 (3)本発明の第3の発明は、第1又は第2の発明において、前記原料は、廃リチウムイオン電池を含む、有価金属の製造方法である。 (3) A third aspect of the present invention is a method for producing a valuable metal according to the first or second aspect, wherein the raw material includes waste lithium ion batteries.
 (4)本発明の第4の発明は、第3の発明において、前記廃リチウムイオン電池に用いられている外装缶が鉄を含有する、有価金属の製造方法である。 (4) A fourth aspect of the present invention is a method for producing a valuable metal according to the third aspect, wherein the outer can used in the waste lithium ion battery contains iron.
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記熔融工程において、前記熔体に酸化剤及び/又は還元剤を添加することによって前記スラグ中のCo品位を調整する、有価金属の製造方法である。 (5) A fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the Co in the slag is It is a method for producing valuable metals that adjusts the grade.
 本発明によれば、処理対象の原料に含まれる不純物、特に鉄を効果的にかつ効率的に分離して、有価金属を高い回収率で回収することができる方法を提供することができる。 According to the present invention, it is possible to provide a method capable of effectively and efficiently separating impurities, especially iron, contained in raw materials to be treated, and recovering valuable metals at a high recovery rate.
廃リチウムイオン電池から有価金属を製造する流れを示す工程図である。It is a process drawing which shows the flow which manufactures a valuable metal from a waste lithium ion battery.
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 A specific embodiment of the present invention (hereinafter referred to as "this embodiment") will be described below. In addition, the present invention is not limited to the following embodiments, and various modifications are possible without changing the gist of the present invention.
 ≪1.有価金属の製造方法≫
 本実施の形態に係る有価金属を製造する方法は、コバルト(Co)を含む有価金属を含有する原料からその有価金属を分離回収する方法である。したがって、有価金属の回収方法とも言い換えることができる。本実施の形態に係る方法は、主として乾式製錬プロセスによる方法であるが、乾式製錬プロセスと湿式製錬プロセスとから構成されていてもよい。
≪1. Methods for producing valuable metals≫
The method of producing valuable metals according to the present embodiment is a method of separating and recovering valuable metals including cobalt (Co) from raw materials containing valuable metals. Therefore, it can also be called a recovery method for valuable metals. The method according to the present embodiment is mainly a method by a pyrometallurgical process, but may be composed of a pyrometallurgical process and a hydrometallurgical process.
 具体的に、本実施の形態に係る方法は、以下の工程;少なくとも鉄(Fe)及び有価金属を含む装入物を原料として準備する工程(準備工程)と、準備した原料を加熱熔融して熔体にした後に、この熔体を合金とスラグとを含む熔融物にする工程(熔融工程)と、得られた熔融物からスラグを分離して、有価金属を含む合金を回収する工程(スラグ分離工程)と、を有する。そして、この方法では、準備工程において原料中のFe/Coの質量比を制限し、かつ熔融工程において、その原料を加熱熔融して得られるスラグ中のCo品位を制御することを特徴としている。 Specifically, the method according to the present embodiment includes the following steps; a step of preparing a charge containing at least iron (Fe) and a valuable metal as a raw material (preparation step); After forming the melt into a melt, there is a process of converting the melt into a melt containing an alloy and slag (melting process), and a process of separating the slag from the resulting melt and recovering the alloy containing valuable metals (slag separation step). This method is characterized by limiting the Fe/Co mass ratio in the raw material in the preparation step and controlling the Co grade in the slag obtained by heating and melting the raw material in the melting step.
 ここで、有価金属は回収対象となるものであり、上述のように少なくともコバルト(Co)を含む。より具体的には、例えば、銅(Cu)、ニッケル(Ni)、コバルト(Co)及びこれらの組み合わせからなる群から選ばれる少なくとも一種の金属又は合金である。 Here, the valuable metals are those to be recovered, and include at least cobalt (Co) as described above. More specifically, for example, it is at least one metal or alloy selected from the group consisting of copper (Cu), nickel (Ni), cobalt (Co), and combinations thereof.
 [準備工程]
 準備工程では、有価金属を含む装入物を原料として準備する。原料である装入物は、有価金属を回収する処理対象となるものであり、不純物として少なくとも鉄(Fe)を含むことに加え、コバルト(Co)を含む有価金属を含有する。装入物は、これらの成分を金属や元素の形態で含んでもよく、あるいは酸化物等の化合物の形態で含んでもよい。また、装入物はこれらの成分以外の他の無機成分や有機成分を含んでいてもよい。
[Preparation process]
In the preparation step, a charge containing valuable metals is prepared as a raw material. The charged material, which is a raw material, is a target of treatment for recovering valuable metals, and contains valuable metals including cobalt (Co) in addition to containing at least iron (Fe) as impurities. The charge may contain these components in the form of metals or elements, or in the form of compounds such as oxides. In addition, the charge may contain other inorganic or organic components other than these components.
 本実施の形態に係る方法では、準備工程において、原料中のコバルト(Co)に対する鉄(Fe)の質量比(Fe/Co)を特定の範囲に制御する。具体的には、原料中のFe/Coの質量比を0.5以下に制御する。 In the method according to the present embodiment, in the preparation step, the mass ratio (Fe/Co) of iron (Fe) to cobalt (Co) in the raw material is controlled within a specific range. Specifically, the mass ratio of Fe/Co in the raw material is controlled to 0.5 or less.
 原料中のFe/Coの質量比が0.5より大きいと、後述する熔融工程での処理にてコバルトと鉄の分離が困難となり、熔融処理により得られる合金に含まれる鉄品位が大きくなる。準備工程においてFe/Coの質量比を制限することで、得られる合金中の鉄品位を低減することができる。具体的に、原料中のFe/Coの質量比の調整方法としては、特に限定されず、例えば、原料に対して破砕及び磁力選別等の処理を施して鉄を含む部材を除去することにより調整することができる。 If the mass ratio of Fe/Co in the raw material is greater than 0.5, it becomes difficult to separate cobalt and iron in the melting process, which will be described later, and the quality of iron contained in the alloy obtained by the melting process increases. By limiting the Fe/Co mass ratio in the preparation step, the iron grade in the resulting alloy can be reduced. Specifically, the method for adjusting the mass ratio of Fe/Co in the raw material is not particularly limited. For example, the raw material is subjected to treatments such as crushing and magnetic separation to remove iron-containing members. can do.
 原料としては、特に限定されない。一例として、廃リチウムイオン電池、誘電材料又は磁性材料を含む電子部品、電子機器が挙げられる。また、後続する工程での処理に適したものであれば、その形態も限定されない。また、原料に対しては、粉砕処理等の処理を施して適した形態に調整してもよい。さらに、原料に対して熱処理や分別処理等の処理を施して水分や有機物等の不要成分を除去してもよい。 The raw material is not particularly limited. Examples include waste lithium-ion batteries, electronic components containing dielectric materials or magnetic materials, and electronic equipment. Also, the form is not limited as long as it is suitable for the treatment in the subsequent steps. Moreover, the raw material may be adjusted to a suitable form by performing a treatment such as pulverization. Furthermore, unnecessary components such as moisture and organic matter may be removed by subjecting the raw material to heat treatment, separation treatment, or the like.
 [熔融工程]
 熔融工程では、準備した原料(装入物)を熔融炉に装入し、加熱熔融の処理を施して熔体にした後に、その熔体を合金(メタル)とスラグとを含む熔融物にする。
[Melting process]
In the melting process, the prepared raw material (charge) is charged into a melting furnace, subjected to a heat melting process to form a melt, and then the melt is made into a melt containing an alloy (metal) and slag. .
 熔体は、合金とスラグとを熔融した状態で含んでいる。また、熔融物は、合金とスラグとをそれぞれが熔融した状態で含んでいる。合金は主として有価金属を含んで構成され、スラグは不純物元素をはじめとするその他の成分を含んで構成される。そのため、有価金属とその他の成分のそれぞれを、合金及びスラグとして分離することが可能となる。これは、付加価値の低い金属(Al等)は酸素親和力が高いのに対し、有価金属は酸素親和力が低いからである。 The melt contains the alloy and slag in a molten state. The melt also includes the alloy and the slag, each in a molten state. The alloy mainly contains valuable metals, and the slag contains other components including impurity elements. Therefore, it becomes possible to separate the valuable metals and the other components respectively as the alloy and the slag. This is because metals with low added value (such as Al) have high affinity for oxygen, whereas valuable metals have low affinity for oxygen.
 例えば、アルミニウム(Al)、リチウム(Li)、炭素(C)、マンガン(Mn)、リン(P)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、及び銅(Cu)は、一般的に、Al>Li>C>Mn>P>Fe>Co>Ni>Cuの順に酸化されていく。つまり、アルミニウム(Al)が最も酸化され易く、銅(Cu)が最も酸化されにくい。そのため、付加価値の低い金属(Al等)は容易に酸化されてスラグになり、有価金属(Cu、Ni、Co)は還元されて合金になる。このようにして、有価金属と付加価値の低い金属とを、合金とスラグとの形態でそれぞれ分離することができる。 For example, aluminum (Al), lithium (Li), carbon (C), manganese (Mn), phosphorus (P), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu) are commonly Generally, they are oxidized in the order of Al>Li>C>Mn>P>Fe>Co>Ni>Cu. That is, aluminum (Al) is most easily oxidized, and copper (Cu) is most difficult to oxidize. Therefore, metals with low added value (such as Al) are easily oxidized into slag, and valuable metals (Cu, Ni, Co) are reduced into alloys. In this way, valuable metals and low value-added metals can be separated in the form of alloys and slag, respectively.
 ここで、上述した酸素親和力の関係の説明からわかるように、鉄(Fe)は、付加価値の低い不純物元素のなかでは比較的酸化され難く、言い換えると還元され易いものであり、その性質は有価金属であるコバルト(Co)と近似する。したがって、熔融工程での一般的な酸化還元のコントロールでは、鉄とコバルトとを十分に効果的に分離することが難しい。 Here, as can be seen from the above explanation of the relationship of oxygen affinity, iron (Fe) is relatively difficult to be oxidized among impurity elements with low added value, in other words, it is easily reduced, and its properties are valuable. It is similar to cobalt (Co), which is a metal. Therefore, it is difficult to sufficiently effectively separate iron and cobalt with conventional redox control in the melting process.
 そこで、本実施の形態に係る方法では、上述したように、準備工程にて原料中のFe/Coの質量比を0.5以下に制限し、その原料を熔融工程での処理に装入する。そして、熔融工程では、その原料に対する加熱熔融の処理により得られるスラグ中のCo品位を還元度の指標とし、具体的にはスラグ中のCo品位が1質量%以下となるように還元度を制御する。これにより、高いCo回収率を維持しながら、得られる合金中のFeを低減することができ、その結果、有価金属を効率的に回収することが可能となる。 Therefore, in the method according to the present embodiment, as described above, the mass ratio of Fe/Co in the raw material is limited to 0.5 or less in the preparation step, and the raw material is charged into the melting step. . In the melting step, the Co grade in the slag obtained by heat melting the raw material is used as an indicator of the degree of reduction. Specifically, the degree of reduction is controlled so that the Co grade in the slag is 1% by mass or less. do. This makes it possible to reduce Fe in the obtained alloy while maintaining a high Co recovery rate, and as a result, it is possible to efficiently recover valuable metals.
 還元度の制御は、得られるスラグをサンプリングしてCo品位を分析し、そのCo品位が1質量%以下であるか否かを判断することで行う。例えば、スラグ中のCo品位が1質量%を超えていれば、還元剤を添加することで還元度を高めるように制御する。スラグ中のCo品位を確認する方法としては、特に限定されず、例えば、スラグをサンプリングして粉砕し、蛍光X線分析装置にて確認する方法が挙げられる。また、スラグ中のCo品位と熔体中の酸素濃度との関係を予め確認しておき、酸素センサーにて熔体中の酸素濃度を測定してCo品位を確認するようにしてもよい。 The degree of reduction is controlled by sampling the obtained slag, analyzing the Co grade, and determining whether the Co grade is 1% by mass or less. For example, if the Co grade in the slag exceeds 1% by mass, control is performed to increase the degree of reduction by adding a reducing agent. The method for confirming the Co grade in the slag is not particularly limited, and examples thereof include a method of sampling the slag, pulverizing it, and confirming it with a fluorescent X-ray analyzer. Alternatively, the relationship between the Co grade in the slag and the oxygen concentration in the melt may be confirmed in advance, and the Co grade may be checked by measuring the oxygen concentration in the melt with an oxygen sensor.
 スラグ中のCo品位を指標にした還元度の制御において、還元度を高める(還元側に振る)方法、あるいは還元度を低くする(酸化側に振る)方法は、公知の方法で行えばよい。例えば、加熱熔融の処理に供される原料やそれが熔解した熔体に還元剤や酸化剤を導入する方法が挙げられる。還元剤としては、炭素品位の高い材料(黒鉛粉、黒鉛粒、石炭、コークス等)や一酸化炭素などを用いることができる。加熱熔融の処理に供される原料のうち炭素品位の高い成分を還元剤として用いることもできる。また、酸化剤としては、酸化性ガス(空気、酸素等)や炭素品位の低い材料を用いることができる。加熱熔融の処理に供される原料のうち炭素品位の低い成分を酸化剤として用いることもできる。 In controlling the degree of reduction using the grade of Co in the slag as an index, a method of increasing the degree of reduction (shifting to the reduction side) or a method of decreasing the degree of reduction (shifting to the oxidation side) may be performed by a known method. For example, there is a method of introducing a reducing agent or an oxidizing agent into the raw material to be subjected to the heating and melting process or into the melt obtained by melting the raw material. As the reducing agent, a material having a high carbon grade (graphite powder, graphite grains, coal, coke, etc.), carbon monoxide, or the like can be used. A component having a high carbon grade among the raw materials to be subjected to the heat melting process can also be used as a reducing agent. As the oxidizing agent, an oxidizing gas (air, oxygen, etc.) or a material with a low carbon grade can be used. A component having a low carbon grade among the raw materials to be subjected to the heat melting process can also be used as the oxidizing agent.
 また、還元剤や酸化剤の導入方法についても、公知の方法で行えばよい。例えば、還元剤や酸化剤が固体状物質である場合には、これを原料や熔体に投入して導入すればよい。還元剤や酸化剤がガス状物質である場合には、熔融炉に設けられたランス等の導入口からこれを吹き込んで導入すればよい。また、還元剤や酸化剤の導入タイミングについても、特に限定されず、例えば、加熱熔融の処理に供される原料を熔融炉内に投入する際に還元剤や酸化剤も併せて導入してもよく、あるいは原料が熔融して熔体になった段階で還元剤や酸化剤を導入してもよい。 Also, the method of introducing the reducing agent and the oxidizing agent may be performed by a known method. For example, if the reducing agent or oxidizing agent is a solid substance, it can be introduced by putting it into the raw material or melt. When the reducing agent or oxidizing agent is a gaseous substance, it can be introduced by blowing it through an inlet such as a lance provided in the melting furnace. In addition, the timing of introduction of the reducing agent and oxidizing agent is not particularly limited. Alternatively, a reducing agent or an oxidizing agent may be introduced at the stage when the raw materials are melted to form a melt.
 加熱熔融の処理に際しては、原料にフラックスを添加してもよい。フラックスを添加することで、熔融処理温度を低温化することができ、また不純物元素のリン(P)の除去をより一層進めることができる。フラックスとしては、不純物元素を取り込んで融点の低い塩基性酸化物を形成する元素を含むものであることが好ましい。例えば、リンは酸化すると酸性酸化物になるため、加熱熔融により形成されるスラグが塩基性になるほどそのスラグにリンを取り込ませて除去し易くなる。その中でも、安価であり常温において安定なカルシウム化合物を含むものがより好ましい。カルシウム化合物としては、例えば、酸化カルシウム(CaO)や炭酸カルシウム(CaCO)を挙げることができる。 Flux may be added to the raw material during the heat melting process. By adding flux, the melting temperature can be lowered, and the removal of phosphorus (P), which is an impurity element, can be further promoted. The flux preferably contains an element that takes in impurity elements to form a basic oxide with a low melting point. For example, since phosphorus is oxidized to an acidic oxide, the more basic the slag formed by heating and melting, the easier it is to incorporate phosphorus into the slag and remove it. Among them, those containing calcium compounds that are inexpensive and stable at room temperature are more preferable. Examples of calcium compounds include calcium oxide (CaO) and calcium carbonate (CaCO 3 ).
 原料を加熱熔融する際の加熱温度は、特に限定されないが、1300℃以上1600℃以下とすることが好ましい。加熱温度を1300℃以上にすることで、有価金属(例えば、Cu、Co、Ni)が十分に熔融し、流動性が高められた状態で合金を形成する。それにより、後述するスラグ分離工程にて合金とスラグとの分離を効率的に行うことが可能となる。また、加熱温度は1350℃以上とすることがより好ましい。一方で、加熱温度が1600℃を超えると、熱エネルギーが無駄に消費されるとともに、坩堝や炉壁等の耐火物の消耗が激しくなり、生産性が低下するおそれがある。 Although the heating temperature for heating and melting the raw materials is not particularly limited, it is preferably 1300°C or higher and 1600°C or lower. By setting the heating temperature to 1300° C. or higher, the valuable metals (eg, Cu, Co, Ni) are sufficiently melted to form an alloy with enhanced fluidity. As a result, it becomes possible to efficiently separate the alloy and the slag in the slag separation step, which will be described later. Moreover, it is more preferable to set the heating temperature to 1350° C. or higher. On the other hand, if the heating temperature exceeds 1600° C., thermal energy is wasted and refractories such as the crucible and furnace walls are rapidly worn, which may reduce productivity.
 [予備加熱工程]
 必要に応じて、熔融工程の前に、原料を予備加熱(酸化焙焼)して予備加熱物(酸化焙焼物)にする工程(予備加熱工程)を設けてもよい。
[Preheating step]
If necessary, a step (preheating step) may be provided before the melting step to preheat (oxidize and roast) the raw material to obtain a preheated product (oxidized roast).
 予備加熱工程(酸化焙焼工程)では、熔融工程に供される原料を予備加熱することによってその原料に含まれる炭素量を減少させる。このような予備加熱工程を設けることで、熔融工程に供される原料が炭素を過剰に含む場合であっても、その炭素を有効に酸化除去することができ、後続する熔融工程での加熱熔融の処理において有価金属の合金一体化を促進させることができる。 In the preheating process (oxidizing roasting process), the amount of carbon contained in the raw material to be supplied to the melting process is reduced by preheating the raw material. By providing such a preheating step, even if the raw material to be subjected to the melting step contains excessive carbon, the carbon can be effectively oxidized and removed, and the heating and melting in the subsequent melting step can be performed. can promote alloy integration of valuable metals in the processing of
 より具体的には、熔融工程における加熱熔融の処理では、有価金属は還元されて局所的な熔融微粒子になるが、このとき、原料中の炭素が、熔融微粒子(有価金属)が凝集する際の物理的な障害になることがある。熔融微粒子の凝集一体化が妨げられると、生成する合金とスラグの分離を妨げ、有価金属の回収率の低下をもたらすことがある。これに対して、加熱熔融の処理に先立ち予備加熱工程にて原料を予備加熱して炭素を除去しておくことで、熔融微粒子の凝集一体化を効率的に進行させ、有価金属の回収率をより一層に高めることが可能になる。また、リンは比較的還元されやすい不純物元素であるため、原料中に炭素が過剰に存在すると、リンが還元されて有価金属と共に合金に取り込まれるおそれがある。その点においても、予備加熱によって原料中の過剰な炭素を予め除去しておくことで、合金へのリンの混入を防ぐことができる。 More specifically, in the heating and melting process in the melting process, the valuable metal is reduced and becomes locally molten fine particles. It can be a physical obstacle. If the agglomeration and integration of molten fine particles is hindered, the separation of the produced alloy and slag may be hindered, resulting in a decrease in the recovery rate of valuable metals. On the other hand, by preheating the raw material in the preheating process to remove the carbon prior to the heat melting process, the aggregation and integration of the molten fine particles can be efficiently advanced, and the recovery rate of the valuable metal can be improved. It is possible to raise it further. In addition, since phosphorus is an impurity element that is relatively easily reduced, if carbon is excessively present in the raw material, phosphorus may be reduced and incorporated into the alloy together with the valuable metal. In this respect as well, by removing excess carbon in the raw material in advance by preheating, it is possible to prevent phosphorus from being mixed into the alloy.
 なお、予備加熱の処理を行って得られる予備加熱物(酸化焙焼物)の炭素量としては1質量%未満となるようにすることが好ましい。 The carbon content of the preheated product (oxidized roasted product) obtained by preheating is preferably less than 1% by mass.
 また、予備加熱工程を設けることで、酸化のばらつきを抑えることもできる。予備加熱工程での予備加熱の処理は、熔融工程に供される原料に含まれる付加価値の低い金属(Al等)を酸化することが可能な酸化度で処理(酸化焙焼)を行うことが望ましい。一方で、予備加熱の処理温度、時間及び/又は雰囲気を調整することで、酸化度を容易に制御することができる。そのため、予備加熱の処理において、酸化度をより厳密に調整することができ、酸化のばらつきを抑制することができる。 In addition, by providing a preheating process, it is possible to suppress variations in oxidation. The preheating treatment in the preheating step can be performed at an oxidation degree (oxidative roasting) that can oxidize low-value-added metals (such as Al) contained in the raw material to be subjected to the melting step. desirable. On the other hand, the degree of oxidation can be easily controlled by adjusting the treatment temperature, time and/or atmosphere of preheating. Therefore, in the preheating process, the degree of oxidation can be adjusted more strictly, and variations in oxidation can be suppressed.
 なお、酸化度の調整は、次のようにして行う。上述したように、アルミニウム(Al)、リチウム(Li)、炭素(C)、マンガン(Mn)、リン(P)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)及び銅(Cu)は、一般的に、Al>Li>C>Mn>P>Fe>Co>Ni>Cuの順に酸化されていく。予備加熱工程では、原料中にアルミニウム(Al)が含まれる場合には、そのAlの全量が酸化されるまで酸化を進行させる。鉄(Fe)の一部が酸化されるまで酸化を促進させてもよいが、コバルト(Co)が酸化されてスラグへ分配されることがない程度に酸化度を留めることが好ましい。 The degree of oxidation is adjusted as follows. As mentioned above, aluminum (Al), lithium (Li), carbon (C), manganese (Mn), phosphorus (P), iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) are , generally in the order of Al>Li>C>Mn>P>Fe>Co>Ni>Cu. In the preheating step, if aluminum (Al) is contained in the raw material, oxidation is allowed to progress until all of the Al is oxidized. Oxidation may be accelerated until some of the iron (Fe) is oxidized, but it is preferable to limit the degree of oxidation to such an extent that cobalt (Co) is not oxidized and distributed to the slag.
 予備加熱の処理は、酸化剤の存在下で行うことが好ましい。これにより、不純物元素である炭素(C)の酸化除去を効率的に行うことができる。また、その酸化剤としては、特に限定されないが、取り扱いが容易であるという点で、酸素含有ガス(空気、純酸素、酸素富化ガス等)が好ましい。また、酸化剤の導入量としては、例えば、酸化処理の対象となる各物質の酸化に必要な化学当量の1.2倍程度が好ましい。 The preheating process is preferably carried out in the presence of an oxidizing agent. As a result, carbon (C), which is an impurity element, can be efficiently removed by oxidation. The oxidizing agent is not particularly limited, but an oxygen-containing gas (air, pure oxygen, oxygen-enriched gas, etc.) is preferable because it is easy to handle. Moreover, the amount of the oxidizing agent to be introduced is preferably, for example, about 1.2 times the chemical equivalent required for oxidizing each substance to be oxidized.
 予備加熱の加熱温度は、700℃以上1100℃以下が好ましい。700℃以上であれば、炭素の酸化効率をより一層に高めることができ、酸化時間を短縮することができる。また、1100℃以下とすることで、熱エネルギーコストを抑制することができ、予備加熱の効率を高めることができる。また、予備加熱温度は、800℃以上であってもよく、900℃以下であってもよい。 The heating temperature for preheating is preferably 700°C or higher and 1100°C or lower. If the temperature is 700° C. or higher, the oxidation efficiency of carbon can be further increased, and the oxidation time can be shortened. Further, by setting the temperature to 1100° C. or less, the thermal energy cost can be suppressed and the efficiency of preheating can be improved. Also, the preheating temperature may be 800° C. or higher or 900° C. or lower.
 予備加熱の処理は、公知の焙焼炉を用いて行うことができる。また、後続する熔融工程での処理で使用する熔融炉とは異なる炉(予備炉)を用い、その予備炉内で行うことが好ましい。予備加熱炉として、処理対象の原料を焙焼しながら酸化剤(酸素等)を供給してその内部で酸化処理を行うことが可能な炉である限り、あらゆる形式の炉を用いることができる。一例して、従来公知のロータリーキルン、トンネルキルン(ハースファーネス)が挙げられる。 The preheating process can be performed using a known roasting furnace. Moreover, it is preferable to use a furnace (preliminary furnace) different from the melting furnace used in the subsequent melting process, and to carry out the treatment in the preliminarily furnace. As the preheating furnace, any type of furnace can be used as long as it is a furnace capable of performing an oxidation treatment inside by supplying an oxidizing agent (such as oxygen) while roasting the raw material to be treated. Examples include conventionally known rotary kilns and tunnel kilns (Haas furnaces).
 [スラグ分離工程]
 スラグ分離工程では、熔融工程での加熱熔融により得られた熔融物からスラグを分離して、有価金属を含む合金を回収する。熔融物において、合金とスラグとはその比重が異なる。そのため、合金に比べ比重の小さいスラグは合金の上部に集まり、比重分離によって容易にスラグを分離回収することができる。また、合金とスラグとを含む熔融物を鋳型等に排出し、その鋳型内で合金とスラグとの比重差により分離させ固化させた後、上側のスラグを取り除き、固化した合金を回収してもよい。
[Slag separation process]
In the slag separation step, slag is separated from the melt obtained by heating and melting in the melting step to recover an alloy containing valuable metals. In the melt, the alloy and slag have different specific gravities. Therefore, the slag having a lower specific gravity than the alloy gathers in the upper part of the alloy, and the slag can be easily separated and recovered by specific gravity separation. Alternatively, the molten material containing the alloy and slag is discharged into a mold or the like, and after the alloy and slag are separated and solidified in the mold due to the difference in specific gravity, the upper slag is removed and the solidified alloy is recovered. good.
 なお、スラグ分離工程にてスラグを分離した後に、得られた合金を硫化する硫化工程や、得られた硫化物あるいは合金を粉砕する粉砕工程を設けてもよい。さらに、このような乾式製錬プロセスを経て得られた有価金属の合金に湿式製錬プロセスを施してもよい。湿式製錬プロセスにより、不純物成分をさらに除去して有価金属(例えばCu、Ni、Co)を分離精製し、それぞれを回収することができる。湿式製錬プロセスにおける処理としては、中和処理や溶媒抽出処理等の公知の手法が挙げられる。 After the slag is separated in the slag separation step, a sulfurization step of sulfurizing the obtained alloy or a pulverization step of pulverizing the obtained sulfide or alloy may be provided. Further, alloys of valuable metals obtained through such pyrometallurgical processes may be subjected to hydrometallurgical processes. By the hydrometallurgical process, impurity components can be further removed, valuable metals (eg, Cu, Ni, Co) can be separated and refined, and each of them can be recovered. Examples of treatments in the hydrometallurgical process include known techniques such as neutralization treatment and solvent extraction treatment.
 以上のように、本実施の形態に係る有価金属の製造方法では、準備工程において加熱熔融の処理に供する原料中のFe/Coの質量比を制限し、かつ熔融工程において得られるスラグ中のCo品位を制御して加熱熔融の処理を施すようにする。このような方法によれば、高いコバルト回収率を維持しながら、合金(メタル)中のFe品位を低減でき、有価金属をより効率的に回収することができる。具体的には、例えば、コバルト回収率を90%以上に維持しながら、合金のFe品位を5質量%以下にすることができる。 As described above, in the method for producing a valuable metal according to the present embodiment, the mass ratio of Fe/Co in the raw material to be subjected to the heat melting process is limited in the preparation step, and the Co in the slag obtained in the melting step The quality is controlled and heat melting is applied. According to such a method, the Fe grade in the alloy (metal) can be reduced while maintaining a high cobalt recovery rate, and valuable metals can be recovered more efficiently. Specifically, for example, the Fe content of the alloy can be reduced to 5% by mass or less while maintaining the cobalt recovery rate at 90% or more.
 ここで、「コバルト回収率」とは、最終的に得られる合金と、スラグに含まれるコバルトの含有量を用いて、下記(1)式に従って算出されるものである。
Figure JPOXMLDOC01-appb-M000001
Here, the "cobalt recovery rate" is calculated according to the following formula (1) using the finally obtained alloy and the content of cobalt contained in the slag.
Figure JPOXMLDOC01-appb-M000001
 本実施の形態に係る方法において、その原料(装入物)としては、少なくともコバルト(Co)を含む有価金属を含有する限り、特に限定されないが、廃リチウムイオン電池を含む原料であることが好ましい。廃リチウムイオン電池は、リチウム(Li)及び有価金属(Cu、Ni、Co)を含むとともに、付加価値の低い金属(Al、Fe等)や炭素成分を含んでいる。そのため、廃リチウムイオン電池を含む原料を用いることで、有価金属を効率的に分離回収できる。なお、「廃リチウムイオン電池」とは、使用済みのリチウムイオン電池のみならず、電池を構成する正極材等の製造工程で生じた不良品、製造工程内部の残留物、発生屑等のリチウムイオン電池の製造工程内における廃材を含む概念である。そのため、廃リチウムイオン電池をリチウムイオン電池廃材と言うこともできる。 In the method according to the present embodiment, the raw material (charge) is not particularly limited as long as it contains at least a valuable metal including cobalt (Co), but it is preferably a raw material containing waste lithium ion batteries. . Waste lithium-ion batteries contain lithium (Li) and valuable metals (Cu, Ni, Co), as well as metals with low added value (Al, Fe, etc.) and carbon components. Therefore, by using raw materials including waste lithium ion batteries, valuable metals can be efficiently separated and recovered. "Waste lithium-ion batteries" refers not only to used lithium-ion batteries, but also to defective products such as positive electrode materials that make up the battery during the manufacturing process, residues inside the manufacturing process, and lithium-ion waste such as generated scraps. This is a concept that includes waste materials in the battery manufacturing process. Therefore, waste lithium ion batteries can also be called lithium ion battery waste materials.
 以下では、廃リチウムイオン電池から有価金属を製造する方法について説明する。 Below, we will explain how to manufacture valuable metals from waste lithium-ion batteries.
 ≪2.廃リチウムイオン電池からの有価金属の製造方法≫
 図1は、廃リチウムイオン電池から有価金属を製造する方法の流れの一例を示す工程図である。図1に示すように、この方法は、廃リチウムイオン電池の電解液及び外装缶を除去して廃電池内容物を得る工程(廃電池前処理工程S1)と、廃電池内容物を粉砕して粉砕物とする工程(粉砕工程S2)と、粉砕物を予備加熱して予備加熱物にする工程(予備加熱工程S3)と、予備加熱物を熔融して熔融物にする工程(熔融工程S4)と、熔融物からスラグを分離して合金を回収する工程(スラグ分離工程S5)を有する。また、図示していないが、スラグ分離工程S5の後に、得られた合金を硫化する硫化工程や得られた硫化物あるいは合金を粉砕する粉砕工程(第2粉砕工程)を設けてもよい。
≪2. Method for producing valuable metals from waste lithium-ion batteries>>
FIG. 1 is a process diagram showing an example of the flow of a method for producing valuable metals from waste lithium ion batteries. As shown in FIG. 1, this method includes a step of removing the electrolytic solution and outer can of the waste lithium ion battery to obtain the waste battery contents (waste battery pretreatment step S1), and pulverizing the waste battery contents. A step of forming a pulverized product (pulverizing step S2), a step of preheating the pulverized product into a preheated product (preheating step S3), and a step of melting the preheated product into a molten product (melting step S4). and a step of separating slag from the melt and recovering the alloy (slag separation step S5). Further, although not shown, after the slag separation step S5, a sulfurization step of sulfurizing the obtained alloy and a pulverization step (second pulverization step) of pulverizing the obtained sulfide or alloy may be provided.
 廃リチウムイオン電池には、ニッケル(Ni)、コバルト(Co)、銅(Cu)等の有価金属が含まれる。また、廃リチウムイオン電池には、例えば後述する外装缶の構成材料として鉄(Fe)を含んでいる。図1に示した各工程での処理を経ることで、鉄をはじめとする不純物元素を分離しながら、効果的にそれら有価金属を回収することができる。 Waste lithium-ion batteries contain valuable metals such as nickel (Ni), cobalt (Co), and copper (Cu). Further, the waste lithium ion battery contains iron (Fe) as a constituent material of an outer can, which will be described later, for example. Through the treatment in each step shown in FIG. 1, it is possible to effectively recover valuable metals while separating impurity elements such as iron.
 [廃電池前処理工程、粉砕工程]
  (廃電池前処理工程)
 廃電池前処理工程S1は、廃リチウムイオン電池の爆発防止及び無害化、並びに外装缶の除去を目的に行われる。リチウムイオン電池は密閉系であるため、内部に電解液等を有している。そのため、そのままの状態で粉砕処理を行うと爆発のおそれがあり危険である。何らかの手法で放電処理や電解液除去処理を施すことが好ましい。
[Waste battery pretreatment process, pulverization process]
(Waste battery pretreatment process)
The waste battery pretreatment step S1 is performed for the purpose of preventing the waste lithium ion battery from exploding and rendering it harmless, and removing the outer can. Since the lithium ion battery is a closed system, it contains an electrolytic solution and the like inside. Therefore, if the pulverization process is performed as it is, there is a risk of explosion, which is dangerous. It is preferable to perform discharge treatment or electrolytic solution removal treatment by some method.
 また、リチウムイオン電池を構成する外装缶は、金属であるアルミニウム(Al)や鉄(Fe)から構成されることが多く、こうした金属製の外装缶は、そのまま回収することが比較的容易なものである。 In addition, outer cans that constitute lithium-ion batteries are often made of metals such as aluminum (Al) and iron (Fe), and such metal outer cans are relatively easy to collect as they are. is.
 このように、廃電池前処理工程S1にて電解液や外装缶を除去することで、安全性を高めるとともに、有価金属(Cu、Ni、Co)の回収率を高めることができる。 In this way, by removing the electrolyte and the outer can in the waste battery pretreatment step S1, it is possible to improve safety and increase the recovery rate of valuable metals (Cu, Ni, Co).
 廃電池前処理の具体的な方法は、特に限定されない。例えば、針状の刃先で廃リチウムイオン電池を物理的に開孔し、電解液を除去する手法が挙げられる。また、廃リチウムイオン電池を加熱して、電解液を燃焼させて無害化する手法が挙げられる。 The specific method of waste battery pretreatment is not particularly limited. For example, there is a method of physically opening a hole in a waste lithium ion battery with a needle-like cutting edge to remove the electrolyte. Another method is to heat the waste lithium ion battery to burn the electrolytic solution to render it harmless.
 廃電池前処理工程S1において、外装缶に含まれるアルミニウムや鉄を回収する場合には、除去した外装缶を粉砕した後に、その粉砕物を篩振とう機を用いて篩分けしてもよい。アルミニウムは軽度の粉砕で容易に粉状になるため、これを効率的に回収することができる。また、磁力選別によって、外装缶に含まれる鉄を回収してもよい。 In the waste battery pretreatment step S1, when recovering aluminum and iron contained in the outer can, after pulverizing the removed outer can, the pulverized material may be sieved using a sieve shaker. Since aluminum can be easily pulverized by light pulverization, it can be efficiently recovered. Alternatively, the iron contained in the outer can may be recovered by magnetic separation.
  (粉砕工程)
 粉砕工程S2では、廃リチウムイオン電池の内容物を粉砕して粉砕物を得る。この工程は、乾式製錬プロセスでの反応効率を高めることを目的にしている。反応効率を高めることで、有価金属(Cu、Ni、Co)の回収率を高めることができる。
(Pulverization process)
In the pulverization step S2, the content of the waste lithium ion battery is pulverized to obtain a pulverized material. This step is intended to increase the reaction efficiency in the pyrometallurgical process. By increasing the reaction efficiency, the recovery rate of valuable metals (Cu, Ni, Co) can be increased.
 具体的な粉砕方法については、特に限定されない。カッターミキサー等の従来公知の粉砕機を用いて粉砕することができる。 The specific crushing method is not particularly limited. It can be pulverized using a conventionally known pulverizer such as a cutter mixer.
 ここで、廃電池前処理工程S1、あるいは廃電池前処理工程S1及び粉砕工程S2は、上述した準備工程に相当する。すなわち、本実施の形態に係る方法では、原料中のコバルト(Co)に対する鉄(Fe)の質量比(Fe/Co)を0.5以下に制御することを特徴としている。このようにFe/Coの質量比を制限することで、後述する熔融工程S4での加熱熔融の処理を経て得られる合金(メタル)中の鉄品位を低減することができる。 Here, the waste battery pretreatment step S1, or the waste battery pretreatment step S1 and the crushing step S2 correspond to the preparatory steps described above. That is, the method according to the present embodiment is characterized by controlling the mass ratio (Fe/Co) of iron (Fe) to cobalt (Co) in the raw material to 0.5 or less. By limiting the mass ratio of Fe/Co in this way, it is possible to reduce the iron grade in the alloy (metal) obtained through the heating and melting treatment in the melting step S4, which will be described later.
 [予備加熱工程]
 予備加熱工程(酸化焙焼工程)S3では、粉砕工程S2で得られた粉砕物を予備加熱(酸化焙焼)して予備加熱物(酸化焙焼物)を得る。この工程の詳細は上述したとおりであり、予備加熱工程にて予備加熱を行うことで、熔融工程S4に供される原料が炭素を過剰に含む場合であっても、その炭素を有効に酸化除去することができ、加熱熔融の処理において有価金属の合金一体化を促進させることができる。
[Preheating step]
In the preheating step (oxidizing roasting step) S3, the pulverized product obtained in the crushing step S2 is preheated (oxidizing roasting) to obtain a preheated product (oxidizing roasting product). The details of this step are as described above, and by preheating in the preheating step, even if the raw material supplied to the melting step S4 contains excessive carbon, the carbon is effectively removed by oxidation. and can promote the alloying integration of the valuable metals in the heat-melting process.
 [熔融工程]
 熔融工程S4では、予備加熱工程S3で得られた予備加熱物を熔融して熔融物を得る。この工程の詳細は上述したとおりである。
[Melting process]
In the melting step S4, the preheated material obtained in the preheating step S3 is melted to obtain a molten material. The details of this step are as described above.
 特に、本実施の形態に係る方法では、Fe/Coの質量比を0.5以下とした原料を熔融炉内に装入して加熱熔融の処理に付し、その加熱熔融の処理により得られるスラグ中のCo品位を還元度の指標として、具体的にはスラグ中のCo品位が1質量%以下となるように還元度を制御することを特徴としている。これにより、高いCo回収率を維持しながら、得られる合金中のFeを低減することができ、その結果、有価金属を効率的に回収することが可能となる。 In particular, in the method according to the present embodiment, a raw material having an Fe/Co mass ratio of 0.5 or less is charged into a melting furnace and subjected to a heat melting process, and the heat melting process is performed to obtain Using the Co grade in the slag as an index of the degree of reduction, specifically, the reduction degree is controlled so that the Co grade in the slag is 1% by mass or less. This makes it possible to reduce Fe in the obtained alloy while maintaining a high Co recovery rate, and as a result, it is possible to efficiently recover valuable metals.
 [スラグ分離工程]
 スラグ分離工程S5では、熔融工程S4で得られた熔融物からスラグを分離して合金(メタル)を回収する。この工程の詳細は先述したとおりであり、メタルとスラグとをその比重差によって容易に分離して回収することができる。
[Slag separation process]
In the slag separation step S5, slag is separated from the melt obtained in the melting step S4 to recover the alloy (metal). The details of this process are as described above, and the metal and the slag can be easily separated and recovered due to the difference in their specific gravities.
 なお、上述したように、スラグ分離工程S5後に硫化工程や粉砕工程を設けてもよい。また、回収した有価金属を含む合金に対して湿式製錬プロセスを行うことによって、各有価金属を分離精製してもよい。 Note that, as described above, the sulfurization process and the pulverization process may be provided after the slag separation process S5. Alternatively, each valuable metal may be separated and refined by subjecting an alloy containing the recovered valuable metal to a hydrometallurgical process.
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Examples of the present invention will be described below in more detail, but the present invention is not limited to the following examples.
 (1)有価金属の製造
 廃リチウムイオン電池を原料(装入物)として用い、以下の工程を順次実行して有価金属を製造した。
(1) Production of Valuable Metal Using waste lithium ion batteries as a raw material (injection), the following steps were sequentially carried out to produce valuable metals.
  [廃電池前処理工程、粉砕工程(準備工程)]
 原料の廃リチウムイオン電池として、使用済み電池及び電池製造工程で回収した不良品を準備した。この廃リチウムイオン電池をまとめて塩水中に浸漬して放電させた後、水分を除去し、大気中260℃で焙焼することにより電解液を除去して電池内容物を得た。
[Waste battery pretreatment process, pulverization process (preparation process)]
Used batteries and defective products collected in the battery manufacturing process were prepared as waste lithium ion batteries as raw materials. The waste lithium ion batteries were collectively immersed in salt water to discharge, then moisture was removed, and the batteries were roasted at 260° C. in the air to remove the electrolyte to obtain battery contents.
 得られた電池内容物を粉砕機(商品名:グッドカッター、株式会社氏家製作所製)により粉砕して粉砕物を得た。得られた粉砕物から篩及び磁石により鉄を除去し、原料中のFe/Coの質量比を下記表1に示す所定の値となるように調整した。 The resulting battery content was pulverized with a pulverizer (trade name: Good Cutter, manufactured by Ujiie Seisakusho Co., Ltd.) to obtain a pulverized product. Iron was removed from the pulverized material obtained by using a sieve and a magnet, and the mass ratio of Fe/Co in the raw material was adjusted to a predetermined value shown in Table 1 below.
  [予備加熱工程]
 得られた粉砕物をロータリーキルンに投入し、大気中800℃で180分間の条件で予備加熱を行い、予備加熱物(加熱熔融の処理原料)を得た。
[Preheating step]
The pulverized material thus obtained was put into a rotary kiln and preheated in the atmosphere at 800° C. for 180 minutes to obtain a preheated material (raw material for heating and melting).
  [熔融工程]
 予備加熱した粉砕物(加熱熔融の処理原料)に、フラックスとして酸化カルシウム(CaO)を添加し、さらに還元剤として黒鉛粉を添加して、これらを混合した。得られた混合物を容量1Lのアルミナ製坩堝に装入し、これを抵抗加熱によって1400℃の温度で加熱熔融して熔体とした。その後、熔融合金とスラグとを含む熔融物を得た。
[Melting process]
Calcium oxide (CaO) as a flux and graphite powder as a reducing agent were added to the preheated pulverized material (raw material for heat melting) and mixed. The resulting mixture was charged into an alumina crucible with a capacity of 1 L and heated and melted at a temperature of 1400° C. by resistance heating to form a melt. After that, a melt containing the fusion metal and slag was obtained.
 加熱熔融の際には、生成したスラグをサンプリングしてCo品位を分析し、そのCo品位が1質量%を超えていれば、還元剤を追加して還元度を制御する操作を行い、スラグ中のCo品位が1質量%以下となるようにした。 During the heat melting, the generated slag is sampled to analyze the Co grade, and if the Co grade exceeds 1% by mass, a reducing agent is added to control the degree of reduction, and the slag is was made to have a Co grade of 1% by mass or less.
  [スラグ分離工程]
 得られた熔融物から、比重差を利用してスラグを分離し、合金(メタル)を回収した。
[Slag separation process]
The slag was separated from the obtained melt by utilizing the difference in specific gravity, and the alloy (metal) was recovered.
 (2)評価
 回収した合金(メタル)について、ICP分析装置(Agilent5100SUDV,アジレントテクノロジー株式会社製)を用いて元素分析を行った。有価金属であるニッケル(Ni)、コバルト(Co)、及び銅(Cu)と、メタルからの除去が難しい不純物である鉄(Fe)をその分析対象の元素とした。また、合金中の鉄の含有量(質量%)を鉄品位(Fe品位)とした。
(2) Evaluation The recovered alloy (metal) was subjected to elemental analysis using an ICP analyzer (Agilent5100SUDV, manufactured by Agilent Technologies). Nickel (Ni), cobalt (Co), and copper (Cu), which are valuable metals, and iron (Fe), which is an impurity that is difficult to remove from metals, were the elements to be analyzed. Also, the content (% by mass) of iron in the alloy was defined as the iron grade (Fe grade).
 また、コバルトの回収率を次のようにして求めた。すなわち、元素分析により求めた合金及びスラグ中のコバルトの含有量を用いて、下記(1)式に従って算出した。
Figure JPOXMLDOC01-appb-M000002
Also, the recovery rate of cobalt was determined as follows. That is, it was calculated according to the following formula (1) using the content of cobalt in the alloy and slag determined by elemental analysis.
Figure JPOXMLDOC01-appb-M000002
 (3)結果
 下記表1に、合金中のFe品位とCo回収率の結果を示す。
(3) Results Table 1 below shows the Fe grade in the alloy and the Co recovery rate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果からわかるように、実施例1~7は、Co回収率が90%以上であり、かつ合金中のFe品位が5質量%以下となり、高いCo回収率と合金中Fe品位の低減を両立することができた。 As can be seen from the results in Table 1, in Examples 1 to 7, the Co recovery rate is 90% or more, and the Fe quality in the alloy is 5% by mass or less, resulting in a high Co recovery rate and a reduction in the Fe quality in the alloy. was able to reconcile
 一方で、比較例1では、Co回収率は高くなったものの、合金中Fe品位が5質量%を超える結果となった。このことは、原料中のFe/Coが高いため、高いCo回収率を目的として還元度を上げるとFeも還元され、その結果合金中Fe品位が高くなったと考えられる。また、比較例2、3では、合金中Fe品位は低減されたものの、Co回収率が90%を下回った。比較例2では、原料中のFe/Coが高いため、合金中Fe品位の低減を目的として還元度を下げるとCoの還元も進行せず、その結果Co回収率が低くなったと考えられる。比較例3でも、合金中Fe品位の低減を目的として還元度を下げるとCoの還元も進行せず、その結果Co回収率が低くなったと考えられる。 On the other hand, in Comparative Example 1, although the Co recovery rate was high, the Fe content in the alloy exceeded 5% by mass. This is thought to be due to the high Fe/Co ratio in the raw material, and therefore, when the degree of reduction is increased for the purpose of achieving a high Co recovery rate, Fe is also reduced, resulting in an increase in the Fe grade in the alloy. Moreover, in Comparative Examples 2 and 3, although the Fe grade in the alloy was reduced, the Co recovery rate was less than 90%. In Comparative Example 2, since the Fe/Co ratio in the raw material was high, if the degree of reduction was lowered for the purpose of reducing the Fe grade in the alloy, the reduction of Co did not progress, and as a result, the Co recovery rate was low. Also in Comparative Example 3, if the degree of reduction was lowered for the purpose of reducing the Fe grade in the alloy, the reduction of Co did not proceed, and as a result, the Co recovery rate was low.

Claims (5)

  1.  コバルト(Co)を含む有価金属を製造する方法であって、以下の工程;
     少なくとも鉄(Fe)及び有価金属を含む原料を準備する準備工程と、
     前記原料を加熱熔融して熔体にした後に、該熔体を合金とスラグとを含む熔融物にする熔融工程と、
     前記熔融物からスラグを分離して、有価金属を含む合金を回収するスラグ分離工程と、
     を有し、
     前記準備工程では、原料中のFe/Coの質量比を0.5以下に制御し、
     前記熔融工程では、前記原料を加熱熔融して得られるスラグ中のCo品位を1質量%以下とする、
     有価金属の製造方法。
    A method for producing valuable metals including cobalt (Co), comprising the steps of;
    a preparation step of preparing a raw material containing at least iron (Fe) and a valuable metal;
    a melting step of heating and melting the raw material to form a melt, and then converting the melt into a melt containing an alloy and slag;
    a slag separation step of separating slag from the melt and recovering an alloy containing valuable metals;
    has
    In the preparation step, the mass ratio of Fe/Co in the raw material is controlled to 0.5 or less,
    In the melting step, the Co grade in the slag obtained by heating and melting the raw material is set to 1% by mass or less,
    A method for producing valuable metals.
  2.  前記原料を加熱熔融して得られる合金中のFe品位は5質量%以下である、
     請求項1に記載の有価金属の製造方法。
    The Fe grade in the alloy obtained by heating and melting the raw material is 5% by mass or less.
    The method for producing a valuable metal according to claim 1.
  3.  前記原料は、廃リチウムイオン電池を含む、
     請求項1又は2に記載の有価金属の製造方法。
    The raw material includes waste lithium ion batteries,
    3. The method for producing a valuable metal according to claim 1 or 2.
  4.  前記廃リチウムイオン電池に用いられている外装缶が鉄を含有する、
     請求項3に記載の有価金属の製造方法。
    The outer can used in the waste lithium ion battery contains iron.
    The method for producing a valuable metal according to claim 3.
  5.  前記熔融工程において、前記熔体に酸化剤及び/又は還元剤を添加することによって前記スラグ中のCo品位を調整する、
     請求項1乃至4のいずれかに記載の有価金属の製造方法。
     
    In the melting step, the Co grade in the slag is adjusted by adding an oxidizing agent and/or a reducing agent to the melt.
    5. The method for producing a valuable metal according to any one of claims 1 to 4.
PCT/JP2022/011395 2021-06-15 2022-03-14 Method for producing valuable metal WO2022264569A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3222003A CA3222003A1 (en) 2021-06-15 2022-03-14 Method for producing valuable metal
EP22822860.7A EP4357470A1 (en) 2021-06-15 2022-03-14 Method for producing valuable metal
CN202280040849.4A CN117441034A (en) 2021-06-15 2022-03-14 Method for producing valuable metal
KR1020247000562A KR20240019266A (en) 2021-06-15 2022-03-14 Methods of producing valuable metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-099359 2021-06-15
JP2021099359A JP7215521B2 (en) 2021-06-15 2021-06-15 Valuable metal manufacturing method

Publications (1)

Publication Number Publication Date
WO2022264569A1 true WO2022264569A1 (en) 2022-12-22

Family

ID=84527005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011395 WO2022264569A1 (en) 2021-06-15 2022-03-14 Method for producing valuable metal

Country Status (6)

Country Link
EP (1) EP4357470A1 (en)
JP (1) JP7215521B2 (en)
KR (1) KR20240019266A (en)
CN (1) CN117441034A (en)
CA (1) CA3222003A1 (en)
WO (1) WO2022264569A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057238A (en) * 2010-09-13 2012-03-22 Sumitomo Metal Mining Co Ltd Method for recovering cobalt
JP2012224877A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
JP2012251220A (en) * 2011-06-03 2012-12-20 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
JP2013091826A (en) * 2011-10-25 2013-05-16 Sumitomo Metal Mining Co Ltd Valuable metal recovery method
JP2017526820A (en) * 2014-08-14 2017-09-14 ユミコア Process for melting lithium ion batteries

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747201B2 (en) 1991-01-14 1995-05-24 リョービ株式会社 Automatic molten water heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057238A (en) * 2010-09-13 2012-03-22 Sumitomo Metal Mining Co Ltd Method for recovering cobalt
JP2012224877A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
JP2012251220A (en) * 2011-06-03 2012-12-20 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
JP2013091826A (en) * 2011-10-25 2013-05-16 Sumitomo Metal Mining Co Ltd Valuable metal recovery method
JP5853585B2 (en) 2011-10-25 2016-02-09 住友金属鉱山株式会社 Valuable metal recovery method
JP2017526820A (en) * 2014-08-14 2017-09-14 ユミコア Process for melting lithium ion batteries
JP6542354B2 (en) 2014-08-14 2019-07-10 ユミコア Process for dissolving lithium ion batteries

Also Published As

Publication number Publication date
JP2022190869A (en) 2022-12-27
JP7215521B2 (en) 2023-01-31
CA3222003A1 (en) 2022-12-22
KR20240019266A (en) 2024-02-14
EP4357470A1 (en) 2024-04-24
CN117441034A (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP7226404B2 (en) Methods of recovering valuable metals
JP7338326B2 (en) Methods of recovering valuable metals
JP7363207B2 (en) How to recover valuable metals
WO2021205903A1 (en) Method for recovering valuable metal
JP2022117640A (en) Method for recovering valuable metal
JP7400333B2 (en) How to recover valuable metals
WO2023032495A1 (en) Method for producing valuable metal
JP7226403B2 (en) Methods of recovering valuable metals
JP7215521B2 (en) Valuable metal manufacturing method
JP7363206B2 (en) How to recover valuable metals
JP7215522B2 (en) Valuable metal manufacturing method
JP2022085446A (en) Method for recovering valuable metal
WO2023026769A1 (en) Method for recovering valuable metals
WO2022163179A1 (en) Method for recovering valuable metal
JP7220840B2 (en) Valuable metal manufacturing method
JP7238939B2 (en) Valuable metal manufacturing method
WO2023286387A1 (en) Production method for valuable metals
WO2023162361A1 (en) Production method for valuable metals
WO2022224711A1 (en) Method for producing valuable metal
WO2022224719A1 (en) Method for producing valuable metal
JP2022085447A (en) Method for recovering valuable metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22822860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040849.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3222003

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20247000562

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000562

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022822860

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022822860

Country of ref document: EP

Effective date: 20240115