WO2022264418A1 - Video compositing system, video compositing method, and video compositing program - Google Patents

Video compositing system, video compositing method, and video compositing program Download PDF

Info

Publication number
WO2022264418A1
WO2022264418A1 PCT/JP2021/023247 JP2021023247W WO2022264418A1 WO 2022264418 A1 WO2022264418 A1 WO 2022264418A1 JP 2021023247 W JP2021023247 W JP 2021023247W WO 2022264418 A1 WO2022264418 A1 WO 2022264418A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
correction
video
overlapping partial
Prior art date
Application number
PCT/JP2021/023247
Other languages
French (fr)
Japanese (ja)
Inventor
広夢 宮下
真二 深津
英一郎 松本
麻衣子 井元
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/023247 priority Critical patent/WO2022264418A1/en
Publication of WO2022264418A1 publication Critical patent/WO2022264418A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to technology for synthesizing multiple videos.
  • Patent document 1 analyzes input images in which part of the shooting area overlaps, detects an object in each input image, and integrates the detection results of the object in the overlapping area between the input images, so that object tracking information is displayed on the panoramic image. is disclosed.
  • Patent Document 1 proposes a video effect in which a synthesized image and object tracking information are output separately, and the object tracking information is overlaid on the synthesized image in subsequent processing.
  • it is possible to change the entirety of the composite video as a video effect, but it is impossible to apply the video effect in units of the original video (video that is input to the combining process).
  • Can not For example, when synthesizing a first input image and a second input image to generate a panoramic image, the first input image and the second input image are blended in the process. It is not possible to implement change processing such as correcting the luminance of only the pixels corresponding to the first input image.
  • the purpose of the present invention is to provide a technology that ensures real-time video viewing and controls the process of changing to a synthesized video for each input video.
  • a video compositing system is a video compositing system that synthesizes a first video and a second video in which photographing areas partially overlap, wherein a first image included in the first video is and an acquisition unit that acquires a second image included in the second video, a combining unit that combines the first image and the second image to generate a combined image, the first image and an analysis unit that analyzes the second image and generates correction information for correcting the synthesized image; an overlapping partial image that is a portion of the first image that overlaps a portion of the second image; and the correction. and an output unit for outputting the corrected synthetic image.
  • a technology ensures real-time video viewing and controls the process of changing to a synthesized video for each input video.
  • FIG. 1 is a block diagram showing a video synthesizing system according to one embodiment of the present invention.
  • FIG. 2 is a diagram for explaining processing in the image synthesizing unit shown in FIG.
  • FIG. 3 is a diagram for explaining processing in the image correction unit shown in FIG. 1;
  • FIG. 4 is a block diagram showing the hardware configuration of a computer according to one embodiment of the invention.
  • FIG. 5 is a flow chart illustrating a video composition method according to an embodiment of the present invention.
  • panorama video synthesis in which a panorama video is generated by synthesizing two videos (moving images) whose shooting areas partially overlap will be taken.
  • panorama image synthesis two images with partially overlapping photographing areas are input, and the images are combined so that the overlapping portions overlap. Note that it is also possible to generate a panorama video by synthesizing three or more videos.
  • FIG. 1 schematically shows a configuration example of a video synthesizing system 100 according to one embodiment of the present invention.
  • the video synthesizing system 100 includes a transmission server 110 and a reception server 120 as information processing devices.
  • Sending server 110 is communicatively connected to receiving server 120 .
  • the sending server 110 is connected to the receiving server 120 by a video transmission cable or an IP transmission network.
  • the transmission server 110 is connected to the imaging devices 101 and 102 that capture images, and receives images from the imaging devices 101 and 102 .
  • the imaging devices 101 and 102 for example, video cameras that output video signals in real time can be used. A video player or the like may be used instead of the imaging devices 101 and 102 .
  • the imaging devices 101 and 102 are arranged so that images with partially overlapping imaging areas can be obtained.
  • the receiving server 120 is connected to the display device 103 .
  • Display device 103 may be a liquid crystal display (LCD) or an organic light-emitting diode (OLED) display.
  • the transmission server 110 includes an image acquisition unit 111, an image synthesis unit 112, an image encoding unit (also referred to as a compression unit) 113, an image transmission unit 114, an image analysis unit 115, and a correction information transmission unit 116.
  • the image acquisition unit 111 acquires two images whose imaging regions partially overlap. These images are referred to as input image A and input image B hereinafter.
  • the input image A is a frame included in the video obtained by the imaging device 101
  • the input image B is the frame included in the video obtained by the imaging device 102 .
  • Each of the imaging devices 101 and 102 generates frames at a predetermined frame rate and sequentially transmits the frames to the transmission server 110 .
  • the image acquisition unit 111 sequentially receives pairs of the input image A and the input image B from the imaging devices 101 and 102 .
  • the image synthesizing unit 112 synthesizes the input image A and the input image B acquired by the image acquiring unit 111 to generate a synthesized image. Image composition processing will be described later.
  • the image encoding unit 113 compresses the synthesized image generated by the image synthesizing unit 112 in order to reduce the data amount of the synthesized image. Specifically, the image encoding unit 113 encodes the synthesized image to obtain encoded data. Furthermore, the image encoding unit 113 compresses the overlapping partial image in order to reduce the data amount of the overlapping partial image, which is the overlapping portion in one of the input image A and the input image B.
  • the image transmission unit 114 transmits the encoded data of the composite image and the overlapping partial image A obtained by the image encoding unit 113 to the receiving server 120 .
  • the composite image and the overlapping partial image A are encoded and transmitted from the transmission server 110 to the reception server 120 .
  • the image analysis unit 115 analyzes the input image A and the input image B acquired by the image acquisition unit 111 and generates correction information for correcting the synthesized image generated by the image synthesis unit 112 . Image analysis processing and correction information will be described later.
  • the correction information transmission section 116 transmits the correction information generated by the image analysis section 115 to the reception server 120 .
  • the reception server 120 includes an image reception unit 121 , an image decoding unit (also referred to as a restoration unit) 122 , a correction information reception unit 123 , an image correction unit 124 and an output unit 125 .
  • the image receiving unit 121 receives encoded data of the composite image and the overlapping partial image A from the transmission server 110 .
  • the image decoding unit 122 restores the combined image and the overlapping partial image A. Specifically, the image decoding unit 122 decodes the encoded data received by the image receiving unit 121 to obtain the composite image and the overlapping partial image A.
  • the correction information receiving unit 123 receives correction information from the transmission server 110 .
  • the image correcting unit 124 corrects the composite image obtained by the image decoding unit 122 using the overlapping partial image A obtained by the image decoding unit 122 and the correction information received by the correction information receiving unit 123. do. The correction processing will be described later.
  • the output unit 125 outputs the synthesized image corrected by the image correction unit 124. FIG. For example, the output unit 125 displays the corrected composite image on the display device 103 .
  • the image synthesis unit 112 receives the input image A and the input image B from the image acquisition unit 111 .
  • the image synthesizing unit 112 deforms the input image A and the input image B according to the deformation matrix, which is the synthesizing parameter.
  • the right portion of the input image A overlaps the left portion of the input image B.
  • Input image A is subjected to a global left translation and input image B is subjected to a global right translation.
  • the image synthesizing unit 112 seamlessly combines the deformed input image A and the input image B by alpha blending to generate one synthesized image.
  • the alpha value referred to in alpha blending is determined for each coordinate of the synthesized image, and indicates the ratio at which the pixel values of the input image A and the pixel values of the input image B are mixed.
  • Alpha values range from 0 to 1.
  • a (m, n) be the pixel value of input image A at coordinates (m, n)
  • B (m, n) be the pixel value of input image B at coordinates (m, n)
  • alpha at coordinates (m, n).
  • the composite image has the same size as input image A and input image B.
  • the left portion of input image A and the right portion of input image B are deleted during image synthesis.
  • the composite image may be a different size than the input images A,B.
  • the size of the input image A and the input image B is 1920 ⁇ 1080 and the size of the overlapping portion is 320 ⁇ 1080, a composite image with a size of 3520 ⁇ 1080 can be obtained.
  • Overlaps are areas where pixels overlap in alpha blending, as shown in FIG.
  • the image encoding unit 113 encodes the composite image and the overlapping partial image A, and the image transmitting unit 114 transmits the coded data of the composite image and the overlapping partial image A to the reception server 120 .
  • the image encoding unit 113 may make adjustments such as lowering the resolution and increasing the compression rate in order to further reduce the amount of data of the overlapping partial image A.
  • FIG. For example, the image encoding unit 113 may lower the resolution of the overlapping partial image A and then encode the overlapping partial image A.
  • the image encoding unit 113 may reduce the size of the overlapping partial image A to, for example, 1/2 or 1/4.
  • the color space of the image is YCbCr, which is often used in video processing
  • only the Y signal which is a luminance signal indicating luminance
  • the image A may be transmitted from the transmission server 110 to the reception server 120 .
  • the image encoding unit 113 extracts the Y signal from the overlapping partial image A.
  • an uncompressed transmission method that transmits the data of the composite image and the overlapping partial image A as they are may be used.
  • the image encoder 113 is eliminated.
  • the imaging devices 101 and 102 have different image sensor sensitivity settings.
  • camera parameters such as gain, shutter speed, and color temperature between imaging devices in order to eliminate luminance differences between input images.
  • correction functions such as auto gain control and auto shutter, it is not possible to unify the sensitivity settings of image sensors in a plurality of imaging apparatuses.
  • Input image A and input image B shown in FIG. 2 were captured with different camera parameters, and input image A is relatively brighter than input image B. Therefore, in the synthesized image, the left side portion corresponding to the input image A is relatively brighter than the right side portion corresponding to the input image B.
  • FIG. 1 Input image A and input image B shown in FIG. 2 were captured with different camera parameters, and input image A is relatively brighter than input image B. Therefore, in the synthesized image, the left side portion corresponding to the input image A is relatively brighter than the right side portion corresponding to the input image B.
  • the receiving server 120 corrects the composite image.
  • the image analysis unit 115 generates information used for image correction performed in the receiving server 120 .
  • the image analysis unit 115 receives the input image A and the input image B from the image acquisition unit 111 and calculates the luminance difference between the input image A and the input image B.
  • FIG. When the reference luminance is lum and the luminance average of the input image A is ave A , the luminance difference dA of the input image A is calculated as follows.
  • the image analysis unit 115 calculates the correction value fA as follows.
  • the image analysis unit 115 performs the same calculation as described above on the input image B to obtain the correction value fB.
  • the correction value fA is a correction value for adjusting the input image A to the reference luminance
  • the correction value fB is a correction value for adjusting the input image B to the reference luminance.
  • the correction information transmission unit 116 transmits correction information including the correction values f A and f B obtained by the image analysis unit 115 to the receiving server 120 .
  • Correction information is very small compared to image data. Therefore, the time required for transmission processing in the correction information transmission unit 116 is much shorter than the sum of the time required for encoding processing in the image encoding unit 113 and the time required for transmission processing in the image transmission unit 114. is assumed.
  • the image receiving unit 121 receives encoded data of the composite image and the overlapping partial image A from the transmission server 110 .
  • the image decoding unit 122 decodes the encoded data of the synthesized image to obtain the synthesized image, and decodes the encoded data of the overlapping partial image A to obtain the overlapping partial image A. If the overlapping partial image A has been reduced in the transmission server 110, the image decoding unit 122 enlarges the overlapping partial image A to its original size.
  • the correction information receiving unit 123 receives correction information including the correction values f A and f B from the transmission server 110 .
  • the image correction unit 124 uses the overlapping partial image A and the correction values f A and f B to perform luminance correction on the composite image. Due to the luminance difference between the input image A and the input image B, luminance shading occurs on the synthesized image. Brightness correction is performed to eliminate brightness gradation on the composite image.
  • the image correction unit 124 first divides the composite image into an area corresponding to the input image A, an overlapping area, and an area corresponding to the input image B.
  • the overlapping area is an area between the area corresponding to the input image A and the area corresponding to the input image B, and corresponds to the portion where the input image A and the input image B are overlapped.
  • the image correction unit 124 performs luminance correction on the area corresponding to the input image A based on the correction value fA. Specifically, the image correction unit 124 multiplies each pixel value in the region corresponding to the input image A by the correction value fA. For each coordinate (m, n) in the region corresponding to the input image A, when the pixel value before correction is CA (m, n) , the pixel value after correction DA (m, n) is calculated as follows. be.
  • the image correction unit 124 performs luminance correction on the area corresponding to the input image B based on the correction value fB. Specifically, the image correction unit 124 multiplies each pixel value in the region corresponding to the input image B by the correction value fB.
  • the image correction unit 124 performs luminance correction on the overlapping area based on the overlapping partial image A and the correction values f A and f B . Specifically, for each coordinate (m, n) in the overlap region, Ap (m, n) is the pixel value of the overlapping partial image A, CW (m, n) is the pixel value before correction, and CW (m, n) is the pixel value after correction.
  • the image correction unit 124 calculates the post-correction pixel value DW (m, n) as follows.
  • Brightness correction for each region may be performed by parallel processing.
  • the image correction unit 124 integrates the luminance-corrected areas (specifically, the area corresponding to the input image A, the overlapping area, and the area corresponding to the input image B) to obtain an output image.
  • the image correction unit 124 divides the composite image into three regions, performs luminance correction on each region, and integrates the three luminance-corrected regions.
  • the image correction unit 124 may virtually divide the composite image by limiting the range on the composite image. In this case, the integration process is omitted.
  • FIG. 4 schematically shows a hardware configuration example of a computer 400 according to one embodiment of the invention.
  • a computer 400 shown in FIG. 4 corresponds to the transmission server 110 or the reception server 120 shown in FIG.
  • the computer 400 comprises a processing circuit 401, a memory 402, an input/output interface 403, and a communication interface 404.
  • Processing circuitry 401 is communicatively coupled to memory 402 , input/output interface 403 , and communication interface 404 .
  • processing circuitry 401 is configured to perform the sequence of operations described with respect to transmission server 110 .
  • processing circuitry 401 is configured to perform the sequence of operations described with respect to receiving server 120 .
  • processing circuitry 401 may include a general-purpose processor such as a CPU (central processing unit).
  • Memory 402 may include random access memory (RAM) and storage devices.
  • RAM includes volatile memory such as SDRAM.
  • RAM is used by general-purpose processors as working memory.
  • Storage devices include non-volatile memory such as flash memory.
  • the storage device stores various data including a video synthesizing program.
  • the video compositing program includes computer-executable instructions.
  • the general-purpose processor expands the video composition program stored in the storage device to RAM, and interprets and executes the video composition program.
  • the video synthesizing program when executed by the general-purpose processor, causes the general-purpose processor to perform the series of processes described with respect to the transmission server 110 .
  • the video synthesizing program when executed by a general-purpose processor, causes the general-purpose processor to perform a series of processes described with respect to receiving server 120 .
  • the program may be provided to the computer 400 while being stored in a computer-readable recording medium.
  • the computer 400 has a drive for reading data from the recording medium and obtains the program from the recording medium.
  • Examples of recording media include magnetic disks, optical disks (CD-ROM, CD-R, DVD-ROM, DVD-R, etc.), magneto-optical disks (MO, etc.), and semiconductor memories.
  • the program may be distributed through a network. Specifically, the program may be stored in a server on a network, and computer 400 may download the program from the server.
  • the processing circuit 401 may include a dedicated processor such as an ASIC (application specific integrated circuit) or FPGA (field programmable gate array).
  • Memory 402 may store configuration data that define the operation of the dedicated processor. Memory 402 may be internal to a dedicated processor.
  • the input/output interface 403 is an interface for connecting peripheral devices.
  • a communication interface 404 is an interface for communicating with an external device.
  • the processing circuit 401 includes a video capture card, receives images from the imaging devices 101 and 102 via the input/output interface 403 , and synthesizes them to the reception server 120 via the communication interface 404 .
  • the coded data of the image, the coded data of the overlapping partial image, and the correction information are transmitted.
  • the processing circuit 401 receives the encoded data of the composite image, the encoded data of the overlapping partial image, and the correction information from the transmission server 110 via the communication interface 404, and receives the input/output interface. 403 to the display device 103 .
  • FIG. 5 schematically shows an example of a video compositing method executed by the video compositing system 100.
  • FIG. The flow shown in FIG. 5 is executed each time the video synthesizing system 100 acquires a video frame.
  • the processing shown in steps S501 to S505 in FIG. 5 is executed by transmission server 110.
  • FIG. The processes shown in steps S502 and S503 and the processes shown in steps S504 and S505 may be executed in parallel.
  • the processing shown in steps S506 to S509 is executed by the reception server 120.
  • FIG. The processing shown in step S506 and the processing shown in step S507 may be executed in parallel.
  • step S ⁇ b>501 the image acquisition unit 111 acquires the input image A from the imaging device 101 and acquires the input image B from the imaging device 102 .
  • step S502 the image synthesizing unit 112 synthesizes the input image A and the input image B to generate a synthetic image.
  • the image synthesizing unit 112 transforms the input image A and the input image B according to the transformation matrix, and combines the transformed input image A and the input image B by alpha blending.
  • step S ⁇ b>503 the image encoding unit 113 encodes the synthesized image to obtain encoded data, and the image transmission unit 114 transmits the encoded data of the synthesized image to the receiving server 120 . Further, the image coding unit 113 reduces the resolution of the overlapping partial image A, specifically, the image coding unit 113 reduces the size of the overlapping partial image A. Subsequently, the image encoding unit 113 encodes the overlapping partial image A to obtain encoded data, and the image transmitting unit 114 transmits the encoded data of the overlapping partial image A to the receiving server 120 .
  • step S504 the image analysis unit 115 compares the pixels included in the overlapping portion of the input image A with the pixels included in the overlapping portion of the input image B to determine the luminance difference of the input image A with respect to the input image B. calculate. For example, the image analysis unit 115 obtains the luminance difference of the input image A by dividing the average luminance of the overlapping portion of the input image A by the average luminance of the overlapping portion of the input image B.
  • step S ⁇ b>505 the image analysis unit 115 generates correction information from the luminance difference of the input image A, and the correction information transmission unit 116 transmits the correction information to the receiving server 120 .
  • the image analysis unit 115 obtains the reciprocal of the luminance difference of the input image A as the correction value fA.
  • the correction information transmission unit 116 transmits the correction value f A to the reception server 120 as correction information.
  • step S506 the image receiving unit 121 receives the encoded data of the composite image and the overlapping partial image A from the transmission server 110, and the image decoding unit 122 decodes the encoded data to generate the composite image and the overlapping partial image A. obtain.
  • the image decoding unit 122 restores the overlapping partial image A to its original size.
  • step S ⁇ b>507 the correction information receiving unit 123 receives correction information including the correction value f A from the transmission server 110 .
  • step S508 the image correction unit 124 divides the composite image into an area corresponding to the input image A, an area corresponding to the input image B, and an overlapping area, and performs luminance correction on these areas based on the correction information.
  • the image correction unit 124 performs luminance correction on the region corresponding to the input image A using the correction value f A according to the above equation (4), and corrects the correction value f A and the overlapping partial image A according to the above equation (5). is used to perform luminance correction for overlapping regions.
  • step S509 the image correction unit 124 integrates the area corresponding to the input image A, the area corresponding to the input image B, and the overlapping area to generate an output image. to display.
  • the video synthesizing system 100 executes the above-described flow for each frame, thereby obtaining a synthesized video including multiple synthesized images. As a result, the composite image is displayed on the display device 103 in real time.
  • the image synthesizing system 100 acquires an input image A that is a frame included in the image obtained by the imaging device 101 and an input image B that is a frame included in the image obtained by the imaging device 102, and generates the input image A and the input image B. to generate a composite image, analyze the input image A and the input image B to generate correction information, and correct the composite image using the overlapping portion image that is the overlapping portion of the input image A and the correction information and output the corrected composite image.
  • Equation (5) can be modified as follows.
  • Bp (m, n) represents the pixel value of the overlapping partial image B. In this manner, correction processing is performed for each input image in the overlap region in the composite image.
  • panoramic video synthesis it is assumed that the sensitivity settings of the image sensors in the imaging device are manually unified, and it is almost impossible to correct or process each input image individually. No. Even if correction or processing is required, it is basically performed as preprocessing for image synthesis. Specifically, panorama video synthesis is performed in a sequence of analysis processing, correction processing, and synthesis processing.
  • correction processing is performed on the composite image. This enables the synthesizing process and the analyzing process to be performed in parallel, thereby shortening the processing delay.
  • the video synthesizing system 100 having the above configuration can control the process of changing to a synthetic video for each input video while ensuring real-time video viewing.
  • the video synthesis system 100 generates correction information including a correction value f A for adjusting the input image A to the reference luminance and a correction value f B for adjusting the input image B to the reference luminance, and the correction values f A , Using fB and the overlapping subimage A , perform brightness correction on the composite image.
  • the video synthesizing system 100 uses the correction value f A to perform luminance correction on the region corresponding to the input image A in the synthesized image, and corrects the correction values f A and f B and the overlapping partial image A to is used to perform luminance correction on the region corresponding to the portion where the first image and the second image are superimposed in the composite image, and the correction value f B is used to correct the input image B in the composite image. Perform brightness correction for the corresponding region. Thereby, it is possible to perform luminance correction for each of the input images A and B on the composite image. As a result, even when automatic correction is applied, luminance unevenness that occurs in the composite image can be eliminated without a device for distributing settings.
  • the video synthesizing system 100 includes a transmission server 110 and a reception server 120 connected in series, and a series of processes are executed by the transmission server 110 and the reception server 120 .
  • the transmission server 110 is installed at the shooting base
  • the reception server 120 is installed at the projection base. There is no guarantee that the network bandwidth from the shooting base to the projection base will be abundant, and it is desirable that the transmission capacity be as small as possible.
  • the transmission server 110 may compress the overlapping partial image A and transmit it to the reception server 120 .
  • Transmission server 110 may reduce the resolution of overlapping partial image A in order to compress overlapping partial image A.
  • FIG. For example, the transmission server 110 reduces the size of the overlapping partial image A to 1/2 or 1/4. By compressing the overlapping partial image A, the transmission capacity can be reduced. As a result, the transmission band can be saved.
  • the overlapping partial image is only referenced in the correction process, and is only indirectly involved in the quality of the final output image.
  • the size of the overlapping partial image is reduced to 1/4 (80 A test was conducted to compare the output image with the case where the image was reduced to 270 ⁇ 270), but there was no noticeable deterioration in viewing.
  • the video compositing system 100 includes two information processing devices, specifically the transmission server 110 and the reception server 120 .
  • video composition system 100 may be implemented by a single information processing device.
  • the image encoding unit 113, the image transmission unit 114, the correction information transmission unit 116, the image reception unit 121, the image decoding unit 122, and the correction information reception unit 123 may be deleted.
  • a processing unit may be provided between the image correction unit 124 and the output unit 125 to perform additional correction or processing on the synthesized image.
  • a processing unit may be provided in a further server which is connected to the receiving server 120 via the video transmission network. In that case, the output unit 125 transmits the composite image to another server.
  • the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from the disclosed plurality of components. For example, even if some components are deleted from all the components shown in the embodiment, if the problem can be solved and effects can be obtained, the configuration in which these components are deleted can be extracted as an invention.
  • DESCRIPTION OF SYMBOLS 100 Video synthesis system 101... Imaging device 102... Imaging device 103... Display device 110... Transmission server 111... Image acquisition part 112... Image synthesis part 113... Image encoding part 114... Image transmission part 115... Image analysis part 116... Correction Information transmission unit 120 Reception server 121 Image reception unit 122 Image decoding unit 123 Correction information reception unit 124 Image correction unit 125 Output unit 400 Computer 401 Processing circuit 402 Memory 403 Input/output interface 404 Communication interface

Abstract

A video compositing system according to one aspect of the present invention composites a first video and a second video having partially overlapping imaging regions, the system comprising: an acquisition unit that acquires a first image included in the first video and a second image included in the second video; a compositing unit that composites the first image and the second image to form a composite image; an analysis unit that analyzes the first image and the second image to generate correction information for correcting the composite image; a correction unit that corrects the composite image by using the correction information and an overlap section image, which is one section of the first image overlapping with one section of the second image; and an output unit that outputs the corrected composite image.

Description

映像合成システム、映像合成方法、及び映像合成プログラムVideo Synthesis System, Video Synthesis Method, and Video Synthesis Program
 本発明は、複数の映像を合成する技術に関する。 The present invention relates to technology for synthesizing multiple videos.
 映像合成技術として、複数台のカメラ装置によって一部領域が重なるように撮影した映像を入力とし、それらを結合することで広角なパノラマ映像を出力する手法が知られている。一方で、映像を解析し、解析結果に基づいて映像を補正又は加工する手法が提案されている。 As an image synthesis technology, a method is known in which images captured by multiple camera devices with partial overlap are input and combined to output a wide-angle panoramic image. On the other hand, methods have been proposed for analyzing video and correcting or processing the video based on the analysis results.
 特許文献1は、撮影領域の一部分が重なる入力映像を解析し、各入力映像においてオブジェクトを検出し、入力映像間の重複領域におけるオブジェクトの検出結果を統合することで、パノラマ映像上に物体追跡情報を提示する技術を開示している。 Patent document 1 analyzes input images in which part of the shooting area overlaps, detects an object in each input image, and integrates the detection results of the object in the overlapping area between the input images, so that object tracking information is displayed on the panoramic image. is disclosed.
日本国特開2020-182100号公報Japanese Patent Application Laid-Open No. 2020-182100
 特許文献1は、合成映像及び物体追跡情報を別々に出力し、後段の処理において合成映像上に物体追跡情報を重畳描画(オーバーレイ)するといった映像効果を提案している。特許文献1に開示されるような技術では、映像効果として合成映像上の全体に対する変更は可能であるが、元の映像(結合処理の入力となる映像)を単位として映像効果を適用することはできない。例えば、第1の入力映像及び第2の入力映像を合成してパノラマ映像を生成する場合、その過程で第1の入力映像と第2の入力映像のブレンディング処理がなされるため、パノラマ映像上で第1の入力映像に該当する画素だけ輝度を補正するといった変更処理は実現できない。 Patent Document 1 proposes a video effect in which a synthesized image and object tracking information are output separately, and the object tracking information is overlaid on the synthesized image in subsequent processing. With the technique disclosed in Patent Document 1, it is possible to change the entirety of the composite video as a video effect, but it is impossible to apply the video effect in units of the original video (video that is input to the combining process). Can not. For example, when synthesizing a first input image and a second input image to generate a panoramic image, the first input image and the second input image are blended in the process. It is not possible to implement change processing such as correcting the luminance of only the pixels corresponding to the first input image.
 すなわち、入力映像の解析処理及び合成処理を並行して実施し、解析処理により得られた情報に基づいて合成画像への変更処理を実施する場合、入力映像ごとに変更処理の内容を制御することができない。 In other words, when performing analysis processing and synthesis processing of input video in parallel, and performing processing for changing to a synthesized image based on information obtained by the analysis processing, the content of the change processing is controlled for each input video. can't
 一方で、解析処理、変更処理、その後の合成処理というシーケンシャルな手続きでは、並列処理ができないために遅延量が増大し、映像視聴のリアルタイム性が著しく低下する。 On the other hand, in the sequential procedure of analysis processing, modification processing, and subsequent synthesis processing, the amount of delay increases because parallel processing is not possible, and the real-time performance of video viewing is significantly reduced.
 本発明は、映像視聴のリアルタイム性を確保し、合成映像への変更処理を入力映像ごとに制御する技術を提供することを目的とする。 The purpose of the present invention is to provide a technology that ensures real-time video viewing and controls the process of changing to a synthesized video for each input video.
 本発明の一態様に係る映像合成システムは、撮影領域が部分的に重なる第1の映像及び第2の映像を合成する映像合成システムであって、前記第1の映像に含まれる第1の画像及び前記第2の映像に含まれる第2の画像を取得する取得部と、前記第1の画像及び前記第2の画像を合成して合成画像を生成する合成部と、前記第1の画像及び前記第2の画像を解析して前記合成画像を補正するための補正情報を生成する解析部と、前記第2の画像の一部分と重なる前記第1の画像の一部分である重複部分画像と前記補正情報とを使用して、前記合成画像を補正する補正部と、補正された前記合成画像を出力する出力部と、を備える。 A video compositing system according to an aspect of the present invention is a video compositing system that synthesizes a first video and a second video in which photographing areas partially overlap, wherein a first image included in the first video is and an acquisition unit that acquires a second image included in the second video, a combining unit that combines the first image and the second image to generate a combined image, the first image and an analysis unit that analyzes the second image and generates correction information for correcting the synthesized image; an overlapping partial image that is a portion of the first image that overlaps a portion of the second image; and the correction. and an output unit for outputting the corrected synthetic image.
 本発明によれば、映像視聴のリアルタイム性を確保し、合成映像への変更処理を入力映像ごとに制御する技術が提供される。 According to the present invention, a technology is provided that ensures real-time video viewing and controls the process of changing to a synthesized video for each input video.
図1は、本発明の一実施形態に係る映像合成システムを示すブロック図である。FIG. 1 is a block diagram showing a video synthesizing system according to one embodiment of the present invention. 図2は、図1に示した画像合成部における処理を説明する図である。FIG. 2 is a diagram for explaining processing in the image synthesizing unit shown in FIG. 図3は、図1に示した画像補正部における処理を説明する図である。FIG. 3 is a diagram for explaining processing in the image correction unit shown in FIG. 1; 図4は、本発明の一実施形態に係るコンピュータのハードウェア構成を示すブロック図である。FIG. 4 is a block diagram showing the hardware configuration of a computer according to one embodiment of the invention. 図5は、本発明の一実施形態に係る映像合成方法を示すフローチャートである。FIG. 5 is a flow chart illustrating a video composition method according to an embodiment of the present invention.
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 ここで説明する実施形態では、撮影領域が部分的に重なる2本の映像(動画像)を合成してパノラマ映像を生成するパノラマ映像合成を例に挙げる。パノラマ映像合成は、撮影領域の一部分が重なる2本の映像を入力とし、それらの重複部分が重なるように映像同士を結合する。なお、3本以上の映像を合成してパノラマ映像を生成する形態も可能である。 In the embodiment described here, an example of panorama video synthesis in which a panorama video is generated by synthesizing two videos (moving images) whose shooting areas partially overlap will be taken. In panorama image synthesis, two images with partially overlapping photographing areas are input, and the images are combined so that the overlapping portions overlap. Note that it is also possible to generate a panorama video by synthesizing three or more videos.
 パノラマ映像合成のためには、画像間に被写体のズレがないように画像の位置を調整するための変形行列と、画像をシームレスに結合するためのアルファ値と、が必要である。ここでは、これらの合成パラメータは、一般的な局所特徴量の抽出及び比較により又はオペレータによる手動設定により、事前に決定されているものとする。 For panorama video synthesis, a deformation matrix for adjusting the position of the images so that there is no subject shift between images, and an alpha value for seamlessly combining the images are required. Here, it is assumed that these synthetic parameters are determined in advance by general extraction and comparison of local feature amounts or by manual setting by an operator.
 [構成]
 図1は、本発明の一実施形態に係る映像合成システム100の構成例を概略的に示している。図1に示すように、映像合成システム100は、情報処理装置としての送信サーバ110及び受信サーバ120を備える。送信サーバ110は受信サーバ120に通信可能に接続される。例えば、送信サーバ110は映像伝送ケーブル又はIP伝送ネットワークで受信サーバ120に接続される。
[composition]
FIG. 1 schematically shows a configuration example of a video synthesizing system 100 according to one embodiment of the present invention. As shown in FIG. 1, the video synthesizing system 100 includes a transmission server 110 and a reception server 120 as information processing devices. Sending server 110 is communicatively connected to receiving server 120 . For example, the sending server 110 is connected to the receiving server 120 by a video transmission cable or an IP transmission network.
 送信サーバ110は、映像を撮像する撮像装置101、102に接続され、撮像装置101、102から映像を受信する。撮像装置101、102としては、例えば、映像信号をリアルタイムに出力するビデオカメラを使用することができる。なお、撮像装置101、102に代えて、ビデオプレーヤなどを使用してもよい。撮像装置101、102は撮影領域が部分的に重なる映像が得られるように配置される。受信サーバ120は表示装置103に接続される。表示装置103としては、液晶ディスプレイ(LCD)やOLED(organic light-emitting diode)ディスプレイを使用することができる。 The transmission server 110 is connected to the imaging devices 101 and 102 that capture images, and receives images from the imaging devices 101 and 102 . As the imaging devices 101 and 102, for example, video cameras that output video signals in real time can be used. A video player or the like may be used instead of the imaging devices 101 and 102 . The imaging devices 101 and 102 are arranged so that images with partially overlapping imaging areas can be obtained. The receiving server 120 is connected to the display device 103 . Display device 103 may be a liquid crystal display (LCD) or an organic light-emitting diode (OLED) display.
 送信サーバ110は、画像取得部111、画像合成部112、画像符号化部(圧縮部ともいう)113、画像送信部114、画像解析部115、及び補正情報送信部116を備える。 The transmission server 110 includes an image acquisition unit 111, an image synthesis unit 112, an image encoding unit (also referred to as a compression unit) 113, an image transmission unit 114, an image analysis unit 115, and a correction information transmission unit 116.
 画像取得部111は、撮影領域が部分的に重なる2枚の画像を取得する。以降では、これらの画像を入力画像A及び入力画像Bと称する。入力画像Aは撮像装置101により得られた映像に含まれるフレームであり、入力画像Bは撮像装置102により得られた映像に含まれるフレームである。撮像装置101、102の各々は、所定のフレームレートでフレームを生成して順次に送信サーバ110に送信する。画像取得部111は、撮像装置101、102から入力画像Aと入力画像Bの対を次々に受信する。 The image acquisition unit 111 acquires two images whose imaging regions partially overlap. These images are referred to as input image A and input image B hereinafter. The input image A is a frame included in the video obtained by the imaging device 101 , and the input image B is the frame included in the video obtained by the imaging device 102 . Each of the imaging devices 101 and 102 generates frames at a predetermined frame rate and sequentially transmits the frames to the transmission server 110 . The image acquisition unit 111 sequentially receives pairs of the input image A and the input image B from the imaging devices 101 and 102 .
 画像合成部112は、画像取得部111により取得された入力画像A及び入力画像Bを合成して合成画像を生成する。画像合成処理については後述する。 The image synthesizing unit 112 synthesizes the input image A and the input image B acquired by the image acquiring unit 111 to generate a synthesized image. Image composition processing will be described later.
 画像符号化部113は、画像合成部112により生成された合成画像のデータ量を小さくするために、合成画像を圧縮する。具体的には、画像符号化部113は、合成画像を符号化して符号化データを得る。さらに、画像符号化部113は、入力画像A及び入力画像Bのうちの一方における重複部分である重複部分画像のデータ量を小さくするために、重複部分画像を圧縮する。本実施形態では、入力画像Bの一部分と重なる入力画像Aの一部分を重複部分画像として使用し、これを重複部分画像Aと記載する。具体的には、画像符号化部113は、合成画像と同様にして重複部分画像を符号化して符号化データを生成する。 The image encoding unit 113 compresses the synthesized image generated by the image synthesizing unit 112 in order to reduce the data amount of the synthesized image. Specifically, the image encoding unit 113 encodes the synthesized image to obtain encoded data. Furthermore, the image encoding unit 113 compresses the overlapping partial image in order to reduce the data amount of the overlapping partial image, which is the overlapping portion in one of the input image A and the input image B. FIG. In this embodiment, a portion of the input image A that overlaps a portion of the input image B is used as an overlapping partial image, and is referred to as an overlapping partial image A. FIG. Specifically, the image encoding unit 113 encodes the overlapping partial image to generate encoded data in the same manner as the synthesized image.
 画像送信部114は、画像符号化部113により得られた合成画像及び重複部分画像Aの符号化データを受信サーバ120に送信する。送信サーバ110と受信サーバ120との間の通信量を低減するために、合成画像及び重複部分画像Aは符号化されたうえで送信サーバ110から受信サーバ120に送信される。 The image transmission unit 114 transmits the encoded data of the composite image and the overlapping partial image A obtained by the image encoding unit 113 to the receiving server 120 . In order to reduce the amount of communication between the transmission server 110 and the reception server 120 , the composite image and the overlapping partial image A are encoded and transmitted from the transmission server 110 to the reception server 120 .
 画像解析部115は、画像取得部111により取得された入力画像A及び入力画像Bを解析して、画像合成部112により生成された合成画像を補正するための補正情報を生成する。画像解析処理及び補正情報については後述する。補正情報送信部116は、画像解析部115により生成された補正情報を受信サーバ120に送信する。 The image analysis unit 115 analyzes the input image A and the input image B acquired by the image acquisition unit 111 and generates correction information for correcting the synthesized image generated by the image synthesis unit 112 . Image analysis processing and correction information will be described later. The correction information transmission section 116 transmits the correction information generated by the image analysis section 115 to the reception server 120 .
 受信サーバ120は、画像受信部121、画像復号部(復元部ともいう)122、補正情報受信部123、画像補正部124、及び出力部125を備える。 The reception server 120 includes an image reception unit 121 , an image decoding unit (also referred to as a restoration unit) 122 , a correction information reception unit 123 , an image correction unit 124 and an output unit 125 .
 画像受信部121は、送信サーバ110から合成画像及び重複部分画像Aの符号化データを受信する。画像復号部122は、合成画像及び重複部分画像Aを復元する。具体的には、画像復号部122は、画像受信部121により受信された符号化データを復号して合成画像及び重複部分画像Aを得る。補正情報受信部123は、送信サーバ110から補正情報を受信する。画像補正部124は、画像復号部122により得られた重複部分画像Aと、補正情報受信部123により受信された補正情報と、を使用して、画像復号部122により得られた合成画像を補正する。補正処理については後述する。出力部125は、画像補正部124により補正された合成画像を出力する。例えば、出力部125は、補正された合成画像を表示装置103に表示する。 The image receiving unit 121 receives encoded data of the composite image and the overlapping partial image A from the transmission server 110 . The image decoding unit 122 restores the combined image and the overlapping partial image A. Specifically, the image decoding unit 122 decodes the encoded data received by the image receiving unit 121 to obtain the composite image and the overlapping partial image A. The correction information receiving unit 123 receives correction information from the transmission server 110 . The image correcting unit 124 corrects the composite image obtained by the image decoding unit 122 using the overlapping partial image A obtained by the image decoding unit 122 and the correction information received by the correction information receiving unit 123. do. The correction processing will be described later. The output unit 125 outputs the synthesized image corrected by the image correction unit 124. FIG. For example, the output unit 125 displays the corrected composite image on the display device 103 .
 次に、送信サーバ110について詳細に説明する。 Next, the transmission server 110 will be described in detail.
 画像合成部112は、画像取得部111から入力画像A及び入力画像Bを受け取る。画像合成部112は、合成パラメータである変形行列に従って入力画像A及び入力画像Bを変形させる。図2に例示される入力画像A及び入力画像Bにおいては、入力画像Aの右側部分が入力画像Bの左側部分と重なる。入力画像Aを入力画像Bと重ね合わせたときにズレがないように、入力画像A及び入力画像Bを移動する必要がある。入力画像Aは全体的な左への平行移動を施され、入力画像Bは全体的な右への平行移動を施される。 The image synthesis unit 112 receives the input image A and the input image B from the image acquisition unit 111 . The image synthesizing unit 112 deforms the input image A and the input image B according to the deformation matrix, which is the synthesizing parameter. In the input image A and the input image B illustrated in FIG. 2, the right portion of the input image A overlaps the left portion of the input image B. As shown in FIG. It is necessary to move the input image A and the input image B so that there is no deviation when the input image A and the input image B are superimposed. Input image A is subjected to a global left translation and input image B is subjected to a global right translation.
 画像合成部112は、変形させた入力画像A及び入力画像Bをアルファブレンディングによってシームレスに結合して、1枚の合成画像を生成する。本実施形態では、アルファブレンディングで参照されるアルファ値は、合成画像の座標ごとに定められ、入力画像Aの画素値と入力画像Bの画素値を混ぜ合わせる比率を示す。アルファ値は0から1までの範囲の値をとる。 The image synthesizing unit 112 seamlessly combines the deformed input image A and the input image B by alpha blending to generate one synthesized image. In this embodiment, the alpha value referred to in alpha blending is determined for each coordinate of the synthesized image, and indicates the ratio at which the pixel values of the input image A and the pixel values of the input image B are mixed. Alpha values range from 0 to 1.
 座標(m,n)における入力画像Aの画素値をA(m,n)、座標(m,n)における入力画像Bの画素値をB(m,n)、座標(m,n)におけるアルファ値をα(m,n)としたとき、座標(m,n)における合成画像の画素値C(m,n)は下記のように表される。
Figure JPOXMLDOC01-appb-M000001
Let A (m, n) be the pixel value of input image A at coordinates (m, n), B (m, n) be the pixel value of input image B at coordinates (m, n), and alpha at coordinates (m, n). When the value is α (m, n) , the pixel value C (m, n) of the composite image at coordinates (m, n) is expressed as follows.
Figure JPOXMLDOC01-appb-M000001
 図2に示す例では、合成画像は入力画像A及び入力画像Bと同じサイズである。この場合、画像合成の際に入力画像Aの左側部分及び入力画像Bの右側部分は削除される。代替として、合成画像は入力画像A、Bと異なるサイズであってもよい。例えば、入力画像A及び入力画像Bのサイズが1920×1080であり、重複部分のサイズが320×1080である場合、サイズが3520×1080である合成画像を得ることができる。重複部分は、図2に示すように、アルファブレンディングにおいて画素が重なり合う領域である。 In the example shown in FIG. 2, the composite image has the same size as input image A and input image B. In this case, the left portion of input image A and the right portion of input image B are deleted during image synthesis. Alternatively, the composite image may be a different size than the input images A,B. For example, if the size of the input image A and the input image B is 1920×1080 and the size of the overlapping portion is 320×1080, a composite image with a size of 3520×1080 can be obtained. Overlaps are areas where pixels overlap in alpha blending, as shown in FIG.
 画像符号化部113は、合成画像及び重複部分画像Aを符号化し、画像送信部114は、合成画像及び重複部分画像Aの符号化データを受信サーバ120に送信する。画像符号化部113は、重複部分画像Aのデータ量をより小さくするために、解像度を下げる、圧縮率を上げるなどの調整を行ってよい。例えば、画像符号化部113は、重複部分画像Aの解像度を下げ、その後に重複部分画像Aを符号化してよい。画像符号化部113は、重複部分画像Aを例えば1/2又は1/4のサイズに縮小してよい。また、画像の色空間が映像処理でよく用いられるYCbCrである場合、送信サーバ110と受信サーバ120との間の通信量を低減するために、輝度を示す輝度信号であるY信号のみが重複部分画像Aとして送信サーバ110から受信サーバ120に送信されてもよい。この場合、画像符号化部113は重複部分画像AからY信号を抽出する。 The image encoding unit 113 encodes the composite image and the overlapping partial image A, and the image transmitting unit 114 transmits the coded data of the composite image and the overlapping partial image A to the reception server 120 . The image encoding unit 113 may make adjustments such as lowering the resolution and increasing the compression rate in order to further reduce the amount of data of the overlapping partial image A. FIG. For example, the image encoding unit 113 may lower the resolution of the overlapping partial image A and then encode the overlapping partial image A. The image encoding unit 113 may reduce the size of the overlapping partial image A to, for example, 1/2 or 1/4. Further, when the color space of the image is YCbCr, which is often used in video processing, only the Y signal, which is a luminance signal indicating luminance, is overlapped in order to reduce the amount of communication between the transmission server 110 and the reception server 120. The image A may be transmitted from the transmission server 110 to the reception server 120 . In this case, the image encoding unit 113 extracts the Y signal from the overlapping partial image A. FIG.
 なお、伝送帯域が十分に確保されている場合には、合成画像及び重複部分画像Aのデータをそのまま送信する非圧縮伝送方式を利用してもよい。非圧縮伝送方式を利用する実施形態では、画像符号化部113は削除される。 Note that if a sufficient transmission band is secured, an uncompressed transmission method that transmits the data of the composite image and the overlapping partial image A as they are may be used. In embodiments utilizing an uncompressed transmission scheme, the image encoder 113 is eliminated.
 本実施形態では、撮像装置101、102でイメージセンサの感度設定が異なっている場合を考える。一般的に、パノラマ映像合成では、入力画像間の輝度差をなくすために、ゲインやシャッタースピード、色温度といったカメラパラメータを撮像装置間で統一することが推奨される。しかしながら、オートゲインコントロールやオートシャッターなどの補正機能を利用する場合、複数の撮像装置でイメージセンサの感度設定を統一することはできない。 In this embodiment, it is assumed that the imaging devices 101 and 102 have different image sensor sensitivity settings. Generally, in panorama video synthesis, it is recommended to unify camera parameters such as gain, shutter speed, and color temperature between imaging devices in order to eliminate luminance differences between input images. However, when using correction functions such as auto gain control and auto shutter, it is not possible to unify the sensitivity settings of image sensors in a plurality of imaging apparatuses.
 図2に示す入力画像A及び入力画像Bは異なるカメラパラメータで撮影されたものであり、入力画像Aは入力画像Bよりも比較的明るくなっている。このため、合成画像では、入力画像Aに対応する領域である左側部分は入力画像Bに対応する領域である右側部分よりも比較的明るくなっている。 Input image A and input image B shown in FIG. 2 were captured with different camera parameters, and input image A is relatively brighter than input image B. Therefore, in the synthesized image, the left side portion corresponding to the input image A is relatively brighter than the right side portion corresponding to the input image B. FIG.
 上述のような合成画像に生じる輝度の濃淡を解消するために、受信サーバ120において合成画像に対する補正がなされる。画像解析部115は、受信サーバ120において行われる画像補正に使用する情報を生成する。 In order to eliminate the brightness shading that occurs in the composite image as described above, the receiving server 120 corrects the composite image. The image analysis unit 115 generates information used for image correction performed in the receiving server 120 .
 画像解析部115は、画像取得部111から入力画像A及び入力画像Bを受け取り、入力画像A及び入力画像Bのそれぞれの輝度差を算出する。基準となる輝度をlum、入力画像Aの輝度平均をaveとしたとき、入力画像Aの輝度差dは下記により算出される。
Figure JPOXMLDOC01-appb-M000002
The image analysis unit 115 receives the input image A and the input image B from the image acquisition unit 111 and calculates the luminance difference between the input image A and the input image B. FIG. When the reference luminance is lum and the luminance average of the input image A is ave A , the luminance difference dA of the input image A is calculated as follows.
Figure JPOXMLDOC01-appb-M000002
 入力画像Aを基準輝度に適合するように補正する方法の1つとして、入力画像Aのすべての画素に対して一律の補正値を乗算する手法がある。この補正値をfとする。画像解析部115は下記により補正値fを算出する。
Figure JPOXMLDOC01-appb-M000003
As one method of correcting the input image A so as to conform to the reference luminance, there is a method of multiplying all pixels of the input image A by a uniform correction value. Let this correction value be f A. The image analysis unit 115 calculates the correction value fA as follows.
Figure JPOXMLDOC01-appb-M000003
 画像解析部115は、上述したものと同様の計算を入力画像Bに対して行い、補正値fを得る。補正値fは入力画像Aを基準輝度に調整するための補正値であり、補正値fは入力画像Bを基準輝度に調整するための補正値である。 The image analysis unit 115 performs the same calculation as described above on the input image B to obtain the correction value fB. The correction value fA is a correction value for adjusting the input image A to the reference luminance, and the correction value fB is a correction value for adjusting the input image B to the reference luminance.
 なお、入力画像Bを基準として入力画像Aを補正する場合は、画像解析部115は、入力画像Aの重複部分の輝度平均と入力画像Bの重複部分の輝度平均との比を補正値fとして求める。この場合では、画像解析部115は、補正値fのみを算出し、f=1とする。 When input image A is corrected based on input image B, image analysis unit 115 sets the ratio of the average luminance of the overlapping portion of input image A to the average luminance of the overlapping portion of input image B as correction value f A Ask as In this case, the image analysis unit 115 calculates only the correction value f A and sets f B =1.
 補正情報送信部116は、画像解析部115により得られた補正値f、fを含む補正情報を受信サーバ120に送信する。補正情報は画像データと比較して非常に小さい。このため、補正情報送信部116において送信処理にかかる時間は画像符号化部113において符号化処理にかかる時間と画像送信部114において送信処理にかかる時間とを合わせたものよりも非常に短いことが想定される。 The correction information transmission unit 116 transmits correction information including the correction values f A and f B obtained by the image analysis unit 115 to the receiving server 120 . Correction information is very small compared to image data. Therefore, the time required for transmission processing in the correction information transmission unit 116 is much shorter than the sum of the time required for encoding processing in the image encoding unit 113 and the time required for transmission processing in the image transmission unit 114. is assumed.
 次に、受信サーバ120について詳細に説明する。 Next, the receiving server 120 will be described in detail.
 画像受信部121は、送信サーバ110から合成画像及び重複部分画像Aの符号化データを受信する。画像復号部122は、合成画像の符号化データを復号して合成画像を得て、重複部分画像Aの符号化データを復号して重複部分画像Aを得る。送信サーバ110において重複部分画像Aが縮小されている場合には、画像復号部122は重複部分画像Aを元のサイズに拡大する。補正情報受信部123は、送信サーバ110から補正値f、fを含む補正情報を受信する。 The image receiving unit 121 receives encoded data of the composite image and the overlapping partial image A from the transmission server 110 . The image decoding unit 122 decodes the encoded data of the synthesized image to obtain the synthesized image, and decodes the encoded data of the overlapping partial image A to obtain the overlapping partial image A. If the overlapping partial image A has been reduced in the transmission server 110, the image decoding unit 122 enlarges the overlapping partial image A to its original size. The correction information receiving unit 123 receives correction information including the correction values f A and f B from the transmission server 110 .
 画像補正部124は、重複部分画像A及び補正値f、fを使用して合成画像に対する輝度補正を行う。入力画像Aと入力画像Bとの間の輝度差によって合成画像上に輝度の濃淡が発生している。輝度補正は合成画像上での輝度の濃淡を解消するために行われる。 The image correction unit 124 uses the overlapping partial image A and the correction values f A and f B to perform luminance correction on the composite image. Due to the luminance difference between the input image A and the input image B, luminance shading occurs on the synthesized image. Brightness correction is performed to eliminate brightness gradation on the composite image.
 図3に示すように、まず、画像補正部124は、合成画像を、入力画像Aに対応する領域、重複領域、及び入力画像Bに対応する領域に分割する。重複領域は、入力画像Aに対応する領域と入力画像Bに対応する領域との間の領域であり、入力画像Aと入力画像Bを重ね合わせた部分に対応する。 As shown in FIG. 3, the image correction unit 124 first divides the composite image into an area corresponding to the input image A, an overlapping area, and an area corresponding to the input image B. The overlapping area is an area between the area corresponding to the input image A and the area corresponding to the input image B, and corresponds to the portion where the input image A and the input image B are overlapped.
 画像補正部124は、補正値fに基づいて入力画像Aに対応する領域に対する輝度補正を行う。具体的には、画像補正部124は、入力画像Aに対応する領域における各画素値に補正値fを乗算する。入力画像Aに対応する領域内の各座標(m,n)について、補正前の画素値をCA(m,n)としたとき、補正後の画素値DA(m,n)は下記により算出される。
Figure JPOXMLDOC01-appb-M000004
The image correction unit 124 performs luminance correction on the area corresponding to the input image A based on the correction value fA. Specifically, the image correction unit 124 multiplies each pixel value in the region corresponding to the input image A by the correction value fA. For each coordinate (m, n) in the region corresponding to the input image A, when the pixel value before correction is CA (m, n) , the pixel value after correction DA (m, n) is calculated as follows. be.
Figure JPOXMLDOC01-appb-M000004
 さらに、画像補正部124は、補正値fに基づいて入力画像Bに対応する領域に対する輝度補正を行う。具体的には、画像補正部124は、入力画像Bに対応する領域における各画素値に補正値fを乗算する。 Further, the image correction unit 124 performs luminance correction on the area corresponding to the input image B based on the correction value fB. Specifically, the image correction unit 124 multiplies each pixel value in the region corresponding to the input image B by the correction value fB.
 さらに、画像補正部124は、重複部分画像A及び補正値f、fに基づいて重複領域に対する輝度補正を行う。具体的には、重複領域内の各座標(m,n)について、重複部分画像Aの画素値をAp(m,n)、補正前の画素値をCW(m,n)、補正後の画素値をDW(m,n)としたとき、画像補正部124は、下記により補正後の画素値DW(m,n)を算出する。
Figure JPOXMLDOC01-appb-M000005
Further, the image correction unit 124 performs luminance correction on the overlapping area based on the overlapping partial image A and the correction values f A and f B . Specifically, for each coordinate (m, n) in the overlap region, Ap (m, n) is the pixel value of the overlapping partial image A, CW (m, n) is the pixel value before correction, and CW (m, n) is the pixel value after correction. When the value is DW (m, n) , the image correction unit 124 calculates the post-correction pixel value DW (m, n) as follows.
Figure JPOXMLDOC01-appb-M000005
 それぞれの領域に対する輝度補正は並列処理により行われてよい。  Brightness correction for each region may be performed by parallel processing.
 画像補正部124は、輝度補正が施された領域(具体的には入力画像Aに対応する領域、重複領域、及び入力画像Bに対応する領域)を統合し、出力画像を得る。 The image correction unit 124 integrates the luminance-corrected areas (specifically, the area corresponding to the input image A, the overlapping area, and the area corresponding to the input image B) to obtain an output image.
 上述した例では、画像補正部124は、合成画像を3つの領域に分割し、個々の領域に対して輝度補正を行い、輝度補正が施された3つの領域を統合する。代替として、画像補正部124は、合成画像上の範囲を限定することで合成画像を仮想的に分割してもよい。この場合、統合処理は省略される。 In the example described above, the image correction unit 124 divides the composite image into three regions, performs luminance correction on each region, and integrates the three luminance-corrected regions. Alternatively, the image correction unit 124 may virtually divide the composite image by limiting the range on the composite image. In this case, the integration process is omitted.
 図4は、本発明の一実施形態に係るコンピュータ400のハードウェア構成例を概略的に示している。図4に示すコンピュータ400は、図1に示した送信サーバ110又は受信サーバ120に対応する。 FIG. 4 schematically shows a hardware configuration example of a computer 400 according to one embodiment of the invention. A computer 400 shown in FIG. 4 corresponds to the transmission server 110 or the reception server 120 shown in FIG.
 図4に示す例では、コンピュータ400は、処理回路401、メモリ402、入出力インタフェース403、及び通信インタフェース404を備える。処理回路401は、メモリ402、入出力インタフェース403、及び通信インタフェース404に通信可能に接続される。 In the example shown in FIG. 4, the computer 400 comprises a processing circuit 401, a memory 402, an input/output interface 403, and a communication interface 404. Processing circuitry 401 is communicatively coupled to memory 402 , input/output interface 403 , and communication interface 404 .
 コンピュータ400が送信サーバ110である場合、処理回路401は送信サーバ110に関して説明される一連の処理を行うように構成される。コンピュータ400が受信サーバ120である場合、処理回路401は受信サーバ120に関して説明される一連の処理を行うように構成される。 When computer 400 is transmission server 110 , processing circuitry 401 is configured to perform the sequence of operations described with respect to transmission server 110 . When computer 400 is receiving server 120 , processing circuitry 401 is configured to perform the sequence of operations described with respect to receiving server 120 .
 一実施形態では、処理回路401は、CPU(central processing unit)などの汎用プロセッサを含んでよい。メモリ402は、RAM(random access memory)及びストレージデバイスを含んでよい。RAMはSDRAMなどの揮発性メモリを含む。RAMはワーキングメモリとして汎用プロセッサにより使用される。ストレージデバイスはフラッシュメモリなどの不揮発性メモリを含む。ストレージデバイスは、映像合成プログラムを含む種々のデータを記憶する。映像合成プログラムはコンピュータ実行可能命令を含む。 In one embodiment, processing circuitry 401 may include a general-purpose processor such as a CPU (central processing unit). Memory 402 may include random access memory (RAM) and storage devices. RAM includes volatile memory such as SDRAM. RAM is used by general-purpose processors as working memory. Storage devices include non-volatile memory such as flash memory. The storage device stores various data including a video synthesizing program. The video compositing program includes computer-executable instructions.
 汎用プロセッサは、ストレージデバイスに記憶された映像合成プログラムをRAMに展開し、映像合成プログラムを解釈及び実行する。コンピュータ400が送信サーバ110である場合、映像合成プログラムは、汎用プロセッサにより実行されたときに、送信サーバ110に関して説明される一連の処理を汎用プロセッサに行わせる。コンピュータ400が受信サーバ120である場合、映像合成プログラムは、汎用プロセッサにより実行されたときに、受信サーバ120に関して説明される一連の処理を汎用プロセッサに行わせる。 The general-purpose processor expands the video composition program stored in the storage device to RAM, and interprets and executes the video composition program. When the computer 400 is the transmission server 110 , the video synthesizing program, when executed by the general-purpose processor, causes the general-purpose processor to perform the series of processes described with respect to the transmission server 110 . When computer 400 is receiving server 120 , the video synthesizing program, when executed by a general-purpose processor, causes the general-purpose processor to perform a series of processes described with respect to receiving server 120 .
 プログラムは、コンピュータで読み取り可能な記録媒体に記憶された状態でコンピュータ400に提供されてよい。この場合、コンピュータ400は、記録媒体からデータを読み出すドライブを備え、記録媒体からプログラムを取得する。記録媒体の例は、磁気ディスク、光ディスク(CD-ROM、CD-R、DVD-ROM、DVD-Rなど)、光磁気ディスク(MOなど)、及び半導体メモリを含む。また、プログラムはネットワークを通じて配布するようにしてもよい。具体的には、プログラムをネットワーク上のサーバに格納し、コンピュータ400がサーバからプログラムをダウンロードするようにしてもよい。 The program may be provided to the computer 400 while being stored in a computer-readable recording medium. In this case, the computer 400 has a drive for reading data from the recording medium and obtains the program from the recording medium. Examples of recording media include magnetic disks, optical disks (CD-ROM, CD-R, DVD-ROM, DVD-R, etc.), magneto-optical disks (MO, etc.), and semiconductor memories. Also, the program may be distributed through a network. Specifically, the program may be stored in a server on a network, and computer 400 may download the program from the server.
 他の実施形態では、処理回路401は、ASIC(application specific integrated circuit)又はFPGA(field programmable gate array)などの専用プロセッサを含んでよい。メモリ402は専用プロセッサの動作を規定する設定データを記憶してよい。メモリ402は専用プロセッサの内部に設けられていてもよい。 In other embodiments, the processing circuit 401 may include a dedicated processor such as an ASIC (application specific integrated circuit) or FPGA (field programmable gate array). Memory 402 may store configuration data that define the operation of the dedicated processor. Memory 402 may be internal to a dedicated processor.
 入出力インタフェース403は、周辺機器を接続するためのインタフェースである。通信インタフェース404は、外部装置と通信するためのインタフェースである。コンピュータ400が送信サーバ110である場合、処理回路401は、ビデオキャプチャカードを含み、入出力インタフェース403を介して撮像装置101、102から映像を受信し、通信インタフェース404を介して受信サーバ120に合成画像の符号化データ、重複部分画像の符号化データ、及び補正情報を送信する。コンピュータ400が受信サーバ120である場合、処理回路401は、通信インタフェース404を介して送信サーバ110から合成画像の符号化データ、重複部分画像の符号化データ、及び補正情報を受信し、入出力インタフェース403を介して表示装置103に合成映像を送信する。 The input/output interface 403 is an interface for connecting peripheral devices. A communication interface 404 is an interface for communicating with an external device. When the computer 400 is the transmission server 110 , the processing circuit 401 includes a video capture card, receives images from the imaging devices 101 and 102 via the input/output interface 403 , and synthesizes them to the reception server 120 via the communication interface 404 . The coded data of the image, the coded data of the overlapping partial image, and the correction information are transmitted. When the computer 400 is the receiving server 120, the processing circuit 401 receives the encoded data of the composite image, the encoded data of the overlapping partial image, and the correction information from the transmission server 110 via the communication interface 404, and receives the input/output interface. 403 to the display device 103 .
 [動作]
 映像合成システム100の動作について説明する。
[motion]
The operation of the image synthesizing system 100 will be described.
 図5は、映像合成システム100により実行される映像合成方法の一例を概略的に示している。図5に示すフローは、映像合成システム100が映像のフレームを取得するたびに実行される。図5のステップS501~505に示す処理は送信サーバ110により実行される。ステップS502、S503に示す処理及びステップS504、S505に示す処理は並行して実行されてよい。ステップS506~S509に示す処理は受信サーバ120により実行される。ステップS506に示す処理及びステップS507に示す処理は並行して実行されてよい。 FIG. 5 schematically shows an example of a video compositing method executed by the video compositing system 100. FIG. The flow shown in FIG. 5 is executed each time the video synthesizing system 100 acquires a video frame. The processing shown in steps S501 to S505 in FIG. 5 is executed by transmission server 110. FIG. The processes shown in steps S502 and S503 and the processes shown in steps S504 and S505 may be executed in parallel. The processing shown in steps S506 to S509 is executed by the reception server 120. FIG. The processing shown in step S506 and the processing shown in step S507 may be executed in parallel.
 ステップS501において、画像取得部111は、撮像装置101から入力画像Aを取得し、撮像装置102から入力画像Bを取得する。 In step S<b>501 , the image acquisition unit 111 acquires the input image A from the imaging device 101 and acquires the input image B from the imaging device 102 .
 ステップS502において、画像合成部112は、入力画像A及び入力画像Bを合成して合成画像を生成する。例えば、画像合成部112は、変形行列に従って入力画像A及び入力画像Bを変形させ、アルファブレンディングによって変形後の入力画像A及び入力画像Bを結合する。 In step S502, the image synthesizing unit 112 synthesizes the input image A and the input image B to generate a synthetic image. For example, the image synthesizing unit 112 transforms the input image A and the input image B according to the transformation matrix, and combines the transformed input image A and the input image B by alpha blending.
 ステップS503において、画像符号化部113は、合成画像を符号化して符号化データを得て、画像送信部114は、合成画像の符号化データを受信サーバ120に送信する。さらに、画像符号化部113は、重複部分画像Aの解像度を下げ、具体的には、画像符号化部113は重複部分画像Aのサイズを縮小する。続いて、画像符号化部113は、重複部分画像Aを符号化して符号化データを得て、画像送信部114は、重複部分画像Aの符号化データを受信サーバ120に送信する。 In step S<b>503 , the image encoding unit 113 encodes the synthesized image to obtain encoded data, and the image transmission unit 114 transmits the encoded data of the synthesized image to the receiving server 120 . Further, the image coding unit 113 reduces the resolution of the overlapping partial image A, specifically, the image coding unit 113 reduces the size of the overlapping partial image A. Subsequently, the image encoding unit 113 encodes the overlapping partial image A to obtain encoded data, and the image transmitting unit 114 transmits the encoded data of the overlapping partial image A to the receiving server 120 .
 ステップS504において、画像解析部115は、入力画像Aの重複部分に含まれる画素を入力画像Bの重複部分に含まれる画素と比較して、入力画像Bを基準とする入力画像Aの輝度差を算出する。例えば、画像解析部115は、入力画像Aの重複部分の輝度平均を入力画像Bの重複部分の輝度平均で割ることにより入力画像Aの輝度差を得る。 In step S504, the image analysis unit 115 compares the pixels included in the overlapping portion of the input image A with the pixels included in the overlapping portion of the input image B to determine the luminance difference of the input image A with respect to the input image B. calculate. For example, the image analysis unit 115 obtains the luminance difference of the input image A by dividing the average luminance of the overlapping portion of the input image A by the average luminance of the overlapping portion of the input image B. FIG.
 ステップS505において、画像解析部115は、入力画像Aの輝度差から補正情報を生成し、補正情報送信部116は、補正情報を受信サーバ120に送信する。例えば、画像解析部115は、入力画像Aの輝度差の逆数を補正値fとして得る。補正情報送信部116は、補正値fを補正情報として受信サーバ120に送信する。 In step S<b>505 , the image analysis unit 115 generates correction information from the luminance difference of the input image A, and the correction information transmission unit 116 transmits the correction information to the receiving server 120 . For example, the image analysis unit 115 obtains the reciprocal of the luminance difference of the input image A as the correction value fA. The correction information transmission unit 116 transmits the correction value f A to the reception server 120 as correction information.
 ステップS506において、画像受信部121は、送信サーバ110から合成画像及び重複部分画像Aの符号化データを受信し、画像復号部122は、符号化データを復号して合成画像及び重複部分画像Aを得る。画像復号部122は、重複部分画像Aを元のサイズに復元する。ステップS507において、補正情報受信部123は、送信サーバ110から補正値fを含む補正情報を受信する。 In step S506, the image receiving unit 121 receives the encoded data of the composite image and the overlapping partial image A from the transmission server 110, and the image decoding unit 122 decodes the encoded data to generate the composite image and the overlapping partial image A. obtain. The image decoding unit 122 restores the overlapping partial image A to its original size. In step S<b>507 , the correction information receiving unit 123 receives correction information including the correction value f A from the transmission server 110 .
 ステップS508において、画像補正部124は、合成画像を、入力画像Aに対応する領域、入力画像Bに対応する領域、及び重複領域に分割し、補正情報に基づいてこれらの領域に対する輝度補正を行う。ここで説明する例では、入力画像Bを基準として使用しており(f=1)、入力画像Bに対応する領域に対する輝度補正は行われなくてよい。例えば、画像補正部124は、上記式(4)に従って補正値fを使用して入力画像Aに対応する領域に対する輝度補正を行い、上記式(5)に従って補正値f及び重複部分画像Aを使用して重複領域に対する輝度補正を行う。 In step S508, the image correction unit 124 divides the composite image into an area corresponding to the input image A, an area corresponding to the input image B, and an overlapping area, and performs luminance correction on these areas based on the correction information. . In the example described here, input image B is used as a reference (f B =1), and luminance correction for the region corresponding to input image B need not be performed. For example, the image correction unit 124 performs luminance correction on the region corresponding to the input image A using the correction value f A according to the above equation (4), and corrects the correction value f A and the overlapping partial image A according to the above equation (5). is used to perform luminance correction for overlapping regions.
 ステップS509において、画像補正部124は、入力画像Aに対応する領域、入力画像Bに対応する領域、及び重複領域を統合して出力画像を生成し、出力部125は、出力画像を表示装置103に表示する。 In step S509, the image correction unit 124 integrates the area corresponding to the input image A, the area corresponding to the input image B, and the overlapping area to generate an output image. to display.
 映像合成システム100は、フレームごとに上述したフローを実行し、それにより複数の合成画像を含む合成映像を得る。その結果として、合成映像がリアルタイムに表示装置103に表示される。 The video synthesizing system 100 executes the above-described flow for each frame, thereby obtaining a synthesized video including multiple synthesized images. As a result, the composite image is displayed on the display device 103 in real time.
 [効果]
 映像合成システム100は、撮像装置101により得られる映像に含まれるフレームである入力画像A及び撮像装置102により得られる映像に含まれるフレームである入力画像Bを取得し、入力画像A及び入力画像Bを合成して合成画像を生成し、入力画像A及び入力画像Bを解析して補正情報を生成し、入力画像Aの重複部分である重複部分画像と補正情報とを使用して合成画像を補正し、補正された合成画像を出力する。
[effect]
The image synthesizing system 100 acquires an input image A that is a frame included in the image obtained by the imaging device 101 and an input image B that is a frame included in the image obtained by the imaging device 102, and generates the input image A and the input image B. to generate a composite image, analyze the input image A and the input image B to generate correction information, and correct the composite image using the overlapping portion image that is the overlapping portion of the input image A and the correction information and output the corrected composite image.
 合成画像に対する補正処理に重複部分画像を使用することにより、合成画像への補正処理を入力画像ごとに制御することが可能である。合成画像中の重複領域では、補正は上記式(5)に従って重複部分画像Aを使用して実行される。上記式(5)は下記のように変形することができる。
Figure JPOXMLDOC01-appb-M000006
 ここで、Bp(m,n)は重複部分画像Bの画素値を表す。このように、合成画像中の重複領域において、入力画像ごとに補正処理がなされている。
By using the overlapping partial image for the correction processing of the composite image, it is possible to control the correction processing of the composite image for each input image. In overlapping regions in the composite image, correction is performed using overlapping subimage A according to equation (5) above. Equation (5) above can be modified as follows.
Figure JPOXMLDOC01-appb-M000006
Here, Bp (m, n) represents the pixel value of the overlapping partial image B. In this manner, correction processing is performed for each input image in the overlap region in the composite image.
 一般的なパノラマ映像合成では、撮像装置内のイメージセンサの感度設定が手動で統一されていることが前提であり、各入力画像に対して個別に補正又は加工を実施することはほとんど考慮されていない。補正又は加工が必要な場合であっても、補正又は加工は画像合成の前処理として実施されることが基本となる。具体的には、解析処理、補正処理、合成処理というシーケンスでパノラマ映像合成が行われる。 In general panoramic video synthesis, it is assumed that the sensitivity settings of the image sensors in the imaging device are manually unified, and it is almost impossible to correct or process each input image individually. No. Even if correction or processing is required, it is basically performed as preprocessing for image synthesis. Specifically, panorama video synthesis is performed in a sequence of analysis processing, correction processing, and synthesis processing.
 上記の構成では、補正処理は合成画像に対して行われる。これは、合成処理と解析処理を並列処理により行うことを可能にし、よって、処理遅延を短縮することを可能にする。 In the above configuration, correction processing is performed on the composite image. This enables the synthesizing process and the analyzing process to be performed in parallel, thereby shortening the processing delay.
 したがって、上記構成を備える映像合成システム100は、映像視聴のリアルタイム性を確保しつつ、合成映像への変更処理を入力映像ごとに制御することができる。 Therefore, the video synthesizing system 100 having the above configuration can control the process of changing to a synthetic video for each input video while ensuring real-time video viewing.
 上述したように、一般的なパノラマ映像合成では、カメラパラメータが手動で固定されており、オートゲインコントロールなどは設定されていない。しかしながら、カメラワーク又は時間変化などによる被写体又は照明変化によって、適切な輝度で撮影ができなくなる場合がある。或いは、自動補正を適用する場合、すべてのカメラで輝度を一致させるために設定を分配する機器が必要となり、コストが増大する。 As mentioned above, in general panoramic video synthesis, camera parameters are fixed manually, and automatic gain control is not set. However, it may not be possible to shoot with appropriate brightness due to changes in the subject or lighting due to camerawork or changes in time. Alternatively, if auto-correction is applied, equipment is required to distribute settings to match brightness across all cameras, increasing cost.
 映像合成システム100は、入力画像Aを基準輝度に調整するための補正値f及び入力画像Bを基準輝度に調整するための補正値fを含む補正情報を生成し、補正値f、fを及び重複部分画像Aを使用して合成画像に対する輝度補正を行う。具体的には、映像合成システム100は、補正値fを使用して合成画像のうちの入力画像Aに対応する領域に対する輝度補正を行い、補正値f、f及び重複部分画像Aを使用して合成画像のうちの第1の画像と第2の画像とを重ね合わせた部分に対応する領域に対する輝度補正を行い、補正値fを使用して合成画像のうちの入力画像Bに対応する領域に対する輝度補正を行う。これにより、合成画像上で入力画像A、Bごとに輝度補正を行うことが可能である。その結果、自動補正を適用する場合においても、設定を分配する機器なしに、合成画像に発生する輝度ムラを解消することができる。 The video synthesis system 100 generates correction information including a correction value f A for adjusting the input image A to the reference luminance and a correction value f B for adjusting the input image B to the reference luminance, and the correction values f A , Using fB and the overlapping subimage A , perform brightness correction on the composite image. Specifically, the video synthesizing system 100 uses the correction value f A to perform luminance correction on the region corresponding to the input image A in the synthesized image, and corrects the correction values f A and f B and the overlapping partial image A to is used to perform luminance correction on the region corresponding to the portion where the first image and the second image are superimposed in the composite image, and the correction value f B is used to correct the input image B in the composite image. Perform brightness correction for the corresponding region. Thereby, it is possible to perform luminance correction for each of the input images A and B on the composite image. As a result, even when automatic correction is applied, luminance unevenness that occurs in the composite image can be eliminated without a device for distributing settings.
 映像合成システム100は直列に接続された送信サーバ110及び受信サーバ120を含み、一連の処理は送信サーバ110及び受信サーバ120により実行される。基本的には、送信サーバ110は撮影拠点に設置され、受信サーバ120は投影拠点に設置される。撮影拠点から投影拠点までのネットワーク帯域が潤沢である保証はなく、伝送容量はより小さいことが望ましい。 The video synthesizing system 100 includes a transmission server 110 and a reception server 120 connected in series, and a series of processes are executed by the transmission server 110 and the reception server 120 . Basically, the transmission server 110 is installed at the shooting base, and the reception server 120 is installed at the projection base. There is no guarantee that the network bandwidth from the shooting base to the projection base will be abundant, and it is desirable that the transmission capacity be as small as possible.
 送信サーバ110は、重複部分画像Aを圧縮したうえで受信サーバ120に送信してよい。送信サーバ110は、重複部分画像Aを圧縮するために、重複部分画像Aの解像度を下げてよい。例えば、送信サーバ110は、重複部分画像Aのサイズを1/2又は1/4に縮小する。重複部分画像Aを圧縮することにより、伝送容量を低減することができる。その結果、伝送帯域を節約することができる。 The transmission server 110 may compress the overlapping partial image A and transmit it to the reception server 120 . Transmission server 110 may reduce the resolution of overlapping partial image A in order to compress overlapping partial image A. FIG. For example, the transmission server 110 reduces the size of the overlapping partial image A to 1/2 or 1/4. By compressing the overlapping partial image A, the transmission capacity can be reduced. As a result, the transmission band can be saved.
 重複部分画像は、あくまでも補正処理で参照されるだけであり、最終的な出力画像の品質には間接的に関与するだけである。入力画像のサイズ(画素数)が1920×1080であり、重複部分画像のサイズが320×1080である例において、重複部分画像のサイズを縮小しない場合と重複部分画像のサイズを1/4(80×270)に縮小した場合とで出力画像を比較するテストを実施したが、視聴上で気になるほどの劣化は現れなかった。 The overlapping partial image is only referenced in the correction process, and is only indirectly involved in the quality of the final output image. In an example where the size (number of pixels) of the input image is 1920×1080 and the size of the overlapping partial image is 320×1080, the size of the overlapping partial image is reduced to 1/4 (80 A test was conducted to compare the output image with the case where the image was reduced to 270 × 270), but there was no noticeable deterioration in viewing.
 [変形例]
 上述した実施形態では、映像合成システム100は2台の情報処理装置、具体的には、送信サーバ110及び受信サーバ120を含む。他の実施形態では、映像合成システム100は単一の情報処理装置により実施されてもよい。この場合、画像符号化部113、画像送信部114、補正情報送信部116、画像受信部121、画像復号部122、及び補正情報受信部123は削除されてよい。
[Modification]
In the embodiment described above, the video compositing system 100 includes two information processing devices, specifically the transmission server 110 and the reception server 120 . In other embodiments, video composition system 100 may be implemented by a single information processing device. In this case, the image encoding unit 113, the image transmission unit 114, the correction information transmission unit 116, the image reception unit 121, the image decoding unit 122, and the correction information reception unit 123 may be deleted.
 画像補正部124と出力部125との間に、合成画像に対して追加の補正又は加工を行う処理部が設けられていてもよい。代替として、そのような処理部は、映像伝送ネットワークを介して受信サーバ120に接続されるさらなるサーバに設けられてもよい。その場合、出力部125は、さらなるサーバに合成画像を送信する。 A processing unit may be provided between the image correction unit 124 and the output unit 125 to perform additional correction or processing on the synthesized image. Alternatively, such a processing unit may be provided in a further server which is connected to the receiving server 120 via the video transmission network. In that case, the output unit 125 transmits the composite image to another server.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。さらに、上記実施形態には種々の発明が含まれており、開示される複数の構成要素から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要素からいくつかの構成要素が削除されても、課題が解決でき、効果が得られる場合には、この構成要素が削除された構成が発明として抽出され得る。 It should be noted that the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from the disclosed plurality of components. For example, even if some components are deleted from all the components shown in the embodiment, if the problem can be solved and effects can be obtained, the configuration in which these components are deleted can be extracted as an invention.
 100…映像合成システム
 101…撮像装置
 102…撮像装置
 103…表示装置
 110…送信サーバ
 111…画像取得部
 112…画像合成部
 113…画像符号化部
 114…画像送信部
 115…画像解析部
 116…補正情報送信部
 120…受信サーバ
 121…画像受信部
 122…画像復号部
 123…補正情報受信部
 124…画像補正部
 125…出力部
 400…コンピュータ
 401…処理回路
 402…メモリ
 403…入出力インタフェース
 404…通信インタフェース
 
DESCRIPTION OF SYMBOLS 100... Video synthesis system 101... Imaging device 102... Imaging device 103... Display device 110... Transmission server 111... Image acquisition part 112... Image synthesis part 113... Image encoding part 114... Image transmission part 115... Image analysis part 116... Correction Information transmission unit 120 Reception server 121 Image reception unit 122 Image decoding unit 123 Correction information reception unit 124 Image correction unit 125 Output unit 400 Computer 401 Processing circuit 402 Memory 403 Input/output interface 404 Communication interface

Claims (8)

  1.  撮影領域が部分的に重なる第1の映像及び第2の映像を合成する映像合成システムであって、
     前記第1の映像に含まれる第1の画像及び前記第2の映像に含まれる第2の画像を取得する取得部と、
     前記第1の画像及び前記第2の画像を合成して合成画像を生成する合成部と、
     前記第1の画像及び前記第2の画像を解析して前記合成画像を補正するための補正情報を生成する解析部と、
     前記第2の画像の一部分と重なる前記第1の画像の一部分である重複部分画像と前記補正情報とを使用して、前記合成画像を補正する補正部と、
     補正された前記合成画像を出力する出力部と、
     を備える映像合成システム。
    A video synthesizing system for synthesizing a first video and a second video in which shooting areas partially overlap,
    an acquisition unit that acquires a first image included in the first image and a second image included in the second image;
    a synthesizing unit that synthesizes the first image and the second image to generate a synthesized image;
    an analysis unit that analyzes the first image and the second image to generate correction information for correcting the composite image;
    a correction unit that corrects the composite image using an overlapping partial image that is a portion of the first image that overlaps a portion of the second image and the correction information;
    an output unit that outputs the corrected composite image;
    A video compositing system with
  2.  前記合成部において前記第1の画像及び前記第2の画像を合成する処理及び前記解析部において前記第1の画像及び前記第2の画像を解析する処理を並行して行う、
     請求項1に記載の映像合成システム。
    A process of synthesizing the first image and the second image in the synthesizing unit and a process of analyzing the first image and the second image in the analyzing unit are performed in parallel;
    The image synthesizing system according to claim 1.
  3.  前記解析部は、前記第1の画像を基準輝度に調整するための補正値を含む前記補正情報を生成し、
     前記補正部は、前記補正値及び前記重複部分画像を使用して、前記合成画像に対する輝度補正を行う、
     請求項1又は2に記載の映像合成システム。
    The analysis unit generates the correction information including a correction value for adjusting the first image to a reference luminance,
    The correction unit uses the correction value and the overlapping partial image to perform luminance correction on the synthesized image.
    3. The video synthesizing system according to claim 1 or 2.
  4.  前記補正部は、前記補正値を使用して前記合成画像のうちの前記第1の画像に対応する領域に対する輝度補正を行い、前記補正値及び前記重複部分画像を使用して前記合成画像のうちの前記第1の画像と前記第2の画像とを重ね合わせた部分に対応する領域に対する輝度補正を行う、
     請求項3に記載の映像合成システム。
    The correction unit uses the correction value to perform luminance correction on a region corresponding to the first image in the synthesized image, and uses the correction value and the overlapping partial image to perform luminance correction in the synthesized image. performing luminance correction on a region corresponding to a portion where the first image and the second image are superimposed;
    4. The video synthesizing system according to claim 3.
  5.  第1の情報処理装置及び第2の情報処理装置を備え、
     前記第1の情報処理装置は、
      前記取得部と、
      前記解析部と、
      前記補正部と、
      前記重複部分画像を圧縮する圧縮部と、
      前記合成画像、圧縮された前記重複部分画像、及び前記補正情報を前記第2の情報処理装置に送信する送信部と、
     を含み、
     前記第2の情報処理装置は、
      前記合成画像、圧縮された前記重複部分画像、及び前記補正情報を前記第1の情報処理装置から受信する受信部と、
      圧縮された前記重複部分画像から前記重複部分画像を復元する復元部と、
      前記補正部と、
     を含む、
     請求項1乃至4のいずれか1項に記載の映像合成システム。
    Equipped with a first information processing device and a second information processing device,
    The first information processing device is
    the acquisition unit;
    the analysis unit;
    the correction unit;
    a compression unit that compresses the overlapping partial image;
    a transmitting unit configured to transmit the combined image, the compressed overlapping partial image, and the correction information to the second information processing device;
    including
    The second information processing device is
    a receiving unit that receives the composite image, the compressed overlapping partial image, and the correction information from the first information processing device;
    a restoring unit that restores the overlapping partial image from the compressed overlapping partial image;
    the correction unit;
    including,
    5. The video synthesizing system according to any one of claims 1 to 4.
  6.  前記重複部分画像を圧縮することは、前記重複部分画像の解像度を下げることを含む、
     請求項5に記載の映像合成システム。
    compressing the overlapping partial image includes reducing the resolution of the overlapping partial image;
    6. The video synthesizing system according to claim 5.
  7.  撮影領域が部分的に重なる第1の映像及び第2の映像を合成する映像合成方法であって、
     前記第1の映像に含まれる第1の画像及び前記第2の映像に含まれる第2の画像を取得することと、
     前記第1の画像及び前記第2の画像を合成して合成画像を生成することと、
     前記第1の画像及び前記第2の画像を解析して前記合成画像を補正するための補正情報を生成することと、
     前記第2の画像の一部分と重なる前記第1の画像の一部分である重複部分画像と前記補正情報とを使用して、前記合成画像を補正することと、
     補正された前記合成画像を出力することと、
     を備える映像合成方法。
    A video synthesis method for synthesizing a first video and a second video in which shooting areas partially overlap,
    obtaining a first image included in the first image and a second image included in the second image;
    synthesizing the first image and the second image to generate a synthesized image;
    analyzing the first image and the second image to generate correction information for correcting the composite image;
    correcting the composite image using an overlapping partial image that is a portion of the first image that overlaps a portion of the second image and the correction information;
    outputting the corrected composite image;
    A video composition method comprising:
  8.  請求項1乃至5のいずれか1項に記載の映像合成システムが備える各部としてコンピュータを機能させるための映像合成プログラム。
     
    A video synthesizing program for causing a computer to function as each unit included in the video synthesizing system according to any one of claims 1 to 5.
PCT/JP2021/023247 2021-06-18 2021-06-18 Video compositing system, video compositing method, and video compositing program WO2022264418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023247 WO2022264418A1 (en) 2021-06-18 2021-06-18 Video compositing system, video compositing method, and video compositing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023247 WO2022264418A1 (en) 2021-06-18 2021-06-18 Video compositing system, video compositing method, and video compositing program

Publications (1)

Publication Number Publication Date
WO2022264418A1 true WO2022264418A1 (en) 2022-12-22

Family

ID=84525993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023247 WO2022264418A1 (en) 2021-06-18 2021-06-18 Video compositing system, video compositing method, and video compositing program

Country Status (1)

Country Link
WO (1) WO2022264418A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033886A1 (en) * 2012-08-30 2014-03-06 富士通株式会社 Image processing apparatus, image processing method, and program
US20140267593A1 (en) * 2013-03-14 2014-09-18 Snu R&Db Foundation Method for processing image and electronic device thereof
JP2020086651A (en) * 2018-11-19 2020-06-04 朝日航洋株式会社 Image processing apparatus and image processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033886A1 (en) * 2012-08-30 2014-03-06 富士通株式会社 Image processing apparatus, image processing method, and program
US20140267593A1 (en) * 2013-03-14 2014-09-18 Snu R&Db Foundation Method for processing image and electronic device thereof
JP2020086651A (en) * 2018-11-19 2020-06-04 朝日航洋株式会社 Image processing apparatus and image processing method

Similar Documents

Publication Publication Date Title
TWI423662B (en) Display control apparatus, display control method and storage medium
US8890983B2 (en) Tone mapping for low-light video frame enhancement
CN108650542B (en) Method for generating vertical screen video stream and processing image, electronic equipment and video system
TWI542941B (en) Method and apparatus for distributed image processing in cameras for minimizing artifacts in stitched images
KR101953614B1 (en) Apparatus and method for processing a image of camera device and terminal equipment having a camera
US10720091B2 (en) Content mastering with an energy-preserving bloom operator during playback of high dynamic range video
US9886733B2 (en) Watermarking digital images to increase bit depth
WO2009122721A1 (en) Imaging system, imaging method, and computer-readable medium containing program
US8724912B2 (en) Method, apparatus, and program for compressing images, and method, apparatus, and program for decompressing images
JP5411786B2 (en) Image capturing apparatus and image integration program
JP6824084B2 (en) Imaging device and its control method, program, storage medium
JP4793449B2 (en) Network video composition display system
US8964109B2 (en) Image processing device and method
CN111294522A (en) HDR image imaging method, device and computer storage medium
WO2022264418A1 (en) Video compositing system, video compositing method, and video compositing program
US20150086111A1 (en) Image processing method, image processing apparatus, and image processing program
US20140147090A1 (en) Image capturing apparatus, image processing apparatus, and control method therefor
US9723283B2 (en) Image processing device, image processing system, and image processing method
US8077226B2 (en) Data processing apparatus having parallel processing zoom processors
JP6250970B2 (en) Image processing apparatus, imaging apparatus, image processing method, program, and recording medium
Thoma et al. Chroma subsampling for HDR video with improved subjective quality
JP7038935B2 (en) Image processing device, image processing method, and image processing program
JP3368012B2 (en) Image data processing device
JPWO2019053764A1 (en) Imaging device
US9554108B2 (en) Image processing device and storage medium storing image processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE