WO2022264188A1 - Coated object, coated object production method, and paint set - Google Patents

Coated object, coated object production method, and paint set Download PDF

Info

Publication number
WO2022264188A1
WO2022264188A1 PCT/JP2021/022427 JP2021022427W WO2022264188A1 WO 2022264188 A1 WO2022264188 A1 WO 2022264188A1 JP 2021022427 W JP2021022427 W JP 2021022427W WO 2022264188 A1 WO2022264188 A1 WO 2022264188A1
Authority
WO
WIPO (PCT)
Prior art keywords
paint
coating
parts
undercoat
layer
Prior art date
Application number
PCT/JP2021/022427
Other languages
French (fr)
Japanese (ja)
Inventor
尚隆 谷口
陽奈乃 山田
佑介 渡邉
Original Assignee
武蔵塗料ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵塗料ホールディングス株式会社 filed Critical 武蔵塗料ホールディングス株式会社
Priority to JP2021534615A priority Critical patent/JP7146311B1/en
Priority to CN202180002612.2A priority patent/CN115707332A/en
Priority to PCT/JP2021/022427 priority patent/WO2022264188A1/en
Priority to JP2022063234A priority patent/JP2022190666A/en
Publication of WO2022264188A1 publication Critical patent/WO2022264188A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • B05D7/26Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds

Definitions

  • the present invention relates to a coated article having a coating film having a mirror design and radio wave transparency, a method for producing a coated article having a mirror design and radio wave transparency, and a paint for forming a coating film having a mirror design and radio wave transparency. Regarding the set.
  • plating As means for imparting a mirror surface design, (i) plating, (ii) vapor deposition processing (physical thin film formation technology (PVD) such as sputtering and ion plating, and chemical thin film formation technology (CVD)), (iii) silver mirror painting is known.
  • PVD physical thin film formation technology
  • CVD chemical thin film formation technology
  • silver mirror painting is known.
  • plating and (iii) silver mirror coating have a high environmental impact in terms of wastewater treatment and the like, and require special facilities. Furthermore, there are many steps, which is disadvantageous in terms of production efficiency and cost, and there are problems with unstable coating film quality and durability.
  • the vapor deposition process requires special equipment for the vapor deposition process, which is disadvantageous in that the equipment becomes large-scaled and the installation cost is high. Furthermore, these means have restrictions on the material, shape, etc. of the article to which the specular design is imparted.
  • Patent Document 1 a metal film having metallic luster is formed by a dry process on an underlayer provided on the surface of a base material, and then the metal film is heated to form fine cracks.
  • a decorative member provided with a metal coating is described. Since the metal film is formed by a dry process such as sputtering, the decorative member requires a large-scale manufacturing facility. Moreover, it is difficult to uniformly form a metal film on a three-dimensional article by a dry process.
  • Patent Document 2 a substrate having an underlying layer formed thereon as required is subjected to activation treatment, and a silver ammonia aqueous solution and a reducing agent solution constituting a silver mirror plating solution are activated by a double spray gun or the like.
  • Patent Literature 3 describes a coated article having a laminated coating film that achieves the metallic appearance of a metal-plated surface or the like without plating.
  • This coated object is a metallic paint film layer formed by applying a metallic paint containing an opaque flaky pigment and a luster pigment to metal flakes obtained by pulverizing an evaporated metal film onto an object to be coated. It is formed by applying a clear topcoat on top of the This coated product has a metallic appearance formed by a simple means, but is not satisfactory in terms of specular gloss and does not have radio wave transparency.
  • radio wave transparency As well as a mirror surface design for housings of mobile phones, electronic devices, and information terminals, and automobile parts (front grills, bumpers, etc.).
  • mobile phones, electronic devices, and information terminals have communication antennas and the like inside their housings, and are required to have radio wave transparency.
  • antennas for various radar devices for distance measurement and the like are installed near the front grille and bumper of automobiles, and are required to have radio wave transparency.
  • the frequency band of the radio waves received by these antennas has shifted from millimeter waves to microwaves, and the radio wave permeability around the antennas has a great influence on the radio wave reception performance.
  • the problem to be solved by the present invention is to provide a coated article having a coating film with an excellent mirror surface design and radio wave transparency and a low coating film formation temperature.
  • To provide a method for producing a coated article having a low coating film and to provide a paint set capable of forming a coated article having a coating film with a low coating film formation temperature and excellent in mirror surface design and radio wave transmission.
  • a coating having a primer coating layer directly or indirectly provided on the substrate and a vapor-deposited indium thin film flake-containing coating layer directly or indirectly provided on the primer coating layer Stuff (2) providing a primer coating layer directly or indirectly on the substrate; and providing a vapour-deposited indium thin film flake-containing coating layer directly or indirectly on the primer coating layer.
  • a method for producing a painted object (3) A paint set comprising a curable basecoat and a vapor-deposited indium thin film flake-containing paint.
  • Item 1 (a) a primer coating film layer formed by a primer coating directly or indirectly provided on an object to be coated, and (b) a metal-containing coating layer having a pigment weight concentration (PWC) of vapor-deposited indium thin film flakes of 70.0% or more directly or indirectly provided on the base coating layer;
  • the undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
  • a painted object characterized by: Item 2: (c) a topcoat layer formed of a two-component curable coating or an active energy ray-curable coating directly or indirectly provided on the metal-containing coating layer,
  • the coated article according to Item 1 characterized by: Item 3: (d) the radio wave transmittance of the coated object in both the 24 GHz band and the 78 GHz band is 75% or more, and/or (e) The coated article according to Item 1 or 2, wherein the coated article has a 20° gloss value of 150 or more and a 60° gloss value of 170 or more.
  • Item 4 (i) A step of directly or indirectly providing an undercoat coating film layer with an undercoat paint on the object to be coated, and (ii) providing directly or indirectly on said basecoat layer a metal-containing coating layer having a pigment weight concentration (PWC) of vapor deposited indium thin film flakes of 70% or more;
  • the undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
  • a method for manufacturing a coated object characterized by: Item 5: At least (I) an undercoat paint, and (II) a metal-containing coating comprising vapor-deposited indium thin film flakes in an amount such that the pigment weight concentration (PWC) in the dry coating is 70% or more; consists of
  • the undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
  • a paint set characterized by:
  • a coated article having a coating film with an excellent mirror design and radio wave transmission and a low coating film formation temperature and a method for producing a coated article having a coating film with an excellent mirror design and radio wave transmission and a low coating film formation temperature , and a paint set capable of forming a coated article having a coating film with excellent mirror surface design and radio wave transparency, and with a low coating film forming temperature.
  • the coated object of the present invention does not require large-scale equipment and can be obtained using general-purpose coating equipment. Furthermore, since the coating film formation temperature is low, the material and shape of the object to be coated on which the coating film is formed are limited. never be
  • the coated article of the present invention includes (a) an undercoat film layer formed by an undercoat paint directly or indirectly provided on the object to be coated, and (b) directly or on the undercoat film layer. and an indirectly applied metal-containing coating layer having a pigment weight concentration (PWC) of vapor-deposited indium thin film flakes of 70.0% or greater.
  • the undercoat is a two-component curable paint, an acrylic lacquer, a melamine-based paint or an active energy ray-curable paint.
  • the coated article of the present invention includes (c) a topcoat layer formed of a two-component curable paint or an active energy ray-curable paint directly or indirectly provided on the metal-containing coating layer. may have.
  • the coated article of the present invention has (d) a radio wave transmittance of 75% or more in both the 24 GHz band and the 79 GHz band of the coated article, and/or (e) a 20° gloss value of 150 or higher and a 60° gloss of the painted article. It is preferable to satisfy the requirement that the value is 170 or more.
  • the object to be coated is not particularly limited, and the object to be coated can be an article of any shape formed from any material.
  • the material of the object to be coated is not particularly limited.
  • metals one or more of metals such as iron, aluminum, magnesium, zinc, copper, silver, gold, stainless steel, brass, galvanized steel, alloys, metal composites, etc.
  • plastics acrylic resin, polyester resin , polycarbonate resins, polyolefin resins, acrylonitrile-styrene (AS) resins, acrylonitrile-butadiene-styrene (ABS) resins, acrylonitrile-styrene-acrylate (ASA) resins, polyamide resins, vinylidene halide resins, Resins such as polyphenylene ether-based resins, polyoxymethylene-based resins, polyurethane-based resins, epoxy-based resins, phenol-based resins, vinyl halide-based resins, fatty acids, etc.
  • compositions containing one or more of these, one or more of composites/laminates composed of one or more of these), glass, ceramics, wood, paper, fibers (woven fabrics, non-woven fabrics, knitted fabrics, threads, etc. ) is given.
  • Compositions containing one or more of these, composites, laminates, and the like composed of one or more of these may also be used.
  • the shape of the object to be coated is not particularly limited. It may be planar or three-dimensional, and may be plate-like, film-like, rod-like, elongated, or three-dimensional, for example.
  • Articles to be coated are not particularly limited.
  • mobile phones, communication equipment, information terminals, game consoles, housings and parts of various devices such as home appliances, vehicle parts such as bumpers, front grills, lighting fixtures, stationery, toys, food containers, building materials, construction structural members, resin films, resin moldings, and the like.
  • the present invention can be applied to plastic housings of various devices such as mobile phones, communication devices, information terminals, game machines, and household appliances, plastic vehicle parts such as bumpers and front grills, plastic toys, and building materials.
  • a resin film, a resin molding, or the like is preferably used as the object to be coated.
  • the primer coating film layer is a coating film layer provided directly or indirectly on the article to be coated.
  • a desired layer such as a primer layer, a chemical conversion treatment layer, an adhesive layer, a colored coating layer, a laminate film layer is placed between the object to be coated and the undercoat layer. etc. are provided.
  • the undercoat film layer may be provided on the entire surface of the article to be coated, or may be provided on a desired portion of the surface of the article to be coated.
  • the undercoat paint for forming the undercoat film layer is not particularly limited as long as the object to be coated has a specular design and radio wave transparency.
  • a two-component curable coating for example, a two-component curable coating, a one-component curable coating, a non-curable coating, or an active energy ray-curable coating can be used.
  • two-component curable paints acrylic lacquers, melamine-based paints, and active energy ray-curable paints are particularly preferred.
  • These undercoat paints may contain solvents, plasticizers, adhesion improvers, silane coupling agents, colorants and the like, if necessary.
  • the thickness (dry film thickness) of the undercoat film layer is not particularly limited. For example, it is 1.0 ⁇ m or more, preferably 5.0 ⁇ m or more, more preferably 10.0 ⁇ m or more, and can be, for example, 30.0 ⁇ m or less, preferably 25.0 ⁇ m or less, more preferably 20.0 ⁇ m or less. If the thickness is less than 1.0 ⁇ m, the mirror surface may be uneven, and the mirror surface may be whitened. If the thickness exceeds 30.0 ⁇ m, the mirror surface may have a grainy feel, the mirror surface may whiten, the surface smoothness may deteriorate, and the mirror surface design may deteriorate. There is a risk that the amount of primer paint required to form the coating will increase, resulting in high costs.
  • the two-liquid curable paint is not particularly limited as long as it forms a coating film by mixing the two liquids at the time of coating.
  • a paint composed of a main agent having a functional group and a curing agent (cross-linking agent) capable of reacting with the functional group of the main agent to cause a curing reaction.
  • Examples of the main agent include one or more selected from the group consisting of a compound having a group containing active hydrogen, a compound having an epoxy group, a compound having a carbon-carbon unsaturated double bond, and the like.
  • groups containing active hydrogen include hydroxyl groups, carboxyl groups, primary amino groups, secondary amino groups, and amide groups.
  • Examples of such main agents include polyol compounds, polycarboxylic acid compounds, epoxy compounds, alkenyl group-containing compounds, and the like. These can be used individually or in combination of 2 or more types, respectively.
  • polyol compounds it is preferably one or more polyol compounds, more preferably one or more selected from the group consisting of acrylic polyols, polyether polyols, polyester polyols and polyurethane polyols, and still more preferably one or more acrylic polyols.
  • polyester-based resins and/or acrylic-based resins that can react with melamine compounds are preferred.
  • the weight average molecular weight of the main agent is not particularly limited, but is, for example, 300 or more, preferably 500 or more, more preferably 1,000 or more, and is, for example, 100,000 or less, preferably 70,000 or less, more preferably 50 , 000 or less. If the weight-average molecular weight is less than 300, the adhesion of the undercoat layer may deteriorate. If the weight-average molecular weight exceeds 100,000, the surface smoothness of the undercoat film layer may deteriorate, and the specular design may deteriorate. In the present invention, a mixture of two or more kinds having different weight average molecular weights may be used as the main agent.
  • the weight average molecular weight can be calculated based on the molecular weight of standard polystyrene from a chromatogram measured by gel permeation chromatography, for example.
  • a gel permeation chromatograph for example, "HLC8120GPC” (manufactured by Tosoh Corporation) or the like can be used.
  • As a column for example, "TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL”, “TSKgel G-2000HXL” (all manufactured by Tosoh Corporation, trade names), etc.
  • the above can be used.
  • the measurement conditions for example, tetrahydrofuran can be used as the mobile phase, the measurement temperature can be 40° C., the flow rate can be 1 cc/min, and the detector can be RI.
  • hydroxyl value can be, for example, 10 mgKOH/g or more, preferably 30 mgKOH/g or more, more preferably 50 mgKOH/g or more, for example 500 mgKOH/g or less, preferably 300 mgKOH/g. Below, more preferably 200 mgKOH/g or less. If the hydroxyl value is less than 50 mgKOH/g, the cross-linking density will be low and the specular design may be deteriorated. If the hydroxyl value exceeds 500 mgKOH/g, the adhesion between the undercoat layer and the metal-containing coating layer may deteriorate.
  • the glass transition temperature thereof can be, for example, ⁇ 40° C. or higher, preferably 20° C. or higher, and can be, for example, 100° C. or lower, preferably 80° C. or lower.
  • the glass transition temperature By setting the glass transition temperature to ⁇ 40° C. or higher, the surface smoothness of the coating film can be imparted, and by setting the glass transition temperature to 100° C. or lower, the required coating film hardness can be imparted.
  • Examples of the curing agent (crosslinking agent) include one or more selected from compounds having a group that reacts with the functional group of the main agent.
  • groups that react with the functional groups of the main agent include isocyanate groups, amino groups, imino groups, methylol groups, alkyl ether groups, carboxyl groups, and hydroxyl groups.
  • Examples of the curing agent (crosslinking agent) of the present invention include polyisocyanate compounds, melamine compounds, polyamine compounds, polycarboxylic acid compounds, polyol compounds and the like. These can be used individually or in combination of 2 or more types, respectively. It is preferably one or more selected from the group consisting of one or more polyisocyanate compounds, melamine compounds and polyamine compounds, more preferably one or more polyisocyanate compounds.
  • a polyisocyanate compound is a compound having at least two isocyanate groups in one molecule, and includes, for example, aliphatic polyisocyanates, alicyclic polyisocyanates, araliphatic polyisocyanates, aromatic polyisocyanates, and polyisocyanates thereof. can be given as derivatives of A polyisocyanate compound can be used individually or in combination of 2 or more types, respectively.
  • aliphatic polyisocyanates examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3- aliphatic diisocyanates such as butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, methyl 2,6-diisocyanatohexanoate (common name: lysine diisocyanate);2, 2-isocyanatoethyl 6-diisocyanatohexanoate, 1,6-diisocyanato-3-isocyanatomethylhexane, 1,4,8-triisocyanatooctane, 1,6,11-triisocyanatoundecane, 1, Aliphatic
  • Alicyclic polyisocyanates include, for example, 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanatomethyl-3,5,5 -trimethylcyclohexyl isocyanate (common name: isophorone diisocyanate), 4-methyl-1,3-cyclohexylene diisocyanate (common name: hydrogenated TDI), 2-methyl-1,3-cyclohexylene diisocyanate, 1,3- or 1 , 4-bis(isocyanatomethyl)cyclohexane (common name: hydrogenated xylylene diisocyanate) or mixtures thereof, methylenebis(4,1-cyclohexanediyl) diisocyanate (common name: hydrogenated MDI), norbornane diisocyanate and other alicyclic Diiso
  • araliphatic polyisocyanates include methylenebis(4,1-phenylene) diisocyanate (common name: MDI), 1,3- or 1,4-xylylene diisocyanate or mixtures thereof, ⁇ , ⁇ '-diisocyanato-1 ,4-diethylbenzene, 1,3- or 1,4-bis(1-isocyanato-1-methylethyl)benzene (common name: tetramethylxylylene diisocyanate) or mixtures thereof; 1,3, Araraliphatic triisocyanates such as 5-triisocyanatomethylbenzene can be mentioned. These can be used individually or in combination of 2 or more types, respectively.
  • aromatic polyisocyanates include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 2,4-tolylene diisocyanate (common name: 2,4-TDI ) or aromatic diisocyanates such as 2,6-tolylene diisocyanate (common name: 2,6-TDI) or mixtures thereof, 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate; triphenylmethane-4, aromatic triisocyanates such as 4′,4′′-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanatotoluene; 4,4′-diphenylmethane-2,2′, Aromatic tetraisocyanates such as 5,5'-tetraisocyanate can be mentioned. These can be used
  • polyisocyanate derivatives include dimers, trimers, biurets, allophanates, uretdiones, uretimines, isocyanurates, oxadiazinetriones, polymethylene polyphenyl polyisocyanates (crude MDI, polymeric MDI), crude TDI, etc., of the above polyisocyanates. can give These can be used individually or in combination of 2 or more types, respectively.
  • one or more selected from the group consisting of hexamethylene diisocyanate or its derivatives, 4,4'-methylenebis(cyclohexyl isocyanate) or its derivatives, xylylene diisocyanate or its derivatives is preferred.
  • derivatives of hexamethylene diisocyanate are particularly preferred from the viewpoint of adhesiveness, compatibility and the like.
  • the polyisocyanate compound a prepolymer obtained by reacting a compound having an active hydrogen group such as a hydroxyl group or an amino group that can react with the isocyanate group in the polyisocyanate or a derivative thereof under conditions in which the isocyanate group is excessive is used. good too.
  • compounds that can react with the polyisocyanate include polyhydric alcohols, low molecular weight polyester resins, amines, water, active hydrogen group-containing resins (acrylic polyols, polyolefin polyols, polyurethane polyols, polyether polyols, polyester polyols), and the like. is given. These can be used individually or in combination of 2 or more types, respectively.
  • a blocked polyisocyanate compound obtained by blocking the isocyanate group in the above polyisocyanate or derivative thereof with a blocking agent can also be used.
  • blocking agents include phenols such as phenol, cresol, xylenol, nitrophenol, ethylphenol, hydroxydiphenyl, butylphenol, isopropylphenol, nonylphenol, octylphenol, and methyl hydroxybenzoate; ⁇ -caprolactam, ⁇ -valerolactam, ⁇ - lactams such as butyrolactam and ⁇ -propiolactam; aliphatic alcohols such as methanol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol, lauryl alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether Ethers such as , diethylene glycol monomethyl ether, diethylene glycol monoeth
  • Imide type such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine, butylphenylamine; imidazole type such as imidazole, 2-ethylimidazole; urea, thiourea , ethylene urea, ethylene thiourea, diphenyl urea carbamic acid esters such as phenyl N-phenylcarbamate; imine compounds such as ethyleneimine and propyleneimine; sulfite compounds such as sodium bisulfite and potassium bisulfite; and azole compounds.
  • amine type such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibuty
  • azole compounds include pyrazole, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-benzyl-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, 4-bromo-3, pyrazole or pyrazole derivatives such as 5-dimethylpyrazole, 3-methyl-5-phenylpyrazole; imidazole or imidazole derivatives such as imidazole, benzimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole; 2-methylimidazoline , 2-phenylimidazoline and other imidazoline derivatives. These can be used individually or in combination of 2 or more types, respectively.
  • Blocking by reaction of polyisocyanate or its derivative with a blocking agent can be carried out by adding a solvent as necessary.
  • the solvent used for the blocking reaction is preferably one that is not reactive with the isocyanate group.
  • Nitrogen-containing solvents such as These can be used individually or in combination of 2 or more types, respectively.
  • Combinations of the main agent and the curing agent in the two-component curable coating include, as the main agent/curing agent, acrylic polyol compound/polyisocyanate compound, polyester polyol/polyisocyanate compound, polyether polyol/polyisocyanate compound, polyester resin. /melamine compound, acrylic resin/melamine compound, and epoxy resin/polyamine compound.
  • acrylic polyol compound/polyisocyanate compound, polyester polyol/polyisocyanate compound, polyester resin/melamine compound, and acrylic resin/melamine compound are preferable.
  • the acrylic lacquer is a paint whose main component is an acrylic resin composed of a (meth)acrylic acid ester copolymer, or a modified acrylic resin obtained by modifying the acrylic resin with other components.
  • Other components used for modification include, for example, various cellulose-based resins, vinyl-based resins, urethane-based resins, and the like. These can be used individually or in combination of 2 or more types, respectively.
  • the acrylic lacquer includes acrylic resin varnish, acrylic resin enamel, NC (nitrocellulose)-modified acrylic lacquer, CAB (cellulose acetate butyrate)-modified acrylic lacquer, vinyl-based resin-modified acrylic lacquer, and the like. is given.
  • paints containing an acrylic resin and a cellulose compound such as NC (nitrocellulose)-modified acrylic lacquer and CAB (cellulose acetate butyrate)-modified acrylic lacquer.
  • a cellulose compound such as NC (nitrocellulose)-modified acrylic lacquer and CAB (cellulose acetate butyrate)-modified acrylic lacquer.
  • the cellulosic compound include one or more of nitrocellulose, cellulose acetate butyrate, and the like.
  • the acrylic lacquer may contain additives such as solvents, plasticizers and pigments, if necessary.
  • a melamine-based paint is a paint containing a melamine-based resin, a polyester-based resin, or an acrylic resin.
  • the melamine-based resin includes a melamine resin having one or more melamine nuclei obtained by condensing melamine and formaldehyde.
  • an alkyl-etherified melamine resin obtained by reacting a melamine resin with an alcohol-based compound such as methanol, ethanol, propanol, butanol, isobutanol, or the like may be used.
  • a commercially available product may be used as the melamine-based resin.
  • Allnex's product name "Cymel” series e.g., Cymel 202, Cymel 204, Cymel 211, Cymel 232, Cymel 235, Cymel 236, Cymel 238, Cymel 250, Cymel 251, Cymel 254, Cymel 266, Cymel 267 , Cymel 285, etc.
  • Mitsui Chemicals' product name "U-Van” series U-Van 20N60, U-Van 20SE, etc.
  • the content of the melamine-based resin in the melamine-based paint is 10 to 60 parts by mass, preferably 20 to 50 parts by mass, per 100 parts by mass of the total resin solid content.
  • the active energy ray-curable paint is a paint containing a resin that is cured by a cross-linking reaction or the like caused by irradiation with an active energy ray such as ultraviolet (UV) rays, visible rays, infrared rays, and electron beams (EB).
  • an active energy ray such as ultraviolet (UV) rays, visible rays, infrared rays, and electron beams (EB).
  • UV ultraviolet
  • EB electron beams
  • Examples of the active energy ray-curable coating include a coating containing one or more active energy ray-curable compounds and a polymerization initiator, and optionally a coloring agent.
  • ultraviolet curable paints and wire curable paints are preferred.
  • Examples of the active energy ray-curable compound include one or more compounds having an ethylenically unsaturated double bond.
  • Examples of active energy ray-curable compounds include one or more selected from the group consisting of (meth)acrylate compounds, (meth)acrylate oligomers, UV-curable resins, electron beam-curable resins, and the like.
  • the active energy ray-curable paint preferably contains a (meth)acrylic compound having two or more (meth)acryloyl groups in one molecule and forming a three-dimensional network structure by cross-linking and curing.
  • Examples of (meth)acrylic compounds include diacrylate compounds, triacrylate compounds, tetraacrylate compounds, hexaacrylate compounds, urethane (meth)acrylates, polyester (meth)acrylates, epoxy (meth)acrylates, and melamine (meth)acrylates. etc. These can be used individually or in combination of 2 or more types, respectively.
  • Polymerization initiators contained in active energy ray-curable paints include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays (UV), visible rays, infrared rays, and electron beams (EB).
  • active energy rays such as ultraviolet rays (UV), visible rays, infrared rays, and electron beams (EB).
  • UV ultraviolet rays
  • EB electron beams
  • acylphosphine oxide polymerization initiator ⁇ -hydroxyalkylphenone polymerization initiator, acetophenone polymerization initiator, benzoylformate polymerization initiator, thioxanthone polymerization initiator, oxime ester polymerization initiator, hydroxybenzoyl polymerization initiator, benzophenone polymerization initiator, ⁇ -aminoalkylphenone polymerization initiator, benzoin polymerization initiator, benzyl ketal polymerization initiator, acid ester
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4 ,4-trimethylpentylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2 -dimethoxy-1,2-diphenylethan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1 - ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl ⁇ -2-methyl-propan-1-one, oligo(2-hydroxy-2-methyl-1-(4-( 1-methylvinyl)phenyl)propanone), 1-(4-
  • the method of irradiating the active energy ray includes, for example, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, a wavelength of 100 to 400 nm emitted from UV-LED, etc. Irradiation with ultraviolet rays of 200 to 400 nm and electron beam irradiation with a wavelength of 100 nm or less emitted from a scanning or curtain electron beam accelerator are preferred.
  • the metal-containing coating layer is a coating layer that has a pigment weight concentration (PWC) of 70.0% or greater for vapor deposited indium thin film flakes and that is applied directly or indirectly on the primer coating layer.
  • PWC pigment weight concentration
  • a desired layer such as a primer layer, a chemical conversion layer, an adhesive layer, a colored coating layer,
  • One or more layers such as laminated film layers are provided.
  • the metal-containing coating layer may be provided on the entire surface of the primer coating layer, or may be provided on a desired site on the primer coating layer. Although the thickness of the metal-containing coating layer is not particularly limited, it is preferably thinner.
  • it is 3.0 ⁇ m or less, preferably 2.0 ⁇ m or less, more preferably 1.0 ⁇ m or less, and can be, for example, 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more. If the thickness is 3.0 ⁇ m or more, the mirror surface may become uneven or grainy, and the mirror surface may be whitened or opaque. If the thickness is less than 0.01 ⁇ m, the mirror surface may become uneven or grainy, the mirror surface may become cloudy, and it may be difficult to obtain the coating film-forming material. Technique is required, which is disadvantageous in terms of cost.
  • the metal-containing coating layer has a pigment weight concentration (PWC) of 70.0% or more of vapor deposited indium thin film flakes. It is preferably 73.0% or more, more preferably 81.0% or more, and still more preferably 90.0% or more.
  • the upper limit of the pigment weight concentration (PWC) is 100% or less. In some cases, it can be less than 100%, such as 99.9% or less, or, for example, 99.5% or less.
  • the metal-containing coating layer is formed by a vapor-deposited indium thin film flake-containing coating.
  • the vapor-deposited indium thin film flake-containing paint contains vapor-deposited indium thin film flakes and a solvent, and if necessary, may contain a small amount of a binder such as a resin.
  • the content of vapor deposited indium thin film flakes in the vapor deposited indium thin film flake-containing paint is an amount such that the pigment weight concentration (PWC) of the vapor deposited indium thin film flakes in the metal-containing coating layer is 70.0% or more. It is preferably 73.0% or more, more preferably 81.0% or more, and still more preferably 90.0% or more.
  • Vapor-deposited indium thin film flakes consist of indium with a purity of 95% or higher and may contain trace amounts of impurities.
  • Vapor-deposited indium thin film flakes are flaky particles, sometimes referred to as scaly particles, tabular particles, and the like.
  • Vapor-deposited indium thin film flakes are particles that have substantially flat surfaces and a substantially uniform thickness perpendicular to the substantially flat surfaces. The particles are very thin in thickness and have a substantially flat surface with a very long length. The length of the substantially flat surface is the diameter of a circle having the same projected area as that of the vapor deposited indium thin film flakes.
  • the shape of the substantially flat surface is not particularly limited and can be appropriately selected depending on the purpose.
  • the vapor-deposited indium thin film flakes may consist of one layer (single layer) or two or more layers laminated to form primary particles. Also, the primary particles of the vapor-deposited indium thin film flakes may aggregate to form secondary particles.
  • the average thickness of the vapor-deposited indium thin film flakes is, for example, 0.100 ⁇ m or less, preferably 0.075 ⁇ m or less, more preferably 0.060 ⁇ m or less, for example 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0 .030 ⁇ m or more.
  • the cumulative 50% volume particle diameter D50 of the deposited indium thin film flakes is, for example, 1.00 ⁇ m or less, preferably 0.70 ⁇ m or less, and can be, for example, 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more.
  • the vapor-deposited indium thin film flakes of the present invention have a first peak in a volume-based particle size distribution that shows the relationship between the particle size and the volume ratio of the vapor-deposited indium thin film flakes in the particle size, and and a second peak with a larger grain size, wherein the volume V1 of the deposited indium thin film flakes at the first peak and the volume V2 of the deposited indium thin film flakes at the second peak are equal to (V1/V2) ⁇ 100 ⁇ 25%,
  • the particle size P1 of the deposited indium thin film flakes at the first peak and the particle size P2 of the indium particles at the second peak are 6.0 ⁇ P2/P1 ⁇ 12, preferably 6.0 ⁇ P2/P1 ⁇ 10, meet
  • the deposited indium thin film flakes have a cumulative 50% volume particle diameter D50 of 0.70 ⁇ m or less. It is preferable that the requirements are satisfied. Furthermore, it is preferable that the particle size P2 of the deposited indium thin film flakes at the second peak is 0.75 ⁇
  • Vapor-deposited indium thin film flakes can be obtained, for example, by forming a metal layer containing indium on a releasable base material by vacuum deposition, and then detaching the metal layer.
  • the releasable substrate includes a substrate having a smooth surface and formed from a releasable material, and a substrate having a release layer formed on the surface.
  • the peeling layer various organic substances that can be dissolved in the later peeling process can be used.
  • the organic material that constitutes the peeling layer it is possible to cause the organic matter that adheres and remains on the peeled surface of the island-shaped structure film to function as a protective layer for the vapor-deposited indium thin film flakes, which is preferable.
  • the protective layer has a function of suppressing aggregation, oxidation, elution into a solvent, etc. of vapor-deposited indium thin film flakes.
  • organic material used for the peeling layer as the protective layer, because it eliminates the need for a separate surface treatment step.
  • organic substances constituting a release layer that can be used as a protective layer include cellulose-based resins such as cellulose acetate butyrate (CAB), polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyacrylic acid, polyacrylamide, polyvinyl butyral, and acrylic.
  • Examples thereof include acid copolymers, modified nylon resins, polyvinylpyrrolidone, urethane resins, polyester resins, polyether resins, alkyd resins, and the like. These can be used individually or in combination of 2 or more types, respectively.
  • cellulose-based resins such as cellulose acetate butyrate (CAB) are preferable because of their high function as a protective layer.
  • the method for forming the release layer is not particularly limited and can be appropriately selected depending on the intended purpose. , comma coating, U comma coating, AKKU coating, smoothing coating, micro gravure coating, reverse roll coating, 4-roll coating, 5-roll coating, dip coating, curtain coating, slide coating, die coating and the like. These can be used individually or in combination of 2 or more types, respectively.
  • the vacuum deposition step is a step of vacuum-depositing a metal layer containing indium on the release layer so as to have an average deposition thickness of 60 nm or less.
  • the average deposition thickness of the indium-containing metal layer is 60 nm or less, preferably 55 nm or less, more preferably 50 nm or less, and even more preferably 45 nm or less.
  • the average vapor deposition thickness of the metal layer containing indium is the same as the average thickness of the vapor deposited indium thin film flakes.
  • the average deposition thickness of the metal layer is 60 nm or less, the surface roughness Ra of the coating film is lowered, and the gloss value, which is an index showing metallic design, can be increased, and excellent metallic design can be achieved. There is an advantage that it can be expressed.
  • the average deposition thickness for example, using a scanning electron microscope (SEM), to observe the cross section of the metal layer, to measure the thickness of the metal layer at 5 to 10 locations, is the average value. .
  • the metal layer is preferably an island structure film.
  • the island structure film can be formed by various methods such as vacuum deposition, sputtering, and plating. Among these, vacuum deposition is preferred. Vacuum deposition is preferable to plating in that it is possible to form a film on a resin base material and that no waste liquid is generated. preferable.
  • the deposition rate in vacuum deposition is preferably 10 nm/sec or more, more preferably 10 nm/sec or more and 80 nm/sec or less.
  • indium thin film When an indium thin film is formed on the release layer, individual indium atoms flying from the vapor deposition source reach the surface of the substrate, interact with the substrate, lose energy and are adsorbed to the substrate. Diffusion, collision and bonding of indium atoms on the surface form three-dimensional nuclei.
  • the formed three-dimensional nuclei acquire surface-diffused atoms on the base material, and when the number of atoms exceeds a certain critical value, they unite with adjacent three-dimensional nuclei and grow into an island-like structure, forming an island-structure film. Form.
  • Such an island-structured film retains the morphology of the film when on the substrate, but when detached from the substrate, the island-structured film breaks up and individual islands become vapor-deposited indium thin film flakes.
  • the shape and cumulative 50% volume particle diameter of the finally obtained evaporated indium thin film flakes, and the volume ratio of ultrafine particles and fine particles (V1/V2) ⁇ 100 are the average film thickness of the island-shaped structure film (hereinafter simply “ It can be controlled by changing the film thickness.
  • the average film thickness of the island-shaped structure film can be measured by utilizing the interference of the film during film formation. Vapor-deposited indium thin film flakes having sizes of .
  • the operating factors that affect the shape, cumulative 50% volume particle diameter, and volume ratio of ultrafine particles and fine particles of vapor-deposited indium thin film flakes include the film formation method and the energy of indium flying to the substrate (kinetic energy, temperature, etc.), the surface free energy of the release layer, the material/temperature, the cooling method/temperature of the base material, the film formation rate, and the like.
  • the peeling step is a step of peeling off the metal layer by dissolving the peeling layer.
  • the solvent capable of dissolving the release layer is not particularly limited as long as it is capable of dissolving the release layer, and can be appropriately selected according to the purpose. It is preferable to be able to
  • Solvents capable of dissolving the release layer include, for example, alcohols such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ethers such as tetrahydrone; acetone, methyl ethyl ketone, acetylacetone, and the like.
  • ketones such as methyl acetate, ethyl acetate, butyl acetate, and phenyl acetate; ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, Ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether , triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropyl
  • the surface roughness Ra of the metal-containing coating layer is not particularly limited, it is, for example, 30 nm or less, preferably 25 nm or less, and more preferably 15 nm or less.
  • the surface roughness Ra is 30 nm or less, there is an advantage that the gloss value, which is an index showing specular design, can be increased, and excellent specular design can be exhibited.
  • the surface roughness Ra can be obtained, for example, using a scanning probe microscope (AFM) as an arithmetic mean surface roughness Ra in the range of 30 ⁇ m ⁇ 30 ⁇ m.
  • the coated article of the present invention preferably satisfies the requirement that radio wave transmittance in both the 24 GHz band and the 78 GHz band be 75% or more. Moreover, the coated article of the present invention preferably satisfies the requirements that the 20° gloss value is 150 or more and the 60° gloss value is 170 or more. As a result, the coated article exhibits a better specular design. Furthermore, the coated article of the present invention preferably has radio wave transmittance of 75% or more in both the 24 GHz band and the 78 GHz band, and satisfies the requirements that the 20° gloss value is 700 or more and the 60° gloss value is 300 or more. .
  • the radio wave transmittance of the coated article in both the 24 GHz band and the 78 GHz band is 75% or more. It is preferably 85% or more, more preferably 90% or more. If the radio wave transmittance in both the 24 GHz band and the 78 GHz band of the coated object is 75% or more, the coated object is the housing of communication equipment such as mobile phones, electronic devices, information terminals, etc., the front grille and bumper of automobiles, etc. Even in the case of , the transmission and reception of radio waves are less affected, and it is possible to reduce malfunctions, inoperability, and the like.
  • the radio wave transmittance is measured by the method described in Examples.
  • the 20° gloss value and 60° gloss value of the painted object are measured, for example, by using a gloss meter, using a parallel light method in accordance with JIS Z 8741 "Specular glossiness - measurement method", and setting the incident angle of light to 20 ° and 60 °.
  • the 20° gloss value (gloss value at a light incident angle of 20°) of the coated object is preferably 150 or more, more preferably 300 or more, and even more preferably 500 or more. In particular, when the 20° gloss value is 700 or more, it is possible to obtain an excellent specular design with high specularity.
  • the gloss value at an incident angle of 20° indicates a reflection intensity close to the regular reflection component.
  • the 60° gloss value (gloss value at a light incident angle of 60°) of the coated object is preferably 170 or more, more preferably 250 or more, and even more preferably 300 or more. In particular, when the 60° gloss value is 350 or more, it is possible to obtain an excellent specular design with high specularity.
  • the gloss value at an incident angle of 60° indicates a reflection intensity close to the diffuse component.
  • the 85° gloss value (gloss value at a light incident angle of 85°) of the coated article is not particularly limited. It is preferably 90 or higher, more preferably 93 or higher, and even more preferably 95 or higher. In particular, when the 85° gloss value is 100 or more, an excellent specular design with high specularity can be obtained.
  • the 85° gloss value can be measured in the same manner as the 20° gloss value.
  • the gloss value of the painted object can be easily adjusted by adjusting the shape, etc. (particle diameter, aspect ratio, thickness, surface roughness, etc.) of the evaporated indium thin film flakes contained in the evaporated indium thin film flake-containing coating layer. can do. It can also be easily adjusted by adjusting the surface roughness of the undercoat film layer.
  • topcoat coating layer In the coated article of the present invention, a topcoat layer can be provided directly or indirectly on the metal-containing coating layer, if desired.
  • Topcoat paints for forming the topcoat film layer include, for example, two-component curable paints, one-component curable paints, non-curable paints, and active energy ray-curable paints. Among these, for example, it can be formed by a curable coating such as a two-component curable coating, a one-component curable coating, or an active energy ray-curable coating.
  • the two-component curable coating, one-component curable coating or active energy ray-curable coating used for forming the topcoat layer is the two-component curable coating, 1 described for the undercoat used for forming the undercoat layer.
  • a liquid-curing coating or active energy ray-curing coating having the same components can be used.
  • the top coat layer is formed of a colorless and transparent clear paint or a colored and transparent colored clear paint. Furthermore, it may be formed from a paint obtained by adding a matting material such as resin beads, silica, etc., a luster material such as a metal pigment, a pearl pigment, etc. to these paints.
  • the method for producing a coated article of the present invention comprises the steps of: (i) directly or indirectly providing an undercoat coating film layer on an object to be coated, and (ii) directly or indirectly on the undercoat coating film layer indirectly providing a metal-containing coating layer having a pigment weight concentration (PWC) of 70% or more of vapor-deposited indium thin film flakes;
  • a method for producing a coated object which is a system paint or an active energy ray-curable paint.
  • the type, material, shape, etc. of the object to be coated are not particularly limited.
  • the article to be coated described in the article to be coated of the present invention can be mentioned.
  • the undercoat is not particularly limited as long as it is a two-component curable paint, acrylic lacquer, melamine-based paint or active energy ray-curable paint. These paints include, for example, the undercoat paints described in the coated article of the present invention.
  • the metal-containing paint used for forming the metal-containing coating layer is vapor-deposited indium thin film flakes, and the pigment weight concentration (PWC) in the dry coating film is 70.0.
  • the metal-containing paint include paints that form a metal-containing coating film layer in which the pigment weight concentration (PWC) of vapor-deposited indium thin film flakes is 70.0% or more, as described in the coated article of the present invention.
  • the method of forming the primer coating film layer and the metal-containing coating film layer is a method of providing a coating film of paint on the article / substrate etc. according to the shape of the article / substrate etc. and its use, etc. Not limited.
  • air spray, airless spray, electrostatic, rotary atomization, brush, hand gun, universal gun, and inkjet are examples of a coating film of paint on the article / substrate etc.
  • immersion (dipping) immersion (dipping), roll coating, curtain flow coating, roller curtain coating, die coating, air knife coating, blade coating, spin coating , reverse coating, gravure coating, wire bar, inkjet, gravure printing, screen printing, offset printing, and the like.
  • the undercoat layer and/or the metal-containing coating layer is formed, if the surface on which the coating film is to be formed is contaminated with contaminants such as oil, it is preferably degreased and cleaned with alcohol or the like. Moreover, in order to improve adhesion and corrosion resistance, surface treatments such as roughening treatment, plasma treatment, flame treatment, and primer treatment can be applied to the surface on which the coating film is formed.
  • the coating film is dried by means of normal temperature drying or forced drying, etc. may be formed. In the case of drying at normal temperature, it may be left at rest at normal temperature (for example, 10 to less than 40°C). In the case of forced drying, drying may be performed using a blower or the like, or baking drying may be performed by placing in a heating furnace or the like and heating at a temperature exceeding room temperature, for example, 50° C. or higher for 1 minute or more.
  • the undercoat that forms the undercoat film layer is a two-component curable paint
  • it may be cured by heating as necessary. From the point of finish, the composition may be set (still) at room temperature before drying or curing.
  • the undercoat that forms the undercoat layer is an active energy ray-curable paint
  • the coating is cured by irradiation with active energy rays.
  • the active energy ray used for curing include the active energy ray used for curing the undercoat, which is the active energy ray-curable coating used to construct the coated article of the present invention.
  • active energy ray sources include mercury lamps, metal halide lamps, xenon lamps, excimer lasers, dye lasers, ultraviolet light sources such as UV-LEDs, and electron beam accelerators.
  • the irradiation energy amount (accumulated light amount) of the active energy ray is not particularly limited.
  • 10 mJ/cm 2 or more preferably 100 mJ/cm 2 or more, more preferably 200 mJ/cm 2 or more, still more preferably 500 mJ/cm 2 or more, for example, 2,500 mJ/cm 2 or less, preferably 2, 000 mJ/cm 2 or less, more preferably 1,700 mJ/cm 2 or less, and even more preferably 1,500 mJ/cm 2 or less.
  • it may be set (set at rest) at normal temperature before drying or curing.
  • the coating When forming the coating film, the coating may be provided by one coating, or may be provided by coating two or more times. When coating is performed twice or more, a drying step may be provided in the middle, or wet on wet may be performed without providing a drying step in the middle, or these may be combined.
  • the method of forming a coating film in the present invention includes, for example, (i) a 3-coat 3-bake method in which an undercoat coating layer, a metal-containing coating layer and a top coating layer are formed and dried and cured each time, (ii) undercoating 2-coat 2-bake method in which a coating film layer and a metal-containing coating film layer are formed and dried and cured each time; 3-coat 1-bake method to form all coating layers by performing drying and curing treatment, (iv) Among the undercoat coating layer, metal-containing coating layer and top coating layer, the undercoat coating layer and the metal-containing coating A 3-coat 2-bake method in which a film layer or a metal-containing layer and a topcoat layer are formed in one drying and curing treatment, (v) after forming the undercoat coating layer and the metal-containing coating layer, respectively, 1 A means such as a 2-coat 1-bake method in which all the coating layers are formed by performing drying and curing treatments several times can be used.
  • the thickness (dry film thickness) of the primer coating layer and the metal-containing coating layer is not particularly limited, and can be appropriately adjusted according to the application.
  • it can be the dry film thickness of the undercoat coating layer and the metal-containing coating layer described in the coated article of the present invention.
  • the paint set of the present invention comprises at least (I) a primer paint and (II) a metal-containing paint containing vapor-deposited indium thin film flakes in an amount such that the pigment weight concentration (PWC) in the dry paint film is 70% or more. and wherein the base coat is a two-pack curable paint, an acrylic lacquer, a melamine-based paint or an active energy ray curable paint.
  • the paint set of the present invention comprises an undercoat film layer formed by an undercoat paint directly or indirectly provided on an object to be coated, and a metal directly or indirectly provided on the undercoat film layer.
  • the form and the like are not particularly limited as long as at least the undercoat paint and the metal-containing paint are combined so as to form a coated article having the coating film layer.
  • the type, material, shape, etc. of the object to be coated are not particularly limited.
  • the article to be coated described in the article to be coated of the present invention can be mentioned.
  • the undercoat paint is not particularly limited as long as it is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint. These paints include, for example, the undercoat paints described in the coated article of the present invention.
  • the metal-containing paint is not particularly limited as long as it contains vapor-deposited indium thin film flakes in such an amount that the pigment weight concentration (PWC) in the dry paint film is 70% or more.
  • the metal-containing paint examples include paints that form a metal-containing coating film layer in which the pigment weight concentration (PWC) of vapor-deposited indium thin film flakes is 70.0% or more, as described in the coated article of the present invention.
  • the coating method of each paint constituting the paint set of the present invention is not particularly limited. For example, the coating method described in the manufacturing method of the coated article of the present invention can be mentioned.
  • the paint set of the present invention may further contain one or more selected from the group consisting of a topcoat paint, a diluent (thinner), a coloring paint and the like, if necessary.
  • topcoat paints include topcoat paints that are two-component curable paints or active energy ray-curable paints described in the coated article of the present invention.
  • the diluent (thinner) is not particularly limited as long as it can be mixed with an undercoat paint, a metal-containing paint, a topcoat paint, etc., and diluted to reduce the viscosity.
  • the coloring paint is not particularly limited as long as it can impart a colored design to the painted object. Moreover, it may be a paint for forming a masking layer.
  • the paint set of the present invention can be preferably used when forming the coated article of the present invention.
  • the mixed solvent contains an ester solvent and a ketone solvent.
  • a curing agent Y1 for a two-pack curable paint containing 54.0 parts of a hexamethylene diisocyanate prepolymer and 46.0 parts of an ester solvent was prepared.
  • Diluent Z1 was prepared containing 60.0 parts of ketone solvent and 60.0 parts of ester solvent. 100 parts of the main agent X1, 12 parts of the curing agent Y1, and 120 parts of the diluent Z1 were mixed at a ratio of 120 parts to prepare an undercoat paint B1. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
  • ⁇ Undercoat B2> As the main agent and diluent, the same main agent X1 and diluent Z1 as in the undercoat paint B1 were used. A curing agent Y2 for a two-pack curable paint containing 58.0 parts of hexamethylene diisocyanate prepolymer and 42.0 parts of an ester solvent was prepared. 100 parts of the main agent X1, 12 parts of the curing agent Y2, and 120 parts of the diluent Z1 were mixed at a ratio to prepare an undercoat paint B2. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
  • ⁇ Undercoat B3> As the main agent and diluent, the same main agent X1 and diluent Z1 as in the undercoat paint B2 were used. A curing agent Y3 for a two-component curable paint containing 47.5 parts of hexamethylene diisocyanate prepolymer and 52.5 parts of an ester solvent was prepared. 100 parts of the main agent X1, 20 parts of the curing agent Y3, and 120 parts of the diluent Z1 were mixed at a ratio to prepare an undercoat paint B4. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
  • a main component X2 of a two-component curable paint containing 37.5 parts of an acrylic resin having a molecular weight of 21,000 and 62.5 parts of a mixed solvent was prepared.
  • the mixed solvent contains an ester solvent and a ketone solvent.
  • a curing agent Y4 for a two-component curable paint containing 35 parts of hexamethylene diisocyanate prepolymer and 65 parts of an ester solvent was prepared.
  • Diluent Z2 was prepared containing 15.0 parts of ketone solvent and 85.0 parts of ester solvent.
  • a main component X3 of a two-component curable paint containing 35.0 parts of an acrylic resin having a molecular weight of 21,000, 3.5 parts of carbon black, and 60.7 parts of a mixed solvent was prepared.
  • the mixed solvent contains an ester solvent and a ketone solvent.
  • the same curing agent Y4 and diluent Z2 as in the undercoat B4 were used.
  • 4 parts of the main agent X3, 1 part of the curing agent Y4, and 3 parts of the diluent Z2 were mixed at a ratio of 4 parts to prepare an undercoat paint B6.
  • the OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
  • a one-part curable acrylic lacquer coating containing 24.0 parts of an acrylic resin, 4.0 parts of a cellulose resin, 1.0 part of a plasticizer, and 70.9 parts of a mixed solvent was prepared.
  • the mixed solvent contains an ester solvent and a ketone solvent.
  • Diluent Z3 was prepared containing 43.0 parts of ketone solvent, 28.0 parts of alcohol solvent, 9.0 parts of ester solvent, and 20.0 parts of ether solvent. 100 parts of the one-liquid curing acrylic lacquer paint and 110 parts of the diluent Z3 were mixed together to prepare an undercoat paint B6.
  • a main agent X4 for a two-component curable paint containing 20.0 parts of a polyester resin and 80.0 parts of a mixed solvent was prepared.
  • the mixed solvent contains an aromatic hydrocarbon solvent and a ketone solvent. 20.0 parts of hexamethylene diisocyanate prepolymer, 0.6 parts of a curing catalyst, and a mixed solvent in an amount that makes the total of all components 100 parts. did.
  • the mixed solvent contains an ester solvent and a ketone solvent.
  • Diluent Z4 was prepared containing 30.0 parts of aromatic hydrocarbon solvent, 20.0 parts of alcohol solvent, and 50.0 parts of ketone solvent.
  • a one-liquid curable acrylic melamine paint containing 26.3 parts of an acrylic resin, 7.8 parts of an amino resin, 2.4 parts of a urethane resin, and 60.1 parts of a mixed solvent was prepared.
  • the mixed solvent contains an ester solvent and an alcohol solvent.
  • Diluent Z5 was prepared containing 40.0 parts of ketone solvent and 60.0 parts of ester solvent. 100 parts of the one-liquid curing acrylic melamine paint and 70 parts of the diluent Z5 were mixed at a ratio of 70 parts to prepare an undercoat paint B8.
  • a one-liquid curable polyester melamine paint containing 37.6 parts of polyester resin, 14.8 parts of amino resin and 46.6 parts of mixed solvent was prepared.
  • the mixed solvent contains an aromatic hydrocarbon solvent and an alcohol solvent.
  • Diluent Z6 was prepared containing 40.0 parts of aromatic hydrocarbon solvent, 20.0 parts of ester solvent, and 30.0 parts of alcohol solvent.
  • Undercoat paint B9 was prepared by mixing 100 parts of one-liquid curable polyester melamine paint and 50 parts of diluent Z6.
  • a one-liquid curable acrylic silicone paint containing 18.8 parts of an acrylic resin, 2.0 parts of a cellulose resin, and 79.2 parts of a mixed solvent was prepared.
  • the mixed solvent contains an aromatic hydrocarbon solvent, an ester solvent, a ketone solvent and an alcohol solvent.
  • Diluent Z7 was prepared containing 55.0 parts of ketone solvent and 45.0 parts of alcohol solvent. 100 parts of the one-liquid curing acrylic silicone paint and 100 parts of the diluent Z7 were mixed at a ratio of 100 parts to prepare an undercoat paint B10.
  • a one-liquid curable epoxy resin paint containing 15.0 parts of epoxy resin, 7.5 parts of urethane resin, and 77.5 parts of mixed solvent was prepared.
  • the mixed solvent contains an aromatic hydrocarbon solvent, a ketone solvent and an alcohol solvent.
  • Diluent Z8 was prepared containing 40.0 parts of aromatic hydrocarbon solvent, 40.0 parts of ketone solvent, and 20.0 parts of alcohol solvent.
  • Undercoat paint B11 was prepared by mixing 100 parts of one-liquid curing epoxy resin paint and 50 parts of diluent Z8.
  • An ultraviolet curable undercoat B13 was prepared containing 30.0 parts of urethane acrylate, 15.0 parts of acrylate monomer, 2.0 parts of cellulose resin and 53.0 parts of mixed solvent.
  • a main agent X5 for a two-pack curing type paint containing 36.0 parts of an acrylic resin, 4.0 parts of a polycarbonate polyol resin, 0.1 part of a curing catalyst, and 59.9 parts of a mixed solvent was prepared. .
  • the mixed solvent contains an ester solvent and a ketone solvent.
  • 100 parts of the main agent X5, 25 parts of the curing agent Y1 and 110 parts of the diluent Z1 were mixed at a ratio of 100 parts to prepare an undercoat paint B14.
  • the OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
  • Metal-containing paint M1 2.0 parts of vapor deposited indium thin film flakes, 27.0 parts of ketone solvent, 7.8 parts of ether solvent, and 63.0 parts of ester solvent, and the pigment of vapor deposited indium thin film flakes
  • PWC weight concentration
  • Metal-containing paint M2 A metal-containing paint M2 containing 24.7 parts of a silver compound complex, 73.3 parts of an alcohol solvent, and 2.0 parts of an ether solvent was prepared.
  • Topcoat T1> 2 containing 18.4 parts of an acrylic resin with a molecular weight of 21,000, 9.1 parts of an acrylic resin with a molecular weight of 10,000, 2.0 parts of a cellulose resin, and 69.4 parts of a mixed solvent
  • the mixed solvent contains an ester solvent and a ketone solvent.
  • a curing agent for a two-component curable paint containing 54.0 parts of a hexamethylene diisocyanate prepolymer and 46.0 parts of an ester solvent was prepared.
  • ком ⁇ онент T1 100 parts of the main agent, 15 parts of the curing agent, and 60 parts of the ketone solvent were mixed in proportions to prepare a two-liquid curing type topcoat T1.
  • the OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
  • Topcoat T2 An ultraviolet-curing topcoat T2 containing 10.0 parts of an acrylic resin, 30.0 parts of an acrylate monomer, 10.0 parts of a urethane acrylate, and 45.4 parts of a mixed solvent was prepared.
  • the mixed solvent contains an ester solvent, a ketone solvent and an aromatic hydrocarbon solvent.
  • Metal-containing paste P1 containing vapor-deposited indium thin film flakes in a proportion of 20.0 parts and an alcohol solvent in a proportion of 78.0 parts, and adjusting the pigment weight concentration (PWC) of the vapor-deposited indium thin film flakes to 90.9% by mass. was prepared.
  • Metal-containing paste P2 A metal-containing paste P2 containing 73.0 parts of aluminum powder, 26.0 parts of hydrocarbon solvent, and 1.0 part of fatty acid was prepared.
  • Metal-containing paste P3 was prepared containing 9.0 parts vapor-deposited aluminum thin film flakes, 67.5 parts alcohol solvent, 22.5 parts ether solvent, and 1.0 part silica.
  • Additive 3 A commercially available silicon-based surface conditioner was used. The non-volatile content in Additive 3 was 100% by mass.
  • Radio wave permeability was measured at 18 GHz to 26.5 GHz and 60 GHz to 90 GHz by the free space method using a vector network analyzer (manufactured by Anritsu, "ME7838A") and an antenna corresponding to the angular frequency band. 2-port S (Scattering) parameter measurement was performed, and the attenuation (db) and transmittance (%) in the 24 GHz band and 78 GHz band were evaluated.
  • Examples 101 to 128, Comparative Examples 101 to 109 As the primer paint, intermediate paint, topcoat paint and base material, use the ones listed in Tables 1 to 4, respectively, and use a spray gun to achieve the film thickness listed in Tables 1 to 4. The coated product was obtained by drying and curing under the coating film forming conditions described in 4 above. The resulting coated products were evaluated for mirror surface design and coating film adhesion, and the results are shown in Tables 1 to 4.
  • the coated article of the present invention is a parallel light method in accordance with JIS Z8741 "Specular gloss-measurement method", and the gloss values measured at incident angles of 20 °, 60 ° and 85 ° are all It can be seen from the large and visual evaluation that excellent specular design properties are exhibited. Furthermore, the coated article of the present invention can form a coating film excellent in specular design even at a heating temperature of about 80° C. during coating film formation.
  • Example 201 Comparative Example 201
  • the undercoat paint, intermediate paint, topcoat paint, and base material use the ones listed in Table 5, respectively, and apply with a spray gun so that the film thickness is listed in Table 5. Under the coating film formation conditions listed in Table 5, It was dried and cured to obtain a coated product. The radio wave transmittance of the obtained coated article was evaluated, and the results are shown in Table 5 together.
  • the coated article of the present invention has excellent radio wave permeability in both the 24 GHz band and the 78 GHz band.
  • Examples 301 to 324, Comparative Examples 301 to 308 As metal-containing pastes, solvents 1 to 5, additives 1 to 3, and base materials, those listed in Tables 6 to 9 were used, and the pigment weight concentrations (PWC) of metal pigments were listed in Tables 6 to 9, respectively.
  • a metal-containing paint was prepared so as to have a value of 1.0 ⁇ m after coating with a spray gun and drying to obtain a coated product.
  • Solvent 1 is an aromatic hydrocarbon solvent
  • solvent 2 is a ketone solvent
  • solvent 3 is an ester solvent
  • solvent 4 is a glycol ether solvent
  • solvent 5 is an alcohol solvent.
  • the specular design properties of the obtained coated products were evaluated, and the results are shown in Tables 6 to 9.

Abstract

The present invention addresses the problem of providing: a coated object having excellent mirror surface design, coating physical properties, and radio wave-transmitting properties, by means of a coating task performed at a coating-forming temperature of less than 100°C; a production method for such a coated object; and a paint set for such a coated object. As a solution to said problem, the present invention provides a coated object having (a) a primer coating layer that is provided directly or indirectly on an object to be coated and is formed from a primer paint, and (b) a metal-containing coating layer that is provided directly or indirectly on the primer coating layer and has a pigment weight concentration (PWC) of thin film flakes of vapor-deposited indium of at least 70.0%, wherein the primer paint is a two-liquid curable paint, an acrylic lacquer, a melamine paint, or an active energy ray curable paint.

Description

塗装物、塗装物の製造方法及び塗料セットPainted object, method for producing painted object, and paint set
 本発明は、鏡面意匠及び電波透過性を有する塗膜を有する塗装物、鏡面意匠及び電波透過性を有する塗装物の製造方法、及び鏡面意匠及び電波透過性を有する塗膜を形成するための塗料セットに関する。 The present invention relates to a coated article having a coating film having a mirror design and radio wave transparency, a method for producing a coated article having a mirror design and radio wave transparency, and a paint for forming a coating film having a mirror design and radio wave transparency. Regarding the set.
 商品力を高めるために、製品への塗装により、模様、色彩又はこれらの結合であって視覚を通じて美感を起こさせる意匠を付与することが行われている。消費者が求める意匠は、多種多様なものがあるが、近年、鏡と同様の質感をもった鏡面意匠により、商品の識別性を高めることが行われている。特に、自動車等の車両部品、電子機器・情報端末(スマートフォン、携帯電話等)の筐体、OA機器、家電製品、内装材等に鏡面意匠を付与することが行われている。 In order to enhance the appeal of products, products are painted with patterns, colors, or a combination of these to give them a visually appealing design. There are a wide variety of designs demanded by consumers, and in recent years, a mirror surface design with a texture similar to that of a mirror has been used to enhance the distinguishability of products. In particular, imparting a mirror surface design to vehicle parts such as automobiles, housings of electronic devices/information terminals (smartphones, mobile phones, etc.), OA devices, home electric appliances, interior materials, and the like is performed.
 鏡面意匠を付与する手段としては、(i)めっき、(ii)蒸着加工(スパッタリング、イオンプレーティング等の物理的薄膜形成技術(PVD)や化学的薄膜形成技術(CVD))、(iii)銀鏡塗装が知られている。
 しかし、(i)めっき及び(iii)銀鏡塗装による手段は、廃水処理等の点で環境負荷が高く、特別な設備が必要である。さらに、工程が多く製造効率やコストの点で不利であり、塗膜品質や耐久性が不安定で問題があった。(ii)蒸着加工による手段は、蒸着加工のための特別な設備が必要であり、設備が大掛かりとなり導入コストの点等で不利である。さらに、これらの手段は、鏡面意匠を付与する物品等の素材や形状等に制限がある。
As means for imparting a mirror surface design, (i) plating, (ii) vapor deposition processing (physical thin film formation technology (PVD) such as sputtering and ion plating, and chemical thin film formation technology (CVD)), (iii) silver mirror painting is known.
However, (i) plating and (iii) silver mirror coating have a high environmental impact in terms of wastewater treatment and the like, and require special facilities. Furthermore, there are many steps, which is disadvantageous in terms of production efficiency and cost, and there are problems with unstable coating film quality and durability. (ii) The vapor deposition process requires special equipment for the vapor deposition process, which is disadvantageous in that the equipment becomes large-scaled and the installation cost is high. Furthermore, these means have restrictions on the material, shape, etc. of the article to which the specular design is imparted.
 特許文献1には、基材表面に設けられた下地層上に、ドライプロセスにより金属光沢を有する金属膜を形成し、その後に金属膜を加熱して微細クラックを形成して得られる電磁波透過用金属被膜を設けた装飾部材が記載されている。この装飾部材は、金属膜の形成をスパッタリング等のドライプロセスで行うことから、製造設備が大掛かりなものとなる。また、3次元形状の物品に対して、ドライプロセスにより金属膜を均一に設けることは困難である。
 特許文献2には、必要に応じて下地層を形成した基材の上を活性化処理し、銀鏡メッキ液を構成する銀アンモニア水溶液と還元剤溶液とを、ダブルスプレーガン等によって活性化した基材上に同時に吹き付けて銀鏡皮膜を形成することで得られる、銀鏡皮膜形成品が記載されている。この銀鏡皮膜形成品は、銀鏡メッキ液を処理するための専用の廃水処理工程が必要であり、また、銀の耐久性の点で問題がある。
 特許文献3には、金属メッキ面等が有する金属感外観をメッキ処理によらずに実現する積層塗膜を有する塗装物が記載されている。この塗装物は、被塗物上に、不透明の薄片状顔料と、蒸着金属膜を粉砕して金属片とした光輝性顔料とを含む金属調塗料を塗布し、形成された金属調塗膜層の上に、クリヤ上塗り塗料を塗布することで形成される。この塗装物は、簡便な手段で金属感外観が形成されたものであるが、鏡面光沢の点で満足のいくものではなく、電波透過性を有していない。
In Patent Document 1, a metal film having metallic luster is formed by a dry process on an underlayer provided on the surface of a base material, and then the metal film is heated to form fine cracks. A decorative member provided with a metal coating is described. Since the metal film is formed by a dry process such as sputtering, the decorative member requires a large-scale manufacturing facility. Moreover, it is difficult to uniformly form a metal film on a three-dimensional article by a dry process.
In Patent Document 2, a substrate having an underlying layer formed thereon as required is subjected to activation treatment, and a silver ammonia aqueous solution and a reducing agent solution constituting a silver mirror plating solution are activated by a double spray gun or the like. A silver mirror-coated article is described which is obtained by simultaneously spraying onto a material to form a silver mirror coating. This silver mirror film-formed product requires a dedicated waste water treatment process for treating the silver mirror plating solution, and also has problems in terms of silver durability.
Patent Literature 3 describes a coated article having a laminated coating film that achieves the metallic appearance of a metal-plated surface or the like without plating. This coated object is a metallic paint film layer formed by applying a metallic paint containing an opaque flaky pigment and a luster pigment to metal flakes obtained by pulverizing an evaporated metal film onto an object to be coated. It is formed by applying a clear topcoat on top of the This coated product has a metallic appearance formed by a simple means, but is not satisfactory in terms of specular gloss and does not have radio wave transparency.
 このような点から、特別な設備が不要であり、既存の塗装設備を用いて鏡面意匠を形成できるめっき調塗料が開発されているが、鏡面意匠の点では満足のいくものではなかった。
 また、銀鏡塗装時に必要な専用の排水設備を不要とし、塗料・塗装によりめっき同等の金属感であるミラー調意匠(鏡面意匠)を実現する塗料も知られている。しかし、この塗料の塗膜は、電波透過性を示さず、さらに、100℃で30分の乾燥工程が必要であるため、耐熱性が低い被塗物に適用することが困難であった。
From this point of view, a plating-tone paint that does not require special equipment and can form a mirror surface design using existing coating equipment has been developed, but the mirror surface design was not satisfactory.
There is also known a paint that eliminates the need for a dedicated drainage facility required for silver mirror painting and realizes a mirror-like design (mirror surface design) that has a metallic feel equivalent to that of plating. However, since the coating film of this coating material does not exhibit radio wave transparency and requires a drying process at 100° C. for 30 minutes, it has been difficult to apply the coating material to an object having low heat resistance.
 近年、携帯電話・電子機器・情報端末の筐体、自動車部品(フロントグリル、バンパ等)等には、鏡面意匠とともに電波透過性が求められている。
 例えば、携帯電話・電子機器・情報端末は、筐体内部に通信アンテナ等を有しており、電波透過性を有することが必要である。また、自動車のフロントグリルやバンパ近傍には、距離測定等の各種レーダー装置のアンテナが設置されており、電波透過性を有することが必要となっている。これらのアンテナが受信する電波は、ミリ波からマイクロ波へと周波数帯域がシフトしており、アンテナ周辺の電波透過性が、電波受信性能に大きな影響を与えている。
In recent years, there has been a demand for radio wave transparency as well as a mirror surface design for housings of mobile phones, electronic devices, and information terminals, and automobile parts (front grills, bumpers, etc.).
For example, mobile phones, electronic devices, and information terminals have communication antennas and the like inside their housings, and are required to have radio wave transparency. In addition, antennas for various radar devices for distance measurement and the like are installed near the front grille and bumper of automobiles, and are required to have radio wave transparency. The frequency band of the radio waves received by these antennas has shifted from millimeter waves to microwaves, and the radio wave permeability around the antennas has a great influence on the radio wave reception performance.
特開2018-154878号公報JP 2018-154878 A 特開2018-177311号公報JP 2018-177311 A 特開2004-8931号公報Japanese Unexamined Patent Application Publication No. 2004-8931
 本発明の解決しようとする課題は、鏡面意匠及び電波透過性に優れ、塗膜形成温度が低い塗膜を有する塗装物を提供すること、鏡面意匠及び電波透過性に優れ、塗膜形成温度が低い塗膜を有する塗装物の製造方法を提供すること、及び鏡面意匠及び電波透過性に優れ、塗膜形成温度が低い塗膜を有する塗装物を形成し得る塗料セットを提供することである。 The problem to be solved by the present invention is to provide a coated article having a coating film with an excellent mirror surface design and radio wave transparency and a low coating film formation temperature. To provide a method for producing a coated article having a low coating film, and to provide a paint set capable of forming a coated article having a coating film with a low coating film formation temperature and excellent in mirror surface design and radio wave transmission.
 発明者等は、上記課題を解決するために鋭意検討した結果、
(1)被塗物の上に直接又は間接的に設けられた下塗塗膜層、及び、下塗塗膜層の上に直接又は間接的に設けられた蒸着インジウム薄膜フレーク含有塗膜層を有する塗装物、
(2)被塗物の上に直接又は間接的に下塗塗膜層を設ける工程、及び、下塗塗膜層の上に直接又は間接的に蒸着インジウム薄膜フレーク含有塗膜層を設ける工程を有する、塗装物の製造方法、
(3)硬化性下塗塗料、及び、蒸着インジウム薄膜フレーク含有塗料、を含む、塗料セット。
 によって、上記課題の解決が達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、以下の塗装物、塗装物の製造方法及び塗料セットを提供するものである。
 項1:(a)被塗物の上に直接又は間接的に設けられた、下塗塗料により形成された下塗塗膜層、及び、
(b)前記下塗塗膜層の上に直接又は間接的に設けられた、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上である金属含有塗膜層、を有し、
 前記下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、
 ことを特徴とする塗装物。
 項2:(c)前記金属含有塗膜層の上に直接又は間接的に設けられた、2液型硬化性塗料又は活性エネルギー線硬化性塗料により形成された上塗塗膜層、を更に有する、ことを特徴とする項1に記載の塗装物。
 項3:(d)前記塗装物の24GHz帯及び78GHz帯における電波透過率がいずれも75%以上、及び/又は、
(e)前記塗装物の20°光沢値が150以上及び60°光沢値が170以上、の要件を満たす、ことを特徴とする項1又は2に記載の塗装物。
 項4:(i)被塗物の上に直接又は間接的に、下塗塗料による下塗塗膜層を設ける工程、及び、
(ii)前記下塗塗膜層の上に直接又は間接的に、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70%以上である金属含有塗膜層を設ける工程、を有し、
 前記下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、
 ことを特徴とする塗装物の製造方法。
 項5:少なくとも、
(I)下塗塗料、及び、
(II)蒸着インジウム薄膜フレークを、乾燥塗膜中の顔料重量濃度(PWC)が70%以上となる量で含む金属含有塗料、
 から構成され、
 前記下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、
 ことを特徴とする塗料セット。
As a result of intensive studies by the inventors in order to solve the above problems,
(1) A coating having a primer coating layer directly or indirectly provided on the substrate and a vapor-deposited indium thin film flake-containing coating layer directly or indirectly provided on the primer coating layer Stuff,
(2) providing a primer coating layer directly or indirectly on the substrate; and providing a vapour-deposited indium thin film flake-containing coating layer directly or indirectly on the primer coating layer. a method for producing a painted object,
(3) A paint set comprising a curable basecoat and a vapor-deposited indium thin film flake-containing paint.
As a result, the inventors have found that the above problems can be solved, and have completed the present invention.
That is, the present invention provides the following coated article, method for producing the coated article, and paint set.
Item 1: (a) a primer coating film layer formed by a primer coating directly or indirectly provided on an object to be coated, and
(b) a metal-containing coating layer having a pigment weight concentration (PWC) of vapor-deposited indium thin film flakes of 70.0% or more directly or indirectly provided on the base coating layer;
The undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
A painted object characterized by:
Item 2: (c) a topcoat layer formed of a two-component curable coating or an active energy ray-curable coating directly or indirectly provided on the metal-containing coating layer, The coated article according to Item 1, characterized by:
Item 3: (d) the radio wave transmittance of the coated object in both the 24 GHz band and the 78 GHz band is 75% or more, and/or
(e) The coated article according to Item 1 or 2, wherein the coated article has a 20° gloss value of 150 or more and a 60° gloss value of 170 or more.
Item 4: (i) A step of directly or indirectly providing an undercoat coating film layer with an undercoat paint on the object to be coated, and
(ii) providing directly or indirectly on said basecoat layer a metal-containing coating layer having a pigment weight concentration (PWC) of vapor deposited indium thin film flakes of 70% or more;
The undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
A method for manufacturing a coated object, characterized by:
Item 5: At least
(I) an undercoat paint, and
(II) a metal-containing coating comprising vapor-deposited indium thin film flakes in an amount such that the pigment weight concentration (PWC) in the dry coating is 70% or more;
consists of
The undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
A paint set characterized by:
 本発明により、鏡面意匠及び電波透過性に優れ、塗膜形成温度が低い塗膜を有する塗装物、鏡面意匠及び電波透過性に優れ、塗膜形成温度が低い塗膜を有する塗装物の製造方法、及び鏡面意匠及び電波透過性に優れ、塗膜形成温度が低い塗膜を有する塗装物を形成し得る塗料セットが提供される。
 本発明の塗装物は、大掛かりな設備が不要で汎用の塗装設備を用いて得ることができ、さらに、塗膜形成温度が低いことから、塗膜を形成する被塗物の素材や形状に制限されることがない。
According to the present invention, a coated article having a coating film with an excellent mirror design and radio wave transmission and a low coating film formation temperature, and a method for producing a coated article having a coating film with an excellent mirror design and radio wave transmission and a low coating film formation temperature , and a paint set capable of forming a coated article having a coating film with excellent mirror surface design and radio wave transparency, and with a low coating film forming temperature.
The coated object of the present invention does not require large-scale equipment and can be obtained using general-purpose coating equipment. Furthermore, since the coating film formation temperature is low, the material and shape of the object to be coated on which the coating film is formed are limited. never be
 以下、本発明を実施するための形態について詳細に説明する。
 なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 本明細書において、特に断りがない場合、「部」は質量部を、「%」は質量%を表す。
DETAILED DESCRIPTION OF THE INVENTION Embodiments for carrying out the present invention will be described in detail below.
It should be understood that the present invention is not limited to the following embodiments, but includes various modifications implemented without departing from the gist of the present invention.
In this specification, unless otherwise specified, "parts" represent parts by mass, and "%" represents mass%.
[塗装物]
 本発明の塗装物は、(a)被塗物上に直接又は間接的に設けられた、下塗塗料により形成された下塗塗膜層、及び、(b)前記下塗塗膜層の上に直接又は間接的に設けられた、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上である金属含有塗膜層、を有する塗装物である。ここで、下塗塗料は、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、
 本発明の塗装物は、(c)前記金属含有塗膜層の上に直接又は間接的に設けられた、2液型硬化性塗料又は活性エネルギー線硬化性塗料により形成された上塗塗膜層を有していてもよい。
 本発明の塗装物は、(d)塗装物の24GHz帯及び79GHz帯における電波透過率がいずれも75%以上、及び/又は、(e)塗装物の20°光沢値が150以上及び60°光沢値が170以上、との要件を満たすことが好ましい。
[Painted object]
The coated article of the present invention includes (a) an undercoat film layer formed by an undercoat paint directly or indirectly provided on the object to be coated, and (b) directly or on the undercoat film layer. and an indirectly applied metal-containing coating layer having a pigment weight concentration (PWC) of vapor-deposited indium thin film flakes of 70.0% or greater. Here, the undercoat is a two-component curable paint, an acrylic lacquer, a melamine-based paint or an active energy ray-curable paint.
The coated article of the present invention includes (c) a topcoat layer formed of a two-component curable paint or an active energy ray-curable paint directly or indirectly provided on the metal-containing coating layer. may have.
The coated article of the present invention has (d) a radio wave transmittance of 75% or more in both the 24 GHz band and the 79 GHz band of the coated article, and/or (e) a 20° gloss value of 150 or higher and a 60° gloss of the painted article. It is preferable to satisfy the requirement that the value is 170 or more.
<被塗物>
 被塗物は、特に限定されず、任意の素材から形成された任意の形状の物品等を被塗物とすることができる。
 被塗物の素材としては、特に限定されない。例えば、金属(鉄、アルミニウム、マグネシウム、亜鉛、銅、銀、金、ステンレス、真鍮、亜鉛メッキ鋼等の金属、合金、金属複合体等の1種以上)、プラスチック(アクリル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、アクリロニトリル-スチレン(AS)系樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)系樹脂、アクリロニトリル-スチレン-アクリレート(ASA)系樹脂、ポリアミド系樹脂、ハロゲン化ビニリデン系樹脂、ポリフェニレンエーテル系樹脂、ポリオキシメチレン系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、ハロゲン化ビニル系樹脂、脂肪酸ビニル系樹脂、シリコン系樹脂、ポリスチレン系樹脂、ビニルエーテル系樹脂等の樹脂、これらの1種以上を含む組成物、これらの1種以上から構成される複合体・積層体等の1種以上)、ガラス、セラミックス、木材、紙、繊維類(織布、不織布、編物、糸等)があげられる。また、これらの1種以上を含む組成物、これらの1種以上から構成される複合体・積層体等であってもよい。
<Subject to be coated>
The object to be coated is not particularly limited, and the object to be coated can be an article of any shape formed from any material.
The material of the object to be coated is not particularly limited. For example, metals (one or more of metals such as iron, aluminum, magnesium, zinc, copper, silver, gold, stainless steel, brass, galvanized steel, alloys, metal composites, etc.), plastics (acrylic resin, polyester resin , polycarbonate resins, polyolefin resins, acrylonitrile-styrene (AS) resins, acrylonitrile-butadiene-styrene (ABS) resins, acrylonitrile-styrene-acrylate (ASA) resins, polyamide resins, vinylidene halide resins, Resins such as polyphenylene ether-based resins, polyoxymethylene-based resins, polyurethane-based resins, epoxy-based resins, phenol-based resins, vinyl halide-based resins, fatty acid vinyl-based resins, silicon-based resins, polystyrene-based resins, vinyl ether-based resins, etc. Compositions containing one or more of these, one or more of composites/laminates composed of one or more of these), glass, ceramics, wood, paper, fibers (woven fabrics, non-woven fabrics, knitted fabrics, threads, etc. ) is given. Compositions containing one or more of these, composites, laminates, and the like composed of one or more of these may also be used.
 被塗物の形状としては、特に限定されない。平面でも立体でもよく、例えば、板状、フィルム状、棒状、長尺状、3次元形状とすることができる。
 被塗物となる物品等としては、特に限定されない。例えば、携帯電話、通信機器、情報端末、ゲーム機、家庭用電化製品等の各種機器の筐体や部品、バンパ、フロントグリル、照明器具等の車両部品、文房具、玩具、食品容器、建材、建築用構造部材、樹脂フィルム、樹脂成形体等があげられる。
 本発明においては、携帯電話、通信機器、情報端末、ゲーム機、家庭用電化製品等の各種機器のプラスチック製の筐体、バンパやフロントグリル等のプラスチック製の車両部品、プラスチック製の玩具、建材、樹脂フィルム、樹脂成形体等を被塗物とすることが好ましい。
The shape of the object to be coated is not particularly limited. It may be planar or three-dimensional, and may be plate-like, film-like, rod-like, elongated, or three-dimensional, for example.
Articles to be coated are not particularly limited. For example, mobile phones, communication equipment, information terminals, game consoles, housings and parts of various devices such as home appliances, vehicle parts such as bumpers, front grills, lighting fixtures, stationery, toys, food containers, building materials, construction structural members, resin films, resin moldings, and the like.
In the present invention, the present invention can be applied to plastic housings of various devices such as mobile phones, communication devices, information terminals, game machines, and household appliances, plastic vehicle parts such as bumpers and front grills, plastic toys, and building materials. , a resin film, a resin molding, or the like is preferably used as the object to be coated.
<下塗塗膜層>
 下塗塗膜層は、被塗物上に直接又は間接的に設けられる塗膜層である。
 被塗物上に間接的に設けられる場合、被塗物と下塗塗膜層の間には所望の層等、例えば、プライマー層、化成処理層、接着剤層、着色塗膜層、ラミネートフィルム層等の1種以上が設けられる。
 下塗塗膜層は、被塗物全面に設けてもよく、被塗物表面の所望の部位に設けてもよい。
 下塗塗膜層を形成するための下塗塗料は、塗装物が鏡面意匠及び電波透過性を有していれば特に限定されない。例えば、2液型硬化性塗料、1液型硬化性塗料、非硬化性塗料又は活性エネルギー線硬化性塗料があげられる。これらのうち、特に、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料が好ましい。これらの下塗塗料は、必要に応じて、溶剤、可塑剤、密着性向上剤、シランカップリング剤、着色剤等を含んでいてもよい。
<Undercoat layer>
The primer coating film layer is a coating film layer provided directly or indirectly on the article to be coated.
When indirectly provided on the object to be coated, a desired layer such as a primer layer, a chemical conversion treatment layer, an adhesive layer, a colored coating layer, a laminate film layer is placed between the object to be coated and the undercoat layer. etc. are provided.
The undercoat film layer may be provided on the entire surface of the article to be coated, or may be provided on a desired portion of the surface of the article to be coated.
The undercoat paint for forming the undercoat film layer is not particularly limited as long as the object to be coated has a specular design and radio wave transparency. For example, a two-component curable coating, a one-component curable coating, a non-curable coating, or an active energy ray-curable coating can be used. Among these, two-component curable paints, acrylic lacquers, melamine-based paints, and active energy ray-curable paints are particularly preferred. These undercoat paints may contain solvents, plasticizers, adhesion improvers, silane coupling agents, colorants and the like, if necessary.
 下塗塗膜層の厚さ(乾燥膜厚)は、特に限定されない。例えば1.0μm以上、好ましくは5.0μm以上、より好ましくは10.0μm以上であり、例えば30.0μm以下、好ましくは25.0μm以下、より好ましくは20.0μm以下とすることができる。厚さが1.0μm未満の場合、鏡面にムラが発生するおそれがあり、また、鏡面が白化するおそれがある。厚さが30.0μmを超える場合、鏡面に粒子感が発生するおそれがあり、鏡面が白化するおそれがあり、表面平滑性が悪化して鏡面意匠性が低下するおそれがあり、下塗塗膜層の形成に必要な下塗塗料の使用量が増え高コストとなるおそれがある。 The thickness (dry film thickness) of the undercoat film layer is not particularly limited. For example, it is 1.0 μm or more, preferably 5.0 μm or more, more preferably 10.0 μm or more, and can be, for example, 30.0 μm or less, preferably 25.0 μm or less, more preferably 20.0 μm or less. If the thickness is less than 1.0 μm, the mirror surface may be uneven, and the mirror surface may be whitened. If the thickness exceeds 30.0 μm, the mirror surface may have a grainy feel, the mirror surface may whiten, the surface smoothness may deteriorate, and the mirror surface design may deteriorate. There is a risk that the amount of primer paint required to form the coating will increase, resulting in high costs.
(2液型硬化性塗料)
 2液硬化型塗料としては、塗装時に2液を混合することで塗膜を形成する塗料であれば特に制限されない。例えば、官能基を有する主剤と、主剤の官能基と反応して硬化する反応を起こすことができる硬化剤(架橋剤)とから構成される塗料があげられる。
(Two-component curable paint)
The two-liquid curable paint is not particularly limited as long as it forms a coating film by mixing the two liquids at the time of coating. For example, there is a paint composed of a main agent having a functional group and a curing agent (cross-linking agent) capable of reacting with the functional group of the main agent to cause a curing reaction.
 主剤としては、例えば、活性水素を含む基を有する化合物、エポキシ基を有する化合物、炭素-炭素不飽和二重結合を有する化合物等からなる群より選ばれる1種以上があげられる。活性水素を含む基としては、例えば、水酸基、カルボキシル基、1級アミノ基、2級アミノ基、アミド基等があげられる。
 このような主剤としては、例えば、ポリオール化合物、ポリカルボン酸化合物、エポキシ化合物、アルケニル基含有化合物等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 好ましくは1種以上のポリオール化合物であり、より好ましくはアクリルポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリウレタンポリオールからなる群より選ばれる1種以上であり、さらに好ましくは1種以上のアクリルポリオールである。
 また、好ましくは、メラミン化合物と反応し得る、ポリエステル系樹脂及び/又はアクリル系樹脂である。
Examples of the main agent include one or more selected from the group consisting of a compound having a group containing active hydrogen, a compound having an epoxy group, a compound having a carbon-carbon unsaturated double bond, and the like. Examples of groups containing active hydrogen include hydroxyl groups, carboxyl groups, primary amino groups, secondary amino groups, and amide groups.
Examples of such main agents include polyol compounds, polycarboxylic acid compounds, epoxy compounds, alkenyl group-containing compounds, and the like. These can be used individually or in combination of 2 or more types, respectively.
It is preferably one or more polyol compounds, more preferably one or more selected from the group consisting of acrylic polyols, polyether polyols, polyester polyols and polyurethane polyols, and still more preferably one or more acrylic polyols.
Moreover, polyester-based resins and/or acrylic-based resins that can react with melamine compounds are preferred.
 主剤の重量平均分子量は、特に限定されないが、例えば300以上、好ましくは500以上、より好ましくは1,000以上であり、例えば100,000以下、好ましくは70,000以下であり、より好ましくは50,000以下である。重量平均分子量が300未満の場合、下塗塗膜層の密着性が悪くなるおそれがある。重量平均分子量が100,000を超えると、下塗塗膜層の表面平滑性が悪くなるおそれがあり、鏡面意匠性が悪くなるおそれがある。
 本発明においては、重量平均分子量が異なるものを2種以上混合したものを主剤として用いてもよい。
 重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフで測定したクロマトグラムから標準ポリスチレンの分子量を基準にして算出することができる。ゲルパーミエーションクロマトグラフとしては、例えば、「HLC8120GPC」(東ソー社製)等を使用することができる。カラムとしては、例えば、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」、「TSKgel G-2000HXL」(いずれも東ソー(株)社製、商品名)等を1本以上用いることができる。測定条件としては、例えば、移動相としてテトラヒドロフランを用い、測定温度を40℃、流速を1cc/分、検出器をRIとすることができる。
The weight average molecular weight of the main agent is not particularly limited, but is, for example, 300 or more, preferably 500 or more, more preferably 1,000 or more, and is, for example, 100,000 or less, preferably 70,000 or less, more preferably 50 , 000 or less. If the weight-average molecular weight is less than 300, the adhesion of the undercoat layer may deteriorate. If the weight-average molecular weight exceeds 100,000, the surface smoothness of the undercoat film layer may deteriorate, and the specular design may deteriorate.
In the present invention, a mixture of two or more kinds having different weight average molecular weights may be used as the main agent.
The weight average molecular weight can be calculated based on the molecular weight of standard polystyrene from a chromatogram measured by gel permeation chromatography, for example. As a gel permeation chromatograph, for example, "HLC8120GPC" (manufactured by Tosoh Corporation) or the like can be used. As a column, for example, "TSKgel G-4000HXL", "TSKgel G-3000HXL", "TSKgel G-2500HXL", "TSKgel G-2000HXL" (all manufactured by Tosoh Corporation, trade names), etc. The above can be used. As the measurement conditions, for example, tetrahydrofuran can be used as the mobile phase, the measurement temperature can be 40° C., the flow rate can be 1 cc/min, and the detector can be RI.
 主剤としてポリオール化合物を用いる場合、その水酸基価は、例えば10mgKOH/g以上、好ましくは30mgKOH/g以上、より好ましくは50mgKOH/g以上とすることができ、例えば500mgKOH/g以下、好ましくは300mgKOH/g以下、より好ましくは200mgKOH/g以下とすることができる。水酸基価が50mgKOH/g未満であると、架橋密度が低くなるため鏡面意匠性が悪くなるおそれがある。水酸基価が500mgKOH/gを超えると、下塗塗膜層と金属含有塗膜層との接着性が悪くなるおそれがある。
 主剤としてポリオール化合物を用いる場合、そのガラス転移温度は、例えば-40℃以上、好ましくは20℃以上とすることができ、例えば100℃以下、好ましくは80℃以下とすることができる。ガラス転移温度を-40℃以上とすることで、塗膜の表面平滑性を付与することができ、ガラス転移温度を100℃以下とすることで、必要な塗膜硬度を付与することができる。
When a polyol compound is used as the main ingredient, its hydroxyl value can be, for example, 10 mgKOH/g or more, preferably 30 mgKOH/g or more, more preferably 50 mgKOH/g or more, for example 500 mgKOH/g or less, preferably 300 mgKOH/g. Below, more preferably 200 mgKOH/g or less. If the hydroxyl value is less than 50 mgKOH/g, the cross-linking density will be low and the specular design may be deteriorated. If the hydroxyl value exceeds 500 mgKOH/g, the adhesion between the undercoat layer and the metal-containing coating layer may deteriorate.
When a polyol compound is used as the main ingredient, the glass transition temperature thereof can be, for example, −40° C. or higher, preferably 20° C. or higher, and can be, for example, 100° C. or lower, preferably 80° C. or lower. By setting the glass transition temperature to −40° C. or higher, the surface smoothness of the coating film can be imparted, and by setting the glass transition temperature to 100° C. or lower, the required coating film hardness can be imparted.
 硬化剤(架橋剤)としては、例えば、主剤が有する官能基と反応する基を有する化合物より選ばれる1種以上があげられる。主剤が有する官能基と反応する基としては、例えば、イソシアネート基、アミノ基、イミノ基、メチロール基、アルキルエーテル基、カルボキシル基、水酸基等があげられる。
 本発明の硬化剤(架橋剤)としては、例えば、ポリイソシアネート化合物、メラミン化合物、ポリアミン化合物、ポリカルボン酸化合物、ポリオール化合物等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。好ましくは1種以上のポリイソシアネート化合物、メラミン化合物、ポリアミン化合物からなる群より選ばれる1種以上であり、より好ましくはポリイソシアネート化合物の1種以上である。
Examples of the curing agent (crosslinking agent) include one or more selected from compounds having a group that reacts with the functional group of the main agent. Examples of groups that react with the functional groups of the main agent include isocyanate groups, amino groups, imino groups, methylol groups, alkyl ether groups, carboxyl groups, and hydroxyl groups.
Examples of the curing agent (crosslinking agent) of the present invention include polyisocyanate compounds, melamine compounds, polyamine compounds, polycarboxylic acid compounds, polyol compounds and the like. These can be used individually or in combination of 2 or more types, respectively. It is preferably one or more selected from the group consisting of one or more polyisocyanate compounds, melamine compounds and polyamine compounds, more preferably one or more polyisocyanate compounds.
 ポリイソシアネート化合物は、1分子中に少なくとも2個のイソシアネート基を有する化合物であって、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香脂肪族ポリイソシアネート、芳香族ポリイソシアネート、それらのポリイソシアネートの誘導体等をあげることができる。
 ポリイソシアネート化合物は、それぞれ単独で又は2種以上を組み合わせて使用することができる。
A polyisocyanate compound is a compound having at least two isocyanate groups in one molecule, and includes, for example, aliphatic polyisocyanates, alicyclic polyisocyanates, araliphatic polyisocyanates, aromatic polyisocyanates, and polyisocyanates thereof. can be given as derivatives of
A polyisocyanate compound can be used individually or in combination of 2 or more types, respectively.
 脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、2,6-ジイソシアナトヘキサン酸メチル(慣用名:リジンジイソシアネート)等の脂肪族ジイソシアネート;2,6-ジイソシアナトヘキサン酸2-イソシアナトエチル、1,6-ジイソシアナト-3-イソシアナトメチルヘキサン、1,4,8-トリイソシアナトオクタン、1,6,11-トリイソシアナトウンデカン、1,8-ジイソシアナト-4-イソシアナトメチルオクタン、1,3,6-トリイソシアナトヘキサン、2,5,7-トリメチル-1,8-ジイソシアナト-5-イソシアナトメチルオクタン等の脂肪族トリイソシアネート等をあげることができる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Examples of aliphatic polyisocyanates include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3- aliphatic diisocyanates such as butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, methyl 2,6-diisocyanatohexanoate (common name: lysine diisocyanate);2, 2-isocyanatoethyl 6-diisocyanatohexanoate, 1,6-diisocyanato-3-isocyanatomethylhexane, 1,4,8-triisocyanatooctane, 1,6,11-triisocyanatoundecane, 1, Aliphatic triisocyanates such as 8-diisocyanato-4-isocyanatomethyloctane, 1,3,6-triisocyanatohexane, 2,5,7-trimethyl-1,8-diisocyanato-5-isocyanatomethyloctane, etc. I can give These can be used individually or in combination of 2 or more types, respectively.
 脂環族ポリイソシアネートとしては、例えば、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(慣用名:イソホロンジイソシアネート)、4-メチル-1,3-シクロヘキシレンジイソシアネート(慣用名:水添TDI)、2-メチル-1,3-シクロヘキシレンジイソシアネート、1,3-もしくは1,4-ビス(イソシアナトメチル)シクロヘキサン(慣用名:水添キシリレンジイソシアネート)もしくはその混合物、メチレンビス(4,1-シクロヘキサンジイル)ジイソシアネート(慣用名:水添MDI)、ノルボルナンジイソシアネート等の脂環族ジイソシアネート;1,3,5-トリイソシアナトシクロヘキサン、1,3,5-トリメチルイソシアナトシクロヘキサン、2-(3-イソシアナトプロピル)-2,5-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、2-(3-イソシアナトプロピル)-2,6-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、3-(3-イソシアナトプロピル)-2,5-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアナトエチル)-2-イソシアナトメチル-3-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタン、6-(2-イソシアナトエチル)-2-イソシアナトメチル-3-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアナトエチル)-2-イソシアナトメチル-2-(3-イソシアナトプロピル)-ビシクロ(2.2.1)-ヘプタン、6-(2-イソシアナトエチル)-2-イソシアナトメチル-2-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタン等の脂環族トリイソシアネート等をあげることができる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Alicyclic polyisocyanates include, for example, 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanatomethyl-3,5,5 -trimethylcyclohexyl isocyanate (common name: isophorone diisocyanate), 4-methyl-1,3-cyclohexylene diisocyanate (common name: hydrogenated TDI), 2-methyl-1,3-cyclohexylene diisocyanate, 1,3- or 1 , 4-bis(isocyanatomethyl)cyclohexane (common name: hydrogenated xylylene diisocyanate) or mixtures thereof, methylenebis(4,1-cyclohexanediyl) diisocyanate (common name: hydrogenated MDI), norbornane diisocyanate and other alicyclic Diisocyanates; 1,3,5-triisocyanatocyclohexane, 1,3,5-trimethylisocyanatocyclohexane, 2-(3-isocyanatopropyl)-2,5-di(isocyanatomethyl)-bicyclo(2.2) .1) heptane, 2-(3-isocyanatopropyl)-2,6-di(isocyanatomethyl)-bicyclo(2.2.1)heptane, 3-(3-isocyanatopropyl)-2,5- Di(isocyanatomethyl)-bicyclo(2.2.1)heptane, 5-(2-isocyanatoethyl)-2-isocyanatomethyl-3-(3-isocyanatopropyl)-bicyclo(2.2.1) ) heptane, 6-(2-isocyanatoethyl)-2-isocyanatomethyl-3-(3-isocyanatopropyl)-bicyclo(2.2.1)heptane, 5-(2-isocyanatoethyl)-2 -isocyanatomethyl-2-(3-isocyanatopropyl)-bicyclo(2.2.1)-heptane, 6-(2-isocyanatoethyl)-2-isocyanatomethyl-2-(3-isocyanatopropyl )-bicyclo(2.2.1)heptane and other alicyclic triisocyanates. These can be used individually or in combination of 2 or more types, respectively.
 芳香脂肪族ポリイソシアネートとしては、例えば、メチレンビス(4,1-フェニレン)ジイソシアネート(慣用名:MDI)、1,3-もしくは1,4-キシリレンジイソシアネート又はその混合物、ω,ω’-ジイソシアナト-1,4-ジエチルベンゼン、1,3-又は1,4-ビス(1-イソシアナト-1-メチルエチル)ベンゼン(慣用名:テトラメチルキシリレンジイソシアネート)もしくはその混合物等の芳香脂肪族ジイソシアネート;1,3,5-トリイソシアナトメチルベンゼン等の芳香脂肪族トリイソシアネート等をあげることができる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Examples of araliphatic polyisocyanates include methylenebis(4,1-phenylene) diisocyanate (common name: MDI), 1,3- or 1,4-xylylene diisocyanate or mixtures thereof, ω,ω'-diisocyanato-1 ,4-diethylbenzene, 1,3- or 1,4-bis(1-isocyanato-1-methylethyl)benzene (common name: tetramethylxylylene diisocyanate) or mixtures thereof; 1,3, Araraliphatic triisocyanates such as 5-triisocyanatomethylbenzene can be mentioned. These can be used individually or in combination of 2 or more types, respectively.
 芳香族ポリイソシアネートとしては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4'-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、2,4-トリレンジイソシアネート(慣用名:2,4-TDI)もしくは2,6-トリレンジイソシアネート(慣用名:2,6-TDI)もしくはその混合物、4,4'-トルイジンジイソシアネート、4,4'-ジフェニルエーテルジイソシアネート等の芳香族ジイソシアネート;トリフェニルメタン-4,4',4''-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、2,4,6-トリイソシアナトトルエン等の芳香族トリイソシアネート;4,4'-ジフェニルメタン-2,2',5,5'-テトライソシアネート等の芳香族テトライソシアネート等をあげることができる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Examples of aromatic polyisocyanates include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 2,4-tolylene diisocyanate (common name: 2,4-TDI ) or aromatic diisocyanates such as 2,6-tolylene diisocyanate (common name: 2,6-TDI) or mixtures thereof, 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate; triphenylmethane-4, aromatic triisocyanates such as 4′,4″-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanatotoluene; 4,4′-diphenylmethane-2,2′, Aromatic tetraisocyanates such as 5,5'-tetraisocyanate can be mentioned. These can be used individually or in combination of 2 or more types, respectively.
 ポリイソシアネートの誘導体としては、例えば、上記ポリイソシアネートのダイマー、トリマー、ビウレット、アロファネート、ウレトジオン、ウレトイミン、イソシアヌレート、オキサジアジントリオン、ポリメチレンポリフェニルポリイソシアネート(クルードMDI、ポリメリックMDI)、クルードTDI等をあげることができる。
これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
Examples of polyisocyanate derivatives include dimers, trimers, biurets, allophanates, uretdiones, uretimines, isocyanurates, oxadiazinetriones, polymethylene polyphenyl polyisocyanates (crude MDI, polymeric MDI), crude TDI, etc., of the above polyisocyanates. can give
These can be used individually or in combination of 2 or more types, respectively.
 本発明においては、ヘキサメチレンジイソシアネート又はその誘導体、4,4’-メチレンビス(シクロヘキシルイソシアネート)又はその誘導体、キシリレンジイソシアネート又はその誘導体からなる群より選ばれた1種以上が好ましい。その中でも特に、接着性、相溶性等の観点から、ヘキサメチレンジイソシアネートの誘導体が好ましい。 In the present invention, one or more selected from the group consisting of hexamethylene diisocyanate or its derivatives, 4,4'-methylenebis(cyclohexyl isocyanate) or its derivatives, xylylene diisocyanate or its derivatives is preferred. Among these, derivatives of hexamethylene diisocyanate are particularly preferred from the viewpoint of adhesiveness, compatibility and the like.
 ポリイソシアネート化合物として、上記ポリイソシアネート又はその誘導体中のイソシアネート基と反応し得る、水酸基、アミノ基等の活性水素基を有する化合物を、イソシアネート基過剰の条件で反応させてなるプレポリマーを使用してもよい。該ポリイソシアネートと反応し得る化合物としては、例えば、多価アルコール、低分子量ポリエステル系樹脂、アミン、水、活性水素基含有樹脂(アクリルポリオール、ポリオレフィンポリオール、ポリウレタンポリオール、ポリエーテルポリオール、ポリエステルポリオール)等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 As the polyisocyanate compound, a prepolymer obtained by reacting a compound having an active hydrogen group such as a hydroxyl group or an amino group that can react with the isocyanate group in the polyisocyanate or a derivative thereof under conditions in which the isocyanate group is excessive is used. good too. Examples of compounds that can react with the polyisocyanate include polyhydric alcohols, low molecular weight polyester resins, amines, water, active hydrogen group-containing resins (acrylic polyols, polyolefin polyols, polyurethane polyols, polyether polyols, polyester polyols), and the like. is given. These can be used individually or in combination of 2 or more types, respectively.
 ポリイソシアネート化合物として、上記ポリイソシアネート又はその誘導体中のイソシアネート基を、ブロック剤でブロックした化合物であるブロック化ポリイソシアネート化合物を使用することもできる。
 ブロック剤としては、例えば、フェノール、クレゾール、キシレノール、ニトロフェノール、エチルフェノール、ヒドロキシジフェニル、ブチルフェノール、イソプロピルフェノール、ノニルフェノール、オクチルフェノール、ヒドロキシ安息香酸メチル等のフェノール系;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピオラクタム等のラクタム系;メタノール、エタノール、プロピルアルコール、ブチルアルコール、アミルアルコール、ラウリルアルコール等の脂肪族アルコール系;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、メトキシメタノール等のエーテル系;ベンジルアルコール、グリコール酸、グリコール酸メチル、グリコール酸エチル、グリコール酸ブチル、乳酸、乳酸メチル、乳酸エチル、乳酸ブチル、メチロール尿素、メチロールメラミン、ジアセトンアルコール、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等のアルコール系;ホルムアミドオキシム、アセトアミドオキシム、アセトオキシム、メチルエチルケトオキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシム等のオキシム系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトン等の活性メチレン系;ブチルメルカプタン、t-ブチルメルカプタン、ヘキシルメルカプタン、t-ドデシルメルカプタン、2-メルカプトベンゾチアゾール、チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン系;アセトアニリド、アセトアニシジド、アセトトルイド、アクリルアミド、メタクリルアミド、酢酸アミド、ステアリン酸アミド、ベンズアミド等の酸アミド系;コハク酸イミド、フタル酸イミド、マレイン酸イミド等のイミド系;ジフェニルアミン、フェニルナフチルアミン、キシリジン、N-フェニルキシリジン、カルバゾール、アニリン、ナフチルアミン、ブチルアミン、ジブチルアミン、ブチルフェニルアミン等のアミン系;イミダゾール、2-エチルイミダゾール等のイミダゾール系;尿素、チオ尿素、エチレン尿素、エチレンチオ尿素、ジフェニル尿素等の尿素系;N-フェニルカルバミン酸フェニル等のカルバミン酸エステル系;エチレンイミン、プロピレンイミン等のイミン系;重亜硫酸ソーダ、重亜硫酸カリ等の亜硫酸塩系;アゾール系の化合物等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。上記アゾール系の化合物としては、ピラゾール、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ベンジル-3,5-ジメチルピラゾール、4-ニトロ-3,5-ジメチルピラゾール、4-ブロモ-3,5-ジメチルピラゾール、3-メチル-5-フェニルピラゾール等のピラゾール又はピラゾール誘導体;イミダゾール、ベンズイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール等のイミダゾール又はイミダゾール誘導体;2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾリン誘導体等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
As the polyisocyanate compound, a blocked polyisocyanate compound obtained by blocking the isocyanate group in the above polyisocyanate or derivative thereof with a blocking agent can also be used.
Examples of blocking agents include phenols such as phenol, cresol, xylenol, nitrophenol, ethylphenol, hydroxydiphenyl, butylphenol, isopropylphenol, nonylphenol, octylphenol, and methyl hydroxybenzoate; ε-caprolactam, δ-valerolactam, γ - lactams such as butyrolactam and β-propiolactam; aliphatic alcohols such as methanol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol, lauryl alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether Ethers such as , diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, methoxymethanol; benzyl alcohol, glycolic acid, methyl glycolate, ethyl glycolate, butyl glycolate, lactic acid, methyl lactate, ethyl lactate, butyl lactate , methylol urea, methylol melamine, diacetone alcohol, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, etc.; Oxime type; dimethyl malonate, diethyl malonate, ethyl acetoacetate, methyl acetoacetate, active methylene type such as acetylacetone; butyl mercaptan, t-butyl mercaptan, hexyl mercaptan, t-dodecyl mercaptan, 2-mercaptobenzothiazole, thiophenol , methylthiophenol, ethylthiophenol, etc.; acetanilide, acetanisidide, acetotolide, acrylamide, methacrylamide, acetic acid amide, stearamide, benzamide, etc.; acid amides, such as succinimide, phthalimide, maleic acid imide, etc. Imide type; amine type such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine, butylphenylamine; imidazole type such as imidazole, 2-ethylimidazole; urea, thiourea , ethylene urea, ethylene thiourea, diphenyl urea carbamic acid esters such as phenyl N-phenylcarbamate; imine compounds such as ethyleneimine and propyleneimine; sulfite compounds such as sodium bisulfite and potassium bisulfite; and azole compounds. These can be used individually or in combination of 2 or more types, respectively. Examples of the azole compounds include pyrazole, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-benzyl-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, 4-bromo-3, pyrazole or pyrazole derivatives such as 5-dimethylpyrazole, 3-methyl-5-phenylpyrazole; imidazole or imidazole derivatives such as imidazole, benzimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole; 2-methylimidazoline , 2-phenylimidazoline and other imidazoline derivatives. These can be used individually or in combination of 2 or more types, respectively.
 ポリイソシアネート又はその誘導体とブロック剤との反応によるブロックにあたっては、必要に応じて溶剤を添加して行なうことができる。ブロック化反応に用いる溶剤としてはイソシアネート基に対して反応性でないものが良く、例えば、アセトン、メチルエチルケトンのようなケトン系、酢酸エチルのようなエステル系、N-メチル-2-ピロリドン(NMP)のような含窒素系の溶剤があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Blocking by reaction of polyisocyanate or its derivative with a blocking agent can be carried out by adding a solvent as necessary. The solvent used for the blocking reaction is preferably one that is not reactive with the isocyanate group. Nitrogen-containing solvents such as These can be used individually or in combination of 2 or more types, respectively.
 2液型硬化性塗料における主剤と硬化剤の組み合わせとしては、主剤/硬化剤として、例えば、アクリルポリオール化合物/ポリイソシアネート化合物、ポリエステルポリオール/ポリイソシアネート化合物、ポリエーテルポリオール/ポリイソシアネート化合物、ポリエステル系樹脂/メラミン化合物、アクリル系樹脂/メラミン化合物、エポキシ系樹脂/ポリアミン化合物があげられる。このうち、アクリルポリオール化合物/ポリイソシアネート化合物、ポリエステルポリオール/ポリイソシアネート化合物、ポリエステル系樹脂/メラミン化合物、アクリル系樹脂/メラミン化合物が好ましい。 Combinations of the main agent and the curing agent in the two-component curable coating include, as the main agent/curing agent, acrylic polyol compound/polyisocyanate compound, polyester polyol/polyisocyanate compound, polyether polyol/polyisocyanate compound, polyester resin. /melamine compound, acrylic resin/melamine compound, and epoxy resin/polyamine compound. Among these, acrylic polyol compound/polyisocyanate compound, polyester polyol/polyisocyanate compound, polyester resin/melamine compound, and acrylic resin/melamine compound are preferable.
(アクリル系ラッカー)
 アクリル系ラッカーとしては、(メタ)アクリル酸エステル系共重合体からなるアクリル系樹脂、アクリル系樹脂を他の成分で変性した変性アクリル系樹脂を主成分とする塗料である。変性に用いる他の成分としては、例えば、各種セルロース系樹脂、ビニル系樹脂、ウレタン系樹脂等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 本発明においては、アクリル系ラッカーとして、アクリル系樹脂ワニス、アクリル系樹脂エナメル、NC(ニトロセルロース)変性アクリル系ラッカー、CAB(セルロースアセテートブチレート)変性アクリル系ラッカー、ビニル系樹脂変性アクリル系ラッカー等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。特に好ましくは、NC(ニトロセルロース)変性アクリル系ラッカーやCAB(セルロースアセテートブチレート)変性アクリル系ラッカー等の、アクリル系樹脂とセルロース系化合物とを含む塗料があげられる。セルロース系化合物としては、例えば、ニトロセルロース、セルロースアセテートブチレート等の1種以上があげられる。アクリル系ラッカーは、必要に応じて、溶剤、可塑剤、顔料等の添加剤を含んでいてもよい。
(acrylic lacquer)
The acrylic lacquer is a paint whose main component is an acrylic resin composed of a (meth)acrylic acid ester copolymer, or a modified acrylic resin obtained by modifying the acrylic resin with other components. Other components used for modification include, for example, various cellulose-based resins, vinyl-based resins, urethane-based resins, and the like. These can be used individually or in combination of 2 or more types, respectively.
In the present invention, the acrylic lacquer includes acrylic resin varnish, acrylic resin enamel, NC (nitrocellulose)-modified acrylic lacquer, CAB (cellulose acetate butyrate)-modified acrylic lacquer, vinyl-based resin-modified acrylic lacquer, and the like. is given. These can be used individually or in combination of 2 or more types, respectively. Especially preferred are paints containing an acrylic resin and a cellulose compound, such as NC (nitrocellulose)-modified acrylic lacquer and CAB (cellulose acetate butyrate)-modified acrylic lacquer. Examples of the cellulosic compound include one or more of nitrocellulose, cellulose acetate butyrate, and the like. The acrylic lacquer may contain additives such as solvents, plasticizers and pigments, if necessary.
(メラミン系塗料)
 メラミン系塗料は、メラミン系樹脂と、ポリエステル系樹脂やアクリル系樹脂を含む塗料である。
 メラミン系樹脂としては、メラミンとホルムアルデヒドを縮合させて得られる、メラミン核を1つ以上有するメラミン樹脂があげられる。また、メラミン樹脂に、メタノール、エタノール、プロパノール、ブタノール、イソブタノール等のアルコール系化合物を反応させて得られるアルキルエーテル化メラミン樹脂を用いてもよい。
 メラミン系樹脂は、市販品を用いてもよい。例えば、Allnex社製の商品名「サイメル」シリーズ(例えば、サイメル202、サイメル204、サイメル211、サイメル232、サイメル235、サイメル236、サイメル238、サイメル250、サイメル251、サイメル254、サイメル266、サイメル267、サイメル285等)、三井化学社製の商品名「ユーバン」シリーズ(ユーバン20N60、ユーバン20SE等)等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 メラミン系塗料におけるメラミン系樹脂の含有量は、樹脂固形分総量100質量部に対して、10~60質量部、好ましくは20~50質量部である。
(Melamine-based paint)
A melamine-based paint is a paint containing a melamine-based resin, a polyester-based resin, or an acrylic resin.
The melamine-based resin includes a melamine resin having one or more melamine nuclei obtained by condensing melamine and formaldehyde. Alternatively, an alkyl-etherified melamine resin obtained by reacting a melamine resin with an alcohol-based compound such as methanol, ethanol, propanol, butanol, isobutanol, or the like may be used.
A commercially available product may be used as the melamine-based resin. For example, Allnex's product name "Cymel" series (e.g., Cymel 202, Cymel 204, Cymel 211, Cymel 232, Cymel 235, Cymel 236, Cymel 238, Cymel 250, Cymel 251, Cymel 254, Cymel 266, Cymel 267 , Cymel 285, etc.), Mitsui Chemicals' product name "U-Van" series (U-Van 20N60, U-Van 20SE, etc.). These can be used individually or in combination of 2 or more types, respectively.
The content of the melamine-based resin in the melamine-based paint is 10 to 60 parts by mass, preferably 20 to 50 parts by mass, per 100 parts by mass of the total resin solid content.
(活性エネルギー線硬化性塗料)
 活性エネルギー線硬化性塗料は、紫外線(UV)、可視光線、赤外線、電子線(EB)等の活性エネルギー線照射により架橋反応等が発生し硬化する樹脂を含む塗料である。活性エネルギー線硬化性塗料としては、例えば、活性エネルギー線硬化性化合物の1種以上と重合開始剤を含み、必要に応じて着色剤等を含む塗料があげられる。本発明においては、紫外線硬化性塗料や電線硬化性塗料が好ましい。
(Active energy ray-curable paint)
The active energy ray-curable paint is a paint containing a resin that is cured by a cross-linking reaction or the like caused by irradiation with an active energy ray such as ultraviolet (UV) rays, visible rays, infrared rays, and electron beams (EB). Examples of the active energy ray-curable coating include a coating containing one or more active energy ray-curable compounds and a polymerization initiator, and optionally a coloring agent. In the present invention, ultraviolet curable paints and wire curable paints are preferred.
 活性エネルギー線硬化性化合物としては、例えば、エチレン性不飽和二重結合を有する化合物の1種以上があげられる。活性エネルギー線硬化性化合物としては、例えば、(メタ)アクリレート系化合物、(メタ)アクリレート系オリゴマー、紫外線硬化性樹脂、電子線硬化性樹脂等からなる群より選ばれる1種以上があげられる。
 活性エネルギー線硬化性塗料としては、1分子中に2個以上の(メタ)アクリロイル基を有し、架橋硬化することにより3次元網目構造となる(メタ)アクリル系化合物を含むものが好ましい。(メタ)アクリル系化合物としては、例えば、ジアクリレート化合物、トリアクリレート化合物、テトラアクリレート化合物、ヘキサアクリレート化合物、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
Examples of the active energy ray-curable compound include one or more compounds having an ethylenically unsaturated double bond. Examples of active energy ray-curable compounds include one or more selected from the group consisting of (meth)acrylate compounds, (meth)acrylate oligomers, UV-curable resins, electron beam-curable resins, and the like.
The active energy ray-curable paint preferably contains a (meth)acrylic compound having two or more (meth)acryloyl groups in one molecule and forming a three-dimensional network structure by cross-linking and curing. Examples of (meth)acrylic compounds include diacrylate compounds, triacrylate compounds, tetraacrylate compounds, hexaacrylate compounds, urethane (meth)acrylates, polyester (meth)acrylates, epoxy (meth)acrylates, and melamine (meth)acrylates. etc. These can be used individually or in combination of 2 or more types, respectively.
 活性エネルギー線硬化性塗料に含まれる重合開始剤としては、紫外線(UV)、可視光線、赤外線、電子線(EB)等の活性エネルギー線が照射されると、ラジカルを発生する化合物があげられる。
 例えば、アシルフォスフィンオキサイド系重合開始剤、α-ヒドロキシアルキルフェノン系重合開始剤、アセトフェノン系重合開始剤、ベンゾイルホルメート系重合開始剤、チオキサントン系重合開始剤、オキシムエステル系重合開始剤、ヒドロキシベンゾイル系重合開始剤、ベンゾフェノン系重合開始剤、α-アミノアルキルフェノン系重合開始剤、ベンゾイン系重合開始剤、ベンジルケタール系重合開始剤、アシッドエステル系重合開始剤、チタノセン系重合開始剤、キノン系重合開始剤、有機過酸化物系重合開始剤、アゾ系重合開始剤等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
Polymerization initiators contained in active energy ray-curable paints include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays (UV), visible rays, infrared rays, and electron beams (EB).
For example, acylphosphine oxide polymerization initiator, α-hydroxyalkylphenone polymerization initiator, acetophenone polymerization initiator, benzoylformate polymerization initiator, thioxanthone polymerization initiator, oxime ester polymerization initiator, hydroxybenzoyl polymerization initiator, benzophenone polymerization initiator, α-aminoalkylphenone polymerization initiator, benzoin polymerization initiator, benzyl ketal polymerization initiator, acid ester polymerization initiator, titanocene polymerization initiator, quinone polymerization initiator Initiators, organic peroxide-based polymerization initiators, azo-based polymerization initiators, and the like can be mentioned. These can be used individually or in combination of 2 or more types, respectively.
 その具体例としては、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキシド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、アセトフェノン、3-メチルアセトフェノン、ジエトキシアセトフェノン、ベンゾイン、ベンゾインベンゾエート、α-アシロキシムエステル、イソフタルフェノン、フェニルグリオキシ酸メチル、ベンゾフェノン、4-フェニルベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジアミノベンゾフェノン、ミヒラーズケトン、ベンジルジメチルケタール、1,2-オクタンジオン、ベンゾインアルキルエーテル、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-(シクロペンチル)プロパン-1-オン(O-アセチルオキシム)、メチルベンゾイルホルメート、4-ベンゾイル-4’-メチルジフェニルスルファイド、エチルアントラキノン、フェナントレンキノン、カンファーキノン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、チオキサントン、2-クロロチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル-オキシ]-2-ヒドロキシプロピル-N,N,N-トリメチルアンモニウムクロライド、フルオロチオキサントン等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 Specific examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4 ,4-trimethylpentylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2 -dimethoxy-1,2-diphenylethan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1 -{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one, oligo(2-hydroxy-2-methyl-1-(4-( 1-methylvinyl)phenyl)propanone), 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, acetophenone, 3-methylacetophenone, diethoxyacetophenone, benzoin, benzoinbenzoate, α- acyloxime ester, isophthalphenone, methyl phenylglyoxylate, benzophenone, 4-phenylbenzophenone, 4-chlorobenzophenone, 4,4'-diaminobenzophenone, Michler's ketone, benzyl dimethyl ketal, 1,2-octanedione, benzoin alkyl ether, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-3-(cyclopentyl)propan-1-one (O-acetyloxime), methylbenzoylformate, 4-benzoyl -4'-methyldiphenyl sulfide, ethylanthraquinone, phenanthrenequinone, camphorquinone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, thioxanthone, 2-chlorothioxanthone, isopropylthioxanthone, 1-chloro-4-propylthioxanthone, 3 -[3,4-dimethyl-9-oxo-9H-thioxanthon-2-yl-oxy]-2-hydroxypropyl- Examples include N,N,N-trimethylammonium chloride and fluorothioxanthone. These can be used individually or in combination of 2 or more types, respectively.
 活性エネルギー線硬化性塗料を硬化させる際、活性エネルギー線の照射方法としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ、UV-LED等から発せられる波長100~400nm、好ましくは200~400nmの紫外線の照射や、走査型又はカーテン型の電子線加速器から発せられる波長100nm以下の電子線の照射があげられる。 When curing the active energy ray-curable paint, the method of irradiating the active energy ray includes, for example, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, a wavelength of 100 to 400 nm emitted from UV-LED, etc. Irradiation with ultraviolet rays of 200 to 400 nm and electron beam irradiation with a wavelength of 100 nm or less emitted from a scanning or curtain electron beam accelerator are preferred.
<金属含有塗膜層>
 金属含有塗膜層は、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上であって、下塗塗膜層上に直接又は間接的に設けられる塗膜層である。
 下塗塗膜層上に間接的に設けられる場合、下塗塗膜層と金属含有塗膜層の間には所望の層等、例えば、プライマー層、化成処理層、接着剤層、着色塗膜層、ラミネートフィルム層等の1種以上が設けられる。
 金属含有塗膜層は、下塗塗膜層上全面に設けてもよく、下塗塗膜層上の所望の部位に設けてもよい。
 金属含有塗膜層の厚さは、特に限定されないが、薄いほうが好ましい。例えば3.0μm以下、好ましくは2.0μm以下、より好ましくは1.0μm以下であり、例えば0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上とすることができる。厚さが3.0μm以上の場合、鏡面にムラや粒子感が発生するおそれがあり、また、鏡面が白化・白濁するおそれがある。厚さが0.01μm未満の場合、鏡面にムラや粒子感が発生するおそれがあり、鏡面が白濁するおそれがあり、塗膜形成材料の入手が困難になるおそれがあり、さらに、高度な塗装技術が必要となり、コスト的に不利である。
<Metal-containing coating layer>
The metal-containing coating layer is a coating layer that has a pigment weight concentration (PWC) of 70.0% or greater for vapor deposited indium thin film flakes and that is applied directly or indirectly on the primer coating layer.
When indirectly provided on the primer coating layer, between the primer coating layer and the metal-containing coating layer, a desired layer such as a primer layer, a chemical conversion layer, an adhesive layer, a colored coating layer, One or more layers such as laminated film layers are provided.
The metal-containing coating layer may be provided on the entire surface of the primer coating layer, or may be provided on a desired site on the primer coating layer.
Although the thickness of the metal-containing coating layer is not particularly limited, it is preferably thinner. For example, it is 3.0 μm or less, preferably 2.0 μm or less, more preferably 1.0 μm or less, and can be, for example, 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm or more. If the thickness is 3.0 μm or more, the mirror surface may become uneven or grainy, and the mirror surface may be whitened or opaque. If the thickness is less than 0.01 μm, the mirror surface may become uneven or grainy, the mirror surface may become cloudy, and it may be difficult to obtain the coating film-forming material. Technique is required, which is disadvantageous in terms of cost.
 金属含有塗膜層は、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上である。好ましくは73.0%以上、より好ましくは81.0%以上であり、さらに好ましくは90.0%以上である。顔料重量濃度(PWC)の上限値は100%以下である。場合によっては、100%未満、例えば99.9%以下、また、例えば99.5%以下とすることができる。
 金属含有塗膜層は、蒸着インジウム薄膜フレーク含有塗料により形成される。
The metal-containing coating layer has a pigment weight concentration (PWC) of 70.0% or more of vapor deposited indium thin film flakes. It is preferably 73.0% or more, more preferably 81.0% or more, and still more preferably 90.0% or more. The upper limit of the pigment weight concentration (PWC) is 100% or less. In some cases, it can be less than 100%, such as 99.9% or less, or, for example, 99.5% or less.
The metal-containing coating layer is formed by a vapor-deposited indium thin film flake-containing coating.
(蒸着インジウム薄膜フレーク含有塗料)
 蒸着インジウム薄膜フレーク含有塗料は、蒸着インジウム薄膜フレークと、溶剤とを含み、さらに、必要に応じて、樹脂等のバインダーを少量含んでいてもよい。
 蒸着インジウム薄膜フレーク含有塗料における、蒸着インジウム薄膜フレークの含有量は、金属含有塗膜層における蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上となる量である。好ましくは73.0%以上、より好ましくは81.0%以上であり、さらに好ましくは90.0%以上である。
(Vapor-deposited indium thin film flake-containing paint)
The vapor-deposited indium thin film flake-containing paint contains vapor-deposited indium thin film flakes and a solvent, and if necessary, may contain a small amount of a binder such as a resin.
The content of vapor deposited indium thin film flakes in the vapor deposited indium thin film flake-containing paint is an amount such that the pigment weight concentration (PWC) of the vapor deposited indium thin film flakes in the metal-containing coating layer is 70.0% or more. It is preferably 73.0% or more, more preferably 81.0% or more, and still more preferably 90.0% or more.
 蒸着インジウム薄膜フレークは、純度95%以上のインジウムからなり、微量の不純物を含んでいてもよい。
 蒸着インジウム薄膜フレークは、薄片状粒子であって、鱗片状粒子、平板状粒子等と称されることもある。蒸着インジウム薄膜フレークは、略平坦な面を有し、かつ略平坦な面に対して垂直方向の厚さが略均一である粒子である。厚さは非常に薄く、略平坦な面の長さが非常に長い形状の粒子である。略平坦な面の長さは、蒸着インジウム薄膜フレークの投影面積と同じ投影面積を持つ円の直径である。
 略平坦な面の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、略長方形、略正方形、略円形、略楕円形、略三角形、略四角形、略五角形、略六角形、略七角形、略八角形等の多角形、ランダムな不定形等があげられる。これらの中でも、略円形であることが好ましい。
 蒸着インジウム薄膜フレークは、1層(単層)又は2層以上が積層して一次粒子となっていてもよい。また、蒸着インジウム薄膜フレークの一次粒子が凝集し、二次粒子を形成していてもよい。
Vapor-deposited indium thin film flakes consist of indium with a purity of 95% or higher and may contain trace amounts of impurities.
Vapor-deposited indium thin film flakes are flaky particles, sometimes referred to as scaly particles, tabular particles, and the like. Vapor-deposited indium thin film flakes are particles that have substantially flat surfaces and a substantially uniform thickness perpendicular to the substantially flat surfaces. The particles are very thin in thickness and have a substantially flat surface with a very long length. The length of the substantially flat surface is the diameter of a circle having the same projected area as that of the vapor deposited indium thin film flakes.
The shape of the substantially flat surface is not particularly limited and can be appropriately selected depending on the purpose. Polygons such as hexagons, substantially heptagons, and substantially octagons, random irregular shapes, and the like can be mentioned. Among these, a substantially circular shape is preferable.
The vapor-deposited indium thin film flakes may consist of one layer (single layer) or two or more layers laminated to form primary particles. Also, the primary particles of the vapor-deposited indium thin film flakes may aggregate to form secondary particles.
 蒸着インジウム薄膜フレークの平均厚さは、例えば0.100μm以下、好ましくは0.075μm以下、より好ましくは0.060μm以下であり、例えば0.001μm以上、好ましくは0.010μm以上、より好ましくは0.030μm以上とすることができる。
 蒸着インジウム薄膜フレークの累積50%体積粒子径D50は、例えば1.00μm以下、好ましくは0.70μm以下であり、例えば0.01μm以上、好ましくは0.05μm以上とすることができる。
The average thickness of the vapor-deposited indium thin film flakes is, for example, 0.100 μm or less, preferably 0.075 μm or less, more preferably 0.060 μm or less, for example 0.001 μm or more, preferably 0.010 μm or more, more preferably 0 .030 μm or more.
The cumulative 50% volume particle diameter D50 of the deposited indium thin film flakes is, for example, 1.00 μm or less, preferably 0.70 μm or less, and can be, for example, 0.01 μm or more, preferably 0.05 μm or more.
 本発明の蒸着インジウム薄膜フレークは、その粒径と、該粒径における蒸着インジウム薄膜フレークの体積割合との関係を示す体積基準の粒度分布において、第1のピークと、該第1のピークよりも粒径が大きい第2のピークとを有し、前記第1のピークにおける蒸着インジウム薄膜フレークの体積V1と、前記第2のピークにおける蒸着インジウム薄膜フレークの体積V2とが、(V1/V2)×100≧25%、を満たし、
 第1のピークにおける蒸着インジウム薄膜フレークの粒径P1と、第2のピークにおけるインジウム粒子の粒径P2とが、6.0≦P2/P1≦12、好ましくは、6.0≦P2/P1≦10、を満たし、
 前記蒸着インジウム薄膜フレークの累積50%体積粒子径D50が0.70μm以下である、
との要件を満たすものであることが好ましい。
 さらに、第2のピークにおける蒸着インジウム薄膜フレークの粒径P2が0.75μm以下であることが好ましい。
The vapor-deposited indium thin film flakes of the present invention have a first peak in a volume-based particle size distribution that shows the relationship between the particle size and the volume ratio of the vapor-deposited indium thin film flakes in the particle size, and and a second peak with a larger grain size, wherein the volume V1 of the deposited indium thin film flakes at the first peak and the volume V2 of the deposited indium thin film flakes at the second peak are equal to (V1/V2)× 100≧25%,
The particle size P1 of the deposited indium thin film flakes at the first peak and the particle size P2 of the indium particles at the second peak are 6.0≦P2/P1≦12, preferably 6.0≦P2/P1≦ 10, meet
The deposited indium thin film flakes have a cumulative 50% volume particle diameter D50 of 0.70 μm or less.
It is preferable that the requirements are satisfied.
Furthermore, it is preferable that the particle size P2 of the deposited indium thin film flakes at the second peak is 0.75 μm or less.
 蒸着インジウム薄膜フレークは、例えば、剥離性を有する基材上に、真空蒸着によりインジウムを含有する金属層を形成し、金属層を剥離することで得ることができる。
 剥離性を有する基材としては、平滑な表面を有するものであって、剥離性を有する材料から形成される基材や、表面に剥離層が形成された基材があげられる。
 剥離層としては、後の剥離工程で溶解可能な各種の有機物を用いることができる。また、剥離層を構成する有機物材料を適切に選択すれば、島状構造膜の剥離面に付着・残留した有機物を、蒸着インジウム薄膜フレークの保護層として機能させることができるので、好適である。
 保護層とは、蒸着インジウム薄膜フレークの凝集、酸化、溶剤への溶出等を抑制する機能を有する。特に、剥離層に用いた有機物を保護層として利用することにより、表面処理工程を別途設ける必要がなくなるので好ましい。
 保護層として利用可能な剥離層を構成する有機物としては、例えば、セルロースアセテートブチレート(CAB)等のセルロース系樹脂、ポリビニルアルコール、ポリビニルブチラール、ポリエチレングリコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルブチラール、アクリル酸共重合体、変性ナイロン系樹脂、ポリビニルピロリドン、ウレタン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、アルキド系樹脂等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。これらの中でも、保護層としての機能の高さから、セルロースアセテートブチレート(CAB)等のセルロース系樹脂が好ましい。
Vapor-deposited indium thin film flakes can be obtained, for example, by forming a metal layer containing indium on a releasable base material by vacuum deposition, and then detaching the metal layer.
The releasable substrate includes a substrate having a smooth surface and formed from a releasable material, and a substrate having a release layer formed on the surface.
As the peeling layer, various organic substances that can be dissolved in the later peeling process can be used. In addition, by appropriately selecting the organic material that constitutes the peeling layer, it is possible to cause the organic matter that adheres and remains on the peeled surface of the island-shaped structure film to function as a protective layer for the vapor-deposited indium thin film flakes, which is preferable.
The protective layer has a function of suppressing aggregation, oxidation, elution into a solvent, etc. of vapor-deposited indium thin film flakes. In particular, it is preferable to use the organic material used for the peeling layer as the protective layer, because it eliminates the need for a separate surface treatment step.
Examples of organic substances constituting a release layer that can be used as a protective layer include cellulose-based resins such as cellulose acetate butyrate (CAB), polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyacrylic acid, polyacrylamide, polyvinyl butyral, and acrylic. Examples thereof include acid copolymers, modified nylon resins, polyvinylpyrrolidone, urethane resins, polyester resins, polyether resins, alkyd resins, and the like. These can be used individually or in combination of 2 or more types, respectively. Among these, cellulose-based resins such as cellulose acetate butyrate (CAB) are preferable because of their high function as a protective layer.
 前記剥離層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、インクジェット、ブレードコート、グラビアコート、グラビアオフセットコート、バーコート、ロールコート、ナイフコート、エアナイフコート、コンマコート、Uコンマコート、AKKUコート、スムージングコート、マイクログラビアコート、リバースロールコート、4本ロールコート、5本ロールコート、ディップコート、カーテンコート、スライドコート、ダイコート等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 The method for forming the release layer is not particularly limited and can be appropriately selected depending on the intended purpose. , comma coating, U comma coating, AKKU coating, smoothing coating, micro gravure coating, reverse roll coating, 4-roll coating, 5-roll coating, dip coating, curtain coating, slide coating, die coating and the like. These can be used individually or in combination of 2 or more types, respectively.
 真空蒸着工程は、前記剥離層上にインジウムを含有する金属層を平均蒸着厚さが60nm以下となるように真空蒸着する工程である。
 インジウムを含有する金属層の平均蒸着厚さは60nm以下であり、55nm以下が好ましく、50nm以下がより好ましく、45nm以下が更に好ましい。なお、インジウムを含有する金属層の平均蒸着厚さは、蒸着インジウム薄膜フレークの平均厚さと同じである。
 前記金属層の平均蒸着厚さが60nm以下であると、塗膜の表面粗度Raが下がり、金属調意匠性を示す指標となるグロス値を高くすることができ、優れた金属調意匠性を発現できるという利点がある。
 前記平均蒸着厚さは、例えば、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて、金属層の断面観察を行い、5~10箇所の金属層の厚さ計測し、その平均値である。
The vacuum deposition step is a step of vacuum-depositing a metal layer containing indium on the release layer so as to have an average deposition thickness of 60 nm or less.
The average deposition thickness of the indium-containing metal layer is 60 nm or less, preferably 55 nm or less, more preferably 50 nm or less, and even more preferably 45 nm or less. Note that the average vapor deposition thickness of the metal layer containing indium is the same as the average thickness of the vapor deposited indium thin film flakes.
When the average deposition thickness of the metal layer is 60 nm or less, the surface roughness Ra of the coating film is lowered, and the gloss value, which is an index showing metallic design, can be increased, and excellent metallic design can be achieved. There is an advantage that it can be expressed.
The average deposition thickness, for example, using a scanning electron microscope (SEM), to observe the cross section of the metal layer, to measure the thickness of the metal layer at 5 to 10 locations, is the average value. .
 金属層は島状構造膜であることが好ましい。島状構造膜としては、例えば、真空蒸着、スパッタリング、めっき等の各種の方法によって形成することができる。これらの中でも、真空蒸着が好ましい。
 真空蒸着は、樹脂製基材にも成膜可能である点、廃液が出ない点等においてめっき法より好ましく、真空度を高くできる点、成膜速度(蒸着レート)が大きい点等においてスパッタリングより好ましい。
 真空蒸着における蒸着レートは、10nm/sec以上が好ましく、10nm/sec以上80nm/sec以下がより好ましい。
The metal layer is preferably an island structure film. The island structure film can be formed by various methods such as vacuum deposition, sputtering, and plating. Among these, vacuum deposition is preferred.
Vacuum deposition is preferable to plating in that it is possible to form a film on a resin base material and that no waste liquid is generated. preferable.
The deposition rate in vacuum deposition is preferably 10 nm/sec or more, more preferably 10 nm/sec or more and 80 nm/sec or less.
 剥離層上にインジウムの薄膜を成膜すると、蒸着源から飛来した個々のインジウム原子は、基材表面に到達すると、基材との相互作用によって、エネルギーを失って基材に吸着し、基材表面上で拡散、インジウム原子同士の衝突、結合し、3次元的な核が形成される。形成された3次元的な核は基材上の表面拡散原子の獲得により、原子数がある臨界値を超えると、隣接する3次元的な核と合体し島状に成長し島状構造膜を形成する。このような島状構造膜は、基材上にあるときは膜の形態を保持しているが、基材から剥がされると分裂して個々の島が蒸着インジウム薄膜フレークとなる。 When an indium thin film is formed on the release layer, individual indium atoms flying from the vapor deposition source reach the surface of the substrate, interact with the substrate, lose energy and are adsorbed to the substrate. Diffusion, collision and bonding of indium atoms on the surface form three-dimensional nuclei. The formed three-dimensional nuclei acquire surface-diffused atoms on the base material, and when the number of atoms exceeds a certain critical value, they unite with adjacent three-dimensional nuclei and grow into an island-like structure, forming an island-structure film. Form. Such an island-structured film retains the morphology of the film when on the substrate, but when detached from the substrate, the island-structured film breaks up and individual islands become vapor-deposited indium thin film flakes.
 最終的に得られる蒸着インジウム薄膜フレークの形状や累積50%体積粒子径、超微小粒子と微小粒子の体積比率(V1/V2)×100は、島状構造膜の平均膜厚(以下単に「膜厚」ということがある)を変えることによって制御することができる。島状構造膜の平均膜厚は、成膜中に膜の干渉を利用して測定することができるので、蒸着インジウム薄膜フレークの形状や大きさとの関係を予め求めておくことにより、所望の形状と大きさを有する蒸着インジウム薄膜フレークを容易に得ることができる。また、蒸着インジウム薄膜フレークの形状や累積50%体積粒子径、超微小粒子と微小粒子の体積比率に影響する操業要因としては、成膜方法、基材に飛来するインジウムのエネルギー(運動エネルギー・温度等)、剥離層の表面自由エネルギー、材質・温度、基材の冷却方法・温度、成膜速度等があげられる。 The shape and cumulative 50% volume particle diameter of the finally obtained evaporated indium thin film flakes, and the volume ratio of ultrafine particles and fine particles (V1/V2) × 100 are the average film thickness of the island-shaped structure film (hereinafter simply “ It can be controlled by changing the film thickness. The average film thickness of the island-shaped structure film can be measured by utilizing the interference of the film during film formation. Vapor-deposited indium thin film flakes having sizes of . In addition, the operating factors that affect the shape, cumulative 50% volume particle diameter, and volume ratio of ultrafine particles and fine particles of vapor-deposited indium thin film flakes include the film formation method and the energy of indium flying to the substrate (kinetic energy, temperature, etc.), the surface free energy of the release layer, the material/temperature, the cooling method/temperature of the base material, the film formation rate, and the like.
 剥離工程は、前記剥離層を溶解することにより前記金属層を剥離する工程である。
 前記剥離層を溶解可能な溶剤としては、剥離層を溶解可能な溶剤であれば特に制限はなく、目的に応じて適宜選択することができるが、金属含有膜形成用塗料の溶剤としてそのまま用いることができるものが好ましい。
The peeling step is a step of peeling off the metal layer by dissolving the peeling layer.
The solvent capable of dissolving the release layer is not particularly limited as long as it is capable of dissolving the release layer, and can be appropriately selected according to the purpose. It is preferable to be able to
 前記剥離層を溶解可能な溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、オクタノール、ドデカノール、エチレングリコール、プロピレングリコール等のアルコール系;テトラヒドロン等のエーテル系;アセトン、メチルエチルケトン、アセチルアセトン等のケトン系;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸フェニル等のエステル系;エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチエレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート等のグリコールエーテル系;フェノール、クレゾール等のフェノール系;ペンタン、ヘキサン、ヘプタン、オクタン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、オクタデセン、ベンゼン、トルエン、キシレン、トリメシン、ニトロベンゼン、アニリン、メトキシベンゼン、トリメシン等の脂肪族炭化水素系もしくは芳香族炭化水素系;ジクロロメタン、クロロホルム、トリクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン化脂肪族炭化水素系もしくはハロゲン化芳香族炭化水素系;ジメチルスルホキシド等の含硫黄系;ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、プロピオニトリル、ベンゾニトリル等の含窒素系等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 本発明の蒸着インジウム薄膜フレークは、その表面の少なくとも一部に有機物層を有することができる。
Solvents capable of dissolving the release layer include, for example, alcohols such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ethers such as tetrahydrone; acetone, methyl ethyl ketone, acetylacetone, and the like. ketones; esters such as methyl acetate, ethyl acetate, butyl acetate, and phenyl acetate; ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, Ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether , triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate; glycol ethers; phenol, cresol, etc.; pentane , hexane, heptane, octane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, octadecene, benzene, toluene, xylene, trimesine, nitrobenzene, aniline, methoxybenzene, trimesine and other aliphatic or aromatic hydrocarbons Halogenated aliphatic hydrocarbons or halogenated aromatic hydrocarbons such as dichloromethane, chloroform, trichloroethane, chlorobenzene, dichlorobenzene; Sulfur-containing systems such as dimethylsulfoxide; Dimethylformamide, dimethylacetamide, acetonitrile, propionitrile, benzo A nitrogen-containing type such as nitrile can be mentioned. These can be used individually or in combination of 2 or more types, respectively.
The vapor deposited indium thin film flakes of the present invention can have an organic layer on at least a portion of their surface.
 金属含有塗膜層の表面粗度Raは特に限定されないが、例えば、30nm以下であり、25nm以下が好ましく、15nm以下がより好ましい。
 表面粗度Raが30nm以下であると、鏡面意匠性を示す指標となる光沢値を高くすることができ、優れた鏡面意匠性を発現できるという利点がある。
 表面粗度Raは、例えば、走査型プローブ顕微鏡(AFM)を用い、30μm×30μmの範囲の算術平均表面粗さRaとして求めることができる。
Although the surface roughness Ra of the metal-containing coating layer is not particularly limited, it is, for example, 30 nm or less, preferably 25 nm or less, and more preferably 15 nm or less.
When the surface roughness Ra is 30 nm or less, there is an advantage that the gloss value, which is an index showing specular design, can be increased, and excellent specular design can be exhibited.
The surface roughness Ra can be obtained, for example, using a scanning probe microscope (AFM) as an arithmetic mean surface roughness Ra in the range of 30 μm×30 μm.
<電波透過率及び/又は光沢値>
 本発明の塗装物は、24GHz帯及び78GHz帯における電波透過率がいずれも75%以上との要件を満たすことが好ましい。
 また、本発明の塗装物は、20°光沢値が150以上及び60°光沢値が170以上との要件を満たすことが好ましい。これにより、塗装物は、より良好な鏡面意匠性を示す。
 さらに、本発明の塗装物は、24GHz帯及び78GHz帯における電波透過率がいずれも75%以上であり、20°光沢値が700以上及び60°光沢値が300以上との要件を満たすことが好ましい。
<Radio wave transmittance and/or gloss value>
The coated article of the present invention preferably satisfies the requirement that radio wave transmittance in both the 24 GHz band and the 78 GHz band be 75% or more.
Moreover, the coated article of the present invention preferably satisfies the requirements that the 20° gloss value is 150 or more and the 60° gloss value is 170 or more. As a result, the coated article exhibits a better specular design.
Furthermore, the coated article of the present invention preferably has radio wave transmittance of 75% or more in both the 24 GHz band and the 78 GHz band, and satisfies the requirements that the 20° gloss value is 700 or more and the 60° gloss value is 300 or more. .
(電波透過率)
 塗装物の24GHz帯及び78GHz帯における電波透過率は、いずれも75%以上であることが好ましい。好ましくは85%以上、より好ましくは90%以上である。
 塗装物の24GHz帯及び78GHz帯における電波透過率がいずれも75%以上である場合、塗装物が、携帯電話・電子機器・情報端末等の通信機器の筐体や、自動車のフロントグリルやバンパ等の場合であっても、電波の送受信に影響を与えることが少なく、誤作動や作動不能等を低減することが可能となる。
 ここで、電波透過率は、実施例に記載した方法で測定される。
(Radio wave transmittance)
It is preferable that the radio wave transmittance of the coated article in both the 24 GHz band and the 78 GHz band is 75% or more. It is preferably 85% or more, more preferably 90% or more.
If the radio wave transmittance in both the 24 GHz band and the 78 GHz band of the coated object is 75% or more, the coated object is the housing of communication equipment such as mobile phones, electronic devices, information terminals, etc., the front grille and bumper of automobiles, etc. Even in the case of , the transmission and reception of radio waves are less affected, and it is possible to reduce malfunctions, inoperability, and the like.
Here, the radio wave transmittance is measured by the method described in Examples.
(光沢値)
 塗装物の20°光沢値及び60°光沢値は、例えば、光沢計を用い、JIS Z 8741「鏡面光沢度-測定方法」に準拠した平行光方式で、光の入射角を20°及び60°として測定したものである。
 塗装物の20°光沢値(光の入射角20°における光沢値)は、150以上が好ましく、300以上がより好ましく、500以上がさらに好ましい。特に、20°光沢値が700以上であると、鏡面性が高い、優れた鏡面意匠とすることができる。
 ここで、入射角20°の光沢値は、正反射成分に近い反射強度を示す。
 塗装物の60°光沢値(光の入射角60°における光沢値)は、170以上が好ましく、250以上がより好ましく、300以上がさらに好ましい。特に、60°光沢値が350以上であると、鏡面性が高い、優れた鏡面意匠とすることができる。
 入射角60°の光沢値は、拡散成分に近い反射強度を示す。
 本発明において、塗装物の85°光沢値(光の入射角85°における光沢値)は特に限定されない。好ましくは90以上であり、より好ましくは93以上であり、さらに好ましくは95以上である。特に、85°光沢値が100以上であると、鏡面性が高い、優れた鏡面意匠とすることができる。85°光沢値は、20°光沢値と同様の手段で測定することができる。
(gloss value)
The 20° gloss value and 60° gloss value of the painted object are measured, for example, by using a gloss meter, using a parallel light method in accordance with JIS Z 8741 "Specular glossiness - measurement method", and setting the incident angle of light to 20 ° and 60 °. Measured as
The 20° gloss value (gloss value at a light incident angle of 20°) of the coated object is preferably 150 or more, more preferably 300 or more, and even more preferably 500 or more. In particular, when the 20° gloss value is 700 or more, it is possible to obtain an excellent specular design with high specularity.
Here, the gloss value at an incident angle of 20° indicates a reflection intensity close to the regular reflection component.
The 60° gloss value (gloss value at a light incident angle of 60°) of the coated object is preferably 170 or more, more preferably 250 or more, and even more preferably 300 or more. In particular, when the 60° gloss value is 350 or more, it is possible to obtain an excellent specular design with high specularity.
The gloss value at an incident angle of 60° indicates a reflection intensity close to the diffuse component.
In the present invention, the 85° gloss value (gloss value at a light incident angle of 85°) of the coated article is not particularly limited. It is preferably 90 or higher, more preferably 93 or higher, and even more preferably 95 or higher. In particular, when the 85° gloss value is 100 or more, an excellent specular design with high specularity can be obtained. The 85° gloss value can be measured in the same manner as the 20° gloss value.
 塗装物の光沢値は、蒸着インジウム薄膜フレーク含有塗膜層に含まれる、蒸着インジウム薄膜フレークの形状等(粒径、アスペクト比、厚さ、表面粗度等)を調整することで、容易に調整することができる。また、下塗塗膜層の表面粗度を調整することによっても、容易に調整することができる。 The gloss value of the painted object can be easily adjusted by adjusting the shape, etc. (particle diameter, aspect ratio, thickness, surface roughness, etc.) of the evaporated indium thin film flakes contained in the evaporated indium thin film flake-containing coating layer. can do. It can also be easily adjusted by adjusting the surface roughness of the undercoat film layer.
(上塗塗膜層)
 本発明の塗装物は、必要に応じて、金属含有塗膜層上に直接又は間接的に上塗塗膜層を設けることができる。
 上塗塗膜層を形成するための上塗塗料は、例えば、2液型硬化性塗料、1液型硬化性塗料、非硬化性塗料又は活性エネルギー線硬化性塗料があげられる。これらのうち、例えば、2液硬化型塗料、1液硬化型塗料又は活性エネルギー線硬化性塗料等の硬化性塗料により形成することができる。
 上塗塗膜層の形成に用いられる2液硬化型塗料、1液硬化型塗料又は活性エネルギー線硬化性塗料は、下塗塗膜層の形成に用いる下塗塗料に関して記載した、2液硬化型塗料、1液硬化型塗料又は活性エネルギー線硬化性塗料と同様の成分のものを用いることができる。
 なお、上塗塗膜層は、無色透明のクリヤ塗料であるか、着色透明の着色クリヤ塗料により形成される。さらに、これらの塗料に樹脂ビーズ、シリカ等の艶消材、金属顔料、パール顔料等の光輝材等を添加した塗料から形成されてもよい。
(Topcoat coating layer)
In the coated article of the present invention, a topcoat layer can be provided directly or indirectly on the metal-containing coating layer, if desired.
Topcoat paints for forming the topcoat film layer include, for example, two-component curable paints, one-component curable paints, non-curable paints, and active energy ray-curable paints. Among these, for example, it can be formed by a curable coating such as a two-component curable coating, a one-component curable coating, or an active energy ray-curable coating.
The two-component curable coating, one-component curable coating or active energy ray-curable coating used for forming the topcoat layer is the two-component curable coating, 1 described for the undercoat used for forming the undercoat layer. A liquid-curing coating or active energy ray-curing coating having the same components can be used.
The top coat layer is formed of a colorless and transparent clear paint or a colored and transparent colored clear paint. Furthermore, it may be formed from a paint obtained by adding a matting material such as resin beads, silica, etc., a luster material such as a metal pigment, a pearl pigment, etc. to these paints.
[塗装物の製造方法]
 本発明の塗装物の製造方法は、(i)被塗物上に直接又は間接的に、下塗塗料による下塗塗膜層を設ける工程、及び、(ii)前記下塗塗膜層の上に直接又は間接的に、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70%以上である金属含有塗膜層を設ける工程、を有し、下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、塗装物の製造方法である。
[Manufacturing method of coated object]
The method for producing a coated article of the present invention comprises the steps of: (i) directly or indirectly providing an undercoat coating film layer on an object to be coated, and (ii) directly or indirectly on the undercoat coating film layer indirectly providing a metal-containing coating layer having a pigment weight concentration (PWC) of 70% or more of vapor-deposited indium thin film flakes; A method for producing a coated object, which is a system paint or an active energy ray-curable paint.
 本発明の塗装物の製造方法において、被塗物の種類、材質、形状等は、特に限定されない。例えば、本発明の塗装物において記載した被塗物があげられる。
 本発明の塗装物の製造方法において、下塗塗料は、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料であれば特に限定されない。これらの塗料としては、例えば、本発明の塗装物において記載した下塗塗料があげられる。
 本発明の塗装物の製造方法において、金属含有塗膜層を形成するための塗料としては、金属含有塗料は、蒸着インジウム薄膜フレークを、乾燥塗膜中の顔料重量濃度(PWC)が70.0%以上となる量で含む金属含有塗料であれば特に限定されない。金属含有塗料としては、例えば、本発明の塗装物において記載した、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上である金属含有塗膜層を形成する塗料があげられる。
In the method for producing a coated object of the present invention, the type, material, shape, etc. of the object to be coated are not particularly limited. For example, the article to be coated described in the article to be coated of the present invention can be mentioned.
In the method for producing a coated article of the present invention, the undercoat is not particularly limited as long as it is a two-component curable paint, acrylic lacquer, melamine-based paint or active energy ray-curable paint. These paints include, for example, the undercoat paints described in the coated article of the present invention.
In the method for producing a coated object of the present invention, the metal-containing paint used for forming the metal-containing coating layer is vapor-deposited indium thin film flakes, and the pigment weight concentration (PWC) in the dry coating film is 70.0. There are no particular limitations as long as it is a metal-containing paint containing at least 10%. Examples of the metal-containing paint include paints that form a metal-containing coating film layer in which the pigment weight concentration (PWC) of vapor-deposited indium thin film flakes is 70.0% or more, as described in the coated article of the present invention.
 下塗塗膜層及び金属含有塗膜層の形成方法は、物品・基材等の形状やその用途等に応じて、塗料の塗膜を物品・基材等の上に設ける方法であれば、特に限定されない。例えば、エアスプレー、エアレススプレー、静電、回転霧化、ハケ、ローラー、ハンドガン、万能ガン、浸漬(ディッピング)、ロールコート、カーテンフローコート、ローラーカーテンコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート、ワイヤーバー、インクジェット、グラビア印刷、スクリーン印刷、オフセット印刷等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。好ましくは、エアスプレー、エアレススプレー、静電、回転霧化、ハケ、ハンドガン、万能ガン、インクジェットからなる群より選ばれる1種以上があげられる。 The method of forming the primer coating film layer and the metal-containing coating film layer is a method of providing a coating film of paint on the article / substrate etc. according to the shape of the article / substrate etc. and its use, etc. Not limited. For example, air spray, airless spray, electrostatic, rotary atomization, brush, roller, hand gun, universal gun, immersion (dipping), roll coating, curtain flow coating, roller curtain coating, die coating, air knife coating, blade coating, spin coating , reverse coating, gravure coating, wire bar, inkjet, gravure printing, screen printing, offset printing, and the like. These can be used individually or in combination of 2 or more types, respectively. Preferably, one or more selected from the group consisting of air spray, airless spray, electrostatic, rotary atomization, brush, hand gun, universal gun, and inkjet.
 下塗塗膜層及び/又は金属含有塗膜層を形成する際に、油等の汚染物質で塗膜形成面が汚染されている場合は、アルコール等で脱脂・清浄化するのが好ましい。また、接着性や耐食性を改善するために、粗面化処理、プラズマ処理、火炎処理、プライマー処理等の表面処理を塗膜形成面に行うことができる。
 下塗塗膜層及び/又は金属含有塗膜層を形成する際には、対応する塗料を塗布して塗膜を形成した後に、常温乾燥又は強制乾燥等の手段で塗膜を乾燥させて塗装物を形成してもよい。常温乾燥の場合は、常温(例えば、10~40℃未満)で静置すればよい。強制乾燥の場合は、ブロアー等を用いて乾燥してもよく、加熱炉等に入れることで、常温を超える温度、例えば50℃ 以上で1分以上加熱することで焼付け乾燥してもよい。
When the undercoat layer and/or the metal-containing coating layer is formed, if the surface on which the coating film is to be formed is contaminated with contaminants such as oil, it is preferably degreased and cleaned with alcohol or the like. Moreover, in order to improve adhesion and corrosion resistance, surface treatments such as roughening treatment, plasma treatment, flame treatment, and primer treatment can be applied to the surface on which the coating film is formed.
When forming the primer coating film layer and/or the metal-containing coating film layer, after forming the coating film by applying the corresponding paint, the coating film is dried by means of normal temperature drying or forced drying, etc. may be formed. In the case of drying at normal temperature, it may be left at rest at normal temperature (for example, 10 to less than 40°C). In the case of forced drying, drying may be performed using a blower or the like, or baking drying may be performed by placing in a heating furnace or the like and heating at a temperature exceeding room temperature, for example, 50° C. or higher for 1 minute or more.
 下塗塗膜層を形成する下塗塗料が2液型硬化性塗料である場合には、必要に応じて加熱することで硬化させてもよい。仕上り性の点から、乾燥や硬化前に予め常温でセッティング(静置)してもよい。
 下塗塗膜層を形成する下塗塗料が活性エネルギー線硬化性塗料である場合には、活性エネルギー線を照射して塗膜を硬化させる。硬化に際して用いる活性エネルギー線のとしては、本発明の塗装物を構成する際に用いる活性エネルギー線硬化性塗料である下塗塗料を硬化させる際に用いる、活性エネルギー線があげられる。
 活性エネルギー線源としては、水銀灯、メタルハライドランプ、キセノンランプ、エキシマレーザー、色素レーザー、UV-LED等の紫外線源、電子線加速装置等があげられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 活性エネルギー線の照射エネルギー量(積算光量)は、特に限定されない。例えば、10mJ/cm以上、好ましくは100mJ/cm以上、より好ましくは200mJ/cm以上、さらに好ましくは500mJ/cm以上であり、例えば、2,500mJ/cm以下、好ましくは2,000mJ/cm以下、より好ましくは1,700mJ/cm以下、さらに好ましくは1,500mJ/cm以下とすることができる。
 また、仕上り性の点から、乾燥や硬化前に予め常温でセッティング(静置)してもよい。
When the undercoat that forms the undercoat film layer is a two-component curable paint, it may be cured by heating as necessary. From the point of finish, the composition may be set (still) at room temperature before drying or curing.
When the undercoat that forms the undercoat layer is an active energy ray-curable paint, the coating is cured by irradiation with active energy rays. Examples of the active energy ray used for curing include the active energy ray used for curing the undercoat, which is the active energy ray-curable coating used to construct the coated article of the present invention.
Examples of active energy ray sources include mercury lamps, metal halide lamps, xenon lamps, excimer lasers, dye lasers, ultraviolet light sources such as UV-LEDs, and electron beam accelerators. These can be used individually or in combination of 2 or more types, respectively.
The irradiation energy amount (accumulated light amount) of the active energy ray is not particularly limited. For example, 10 mJ/cm 2 or more, preferably 100 mJ/cm 2 or more, more preferably 200 mJ/cm 2 or more, still more preferably 500 mJ/cm 2 or more, for example, 2,500 mJ/cm 2 or less, preferably 2, 000 mJ/cm 2 or less, more preferably 1,700 mJ/cm 2 or less, and even more preferably 1,500 mJ/cm 2 or less.
Also, from the viewpoint of finish, it may be set (set at rest) at normal temperature before drying or curing.
 塗膜形成に際しては、1回の塗装で設けてもよく、2回以上の塗装で設けてもよい。2回以上の塗装を行う場合には、途中で乾燥工程を設けてもよく、また、途中で乾燥工程を設けることなくWet on Wetで行ってもよく、これらを組み合わせてもよい。
 本発明における塗膜形成方法としては、例えば、(i)下塗塗膜層、金属含有塗膜層及び上塗塗膜層をそれぞれ形成しその都度乾燥・硬化させる3コート3ベーク法、(ii)下塗塗膜層及び金属含有塗膜層をそれぞれ形成しその都度乾燥・硬化させる2コート2ベーク法、(iii)下塗塗膜層、金属含有塗膜層及び上塗塗膜層を順に形成した後に1回の乾燥・硬化処理を行い全ての塗膜層を形成する3コート1ベーク法、(iv)下塗塗膜層、金属含有塗膜層及び上塗塗膜層のうち、下塗塗膜層と金属含有塗膜層、又は、金属含有層と上塗塗膜層とを1回の乾燥・硬化処理で形成する3コート2ベーク法、(v)下塗塗膜層及び金属含有塗膜層をそれぞれ形成した後に1回の乾燥・硬化処理を行い全ての塗膜層を形成する2コート1ベーク法等の手段を用いることができる。
When forming the coating film, the coating may be provided by one coating, or may be provided by coating two or more times. When coating is performed twice or more, a drying step may be provided in the middle, or wet on wet may be performed without providing a drying step in the middle, or these may be combined.
The method of forming a coating film in the present invention includes, for example, (i) a 3-coat 3-bake method in which an undercoat coating layer, a metal-containing coating layer and a top coating layer are formed and dried and cured each time, (ii) undercoating 2-coat 2-bake method in which a coating film layer and a metal-containing coating film layer are formed and dried and cured each time; 3-coat 1-bake method to form all coating layers by performing drying and curing treatment, (iv) Among the undercoat coating layer, metal-containing coating layer and top coating layer, the undercoat coating layer and the metal-containing coating A 3-coat 2-bake method in which a film layer or a metal-containing layer and a topcoat layer are formed in one drying and curing treatment, (v) after forming the undercoat coating layer and the metal-containing coating layer, respectively, 1 A means such as a 2-coat 1-bake method in which all the coating layers are formed by performing drying and curing treatments several times can be used.
 本発明の塗装物の製造方法において、下塗塗膜層及び金属含有塗膜層の厚さ(乾燥膜厚)は、特に限定されず、用途等に合わせて適宜調整することができる。例えば、本発明の塗装物において記載した、下塗塗膜層及び金属含有塗膜層の乾燥膜厚とすることができる。 In the method for producing a coated article of the present invention, the thickness (dry film thickness) of the primer coating layer and the metal-containing coating layer is not particularly limited, and can be appropriately adjusted according to the application. For example, it can be the dry film thickness of the undercoat coating layer and the metal-containing coating layer described in the coated article of the present invention.
[塗料セット]
 本発明の塗料セットは、(I)下塗塗料、及び、(II)蒸着インジウム薄膜フレークを、乾燥塗膜中の顔料重量濃度(PWC)が70%以上となる量で含む金属含有塗料、から少なくとも構成され、下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、塗料セットである。
 本発明の塗料セットは、被塗物上に直接又は間接的に設けられた下塗塗料により形成された下塗塗膜層、及び、前記下塗塗膜層の上に直接又は間接的に設けられた金属含有塗膜層、を有する塗装物を形成し得るように、下塗塗料及び金属含有塗料が少なくとも組み合わせられていれば、その形態等については特に限定されない。
[Paint set]
The paint set of the present invention comprises at least (I) a primer paint and (II) a metal-containing paint containing vapor-deposited indium thin film flakes in an amount such that the pigment weight concentration (PWC) in the dry paint film is 70% or more. and wherein the base coat is a two-pack curable paint, an acrylic lacquer, a melamine-based paint or an active energy ray curable paint.
The paint set of the present invention comprises an undercoat film layer formed by an undercoat paint directly or indirectly provided on an object to be coated, and a metal directly or indirectly provided on the undercoat film layer. The form and the like are not particularly limited as long as at least the undercoat paint and the metal-containing paint are combined so as to form a coated article having the coating film layer.
 本発明の塗料セットにおいて、塗布の対象となる被塗物の種類、材質、形状等は、特に限定されない。例えば、本発明の塗装物において記載した被塗物があげられる。
 本発明の塗料セットにおいて、下塗塗料は、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料であれば特に限定されない。これらの塗料としては、例えば、本発明の塗装物において記載した下塗塗料があげられる。
 本発明の塗料セットにおいて、金属含有塗料は、蒸着インジウム薄膜フレークを、乾燥塗膜中の顔料重量濃度(PWC)が70%以上となる量で含む金属含有塗料であれば特に限定されない。金属含有塗料としては、例えば、本発明の塗装物において記載した、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上である金属含有塗膜層を形成する塗料があげられる。
 本発明の塗料セットを構成する各塗料の塗装方法は、特に限定されない。例えば、本発明の塗装物の製造方法において記載した塗装方法があげられる。
In the paint set of the present invention, the type, material, shape, etc. of the object to be coated are not particularly limited. For example, the article to be coated described in the article to be coated of the present invention can be mentioned.
In the paint set of the present invention, the undercoat paint is not particularly limited as long as it is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint. These paints include, for example, the undercoat paints described in the coated article of the present invention.
In the paint set of the present invention, the metal-containing paint is not particularly limited as long as it contains vapor-deposited indium thin film flakes in such an amount that the pigment weight concentration (PWC) in the dry paint film is 70% or more. Examples of the metal-containing paint include paints that form a metal-containing coating film layer in which the pigment weight concentration (PWC) of vapor-deposited indium thin film flakes is 70.0% or more, as described in the coated article of the present invention.
The coating method of each paint constituting the paint set of the present invention is not particularly limited. For example, the coating method described in the manufacturing method of the coated article of the present invention can be mentioned.
 本発明の塗料セットは、必要に応じて、上塗塗料、希釈剤(シンナー)、着色塗料等からなる群より選ばれる1種以上をさらに含んでいてもよい。
 上塗塗料としては、例えば、本発明の塗装物において記載した2液型硬化性塗料又は活性エネルギー線硬化性塗料である上塗塗料があげられる。
 希釈剤(シンナー)としては、下塗塗料、金属含有塗料、上塗塗料等と混合し、希釈して粘度を低下できるものであれば、特に限定されない。
 着色塗料としては、例えば、塗装物に着色意匠性を付与し得るものであれば、特に限定されない。また、隠蔽層を構成するための塗料であってもよい。
 本発明の塗料セットは、本発明に係る塗装物を形成する際に、好ましく用いることができる。
The paint set of the present invention may further contain one or more selected from the group consisting of a topcoat paint, a diluent (thinner), a coloring paint and the like, if necessary.
Examples of topcoat paints include topcoat paints that are two-component curable paints or active energy ray-curable paints described in the coated article of the present invention.
The diluent (thinner) is not particularly limited as long as it can be mixed with an undercoat paint, a metal-containing paint, a topcoat paint, etc., and diluted to reduce the viscosity.
The coloring paint is not particularly limited as long as it can impart a colored design to the painted object. Moreover, it may be a paint for forming a masking layer.
The paint set of the present invention can be preferably used when forming the coated article of the present invention.
 以下、製造例、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。特に明示がない場合、「部」は質量部、「%」は質量%を示す。 The present invention will be described in more detail below with production examples, working examples, and comparative examples, but the present invention is not limited thereto. Unless otherwise specified, "part" indicates parts by mass and "%" indicates mass%.
[下塗塗料の調整]
<下塗塗料B1>
 分子量21,000のアクリル樹脂を30.0部、分子量14,000のアクリル樹脂を5.5部、分子量26,000のアクリル樹脂を2.5部、硬化触媒を0.01部、及び混合溶剤を61.9部、の割合で含有する2液硬化型塗料の主剤X1を調製した。混合溶剤は、エステル系溶剤及びケトン系溶剤を含有する。
 ヘキサメチレンジイソシアネートプレポリマーを54.0部、及びエステル系溶剤を46.0部、の割合で含有する2液硬化型塗料の硬化剤Y1を調製した。
 ケトン系溶剤を60.0部、及びエステル系溶剤を60.0部、の割合で含有する希釈剤Z1を調製した。
 主剤X1を100部、硬化剤Y1を12部、及び希釈剤Z1を120部、の割合で混合し、下塗塗料B1を調整した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
[Adjustment of undercoat]
<Undercoat B1>
30.0 parts of an acrylic resin with a molecular weight of 21,000, 5.5 parts of an acrylic resin with a molecular weight of 14,000, 2.5 parts of an acrylic resin with a molecular weight of 26,000, 0.01 part of a curing catalyst, and a mixed solvent 61.9 parts, the main agent X1 of the two-component curing type paint was prepared. The mixed solvent contains an ester solvent and a ketone solvent.
A curing agent Y1 for a two-pack curable paint containing 54.0 parts of a hexamethylene diisocyanate prepolymer and 46.0 parts of an ester solvent was prepared.
Diluent Z1 was prepared containing 60.0 parts of ketone solvent and 60.0 parts of ester solvent.
100 parts of the main agent X1, 12 parts of the curing agent Y1, and 120 parts of the diluent Z1 were mixed at a ratio of 120 parts to prepare an undercoat paint B1. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
<下塗塗料B2>
 主剤及び希釈剤として、下塗塗料B1と同じ主剤X1及び希釈剤Z1を用いた。
 ヘキサメチレンジイソシアネートプレポリマーを58.0部、及びエステル系溶剤42.0部、の割合で含有する2液硬化型塗料の硬化剤Y2を調製した。
 主剤X1を100部、硬化剤Y2を12部、及び希釈剤Z1を120部、の割合で混合し、下塗塗料B2を調整した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
<Undercoat B2>
As the main agent and diluent, the same main agent X1 and diluent Z1 as in the undercoat paint B1 were used.
A curing agent Y2 for a two-pack curable paint containing 58.0 parts of hexamethylene diisocyanate prepolymer and 42.0 parts of an ester solvent was prepared.
100 parts of the main agent X1, 12 parts of the curing agent Y2, and 120 parts of the diluent Z1 were mixed at a ratio to prepare an undercoat paint B2. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
<下塗塗料B3>
 主剤及び希釈剤として、下塗塗料B2と同じ主剤X1及び希釈剤Z1を用いた。
 ヘキサメチレンジイソシアネートプレポリマーを47.5部、及びエステル系溶剤を52.5部、の割合で含有する2液硬化型塗料の硬化剤Y3を調製した。
 主剤X1を100部、硬化剤Y3を20部、及び希釈剤Z1を120部、の割合で混合し、下塗塗料B4を調整した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
<Undercoat B3>
As the main agent and diluent, the same main agent X1 and diluent Z1 as in the undercoat paint B2 were used.
A curing agent Y3 for a two-component curable paint containing 47.5 parts of hexamethylene diisocyanate prepolymer and 52.5 parts of an ester solvent was prepared.
100 parts of the main agent X1, 20 parts of the curing agent Y3, and 120 parts of the diluent Z1 were mixed at a ratio to prepare an undercoat paint B4. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
<下塗塗料B4>
 分子量21,000のアクリル樹脂を37.5部、及び混合溶剤を62.5部、の割合で含有する2液硬化型塗料の主剤X2を調製した。混合溶剤は、エステル系溶剤及びケトン系溶剤を含有する。
 ヘキサメチレンジイソシアネートプレポリマーを35部、及びエステル系溶剤を65部、の割合で含有する2液硬化型塗料の硬化剤Y4を調製した。
 ケトン系溶剤を15.0部、及びエステル系溶剤を85.0部、の割合で含有する希釈剤Z2を調製した。
 主剤X2を4部、硬化剤Y4を1部、及び希釈剤Z2を3部、の割合で混合して下塗塗料B4を調整した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
<Undercoat B4>
A main component X2 of a two-component curable paint containing 37.5 parts of an acrylic resin having a molecular weight of 21,000 and 62.5 parts of a mixed solvent was prepared. The mixed solvent contains an ester solvent and a ketone solvent.
A curing agent Y4 for a two-component curable paint containing 35 parts of hexamethylene diisocyanate prepolymer and 65 parts of an ester solvent was prepared.
Diluent Z2 was prepared containing 15.0 parts of ketone solvent and 85.0 parts of ester solvent.
4 parts of the main agent X2, 1 part of the curing agent Y4 and 3 parts of the diluent Z2 were mixed at a ratio of 4 parts to prepare an undercoat paint B4. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
<下塗塗料B5>
 分子量21,000のアクリル樹脂を35.0部、カーボンブラックを3.5部、及び混合溶剤を60.7部、の割合で含有する2液硬化型塗料の主剤X3を調製した。混合溶剤は、エステル系溶剤及びケトン系溶剤を含有する。
 硬化剤及び希釈剤として、下塗塗料B4と同じ硬化剤Y4及び希釈剤Z2を用いた。
 主剤X3を4部、硬化剤Y4を1部、及び希釈剤Z2を3部、の割合で混合して下塗塗料B6を調整した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
<Undercoat B5>
A main component X3 of a two-component curable paint containing 35.0 parts of an acrylic resin having a molecular weight of 21,000, 3.5 parts of carbon black, and 60.7 parts of a mixed solvent was prepared. The mixed solvent contains an ester solvent and a ketone solvent.
As the curing agent and diluent, the same curing agent Y4 and diluent Z2 as in the undercoat B4 were used.
4 parts of the main agent X3, 1 part of the curing agent Y4, and 3 parts of the diluent Z2 were mixed at a ratio of 4 parts to prepare an undercoat paint B6. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
<下塗塗料B6>
 アクリル樹脂を24.0部、セルロース系樹脂を4.0部、可塑剤を1.0部、及び混合溶剤を70.9部、の割合で含有する1液硬化型アクリル系ラッカー塗料を調製した。混合溶剤は、エステル系溶剤及びケトン系溶剤を含有する。
 ケトン系溶剤を43.0部、アルコール系溶剤28.0部、エステル系溶剤9.0部、及びエーテル系溶剤を20.0部、の割合で含有する希釈剤Z3を調製した。
 1液硬化型アクリル系ラッカー塗料を100部、及び希釈剤Z3を110部、の割合で混合し、下塗塗料B6を調整した。
<Undercoat B6>
A one-part curable acrylic lacquer coating containing 24.0 parts of an acrylic resin, 4.0 parts of a cellulose resin, 1.0 part of a plasticizer, and 70.9 parts of a mixed solvent was prepared. . The mixed solvent contains an ester solvent and a ketone solvent.
Diluent Z3 was prepared containing 43.0 parts of ketone solvent, 28.0 parts of alcohol solvent, 9.0 parts of ester solvent, and 20.0 parts of ether solvent.
100 parts of the one-liquid curing acrylic lacquer paint and 110 parts of the diluent Z3 were mixed together to prepare an undercoat paint B6.
<下塗塗料B7>
 ポリエステル樹脂を20.0部、及び混合溶剤を80.0部、の割合で含有する2液硬化型塗料の主剤X4を調製した。混合溶剤は、芳香族炭化水素系溶剤及びケトン系溶剤を含有する。
 ヘキサメチレンジイソシアネートプレポリマーを20.0部、硬化触媒を0.6部、及び混合溶剤を全成分の合計が100部となる量、の割合で含有する2液硬化型塗料の硬化剤Y5を調製した。混合溶剤は、エステル系溶剤及びケトン系溶剤を含有する。
 芳香族炭化水素系溶剤を30.0部、アルコール系溶剤を20.0部、及びケトン系溶剤を50.0部、の割合で含有する希釈剤Z4を調製した。
 主剤X4を10部、硬化剤Y5を1部、及び希釈剤Z4を8部、の割合で混合し、下塗塗料B8を調整した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
<Undercoat B7>
A main agent X4 for a two-component curable paint containing 20.0 parts of a polyester resin and 80.0 parts of a mixed solvent was prepared. The mixed solvent contains an aromatic hydrocarbon solvent and a ketone solvent.
20.0 parts of hexamethylene diisocyanate prepolymer, 0.6 parts of a curing catalyst, and a mixed solvent in an amount that makes the total of all components 100 parts. did. The mixed solvent contains an ester solvent and a ketone solvent.
Diluent Z4 was prepared containing 30.0 parts of aromatic hydrocarbon solvent, 20.0 parts of alcohol solvent, and 50.0 parts of ketone solvent.
10 parts of the main agent X4, 1 part of the curing agent Y5, and 8 parts of the diluent Z4 were mixed at a ratio to prepare an undercoat paint B8. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
<下塗塗料B8>
 アクリル樹脂を26.3部、アミノ樹脂を7.8部、ウレタン樹脂を2.4部、及び混合溶剤を60.1部、の割合で含有する1液硬化型アクリルメラミン塗料を調製した。混合溶剤は、エステル系溶剤及びアルコール系溶剤を含有する。
 ケトン系溶剤を40.0部、及びエステル系溶剤を60.0部、の割合で含有する希釈剤Z5を調製した。
 1液硬化型アクリルメラミン塗料を100部、及び希釈剤Z5を70部、の割合で混合し、下塗塗料B8を調整した。
<Undercoat B8>
A one-liquid curable acrylic melamine paint containing 26.3 parts of an acrylic resin, 7.8 parts of an amino resin, 2.4 parts of a urethane resin, and 60.1 parts of a mixed solvent was prepared. The mixed solvent contains an ester solvent and an alcohol solvent.
Diluent Z5 was prepared containing 40.0 parts of ketone solvent and 60.0 parts of ester solvent.
100 parts of the one-liquid curing acrylic melamine paint and 70 parts of the diluent Z5 were mixed at a ratio of 70 parts to prepare an undercoat paint B8.
<下塗塗料B9>
 ポリエステル樹脂を37.6部、アミノ樹脂を14.8部、及び混合溶剤を46.6部、の割合で含有する1液硬化型ポリエステルメラミン塗料を調製した。混合溶剤は、芳香族炭化水素系溶剤及びアルコール系溶剤を含有する。
 芳香族炭化水素系溶剤を40.0部、エステル系溶剤を20.0部、及びアルコール系溶剤を30.0部、の割合で含有する希釈剤Z6を調製した。
 1液硬化型ポリエステルメラミン塗料を100部、及び希釈剤Z6を50部、の割合で混合し、下塗塗料B9を調整した。
<Undercoat B9>
A one-liquid curable polyester melamine paint containing 37.6 parts of polyester resin, 14.8 parts of amino resin and 46.6 parts of mixed solvent was prepared. The mixed solvent contains an aromatic hydrocarbon solvent and an alcohol solvent.
Diluent Z6 was prepared containing 40.0 parts of aromatic hydrocarbon solvent, 20.0 parts of ester solvent, and 30.0 parts of alcohol solvent.
Undercoat paint B9 was prepared by mixing 100 parts of one-liquid curable polyester melamine paint and 50 parts of diluent Z6.
<下塗塗料B10>
 アクリル樹脂を18.8部、セルロース系樹脂を2.0部、及び混合溶剤を79.2部、の割合で含有する1液硬化型アクリルシリコン塗料を調製した。混合溶剤は、芳香族炭化水素系溶剤、エステル系溶剤、ケトン系溶剤及びアルコール系溶剤を含有する。
 ケトン系溶剤を55.0部、及びアルコール系溶剤を45.0部、の割合で含有する希釈剤Z7を調製した。
 1液硬化型アクリルシリコン塗料を100部、及び希釈剤Z7を100部、の割合で混合し、下塗塗料B10を調整した。
<Undercoat B10>
A one-liquid curable acrylic silicone paint containing 18.8 parts of an acrylic resin, 2.0 parts of a cellulose resin, and 79.2 parts of a mixed solvent was prepared. The mixed solvent contains an aromatic hydrocarbon solvent, an ester solvent, a ketone solvent and an alcohol solvent.
Diluent Z7 was prepared containing 55.0 parts of ketone solvent and 45.0 parts of alcohol solvent.
100 parts of the one-liquid curing acrylic silicone paint and 100 parts of the diluent Z7 were mixed at a ratio of 100 parts to prepare an undercoat paint B10.
<下塗塗料B11>
 エポキシ樹脂を15.0部、ウレタン樹脂を7.5部、及び混合溶剤を77.5部、の割合で含有する1液硬化型エポキシ樹脂塗料を調製した。混合溶剤は、芳香族炭化水素系溶剤、ケトン系溶剤及びアルコール系溶剤を含有する。
 芳香族炭化水素系溶剤を40.0部、ケトン系溶剤を40.0部、及びアルコール系溶剤を20.0部、の割合で含有する希釈剤Z8を調製した。
 1液硬化型エポキシ樹脂塗料を100部、及び希釈剤Z8を50部、の割合で混合し、下塗塗料B11を調整した。
<Undercoat B11>
A one-liquid curable epoxy resin paint containing 15.0 parts of epoxy resin, 7.5 parts of urethane resin, and 77.5 parts of mixed solvent was prepared. The mixed solvent contains an aromatic hydrocarbon solvent, a ketone solvent and an alcohol solvent.
Diluent Z8 was prepared containing 40.0 parts of aromatic hydrocarbon solvent, 40.0 parts of ketone solvent, and 20.0 parts of alcohol solvent.
Undercoat paint B11 was prepared by mixing 100 parts of one-liquid curing epoxy resin paint and 50 parts of diluent Z8.
<下塗塗料B12>
 アルキド樹脂を22.3部、及び混合溶剤を77.7部、の割合で含有するアルキド樹脂塗料を調製した。混合溶剤は、芳香族炭化水素系溶剤を含有する。
 芳香族炭化水素系溶剤からなる希釈剤Z9を調製した。
 アルキド樹脂塗料を100部、及び希釈剤Z9を35部、の割合で混合し、下塗塗料B12を調整した。
<Undercoat B12>
An alkyd resin coating was prepared containing 22.3 parts alkyd resin and 77.7 parts mixed solvent. The mixed solvent contains an aromatic hydrocarbon solvent.
A diluent Z9 consisting of an aromatic hydrocarbon solvent was prepared.
100 parts of the alkyd resin paint and 35 parts of the diluent Z9 were mixed together to prepare a primer paint B12.
<下塗塗料B13>
 ウレタンアクリレートを30.0部、アクリレートモノマーを15.0部、セルロース系樹脂を2.0部、及び混合溶剤を53.0部、の割合で含有する紫外線硬化型の下塗塗料B13を調製した。
<Undercoat B13>
An ultraviolet curable undercoat B13 was prepared containing 30.0 parts of urethane acrylate, 15.0 parts of acrylate monomer, 2.0 parts of cellulose resin and 53.0 parts of mixed solvent.
<下塗塗料B14>
 アクリル樹脂を36.0部、ポリカーボネートポリオール樹脂を4.0部、硬化触媒を0.1部、及び混合溶剤を59.9部、の割合で含有する2液硬化型塗料の主剤X5を調製した。混合溶剤は、エステル系溶剤及びケトン系溶剤を含有する。
 主剤X5を100部、硬化剤Y1を25部、希釈剤Z1を110部、の割合で混合し、下塗塗料B14を調整した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
<Undercoat B14>
A main agent X5 for a two-pack curing type paint containing 36.0 parts of an acrylic resin, 4.0 parts of a polycarbonate polyol resin, 0.1 part of a curing catalyst, and 59.9 parts of a mixed solvent was prepared. . The mixed solvent contains an ester solvent and a ketone solvent.
100 parts of the main agent X5, 25 parts of the curing agent Y1 and 110 parts of the diluent Z1 were mixed at a ratio of 100 parts to prepare an undercoat paint B14. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
[金属含有塗料の調整]
<金属含有塗料M1>
 蒸着インジウム薄膜フレークを2.0部、ケトン系溶剤を27.0部、エーテル系溶剤を7.8部、及びエステル系溶剤を63.0部、の割合で含有し、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)を90.9質量%に調整した金属含有塗料M1を調製した。
[Adjustment of paint containing metal]
<Metal-containing paint M1>
2.0 parts of vapor deposited indium thin film flakes, 27.0 parts of ketone solvent, 7.8 parts of ether solvent, and 63.0 parts of ester solvent, and the pigment of vapor deposited indium thin film flakes A metal-containing paint M1 was prepared with a weight concentration (PWC) adjusted to 90.9% by mass.
<金属含有塗料M2>
 銀化合物錯体を24.7部、アルコール系溶剤を73.3部、及びエーテル系溶剤を2.0部、の割合で含有する金属含有塗料M2を調製した。
<Metal-containing paint M2>
A metal-containing paint M2 containing 24.7 parts of a silver compound complex, 73.3 parts of an alcohol solvent, and 2.0 parts of an ether solvent was prepared.
[上塗塗料の調整]
<上塗塗料T1>
 分子量21,000のアクリル樹脂を18.4部、分子量10,000のアクリル樹脂を9.1部、セルロース系樹脂を2.0部、及び混合溶剤を69.4部、の割合で含有する2液硬化型塗料の主剤を調製した。混合溶剤は、エステル系溶剤、及びケトン系溶剤を含有する。
 ヘキサメチレンジイソシアネートプレポリマーを54.0部、及びエステル系溶剤を46.0部、の割合で含有する2液硬化型塗料の硬化剤を調製した。
 主剤を100部、硬化剤を15部、及びケトン系溶剤を60部、の割合で混合し、2液硬化型の上塗塗料T1を調製した。なお、水酸基とイソシアネート基の比OH/NCOは、1.2である。
[Adjustment of top coat paint]
<Topcoat T1>
2 containing 18.4 parts of an acrylic resin with a molecular weight of 21,000, 9.1 parts of an acrylic resin with a molecular weight of 10,000, 2.0 parts of a cellulose resin, and 69.4 parts of a mixed solvent A main agent for a liquid curable paint was prepared. The mixed solvent contains an ester solvent and a ketone solvent.
A curing agent for a two-component curable paint containing 54.0 parts of a hexamethylene diisocyanate prepolymer and 46.0 parts of an ester solvent was prepared.
100 parts of the main agent, 15 parts of the curing agent, and 60 parts of the ketone solvent were mixed in proportions to prepare a two-liquid curing type topcoat T1. The OH/NCO ratio of hydroxyl groups to isocyanate groups is 1.2.
<上塗塗料T2>
 アクリル樹脂10.0部、アクリレートモノマー30.0部、ウレタンアクリレート10.0部、及び混合溶剤を45.4部、の割合で含有する紫外線硬化型の上塗塗料T2を調製した。混合溶剤は、エステル系溶剤、ケトン系溶剤及び芳香族炭化水素系溶剤を含有する。
<Topcoat T2>
An ultraviolet-curing topcoat T2 containing 10.0 parts of an acrylic resin, 30.0 parts of an acrylate monomer, 10.0 parts of a urethane acrylate, and 45.4 parts of a mixed solvent was prepared. The mixed solvent contains an ester solvent, a ketone solvent and an aromatic hydrocarbon solvent.
[基材]
PC:ポリカーボネート板
PET:ポリエチレンテレフタレートシート
SUS304:SUS304ステンレス板
[Base material]
PC: Polycarbonate plate PET: Polyethylene terephthalate sheet SUS304: SUS304 stainless plate
[金属含有ペーストの調製]
<金属含有ペーストP1>
 蒸着インジウム薄膜フレークを20.0部、及びアルコール系溶剤を78.0部、の割合で含有し、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)を90.9質量%に調整した金属含有ペーストP1を調製した。
[Preparation of metal-containing paste]
<Metal-containing paste P1>
A metal-containing paste P1 containing vapor-deposited indium thin film flakes in a proportion of 20.0 parts and an alcohol solvent in a proportion of 78.0 parts, and adjusting the pigment weight concentration (PWC) of the vapor-deposited indium thin film flakes to 90.9% by mass. was prepared.
<金属含有ペーストP2>
 アルミニウム粉末を73.0部、炭化水素系溶剤を26.0部、及び脂肪酸を1.0部、の割合で含有する金属含有ペーストP2を調製した。
<Metal-containing paste P2>
A metal-containing paste P2 containing 73.0 parts of aluminum powder, 26.0 parts of hydrocarbon solvent, and 1.0 part of fatty acid was prepared.
<金属含有ペーストP3>
 蒸着アルミニウム薄膜フレークを9.0部、アルコール系溶剤を67.5部、エーテル系溶剤を22.5部、及びシリカを1.0部、の割合で含有する金属含有ペーストP3を調製した。
<Metal-containing paste P3>
A metal-containing paste P3 was prepared containing 9.0 parts vapor-deposited aluminum thin film flakes, 67.5 parts alcohol solvent, 22.5 parts ether solvent, and 1.0 part silica.
[添加剤]
<添加剤1>
 ブチリル基含有量55.1質量%のセルロース系樹脂を20.0部、及びエステル系溶剤を80.0部、の割合で含有する添加剤1を調製した。
[Additive]
<Additive 1>
An additive 1 containing 20.0 parts of a cellulose resin having a butyryl group content of 55.1% by mass and 80.0 parts of an ester solvent was prepared.
<添加剤2>
 ブチリル基含有量38.1質量%のセルロース系樹脂を20.0部、及びエステル系溶剤を80.0部、の割合で含有する添加剤2を調製した。
<Additive 2>
An additive 2 containing 20.0 parts of a cellulose resin having a butyryl group content of 38.1% by mass and 80.0 parts of an ester solvent was prepared.
<添加剤3>
 市販のシリコン系表面調整剤を用いた。なお、添加剤3における不揮発分は100質量%とした。
<Additive 3>
A commercially available silicon-based surface conditioner was used. The non-volatile content in Additive 3 was 100% by mass.
[塗膜の評価]
<鏡面意匠性評価>
(鏡面意匠性(外観))
 得られた各塗膜について、鏡面の具合を目視にて観察し、以下の基準で鏡面意匠性を評価した。結果を表1示す。
-評価基準-
 A:鮮明な映り込みがあり美麗な鏡面意匠
 B:映り込みがある鏡面意匠
 C:金属調ではあるが映り込みを確認できない鏡面意匠
[Evaluation of coating film]
<Evaluation of mirror surface design>
(Mirror surface design (appearance))
The condition of the mirror surface of each coating film obtained was visually observed, and the mirror surface design was evaluated according to the following criteria. Table 1 shows the results.
-Evaluation criteria-
A: Beautiful mirror surface design with clear reflection B: Mirror surface design with reflection C: Mirror surface design with metallic tone but reflection cannot be confirmed
(鏡面光沢度)
 得られた各塗膜について、塗膜面及び蒸着面を測定面とし、グロス値を測定した。グロス値の測定は、光沢計(BYK社製 micro-TRI-gloss cat.4446)を用い、JIS Z8741「鏡面光沢度-測定方法」に準拠した平行光方式で、入射角20°、60°及び85°のグロス値を測定した。結果を表1示す。
(specular glossiness)
For each coating film obtained, the gloss value was measured using the coating film surface and the deposition surface as measurement surfaces. The gloss value was measured using a gloss meter (BYK micro-TRI-gloss cat.4446), using a parallel light method in accordance with JIS Z8741 "Specular gloss - measurement method" at incident angles of 20 °, 60 ° and The 85° gloss value was measured. Table 1 shows the results.
<電波透過性評価>
(減衰量及び透過率)
 電波透過性は、ベクトルネットワークアナライザ(アンリツ社製、「ME7838A」)及び角周波数バンドに対応するアンテナを用いて、フリースペース(自由空間)法により、18GHz~26.5GHz及び60GHz~90GHzにて、2ポートS(Scattering)パラメータ測定により行ない、24GHz帯及び78GHz帯における減衰量(db)及び透過率(%)により評価した。
<Evaluation of radio wave permeability>
(Attenuation and transmittance)
Radio wave permeability was measured at 18 GHz to 26.5 GHz and 60 GHz to 90 GHz by the free space method using a vector network analyzer (manufactured by Anritsu, "ME7838A") and an antenna corresponding to the angular frequency band. 2-port S (Scattering) parameter measurement was performed, and the attenuation (db) and transmittance (%) in the 24 GHz band and 78 GHz band were evaluated.
[実施例101~128、比較例101~109]
 下塗塗料、中塗塗料、上塗塗料及び基材として、それぞれ表1~表4に記載したものを用い、スプレーガンで表1~表4に記載した膜厚となるように塗装し、表1~表4に記載した塗膜形成条件で乾燥・硬化して塗装物を得た。
 得られた塗装物の鏡面意匠性及び塗膜密着性を評価し、結果を表1~表4に併せて記載した。
[Examples 101 to 128, Comparative Examples 101 to 109]
As the primer paint, intermediate paint, topcoat paint and base material, use the ones listed in Tables 1 to 4, respectively, and use a spray gun to achieve the film thickness listed in Tables 1 to 4. The coated product was obtained by drying and curing under the coating film forming conditions described in 4 above.
The resulting coated products were evaluated for mirror surface design and coating film adhesion, and the results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表4より、本発明の塗装物は、JIS Z8741「鏡面光沢度-測定方法」に準拠した平行光方式で、入射角20°、60°及び85°について測定したグロス値がいずれも大きく、また、目視による評価においても、優れた鏡面意匠性を示すことがわかる。
 さらに、本発明の塗装物は、塗膜形成時の加熱温度が80℃程度でも、鏡面意匠性に優れた塗膜を形成することができる。
From Tables 1 to 4, the coated article of the present invention is a parallel light method in accordance with JIS Z8741 "Specular gloss-measurement method", and the gloss values measured at incident angles of 20 °, 60 ° and 85 ° are all It can be seen from the large and visual evaluation that excellent specular design properties are exhibited.
Furthermore, the coated article of the present invention can form a coating film excellent in specular design even at a heating temperature of about 80° C. during coating film formation.
[実施例201、比較例201]
 下塗塗料、中塗塗料、上塗塗料及び基材として、それぞれ表5に記載したものを用い、スプレーガンで表5に記載した膜厚となるように塗装し、表5に記載した塗膜形成条件で乾燥・硬化して塗装物を得た。
 得られた塗装物の電波透過性を評価し、結果を表5に併せて記載した。
[Example 201, Comparative Example 201]
As the undercoat paint, intermediate paint, topcoat paint, and base material, use the ones listed in Table 5, respectively, and apply with a spray gun so that the film thickness is listed in Table 5. Under the coating film formation conditions listed in Table 5, It was dried and cured to obtain a coated product.
The radio wave transmittance of the obtained coated article was evaluated, and the results are shown in Table 5 together.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5より、本発明の塗装物は、24GHz帯及び78GHz帯のいずれにおいても、電波透過性に優れていることがわかる。 From Table 5, it can be seen that the coated article of the present invention has excellent radio wave permeability in both the 24 GHz band and the 78 GHz band.
[実施例301~324、比較例301~308]
 金属含有ペースト、溶剤1~5、添加剤1~3及び基材として、それぞれ表6~表9に記載したものを用い、金属顔料の顔料重量濃度(PWC)をそれぞれ表6~表9に記載した値となるように調整した金属含有塗料を調製し、スプレーガンで乾燥膜厚1.0μmとなるように塗装し乾燥して塗装物を得た。溶剤1は芳香族炭化水素系溶剤、溶剤2はケトン系溶剤、溶剤3はエステル系溶剤、溶剤4はグリコールエーテル系溶剤、及び溶剤5はアルコール系溶剤である。
 得られた塗装物の鏡面意匠性を評価し、結果を表6~表9に併せて記載した。
[Examples 301 to 324, Comparative Examples 301 to 308]
As metal-containing pastes, solvents 1 to 5, additives 1 to 3, and base materials, those listed in Tables 6 to 9 were used, and the pigment weight concentrations (PWC) of metal pigments were listed in Tables 6 to 9, respectively. A metal-containing paint was prepared so as to have a value of 1.0 μm after coating with a spray gun and drying to obtain a coated product. Solvent 1 is an aromatic hydrocarbon solvent, solvent 2 is a ketone solvent, solvent 3 is an ester solvent, solvent 4 is a glycol ether solvent, and solvent 5 is an alcohol solvent.
The specular design properties of the obtained coated products were evaluated, and the results are shown in Tables 6 to 9.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表6~表9より、金属顔料として蒸着インジウム薄膜フレークを金属顔料とし、金属顔料のPWC(顔料重量濃度)が70.0質量%以上である場合には、鏡面意匠性に優れた塗膜を形成できることがわかる。
 
From Tables 6 to 9, when vapor-deposited indium thin film flakes are used as the metal pigment, and the PWC (pigment weight concentration) of the metal pigment is 70.0% by mass or more, a coating film excellent in mirror surface design is obtained. It turns out that it can be formed.

Claims (5)

  1.  (a)被塗物の上に直接又は間接的に設けられた、下塗塗料により形成された下塗塗膜層、及び、
     (b)前記下塗塗膜層の上に直接又は間接的に設けられた、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70.0%以上である金属含有塗膜層、を有し、
     前記下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、
     ことを特徴とする塗装物。
    (a) a base coat film layer formed by a base coat directly or indirectly provided on an object to be coated; and
    (b) a metal-containing coating layer having a pigment weight concentration (PWC) of vapor-deposited indium thin film flakes of 70.0% or more directly or indirectly provided on the base coating layer;
    The undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
    A painted object characterized by:
  2.  (c)前記金属含有塗膜層の上に直接又は間接的に設けられた、2液型硬化性塗料又は活性エネルギー線硬化性塗料により形成された上塗塗膜層、を更に有する、
     ことを特徴とする請求項1に記載の塗装物。
    (c) a topcoat layer formed of a two-component curable coating or an active energy ray-curable coating directly or indirectly provided on the metal-containing coating layer;
    The coated article according to claim 1, characterized in that:
  3.  (d)前記塗装物の24GHz帯及び78GHz帯における電波透過率がいずれも75%以上、及び/又は、
     (e)前記塗装物の20°光沢値が150以上及び60°光沢値が170以上、の要件を満たす、
     ことを特徴とする請求項1又は2に記載の塗装物。
    (d) the radio wave transmittance in both the 24 GHz band and the 78 GHz band of the coated article is 75% or more, and/or
    (e) satisfying the requirements that the 20° gloss value of the painted article is 150 or more and the 60° gloss value is 170 or more;
    The coated article according to claim 1 or 2, characterized in that:
  4.  (i)被塗物の上に直接又は間接的に、下塗塗料による下塗塗膜層を設ける工程、及び、
     (ii)前記下塗塗膜層の上に直接又は間接的に、蒸着インジウム薄膜フレークの顔料重量濃度(PWC)が70%以上である金属含有塗膜層を設ける工程、を有し、
     前記下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、
     ことを特徴とする塗装物の製造方法。
    (i) a step of directly or indirectly providing an undercoat coating film layer of the undercoat paint on the object to be coated; and
    (ii) providing directly or indirectly on said basecoat layer a metal-containing coating layer having a pigment weight concentration (PWC) of vapor deposited indium thin film flakes of 70% or more;
    The undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
    A method for producing a coated object, characterized by:
  5.  少なくとも、
     (I)下塗塗料、及び、
     (II)蒸着インジウム薄膜フレークを、乾燥塗膜中の顔料重量濃度(PWC)が70%以上となる量で含む金属含有塗料、
    から構成され、
     前記下塗塗料が、2液型硬化性塗料、アクリル系ラッカー、メラミン系塗料又は活性エネルギー線硬化性塗料である、
     ことを特徴とする塗料セット。

     
    at least,
    (I) an undercoat paint, and
    (II) a metal-containing coating comprising vapor-deposited indium thin film flakes in an amount such that the pigment weight concentration (PWC) in the dry coating is 70% or more;
    consists of
    The undercoat paint is a two-component curable paint, an acrylic lacquer, a melamine-based paint, or an active energy ray-curable paint.
    A paint set characterized by:

PCT/JP2021/022427 2021-06-14 2021-06-14 Coated object, coated object production method, and paint set WO2022264188A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021534615A JP7146311B1 (en) 2021-06-14 2021-06-14 Painted object, method for producing painted object, and paint set
CN202180002612.2A CN115707332A (en) 2021-06-14 2021-06-14 Coated article, method for producing coated article, and coating material set
PCT/JP2021/022427 WO2022264188A1 (en) 2021-06-14 2021-06-14 Coated object, coated object production method, and paint set
JP2022063234A JP2022190666A (en) 2021-06-14 2022-04-06 Coated article and method for manufacturing coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022427 WO2022264188A1 (en) 2021-06-14 2021-06-14 Coated object, coated object production method, and paint set

Publications (1)

Publication Number Publication Date
WO2022264188A1 true WO2022264188A1 (en) 2022-12-22

Family

ID=83505432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022427 WO2022264188A1 (en) 2021-06-14 2021-06-14 Coated object, coated object production method, and paint set

Country Status (3)

Country Link
JP (2) JP7146311B1 (en)
CN (1) CN115707332A (en)
WO (1) WO2022264188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351579B1 (en) 2023-06-06 2023-09-27 株式会社フェクト Paint for forming indium-like coatings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117065375B (en) * 2023-10-17 2023-12-22 山东源邦新材料股份有限公司 Method for preparing ASA powder based on spray drying method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264593A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Shaped article of luminosity ornament used in beam path of radar device
JP4022819B2 (en) * 2002-12-26 2007-12-19 豊田合成株式会社 Radio wave transmission cover
JP2010030075A (en) * 2008-07-25 2010-02-12 Toyoda Gosei Co Ltd Electromagnetic wave transmissive brilliant coating resin product and its manufacturing method
JP2018076405A (en) * 2016-11-07 2018-05-17 株式会社イクヨ Metallic coating composition and coat
JP2021063285A (en) * 2019-10-17 2021-04-22 尾池工業株式会社 Scaly indium particle, fluid dispersion, ink and coating film and production method thereof
JP6920509B1 (en) * 2020-04-28 2021-08-18 株式会社オリジン Metallic coating film, molded body having it, and method for forming metallic coating film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957560B2 (en) * 1997-06-20 1999-10-04 日本ペイント株式会社 Method for forming laminated coating film and laminated coating film
JP2016221469A (en) * 2015-06-01 2016-12-28 関西ペイント株式会社 Multi-layered coating film forming method
US20190039090A1 (en) * 2016-02-02 2019-02-07 Kansai Paint Co., Ltd. Brilliant pigment-containing aqueous base coat coating material, and method for forming multilayer film using same
CN109996611B (en) * 2016-11-18 2022-11-15 关西涂料株式会社 Method for forming multilayer coating film
WO2019225629A1 (en) * 2018-05-23 2019-11-28 関西ペイント株式会社 Bright pigment dispersion and method for forming multilayer coating film
US11203690B2 (en) * 2019-02-21 2021-12-21 Oike & Co., Ltd. Thin leaf-like indium particles and method for producing same, glitter pigment, and water-based paint and coating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022819B2 (en) * 2002-12-26 2007-12-19 豊田合成株式会社 Radio wave transmission cover
JP2006264593A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Shaped article of luminosity ornament used in beam path of radar device
JP2010030075A (en) * 2008-07-25 2010-02-12 Toyoda Gosei Co Ltd Electromagnetic wave transmissive brilliant coating resin product and its manufacturing method
JP2018076405A (en) * 2016-11-07 2018-05-17 株式会社イクヨ Metallic coating composition and coat
JP2021063285A (en) * 2019-10-17 2021-04-22 尾池工業株式会社 Scaly indium particle, fluid dispersion, ink and coating film and production method thereof
JP6920509B1 (en) * 2020-04-28 2021-08-18 株式会社オリジン Metallic coating film, molded body having it, and method for forming metallic coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351579B1 (en) 2023-06-06 2023-09-27 株式会社フェクト Paint for forming indium-like coatings

Also Published As

Publication number Publication date
JP7146311B1 (en) 2022-10-04
JPWO2022264188A1 (en) 2022-12-22
JP2022190666A (en) 2022-12-26
CN115707332A (en) 2023-02-17

Similar Documents

Publication Publication Date Title
CN107708878B (en) Method for forming multilayer coating film
JP7146311B1 (en) Painted object, method for producing painted object, and paint set
JP7164785B2 (en) Multilayer coating film forming method
WO2017175468A1 (en) Bright pigment dispersion and method for forming multilayer coating film
TWI434902B (en) Coating composition for metal thin film and glistening composite film formed by said composition
JP5622748B2 (en) Coating composition, coated article, and multilayer coating film forming method
WO2018012014A1 (en) Glitter pigment dispersion
EP1015131A2 (en) Multi-layer paints and method for producing the same
EP2003174B1 (en) Hard coating composition for metal base
WO2017135426A1 (en) Multi-layered coating film and multi-layered coating film formation method
WO2018092878A1 (en) Method for forming multilayer coating film
WO2019142639A1 (en) Method for forming multilayer coating film
JP7297667B2 (en) Multilayer coating film forming method
WO2018092874A1 (en) Method for forming multi-layer coating film
JP2006095522A (en) Method for coating water-based coating material
WO2022244483A1 (en) Multilayer coating film-forming method
JP2002194013A (en) Energy rays curable type resin composition and method for forming film
JP6487715B2 (en) Painted body
JP2005255781A (en) Laminating film
JP2005213274A (en) Aqueous paint and method for preparing and applying the same
KR20100075959A (en) Coating compositions exhibiting corrosion resistance properties and methods of coil coating
CN109266152B (en) Coating composition for repairing and using method thereof
JP6818447B2 (en) Painting method
JP2023163198A (en) Multitiered paint film forming method
WO2024043248A1 (en) Method for forming multilayered coating film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021534615

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE