WO2022264442A1 - Current-limiting device - Google Patents

Current-limiting device Download PDF

Info

Publication number
WO2022264442A1
WO2022264442A1 PCT/JP2021/037225 JP2021037225W WO2022264442A1 WO 2022264442 A1 WO2022264442 A1 WO 2022264442A1 JP 2021037225 W JP2021037225 W JP 2021037225W WO 2022264442 A1 WO2022264442 A1 WO 2022264442A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid chamber
damper
control liquid
movable shaft
limiting device
Prior art date
Application number
PCT/JP2021/037225
Other languages
French (fr)
Japanese (ja)
Inventor
敬 丸島
芳明 網田
慧 小川
和長 金谷
暁斗 齊藤
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Publication of WO2022264442A1 publication Critical patent/WO2022264442A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • H01H33/34Power arrangements internal to the switch for operating the driving mechanism using fluid actuator hydraulic

Definitions

  • An embodiment of the present invention relates to a current limiting device.
  • Current-limiting devices for example, limit the short-circuit current that flows in the power supply line of the power system. placed.
  • a circuit breaker installed in a power system When a circuit breaker installed in a power system is opened, a pair of electrodes arranged in the circuit breaker are mechanically separated. However, since the voltage in the power system is high, arc current may continue to flow even after the pair of electrodes are mechanically disconnected.
  • Current limiting devices are used to limit large currents, including arc currents, generated by system faults.
  • a short-circuit current will occur.
  • power systems and the like are interconnected over a wide area.
  • the current will concentrate from power sources in a wider area and flow into the fault point, so the maximum value of the short-circuit current will increase. .
  • the short-circuit current may be a DC component superimposed with an AC component.
  • the maximum current value of the short-circuit current in which the AC component is superimposed on the DC component is excessive. Since the electric power system has a resistance component, the peak value of the first wave after the occurrence of the short-circuit current becomes the maximum current, and then the DC component attenuates with time.
  • a conventional current limiting device for example, has a structure in which a pair of electrodes arranged to face each other is driven by a driving mechanism to bring the electrodes into contact and apart.
  • a driving mechanism for example, a spring is used as the drive source of the drive mechanism.
  • the responsiveness is low and it is insufficient as a drive mechanism for the current limiting device.
  • the problem to be solved by the present invention is to provide a highly responsive current limiting device.
  • the current limiting device of the embodiment has a closed container, a fixed electrode, a movable electrode, and an operating mechanism.
  • the sealed container is filled with a filler.
  • a fixed electrode is fixed inside the sealed container.
  • a movable electrode is arranged to face the fixed electrode.
  • the operating mechanism separates and contacts the movable electrode with respect to the fixed electrode.
  • the operating mechanism has an operating section, a control section, an accumulator, a drain tank, and a pump.
  • the operation part opens and closes the movable electrode by supplying and discharging working fluid.
  • the control section has an electromagnetic repulsion mechanism that initiates supply of the hydraulic fluid, and controls supply and discharge of the hydraulic fluid to and from the operation section.
  • An accumulator holds the pressure of the hydraulic fluid.
  • a drain tank stores the hydraulic fluid discharged by the operation unit.
  • a pump supplies hydraulic fluid in the drain tank to the accumulator.
  • the block diagram of the current limiting device 1 of 1st Embodiment The block diagram of the current limiting device 1 of 1st Embodiment.
  • the block diagram of the operation mechanism 4 in the current limiting device of 2nd Embodiment The block diagram of the operation mechanism 4 in the current limiting device of 3rd Embodiment.
  • FIG. 1 and 2 are configuration diagrams of a current limiting device 1 of the first embodiment.
  • FIG. 1 shows the closed state of the current limiting device 1
  • FIG. 2 shows the open state of the current limiting device 1 .
  • the closed state of the current limiting device 1 includes an energized state of the current limiting device 1, and the open state includes a non-energized state.
  • the current limiting device 1 is installed, for example, in a power supply facility such as a substation.
  • the current limiting device 1 includes, for example, a movable electrode 2, a fixed electrode 3, an operating mechanism 4, and a container 5.
  • a filler 6 is enclosed in the container 5 .
  • a first power supply line 7 is connected to the movable electrode 2
  • a second power supply line 8 is connected to the fixed electrode 3 .
  • the first power supply line 7 and the second power supply line 8 extend outside the container 5 and are connected to the power system.
  • the movable electrode 2 is made of a conductor metal containing, for example, copper or tungsten.
  • the movable electrode 2 is, for example, a solid cylindrical member.
  • the movable electrode 2 is formed by, for example, cutting.
  • the end portion of the movable electrode 2 in the anti-mechanical direction is, for example, chamfered to form a curved surface.
  • the movable electrode 2 is arranged inside the container 5 while being supported by an insulator.
  • the movable electrode 2 is arranged in the filler 6 in the container 5 so as to face the fixed electrode 3 so as to be in contact with and separated from the fixed electrode 3 .
  • the end of the movable electrode 2 in the mechanical direction is connected to the operating mechanism 4 .
  • the movable electrode 2 is driven by the operating mechanism 4 to mechanically come into contact with or separate from the fixed electrode 3 .
  • the fixed electrode 3 is made of a conductor metal containing, for example, copper or tungsten.
  • the fixed electrode 3 is, for example, a cylindrical member.
  • the fixed electrode 3 is formed by, for example, cutting.
  • An opening 11 is formed at the end of the fixed electrode 3 in the mechanical direction.
  • a bottom portion 12 is provided at the end portion of the fixed electrode 3 in the direction opposite to the mechanism.
  • the fixed electrode 3 is arranged inside the container 5 while being supported by an insulator (not shown).
  • the fixed electrode 3 is arranged in the filler 6 in the container 5 so as to face the movable electrode 2 so as to be in contact with and separated from the movable electrode 2 .
  • the opening 11 of the fixed electrode 3 contacts the outer diameter portion of the movable electrode 2 when the current limiting device 1 is in the closed state.
  • the movable electrode 2 slides into the opening 11 to mechanically separate the fixed electrode 3 when the current limiting device 1 is in an open circuit state.
  • the container 5 is, for example, a cylindrical closed container made of metal, insulator, or the like. Inside the container 5, the movable electrode 2 is movably arranged via an insulator (not shown), and the fixed electrode 3 is fixed via an insulator (not shown). The inside of the container 5 is filled with a filler 6 . Water, for example, is used as the filler 6 . If the container 5 is made of metal, it is connected to ground potential. The filler 6 between the spaced apart movable electrode 2 and fixed electrode 3 acts as a current limiting impedance.
  • the operation mechanism 4 is a hydraulic operation mechanism using liquid.
  • the operating mechanism 4 causes the movable electrode 2 to move in and out of contact with the fixed electrode 3 by moving the movable electrode 2 in the direction of the mechanism or in the direction opposite to the mechanism.
  • the operating mechanism 4 includes, for example, an operating section 20, an accumulator 30, a drainage tank 40, a pump unit 50, and a control section 60.
  • the operation part 20 opens and closes the movable electrode 2 .
  • the operation unit 20 includes, for example, a drive cylinder 21, a drive piston 22, and a drive rod 23.
  • the drive piston 22 is slidably inserted inside the drive cylinder 21 .
  • a drive rod 23 connects the drive piston 22 and the movable electrode 2 .
  • a first drive fluid chamber 24 and a second drive fluid chamber 25 are formed by the drive piston 22 in the space inside the drive cylinder 21 .
  • the first drive liquid chamber 24 is a liquid chamber on the drive rod 23 side (movable electrode 2 side) with respect to the drive piston 22 .
  • the second driving fluid chamber 25 is a fluid chamber on the opposite side of the driving piston 22 from the first driving fluid chamber 24 .
  • the drive cylinder 21 is an example of a cylinder.
  • Drive piston 22 is an example of a piston.
  • Drive rod 23 is an example of a rod.
  • the accumulator 30 maintains the pressure of the hydraulic fluid, here it is maintained at a high pressure.
  • the accumulator 30 includes, for example, an accumulator container 31 and an accumulator piston 32 .
  • the accumulator piston 32 is housed in the accumulator container 31 .
  • the interior of the accumulator container 31 is partitioned into a nitrogen gas chamber 33 and a liquid storage chamber 34 by an accumulator piston 32 .
  • the nitrogen gas chamber 33 is formed inside the accumulator container 31 at a position opposite to the mechanism direction of the accumulator piston 32 and is filled with high-pressure nitrogen gas.
  • the nitrogen gas chamber 33 may be formed at any position, for example, it may be formed at a position in the mechanism direction of the accumulator piston 32 .
  • the liquid storage chamber 34 is formed inside the accumulator container 31 at a position in the direction of the mechanism of the accumulator piston 32, and stores hydraulic fluid.
  • the drainage tank 40 stores the hydraulic fluid discharged by the operation part 20.
  • the pump unit 50 pressurizes the working fluid in the drain tank 40 and supplies it to the accumulator 30 .
  • a path 55 is provided. Hydraulic fluid stays in and flows through these channels. These flow paths will be described after the control unit 60 is described.
  • the control unit 60 controls the supply and discharge of hydraulic fluid to and from the operation unit 20 .
  • the control unit 60 supplies high-pressure hydraulic fluid to the operating unit 20 and discharges the hydraulic fluid in the operating unit 20 to the drain tank 40 .
  • a first control liquid chamber 61, a second control liquid chamber 62, and a third control liquid chamber 63 are formed in the control unit 60, for example.
  • the control unit 60 includes, for example, a switching valve 64, an electromagnetic repulsion mechanism 70, and a position holding mechanism 80.
  • the switching valve 64 includes a connecting portion 64A, a valve body 64B, a blocking portion 64C, and a shaft portion 64D.
  • the connection portion 64A, the valve body 64B, and the closing portion 64C are integrally formed by the shaft portion 64D.
  • the connection portion 64A is connected to the electromagnetic repulsion mechanism 70 .
  • a first through portion 65 ⁇ /b>A that penetrates from the first control liquid chamber 61 to the outside of the control portion 60 is formed at the end portion of the control portion 60 in the direction opposite to the mechanism.
  • the first through portion 65A allows the first control liquid chamber 61 and the outside of the control portion 60 to communicate with each other.
  • the connecting portion 64A is provided to close the first through portion 65A.
  • the connection portion 64A is movable along the first penetration portion 65A while closing the first penetration portion 65A.
  • the valve body 64B is arranged inside the second control liquid chamber 62 .
  • the valve body 64B includes a first communication passage 66A formed between the first control liquid chamber 61 and the second control liquid chamber 62 and a communication passage 66A formed between the second control liquid chamber 62 and the third control liquid chamber 63. to open or close the second communication path 66B formed by .
  • the first communication path 66A communicates the first control fluid chamber 61 and the second control fluid chamber 62
  • the second communication path 66B communicates the second control fluid chamber 62 and the third control fluid chamber. 63.
  • the valve body 64B closes the first communication path 66A and opens the second communication path 66B.
  • valve body 64B When the switching valve 64 moves to the position closest to the mechanism direction, the valve body 64B closes the second communication path 66B and opens the first communication path 66A. When the switching valve 64 is in a position other than these positions, the valve body 64B opens the first communication path 66A and the second communication path 66B.
  • a second through portion 65B that penetrates from the third control liquid chamber 63 to the outside of the control portion 60 is formed at the end portion of the control portion 60 in the mechanism direction.
  • the second through portion 65B allows the third control liquid chamber 63 and the outside of the control portion 60 to communicate with each other.
  • the closing portion 64C is provided to close the second through portion 65B.
  • the closing portion 64C is movable along the second penetration portion 65B while closing the second penetration portion 65B.
  • the second through portion 65B is an example of a through portion.
  • the first drive liquid chamber 24 in the operation section 20 is connected to the third control liquid chamber 63 in the control section 60 via the first high-pressure flow path 52 .
  • the liquid storage chamber 34 in the accumulator 30 is connected to the first drive liquid chamber 24 in the operation section 20 via the second high-pressure flow path 53 . Hydraulic fluid stays at high pressure in the first high-pressure flow path 52 and the second high-pressure flow path 53 .
  • the second control liquid chamber 62 in the control section 60 is connected to the second drive liquid chamber 25 in the operation section 20 via the control channel 54 .
  • the hydraulic fluid stays in the control flow path 54 at high pressure.
  • the hydraulic fluid in the second drive fluid chamber 25 flows into the second control fluid chamber 62 through the control flow path 54 .
  • the first control liquid chamber 61 in the control unit 60 is connected to the drainage tank 40 via the drainage channel 55 .
  • the hydraulic fluid stays in the drain channel 55 at a pressure as low as the atmospheric pressure.
  • the first control liquid chamber 61 and the second control liquid chamber 62 communicate with each other, and the second control liquid chamber 62 is connected via the first control liquid chamber 61.
  • the working fluid inside flows into the drain tank 40 through the drain channel 55 .
  • the electromagnetic repulsion mechanism 70 causes the working fluid to be supplied to and discharged from the operating portion 20 by moving the valve body 64B.
  • the electromagnetic repulsion mechanism 70 includes, for example, a movable shaft 71, an opening coil 72, a closing coil 73, a drive plate 74, a repulsion ring 75, an opening damper 76, a closing damper 77, and an opening damper receiver 78. , and a closing damper receiver 79 .
  • circuit-opening coil 72, the circuit-closing coil 73, the drive plate 74, the repulsion ring 75, the circuit-opening damper 76, the circuit-closing damper 77, the circuit-opening damper receiver 78, and the circuit-closing damper receiver 79 are housed in the case 70A.
  • the movable shaft 71 is a long member. The end of the movable shaft 71 facing away from the mechanism is connected to the connection portion 64A of the switching valve 64 in the control portion 60 . The movable shaft 71 operates the switching valve 64 . The electromagnetic repulsion mechanism 70 drives the switching valve 64 by operating the switching valve 64 with the movable shaft 71 .
  • the circuit opening coil 72 is arranged surrounding the axis along the movable axis 71 .
  • the circuit opening coil 72 is fixed to the case 70A via a base 72A attached to the case 70A, for example.
  • the closing coil 73 is arranged around the axis along the movable axis 71 .
  • the closing coil 73 is fixed to the case 70A via a pedestal 73A attached to the case 70A, for example.
  • the drive plate 74 is fixed to the movable shaft 71 .
  • the drive plate 74 is composed of, for example, a disk-shaped light metal.
  • the drive plate 74 is arranged between the circuit-opening coil 72 and the circuit-closing coil 73 (closer to the switching valve 64 than the circuit-opening coil 72).
  • the repulsion ring 75 comprises an annular shaped good conductor material fixed to the drive plate 74 .
  • a repulsion ring 75 is arranged for each of the opening coil 72 and the closing coil 73 .
  • circuit opening coil 72 When a current is applied to the circuit opening coil 72 , it generates an induced current in the opposite direction to the repulsion ring 75 and applies a repulsive force to the driving plate 74 in a direction away from the circuit opening coil 72 . In this way, the circuit-opening coil 72 moves the switching valve 64 in the mechanism direction (circuit-opening direction) via the movable shaft 71, thereby connecting the closed first control liquid chamber 61 and the second control liquid chamber 62. .
  • the closing coil 73 moves the switching valve 64 in the direction of the mechanism via the movable shaft 71, thereby allowing the closed second control liquid chamber 62 and the third control liquid chamber 63 to communicate with each other.
  • the circuit-opening damper 76 generates a braking force when the circuit-opening operation ends.
  • the open circuit damper 76 contacts the open circuit damper receiver 78 to decelerate the movable shaft 71 when the movable shaft 71 moves toward the mechanism.
  • the open circuit damper 76 is, for example, an oil damper.
  • the open circuit damper 76 includes, for example, an outer cylinder 76A and a piston rod 76B.
  • the piston rod 76B protrudes from the outer cylinder 76A toward the open circuit damper receiver 78.
  • the tip of the piston rod 76B is separated from the open circuit damper receiver 78 when the current limiting device 1 is in the closed circuit state.
  • the open circuit damper 76 further includes a biasing member that biases the piston rod 76B toward the open circuit damper receiver 78 .
  • the closing damper 77 generates a braking force at the end of the closing operation.
  • the closed circuit damper 77 contacts the closed circuit damper receiver 79 and decelerates the movable shaft 71 when the movable shaft 71 moves in the anti-mechanism direction (circuit closing direction).
  • the closed circuit damper 77 is, for example, an oil damper.
  • the closing damper 77 includes, for example, an outer cylinder 77A and a piston rod 77B.
  • the piston rod 77B protrudes from the outer cylinder 77A toward the closing damper receiver 79.
  • the tip of the piston rod 77B is separated from the closing damper receiver 79 when the current limiting device 1 is in the open state.
  • the closing damper 77 further includes a biasing member that biases the piston rod 77B toward the closing damper receiver 79 .
  • the open circuit damper receiver 78 has elasticity such as rubber and has a disk shape.
  • the open circuit damper receiver 78 is fixed to a position closer to the mechanism direction than the position to which the drive plate 74 is fixed on the movable shaft 71 .
  • the circuit-opening damper receiver 78 contacts the circuit-opening damper 76 when the circuit-opening operation ends.
  • the open circuit damper receiver 78 is made of, for example, an elastic member such as rubber.
  • the open-circuit damper receiver 78 dampens contact with the open-circuit damper 76 when contacting the open-circuit damper 76 .
  • the closing damper receiver 79 is fixed to the surface of the drive plate 74 opposite to the surface to which the movable shaft 71 is connected (the surface facing away from the mechanism). The closing damper receiver 79 comes into contact with the opening damper at the end of the closing operation.
  • the closing damper receiver 79 is made of, for example, an elastic member such as rubber.
  • the closed circuit damper receiver 79 dampens contact with the closed circuit damper 77 when contacting the closed circuit damper 77 .
  • the position holding mechanism 80 holds the position of the switching valve 64 and further the position of the valve body 64B.
  • the position holding mechanism 80 has, for example, a swing link 81 and a biasing member 82 .
  • the swing link 81 swings as the movable shaft 71 moves, and regulates the moving direction of the movable shaft 71 .
  • the urging member 82 urges the swing link 81 so that the movable shaft 71 is urged in the anti-mechanical direction when the valve body 64B is positioned to close the first communication passage 66A. The movement of the shaft 71 is blocked, and the closed state of the first communication path 66A is maintained.
  • the biasing member 82 biases the swing link 81 so that the movable shaft is biased in the direction of the mechanism when the valve body 64B is positioned to close the second communication path 66B. is prevented from moving, and the state in which the second communication path 66B is blocked is maintained.
  • the current limiting device 1 is in either an open circuit state or a closed circuit state.
  • the operation of the current limiting device 1 from the closed state to the open state is called opening operation, and the operation of the current limiting device 1 from the open state to the closed state is called closing operation.
  • the anti-mechanism direction is also referred to as the circuit opening operation direction, and the mechanism direction is also referred to as the circuit closing operation direction.
  • the closed state of the current limiting device 1 will be described.
  • the pump unit 50 pressurizes the working fluid in the drain tank 40 and supplies it to the fluid storage chamber 34 in the accumulator 30 . Since the compressibility of the nitrogen gas in the nitrogen gas chamber 33 acts on the fluid storage chamber 34 via the accumulator piston 32, the fluid storage chamber 34 stores the pressurized hydraulic fluid. . Hydraulic pressure from the fluid storage chamber 34 always acts on the surface of the driving piston 22 on the side of the first driving fluid chamber 24 via the hydraulic fluid staying in the first high-pressure flow path 52 .
  • the position holding mechanism 80 moves the movable shaft of the electromagnetic repulsion mechanism 70 at a position where the valve body 64B of the switching valve 64 closes the first communication path 66A and opens the second communication path 66B. Hold 71. Therefore, the first control liquid chamber 61 and the second control liquid chamber 62 are blocked, and the second control liquid chamber 62 and the third control liquid chamber 63 are communicated.
  • the hydraulic pressure from the fluid accumulating chamber 34 flows through the second high-pressure flow path 53, the first high-pressure flow path 52, and the control flow path 54 to the second driving fluid chamber 25 side of the driving piston 22.
  • the hydraulic pressure of the hydraulic fluid acts on the driving piston 22 not only on the surface on the first driving fluid chamber 24 side but also on the surface on the second driving fluid chamber 25 side.
  • the generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 75 , so an electromagnetic repulsion force is generated in the repulsion ring 75 .
  • the electromagnetic repulsive force generated in the repulsive ring 75 is larger than the urging force in the direction opposite to the opening operation direction of the switching valve 64 by the position holding mechanism 80 . Therefore, the repulsion ring 75 , the drive plate 74 and the movable shaft 71 start moving in the opening operation direction of the switching valve 64 . As the movable shaft 71 moves, the switching valve 64 also moves in the opening operation direction.
  • the switching valve 64 By moving the switching valve 64, the first communication path 66A is opened, and the first control liquid chamber 61 and the second control liquid chamber 62 are communicated with each other.
  • the communication between the first control liquid chamber 61 and the second control liquid chamber 62 reduces the liquid pressure in the second drive liquid chamber 25 of the operation unit 20 .
  • the driving piston 22 is driven in the direction of the mechanism by the hydraulic pressure of the high-pressure hydraulic fluid in the first driving fluid chamber 24, and the movable electrode 2 connected to the driving piston 22 via the driving rod 23 opens the circuit. conduct.
  • the open circuit damper receiver 78 abuts against the piston rod 76B of the open circuit damper 76, and then the piston rod 76B is pushed into the outer cylinder 76A so that the open circuit damper 76 brakes the movable shaft 71.
  • a braking force is generated.
  • the braking force of the open circuit damper 76 is applied to all moving parts including the movable shaft 71 and the switching valve 64 .
  • the switching valve 64 moves to a position where it blocks the second control liquid chamber 62 and the third control liquid chamber 63 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 71 .
  • the circuit opening operation as the drive piston 22 moves, part of the hydraulic fluid in the second drive fluid chamber 25 is drained, and is discharged by the drain tank 40 via the control channel 54 and the drain channel 55. be recovered.
  • the second control liquid chamber 62 and the third control liquid chamber 63 are shut off by the switching valve 64 . Therefore, since the high-pressure hydraulic fluid does not flow out to the drainage channel 55, the consumption of the hydraulic fluid can be reduced.
  • the pump unit 50 increases the pressure of the hydraulic fluid in the drain tank 40 and supplies it to the liquid storage chamber 34 in the accumulator 30, similarly to when the current limiting device 1 is in the closed circuit state. supply. For this reason, hydraulic fluid that has been pressurized and pressurized is stored in the fluid storage chamber 34 , and the surface of the drive piston 22 on the side of the first drive fluid chamber 24 is filled with high-pressure fluid from the fluid storage chamber 34 . Pressure is constantly acting through the hydraulic fluid residing in the first high pressure flow path 52 .
  • the position holding mechanism 80 moves the movable shaft 71 of the electromagnetic repulsion mechanism 70 at the position where the valve body 64B of the switching valve 64 opens the first communication path 66A and closes the second communication path 66B. hold. Therefore, the first control liquid chamber 61 and the second control liquid chamber 62 are communicated, and the second control liquid chamber 62 and the third control liquid chamber 63 are blocked.
  • the generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 75 , so an electromagnetic repulsion force is generated in the repulsion ring 75 .
  • the electromagnetic repulsive force generated in the repulsive ring 75 is larger than the urging force in the opposite direction to the closing operation direction of the switching valve 64 by the position holding mechanism 80 .
  • the repulsion ring 75 , the drive plate 74 and the movable shaft 71 start moving in the closing operation direction of the switching valve 64 .
  • the switching valve 64 also moves in the closing direction.
  • the switching valve 64 By moving the switching valve 64, the second communication path 66B is opened, and the second control liquid chamber 62 and the third control liquid chamber 63 communicate with each other.
  • the driving piston 22 By connecting the second control fluid chamber 62 and the third control fluid chamber 63, the driving piston 22 operates not only on the surface of the first driving fluid chamber 24 but also on the surface of the second driving fluid chamber 25. A high hydraulic pressure is applied by the liquid.
  • the driving piston 22 When the same high hydraulic pressure acts on both sides of the driving piston 22, the driving piston 22 is driven in the counter-mechanical direction due to the difference in the hydraulic pressure acting area.
  • the movable electrode 2 connected to the drive piston 22 via the drive rod 23 performs the closing operation of moving in the closing operation direction.
  • the closing damper receiver 79 comes into contact with the piston rod 77B of the closing damper 77, and then the piston rod 77B is pushed into the outer cylinder 77A so that the closing damper 77 brakes the movable shaft 71.
  • a braking force is generated.
  • the braking force of the closing damper 77 is applied to all moving parts including the movable shaft 71 and the switching valve 64 .
  • the switching valve 64 moves to a position where it blocks the first control liquid chamber 61 and the second control liquid chamber 62 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 71 . During this closing operation, the switching valve 64 blocks the first control liquid chamber 61 and the second control liquid chamber 62, and the high-pressure liquid may flow out to the drainage flow path 55 as in the opening operation. Therefore, the consumption of high-pressure liquid can be reduced.
  • the current limiting device 1 of the first embodiment uses the operation mechanism 4, which is a hydraulic operation mechanism using liquid. Therefore, when the movable shaft 71 in the operating mechanism 4 is moved to change the state from the closed state to the open state, the responsiveness of the operation can be enhanced.
  • the movable electrode 2 used in the current limiting device 1 is made of, for example, a conductive metal containing copper or tungsten, and is therefore heavy. Furthermore, in order to operate the movable electrode 2, a certain stroke length, for example, a stroke length of about several hundred mm is required. When the electromagnetic repulsion mechanism 70 is used, the responsiveness of the operation can be improved, but it becomes difficult to increase the stroke length of the movable electrode 2 .
  • the current limiting device 1 of the first embodiment moves the movable electrode 2 using the operating mechanism 4, which is a hydraulic operating mechanism using liquid.
  • the operation mechanism 4, which is a hydraulic operation mechanism it is possible to easily increase the output by adjusting the cylinder diameter and the axial dimension of the drive cylinder 21.
  • the high-pressure hydraulic fluid in the second driving fluid chamber 25 of the operation unit 20 can be rapidly discharged and introduced via the control flow path 54, and the driving piston 22 can be moved with high response. . Therefore, the current limiting device 1 can quickly move even the heavy movable electrode 2 .
  • the operation mechanism 4 By providing the operation mechanism 4, a large output, a high response, and a long stroke can be achieved.
  • the current limiting device of the second embodiment differs from that of the first embodiment mainly in the configuration of the electromagnetic repulsion mechanism in the operating portion.
  • the same reference numerals may be assigned to elements and the like common to those of the first embodiment, and the description thereof may be omitted.
  • FIG. 3 is a configuration diagram of the operating mechanism 4 in the current limiting device of the second embodiment.
  • the operating mechanism 4 of the second embodiment includes, in the control unit 60, a first unidirectional electromagnetic repulsion mechanism 110 and a second single-direction driving mechanism instead of the electromagnetic repulsion mechanism 70 in the first embodiment.
  • a directional electromagnetic repulsion mechanism 120 is provided.
  • the first unidirectional electromagnetic repulsion mechanism 110 and the second unidirectional electromagnetic repulsion mechanism 120 are provided on both sides of the switching valve 64, respectively.
  • the first unidirectional electromagnetic repulsion mechanism 110 includes, for example, a movable shaft 111, a coil 112, a drive plate 113, a repulsion ring 114, a damper 115, and a damper receiver 116.
  • the movable shaft 111 is connected to the switching valve 64 .
  • Each element of the first unidirectional electromagnetic repulsion mechanism 110 except for the movable shaft 111 is housed in a case 110A.
  • the coil 112 is arranged surrounding the movable shaft 111 .
  • the coil 112 is fixed to the case 110A, for example, via a pedestal 112A attached to the case 110A.
  • the drive plate 113 is made of, for example, a disk-shaped light metal and fixed to the movable shaft 111 .
  • the drive plate 113 is arranged at a position closer to the mechanism direction of the coil 112 .
  • the repulsion ring 114 includes an annular good conductor material fixed to the surface of the drive plate 113 facing away from the mechanism.
  • the damper 115 decelerates the movable shaft 111 by coming into contact with the damper receiver 116 when the movable shaft 111 moves in the anti-mechanism direction.
  • Damper 115 is, for example, an oil damper.
  • the damper 115 includes, for example, an outer cylinder 115A and a piston rod 115B.
  • the damper 115 is configured in the same manner as the open circuit damper 76 of the first embodiment, and is arranged facing the opposite side of the open circuit damper 76 of the first embodiment in relation to the control unit 60 .
  • the damper receiver 116 is connected to the surface of the driving plate 113 opposite to the surface to which the movable shaft 111 is connected (the surface facing away from the mechanism).
  • the damper receiver 116 is made of, for example, an elastic member such as rubber. The damper receiver 116 dampens the contact with the damper 115 when it contacts the damper 115 .
  • the second unidirectional electromagnetic repulsion mechanism 120 includes, for example, a movable shaft 121, a coil 122, a drive plate 123, a repulsion ring 124, a damper 125, and a damper receiver 126. Each element of the second unidirectional electromagnetic repulsion mechanism 120 is configured similarly to each element of the first unidirectional electromagnetic repulsion mechanism 110 .
  • the second unidirectional electromagnetic repulsion mechanism 120 is arranged symmetrically with respect to the first unidirectional electromagnetic repulsion mechanism 110 with the position holding mechanism 80 and the control unit 60 interposed therebetween.
  • the generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 114 , so an electromagnetic repulsion force is generated in the repulsion ring 114 .
  • the electromagnetic repulsive force generated in the repulsive ring 114 is larger than the urging force in the direction opposite to the opening operation direction of the switching valve 64 by the position holding mechanism 80 . Therefore, the repulsion ring 114 , the drive plate 113 and the movable shaft 111 start moving in the opening operation direction of the switching valve 64 . As the movable shaft 111 moves, the switching valve 64 also moves in the opening operation direction.
  • the switching valve 64 By moving the switching valve 64, the first communication path 66A is opened, and the first control liquid chamber 61 and the second control liquid chamber 62 are communicated with each other.
  • the movable electrode 2 By connecting the first control liquid chamber 61 and the second control liquid chamber 62, the movable electrode 2 (see FIG. 1) opens the circuit, as in the first embodiment.
  • damper receiver 116 comes into contact with the piston rod 115B of the damper 115, and then the piston rod 115B is pushed into the outer cylinder 115A so that the damper 115 exerts a braking force to brake the movable shaft 111. Occur.
  • the damping force of damper 115 is applied to all moving parts including movable shaft 111 and switching valve 64 .
  • the switching valve 64 moves to a position where it blocks the second control liquid chamber 62 and the third control liquid chamber 63 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 111 . By moving the switching valve 64, the current limiting device is opened in the same manner as in the first embodiment.
  • the generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 124 , so an electromagnetic repulsion force is generated in the repulsion ring 124 .
  • the electromagnetic repulsive force generated in the repulsive ring 124 is larger than the urging force in the opposite direction to the closing operation direction of the switching valve 64 by the position holding mechanism 80 .
  • the repulsion ring 124 , the drive plate 123 and the movable shaft 121 start to move in the closing operation direction of the switching valve 64 .
  • the switching valve 64 also moves in the closing direction.
  • the switching valve 64 By moving the switching valve 64, the second communication path 66B is opened, and the second control liquid chamber 62 and the third control liquid chamber 63 communicate with each other.
  • the movable electrode 2 By connecting the second control liquid chamber 62 and the third control liquid chamber 63, the movable electrode 2 (see FIG. 1) performs the closing operation as in the first embodiment.
  • damper receiver 126 comes into contact with the piston rod 125B of the damper 125, and then the piston rod 125B is pushed into the outer cylinder 125A, and the damper 125 exerts a braking force to brake the movable shaft 121. Occur.
  • the damping force of damper 125 is applied to all moving parts including movable shaft 121 and switching valve 64 .
  • the switching valve 64 moves to a position where it blocks the first control liquid chamber 61 and the second control liquid chamber 62 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 121 . By moving the switching valve 64, the closing operation of the current limiting device is executed in the same manner as in the first embodiment.
  • the current limiting device of the second embodiment has the same effects as the first embodiment, and can improve the responsiveness of the operation when trying to change the state from the closed state to the open state. Furthermore, the current limiting device of the second embodiment comprises a first unidirectional electromagnetic repulsion mechanism 110 and a second unidirectional electromagnetic repulsion mechanism 120 . Therefore, it is possible to contribute to simplification and cost reduction of the components.
  • the first unidirectional electromagnetic repulsion mechanism 110 and the second unidirectional electromagnetic repulsion mechanism 120 are provided on both sides of the control unit 60, but the mechanism for moving the switching valve 64 in the closing direction is , a mechanism other than the second unidirectional electromagnetic repulsion mechanism 120 may be used.
  • a mechanism other than the second unidirectional electromagnetic repulsion mechanism 120 may be used.
  • another mechanism may be connected or the switching valve 64 may be moved by human power or the like without providing a mechanism for moving the switching valve 64 in the closing direction.
  • the current limiting device of the third embodiment differs from that of the first embodiment mainly in the configuration of the electromagnetic repulsion mechanism in the operating portion.
  • FIG. 4 is a configuration diagram of the operating mechanism 4 in the current limiting device of the third embodiment.
  • the control unit 60 of the operating mechanism 4 of the third embodiment includes a first automatic return electromagnetic repulsion mechanism 130 and a second automatic repulsion mechanism 130 driven in one direction instead of the electromagnetic repulsion mechanism 70 in the first embodiment.
  • a return electromagnetic repulsion mechanism 140 is provided.
  • a first automatic return electromagnetic repulsion mechanism 130 and a second automatic return electromagnetic repulsion mechanism 140 are provided on both sides of the switching valve 64, respectively.
  • the first automatic return electromagnetic repulsion mechanism 130 includes, for example, a movable shaft 131, a coil 132, a drive plate 133, a repulsion ring 134, a stopper 135, a closing damper 136, an opening damper receiver 137, and an opening damper 138. and a return spring 139 .
  • Each element in the first automatic return electromagnetic repulsion mechanism 130 is housed in a case 130A.
  • the movable shaft 131 is an elongated member, and is arranged at a distance from the switching valve 64 when the current limiting device is in the closed state, and the end in the mechanism direction is near the end in the counter-mechanism direction of the switching valve 64 . placed in The movable shaft 131 is movable in the direction of the mechanism. When the current limiting device changes from the closed circuit state to the open circuit state, the movable shaft 131 protrudes outside the case 130A.
  • the coil 132 is arranged surrounding the movable shaft 131 .
  • Coil 132 is fixed to case 130A, for example, via a pedestal (not shown) attached to case 130A.
  • the drive plate 133 is made of, for example, a disk-shaped light metal and is fixed to the movable shaft 131 .
  • the drive plate 133 is arranged at a position closer to the mechanism direction of the coil 132 .
  • the repulsion ring 134 includes an annular good conductor material fixed to the surface of the driving plate 133 facing away from the mechanism.
  • the stopper 135 is provided at the end of the movable shaft 131 in the direction opposite to the mechanism.
  • the stopper 135 moves as the movable shaft 131 moves.
  • the stopper 135 is made of, for example, an elastic member such as rubber.
  • the stopper 135 buffers the contact with the closing damper 136 when contacting the closing damper 136 .
  • the stopper 135 is arranged so as to pass through a position avoiding the coil 132 and the pedestal when the movable shaft 131 moves.
  • the closing damper 136 decelerates the movable shaft 131 upon contact with the stopper 135 when the movable shaft 131 moves in the direction opposite to the mechanism.
  • the closed circuit damper 136 is, for example, an oil damper.
  • the closing damper 136 includes, for example, an outer cylinder 136A and a piston rod 136B.
  • the closing damper 136 is configured similarly to the damper 115 of the second embodiment.
  • the open circuit damper receiver 137 has elasticity such as rubber and has a disk shape.
  • the open circuit damper receiver 137 is fixed to a position closer to the mechanism direction than the position to which the drive plate 133 is fixed on the movable shaft 131 .
  • the circuit-opening damper receiver 137 contacts the circuit-opening damper 138 when the circuit-opening operation ends.
  • the open-circuit damper receiver 137 dampens contact with the open-circuit damper 138 when contacting the open-circuit damper 138 .
  • the return spring 139 is stretched between the opening damper receiver 137 and the support member 138A.
  • Return spring 139 is a compression spring.
  • the return spring 139 contracts between the opening damper receiver 137 and the support member 138A as the movable shaft 131 moves in the mechanism direction.
  • the contracted return spring 139 urges the open circuit damper receiver 137 in the anti-mechanical direction (the direction of widening the space between the open circuit damper receiver 137 and the support member 138A).
  • the second automatic return electromagnetic repulsion mechanism 140 includes, for example, a movable shaft 141, a coil 142, a drive plate 143, a repulsion ring 144, a stopper 145, a damper 146, a closing damper receiver 147, and a closing damper 148. , and a return spring 149 .
  • Each element of the second auto-return electromagnetic repulsion mechanism 140 is configured similarly to each element of the first auto-return electromagnetic repulsion mechanism 130 .
  • the second automatic return electromagnetic repulsion mechanism 140 is arranged symmetrically with respect to the first automatic return electromagnetic repulsion mechanism 130 with the position holding mechanism 80 and the control section 60 interposed therebetween.
  • the generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 134 , so an electromagnetic repulsion force is generated in the repulsion ring 134 .
  • the electromagnetic repulsion force generated in the repulsion ring 134 causes the movable shaft 131 to move in the direction of the mechanism, and the end of the movable shaft 131 in the direction of mechanism contacts the end of the switching valve 64 in the direction opposite to the mechanism.
  • the electromagnetic repulsive force generated in the repulsive ring 134 is larger than the urging force in the direction opposite to the opening operation direction of the switching valve 64 by the position holding mechanism 80 .
  • the movable shaft 131 moves further in the opening operation direction of the switching valve 64 together with the driving plate 133 , the repulsion ring 134 , the stopper 135 and the opening damper receiver 137 .
  • the switching valve 64 also moves in the opening operation direction.
  • the stopper 135 By moving the stopper 135 together with the movable shaft 131, the stopper 135 separates from the piston rod 136B provided on the outer cylinder 136A of the closing damper 136. As the open circuit damper receiver 137 moves together with the movable shaft 131, the return spring 139 contracts between the open circuit damper receiver 137 and the support member 138A.
  • the switching valve 64 By moving the switching valve 64, the first communication path 66A is opened, and the first control liquid chamber 61 and the second control liquid chamber 62 are communicated with each other.
  • the movable electrode 2 By connecting the first control liquid chamber 61 and the second control liquid chamber 62, the movable electrode 2 (see FIG. 1) opens the circuit, as in the first embodiment.
  • the open circuit damper receiver 137 comes into contact with the open circuit damper 138, and the piston rod of the open circuit damper 138 is pushed into the outer cylinder of the open circuit damper 138, so that the open circuit damper receiver 137 brakes the movable shaft 131.
  • a braking force is generated.
  • the braking force by the open circuit damper 138 is applied to all moving parts including the movable shaft 131 and the switching valve 64 .
  • the switching valve 64 moves to a position where it blocks the second control liquid chamber 62 and the third control liquid chamber 63 and stops, and the position holding mechanism 80 holds the position of the switching valve 64 . Thereafter, in the first automatic return electromagnetic repulsion mechanism 130, the operation of supplying current from the drive power source to the coil 132 is terminated, and the electromagnetic repulsion force by the repulsion ring 134 disappears.
  • the electromagnetic repulsive force generated in the repulsive ring 144 is larger than the urging force in the direction opposite to the direction of closing operation of the switching valve 64 by the position holding mechanism 80 . Therefore, the movable shaft 141 moves further in the closing operation direction of the switching valve 64 together with the drive plate 143 , the repulsion ring 144 , the stopper 145 and the closing damper receiver 147 . As the movable shaft 141 moves, the switching valve 64 also moves in the closing direction.
  • the stopper 145 By moving the stopper 145 together with the movable shaft 141, the stopper 145 separates from the piston rod 146B provided on the outer cylinder 146A of the damper 146.
  • the return spring 149 contracts between the closing damper receiver 147 and the support member 148A.
  • the switching valve 64 By moving the switching valve 64, the second communication path 66B is opened, and the second control liquid chamber 62 and the third control liquid chamber 63 communicate with each other.
  • the movable electrode 2 By connecting the second control liquid chamber 62 and the third control liquid chamber 63, the movable electrode 2 (see FIG. 1) performs the closing operation as in the first embodiment.
  • the closing damper receiver 147 comes into contact with the closing damper 148, and the piston rod of the closing damper 148 is pushed into the outer cylinder of the closing damper 148, so that the closing damper receiver 147 brakes the movable shaft 141.
  • a braking force is generated.
  • the braking force by the closing damper receiver 147 is applied to all moving parts including the movable shaft 141 and the switching valve 64 .
  • the switching valve 64 moves to a position where it blocks the first control liquid chamber 61 and the second control liquid chamber 62 and stops, and the position holding mechanism 80 holds the position of the switching valve 64 .
  • the second automatic return electromagnetic repulsion mechanism 140 the operation of supplying current from the drive power supply to the coil 142 is terminated, and the electromagnetic repulsion force by the repulsion ring 144 disappears.
  • the current limiting device of the third embodiment has the same effects as the first embodiment, and can improve the responsiveness of the operation when trying to change the state from the closed state to the open state. Furthermore, the current limiting device of the third embodiment comprises a first automatic return electromagnetic repulsion mechanism 130 and a second automatic return electromagnetic repulsion mechanism 140 . Therefore, the movable shafts 131 and 141 can be quickly returned to the state before the operation. Furthermore, a distance from the switching valve 64 is provided before the movable shafts 131 and 141 operate. Therefore, the movable shafts 131 and 141 can contact the switching valve 64 with inertia force, so that the responsiveness can be improved. A mechanism for returning the movable shaft, such as a return spring or a damper, to the state before the return may be provided in the current limiting device of another embodiment.
  • the current limiting device of the fourth embodiment differs from that of the first embodiment mainly in the configuration of the operation section.
  • FIG. 5 is a configuration diagram of the controller 60 in the current limiting device of the fourth embodiment.
  • the flow channel cross-sectional areas of the first control liquid chamber 61, the second control liquid chamber 62, and the third control liquid chamber 63 are the same as those of the current limiting device of the first embodiment.
  • the cross-sectional area of the first communication passage in the second control liquid chamber 62 will be referred to as a first cross-sectional area S1.
  • the cross-sectional area of the second control liquid chamber 62 on the side of the third control liquid chamber 63 is defined as a second cross-sectional area S2.
  • the cross-sectional area of the atmosphere-side switching valve 64 in the third control liquid chamber 63 (opening cross-sectional area of the second through portion 65B) is defined as a third cross-sectional area S3.
  • the first cross-sectional area S1 is larger than the third cross-sectional area S3, and the third cross-sectional area S3 is larger than the second cross-sectional area S2. Therefore, the following equation (1) holds between the first cross-sectional area S1, the second cross-sectional area S2, and the third cross-sectional area S3. S1>S3>S2 (2)
  • the closed circuit state and open circuit state of the current limiting device of the fourth embodiment will be described.
  • the fourth current limiting device is in the closed state, in the control unit 60, the second control liquid chamber 62 and the third control liquid chamber 63 are filled with high-pressure hydraulic fluid. Therefore, hydraulic pressure acts in the direction of the closing operation from the second control liquid chamber 62 to the switching valve 64 (valve body 64B), and from the third control liquid chamber 63 to the switching valve (closed portion 64C). As a result, the hydraulic pressure acts in the opening direction.
  • the first cross-sectional area S1 is larger than the third cross-sectional area S3 (S1>S3). Therefore, since the hydraulic pressure applied to the valve body 64B is higher than the hydraulic pressure applied to the closing portion 64C, the switching valve 64 is always biased in the closing direction. Therefore, the switching valve 64 is held at the position where the valve body 64B closes the first communication path 66A.
  • the third control fluid chamber 63 is filled with high-pressure working fluid. Therefore, hydraulic pressure acts in the direction of the closing operation from the third control fluid chamber 63 to the switching valve 64 (valve body 64B), and the third control fluid chamber 63 acts on the switching valve (blocking portion 64C). As a result, the hydraulic pressure acts in the opening direction.
  • the third cross-sectional area S3 is larger than the second cross-sectional area S2 (S3>S2). Therefore, since the hydraulic pressure applied to the valve body 64B is smaller than the hydraulic pressure applied to the closing portion 64C, the switching valve 64 is always biased in the opening direction. Therefore, the switching valve 64 is held at the position where the valve body 64B closes the second communication path 66B.
  • the current limiting device of the fourth embodiment has the same effect as the first embodiment, and can improve the responsiveness of the operation when changing the state from the closed state to the open state. Furthermore, in the current limiting device of the fourth embodiment, the first cross-sectional area S1 is larger than the third cross-sectional area S3, and the third cross-sectional area S3 is larger than the second cross-sectional area S2. Therefore, the position of the switching valve 64 can be held by the high-pressure hydraulic fluid filled in the control section 60 . Therefore, the closed circuit state and the open circuit state of the current limiting device can be stabilized. Furthermore, since the position of the switching valve 64 can be held without the position holding mechanism 80, the number of components can be reduced.
  • the filler enclosed in the container 5 is water, but the filler may be a substance other than water.
  • the filler may be, for example, an oil, a liquid metal, a fluorinated liquid, a substance in a supercritical state, or the like.
  • a filter or the like may be provided at the inlet of the drain tank 40 on the drain channel 55 side and the outlet on the pump unit 50 side to remove foreign matter contained in the working fluid.
  • a control unit having a mechanism for controlling the supply and discharge of the hydraulic fluid to and from the operation unit; an accumulator for holding the pressure of the hydraulic fluid; and a drain tank for storing the hydraulic fluid discharged by the operation unit. and a pump for supplying the hydraulic fluid in the drain tank to the accumulator, a highly responsive current limiting device can be provided.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

A current-limiting device according to an embodiment has a closed container, a fixed electrode, a movable electrode, and an operation mechanism. The closed container is filled with a filler. The fixed electrode is fixedly provided inside the closed container. The movable electrode is disposed to face the fixed electrode. The operation mechanism causes the movable electrode to come into contact with and separate from the fixed electrode. The operation mechanism has an operation unit, a control unit, an accumulator, a drainage tank, and a pump. The operation unit switches the movable electrode on and off by supply and discharge of a working fluid. The control unit has an electromagnetic repulsion mechanism that starts the supply of the working fluid, and controls the supply and discharge of the working fluid to and from the operation unit. The accumulator holds the pressure of the working fluid. The drainage tank stores the working fluid discharged by the operation unit. The pump supplies the working fluid in the drainage tank to the accumulator.

Description

限流装置Current limiting device
 本発明の実施形態は、限流装置に関する。 An embodiment of the present invention relates to a current limiting device.
 限流装置は、例えば、電力系統の電力供給線に流れる短絡電流を限流するため、系統事故時において事故の生じた系統を切り離す際に流れる電流を遮断するための遮断器とともに電力供給線に配置される。電力系統に設置される遮断器が開路状態とされる時には、遮断器内に配置された一対の電極が、機械的に切り離される。しかしながら、電力系統における電圧は高電圧であるため、一対の電極が機械的に切り離された後も、アーク電流が流れ続ける場合がある。限流装置は、このアーク電流を含め、系統事故で発生する大電流を制限するために用いられる。 Current-limiting devices, for example, limit the short-circuit current that flows in the power supply line of the power system. placed. When a circuit breaker installed in a power system is opened, a pair of electrodes arranged in the circuit breaker are mechanically separated. However, since the voltage in the power system is high, arc current may continue to flow even after the pair of electrodes are mechanically disconnected. Current limiting devices are used to limit large currents, including arc currents, generated by system faults.
 電力系統や配電系統に事故が起こった場合には、例えば、短絡電流が発生する。より安定化した電力供給を行うことを目的として、電力系統等は、広域にわたり系統連系される。しかし、広域にわたり系統連系された電力系統等では、系統のいずれかで短絡事故が発生した場合、より広域の電源から電流が集中して事故点に流れ込むため、短絡電流の最大値が大きくなる。 If an accident occurs in the power system or distribution system, for example, a short-circuit current will occur. For the purpose of providing more stable power supply, power systems and the like are interconnected over a wide area. However, in a power system that is interconnected over a wide area, if a short-circuit fault occurs in one of the systems, the current will concentrate from power sources in a wider area and flow into the fault point, so the maximum value of the short-circuit current will increase. .
 さらに、短絡事故が発生したタイミングにより、短絡電流は、直流成分に交流成分が重畳したものとなる場合がある。直流成分に交流成分が重畳した短絡電流の最大電流値は、過大なものとなる。電力系統は抵抗成分を有するため、短絡電流発生後の第1波のピーク値が最大電流となり、その後、時間とともに直流成分は減衰することとなる。 Furthermore, depending on the timing of the short-circuit accident, the short-circuit current may be a DC component superimposed with an AC component. The maximum current value of the short-circuit current in which the AC component is superimposed on the DC component is excessive. Since the electric power system has a resistance component, the peak value of the first wave after the occurrence of the short-circuit current becomes the maximum current, and then the DC component attenuates with time.
 従来の限流装置は、例えば、対向配置された一対の電極を駆動機構によって駆動させて、の電極を接触および離間させる構造を有する。駆動機構の駆動源には、例えば、ばねが用いられる。しかし、その場合、遮断指令から遮断部接点の動作が行われるまでに、複雑な動作が必要となるため、応答性が低く、限流装置の駆動機構としては不十分である。 A conventional current limiting device, for example, has a structure in which a pair of electrodes arranged to face each other is driven by a driving mechanism to bring the electrodes into contact and apart. For example, a spring is used as the drive source of the drive mechanism. However, in that case, since a complicated operation is required from the breaking command to the operation of the breaking section contact, the responsiveness is low and it is insufficient as a drive mechanism for the current limiting device.
特開2020-150752号公報JP 2020-150752 A 特開2016-12398号公報JP 2016-12398 A
 本発明が解決しようとする課題は、応答性が高い限流装置を提供することである。 The problem to be solved by the present invention is to provide a highly responsive current limiting device.
 実施形態の限流装置は、密閉容器と、固定電極と、可動電極と、操作機構と、を持つ。密閉容器は充填剤が充填される。固定電極は、前記密閉容器の内部に固設される。可動電極は、前記固定電極に対向配置される。操作機構は、前記可動電極を前記固定電極に対して離接させる。前記操作機構は、操作部と、制御部と、アキュムレータと、排液タンクと、ポンプと、を持つ。操作部とは、作動液の供給及び排出により、前記可動電極を開閉する。制御部は、前記作動液の供給を開始する電磁反発機構を有し、前記操作部に対する前記作動液の供給及び排出を制御する。アキュムレータは、前記作動液の圧力を保持する。排液タンクは、前記操作部により排出された前記作動液を貯蔵する。ポンプは、前記排液タンク内の作動液を前記アキュムレータに供給する。 The current limiting device of the embodiment has a closed container, a fixed electrode, a movable electrode, and an operating mechanism. The sealed container is filled with a filler. A fixed electrode is fixed inside the sealed container. A movable electrode is arranged to face the fixed electrode. The operating mechanism separates and contacts the movable electrode with respect to the fixed electrode. The operating mechanism has an operating section, a control section, an accumulator, a drain tank, and a pump. The operation part opens and closes the movable electrode by supplying and discharging working fluid. The control section has an electromagnetic repulsion mechanism that initiates supply of the hydraulic fluid, and controls supply and discharge of the hydraulic fluid to and from the operation section. An accumulator holds the pressure of the hydraulic fluid. A drain tank stores the hydraulic fluid discharged by the operation unit. A pump supplies hydraulic fluid in the drain tank to the accumulator.
第1の実施形態の限流装置1の構成図。The block diagram of the current limiting device 1 of 1st Embodiment. 第1の実施形態の限流装置1の構成図。The block diagram of the current limiting device 1 of 1st Embodiment. 第2の実施形態の限流装置における操作機構4の構成図。The block diagram of the operation mechanism 4 in the current limiting device of 2nd Embodiment. 第3の実施形態の限流装置における操作機構4の構成図。The block diagram of the operation mechanism 4 in the current limiting device of 3rd Embodiment. 第4の実施形態の限流装置における制御部60の構成図。The block diagram of the control part 60 in the current limiting device of 4th Embodiment.
 以下、実施形態の限流装置を、図面を参照して説明する。 The current limiting device of the embodiment will be described below with reference to the drawings.
 (第1の実施形態)
 図1及び図2は、第1の実施形態の限流装置1の構成図である。図1は、限流装置1の閉路状態を示し、図2は、限流装置1の開路状態を示す。限流装置1の閉路状態は、限流装置1の通電状態を含み、開路状態は、非通電状態を含む。限流装置1は、例えば、変電所等の電力供給設備に設置される。限流装置1は、例えば、可動電極2と、固定電極3と、操作機構4と、容器5、とを備える。
(First embodiment)
1 and 2 are configuration diagrams of a current limiting device 1 of the first embodiment. FIG. 1 shows the closed state of the current limiting device 1 and FIG. 2 shows the open state of the current limiting device 1 . The closed state of the current limiting device 1 includes an energized state of the current limiting device 1, and the open state includes a non-energized state. The current limiting device 1 is installed, for example, in a power supply facility such as a substation. The current limiting device 1 includes, for example, a movable electrode 2, a fixed electrode 3, an operating mechanism 4, and a container 5.
 容器5には、充填剤6が封入される。可動電極2には、第1の電力供給線7が接続され、固定電極3には、第2の電力供給線8が接続される。第1の電力供給線7及び第2の電力供給線8は、容器5の外側に延び出して、電力系統に接続される。以下の説明において、各部材の位置関係及び方向を説明するにあたり、限流装置1における容器5から見て操作機構4が配置された方向を機構方向、その反対側の方向を反機構方向と呼ぶことがある。 A filler 6 is enclosed in the container 5 . A first power supply line 7 is connected to the movable electrode 2 , and a second power supply line 8 is connected to the fixed electrode 3 . The first power supply line 7 and the second power supply line 8 extend outside the container 5 and are connected to the power system. In the following description, when explaining the positional relationship and direction of each member, the direction in which the operation mechanism 4 is arranged as viewed from the container 5 in the current limiting device 1 is called the mechanism direction, and the opposite direction is called the counter-mechanism direction. Sometimes.
 可動電極2は、例えば、銅やタングステンを含有する導体金属により構成される。可動電極2は、例えば、中実の円筒形状の部材である。可動電極2は、例えば、削り出し等により形成される。可動電極2の反機構方向の端部は、例えば、面取り加工された曲面状に形成される。 The movable electrode 2 is made of a conductor metal containing, for example, copper or tungsten. The movable electrode 2 is, for example, a solid cylindrical member. The movable electrode 2 is formed by, for example, cutting. The end portion of the movable electrode 2 in the anti-mechanical direction is, for example, chamfered to form a curved surface.
 可動電極2は、絶縁物に支持されて容器5の内部に配置される。可動電極2は、容器5内における充填剤6中において、固定電極3と接触及び離間可能に、固定電極3に対向して配置される。可動電極2の機構方向の端部は、操作機構4に接続される。可動電極2は、操作機構4により駆動されて固定電極3と機械的に接触したり離間したりする。 The movable electrode 2 is arranged inside the container 5 while being supported by an insulator. The movable electrode 2 is arranged in the filler 6 in the container 5 so as to face the fixed electrode 3 so as to be in contact with and separated from the fixed electrode 3 . The end of the movable electrode 2 in the mechanical direction is connected to the operating mechanism 4 . The movable electrode 2 is driven by the operating mechanism 4 to mechanically come into contact with or separate from the fixed electrode 3 .
 固定電極3は、例えば、銅やタングステンを含有する導体金属により構成される。固定電極3は、例えば、円筒形状の部材である。固定電極3は、例えば、削り出し等により形成される。固定電極3の機構方向の端部には、開口部11が形成される。固定電極3の反機構方向の端部には、底部12が設けられる。 The fixed electrode 3 is made of a conductor metal containing, for example, copper or tungsten. The fixed electrode 3 is, for example, a cylindrical member. The fixed electrode 3 is formed by, for example, cutting. An opening 11 is formed at the end of the fixed electrode 3 in the mechanical direction. A bottom portion 12 is provided at the end portion of the fixed electrode 3 in the direction opposite to the mechanism.
 固定電極3は、絶縁物(図示せず)に支持されて容器5の内部に配置される。固定電極3は、容器5内における充填剤6中において、可動電極2と接触及び離間可能に、可動電極2に対向して配置される。固定電極3の開口部11は、限流装置1が閉路状態となるに可動電極2の外径部分と接触する。可動電極2は、限流装置1が開路状態となるときに開口部11に摺動して固定電極3の機械的に離間する。 The fixed electrode 3 is arranged inside the container 5 while being supported by an insulator (not shown). The fixed electrode 3 is arranged in the filler 6 in the container 5 so as to face the movable electrode 2 so as to be in contact with and separated from the movable electrode 2 . The opening 11 of the fixed electrode 3 contacts the outer diameter portion of the movable electrode 2 when the current limiting device 1 is in the closed state. The movable electrode 2 slides into the opening 11 to mechanically separate the fixed electrode 3 when the current limiting device 1 is in an open circuit state.
 容器5は、例えば、金属や碍子等からなる円筒形状の密閉容器である。容器5の内部においては、絶縁物(図示せず)を介して可動電極2が移動可能に配置され、絶縁物(図示せず)を介して固定電極3が固定される。容器5の内部には、充填剤6が充填される。充填剤6としては、例えば水が用いられる。容器5は、金属製である場合、接地電位に接続される。離間した可動電極2と固定電極3の間の充填剤6が、電流を限流されるインピーダンスとして機能する。 The container 5 is, for example, a cylindrical closed container made of metal, insulator, or the like. Inside the container 5, the movable electrode 2 is movably arranged via an insulator (not shown), and the fixed electrode 3 is fixed via an insulator (not shown). The inside of the container 5 is filled with a filler 6 . Water, for example, is used as the filler 6 . If the container 5 is made of metal, it is connected to ground potential. The filler 6 between the spaced apart movable electrode 2 and fixed electrode 3 acts as a current limiting impedance.
 操作機構4は、液体を利用した液圧操作機構である。操作機構4は、可動電極2を機構方向または反機構方向に移動させることにより、可動電極2を固定電極3に対して離接させる。操作機構4は、例えば、操作部20と、アキュムレータ30と、排液タンク40と、ポンプユニット50と、制御部60と、を備える。 The operation mechanism 4 is a hydraulic operation mechanism using liquid. The operating mechanism 4 causes the movable electrode 2 to move in and out of contact with the fixed electrode 3 by moving the movable electrode 2 in the direction of the mechanism or in the direction opposite to the mechanism. The operating mechanism 4 includes, for example, an operating section 20, an accumulator 30, a drainage tank 40, a pump unit 50, and a control section 60.
 操作部20は、可動電極2を開閉する。操作部20は、例えば、駆動シリンダ21と、駆動ピストン22と、駆動ロッド23と、を備える。駆動ピストン22は、駆動シリンダ21の内部に摺動可能に挿入される。駆動ロッド23は、駆動ピストン22と可動電極2を接続する。 The operation part 20 opens and closes the movable electrode 2 . The operation unit 20 includes, for example, a drive cylinder 21, a drive piston 22, and a drive rod 23. The drive piston 22 is slidably inserted inside the drive cylinder 21 . A drive rod 23 connects the drive piston 22 and the movable electrode 2 .
 駆動シリンダ21の内部の空間には、駆動ピストン22により、第1の駆動液室24と、第2の駆動液室25が形成される。第1の駆動液室24は、駆動ピストン22に対する駆動ロッド23側(可動電極2側)の液室である。第2の駆動液室25は、駆動ピストン22を介した第1の駆動液室24と反対側の液室である。駆動シリンダ21は、シリンダの一例である。駆動ピストン22は、ピストンの一例である。駆動ロッド23は、ロッドの一例である。 A first drive fluid chamber 24 and a second drive fluid chamber 25 are formed by the drive piston 22 in the space inside the drive cylinder 21 . The first drive liquid chamber 24 is a liquid chamber on the drive rod 23 side (movable electrode 2 side) with respect to the drive piston 22 . The second driving fluid chamber 25 is a fluid chamber on the opposite side of the driving piston 22 from the first driving fluid chamber 24 . The drive cylinder 21 is an example of a cylinder. Drive piston 22 is an example of a piston. Drive rod 23 is an example of a rod.
 アキュムレータ30は、作動液の圧力を保持、ここでは高圧に保持する。アキュムレータ30は、例えば、アキュムレータ容器31と、アキュムレータピストン32と、を備える。アキュムレータピストン32は、アキュムレータ容器31に収容される。アキュムレータ容器31の内部は、アキュムレータピストン32によって窒素ガス室33と蓄液室34に仕切られる。窒素ガス室33は、アキュムレータ容器31の内部でアキュムレータピストン32の反機構方向の位置に形成され、高圧の窒素ガスが充填される。窒素ガス室33はどの位置に形成されていてもよく、例えば、アキュムレータピストン32の機構方向の位置に形成されていてもよい。蓄液室34は、アキュムレータ容器31の内部でアキュムレータピストン32の機構方向の位置に形成され、作動液が蓄えられる。 The accumulator 30 maintains the pressure of the hydraulic fluid, here it is maintained at a high pressure. The accumulator 30 includes, for example, an accumulator container 31 and an accumulator piston 32 . The accumulator piston 32 is housed in the accumulator container 31 . The interior of the accumulator container 31 is partitioned into a nitrogen gas chamber 33 and a liquid storage chamber 34 by an accumulator piston 32 . The nitrogen gas chamber 33 is formed inside the accumulator container 31 at a position opposite to the mechanism direction of the accumulator piston 32 and is filled with high-pressure nitrogen gas. The nitrogen gas chamber 33 may be formed at any position, for example, it may be formed at a position in the mechanism direction of the accumulator piston 32 . The liquid storage chamber 34 is formed inside the accumulator container 31 at a position in the direction of the mechanism of the accumulator piston 32, and stores hydraulic fluid.
 排液タンク40は、操作部20により排出された作動液を貯蔵する。ポンプユニット50は、排液タンク40内の作動液を高圧化してアキュムレータ30に供給する。操作部20、制御部60、アキュムレータ30、排液タンク40、及びポンプユニット50の間には、第1の高圧流路52、第2の高圧流路53、制御流路54、及び排液流路55が配設される。これらの流路には、作動液が滞留したり流通したりする。これらの流路については、制御部60の説明した後に説明する。 The drainage tank 40 stores the hydraulic fluid discharged by the operation part 20. The pump unit 50 pressurizes the working fluid in the drain tank 40 and supplies it to the accumulator 30 . Between the operation unit 20, the control unit 60, the accumulator 30, the waste liquid tank 40, and the pump unit 50, there are a first high-pressure flow path 52, a second high-pressure flow path 53, a control flow path 54, and a waste flow. A path 55 is provided. Hydraulic fluid stays in and flows through these channels. These flow paths will be described after the control unit 60 is described.
 制御部60は、操作部20に対する作動液の供給及び排出を制御する。制御部60は、高圧の作動液を操作部20に供給したり、操作部20の作動液を排液タンク40に排出させたりする。制御部60には、例えば、第1の制御液室61と、第2の制御液室62と、第3の制御液室63と、が形成される。制御部60は、例えば、切替弁64と、電磁反発機構70と、位置保持機構80と、を備える。 The control unit 60 controls the supply and discharge of hydraulic fluid to and from the operation unit 20 . The control unit 60 supplies high-pressure hydraulic fluid to the operating unit 20 and discharges the hydraulic fluid in the operating unit 20 to the drain tank 40 . A first control liquid chamber 61, a second control liquid chamber 62, and a third control liquid chamber 63 are formed in the control unit 60, for example. The control unit 60 includes, for example, a switching valve 64, an electromagnetic repulsion mechanism 70, and a position holding mechanism 80.
 切替弁64は、接続部64Aと、弁体64Bと、閉塞部64Cと、軸部64Dと、を備える。接続部64A、弁体64B、及び閉塞部64Cは、軸部64Dにより一体的に形成される。接続部64Aは、電磁反発機構70に接続される。制御部60における反機構方向の端部には、第1の制御液室61から制御部60の外部に貫通する第1の貫通部65Aが形成される。第1の貫通部65Aは、第1の制御液室61と制御部60の外側とを連通させる。接続部64Aは、第1の貫通部65Aを閉塞して設けられる。接続部64Aは、第1の貫通部65Aを閉塞したまま第1の貫通部65Aに沿って移動可能である。 The switching valve 64 includes a connecting portion 64A, a valve body 64B, a blocking portion 64C, and a shaft portion 64D. The connection portion 64A, the valve body 64B, and the closing portion 64C are integrally formed by the shaft portion 64D. The connection portion 64A is connected to the electromagnetic repulsion mechanism 70 . A first through portion 65</b>A that penetrates from the first control liquid chamber 61 to the outside of the control portion 60 is formed at the end portion of the control portion 60 in the direction opposite to the mechanism. The first through portion 65A allows the first control liquid chamber 61 and the outside of the control portion 60 to communicate with each other. The connecting portion 64A is provided to close the first through portion 65A. The connection portion 64A is movable along the first penetration portion 65A while closing the first penetration portion 65A.
 弁体64Bは、第2の制御液室62内に配置される。弁体64Bは、第1の制御液室61と第2の制御液室62の間の形成される第1の連通路66A及び第2の制御液室62と第3の制御液室63の間の形成される第2の連通路66Bを開放したり閉塞したりする。第1の連通路66Aは、第1の制御液室61と第2の制御液室62とを連通させ、第2の連通路66Bは、第2の制御液室62と第3の制御液室63とを連通させる。切替弁64が最も反機構方向に寄った位置に移動した場合、弁体64Bは、第1の連通路66Aを閉塞し、第2の連通路66Bを開放する。切替弁64が最も機構方向に寄った位置に移動した場合、弁体64Bは、第2の連通路66Bを閉塞し、第1の連通路66Aを開放する。切替弁64がこれらの位置以外の位置にある場合、弁体64Bは、第1の連通路66A及び第2の連通路66Bを開放する。 The valve body 64B is arranged inside the second control liquid chamber 62 . The valve body 64B includes a first communication passage 66A formed between the first control liquid chamber 61 and the second control liquid chamber 62 and a communication passage 66A formed between the second control liquid chamber 62 and the third control liquid chamber 63. to open or close the second communication path 66B formed by . The first communication path 66A communicates the first control fluid chamber 61 and the second control fluid chamber 62, and the second communication path 66B communicates the second control fluid chamber 62 and the third control fluid chamber. 63. When the switching valve 64 moves to the position closest to the anti-mechanism direction, the valve body 64B closes the first communication path 66A and opens the second communication path 66B. When the switching valve 64 moves to the position closest to the mechanism direction, the valve body 64B closes the second communication path 66B and opens the first communication path 66A. When the switching valve 64 is in a position other than these positions, the valve body 64B opens the first communication path 66A and the second communication path 66B.
 制御部60における機構方向の端部には、第3の制御液室63から制御部60の外部に貫通する第2の貫通部65Bが形成される。第2の貫通部65Bは、第3の制御液室63と制御部60の外側とを連通させる。閉塞部64Cは、第2の貫通部65Bを閉塞して設けられる。閉塞部64Cは、第2の貫通部65Bを閉塞したまま第2の貫通部65Bに沿って移動可能である。第2の貫通部65Bは、貫通部の一例である。 A second through portion 65B that penetrates from the third control liquid chamber 63 to the outside of the control portion 60 is formed at the end portion of the control portion 60 in the mechanism direction. The second through portion 65B allows the third control liquid chamber 63 and the outside of the control portion 60 to communicate with each other. The closing portion 64C is provided to close the second through portion 65B. The closing portion 64C is movable along the second penetration portion 65B while closing the second penetration portion 65B. The second through portion 65B is an example of a through portion.
 操作部20における第1の駆動液室24は、第1の高圧流路52を介して制御部60における第3の制御液室63に接続される。アキュムレータ30における蓄液室34は、第2の高圧流路53を介して操作部20における第1の駆動液室24に接続される。第1の高圧流路52及び第2の高圧流路53には作動液が高圧で滞留する。 The first drive liquid chamber 24 in the operation section 20 is connected to the third control liquid chamber 63 in the control section 60 via the first high-pressure flow path 52 . The liquid storage chamber 34 in the accumulator 30 is connected to the first drive liquid chamber 24 in the operation section 20 via the second high-pressure flow path 53 . Hydraulic fluid stays at high pressure in the first high-pressure flow path 52 and the second high-pressure flow path 53 .
 制御部60における第2の制御液室62は、制御流路54を介して操作部20における第2の駆動液室25に接続される。限流装置1が閉路状態にあるときには、作動液が制御流路54に高圧で滞留する。限流装置1が閉路状態から開路状態になるときには、制御流路54を通じて第2の駆動液室25内の作動液が第2の制御液室62に流入する。 The second control liquid chamber 62 in the control section 60 is connected to the second drive liquid chamber 25 in the operation section 20 via the control channel 54 . When the current limiting device 1 is in the closed state, the hydraulic fluid stays in the control flow path 54 at high pressure. When the current limiting device 1 changes from the closed state to the open state, the hydraulic fluid in the second drive fluid chamber 25 flows into the second control fluid chamber 62 through the control flow path 54 .
 制御部60における第1の制御液室61は、排液流路55を介して排液タンク40に接続される。限流装置1が閉路状態にあるときには、作動液が排液流路55に大気圧程度の低圧で滞留する。限流装置1が閉路状態から開路状態になるときには、第1の制御液室61と第2の制御液室62が連通し、第1の制御液室61を経由した第2の制御液室62内の作動液が、排液流路55を通じて排液タンク40に流入する。 The first control liquid chamber 61 in the control unit 60 is connected to the drainage tank 40 via the drainage channel 55 . When the current limiting device 1 is in the closed state, the hydraulic fluid stays in the drain channel 55 at a pressure as low as the atmospheric pressure. When the current limiting device 1 changes from the closed state to the open state, the first control liquid chamber 61 and the second control liquid chamber 62 communicate with each other, and the second control liquid chamber 62 is connected via the first control liquid chamber 61. The working fluid inside flows into the drain tank 40 through the drain channel 55 .
 電磁反発機構70は、弁体64Bを移動させることにより、操作部20に対する作動液供給させたり排出させたりする。電磁反発機構70は、例えば、可動軸71と、開路用コイル72と、閉路用コイル73と、駆動板74と、反発リング75と、開路ダンパ76と、閉路ダンパ77と、開路ダンパ受け78と、閉路ダンパ受け79と、を備える。開路用コイル72、閉路用コイル73、駆動板74、反発リング75、開路ダンパ76、閉路ダンパ77、開路ダンパ受け78、及び閉路ダンパ受け79は、ケース70Aに収容される。 The electromagnetic repulsion mechanism 70 causes the working fluid to be supplied to and discharged from the operating portion 20 by moving the valve body 64B. The electromagnetic repulsion mechanism 70 includes, for example, a movable shaft 71, an opening coil 72, a closing coil 73, a drive plate 74, a repulsion ring 75, an opening damper 76, a closing damper 77, and an opening damper receiver 78. , and a closing damper receiver 79 . The circuit-opening coil 72, the circuit-closing coil 73, the drive plate 74, the repulsion ring 75, the circuit-opening damper 76, the circuit-closing damper 77, the circuit-opening damper receiver 78, and the circuit-closing damper receiver 79 are housed in the case 70A.
 可動軸71は、長尺の部材である。可動軸71の反機構方向の端部は、制御部60における切替弁64の接続部64Aに接続される。可動軸71は、切替弁64を作動させる。電磁反発機構70は、可動軸71により切替弁64を作動させることにより切替弁64を駆動する。 The movable shaft 71 is a long member. The end of the movable shaft 71 facing away from the mechanism is connected to the connection portion 64A of the switching valve 64 in the control portion 60 . The movable shaft 71 operates the switching valve 64 . The electromagnetic repulsion mechanism 70 drives the switching valve 64 by operating the switching valve 64 with the movable shaft 71 .
 開路用コイル72は、可動軸71に沿った軸を取り囲んで配置される。開路用コイル72は、例えば、ケース70Aに取り付けられた台座72Aを介してケース70Aに固定される。閉路用コイル73は、可動軸71に沿った軸を取り囲んで配置される。閉路用コイル73は、例えば、ケース70Aに取り付けられた台座73Aを介してケース70Aに固定される。 The circuit opening coil 72 is arranged surrounding the axis along the movable axis 71 . The circuit opening coil 72 is fixed to the case 70A via a base 72A attached to the case 70A, for example. The closing coil 73 is arranged around the axis along the movable axis 71 . The closing coil 73 is fixed to the case 70A via a pedestal 73A attached to the case 70A, for example.
 駆動板74は、可動軸71に固着される。駆動板74は、例えば、円盤形状をした軽金属を含んで構成される。駆動板74は、開路用コイル72と閉路用コイル73の間(開路用コイル72よりも切替弁64側)に配置される。反発リング75は、駆動板74に固着された円環形状の良導体材料を含んで構成される。反発リング75は、開路用コイル72と閉路用コイル73のそれぞれに対して配置される。 The drive plate 74 is fixed to the movable shaft 71 . The drive plate 74 is composed of, for example, a disk-shaped light metal. The drive plate 74 is arranged between the circuit-opening coil 72 and the circuit-closing coil 73 (closer to the switching valve 64 than the circuit-opening coil 72). The repulsion ring 75 comprises an annular shaped good conductor material fixed to the drive plate 74 . A repulsion ring 75 is arranged for each of the opening coil 72 and the closing coil 73 .
 開路用コイル72は、電流を印加された際に、反発リング75に対して逆方向の誘導電流を発生させて、駆動板74に開路用コイル72から離反する方向に反発力を与える。こうして、開路用コイル72は、可動軸71を介して切替弁64を機構方向(開路動作方向)に移動させ、封鎖された第1の制御液室61と第2の制御液室62を連通させる。 When a current is applied to the circuit opening coil 72 , it generates an induced current in the opposite direction to the repulsion ring 75 and applies a repulsive force to the driving plate 74 in a direction away from the circuit opening coil 72 . In this way, the circuit-opening coil 72 moves the switching valve 64 in the mechanism direction (circuit-opening direction) via the movable shaft 71, thereby connecting the closed first control liquid chamber 61 and the second control liquid chamber 62. .
 閉路用コイル73は、電流を印加された際に、反発リング75に対して逆方向の誘導電流を発生させて、駆動板74に閉路用コイル73から離反する方向に反発力を与える。こうして、閉路用コイル73は、可動軸71を介して切替弁64を機構方向に移動させ、封鎖された第2の制御液室62と第3の制御液室63を連通させる。 When a current is applied to the circuit closing coil 73 , it generates an induced current in the opposite direction to the repulsion ring 75 and applies a repelling force to the drive plate 74 in a direction away from the circuit closing coil 73 . In this manner, the closing coil 73 moves the switching valve 64 in the direction of the mechanism via the movable shaft 71, thereby allowing the closed second control liquid chamber 62 and the third control liquid chamber 63 to communicate with each other.
 開路ダンパ76は、開路動作終了時に制動力を発生させる。開路ダンパ76は、可動軸71が機構方向に向けて動作したときに、開路ダンパ受け78に接触して可動軸71を減速させる。開路ダンパ76は、例えばオイルダンパである。開路ダンパ76は、例えば、外筒76Aと、ピストンロッド76Bと、を含んで構成される。 The circuit-opening damper 76 generates a braking force when the circuit-opening operation ends. The open circuit damper 76 contacts the open circuit damper receiver 78 to decelerate the movable shaft 71 when the movable shaft 71 moves toward the mechanism. The open circuit damper 76 is, for example, an oil damper. The open circuit damper 76 includes, for example, an outer cylinder 76A and a piston rod 76B.
 ピストンロッド76Bは、外筒76Aから開路ダンパ受け78に向かって突出する。限流装置1が閉路状態であるときには、ピストンロッド76Bの先端は、開路ダンパ受け78から離間している。開路ダンパ76は、更に、ピストンロッド76Bを開路ダンパ受け78に向けて付勢する付勢部材を備える。 The piston rod 76B protrudes from the outer cylinder 76A toward the open circuit damper receiver 78. The tip of the piston rod 76B is separated from the open circuit damper receiver 78 when the current limiting device 1 is in the closed circuit state. The open circuit damper 76 further includes a biasing member that biases the piston rod 76B toward the open circuit damper receiver 78 .
 閉路ダンパ77は、閉路動作終了時に制動力を発生させる。閉路ダンパ77は、可動軸71が反機構方向(閉路動作方向)に向けて動作したときに、閉路ダンパ受け79に接触して可動軸71を減速させる。閉路ダンパ77は、例えばオイルダンパである。閉路ダンパ77は、例えば、外筒77Aと、ピストンロッド77Bと、を含んで構成される。 The closing damper 77 generates a braking force at the end of the closing operation. The closed circuit damper 77 contacts the closed circuit damper receiver 79 and decelerates the movable shaft 71 when the movable shaft 71 moves in the anti-mechanism direction (circuit closing direction). The closed circuit damper 77 is, for example, an oil damper. The closing damper 77 includes, for example, an outer cylinder 77A and a piston rod 77B.
 ピストンロッド77Bは、外筒77Aから閉路ダンパ受け79に向かって突出する。限流装置1が開路状態であるときには、ピストンロッド77Bの先端は、閉路ダンパ受け79から離間している。閉路ダンパ77は、更に、ピストンロッド77Bを閉路ダンパ受け79に向けて付勢する付勢部材を備える。 The piston rod 77B protrudes from the outer cylinder 77A toward the closing damper receiver 79. The tip of the piston rod 77B is separated from the closing damper receiver 79 when the current limiting device 1 is in the open state. The closing damper 77 further includes a biasing member that biases the piston rod 77B toward the closing damper receiver 79 .
 開路ダンパ受け78は、ゴムなどの弾性を有し、円盤形状をなす。開路ダンパ受け78は、可動軸71における駆動板74が固着された位置よりも機構方向に寄った位置に固着される。開路ダンパ受け78は、開路動作終了時に開路ダンパ76と当接する。開路ダンパ受け78は、例えば、弾性を有するゴムなどの部材により構成される。開路ダンパ受け78は、開路ダンパ76に接触する際に、開路ダンパ76との接触を緩衝する。 The open circuit damper receiver 78 has elasticity such as rubber and has a disk shape. The open circuit damper receiver 78 is fixed to a position closer to the mechanism direction than the position to which the drive plate 74 is fixed on the movable shaft 71 . The circuit-opening damper receiver 78 contacts the circuit-opening damper 76 when the circuit-opening operation ends. The open circuit damper receiver 78 is made of, for example, an elastic member such as rubber. The open-circuit damper receiver 78 dampens contact with the open-circuit damper 76 when contacting the open-circuit damper 76 .
 閉路ダンパ受け79は、駆動板74における可動軸71が接続された面の反対側の面(反機構方向を向いた面)に固着される。閉路ダンパ受け79は、閉路動作終了時に前記開路ダンパと当接する。閉路ダンパ受け79は、例えば、弾性を有するゴムなどの部材により構成される。閉路ダンパ受け79は、閉路ダンパ77に接触する際に、閉路ダンパ77との接触を緩衝する。 The closing damper receiver 79 is fixed to the surface of the drive plate 74 opposite to the surface to which the movable shaft 71 is connected (the surface facing away from the mechanism). The closing damper receiver 79 comes into contact with the opening damper at the end of the closing operation. The closing damper receiver 79 is made of, for example, an elastic member such as rubber. The closed circuit damper receiver 79 dampens contact with the closed circuit damper 77 when contacting the closed circuit damper 77 .
 位置保持機構80は、切替弁64の位置、さらには、弁体64Bの位置を保持する。位置保持機構80は、例えば、揺動リンク81と、付勢部材82と、を備える。揺動リンク81は、可動軸71に移動に伴って揺動し、可動軸71の移動方向を規制する。付勢部材82は、弁体64Bが第1の連通路66Aを閉塞する位置にある場合に、可動軸71が反機構方向に付勢されるように揺動リンク81を付勢して、可動軸71の移動を阻止し、第1の連通路66Aが閉塞された状態を保持する。付勢部材82は、弁体64Bが第2の連通路66Bを閉塞する位置にある場合に、可動軸が機構方向に付勢されるように揺動リンク81を付勢して、可動軸71の移動を阻止し、第2の連通路66Bが閉塞された状態を保持する。 The position holding mechanism 80 holds the position of the switching valve 64 and further the position of the valve body 64B. The position holding mechanism 80 has, for example, a swing link 81 and a biasing member 82 . The swing link 81 swings as the movable shaft 71 moves, and regulates the moving direction of the movable shaft 71 . The urging member 82 urges the swing link 81 so that the movable shaft 71 is urged in the anti-mechanical direction when the valve body 64B is positioned to close the first communication passage 66A. The movement of the shaft 71 is blocked, and the closed state of the first communication path 66A is maintained. The biasing member 82 biases the swing link 81 so that the movable shaft is biased in the direction of the mechanism when the valve body 64B is positioned to close the second communication path 66B. is prevented from moving, and the state in which the second communication path 66B is blocked is maintained.
 限流装置1は、開路状態と閉路状態のいずれかの状態となる。限流装置1が閉路状態から開路状態になる動作を開路動作といい、限流装置1が開路状態から閉路状態になる動作を閉路動作という。さらに、反機構方向を開路動作方向、機構方向を閉路動作方向ともいう。続いて、限流装置1の状態及び状態変化について説明する。 The current limiting device 1 is in either an open circuit state or a closed circuit state. The operation of the current limiting device 1 from the closed state to the open state is called opening operation, and the operation of the current limiting device 1 from the open state to the closed state is called closing operation. Further, the anti-mechanism direction is also referred to as the circuit opening operation direction, and the mechanism direction is also referred to as the circuit closing operation direction. Next, the state and state change of the current limiting device 1 will be described.
 まず、限流装置1の閉路状態について説明する。
 限流装置1が閉路状態であるとき、ポンプユニット50は、排液タンク40内の作動液を高圧化してアキュムレータ30における蓄液室34に供給する。蓄液室34には、窒素ガス室33内の窒素ガスの圧縮性がアキュムレータピストン32を介して作用するため、蓄液室34には、蓄圧されて高圧化された作動液が蓄液される。駆動ピストン22における第1の駆動液室24側の面には、蓄液室34からの液圧が第1の高圧流路52に滞留する作動液を介して常時作用する。
First, the closed state of the current limiting device 1 will be described.
When the current limiting device 1 is in the closed state, the pump unit 50 pressurizes the working fluid in the drain tank 40 and supplies it to the fluid storage chamber 34 in the accumulator 30 . Since the compressibility of the nitrogen gas in the nitrogen gas chamber 33 acts on the fluid storage chamber 34 via the accumulator piston 32, the fluid storage chamber 34 stores the pressurized hydraulic fluid. . Hydraulic pressure from the fluid storage chamber 34 always acts on the surface of the driving piston 22 on the side of the first driving fluid chamber 24 via the hydraulic fluid staying in the first high-pressure flow path 52 .
 一方、制御部60においては、位置保持機構80は、切替弁64の弁体64Bが第1の連通路66Aを閉塞するとともに第2の連通路66Bを開放する位置で電磁反発機構70の可動軸71を保持する。このため、第1の制御液室61と第2の制御液室62は遮断され、第2の制御液室62と第3の制御液室63は連通する。 On the other hand, in the control unit 60, the position holding mechanism 80 moves the movable shaft of the electromagnetic repulsion mechanism 70 at a position where the valve body 64B of the switching valve 64 closes the first communication path 66A and opens the second communication path 66B. Hold 71. Therefore, the first control liquid chamber 61 and the second control liquid chamber 62 are blocked, and the second control liquid chamber 62 and the third control liquid chamber 63 are communicated.
 この状態で、蓄液室34からの液圧は、第2の高圧流路53、第1の高圧流路52、および制御流路54を介して駆動ピストン22における第2の駆動液室25側の面にも常時作用する。このように駆動ピストン22には、第1の駆動液室24側の面だけでなく、第2の駆動液室25側の面にも作動液の液圧が作用している。駆動ピストン22における両側の面では、作動液の液圧が作用する液圧作用面積差が生じ、第1の駆動液室24側の面積は、第2の駆動液室25側の面積よりも狭い。駆動ピストン22の両側の面における液圧作用面積差により、限流装置1は、図1に示すような閉路状態の位置に保持される。 In this state, the hydraulic pressure from the fluid accumulating chamber 34 flows through the second high-pressure flow path 53, the first high-pressure flow path 52, and the control flow path 54 to the second driving fluid chamber 25 side of the driving piston 22. always works on the side of Thus, the hydraulic pressure of the hydraulic fluid acts on the driving piston 22 not only on the surface on the first driving fluid chamber 24 side but also on the surface on the second driving fluid chamber 25 side. On both sides of the drive piston 22, there is a difference in hydraulic pressure action area where the hydraulic pressure of the hydraulic fluid acts, and the area on the first drive fluid chamber 24 side is narrower than the area on the second drive fluid chamber 25 side. . Due to the difference in hydraulic active areas on opposite sides of the drive piston 22, the current limiting device 1 is held in the closed position as shown in FIG.
 続いて、図1に示す閉路状態にある限流装置1が図2に示す開路状態に状態変化するまでの開路動作について説明する。
 図1に示す閉路状態の限流装置1において、図示しない駆動電源からパルス電流を開路用コイル72に流すと開路用コイル72と、反発リング75の間に磁界が発生し、反発リング75に渦電流が発生する。
Next, the circuit opening operation until the current limiting device 1 in the closed state shown in FIG. 1 changes to the open circuit state shown in FIG. 2 will be described.
In the current limiting device 1 in the closed state shown in FIG. A current is generated.
 発生した渦電流は反発リング75に流れる電流と逆向きに流れるため、反発リング75に電磁反発力が発生する。反発リング75に発生した電磁反発力は、位置保持機構80による切替弁64への開路動作方向とは逆向きの付勢力より大きい。このため、反発リング75、駆動板74、及び可動軸71が切替弁64の開路動作方向に移動を開始する。可動軸71の移動に伴い、切替弁64も開路動作方向へ移動する。 The generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 75 , so an electromagnetic repulsion force is generated in the repulsion ring 75 . The electromagnetic repulsive force generated in the repulsive ring 75 is larger than the urging force in the direction opposite to the opening operation direction of the switching valve 64 by the position holding mechanism 80 . Therefore, the repulsion ring 75 , the drive plate 74 and the movable shaft 71 start moving in the opening operation direction of the switching valve 64 . As the movable shaft 71 moves, the switching valve 64 also moves in the opening operation direction.
 切替弁64が移動することにより、第1の連通路66Aが開放されて、第1の制御液室61と第2の制御液室62が連通する。第1の制御液室61と第2の制御液室62が連通することにより、操作部20の第2の駆動液室25内の液圧が低下する。その結果、第1の駆動液室24における高圧の作動液の液圧によって駆動ピストン22が機構方向に駆動されて、駆動ロッド23を介して駆動ピストン22に連結された可動電極2が開路動作を行う。 By moving the switching valve 64, the first communication path 66A is opened, and the first control liquid chamber 61 and the second control liquid chamber 62 are communicated with each other. The communication between the first control liquid chamber 61 and the second control liquid chamber 62 reduces the liquid pressure in the second drive liquid chamber 25 of the operation unit 20 . As a result, the driving piston 22 is driven in the direction of the mechanism by the hydraulic pressure of the high-pressure hydraulic fluid in the first driving fluid chamber 24, and the movable electrode 2 connected to the driving piston 22 via the driving rod 23 opens the circuit. conduct.
 可動軸71がある一定距離変位すると、開路ダンパ受け78が開路ダンパ76のピストンロッド76Bに当接し、続いて、ピストンロッド76Bが外筒76Aに押し込まれて開路ダンパ76が可動軸71を制動する制動力が発生する。開路ダンパ76による制動力は、可動軸71および切替弁64を含む可動している部分の全体に作用される。 When the movable shaft 71 is displaced by a certain distance, the open circuit damper receiver 78 abuts against the piston rod 76B of the open circuit damper 76, and then the piston rod 76B is pushed into the outer cylinder 76A so that the open circuit damper 76 brakes the movable shaft 71. A braking force is generated. The braking force of the open circuit damper 76 is applied to all moving parts including the movable shaft 71 and the switching valve 64 .
 切替弁64は、第2の制御液室62と第3の制御液室63を遮断する位置まで移動して停止する。その後、位置保持機構80は、可動軸71を介して、切替弁64の位置を保持する。開路動作中、駆動ピストン22の移動に伴い、第2の駆動液室25内の作動液の一部は排液となり、制御流路54と排液流路55を経由して排液タンク40により回収される。開路動作中は、切替弁64により第2の制御液室62と第3の制御液室63が遮断されている。したがって、高圧の作動液が排液流路55に流出することがないため、作動液の消費量を少なくすることができる。 The switching valve 64 moves to a position where it blocks the second control liquid chamber 62 and the third control liquid chamber 63 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 71 . During the circuit opening operation, as the drive piston 22 moves, part of the hydraulic fluid in the second drive fluid chamber 25 is drained, and is discharged by the drain tank 40 via the control channel 54 and the drain channel 55. be recovered. During the opening operation, the second control liquid chamber 62 and the third control liquid chamber 63 are shut off by the switching valve 64 . Therefore, since the high-pressure hydraulic fluid does not flow out to the drainage channel 55, the consumption of the hydraulic fluid can be reduced.
 続いて、限流装置1の開路状態について説明する。
 限流装置1が開路状態であるとき、ポンプユニット50は、限流装置1が閉路状態であるときと同様に、排液タンク40内の作動液を高圧化してアキュムレータ30における蓄液室34に供給する。このため、蓄液室34には、蓄圧されて高圧化された作動液が蓄液され、駆動ピストン22における第1の駆動液室24側の面には、蓄液室34からの高圧の液圧が第1の高圧流路52に滞留する作動液を介して常時作用する。
Next, the open circuit state of the current limiting device 1 will be described.
When the current limiting device 1 is in the open circuit state, the pump unit 50 increases the pressure of the hydraulic fluid in the drain tank 40 and supplies it to the liquid storage chamber 34 in the accumulator 30, similarly to when the current limiting device 1 is in the closed circuit state. supply. For this reason, hydraulic fluid that has been pressurized and pressurized is stored in the fluid storage chamber 34 , and the surface of the drive piston 22 on the side of the first drive fluid chamber 24 is filled with high-pressure fluid from the fluid storage chamber 34 . Pressure is constantly acting through the hydraulic fluid residing in the first high pressure flow path 52 .
 一方、制御部60においては、切替弁64の弁体64Bが第1の連通路66Aを開放するとともに第2の連通路66Bを閉塞する位置で位置保持機構80が電磁反発機構70の可動軸71を保持する。このため、第1の制御液室61と第2の制御液室62は連通し、第2の制御液室62と第3の制御液室63とは遮断される。 On the other hand, in the control unit 60, the position holding mechanism 80 moves the movable shaft 71 of the electromagnetic repulsion mechanism 70 at the position where the valve body 64B of the switching valve 64 opens the first communication path 66A and closes the second communication path 66B. hold. Therefore, the first control liquid chamber 61 and the second control liquid chamber 62 are communicated, and the second control liquid chamber 62 and the third control liquid chamber 63 are blocked.
 このため、制御流路54、排液流路55、及び第2の駆動液室25には、大気圧程度の作動液が滞留するので、駆動ピストン22における第2の駆動液室25側の面には、大気圧程度の低圧の液圧が常時作用する。したがって、駆動ピストン22の両側の面では、駆動ピストン22における第1の駆動液室24側にかかる圧力の方が、第2の駆動液室25側にかかる圧力よりも高くなる圧力差が生じるので、限流装置1は、図2に示すような開路状態の位置に保持される。 Therefore, since the working fluid at about atmospheric pressure stays in the control channel 54, the drain channel 55, and the second driving fluid chamber 25, the surface of the driving piston 22 on the second driving fluid chamber 25 side is A low hydraulic pressure of about atmospheric pressure always acts on the . Therefore, on both sides of the drive piston 22, a pressure difference is generated in which the pressure applied to the first drive fluid chamber 24 side of the drive piston 22 is higher than the pressure applied to the second drive fluid chamber 25 side. , the current limiting device 1 is held in the open circuit position as shown in FIG.
 続いて、図2に示す開路状態にある限流装置1が図1に示す閉路状態に状態変化するまでの閉路動作について説明する。
 図2に示す開路状態の限流装置1において、図示しない駆動電源からパルス電流を閉路用コイル73に流すと、閉路用コイル73と反発リング75の間に磁界が発生し、反発リング75に渦電流が発生する。
Next, the circuit closing operation until the current limiting device 1 in the open circuit state shown in FIG. 2 changes to the closed circuit state shown in FIG. 1 will be described.
In the current limiting device 1 in the open circuit state shown in FIG. A current is generated.
 発生した渦電流は反発リング75に流れる電流と逆向きに流れるため、反発リング75に電磁反発力が発生する。反発リング75に発生した電磁反発力は、位置保持機構80による切替弁64への閉路動作方向とは逆向きの付勢力より大きい。このため、反発リング75、駆動板74、及び可動軸71が切替弁64の閉路動作方向に移動を開始する。可動軸71の移動に伴い、切替弁64も閉路動作方向に移動する。 The generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 75 , so an electromagnetic repulsion force is generated in the repulsion ring 75 . The electromagnetic repulsive force generated in the repulsive ring 75 is larger than the urging force in the opposite direction to the closing operation direction of the switching valve 64 by the position holding mechanism 80 . As a result, the repulsion ring 75 , the drive plate 74 and the movable shaft 71 start moving in the closing operation direction of the switching valve 64 . As the movable shaft 71 moves, the switching valve 64 also moves in the closing direction.
 切替弁64が移動することにより、第2の連通路66Bが開放されて、第2の制御液室62と第3の制御液室63が連通する。第2の制御液室62と第3の制御液室63が連通することにより、駆動ピストン22における第1の駆動液室24の面だけでなく、第2の駆動液室25の面にも作動液による高圧の液圧が作用する。 By moving the switching valve 64, the second communication path 66B is opened, and the second control liquid chamber 62 and the third control liquid chamber 63 communicate with each other. By connecting the second control fluid chamber 62 and the third control fluid chamber 63, the driving piston 22 operates not only on the surface of the first driving fluid chamber 24 but also on the surface of the second driving fluid chamber 25. A high hydraulic pressure is applied by the liquid.
 駆動ピストン22における両側に同様の高圧の液圧が作用すると、駆動ピストン22は、液圧作用面積の差により反機構方向に駆動される。駆動ピストン22が反機構方向に駆動されることにより、駆動ロッド23を介して駆動ピストン22に連結された可動電極2が、閉路動作方向に移動する閉路動作を行う。 When the same high hydraulic pressure acts on both sides of the driving piston 22, the driving piston 22 is driven in the counter-mechanical direction due to the difference in the hydraulic pressure acting area. When the drive piston 22 is driven in the counter-mechanical direction, the movable electrode 2 connected to the drive piston 22 via the drive rod 23 performs the closing operation of moving in the closing operation direction.
 可動軸71がある一定距離変位すると、閉路ダンパ受け79が閉路ダンパ77のピストンロッド77Bに当接し、続いて、ピストンロッド77Bが外筒77Aに押し込まれて閉路ダンパ77が可動軸71を制動する制動力が発生する。閉路ダンパ77による制動力は、可動軸71および切替弁64を含む可動している部分の全体に作用される。 When the movable shaft 71 is displaced by a certain distance, the closing damper receiver 79 comes into contact with the piston rod 77B of the closing damper 77, and then the piston rod 77B is pushed into the outer cylinder 77A so that the closing damper 77 brakes the movable shaft 71. A braking force is generated. The braking force of the closing damper 77 is applied to all moving parts including the movable shaft 71 and the switching valve 64 .
 切替弁64は、第1の制御液室61と第2の制御液室62を遮断する位置まで移動して停止する。その後、位置保持機構80は、可動軸71を介して、切替弁64の位置を保持する。この閉路動作中は、切替弁64が第1の制御液室61と第2の制御液室62を遮断しており、開路動作と同様に、高圧液が排液流路55に流出することがないため、高圧液の消費量を少なくすることができる。 The switching valve 64 moves to a position where it blocks the first control liquid chamber 61 and the second control liquid chamber 62 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 71 . During this closing operation, the switching valve 64 blocks the first control liquid chamber 61 and the second control liquid chamber 62, and the high-pressure liquid may flow out to the drainage flow path 55 as in the opening operation. Therefore, the consumption of high-pressure liquid can be reduced.
 第1の実施形態の限流装置1においては、液体を利用した液圧操作機構である操作機構4を利用している。このため、操作機構4における可動軸71を移動させることによって閉路状態から開路状態の状態変化をさせようとする場合に、動作の応答性を高めることができる。 The current limiting device 1 of the first embodiment uses the operation mechanism 4, which is a hydraulic operation mechanism using liquid. Therefore, when the movable shaft 71 in the operating mechanism 4 is moved to change the state from the closed state to the open state, the responsiveness of the operation can be enhanced.
 第1の実施形態の限流装置1においては、電磁反発機構70を用いることにより、動作の応答性を高めている。しかしなら、限流装置1において用いられる可動電極2は、例えば、銅やタングステンを含有する導体金属で構成されるので、重量が嵩む。さらに、可動電極2を作動させるためには、ある程度のストローク長、例えば数百mm程度のストローク長が要求される。電磁反発機構70を用いた場合、動作の応答性を高めることができるが、可動電極2のストローク長を稼ぐことが難しくなる。 In the current limiting device 1 of the first embodiment, by using the electromagnetic repulsion mechanism 70, the responsiveness of operation is enhanced. However, the movable electrode 2 used in the current limiting device 1 is made of, for example, a conductive metal containing copper or tungsten, and is therefore heavy. Furthermore, in order to operate the movable electrode 2, a certain stroke length, for example, a stroke length of about several hundred mm is required. When the electromagnetic repulsion mechanism 70 is used, the responsiveness of the operation can be improved, but it becomes difficult to increase the stroke length of the movable electrode 2 .
 この点、第1の実施形態の限流装置1は、液体を利用した液圧操作機構である操作機構4を用いて、可動電極2を移動させる。液圧操作機構である操作機構4を用いると、駆動シリンダ21のシリンダ径や軸方向の寸法を調整することにより、大出力化を容易に図ることができる。 In this regard, the current limiting device 1 of the first embodiment moves the movable electrode 2 using the operating mechanism 4, which is a hydraulic operating mechanism using liquid. Using the operation mechanism 4, which is a hydraulic operation mechanism, it is possible to easily increase the output by adjusting the cylinder diameter and the axial dimension of the drive cylinder 21. FIG.
 さらに、制御流路54を介して操作部20の第2の駆動液室25内の高圧の作動液を迅速に排出及び流入させることが可能となり、駆動ピストン22を高応答に移動させることができる。したがって、限流装置1は、大重量の可動電極2についても、素早く移動させることができる。操作機構4を備えることで、大出力、高応答、長ストローク化を図ることができる。 Furthermore, the high-pressure hydraulic fluid in the second driving fluid chamber 25 of the operation unit 20 can be rapidly discharged and introduced via the control flow path 54, and the driving piston 22 can be moved with high response. . Therefore, the current limiting device 1 can quickly move even the heavy movable electrode 2 . By providing the operation mechanism 4, a large output, a high response, and a long stroke can be achieved.
 (第2の実施形態)
 続いて、第2の実施形態について説明する。第2の実施形態の限流装置は、第1の実施形態と比較して、操作部における電磁反発機構の構成が主に異なる。以下の第2の実施形態以降の説明において、第1の実施形態と共通する要素等については、図面中に同一の番号を付してその説明を省略することがある。
(Second embodiment)
Next, a second embodiment will be described. The current limiting device of the second embodiment differs from that of the first embodiment mainly in the configuration of the electromagnetic repulsion mechanism in the operating portion. In the following description of the second embodiment and subsequent embodiments, the same reference numerals may be assigned to elements and the like common to those of the first embodiment, and the description thereof may be omitted.
 図3は、第2の実施形態の限流装置における操作機構4の構成図である。第2の実施形態の操作機構4は、制御部60において、第1の実施形態における電磁反発機構70に代えて、単一方向に駆動する第1の単方向電磁反発機構110及び第2の単方向電磁反発機構120を備える。第1の単方向電磁反発機構110及び第2の単方向電磁反発機構120は、切替弁64の両側のそれぞれに設けられる。 FIG. 3 is a configuration diagram of the operating mechanism 4 in the current limiting device of the second embodiment. The operating mechanism 4 of the second embodiment includes, in the control unit 60, a first unidirectional electromagnetic repulsion mechanism 110 and a second single-direction driving mechanism instead of the electromagnetic repulsion mechanism 70 in the first embodiment. A directional electromagnetic repulsion mechanism 120 is provided. The first unidirectional electromagnetic repulsion mechanism 110 and the second unidirectional electromagnetic repulsion mechanism 120 are provided on both sides of the switching valve 64, respectively.
 第1の単方向電磁反発機構110は、例えば、可動軸111と、コイル112と、駆動板113と、反発リング114と、ダンパ115と、ダンパ受け116と、を備える。可動軸111は、切替弁64に接続される。第1の単方向電磁反発機構110における可動軸111を除く各要素は、ケース110Aに収容される。 The first unidirectional electromagnetic repulsion mechanism 110 includes, for example, a movable shaft 111, a coil 112, a drive plate 113, a repulsion ring 114, a damper 115, and a damper receiver 116. The movable shaft 111 is connected to the switching valve 64 . Each element of the first unidirectional electromagnetic repulsion mechanism 110 except for the movable shaft 111 is housed in a case 110A.
 コイル112は、可動軸111を取り囲んで配置される。コイル112は、例えば、ケース110Aに取り付けられた台座112Aを介してケース110Aに固定される。駆動板113は、例えば、円盤形状をした軽金属を含んで構成され、可動軸111に固着される。駆動板113は、コイル112の機構方向に寄った位置に配置される。反発リング114は、駆動板113の反機構方向の面に固着された円環形状の良導体材料を含んで構成される。 The coil 112 is arranged surrounding the movable shaft 111 . The coil 112 is fixed to the case 110A, for example, via a pedestal 112A attached to the case 110A. The drive plate 113 is made of, for example, a disk-shaped light metal and fixed to the movable shaft 111 . The drive plate 113 is arranged at a position closer to the mechanism direction of the coil 112 . The repulsion ring 114 includes an annular good conductor material fixed to the surface of the drive plate 113 facing away from the mechanism.
 ダンパ115は、可動軸111が反機構方向に向けて動作したときに、ダンパ受け116に接触して可動軸111を減速させる。ダンパ115は、例えばオイルダンパである。ダンパ115は、例えば、外筒115Aと、ピストンロッド115Bと、を含んで構成される。ダンパ115は、第1の実施形態の開路ダンパ76と同様に構成され、制御部60との関係において、第1の実施形態の開路ダンパ76と反対側を向いて配置される。 The damper 115 decelerates the movable shaft 111 by coming into contact with the damper receiver 116 when the movable shaft 111 moves in the anti-mechanism direction. Damper 115 is, for example, an oil damper. The damper 115 includes, for example, an outer cylinder 115A and a piston rod 115B. The damper 115 is configured in the same manner as the open circuit damper 76 of the first embodiment, and is arranged facing the opposite side of the open circuit damper 76 of the first embodiment in relation to the control unit 60 .
 ダンパ受け116は、駆動板113における可動軸111が接続された面の反対側の面(反機構方向を向いた面)に接続される。ダンパ受け116は、例えば、弾性を有するゴムなどの部材により構成される。ダンパ受け116は、ダンパ115に接触する際に、ダンパ115との接触を緩衝する。 The damper receiver 116 is connected to the surface of the driving plate 113 opposite to the surface to which the movable shaft 111 is connected (the surface facing away from the mechanism). The damper receiver 116 is made of, for example, an elastic member such as rubber. The damper receiver 116 dampens the contact with the damper 115 when it contacts the damper 115 .
 第2の単方向電磁反発機構120は、例えば、可動軸121と、コイル122と、駆動板123と、反発リング124と、ダンパ125と、ダンパ受け126と、を備える。第2の単方向電磁反発機構120の各要素は、第1の単方向電磁反発機構110の各要素と同様に構成される。第2の単方向電磁反発機構120は、第1の単方向電磁反発機構110に対して、位置保持機構80及び制御部60を挟んで対称に配置される。 The second unidirectional electromagnetic repulsion mechanism 120 includes, for example, a movable shaft 121, a coil 122, a drive plate 123, a repulsion ring 124, a damper 125, and a damper receiver 126. Each element of the second unidirectional electromagnetic repulsion mechanism 120 is configured similarly to each element of the first unidirectional electromagnetic repulsion mechanism 110 . The second unidirectional electromagnetic repulsion mechanism 120 is arranged symmetrically with respect to the first unidirectional electromagnetic repulsion mechanism 110 with the position holding mechanism 80 and the control unit 60 interposed therebetween.
 続いて、第2の実施形態の限流装置における開路動作及び閉路動作について説明する。まず、第2の実施形態の限流装置の開路動作について説明する。
 図示しない駆動電源からパルス電流をコイル112に流すとコイル112と、反発リング114の間に磁界が発生し、反発リング114に渦電流が発生する。
Next, the circuit opening operation and the circuit closing operation in the current limiting device of the second embodiment will be described. First, the circuit opening operation of the current limiting device of the second embodiment will be described.
When a pulse current is passed through the coil 112 from a drive power supply (not shown), a magnetic field is generated between the coil 112 and the repulsion ring 114 , and an eddy current is generated in the repulsion ring 114 .
 発生した渦電流は反発リング114に流れる電流と逆向きに流れるため、反発リング114に電磁反発力が発生する。反発リング114に発生した電磁反発力は、位置保持機構80による切替弁64への開路動作方向とは逆向きの付勢力より大きい。このため、反発リング114、駆動板113、及び可動軸111が切替弁64の開路動作方向に移動を開始する。可動軸111の移動に伴い、切替弁64も開路動作方向へ移動する。 The generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 114 , so an electromagnetic repulsion force is generated in the repulsion ring 114 . The electromagnetic repulsive force generated in the repulsive ring 114 is larger than the urging force in the direction opposite to the opening operation direction of the switching valve 64 by the position holding mechanism 80 . Therefore, the repulsion ring 114 , the drive plate 113 and the movable shaft 111 start moving in the opening operation direction of the switching valve 64 . As the movable shaft 111 moves, the switching valve 64 also moves in the opening operation direction.
 切替弁64が移動することにより、第1の連通路66Aが開放されて、第1の制御液室61と第2の制御液室62が連通する。第1の制御液室61と第2の制御液室62が連通することにより、第1の実施形態と同様にして、可動電極2(図1参照)が開路動作を行う。 By moving the switching valve 64, the first communication path 66A is opened, and the first control liquid chamber 61 and the second control liquid chamber 62 are communicated with each other. By connecting the first control liquid chamber 61 and the second control liquid chamber 62, the movable electrode 2 (see FIG. 1) opens the circuit, as in the first embodiment.
 可動軸111がある一定距離変位すると、ダンパ受け116がダンパ115のピストンロッド115Bに当接し、続いて、ピストンロッド115Bが外筒115Aに押し込まれてダンパ115が可動軸111を制動する制動力が発生する。ダンパ115による制動力は、可動軸111および切替弁64を含む可動している部分の全体に作用される。 When the movable shaft 111 is displaced by a certain distance, the damper receiver 116 comes into contact with the piston rod 115B of the damper 115, and then the piston rod 115B is pushed into the outer cylinder 115A so that the damper 115 exerts a braking force to brake the movable shaft 111. Occur. The damping force of damper 115 is applied to all moving parts including movable shaft 111 and switching valve 64 .
 切替弁64は、第2の制御液室62と第3の制御液室63を遮断する位置まで移動して停止する。その後、位置保持機構80は、可動軸111を介して、切替弁64の位置を保持する。切替弁64の移動により、第1の実施形態と同様にして、限流装置の開路動作が実行される。 The switching valve 64 moves to a position where it blocks the second control liquid chamber 62 and the third control liquid chamber 63 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 111 . By moving the switching valve 64, the current limiting device is opened in the same manner as in the first embodiment.
 続いて、第2の実施形態の限流装置の閉路動作について説明する。
 図示しない駆動電源からパルス電流をコイル122に流すと、コイル122と反発リング124の間に磁界が発生し、反発リング124に渦電流が発生する。
Next, the closing operation of the current limiting device of the second embodiment will be described.
When a pulse current is passed through the coil 122 from a drive power supply (not shown), a magnetic field is generated between the coil 122 and the repulsion ring 124 , and an eddy current is generated in the repulsion ring 124 .
 発生した渦電流は反発リング124に流れる電流と逆向きに流れるため、反発リング124に電磁反発力が発生する。反発リング124に発生した電磁反発力は、位置保持機構80による切替弁64への閉路動作方向とは逆向きの付勢力より大きい。このため、反発リング124、駆動板123、及び可動軸121が切替弁64の閉路動作方向に移動を開始する。可動軸121の移動に伴い、切替弁64も閉路動作方向に移動する。 The generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 124 , so an electromagnetic repulsion force is generated in the repulsion ring 124 . The electromagnetic repulsive force generated in the repulsive ring 124 is larger than the urging force in the opposite direction to the closing operation direction of the switching valve 64 by the position holding mechanism 80 . As a result, the repulsion ring 124 , the drive plate 123 and the movable shaft 121 start to move in the closing operation direction of the switching valve 64 . As the movable shaft 121 moves, the switching valve 64 also moves in the closing direction.
 切替弁64が移動することにより、第2の連通路66Bが開放されて、第2の制御液室62と第3の制御液室63が連通する。第2の制御液室62と第3の制御液室63が連通することにより、第1の実施形態と同様にして、可動電極2(図1参照)が閉路動作を行う。 By moving the switching valve 64, the second communication path 66B is opened, and the second control liquid chamber 62 and the third control liquid chamber 63 communicate with each other. By connecting the second control liquid chamber 62 and the third control liquid chamber 63, the movable electrode 2 (see FIG. 1) performs the closing operation as in the first embodiment.
 可動軸121がある一定距離変位すると、ダンパ受け126がダンパ125のピストンロッド125Bに当接し、続いて、ピストンロッド125Bが外筒125Aに押し込まれてダンパ125が可動軸121を制動する制動力が発生する。ダンパ125による制動力は、可動軸121および切替弁64を含む可動している部分の全体に作用される。 When the movable shaft 121 is displaced by a certain distance, the damper receiver 126 comes into contact with the piston rod 125B of the damper 125, and then the piston rod 125B is pushed into the outer cylinder 125A, and the damper 125 exerts a braking force to brake the movable shaft 121. Occur. The damping force of damper 125 is applied to all moving parts including movable shaft 121 and switching valve 64 .
 切替弁64は、第1の制御液室61と第2の制御液室62を遮断する位置まで移動して停止する。その後、位置保持機構80は、可動軸121を介して、切替弁64の位置を保持する。切替弁64の移動により、第1の実施形態と同様にして、限流装置の閉路動作が実行される。 The switching valve 64 moves to a position where it blocks the first control liquid chamber 61 and the second control liquid chamber 62 and stops. After that, the position holding mechanism 80 holds the position of the switching valve 64 via the movable shaft 121 . By moving the switching valve 64, the closing operation of the current limiting device is executed in the same manner as in the first embodiment.
 第2の実施形態の限流装置は、第1の実施形態と同様の作用効果を奏し、閉路状態から開路状態の状態変化をさせようとする場合に、動作の応答性を高めることができる。さらに、第2の実施形態の限流装置は、第1の単方向電磁反発機構110及び第2の単方向電磁反発機構120を備える。このため、構成要素の簡素化及び低コスト化に寄与することができる。 The current limiting device of the second embodiment has the same effects as the first embodiment, and can improve the responsiveness of the operation when trying to change the state from the closed state to the open state. Furthermore, the current limiting device of the second embodiment comprises a first unidirectional electromagnetic repulsion mechanism 110 and a second unidirectional electromagnetic repulsion mechanism 120 . Therefore, it is possible to contribute to simplification and cost reduction of the components.
 第2の実施形態において、制御部60の両側に第1の単方向電磁反発機構110及び第2の単方向電磁反発機構120を設けているが、切替弁64を閉路方向に移動させる機構については、第2の単方向電磁反発機構120以外の機構を用いてもよい。あるいは、切替弁64を閉路方向に移動させる機構を設けることなく、切替弁64を閉路方向に移動させる際に他の機構を接続したり人力等で移動させたりしてもよい。 In the second embodiment, the first unidirectional electromagnetic repulsion mechanism 110 and the second unidirectional electromagnetic repulsion mechanism 120 are provided on both sides of the control unit 60, but the mechanism for moving the switching valve 64 in the closing direction is , a mechanism other than the second unidirectional electromagnetic repulsion mechanism 120 may be used. Alternatively, when moving the switching valve 64 in the closing direction, another mechanism may be connected or the switching valve 64 may be moved by human power or the like without providing a mechanism for moving the switching valve 64 in the closing direction.
 (第3の実施形態)
 続いて、第3の実施形態について説明する。第3の実施形態の限流装置は、第1の実施形態と比較して、操作部における電磁反発機構の構成が主に異なる。
(Third embodiment)
Next, a third embodiment will be described. The current limiting device of the third embodiment differs from that of the first embodiment mainly in the configuration of the electromagnetic repulsion mechanism in the operating portion.
 図4は、第3の実施形態の限流装置における操作機構4の構成図である。第3の実施形態の操作機構4は、制御部60において、第1の実施形態における電磁反発機構70に代えて、単一方向に駆動する第1の自動復帰電磁反発機構130及び第2の自動復帰電磁反発機構140を備える。第1の自動復帰電磁反発機構130及び第2の自動復帰電磁反発機構140は、切替弁64の両側のそれぞれに設けられる。 FIG. 4 is a configuration diagram of the operating mechanism 4 in the current limiting device of the third embodiment. The control unit 60 of the operating mechanism 4 of the third embodiment includes a first automatic return electromagnetic repulsion mechanism 130 and a second automatic repulsion mechanism 130 driven in one direction instead of the electromagnetic repulsion mechanism 70 in the first embodiment. A return electromagnetic repulsion mechanism 140 is provided. A first automatic return electromagnetic repulsion mechanism 130 and a second automatic return electromagnetic repulsion mechanism 140 are provided on both sides of the switching valve 64, respectively.
 第1の自動復帰電磁反発機構130は、例えば、可動軸131と、コイル132と、駆動板133と、反発リング134と、ストッパ135と、閉路ダンパ136と、開路ダンパ受け137と、開路ダンパ138と、復帰バネ139と、を備える。第1の自動復帰電磁反発機構130における各要素は、ケース130Aに収容される。 The first automatic return electromagnetic repulsion mechanism 130 includes, for example, a movable shaft 131, a coil 132, a drive plate 133, a repulsion ring 134, a stopper 135, a closing damper 136, an opening damper receiver 137, and an opening damper 138. and a return spring 139 . Each element in the first automatic return electromagnetic repulsion mechanism 130 is housed in a case 130A.
 可動軸131は、長尺部材であり、限流装置が閉路状態のときに、切替弁64と距離を設けて配置され、機構方向の端部が切替弁64の反機構方向の端部の近傍に配置される。可動軸131は、機構方向に移動可能である、限流装置が閉路状態から開路状態に変化する際には、可動軸131は、ケース130Aの外側に突出する。 The movable shaft 131 is an elongated member, and is arranged at a distance from the switching valve 64 when the current limiting device is in the closed state, and the end in the mechanism direction is near the end in the counter-mechanism direction of the switching valve 64 . placed in The movable shaft 131 is movable in the direction of the mechanism. When the current limiting device changes from the closed circuit state to the open circuit state, the movable shaft 131 protrudes outside the case 130A.
 コイル132は、可動軸131を取り囲んで配置される。コイル132は、例えば、ケース130Aに取り付けられた台座(図示せず)を介してケース130Aに固定される。駆動板133は、例えば、円盤形状をした軽金属を含んで構成され、可動軸131に固着される。駆動板133は、コイル132の機構方向に寄った位置に配置される。反発リング134は、駆動板133の反機構方向の面に固着された円環形状の良導体材料を含んで構成される。 The coil 132 is arranged surrounding the movable shaft 131 . Coil 132 is fixed to case 130A, for example, via a pedestal (not shown) attached to case 130A. The drive plate 133 is made of, for example, a disk-shaped light metal and is fixed to the movable shaft 131 . The drive plate 133 is arranged at a position closer to the mechanism direction of the coil 132 . The repulsion ring 134 includes an annular good conductor material fixed to the surface of the driving plate 133 facing away from the mechanism.
 ストッパ135は、可動軸131の反機構方向の端部に設けられる。ストッパ135は、可動軸131の移動に伴って移動する。ストッパ135は、例えば、弾性を有するゴムなどの部材により構成される。ストッパ135は、閉路ダンパ136に接触する際に、閉路ダンパ136との接触を緩衝する。ストッパ135は、可動軸131が移動する際に、コイル132及び台座を避ける位置を通るように配置される。 The stopper 135 is provided at the end of the movable shaft 131 in the direction opposite to the mechanism. The stopper 135 moves as the movable shaft 131 moves. The stopper 135 is made of, for example, an elastic member such as rubber. The stopper 135 buffers the contact with the closing damper 136 when contacting the closing damper 136 . The stopper 135 is arranged so as to pass through a position avoiding the coil 132 and the pedestal when the movable shaft 131 moves.
 閉路ダンパ136は、可動軸131が反機構方向に向けて動作したときに、ストッパ135が接触して可動軸131を減速させる。閉路ダンパ136は、例えばオイルダンパである。閉路ダンパ136は、例えば、外筒136Aと、ピストンロッド136Bと、を含んで構成される。閉路ダンパ136は、第2の実施形態のダンパ115と同様に構成される。 The closing damper 136 decelerates the movable shaft 131 upon contact with the stopper 135 when the movable shaft 131 moves in the direction opposite to the mechanism. The closed circuit damper 136 is, for example, an oil damper. The closing damper 136 includes, for example, an outer cylinder 136A and a piston rod 136B. The closing damper 136 is configured similarly to the damper 115 of the second embodiment.
 開路ダンパ受け137は、ゴムなどの弾性を有し、円盤形状をなす。開路ダンパ受け137は、可動軸131における駆動板133が固着された位置よりも機構方向に寄った位置に固着される。開路ダンパ受け137は、開路動作終了時に開路ダンパ138と当接する。開路ダンパ受け137は、開路ダンパ138に接触する際に、開路ダンパ138との接触を緩衝する。 The open circuit damper receiver 137 has elasticity such as rubber and has a disk shape. The open circuit damper receiver 137 is fixed to a position closer to the mechanism direction than the position to which the drive plate 133 is fixed on the movable shaft 131 . The circuit-opening damper receiver 137 contacts the circuit-opening damper 138 when the circuit-opening operation ends. The open-circuit damper receiver 137 dampens contact with the open-circuit damper 138 when contacting the open-circuit damper 138 .
 復帰バネ139は、開路ダンパ受け137と支持部材138Aの間にかけ渡される。復帰バネ139は、圧縮スプリングである。復帰バネ139は、可動軸131が機構方向に移動することにより、開路ダンパ受け137と支持部材138Aの間で収縮する。収縮した復帰バネ139は、開路ダンパ受け137を反機構方向(開路ダンパ受け137と支持部材138Aの間を広げる方向)に付勢する。 The return spring 139 is stretched between the opening damper receiver 137 and the support member 138A. Return spring 139 is a compression spring. The return spring 139 contracts between the opening damper receiver 137 and the support member 138A as the movable shaft 131 moves in the mechanism direction. The contracted return spring 139 urges the open circuit damper receiver 137 in the anti-mechanical direction (the direction of widening the space between the open circuit damper receiver 137 and the support member 138A).
 第2の自動復帰電磁反発機構140は、例えば、可動軸141と、コイル142と、駆動板143と、反発リング144と、ストッパ145と、ダンパ146と、閉路ダンパ受け147と、閉路ダンパ148と、復帰バネ149と、を備える。第2の自動復帰電磁反発機構140の各要素は、第1の自動復帰電磁反発機構130の各要素と同様に構成される。第2の自動復帰電磁反発機構140は、第1の自動復帰電磁反発機構130に対して、位置保持機構80及び制御部60を挟んで対称に配置される。 The second automatic return electromagnetic repulsion mechanism 140 includes, for example, a movable shaft 141, a coil 142, a drive plate 143, a repulsion ring 144, a stopper 145, a damper 146, a closing damper receiver 147, and a closing damper 148. , and a return spring 149 . Each element of the second auto-return electromagnetic repulsion mechanism 140 is configured similarly to each element of the first auto-return electromagnetic repulsion mechanism 130 . The second automatic return electromagnetic repulsion mechanism 140 is arranged symmetrically with respect to the first automatic return electromagnetic repulsion mechanism 130 with the position holding mechanism 80 and the control section 60 interposed therebetween.
 続いて、第3の実施形態の限流装置における開路動作及び閉路動作について説明する。まず、第3の実施形態の限流装置の開路動作について説明する。
 図示しない駆動電源からパルス電流をコイル132に流すとコイル132と、反発リング134の間に磁界が発生し、反発リング134に渦電流が発生する。
Next, the circuit opening operation and the circuit closing operation in the current limiting device of the third embodiment will be described. First, the circuit opening operation of the current limiting device of the third embodiment will be described.
When a pulse current is passed through the coil 132 from a drive power source (not shown), a magnetic field is generated between the coil 132 and the repulsion ring 134 , and an eddy current is generated in the repulsion ring 134 .
 発生した渦電流は反発リング134に流れる電流と逆向きに流れるため、反発リング134に電磁反発力が発生する。反発リング134に発生した電磁反発力により、可動軸131が機構方向に移動し、可動軸131の機構方向端部が切替弁64の反機構方向の端部に当接する。反発リング134に発生した電磁反発力は、位置保持機構80による切替弁64への開路動作方向とは逆向きの付勢力より大きい。このため、可動軸131は、駆動板133、反発リング134、ストッパ135、及び開路ダンパ受け137とともに切替弁64の開路動作方向にさらに移動する。可動軸131の移動に伴い、切替弁64も開路動作方向へ移動する。 The generated eddy current flows in the direction opposite to the current flowing in the repulsion ring 134 , so an electromagnetic repulsion force is generated in the repulsion ring 134 . The electromagnetic repulsion force generated in the repulsion ring 134 causes the movable shaft 131 to move in the direction of the mechanism, and the end of the movable shaft 131 in the direction of mechanism contacts the end of the switching valve 64 in the direction opposite to the mechanism. The electromagnetic repulsive force generated in the repulsive ring 134 is larger than the urging force in the direction opposite to the opening operation direction of the switching valve 64 by the position holding mechanism 80 . Therefore, the movable shaft 131 moves further in the opening operation direction of the switching valve 64 together with the driving plate 133 , the repulsion ring 134 , the stopper 135 and the opening damper receiver 137 . As the movable shaft 131 moves, the switching valve 64 also moves in the opening operation direction.
 可動軸131とともにストッパ135が移動することにより、ストッパ135は、閉路ダンパ136の外筒136Aに設けられたピストンロッド136Bから離反する。可動軸131とともに開路ダンパ受け137が移動することにより、復帰バネ139は、開路ダンパ受け137と支持部材138Aの間で収縮する。 By moving the stopper 135 together with the movable shaft 131, the stopper 135 separates from the piston rod 136B provided on the outer cylinder 136A of the closing damper 136. As the open circuit damper receiver 137 moves together with the movable shaft 131, the return spring 139 contracts between the open circuit damper receiver 137 and the support member 138A.
 切替弁64が移動することにより、第1の連通路66Aが開放されて、第1の制御液室61と第2の制御液室62が連通する。第1の制御液室61と第2の制御液室62が連通することにより、第1の実施形態と同様にして、可動電極2(図1参照)が開路動作を行う。 By moving the switching valve 64, the first communication path 66A is opened, and the first control liquid chamber 61 and the second control liquid chamber 62 are communicated with each other. By connecting the first control liquid chamber 61 and the second control liquid chamber 62, the movable electrode 2 (see FIG. 1) opens the circuit, as in the first embodiment.
 可動軸131がある一定距離変位すると、開路ダンパ受け137が開路ダンパ138に当接し、開路ダンパ138のピストンロッドが開路ダンパ138の外筒に押し込まれて開路ダンパ受け137が可動軸131を制動する制動力が発生する。開路ダンパ138による制動力は、可動軸131および切替弁64を含む可動している部分の全体に作用される。 When the movable shaft 131 is displaced by a certain distance, the open circuit damper receiver 137 comes into contact with the open circuit damper 138, and the piston rod of the open circuit damper 138 is pushed into the outer cylinder of the open circuit damper 138, so that the open circuit damper receiver 137 brakes the movable shaft 131. A braking force is generated. The braking force by the open circuit damper 138 is applied to all moving parts including the movable shaft 131 and the switching valve 64 .
 切替弁64は、第2の制御液室62と第3の制御液室63を遮断する位置まで移動して停止し、位置保持機構80は、切替弁64の位置を保持する。その後、第1の自動復帰電磁反発機構130では、駆動電源からコイル132に電流を流す操作が終了され、反発リング134による電磁反発力が消滅する。 The switching valve 64 moves to a position where it blocks the second control liquid chamber 62 and the third control liquid chamber 63 and stops, and the position holding mechanism 80 holds the position of the switching valve 64 . Thereafter, in the first automatic return electromagnetic repulsion mechanism 130, the operation of supplying current from the drive power source to the coil 132 is terminated, and the electromagnetic repulsion force by the repulsion ring 134 disappears.
 反発リング134による電磁反発力が消滅すると、復帰バネ139の付勢力が開路ダンパ受け137に対して作用し、可動軸131が反機構方向に移動する。その後、ストッパ135が閉路ダンパ136に当接することにより、可動軸131が動作前の位置に復帰する。以後、第1の実施形態と同様にして、限流装置の開路動作が実行される。 When the electromagnetic repulsive force by the repulsive ring 134 disappears, the biasing force of the return spring 139 acts on the open circuit damper receiver 137, and the movable shaft 131 moves in the anti-mechanical direction. After that, the movable shaft 131 returns to the position before the operation by the stopper 135 coming into contact with the closing damper 136 . Thereafter, the circuit opening operation of the current limiting device is performed in the same manner as in the first embodiment.
 続いて、第3の実施形態の限流装置の閉路動作について説明する。
 図示しない駆動電源からパルス電流をコイル142に流すと、コイル142と反発リング144の間に磁界が発生し、反発リング144に渦電流が発生する。反発リング144に発生した電磁反発力により、可動軸141が反機構方向に移動し、可動軸141の反機構方向端部が切替弁64の機構方向の端部に当接する。反発リング144に発生した電磁反発力は、位置保持機構80による切替弁64への閉路動作方向とは逆向きの付勢力より大きい。このため、可動軸141は、駆動板143、反発リング144、ストッパ145、及び閉路ダンパ受け147とともに切替弁64の閉路動作方向にさらに移動する。可動軸141の移動に伴い、切替弁64も閉路動作方向へ移動する。
Next, the closing operation of the current limiting device of the third embodiment will be described.
When a pulse current is passed through the coil 142 from a drive power source (not shown), a magnetic field is generated between the coil 142 and the repulsion ring 144 , and an eddy current is generated in the repulsion ring 144 . Due to the electromagnetic repulsive force generated in the repulsion ring 144 , the movable shaft 141 moves in the anti-mechanism direction, and the anti-mechanism direction end of the movable shaft 141 contacts the mechanism direction end of the switching valve 64 . The electromagnetic repulsive force generated in the repulsive ring 144 is larger than the urging force in the direction opposite to the direction of closing operation of the switching valve 64 by the position holding mechanism 80 . Therefore, the movable shaft 141 moves further in the closing operation direction of the switching valve 64 together with the drive plate 143 , the repulsion ring 144 , the stopper 145 and the closing damper receiver 147 . As the movable shaft 141 moves, the switching valve 64 also moves in the closing direction.
 可動軸141とともにストッパ145が移動することにより、ストッパ145は、ダンパ146の外筒146Aに設けられたピストンロッド146Bから離反する。可動軸141とともに閉路ダンパ受け147が移動することにより、復帰バネ149は、閉路ダンパ受け147と支持部材148Aの間で収縮する。 By moving the stopper 145 together with the movable shaft 141, the stopper 145 separates from the piston rod 146B provided on the outer cylinder 146A of the damper 146. When the closing damper receiver 147 moves together with the movable shaft 141, the return spring 149 contracts between the closing damper receiver 147 and the support member 148A.
 切替弁64が移動することにより、第2の連通路66Bが開放されて、第2の制御液室62と第3の制御液室63が連通する。第2の制御液室62と第3の制御液室63が連通することにより、第1の実施形態と同様にして、可動電極2(図1参照)が閉路動作を行う。 By moving the switching valve 64, the second communication path 66B is opened, and the second control liquid chamber 62 and the third control liquid chamber 63 communicate with each other. By connecting the second control liquid chamber 62 and the third control liquid chamber 63, the movable electrode 2 (see FIG. 1) performs the closing operation as in the first embodiment.
 可動軸141がある一定距離変位すると、閉路ダンパ受け147が閉路ダンパ148に当接し、閉路ダンパ148のピストンロッドが閉路ダンパ148の外筒に押し込まれて閉路ダンパ受け147が可動軸141を制動する制動力が発生する。閉路ダンパ受け147による制動力は、可動軸141および切替弁64を含む可動している部分の全体に作用される。 When the movable shaft 141 is displaced by a certain distance, the closing damper receiver 147 comes into contact with the closing damper 148, and the piston rod of the closing damper 148 is pushed into the outer cylinder of the closing damper 148, so that the closing damper receiver 147 brakes the movable shaft 141. A braking force is generated. The braking force by the closing damper receiver 147 is applied to all moving parts including the movable shaft 141 and the switching valve 64 .
 切替弁64は、第1の制御液室61と第2の制御液室62を遮断する位置まで移動して停止し、位置保持機構80は、切替弁64の位置を保持する。その後、第2の自動復帰電磁反発機構140では、駆動電源からコイル142に電流を流す操作が終了され、反発リング144による電磁反発力が消滅する。 The switching valve 64 moves to a position where it blocks the first control liquid chamber 61 and the second control liquid chamber 62 and stops, and the position holding mechanism 80 holds the position of the switching valve 64 . After that, in the second automatic return electromagnetic repulsion mechanism 140, the operation of supplying current from the drive power supply to the coil 142 is terminated, and the electromagnetic repulsion force by the repulsion ring 144 disappears.
 反発リング144による電磁反発力が消滅すると、復帰バネ149の付勢力が閉路ダンパ受け147に対して作用し、可動軸141が機構方向に移動する。その後、ストッパ145がダンパ146に当接することにより、可動軸141が動作前の位置に復帰する。以後、第1の実施形態と同様にして、限流装置の閉路動作が実行される。 When the electromagnetic repulsive force by the repulsive ring 144 disappears, the biasing force of the return spring 149 acts on the closing damper receiver 147, and the movable shaft 141 moves toward the mechanism. After that, the stopper 145 abuts against the damper 146, whereby the movable shaft 141 returns to the position before the operation. Thereafter, the closing operation of the current limiting device is performed in the same manner as in the first embodiment.
 第3の実施形態の限流装置は、第1の実施形態と同様の作用効果を奏し、閉路状態から開路状態の状態変化をさせようとする場合に、動作の応答性を高めることができる。さらに、第3の実施形態の限流装置は、第1の自動復帰電磁反発機構130及び第2の自動復帰電磁反発機構140を備える。このため、可動軸131,141を動作前の状態に迅速に復帰させることができる。さらに、可動軸131、141が動作する前に切替弁64との距離を設けている。このため、可動軸131,141が慣性力をもって切替弁64に当接できるため、応答性を向上させることができる。復帰バネやダンパなどの可動軸を復帰前の状態に復帰させる機構は、他の実施形態の限流装置に設けてもよい。 The current limiting device of the third embodiment has the same effects as the first embodiment, and can improve the responsiveness of the operation when trying to change the state from the closed state to the open state. Furthermore, the current limiting device of the third embodiment comprises a first automatic return electromagnetic repulsion mechanism 130 and a second automatic return electromagnetic repulsion mechanism 140 . Therefore, the movable shafts 131 and 141 can be quickly returned to the state before the operation. Furthermore, a distance from the switching valve 64 is provided before the movable shafts 131 and 141 operate. Therefore, the movable shafts 131 and 141 can contact the switching valve 64 with inertia force, so that the responsiveness can be improved. A mechanism for returning the movable shaft, such as a return spring or a damper, to the state before the return may be provided in the current limiting device of another embodiment.
 (第4の実施形態)
 続いて、第4の実施形態について説明する。第4の実施形態の限流装置は、第1の実施形態と比較して、操作部の構成が主に異なる。
(Fourth embodiment)
Next, a fourth embodiment will be described. The current limiting device of the fourth embodiment differs from that of the first embodiment mainly in the configuration of the operation section.
 図5は、第4の実施形態の限流装置における制御部60の構成図である。第5の実施形態の制御部60は、第1の制御液室61、第2の制御液室62、及び第3の制御液室63の流路断面積が第1の実施形態の限流装置と異なる。以下、第4の実施形態の限流装置において、第2の制御液室62における第1の連通路の流路断面積を第1の断面積S1とする。第2の制御液室62における第3の制御液室63側の流路断面積を第2の断面積S2とする。第3の制御液室63における大気側の切替弁64の断面積(第2の貫通部65Bの開口断面積)を第3の断面積S3とする。 FIG. 5 is a configuration diagram of the controller 60 in the current limiting device of the fourth embodiment. In the control unit 60 of the fifth embodiment, the flow channel cross-sectional areas of the first control liquid chamber 61, the second control liquid chamber 62, and the third control liquid chamber 63 are the same as those of the current limiting device of the first embodiment. different from Hereinafter, in the current limiting device of the fourth embodiment, the cross-sectional area of the first communication passage in the second control liquid chamber 62 will be referred to as a first cross-sectional area S1. The cross-sectional area of the second control liquid chamber 62 on the side of the third control liquid chamber 63 is defined as a second cross-sectional area S2. The cross-sectional area of the atmosphere-side switching valve 64 in the third control liquid chamber 63 (opening cross-sectional area of the second through portion 65B) is defined as a third cross-sectional area S3.
 第4の実施形態の限流装置では、第1の断面積S1が、第3の断面積S3よりも大きく、第3の断面積S3は、第2の断面積S2よりも大きい。このため、第1の断面積S1、第2の断面積S2、及び第3の断面積S3の間では、以下の(1)式が成り立つ。
 S1>S3>S2 ・・・(2)
In the current limiting device of the fourth embodiment, the first cross-sectional area S1 is larger than the third cross-sectional area S3, and the third cross-sectional area S3 is larger than the second cross-sectional area S2. Therefore, the following equation (1) holds between the first cross-sectional area S1, the second cross-sectional area S2, and the third cross-sectional area S3.
S1>S3>S2 (2)
 続いて、第4の実施形態の限流装置の閉路状態及び開路状態について説明する。
 第4の限流装置が閉路状態にあるとき、制御部60では、第2の制御液室62及び第3の制御液室63に高圧の作動液が充填された状態となる。このため、第2の制御液室62から切替弁64(弁体64B)に対して、閉路動作方向に液圧が作用し、第3の制御液室63から切替弁(閉塞部64C)に対して、開路動作方向に液圧が作用する。
Next, the closed circuit state and open circuit state of the current limiting device of the fourth embodiment will be described.
When the fourth current limiting device is in the closed state, in the control unit 60, the second control liquid chamber 62 and the third control liquid chamber 63 are filled with high-pressure hydraulic fluid. Therefore, hydraulic pressure acts in the direction of the closing operation from the second control liquid chamber 62 to the switching valve 64 (valve body 64B), and from the third control liquid chamber 63 to the switching valve (closed portion 64C). As a result, the hydraulic pressure acts in the opening direction.
 このとき、第1の断面積S1は、第3の断面積S3よりも大きい関係にある(S1>S3)。このため、弁体64Bにかかる液圧は閉塞部64Cにかかる液圧よりも大きくなるので、切替弁64には、常に閉路動作方向に付勢力が働く。したがって、弁体64Bが第1の連通路66Aを閉塞する位置で切替弁64が保持される。 At this time, the first cross-sectional area S1 is larger than the third cross-sectional area S3 (S1>S3). Therefore, since the hydraulic pressure applied to the valve body 64B is higher than the hydraulic pressure applied to the closing portion 64C, the switching valve 64 is always biased in the closing direction. Therefore, the switching valve 64 is held at the position where the valve body 64B closes the first communication path 66A.
 一方、第4の限流装置が開路状態にあるとき、制御部60では、第3の制御液室63に高圧の作動液が充填された状態となる。このため、第3の制御液室63から切替弁64(弁体64B)に対して、閉路動作方向に液圧が作用し、第3の制御液室63から切替弁(閉塞部64C)に対して、開路動作方向に液圧が作用する。 On the other hand, when the fourth current limiting device is in the open circuit state, in the control section 60, the third control fluid chamber 63 is filled with high-pressure working fluid. Therefore, hydraulic pressure acts in the direction of the closing operation from the third control fluid chamber 63 to the switching valve 64 (valve body 64B), and the third control fluid chamber 63 acts on the switching valve (blocking portion 64C). As a result, the hydraulic pressure acts in the opening direction.
 このとき、第3の断面積S3は、第2の断面積S2よりも大きい関係にある(S3>S2)。このため、弁体64Bにかかる液圧は閉塞部64Cにかかる液圧よりも小さくなるので、切替弁64には、常に開路動作方向に付勢力が働く。したがって、弁体64Bが第2の連通路66Bを閉塞する位置で切替弁64が保持される。 At this time, the third cross-sectional area S3 is larger than the second cross-sectional area S2 (S3>S2). Therefore, since the hydraulic pressure applied to the valve body 64B is smaller than the hydraulic pressure applied to the closing portion 64C, the switching valve 64 is always biased in the opening direction. Therefore, the switching valve 64 is held at the position where the valve body 64B closes the second communication path 66B.
 第4の実施形態の限流装置は、第1の実施形態と同様の作用効果を奏し、閉路状態から開路状態の状態変化をさせようとする場合に、動作の応答性を高めることができる。さらに、第4の実施形態の限流装置は、第1の断面積S1は、第3の断面積S3よりも大きく、第3の断面積S3は、第2の断面積S2よりも大きい。このため、制御部60内に充填される高圧の作動液によって切替弁64の位置を保持することができる。したがって、限流装置における閉路状態及び開路状態の安定化を図ることができる。さらに、位置保持機構80が設けられていなくとも、切替弁64の位置を保持できるので、構成部品の点数の低減を図ることができる。 The current limiting device of the fourth embodiment has the same effect as the first embodiment, and can improve the responsiveness of the operation when changing the state from the closed state to the open state. Furthermore, in the current limiting device of the fourth embodiment, the first cross-sectional area S1 is larger than the third cross-sectional area S3, and the third cross-sectional area S3 is larger than the second cross-sectional area S2. Therefore, the position of the switching valve 64 can be held by the high-pressure hydraulic fluid filled in the control section 60 . Therefore, the closed circuit state and the open circuit state of the current limiting device can be stabilized. Furthermore, since the position of the switching valve 64 can be held without the position holding mechanism 80, the number of components can be reduced.
 上記の各実施形態において、容器5に封入される充填剤は水であるが、充填剤は水以外の物体でもよい。充填剤は、例えば、油、液体金属、フッ素系液体、超臨界状態の物質などでもよい。さらに、排液タンク40の排液流路55側の流入口やポンプユニット50側の流出口にフィルタなどを設けて、作動液に含まれる異物を除去できるようにしてもよい。 In each of the above embodiments, the filler enclosed in the container 5 is water, but the filler may be a substance other than water. The filler may be, for example, an oil, a liquid metal, a fluorinated liquid, a substance in a supercritical state, or the like. Furthermore, a filter or the like may be provided at the inlet of the drain tank 40 on the drain channel 55 side and the outlet on the pump unit 50 side to remove foreign matter contained in the working fluid.
 以上説明した少なくともひとつの実施形態によれば、充填剤が充填された密閉容器と、前記密閉容器の内部に固設される固定電極と、前記固定電極に対向配置される可動電極と、前記可動電極を前記固定電極に対して離接させる操作機構と、持ち、前記操作機構は、作動液の供給及び排出により、前記可動電極を開閉する操作部と、前記作動液の供給を開始する電磁反発機構を有し、前記操作部に対する前記作動液の供給及び排出を制御する制御部と、前記作動液の圧力を保持するアキュムレータと、前記操作部により排出された前記作動液を貯蔵する排液タンクと、前記排液タンク内の作動液を前記アキュムレータに供給するポンプと、を持つことにより、応答性が高い限流装置を提供することができる。 According to at least one embodiment described above, a closed container filled with a filler, a fixed electrode fixed inside the closed container, a movable electrode arranged opposite to the fixed electrode, and the movable an operating mechanism for separating and contacting the electrode with respect to the fixed electrode, wherein the operating mechanism includes an operating portion for opening and closing the movable electrode by supplying and discharging working fluid; and an electromagnetic repulsion for starting supplying the working fluid. a control unit having a mechanism for controlling the supply and discharge of the hydraulic fluid to and from the operation unit; an accumulator for holding the pressure of the hydraulic fluid; and a drain tank for storing the hydraulic fluid discharged by the operation unit. and a pump for supplying the hydraulic fluid in the drain tank to the accumulator, a highly responsive current limiting device can be provided.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

Claims (7)

  1.  充填剤が充填された密閉容器と、
     前記密閉容器の内部に固設される固定電極と、
     前記固定電極に対向配置される可動電極と、
     前記可動電極を前記固定電極に対して離接させる操作機構と、を備え、
     前記操作機構は、
     作動液の供給及び排出により、前記可動電極を開閉する操作部と、
     前記作動液の供給を開始する電磁反発機構を有し、前記操作部に対する前記作動液の供給及び排出を制御する制御部と、
     前記作動液の圧力を保持するアキュムレータと、
     前記操作部により排出された前記作動液を貯蔵する排液タンクと、
     前記排液タンク内の作動液を前記アキュムレータに供給するポンプと、を備える、
     限流装置。
    A closed container filled with a filler;
    a fixed electrode fixed inside the sealed container;
    a movable electrode arranged opposite to the fixed electrode;
    an operation mechanism for separating and contacting the movable electrode with respect to the fixed electrode,
    The operating mechanism is
    an operation unit that opens and closes the movable electrode by supplying and discharging working fluid;
    a control unit having an electromagnetic repulsion mechanism for starting supply of the hydraulic fluid and controlling supply and discharge of the hydraulic fluid to and from the operation unit;
    an accumulator that holds the pressure of the hydraulic fluid;
    a drain tank for storing the hydraulic fluid discharged by the operation unit;
    a pump that supplies the hydraulic fluid in the drainage tank to the accumulator;
    Current limiting device.
  2.  前記操作部は、
     前記作動液が充填されるシリンダと、
     前記シリンダの内部に摺動可能に挿入されたピストンと、
     前記ピストンと前記可動電極を連結するロッドと、
     前記シリンダ内における前記ピストンの前記ロッド側に形成された第1の駆動液室と、前記シリンダ内における前記ピストンの前記ロッドの反対側に形成された第2の駆動液室と、を備え、
     前記制御部は、
     排液流路を介して前記排液タンクに接続された第1の制御液室と、
     制御流路を介して前記第2の駆動液室に接続された第2の制御液室と、
     高圧流路を介して前記第2の駆動液室に接続された第3の制御液室と、
     前記第1の制御液室及び前記第2の制御液室の間、または前記第2の制御液室及び前記第3の制御液室の間のうち少なくともいずれか一方に設けられた弁体と、を備え、
     前記電磁反発機構は、前記弁体を駆動する、
     請求項1に記載の限流装置。
    The operation unit is
    a cylinder filled with the hydraulic fluid;
    a piston slidably inserted inside the cylinder;
    a rod connecting the piston and the movable electrode;
    a first drive fluid chamber formed on the rod side of the piston in the cylinder, and a second drive fluid chamber formed on the opposite side of the rod of the piston in the cylinder,
    The control unit
    a first control liquid chamber connected to the drainage tank via a drainage channel;
    a second control liquid chamber connected to the second driving liquid chamber via a control channel;
    a third control liquid chamber connected to the second drive liquid chamber via a high-pressure flow path;
    a valve body provided between at least one of the first control liquid chamber and the second control liquid chamber or between the second control liquid chamber and the third control liquid chamber; with
    The electromagnetic repulsion mechanism drives the valve body,
    A current limiting device according to claim 1 .
  3.  前記電磁反発機構は、
     前記弁体を作動させる可動軸と、
     前記可動軸を囲んで配置された開路用コイル及び閉路用コイルと、
     前記可動軸に固着され、前記開路用コイルと前記閉路用コイルの間に配置された駆動板と、
     前記駆動板に設けられ、前記開路用コイル及び前記閉路用コイルに対向する反発リングと、
     開路動作終了時に制動力を発生させる開路ダンパと、
     閉路動作終了時に制動力を発生させる閉路ダンパと、
     前記可動軸に固着され、開路動作終了時に前記開路ダンパと当接する開路ダンパ受けと、
     前記可動軸に固着され、閉路動作終了時に前記閉路ダンパと当接する閉路ダンパ受けと、を備える、
     請求項2に記載の限流装置。
    The electromagnetic repulsion mechanism is
    a movable shaft that operates the valve body;
    an opening coil and a closing coil arranged around the movable shaft;
    a drive plate fixed to the movable shaft and arranged between the opening coil and the closing coil;
    a repulsion ring provided on the drive plate and facing the opening coil and the closing coil;
    an open circuit damper that generates a braking force at the end of the open circuit operation;
    a closing damper that generates a braking force at the end of the closing operation;
    an opening damper receiver fixed to the movable shaft and brought into contact with the opening damper when the opening operation is completed;
    a closing damper receiver that is fixed to the movable shaft and contacts the closing damper when the closing operation is completed;
    3. A current limiting device according to claim 2.
  4.  前記電磁反発機構は、前記弁体の両側にそれぞれ設けられた単方向電磁反発機構を含み、
     前記単方向電磁反発機構は、
     前記弁体を作動させる可動軸と、
     前記可動軸を囲んで配置されたコイルと、
     前記可動軸に固着され、前記コイルよりも前記弁体側に配置された駆動板と、
     前記駆動板に設けられ、前記コイルに対向する反発リングと、
     動作終了時に制動力を発生させるダンパと、
     前記可動軸に固着され、動作終了時に前記ダンパと当接するダンパ受けと、を備える、
     請求項2に記載の限流装置。
    The electromagnetic repulsion mechanism includes a unidirectional electromagnetic repulsion mechanism provided on each side of the valve body,
    The unidirectional electromagnetic repulsion mechanism is
    a movable shaft that operates the valve body;
    a coil arranged to surround the movable shaft;
    a drive plate fixed to the movable shaft and arranged closer to the valve body than the coil;
    a repulsion ring provided on the drive plate and facing the coil;
    a damper that generates a braking force at the end of operation;
    a damper receiver fixed to the movable shaft and brought into contact with the damper at the end of operation;
    3. A current limiting device according to claim 2.
  5.  前記電磁反発機構は、
     前記弁体を作動させた後の前記可動軸を、前記弁体を作動させる前の位置に復帰させる復帰バネを更に備える、
     請求項3または4に記載の限流装置。
    The electromagnetic repulsion mechanism is
    Further comprising a return spring for returning the movable shaft after operating the valve body to a position before operating the valve body,
    A current limiting device according to claim 3 or 4.
  6.  前記第1の制御液室と前記第2の制御液室を連通させる第1の連通路と、
     前記第2の制御液室と前記第3の制御液室を連通させる第2の連通路と、
     前記第3の制御液室と前記制御部の外側を貫通する貫通部と、が形成され、
     前記第2の制御液室における前記第1の連通路の流路断面積が、前記第3の制御液室における前記貫通部の開口断面積よりも大きく、
     前記第3の制御液室における前記貫通部の開口断面積が、前記第2の制御液室における前記第2の連通路の流路断面積よりも大きい、
     請求項2から5のうちいずれか1項に記載の限流装置。
    a first communication passage for communicating the first control liquid chamber and the second control liquid chamber;
    a second communication passage for communicating the second control liquid chamber and the third control liquid chamber;
    a through portion that penetrates the third control liquid chamber and the outside of the control portion is formed;
    a channel cross-sectional area of the first communication passage in the second control liquid chamber is larger than an opening cross-sectional area of the through portion in the third control liquid chamber;
    An opening cross-sectional area of the through portion in the third control liquid chamber is larger than a channel cross-sectional area of the second communication path in the second control liquid chamber,
    Current limiting device according to any one of claims 2 to 5.
  7.  前記制御部は、前記弁体の位置を保持する位置保持機構を更に備える、
     請求項2から6のうちいずれか1項に記載の限流装置。
    The control unit further includes a position holding mechanism that holds the position of the valve body,
    Current limiting device according to any one of claims 2 to 6.
PCT/JP2021/037225 2021-06-15 2021-10-07 Current-limiting device WO2022264442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-099606 2021-06-15
JP2021099606A JP2022191008A (en) 2021-06-15 2021-06-15 Current-limiting device

Publications (1)

Publication Number Publication Date
WO2022264442A1 true WO2022264442A1 (en) 2022-12-22

Family

ID=84526003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037225 WO2022264442A1 (en) 2021-06-15 2021-10-07 Current-limiting device

Country Status (2)

Country Link
JP (1) JP2022191008A (en)
WO (1) WO2022264442A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128427A (en) * 1984-11-27 1986-06-16 三菱電機株式会社 Fluidic operator for switchgear
JPS61227320A (en) * 1985-03-30 1986-10-09 株式会社東芝 Operator for power switch
JP2003045296A (en) * 2001-08-02 2003-02-14 Toshiba Corp Hydraulic operation device
JP2020150752A (en) * 2019-03-15 2020-09-17 株式会社東芝 Current limiting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128427A (en) * 1984-11-27 1986-06-16 三菱電機株式会社 Fluidic operator for switchgear
JPS61227320A (en) * 1985-03-30 1986-10-09 株式会社東芝 Operator for power switch
JP2003045296A (en) * 2001-08-02 2003-02-14 Toshiba Corp Hydraulic operation device
JP2020150752A (en) * 2019-03-15 2020-09-17 株式会社東芝 Current limiting device

Also Published As

Publication number Publication date
JP2022191008A (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JPH1172179A (en) Operation device for circuit breaker
US11152174B2 (en) Dual thomson coil-actuated, double-bellows vacuum circuit interrupter
KR19990082047A (en) Electromagnetically actuated directional valve
JPH1031945A (en) Power circuit breaker
JP3881314B2 (en) Hydraulic operating device for switchgear
WO2022264442A1 (en) Current-limiting device
JP2002140966A (en) Switching device
KR101919125B1 (en) Gas insulated switch device of high voltage distributer
CN102903567A (en) Power transmission device for vacuum interrupter and vacuum breaker having the same
US20190189367A1 (en) Device and Method for Switching Medium and/or High Voltages With a Specific Drive Characteristic
US11545322B2 (en) Gas circuit breaker
KR101395098B1 (en) Puffer circuit breaker with reduced puffer volume pressure
CN112820577A (en) Operating mechanism and circuit breaker for quickly cutting off circuit
CN114270465B (en) Electrical switching apparatus
WO2021059588A1 (en) Gas circuit breaker
JPH0298023A (en) Pilot valve device
SU1763781A1 (en) Electrodynamic valve
JP2022034890A (en) Gas-blast circuit breaker
US11764012B2 (en) Gas circuit breaker
JPH06196047A (en) Liquid pressure operating device for power switch
US11217408B2 (en) Gas circuit breaker
US11227735B2 (en) Gas circuit breaker
JP2002251944A (en) Gas-blast circuit breaker
CN114458812A (en) Electromagnetic valve
KR100411369B1 (en) Interrupter structures of a bidirectional operation type gas circuit breaker using a magnetic actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945371

Country of ref document: EP

Kind code of ref document: A1