WO2022264187A1 - Radar signal processing device, radar signal processing method, and radar device - Google Patents

Radar signal processing device, radar signal processing method, and radar device Download PDF

Info

Publication number
WO2022264187A1
WO2022264187A1 PCT/JP2021/022426 JP2021022426W WO2022264187A1 WO 2022264187 A1 WO2022264187 A1 WO 2022264187A1 JP 2021022426 W JP2021022426 W JP 2021022426W WO 2022264187 A1 WO2022264187 A1 WO 2022264187A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
pulse signal
radar
unit
observation
Prior art date
Application number
PCT/JP2021/022426
Other languages
French (fr)
Japanese (ja)
Inventor
智也 山岡
啓 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021545860A priority Critical patent/JP6961135B1/en
Priority to PCT/JP2021/022426 priority patent/WO2022264187A1/en
Publication of WO2022264187A1 publication Critical patent/WO2022264187A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Definitions

  • the present disclosure relates to a radar signal processing device, a radar signal processing method, and a radar device.
  • the Doppler frequency of each observation point is calculated by performing a Fourier transform in the azimuth direction on pulse signals scattered by each of a plurality of observation points included in an observation area on the ground surface. It generates a DBS image showing the intensity of the Doppler frequency of the observation point.
  • the phase of the pulse signal after scattering by each observation point changes with the movement of the platform on which the synthetic aperture is mounted.
  • the conventional radar signal processing apparatus using the DBS method uses the distance between the center point of the observation area and the center point of the synthetic aperture to determine the post-scattering from each observation point. to compensate for the phase of the pulse signal.
  • the Doppler frequency of each observation point can be affected by the so-called squint angle and cause displacement.
  • the squint angle is the angle formed between the direction perpendicular to the azimuth direction and the radiation direction of the pulse signal on the ground surface.
  • the displacement amount of the Doppler frequency (hereinafter referred to as "frequency displacement amount") varies depending on the position of the observation point. Therefore, among the plurality of observation points, there is an observation point where the "displacement difference amount of the Doppler frequency", which will be described later, is larger than half of the PRF (Pulse Repetition Frequency) of the pulse signal emitted from the radar device.
  • the Doppler frequency displacement difference amount is the difference between the absolute value of the frequency displacement amount at the observation point and the absolute value of the frequency displacement amount at the center point of the observation area.
  • a pulse signal after being scattered by an observation point with a Doppler frequency displacement difference amount larger than half of the PRF becomes azimuth ambiguity, and as a result, the imaging of the observation point may be degraded.
  • the pulse signal phase compensation by the conventional radar signal processing apparatus is performed based on the distance between the center point of the observation area and the center point of the synthetic aperture regardless of the position of the observation point.
  • the displacement difference amount of the Doppler frequency is less than the PRF.
  • the present disclosure has been made to solve the above problems, and is a radar signal processing apparatus and radar signal processing that can reduce the number of observation points where the displacement difference amount of the Doppler frequency is larger than half of the PRF. Aim to get a method.
  • a radar signal processing apparatus includes a pulse signal acquisition unit that acquires a pulse signal after scattering by each of a plurality of observation points included in an observation area of a radar apparatus, one point in the observation area, and a radar apparatus.
  • a pulse signal acquisition unit that acquires a pulse signal after scattering by each of a plurality of observation points included in an observation area of a radar apparatus, one point in the observation area, and a radar apparatus.
  • the range cell of each pulse signal acquired by the pulse signal acquisition unit A phase compensator is provided for compensating the phase of each pulse signal based on the distance between the corresponding point and one point within the synthetic aperture.
  • FIG. 1A is a perspective view showing the relationship between the synthetic aperture 1 and the observation area 3 of the radar apparatus according to Embodiment 1
  • FIG. 1B is a plan view showing the observation area 3 on the ground surface.
  • 1 is a configuration diagram showing a radar device including a radar signal processing device 40 according to Embodiment 1
  • FIG. 1 is a configuration diagram showing a radar signal processing device 40 according to Embodiment 1
  • FIG. 2 is a hardware configuration diagram showing hardware of the radar signal processing device 40 according to Embodiment 1.
  • FIG. 2 is a hardware configuration diagram of a computer when the radar signal processing device 40 is realized by software, firmware, or the like.
  • FIG. 4 is an explanatory diagram showing an example of measurement of Doppler frequencies on the ground surface including the observation area 3
  • FIG. 4 is a flowchart showing a radar signal processing method, which is a processing procedure of the radar signal processing device 40
  • 4 is an explanatory diagram showing an example of measurement of Doppler frequencies on the ground surface including the
  • FIG. 1 is an explanatory diagram showing the relationship between a synthetic aperture 1 and an observation area 3 that the radar device according to Embodiment 1 has.
  • FIG. 1A is a perspective view showing the relationship between a synthetic aperture 1 and an observation area 3 that the radar device according to Embodiment 1 has
  • FIG. 1B is a plan view showing the observation area 3 on the ground surface.
  • a synthetic aperture 1 of the radar system is mounted on a platform and moves as the platform moves.
  • the azimuth direction, which is the moving direction of the synthetic aperture 1 is the same as the moving direction of the platform.
  • Platforms are, for example, satellites or airplanes.
  • the center point 1a of the synthetic aperture 1 is located at a distance of D/2 from one end of the synthetic aperture 1 in the azimuth direction. The point is that the distance from the edge is D/2.
  • the center point 1a of the synthetic aperture 1 is the distance from one end in the direction orthogonal to the azimuth direction and the distance from the azimuth direction on the two-dimensional plane. The difference is that the distance from the other end in the orthogonal direction is the same.
  • the center point 1a is not strictly limited to the center point of the synthetic aperture 1, and may be a point deviated from the center point of the synthetic aperture 1 within a practically acceptable range.
  • An observation area 3 is an observation area of the radar device that exists on the ground surface.
  • a plurality of observation points 2 are present inside the observation area 3 .
  • FIG. 1 shows an example in which the observation area 3 has a rectangular shape, and C 1 , C 2 , C 3 , and C 4 indicate corner points of the observation area 3 .
  • the shape of the observation area 3 is not limited to a rectangle, and the shape of the observation area 3 may be, for example, a polygon other than a rectangle, or a circle.
  • the center point 3a of the observation area 3 is the intersection of the line segment connecting C1 and C3 and the line segment connecting C2 and C4 .
  • ⁇ sq is the squint angle.
  • the ground range line GRL is a line (projection line) obtained by projecting a line connecting the center point 3a of the observation region 3 and the center point 1a of the synthetic aperture 1 onto the ground surface.
  • the center point 3a is not strictly limited to the center point of the observation area 3, and may be a point deviated from the center point of the observation area 3 within a practically acceptable range. Therefore, the ground range line GRL may be a line that connects a certain point within the observation area 3 and a certain point within the synthetic aperture 1 and is projected onto the ground surface.
  • FIG. 2 is a configuration diagram showing a radar device including the radar signal processing device 40 according to Embodiment 1.
  • FIG. 3 is a configuration diagram showing the radar signal processing device 40 according to Embodiment 1.
  • FIG. 4 is a hardware configuration diagram showing hardware of the radar signal processing device 40 according to the first embodiment.
  • the radar device shown in FIG. 2 includes a signal generation section 10, an analog circuit section 20, an antenna section 30, and a radar signal processing device 40.
  • the signal generation unit 10 includes a pulse signal generator 11 , an auxiliary information storage unit 12 , a digital signal storage unit 13 and a DBS image storage unit 14 .
  • the analog circuit section 20 includes an oscillation section 21, a multiplication section 22, an amplification section 23, a switching section 24, an amplification section 25, a multiplication section 26, a filter section 27, and an analog-to-digital converter (hereinafter referred to as "A/D converter") 28. ing.
  • the pulse signal generator 11 generates a pulse signal and outputs the pulse signal to the multiplier 22 .
  • the pulse signal generated by the pulse signal generator 11 may be a simple pulse signal whose signal level repeatedly changes between H level and L level, or may be a chirped pulse signal.
  • the auxiliary information storage unit 12 stores platform trajectory information, observation geometric information, radar specifications, and the like as auxiliary information.
  • the digital signal storage unit 13 temporarily stores the digital signal output from the A/D converter 28 and outputs the digital signal to the radar signal processing device 40 .
  • the DBS image storage unit 14 stores DBS images generated by the radar signal processing device 40 .
  • the oscillator 21 oscillates a carrier wave.
  • the multiplier 22 up-converts the frequency of the pulse signal by multiplying the pulse signal output from the pulse signal generator 11 by the carrier wave oscillated by the oscillator 21 .
  • the multiplier 22 outputs the up-converted pulse signal to the amplifier 23 .
  • the amplifying unit 23 amplifies the up-converted pulse signal output from the multiplying unit 22 and outputs the amplified pulse signal to the switching unit 24 .
  • Switching section 24 outputs the amplified pulse signal output from amplifying section 23 to antenna section 30 and outputs the received signal output from antenna section 30 to amplifying section 25 .
  • Amplification section 25 amplifies the reception signal output from switching section 24 and outputs the amplified reception signal to multiplication section 26 .
  • Multiplying section 26 multiplies the carrier wave oscillated by oscillating section 21 by the amplified received signal output from amplifying section 25, thereby down-converting the frequency of the received signal. Multiplying section 26 outputs the down-converted received signal to filtering section 27 .
  • the filter unit 27 is implemented by, for example, a bandpass filter.
  • the filter unit 27 suppresses out-of-band components contained in the down-converted received signal output from the multiplication unit 26 and outputs the out-of-band component-suppressed received signal to the A/D converter 28 .
  • the A/D converter 28 converts the received signal after out-of-band component suppression output from the filter unit 27 from an analog signal to a digital signal, and outputs the digital signal to the digital signal storage unit 13 .
  • the antenna unit 30 radiates the pulse signal output from the switching unit 24 as a beam toward the observation area 3 . Further, the antenna unit 30 receives pulse signals after scattering by each observation point 2 included in the observation area 3 and outputs the pulse signals after scattering to the switching unit 24 as received signals.
  • the radar signal processing device 40 includes a pulse signal acquisition section 41 , a phase compensation section 46 and an image generation section 47 .
  • the pulse signal acquisition unit 41 includes a Fourier transform unit 42 , a range compression unit 43 , a compensation processing unit 44 and an inverse Fourier transform unit 45 .
  • the pulse signal acquisition unit 41 acquires each digital signal stored in the digital signal storage unit 13 as a pulse signal after scattering by each of the plurality of observation points 2 included in the observation area 3 .
  • the Fourier transform unit 42 is realized by, for example, a Fourier transform circuit 51 shown in FIG.
  • the Fourier transform unit 42 acquires each digital signal from the digital signal storage unit 13 and Fourier transforms each digital signal in the range direction.
  • the Fourier transform unit 42 outputs each Fourier-transformed signal to the range compression unit 43 .
  • the range compression unit 43 is realized by, for example, the range compression circuit 52 shown in FIG.
  • the range compression unit 43 multiplies each Fourier-transformed signal output from the Fourier transform unit 42 by a reference function for range compression, thereby compressing the range of each Fourier-transformed signal.
  • the range compression unit 43 outputs each range-compressed signal to the compensation processing unit 44 .
  • the compensation processing unit 44 is realized by, for example, a compensation processing circuit 53 shown in FIG.
  • the compensation processing unit 44 performs range cell migration compensation on each range-compressed signal output from the range compression unit 43 .
  • the compensation processing unit 44 outputs each migration-compensated signal to the inverse Fourier transform unit 45 .
  • the inverse Fourier transform unit 45 is implemented by, for example, an inverse Fourier transform circuit 54 shown in FIG.
  • the inverse Fourier transform unit 45 inverse Fourier transforms the migration-compensated signals output from the compensation processing unit 44 in the range direction.
  • the inverse Fourier transform unit 45 outputs the signals after the inverse Fourier transform to the phase compensation unit 46 as the pulse signals acquired by the pulse signal acquisition unit 41 .
  • the phase compensator 46 is implemented by, for example, a phase compensator 55 shown in FIG.
  • the phase compensator 46 selects points corresponding to the range cells of the respective pulse signals acquired by the pulse signal acquirer 41 and the center point of the synthetic aperture 1 among a plurality of points existing on the ground range line GRL. Based on the distance from 1a, the phase of each pulse signal is compensated.
  • the ground range line GRL is a line that connects the center point 3a of the observation area 3 and the center point 1a of the synthetic aperture 1 and is projected onto the ground surface. doing.
  • phase compensation is performed.
  • the unit 46 compensates the phase of the pulse signal by using a certain point within the synthetic aperture 1 instead of the center point 1a of the synthetic aperture 1 .
  • the phase compensator 46 outputs each phase-compensated pulse signal to the image generator 47 .
  • the image generation unit 47 is realized by, for example, the image generation circuit 56 shown in FIG.
  • the image generation unit 47 generates a DBS image by Fourier transforming the pulse signals after phase compensation by the phase compensation unit 46 in the azimuth direction.
  • the image generation unit 47 outputs the DBS image to the DBS image storage unit 14 .
  • each of the Fourier transform unit 42, the range compression unit 43, the compensation processing unit 44, the inverse Fourier transform unit 45, the phase compensation unit 46, and the image generation unit 47, which are components of the radar signal processing device 40, are shown in FIG. It is assumed to be realized by dedicated hardware as shown in . That is, it is assumed that the radar signal processing device 40 is implemented by a Fourier transform circuit 51, a range compression circuit 52, a compensation processing circuit 53, an inverse Fourier transform circuit 54, a phase compensation circuit 55 and an image generation circuit 56.
  • Each of the Fourier transform circuit 51, the range compression circuit 52, the compensation processing circuit 53, the inverse Fourier transform circuit 54, the phase compensation circuit 55 and the image generation circuit 56 may be, for example, single circuits, multiple circuits, programmed processors, parallel programs. processor, ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the constituent elements of the radar signal processing device 40 are not limited to those realized by dedicated hardware, and the radar signal processing device 40 may be realized by software, firmware, or a combination of software and firmware. There may be.
  • Software or firmware is stored as a program in a computer's memory.
  • a computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 5 is a hardware configuration diagram of a computer when the radar signal processing device 40 is implemented by software, firmware, or the like.
  • each A memory 61 stores a program for causing a computer to execute a processing procedure.
  • a processor 62 of the computer then executes the program stored in the memory 61 .
  • FIG. 4 shows an example in which each component of the radar signal processing device 40 is implemented by dedicated hardware
  • FIG. 5 shows an example in which the radar signal processing device 40 is implemented by software, firmware, or the like. ing.
  • this is only an example, and some components in the radar signal processing device 40 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
  • FIG. 6 is an explanatory diagram showing a measurement example of the Doppler frequency of the ground surface including the observation area 3.
  • the Doppler frequency of the central point 3a of the observation area 3 is used as the reference Doppler frequency
  • the Doppler frequencies of the respective observation points 2 included in the observation area 3 are displayed on a contour map.
  • the reference Doppler frequency is 0 [Hz]
  • the Doppler frequency at observation point 2 is the difference from the reference Doppler frequency.
  • the straight line shown in FIG. 6 is the ground range line GRL.
  • the Doppler frequency differs for each position of the observation point 2, as shown in FIG.
  • observation point C 1 , observation point C 2 , observation point C 3 , and observation point C 4 which are corner points of observation area 3
  • the Doppler frequencies of observation point C 2 and observation point C 4 are Although the Doppler frequency is close to the Doppler frequency of the center point 3a, the Doppler frequencies of the observation points C 1 and C 3 are significantly different from the Doppler frequency of the center point 3a of the observation area 3 . Therefore , the difference in displacement between the Doppler frequencies at the observation points C1 and C3 may be larger than half the PRF.
  • the reason why the Doppler frequencies of the observation points C 1 and C 3 differ greatly from the Doppler frequency of the center point 3a of the observation area 3 is that the squint angle ⁇ sq is not 0 and the radar equipment observes in an oblique direction. This is because the change in the frequency displacement amount becomes steeper as the region 3 is observed and the squint angle ⁇ sq increases.
  • the difference between the absolute values of the Doppler frequencies at the observation points C 1 and C 3 and the absolute value of the Doppler frequency at the center point 3a of the observation area 3 changes with the change in the squint angle ⁇ sq .
  • the conventional radar signal processing device compensates the phase of the pulse signal after being scattered by each of the observation points C 1 , C 2 , C 3 and C 4 .
  • the pulse signal phase compensation by the conventional radar signal processing apparatus is performed based on the distance between the center point 3a of the observation area 3 and the center point 1a of the synthetic aperture 1 regardless of the position of the observation point 2. .
  • the conventional radar signal processing apparatus compensates for the phase of the pulse signal after being scattered by each of the observation points C 1 , C 2 , C 3 and C 4 , so that the observation points C 1 , Even if the Doppler frequencies at observation points C 2 , C 3 and C 4 are changed, the Doppler frequency displacement at observation points with large frequency displacements such as observation points C 1 and C 3
  • the amount of difference may not be less than half the PRF. Unless the displacement difference amount of the Doppler frequency becomes less than half of the PRF , the pulse signals after scattering by each of the observation points C1 and C3 become azimuth ambiguity, and as a result, the observation point C1 and the observation point C3 Each of the points C3 may not be imaged on the image.
  • the difference between the Doppler frequency of the point R1 corresponding to the range cell of the pulse signal of the observation point C1 and the Doppler frequency of the observation point C1 is the squint Even if the angle ⁇ sq is high, it is small compared to the difference between the Doppler frequency of the observation point C 1 and the Doppler frequency of the central point 3 a of the observation area 3 .
  • the difference between the Doppler frequency of the point R3 corresponding to the range cell of the pulse signal of the observation point C3 and the Doppler frequency of the observation point C3 is , the squint angle .theta.sq increases and the amount of change in frequency displacement becomes steep, the difference is small compared to the difference between the Doppler frequency at the observation point C3 and the Doppler frequency at the center point 3a of the observation area 3.
  • the displacement difference amount of the Doppler frequency becomes smaller than when phase compensation is performed.
  • the pulse signal at the observation point C3 if phase compensation is performed based on the distance between the point R3 and the center point 1a of the synthetic aperture 1, the center point 3a of the observation area 3 and the center of the synthetic aperture 1 Based on the distance from the point 1a, the displacement difference amount of the Doppler frequency becomes smaller than when phase compensation is performed.
  • FIG. 7 is a flowchart showing a radar signal processing method, which is a processing procedure of the radar signal processing device 40.
  • the pulse signal generator 11 of the signal generation section 10 generates a pulse signal and outputs the pulse signal to the multiplication section 22 of the analog circuit section 20 .
  • the oscillation section 21 of the analog circuit section 20 oscillates a carrier wave.
  • the oscillator 21 outputs carrier waves to the multipliers 22 and 26, respectively.
  • the multiplier 22 multiplies the pulse signal by the carrier wave to up-convert the frequency of the pulse signal.
  • the multiplier 22 outputs the up-converted pulse signal to the amplifier 23 .
  • the amplifying unit 23 amplifies the up-converted pulse signal output from the multiplying unit 22 and outputs the amplified pulse signal to the switching unit 24 .
  • the switching unit 24 outputs the amplified pulse signal output from the amplifying unit 23 to the antenna unit 30 .
  • the antenna unit 30 radiates the pulse signal output from the switching unit 24 as a beam toward the observation area 3 .
  • a pulse signal emitted from the antenna section 30 is scattered by each observation point 2 included in the observation area 3 .
  • the pulse signal after being scattered by each observation point 2 returns to the antenna section 30 .
  • the antenna unit 30 receives the pulse signal after scattering by each observation point 2 and outputs the pulse signal after scattering to the switching unit 24 as a received signal.
  • Switching section 24 outputs each received signal output from antenna section 30 to amplifying section 25 .
  • Amplifying section 25 amplifies each reception signal output from switching section 24 and outputs each amplified reception signal to multiplication section 26 .
  • Multiplying section 26 outputs each down-converted received signal to filtering section 27 .
  • the filter unit 27 suppresses out-of-band components contained in the down-converted received signals output from the multiplication unit 26, and outputs the out-of-band component-suppressed received signals to the A/D converter 28. Output.
  • the A/D converter 28 receives the received signal after out-of-band component suppression from the filter unit 27, it converts the received signal from an analog signal to a digital signal s 0 (n, h).
  • the A/D converter 28 outputs each digital signal s 0 (n, h) to the digital signal storage section 13 .
  • n indicates the range cell number and h indicates the pulse number.
  • the digital signal s 0 (n,h) is expressed in range-hit dimensions.
  • the Fourier transform unit 42 of the radar signal processing device 40 acquires each digital signal s 0 (n, h) from the digital signal storage unit 13 .
  • the Fourier transform unit 42 Fourier transforms each digital signal s 0 (n, h) in the range direction (step ST1 in FIG. 7).
  • the Fourier transform unit 42 can use FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • the Fourier transform unit 42 may use, for example, DFT (Discrete Fourier Transform) to Fourier transform the digital signal s 0 (n, h) in the range direction.
  • the Fourier transform unit 42 outputs each Fourier-transformed signal S 0 (n, h) to the range compression unit 43 .
  • the range compression unit 43 acquires the signal S 0 (n, h) after each Fourier transform from the Fourier transform unit 42 .
  • the range compression unit 43 multiplies each Fourier-transformed signal S 0 (n, h) by a reference function G(n) for range compression, as shown in the following equation (1).
  • the signal S 0 (n, h) after the Fourier transform is range-compressed (step ST2 in FIG. 7). Since the reference function G(n) for range compression is a known function, detailed description thereof will be omitted.
  • the range compression unit 43 outputs the range-compressed signal S comp (n, h) to the compensation processing unit 44 .
  • the compensation processing unit 44 acquires each of the range-compressed signals S comp (n, h) from the range compression unit 43, and from the auxiliary information storage unit 12, platform trajectory information, observation geometry information, and Acquire radar specifications, etc. Every time the compensation processing unit 44 acquires the range-compressed signal S comp (n, h) from the range compression unit 43, based on the auxiliary information, the center point 3a of the observation region 3 and the center point of the synthetic aperture 1 Calculate the distance r 0 (h) to 1a.
  • the coordinates of the central point 3a of the observation area 3 are [0, 0, 0].
  • a three-dimensional vector p(h) representing the coordinates of the center point 1a of the synthetic aperture 1 is obtained from the trajectory information of the platform or the like.
  • the process of calculating the distance r 0 (h) itself is a known technique, and detailed description thereof will be omitted.
  • the compensation processing unit 44 performs range cell migration compensation for each range-compressed signal S comp (n, h) based on the distance r 0 (h), as shown in the following equation (2) (Fig. 7 step ST3). By performing range cell migration compensation for each range-compressed signal S comp (n, h), all hits are compensated so that the range cells of the same observation target 2 are located in the same range cells.
  • the compensation processing unit 44 outputs the migration-compensated signals S mig (n, h) to the inverse Fourier transform unit 45 .
  • f(n) is the range frequency of the signal S comp (n,h) after range compression
  • c is the speed of light
  • the compensation processing unit 44 performs range cell migration compensation using the center point 3a of the observation area 3 as a reference.
  • the compensation processing unit 44 may perform range cell migration compensation using a point other than the center point 3a of the observation area 3 as a reference.
  • the inverse Fourier transform unit 45 acquires the migration-compensated signals S mig (n, h) from the compensation processing unit 44 .
  • the inverse Fourier transform unit 45 inverse Fourier transforms the migration-compensated signals S mig (n, h) in the range direction (step ST4 in FIG. 7).
  • the inverse Fourier transform unit 45 can use IFFT (Inverse Fast Fourier Transform) as means for inverse Fourier transforming the migration-compensated signal S mig (n, h).
  • IFFT Inverse Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the phase compensator 46 acquires the signals s(n, h) after the respective inverse Fourier transforms from the inverse Fourier transform unit 45, and from the auxiliary information storage unit 12, platform trajectory information and observation geometric information as auxiliary information. and obtain radar specifications, etc.
  • the phase compensator 46 calculates the coordinates of the points corresponding to the range cells n of the signals s(n, h) after the inverse Fourier transform among the plurality of points existing on the ground range line GRL. Identify the vector p g (n).
  • the point corresponding to the range cell n of the signal s(n, h) after the inverse Fourier transform is, among a plurality of points present on the ground range line GRL, the signal s(n, h) after the inverse Fourier transform. h) is included in the isorange surface. For example, if the observation point is C1, the point corresponding to range cell n is R1 , and if the observation point is C3 , the point corresponding to range cell n is R3.
  • a three-dimensional vector p g (n) representing the coordinates of the point corresponding to range cell n is obtained from the auxiliary information.
  • the phase compensator 46 also identifies a three-dimensional vector p(h) representing the coordinates of the center point 1 a of the synthetic aperture 1 .
  • the three-dimensional vector p(h) is obtained from platform trajectory information or the like.
  • the phase compensator 46 calculates the distance between the point corresponding to the range cell n of the signal s(n, h) after each inverse Fourier transform and the center point 1a of the synthetic aperture 1, as shown in the following equation (3). Calculate r(n,h).
  • the phase compensator 46 compensates the phase of each inverse Fourier transformed signal s(n, h) based on the distance r(n, h) as shown in the following equation (4) (FIG. 7 step ST5).
  • the phase compensator 46 outputs each phase-compensated signal s ph (n, h) to the image generator 47 .
  • f c is the center frequency of the signal s(n,h) after inverse Fourier transform.
  • the image generation unit 47 acquires the phase-compensated signals s ph (n, h) from the phase compensation unit 46 .
  • the image generator 47 generates a DBS image S dbs (n, h) by Fourier transforming each phase-compensated signal s ph (n, h) in the azimuth direction (step ST6 in FIG. 7). That is, the image generation unit 47 calculates the Doppler frequency of each observation point 2 by Fourier transforming each phase-compensated signal s ph (n, h) in the azimuth direction, and calculates the Doppler frequency of each observation point 2 . Generate a DBS image S dbs (n,h) showing the intensity of the Doppler frequency.
  • the image generation unit 47 outputs the DBS image S dbs (n, h) to the DBS image storage unit 14 .
  • the DBS image S dbs (n, h) stored in the DBS image storage unit 14 is displayed, for example, on a display (not shown).
  • the image generator 47 can use FFT as means for Fourier transforming the signal s ph (n, h) after phase compensation. However, this is only an example, and the image generation unit 47 may use DFT to Fourier transform each phase-compensated signal s ph (n, h) in the range direction.
  • the pulse signal acquisition unit 41 acquires the pulse signal after being scattered by each of the plurality of observation points included in the observation area 3 of the radar device, one point in the observation area 3, and the radar Each pulse signal obtained by the pulse signal obtaining unit 41 among a plurality of points existing on a projection line, which is a line projected onto the ground surface connecting a point in the synthetic aperture 1 of the apparatus. and a phase compensator 46 for compensating the phase of each pulse signal based on the distance between the point corresponding to the range cell and one point in the synthetic aperture 1. Therefore, the radar signal processing device 40 can reduce the number of observation points 2 having a Doppler frequency displacement difference amount larger than half the PRF.
  • Embodiment 2 describes a radar signal processing device 40 in which a projection line is divided into a plurality of regions.
  • the configuration of the radar signal processing device 40 according to Embodiment 2 is the same as the configuration of the radar signal processing device 40 according to Embodiment 1, and the configuration diagram showing the radar signal processing device 40 according to Embodiment 2 is as follows: FIG.
  • FIG. 8 is an explanatory diagram showing a measurement example of the Doppler frequency of the ground surface including the observation area 3.
  • the ground range line GRL which is a projection line, is divided into M regions G 1 to G M .
  • M is an integer of 2 or more.
  • the representative point gm may be any point among a plurality of points existing in the area Gm , but for example, a point located in the center of the area Gm is used as the representative point gm .
  • the phase compensator 46 determines that points corresponding to the range cells of the pulse signal after scattering by the respective observation points 2 in the M regions G 1 to G M are Identify the region G m to which it belongs.
  • the observation point is C1
  • the region to which the point corresponding to the range cell of the pulse signal belongs is identified as GM
  • the observation point is C3
  • G2 is identified as the region to which the points that The representative point of the area G2 is g2
  • the representative point of the area GM is gM .
  • the phase compensator 46 compensates the phase of the pulse signal based on the distance between the representative point gm of each specified area Gm and the central point 1a, which is one point in the synthetic aperture 1.
  • the phase compensation processing by the phase compensator 46 will be specifically described below.
  • the phase compensator 46 identifies a three-dimensional vector p g ′(n) representing the coordinates of the representative point g m of each identified region G m .
  • a three-dimensional vector p g '(h) is obtained from the auxiliary information.
  • the phase compensator 46 calculates the distance r'( n , h ) between the representative point gm of each specified area Gm and the center point 1a of the synthetic aperture 1, as shown in the following equation (5). do.
  • the phase compensator 46 compensates the phase of each signal s(n, h) after the inverse Fourier transform based on the distance r'(n, h), as shown in Equation (6) below.
  • the phase compensator 46 outputs each phase-compensated signal s ph (n, h) to the image generator 47 .
  • the number of observation points 2 having a Doppler frequency displacement difference larger than half the PRF can be reduced. can be done.
  • the present disclosure is suitable for radar signal processing devices, radar signal processing methods, and radar devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A radar signal processing device (40) comprises a pulse signal acquisition unit (41) for acquiring scattered pulse signals from a plurality of observation points included in an observation region (3) of a radar device, and a phase correction unit (46) for correcting the phases of the pulse signals on the basis of the distances between a point within the synthetic aperture (1) of the radar device and the points corresponding to the range cells of the pulse signals acquired by the pulse signal acquisition unit (41) from among a plurality of points on a projection line that is a line that has been obtained by projecting, onto the surface of the earth, a line connecting one point within the observation region (3) to the point within the synthetic aperture (1) of the radar device.

Description

レーダ信号処理装置、レーダ信号処理方法及びレーダ装置RADAR SIGNAL PROCESSING DEVICE, RADAR SIGNAL PROCESSING METHOD AND RADAR DEVICE
 本開示は、レーダ信号処理装置、レーダ信号処理方法及びレーダ装置に関するものである。 The present disclosure relates to a radar signal processing device, a radar signal processing method, and a radar device.
 合成開口レーダ方式の1つとして、DBS(Doppler Beam Sharpening)方式がある(非特許文献1を参照)。DBS方式は、地表面上の観測領域に含まれている複数の観測点のそれぞれによる散乱後のパルス信号をアジマス方向にフーリエ変換することで、それぞれの観測点のドップラー周波数を算出し、それぞれの観測点のドップラー周波数の強度を示すDBS画像を生成するものである。それぞれの観測点による散乱後のパルス信号の位相は、合成開口を搭載しているプラットフォームの移動で変化する。
 DBS方式を用いる従来のレーダ信号処理装置は、プラットフォームの移動による位相の変化の影響を抑えるため、観測領域の中心点と合成開口の中心点との距離に基づいて、それぞれの観測点による散乱後のパルス信号の位相を補償する。
As one of synthetic aperture radar systems, there is a DBS (Doppler Beam Sharpening) system (see Non-Patent Document 1). In the DBS method, the Doppler frequency of each observation point is calculated by performing a Fourier transform in the azimuth direction on pulse signals scattered by each of a plurality of observation points included in an observation area on the ground surface. It generates a DBS image showing the intensity of the Doppler frequency of the observation point. The phase of the pulse signal after scattering by each observation point changes with the movement of the platform on which the synthetic aperture is mounted.
In order to suppress the influence of phase changes due to movement of the platform, the conventional radar signal processing apparatus using the DBS method uses the distance between the center point of the observation area and the center point of the synthetic aperture to determine the post-scattering from each observation point. to compensate for the phase of the pulse signal.
 それぞれの観測点のドップラー周波数は、いわゆるスクイント角の影響を受けて、変位を生じることがある。スクイント角とは、地表面において、アジマス方向と直交している方向とパルス信号の放射方向とのなす角である。ドップラー周波数の変位量(以下「周波数変位量」という)は、観測点の位置毎に異なる。このため、複数の観測点の中には、後述する「ドップラー周波数の変位差分量」が、レーダ装置から放射されるパルス信号のPRF(Pulse Repetition Frequency)の半分よりも大きい観測点が存在していることがある。ドップラー周波数の変位差分量は、観測点の周波数変位量の絶対値と、観測領域の中心点の周波数変位量の絶対値との差分である。ドップラー周波数の変位差分量がPRFの半分よりも大きい観測点による散乱後のパルス信号は、アジマスアンビギュイティになり、その結果、当該観測点の結像が劣化することがある。
 従来のレーダ信号処理装置によるパルス信号の位相補償は、観測点の位置にかかわらず、観測領域の中心点と合成開口の中心点との距離に基づいて行われる。したがって、従来のレーダ信号処理装置が、それぞれの観測点による散乱後のパルス信号の位相を補償することで、それぞれの観測点のドップラー周波数を変化させても、ドップラー周波数の変位差分量がPRFの半分よりも大きい観測点の数が減るとは限らないという課題があった。
The Doppler frequency of each observation point can be affected by the so-called squint angle and cause displacement. The squint angle is the angle formed between the direction perpendicular to the azimuth direction and the radiation direction of the pulse signal on the ground surface. The displacement amount of the Doppler frequency (hereinafter referred to as "frequency displacement amount") varies depending on the position of the observation point. Therefore, among the plurality of observation points, there is an observation point where the "displacement difference amount of the Doppler frequency", which will be described later, is larger than half of the PRF (Pulse Repetition Frequency) of the pulse signal emitted from the radar device. sometimes The Doppler frequency displacement difference amount is the difference between the absolute value of the frequency displacement amount at the observation point and the absolute value of the frequency displacement amount at the center point of the observation area. A pulse signal after being scattered by an observation point with a Doppler frequency displacement difference amount larger than half of the PRF becomes azimuth ambiguity, and as a result, the imaging of the observation point may be degraded.
The pulse signal phase compensation by the conventional radar signal processing apparatus is performed based on the distance between the center point of the observation area and the center point of the synthetic aperture regardless of the position of the observation point. Therefore, even if the conventional radar signal processing apparatus changes the Doppler frequency of each observation point by compensating for the phase of the pulse signal after scattering by each observation point, the displacement difference amount of the Doppler frequency is less than the PRF. There was a problem that the number of observation points larger than half does not always decrease.
 本開示は、上記のような課題を解決するためになされたもので、ドップラー周波数の変位差分量がPRFの半分よりも大きい観測点の数を減らせることができるレーダ信号処理装置及びレーダ信号処理方法を得ることを目的とする。 The present disclosure has been made to solve the above problems, and is a radar signal processing apparatus and radar signal processing that can reduce the number of observation points where the displacement difference amount of the Doppler frequency is larger than half of the PRF. Aim to get a method.
 本開示に係るレーダ信号処理装置は、レーダ装置の観測領域に含まれている複数の観測点のそれぞれによる散乱後のパルス信号を取得するパルス信号取得部と、観測領域内の一点と、レーダ装置が有する合成開口内の一点とを結ぶ線が地表面に投影された線である投影線上に存在している複数の点の中で、パルス信号取得部により取得されたそれぞれのパルス信号のレンジセルに対応する点と、合成開口内の一点との距離に基づいて、それぞれのパルス信号の位相を補償する位相補償部とを備えるものである。 A radar signal processing apparatus according to the present disclosure includes a pulse signal acquisition unit that acquires a pulse signal after scattering by each of a plurality of observation points included in an observation area of a radar apparatus, one point in the observation area, and a radar apparatus. Among a plurality of points existing on a projection line, which is a line projected onto the ground surface connecting a point in the synthetic aperture, the range cell of each pulse signal acquired by the pulse signal acquisition unit A phase compensator is provided for compensating the phase of each pulse signal based on the distance between the corresponding point and one point within the synthetic aperture.
 本開示によれば、ドップラー周波数の変位差分量がPRFの半分よりも大きい観測点の数を減らせることができる。 According to the present disclosure, it is possible to reduce the number of observation points where the amount of Doppler frequency displacement difference is larger than half the PRF.
図1Aは、実施の形態1に係るレーダ装置が有する合成開口1と観測領域3との関係を示す斜視図、図1Bは、地表面上の観測領域3を示す平面図である。FIG. 1A is a perspective view showing the relationship between the synthetic aperture 1 and the observation area 3 of the radar apparatus according to Embodiment 1, and FIG. 1B is a plan view showing the observation area 3 on the ground surface. 実施の形態1に係るレーダ信号処理装置40を含むレーダ装置を示す構成図である。1 is a configuration diagram showing a radar device including a radar signal processing device 40 according to Embodiment 1; FIG. 実施の形態1に係るレーダ信号処理装置40を示す構成図である。1 is a configuration diagram showing a radar signal processing device 40 according to Embodiment 1; FIG. 実施の形態1に係るレーダ信号処理装置40のハードウェアを示すハードウェア構成図である。2 is a hardware configuration diagram showing hardware of the radar signal processing device 40 according to Embodiment 1. FIG. レーダ信号処理装置40が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。2 is a hardware configuration diagram of a computer when the radar signal processing device 40 is realized by software, firmware, or the like. FIG. 観測領域3を含む地表面のドップラー周波数の計測例を示す説明図である。4 is an explanatory diagram showing an example of measurement of Doppler frequencies on the ground surface including the observation area 3; FIG. レーダ信号処理装置40の処理手順であるレーダ信号処理方法を示すフローチャートである。4 is a flowchart showing a radar signal processing method, which is a processing procedure of the radar signal processing device 40; 観測領域3を含む地表面のドップラー周波数の計測例を示す説明図である。4 is an explanatory diagram showing an example of measurement of Doppler frequencies on the ground surface including the observation area 3; FIG.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present disclosure in more detail, embodiments for carrying out the present disclosure will be described according to the attached drawings.
実施の形態1.
 図1は、実施の形態1に係るレーダ装置が有する合成開口1と観測領域3との関係を示す説明図である。
 図1Aは、実施の形態1に係るレーダ装置が有する合成開口1と観測領域3との関係を示す斜視図であり、図1Bは、地表面上の観測領域3を示す平面図である。
 レーダ装置が有する合成開口1は、プラットフォームに搭載されており、プラットフォームの移動に伴って移動する。合成開口1の移動方向であるアジマス方向は、プラットフォームの移動方向と同じである。プラットフォームとしては、例えば、衛星、又は、飛行機が該当する。
 合成開口1の中心点1aは、合成開口1のアジマス方向の長さがDであるとすれば、アジマス方向における合成開口1の一端からの距離がD/2であって、合成開口1の他端からの距離がD/2である点である。合成開口1が、図1Aに示すような2次元平面で表される場合、合成開口1の中心点1aは、2次元平面において、アジマス方向と直交する方向の一端からの距離と、アジマス方向と直交する方向の他端からの距離とが同じである点である。
 ただし、中心点1aは、厳密に、合成開口1の中心点であるものに限るものではなく、実用上問題のない範囲で、合成開口1の中心点からずれている点であってもよい。
Embodiment 1.
FIG. 1 is an explanatory diagram showing the relationship between a synthetic aperture 1 and an observation area 3 that the radar device according to Embodiment 1 has.
FIG. 1A is a perspective view showing the relationship between a synthetic aperture 1 and an observation area 3 that the radar device according to Embodiment 1 has, and FIG. 1B is a plan view showing the observation area 3 on the ground surface.
A synthetic aperture 1 of the radar system is mounted on a platform and moves as the platform moves. The azimuth direction, which is the moving direction of the synthetic aperture 1, is the same as the moving direction of the platform. Platforms are, for example, satellites or airplanes.
Assuming that the length of the synthetic aperture 1 in the azimuth direction is D, the center point 1a of the synthetic aperture 1 is located at a distance of D/2 from one end of the synthetic aperture 1 in the azimuth direction. The point is that the distance from the edge is D/2. When the synthetic aperture 1 is represented on a two-dimensional plane as shown in FIG. 1A, the center point 1a of the synthetic aperture 1 is the distance from one end in the direction orthogonal to the azimuth direction and the distance from the azimuth direction on the two-dimensional plane. The difference is that the distance from the other end in the orthogonal direction is the same.
However, the center point 1a is not strictly limited to the center point of the synthetic aperture 1, and may be a point deviated from the center point of the synthetic aperture 1 within a practically acceptable range.
 観測領域3は、地表面に存在している、レーダ装置の観測領域である。観測領域3の内部には、複数の観測点2が存在している。
 図1では、観測領域3の形状が、四角形である例を示しており、C,C,C,Cは、観測領域3の角点を示している。観測領域3の形状は、四角形であるものに限るものではなく、観測領域3の形状は、例えば、四角形以外の多角形であってもよいし、円形であってもよい。
 図1の例では、観測領域3の中心点3aは、CとCとを結ぶ線分と、CとCとを結ぶ線分との交点である。
 θsqは、スクイント角である。グランドレンジ線GRLは、観測領域3の中心点3aと、合成開口1の中心点1aとを結ぶ線が地表面に投影された線(投影線)である。
 なお、中心点3aは、厳密に、観測領域3の中心点であるものに限るものではなく、実用上問題のない範囲で、観測領域3の中心点からずれている点であってもよい。したがって、グランドレンジ線GRLは、観測領域3内の或る一点と合成開口1内の或る一点とを結ぶ線が地表面に投影された線であってもよい。
An observation area 3 is an observation area of the radar device that exists on the ground surface. A plurality of observation points 2 are present inside the observation area 3 .
FIG. 1 shows an example in which the observation area 3 has a rectangular shape, and C 1 , C 2 , C 3 , and C 4 indicate corner points of the observation area 3 . The shape of the observation area 3 is not limited to a rectangle, and the shape of the observation area 3 may be, for example, a polygon other than a rectangle, or a circle.
In the example of FIG. 1 , the center point 3a of the observation area 3 is the intersection of the line segment connecting C1 and C3 and the line segment connecting C2 and C4 .
θ sq is the squint angle. The ground range line GRL is a line (projection line) obtained by projecting a line connecting the center point 3a of the observation region 3 and the center point 1a of the synthetic aperture 1 onto the ground surface.
Note that the center point 3a is not strictly limited to the center point of the observation area 3, and may be a point deviated from the center point of the observation area 3 within a practically acceptable range. Therefore, the ground range line GRL may be a line that connects a certain point within the observation area 3 and a certain point within the synthetic aperture 1 and is projected onto the ground surface.
 図2は、実施の形態1に係るレーダ信号処理装置40を含むレーダ装置を示す構成図である。
 図3は、実施の形態1に係るレーダ信号処理装置40を示す構成図である。
 図4は、実施の形態1に係るレーダ信号処理装置40のハードウェアを示すハードウェア構成図である。
 図2に示すレーダ装置は、信号生成部10、アナログ回路部20、アンテナ部30及びレーダ信号処理装置40を備えている。
FIG. 2 is a configuration diagram showing a radar device including the radar signal processing device 40 according to Embodiment 1. As shown in FIG.
FIG. 3 is a configuration diagram showing the radar signal processing device 40 according to Embodiment 1. As shown in FIG.
FIG. 4 is a hardware configuration diagram showing hardware of the radar signal processing device 40 according to the first embodiment.
The radar device shown in FIG. 2 includes a signal generation section 10, an analog circuit section 20, an antenna section 30, and a radar signal processing device 40. FIG.
 信号生成部10は、パルス信号生成器11、補助情報記憶部12、デジタル信号格納部13及びDBS画像記憶部14を備えている。
 アナログ回路部20は、発振部21、乗算部22、増幅部23、切換部24、増幅部25、乗算部26、フィルタ部27及びアナログデジタルコンバータ(以下「A/Dコンバータ」という)28を備えている。
The signal generation unit 10 includes a pulse signal generator 11 , an auxiliary information storage unit 12 , a digital signal storage unit 13 and a DBS image storage unit 14 .
The analog circuit section 20 includes an oscillation section 21, a multiplication section 22, an amplification section 23, a switching section 24, an amplification section 25, a multiplication section 26, a filter section 27, and an analog-to-digital converter (hereinafter referred to as "A/D converter") 28. ing.
 パルス信号生成器11は、パルス信号を生成し、パルス信号を乗算部22に出力する。
 パルス信号生成器11により生成されるパルス信号は、信号レベルがHレベルとLレベルとの間で繰り返し変化する単純なパルス信号であってもよいし、チャープパルス信号であってもよい。
 補助情報記憶部12は、補助情報として、プラットフォームの軌道情報、観測幾何情報及びレーダ諸元等を記憶している。
 デジタル信号格納部13は、A/Dコンバータ28から出力されたデジタル信号を一時的に格納し、デジタル信号をレーダ信号処理装置40に出力する。
 DBS画像記憶部14は、レーダ信号処理装置40により生成されたDBS画像を記憶する。
The pulse signal generator 11 generates a pulse signal and outputs the pulse signal to the multiplier 22 .
The pulse signal generated by the pulse signal generator 11 may be a simple pulse signal whose signal level repeatedly changes between H level and L level, or may be a chirped pulse signal.
The auxiliary information storage unit 12 stores platform trajectory information, observation geometric information, radar specifications, and the like as auxiliary information.
The digital signal storage unit 13 temporarily stores the digital signal output from the A/D converter 28 and outputs the digital signal to the radar signal processing device 40 .
The DBS image storage unit 14 stores DBS images generated by the radar signal processing device 40 .
 発振部21は、搬送波を発振する。
 乗算部22は、発振部21により発振された搬送波をパルス信号生成器11から出力されたパルス信号に乗算することで、パルス信号の周波数をアップコンバートする。
 乗算部22は、アップコンバート後のパルス信号を増幅部23に出力する。
 増幅部23は、乗算部22から出力されたアップコンバート後のパルス信号を増幅し、増幅後のパルス信号を切換部24に出力する。
The oscillator 21 oscillates a carrier wave.
The multiplier 22 up-converts the frequency of the pulse signal by multiplying the pulse signal output from the pulse signal generator 11 by the carrier wave oscillated by the oscillator 21 .
The multiplier 22 outputs the up-converted pulse signal to the amplifier 23 .
The amplifying unit 23 amplifies the up-converted pulse signal output from the multiplying unit 22 and outputs the amplified pulse signal to the switching unit 24 .
 切換部24は、増幅部23から出力された増幅後のパルス信号をアンテナ部30に出力し、アンテナ部30から出力された受信信号を増幅部25に出力する。
 増幅部25は、切換部24から出力された受信信号を増幅し、増幅後の受信信号を乗算部26に出力する。
 乗算部26は、発振部21により発振された搬送波を増幅部25から出力された増幅後の受信信号に乗算することで、受信信号の周波数をダウンコンバートする。
 乗算部26は、ダウンコンバート後の受信信号をフィルタ部27に出力する。
Switching section 24 outputs the amplified pulse signal output from amplifying section 23 to antenna section 30 and outputs the received signal output from antenna section 30 to amplifying section 25 .
Amplification section 25 amplifies the reception signal output from switching section 24 and outputs the amplified reception signal to multiplication section 26 .
Multiplying section 26 multiplies the carrier wave oscillated by oscillating section 21 by the amplified received signal output from amplifying section 25, thereby down-converting the frequency of the received signal.
Multiplying section 26 outputs the down-converted received signal to filtering section 27 .
 フィルタ部27は、例えば、バンドパスフィルタによって実現される。
 フィルタ部27は、乗算部26から出力されたダウンコンバート後の受信信号に含まれている帯域外の成分を抑圧し、帯域外成分抑圧後の受信信号をA/Dコンバータ28に出力する。
 A/Dコンバータ28は、フィルタ部27から出力された帯域外成分抑圧後の受信信号をアナログ信号からデジタル信号に変換し、デジタル信号をデジタル信号格納部13に出力する。
The filter unit 27 is implemented by, for example, a bandpass filter.
The filter unit 27 suppresses out-of-band components contained in the down-converted received signal output from the multiplication unit 26 and outputs the out-of-band component-suppressed received signal to the A/D converter 28 .
The A/D converter 28 converts the received signal after out-of-band component suppression output from the filter unit 27 from an analog signal to a digital signal, and outputs the digital signal to the digital signal storage unit 13 .
 アンテナ部30は、切換部24から出力されたパルス信号をビームとして、観測領域3に向けて放射する。
 また、アンテナ部30は、観測領域3に含まれているそれぞれの観測点2による散乱後のパルス信号を受信し、それぞれの散乱後のパルス信号を受信信号として切換部24に出力する。
The antenna unit 30 radiates the pulse signal output from the switching unit 24 as a beam toward the observation area 3 .
Further, the antenna unit 30 receives pulse signals after scattering by each observation point 2 included in the observation area 3 and outputs the pulse signals after scattering to the switching unit 24 as received signals.
 レーダ信号処理装置40は、パルス信号取得部41、位相補償部46及び画像生成部47を備えている。
 パルス信号取得部41は、フーリエ変換部42、レンジ圧縮部43、補償処理部44及び逆フーリエ変換部45を備えている。
 パルス信号取得部41は、観測領域3に含まれている複数の観測点2のそれぞれによる散乱後のパルス信号として、デジタル信号格納部13に格納されているそれぞれのデジタル信号を取得する。
The radar signal processing device 40 includes a pulse signal acquisition section 41 , a phase compensation section 46 and an image generation section 47 .
The pulse signal acquisition unit 41 includes a Fourier transform unit 42 , a range compression unit 43 , a compensation processing unit 44 and an inverse Fourier transform unit 45 .
The pulse signal acquisition unit 41 acquires each digital signal stored in the digital signal storage unit 13 as a pulse signal after scattering by each of the plurality of observation points 2 included in the observation area 3 .
 フーリエ変換部42は、例えば、図4に示すフーリエ変換回路51によって実現される。
 フーリエ変換部42は、デジタル信号格納部13からそれぞれのデジタル信号を取得し、それぞれのデジタル信号をレンジ方向にフーリエ変換する。
 フーリエ変換部42は、それぞれのフーリエ変換後の信号をレンジ圧縮部43に出力する。
The Fourier transform unit 42 is realized by, for example, a Fourier transform circuit 51 shown in FIG.
The Fourier transform unit 42 acquires each digital signal from the digital signal storage unit 13 and Fourier transforms each digital signal in the range direction.
The Fourier transform unit 42 outputs each Fourier-transformed signal to the range compression unit 43 .
 レンジ圧縮部43は、例えば、図4に示すレンジ圧縮回路52によって実現される。
 レンジ圧縮部43は、フーリエ変換部42から出力されたそれぞれのフーリエ変換後の信号にレンジ圧縮用の参照関数を乗算することで、それぞれのフーリエ変換後の信号をレンジ圧縮する。
 レンジ圧縮部43は、それぞれのレンジ圧縮後の信号を補償処理部44に出力する。
The range compression unit 43 is realized by, for example, the range compression circuit 52 shown in FIG.
The range compression unit 43 multiplies each Fourier-transformed signal output from the Fourier transform unit 42 by a reference function for range compression, thereby compressing the range of each Fourier-transformed signal.
The range compression unit 43 outputs each range-compressed signal to the compensation processing unit 44 .
 補償処理部44は、例えば、図4に示す補償処理回路53によって実現される。
 補償処理部44は、レンジ圧縮部43から出力されたそれぞれのレンジ圧縮後の信号に対するレンジセルマイグレーション補償を行う。
 補償処理部44は、それぞれのマイグレーション補償後の信号を逆フーリエ変換部45に出力する。
The compensation processing unit 44 is realized by, for example, a compensation processing circuit 53 shown in FIG.
The compensation processing unit 44 performs range cell migration compensation on each range-compressed signal output from the range compression unit 43 .
The compensation processing unit 44 outputs each migration-compensated signal to the inverse Fourier transform unit 45 .
 逆フーリエ変換部45は、例えば、図4に示す逆フーリエ変換回路54によって実現される。
 逆フーリエ変換部45は、補償処理部44から出力されたそれぞれのマイグレーション補償後の信号をレンジ方向に逆フーリエ変換する。
 逆フーリエ変換部45は、パルス信号取得部41により取得されたそれぞれのパルス信号として、それぞれの逆フーリエ変換後の信号を位相補償部46に出力する。
The inverse Fourier transform unit 45 is implemented by, for example, an inverse Fourier transform circuit 54 shown in FIG.
The inverse Fourier transform unit 45 inverse Fourier transforms the migration-compensated signals output from the compensation processing unit 44 in the range direction.
The inverse Fourier transform unit 45 outputs the signals after the inverse Fourier transform to the phase compensation unit 46 as the pulse signals acquired by the pulse signal acquisition unit 41 .
 位相補償部46は、例えば、図4に示す位相補償回路55によって実現される。
 位相補償部46は、グランドレンジ線GRL上に存在している複数の点の中で、パルス信号取得部41により取得されたそれぞれのパルス信号のレンジセルに対応する点と、合成開口1の中心点1aとの距離に基づいて、それぞれのパルス信号の位相を補償する。
 図3に示すレーダ信号処理装置40では、グランドレンジ線GRLが、観測領域3の中心点3aと、合成開口1の中心点1aとを結ぶ線が地表面に投影された線であるものを想定している。グランドレンジ線GRLの一端が、観測領域3の中心点3a以外の或る一点であり、グランドレンジ線GRLの他端が、合成開口1の中心点1a以外の或る一点であれば、位相補償部46は、合成開口1の中心点1aの代わりに、合成開口1内の或る一点を用いて、パルス信号の位相を補償する。
 位相補償部46は、それぞれの位相補償後のパルス信号を画像生成部47に出力する。
The phase compensator 46 is implemented by, for example, a phase compensator 55 shown in FIG.
The phase compensator 46 selects points corresponding to the range cells of the respective pulse signals acquired by the pulse signal acquirer 41 and the center point of the synthetic aperture 1 among a plurality of points existing on the ground range line GRL. Based on the distance from 1a, the phase of each pulse signal is compensated.
In the radar signal processing device 40 shown in FIG. 3, it is assumed that the ground range line GRL is a line that connects the center point 3a of the observation area 3 and the center point 1a of the synthetic aperture 1 and is projected onto the ground surface. doing. If one end of the ground range line GRL is a point other than the center point 3a of the observation area 3 and the other end of the ground range line GRL is a point other than the center point 1a of the synthetic aperture 1, phase compensation is performed. The unit 46 compensates the phase of the pulse signal by using a certain point within the synthetic aperture 1 instead of the center point 1a of the synthetic aperture 1 .
The phase compensator 46 outputs each phase-compensated pulse signal to the image generator 47 .
 画像生成部47は、例えば、図4に示す画像生成回路56によって実現される。
 画像生成部47は、位相補償部46によるそれぞれの位相補償後のパルス信号をアジマス方向にフーリエ変換することで、DBS画像を生成する。
 画像生成部47は、DBS画像をDBS画像記憶部14に出力する。
The image generation unit 47 is realized by, for example, the image generation circuit 56 shown in FIG.
The image generation unit 47 generates a DBS image by Fourier transforming the pulse signals after phase compensation by the phase compensation unit 46 in the azimuth direction.
The image generation unit 47 outputs the DBS image to the DBS image storage unit 14 .
 図3では、レーダ信号処理装置40の構成要素であるフーリエ変換部42、レンジ圧縮部43、補償処理部44、逆フーリエ変換部45、位相補償部46及び画像生成部47のそれぞれが、図4に示すような専用のハードウェアによって実現されるものを想定している。即ち、レーダ信号処理装置40が、フーリエ変換回路51、レンジ圧縮回路52、補償処理回路53、逆フーリエ変換回路54、位相補償回路55及び画像生成回路56によって実現されるものを想定している。 3, each of the Fourier transform unit 42, the range compression unit 43, the compensation processing unit 44, the inverse Fourier transform unit 45, the phase compensation unit 46, and the image generation unit 47, which are components of the radar signal processing device 40, are shown in FIG. It is assumed to be realized by dedicated hardware as shown in . That is, it is assumed that the radar signal processing device 40 is implemented by a Fourier transform circuit 51, a range compression circuit 52, a compensation processing circuit 53, an inverse Fourier transform circuit 54, a phase compensation circuit 55 and an image generation circuit 56.
 フーリエ変換回路51、レンジ圧縮回路52、補償処理回路53、逆フーリエ変換回路54、位相補償回路55及び画像生成回路56のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。 Each of the Fourier transform circuit 51, the range compression circuit 52, the compensation processing circuit 53, the inverse Fourier transform circuit 54, the phase compensation circuit 55 and the image generation circuit 56 may be, for example, single circuits, multiple circuits, programmed processors, parallel programs. processor, ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
 レーダ信号処理装置40の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、レーダ信号処理装置40が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The constituent elements of the radar signal processing device 40 are not limited to those realized by dedicated hardware, and the radar signal processing device 40 may be realized by software, firmware, or a combination of software and firmware. There may be.
Software or firmware is stored as a program in a computer's memory. A computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
 図5は、レーダ信号処理装置40が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 レーダ信号処理装置40が、ソフトウェア又はファームウェア等によって実現される場合、フーリエ変換部42、レンジ圧縮部43、補償処理部44、逆フーリエ変換部45、位相補償部46及び画像生成部47におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ61に格納される。そして、コンピュータのプロセッサ62がメモリ61に格納されているプログラムを実行する。
FIG. 5 is a hardware configuration diagram of a computer when the radar signal processing device 40 is implemented by software, firmware, or the like.
When the radar signal processing device 40 is realized by software, firmware, or the like, each A memory 61 stores a program for causing a computer to execute a processing procedure. A processor 62 of the computer then executes the program stored in the memory 61 .
 また、図4では、レーダ信号処理装置40の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図5では、レーダ信号処理装置40がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、レーダ信号処理装置40における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 4 shows an example in which each component of the radar signal processing device 40 is implemented by dedicated hardware, and FIG. 5 shows an example in which the radar signal processing device 40 is implemented by software, firmware, or the like. ing. However, this is only an example, and some components in the radar signal processing device 40 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
 図6は、観測領域3を含む地表面のドップラー周波数の計測例を示す説明図である。
 図6では、観測領域3の中心点3aのドップラー周波数が、基準のドップラー周波数とされて、観測領域3に含まれているそれぞれの観測点2のドップラー周波数が等高線状にマップ表示されている。基準のドップラー周波数は、0[Hz]であり、観測点2のドップラー周波数は、基準のドップラー周波数との差分である。図6に示す等高線状のマップにおいて、例えば、濃度が高いほど、ドップラー周波数が低い。
 図6に示す直線は、グランドレンジ線GRLである。
FIG. 6 is an explanatory diagram showing a measurement example of the Doppler frequency of the ground surface including the observation area 3. In FIG.
In FIG. 6, the Doppler frequency of the central point 3a of the observation area 3 is used as the reference Doppler frequency, and the Doppler frequencies of the respective observation points 2 included in the observation area 3 are displayed on a contour map. The reference Doppler frequency is 0 [Hz], and the Doppler frequency at observation point 2 is the difference from the reference Doppler frequency. In the contour map shown in FIG. 6, for example, the higher the concentration, the lower the Doppler frequency.
The straight line shown in FIG. 6 is the ground range line GRL.
 ドップラー周波数は、図6に示すように、観測点2の位置毎に相違している。例えば、観測領域3の角点である観測点C,観測点C,観測点C,観測点Cのうち、観測点C,観測点Cのドップラー周波数は、観測領域3の中心点3aのドップラー周波数に近いが、観測点C,観測点Cのドップラー周波数は、観測領域3の中心点3aのドップラー周波数と大きく相違している。このため、観測点C及び観測点Cにおけるそれぞれのドップラー周波数の変位差分量は、PRFの半分よりも大きいことがある。
 観測点C,観測点Cのドップラー周波数が、観測領域3の中心点3aのドップラー周波数と大きく相違している理由は、スクイント角θsqが0でなく、レーダ装置が、斜め方向に観測領域3を観測し、さらにスクイント角θsqが高くなるにつれ、周波数変位量の変化が急峻になるためである。観測点C,観測点Cのドップラー周波数の絶対値と、観測領域3の中心点3aのドップラー周波数の絶対値との差分は、スクイント角θsqの変化に伴って変化する。
The Doppler frequency differs for each position of the observation point 2, as shown in FIG. For example, among observation point C 1 , observation point C 2 , observation point C 3 , and observation point C 4 , which are corner points of observation area 3, the Doppler frequencies of observation point C 2 and observation point C 4 are Although the Doppler frequency is close to the Doppler frequency of the center point 3a, the Doppler frequencies of the observation points C 1 and C 3 are significantly different from the Doppler frequency of the center point 3a of the observation area 3 . Therefore , the difference in displacement between the Doppler frequencies at the observation points C1 and C3 may be larger than half the PRF.
The reason why the Doppler frequencies of the observation points C 1 and C 3 differ greatly from the Doppler frequency of the center point 3a of the observation area 3 is that the squint angle θ sq is not 0 and the radar equipment observes in an oblique direction. This is because the change in the frequency displacement amount becomes steeper as the region 3 is observed and the squint angle θ sq increases. The difference between the absolute values of the Doppler frequencies at the observation points C 1 and C 3 and the absolute value of the Doppler frequency at the center point 3a of the observation area 3 changes with the change in the squint angle θ sq .
 従来のレーダ信号処理装置は、観測点C,観測点C,観測点C及び観測点Cのそれぞれによる散乱後のパルス信号の位相を補償している。しかし、従来のレーダ信号処理装置によるパルス信号の位相補償は、観測点2の位置にかかわらず、観測領域3の中心点3aと合成開口1の中心点1aとの距離に基づいて行われている。したがって、従来のレーダ信号処理装置が、観測点C,観測点C,観測点C及び観測点Cのそれぞれによる散乱後のパルス信号の位相を補償することで、観測点C,観測点C,観測点C及び観測点Cにおけるそれぞれのドップラー周波数を変化させても、観測点C及び観測点Cのように、周波数変位量の大きな観測点のドップラー周波数の変位差分量がPRFの半分以下にならないことがある。ドップラー周波数の変位差分量がPRFの半分以下にならなければ、観測点C及び観測点Cのそれぞれによる散乱後のパルス信号がアジマスアンビギュイティになり、その結果、観測点C及び観測点Cのそれぞれが画像上で結像しないことがある。 The conventional radar signal processing device compensates the phase of the pulse signal after being scattered by each of the observation points C 1 , C 2 , C 3 and C 4 . However, the pulse signal phase compensation by the conventional radar signal processing apparatus is performed based on the distance between the center point 3a of the observation area 3 and the center point 1a of the synthetic aperture 1 regardless of the position of the observation point 2. . Therefore, the conventional radar signal processing apparatus compensates for the phase of the pulse signal after being scattered by each of the observation points C 1 , C 2 , C 3 and C 4 , so that the observation points C 1 , Even if the Doppler frequencies at observation points C 2 , C 3 and C 4 are changed, the Doppler frequency displacement at observation points with large frequency displacements such as observation points C 1 and C 3 The amount of difference may not be less than half the PRF. Unless the displacement difference amount of the Doppler frequency becomes less than half of the PRF , the pulse signals after scattering by each of the observation points C1 and C3 become azimuth ambiguity, and as a result, the observation point C1 and the observation point C3 Each of the points C3 may not be imaged on the image.
 グランドレンジ線GRL上に存在している複数の点の中で、観測点Cのパルス信号のレンジセルに対応する点Rのドップラー周波数と、観測点Cのドップラー周波数との差分は、スクイント角θsqが高くても、観測点Cのドップラー周波数と観測領域3の中心点3aのドップラー周波数との差分と比べて小さい。
 また、グランドレンジ線GRL上に存在している複数の点の中で、観測点Cのパルス信号のレンジセルに対応する点Rのドップラー周波数と、観測点Cのドップラー周波数との差分は、スクイント角θsqが高くなり、周波数変位量の変化量が急峻となっても、観測点Cのドップラー周波数と観測領域3の中心点3aのドップラー周波数との差分と比べて小さい。
 したがって、観測点Cのパルス信号については、点Rと合成開口1の中心点1aとの距離に基づいて、位相補償が行われれば、観測領域3の中心点3aと合成開口1の中心点1aとの距離に基づいて、位相補償が行われる場合よりも、ドップラー周波数の変位差分量が小さくなる。
 また、観測点Cのパルス信号については、点Rと合成開口1の中心点1aとの距離に基づいて、位相補償が行われれば、観測領域3の中心点3aと合成開口1の中心点1aとの距離に基づいて、位相補償が行われる場合よりも、ドップラー周波数の変位差分量が小さくなる。
Among a plurality of points existing on the ground range line GRL, the difference between the Doppler frequency of the point R1 corresponding to the range cell of the pulse signal of the observation point C1 and the Doppler frequency of the observation point C1 is the squint Even if the angle θ sq is high, it is small compared to the difference between the Doppler frequency of the observation point C 1 and the Doppler frequency of the central point 3 a of the observation area 3 .
Further , among a plurality of points existing on the ground range line GRL , the difference between the Doppler frequency of the point R3 corresponding to the range cell of the pulse signal of the observation point C3 and the Doppler frequency of the observation point C3 is , the squint angle .theta.sq increases and the amount of change in frequency displacement becomes steep, the difference is small compared to the difference between the Doppler frequency at the observation point C3 and the Doppler frequency at the center point 3a of the observation area 3. FIG.
Therefore, for the pulse signal at the observation point C1, if phase compensation is performed based on the distance between the point R1 and the center point 1a of the synthetic aperture 1, the center point 3a of the observation area 3 and the center of the synthetic aperture 1 Based on the distance from the point 1a, the displacement difference amount of the Doppler frequency becomes smaller than when phase compensation is performed.
In addition, for the pulse signal at the observation point C3 , if phase compensation is performed based on the distance between the point R3 and the center point 1a of the synthetic aperture 1, the center point 3a of the observation area 3 and the center of the synthetic aperture 1 Based on the distance from the point 1a, the displacement difference amount of the Doppler frequency becomes smaller than when phase compensation is performed.
 次に、図1に示すレーダ装置の動作について説明する。
 図7は、レーダ信号処理装置40の処理手順であるレーダ信号処理方法を示すフローチャートである。
 信号生成部10のパルス信号生成器11は、パルス信号を生成し、パルス信号をアナログ回路部20の乗算部22に出力する。
Next, the operation of the radar device shown in FIG. 1 will be described.
FIG. 7 is a flowchart showing a radar signal processing method, which is a processing procedure of the radar signal processing device 40. As shown in FIG.
The pulse signal generator 11 of the signal generation section 10 generates a pulse signal and outputs the pulse signal to the multiplication section 22 of the analog circuit section 20 .
 アナログ回路部20の発振部21は、搬送波を発振する。
 発振部21は、搬送波を乗算部22及び乗算部26のそれぞれに出力する。
 乗算部22は、パルス信号生成器11からパルス信号を受けると、搬送波をパルス信号に乗算することで、パルス信号の周波数をアップコンバートする。
 乗算部22は、アップコンバート後のパルス信号を増幅部23に出力する。
 増幅部23は、乗算部22から出力されたアップコンバート後のパルス信号を増幅し、増幅後のパルス信号を切換部24に出力する。
The oscillation section 21 of the analog circuit section 20 oscillates a carrier wave.
The oscillator 21 outputs carrier waves to the multipliers 22 and 26, respectively.
Upon receiving the pulse signal from the pulse signal generator 11, the multiplier 22 multiplies the pulse signal by the carrier wave to up-convert the frequency of the pulse signal.
The multiplier 22 outputs the up-converted pulse signal to the amplifier 23 .
The amplifying unit 23 amplifies the up-converted pulse signal output from the multiplying unit 22 and outputs the amplified pulse signal to the switching unit 24 .
 切換部24は、増幅部23から出力された増幅後のパルス信号をアンテナ部30に出力する。
 アンテナ部30は、切換部24から出力されたパルス信号をビームとして、観測領域3に向けて放射する。
 アンテナ部30から放射されたパルス信号は、観測領域3に含まれているそれぞれの観測点2によって散乱される。それぞれの観測点2による散乱後のパルス信号は、アンテナ部30に戻ってくる。
 アンテナ部30は、それぞれの観測点2による散乱後のパルス信号を受信し、それぞれの散乱後のパルス信号を受信信号として切換部24に出力する。
 切換部24は、アンテナ部30から出力されたそれぞれの受信信号を増幅部25に出力する。
The switching unit 24 outputs the amplified pulse signal output from the amplifying unit 23 to the antenna unit 30 .
The antenna unit 30 radiates the pulse signal output from the switching unit 24 as a beam toward the observation area 3 .
A pulse signal emitted from the antenna section 30 is scattered by each observation point 2 included in the observation area 3 . The pulse signal after being scattered by each observation point 2 returns to the antenna section 30 .
The antenna unit 30 receives the pulse signal after scattering by each observation point 2 and outputs the pulse signal after scattering to the switching unit 24 as a received signal.
Switching section 24 outputs each received signal output from antenna section 30 to amplifying section 25 .
 増幅部25は、切換部24から出力されたそれぞれの受信信号を増幅し、それぞれの増幅後の受信信号を乗算部26に出力する。
 乗算部26は、増幅部25から、それぞれの増幅後の受信信号を受けると、発振部21により発振された搬送波をそれぞれの受信信号に乗算することで、それぞれの受信信号の周波数をダウンコンバートする。
 乗算部26は、それぞれのダウンコンバート後の受信信号をフィルタ部27に出力する。
Amplifying section 25 amplifies each reception signal output from switching section 24 and outputs each amplified reception signal to multiplication section 26 .
Multiplying section 26, upon receiving each amplified received signal from amplifying section 25, multiplies each received signal by the carrier wave oscillated by oscillator 21, thereby down-converting the frequency of each received signal. .
Multiplying section 26 outputs each down-converted received signal to filtering section 27 .
 フィルタ部27は、乗算部26から出力されたそれぞれのダウンコンバート後の受信信号に含まれている帯域外の成分を抑圧し、それぞれの帯域外成分抑圧後の受信信号をA/Dコンバータ28に出力する。
 A/Dコンバータ28は、フィルタ部27からそれぞれの帯域外成分抑圧後の受信信号を受けると、それぞれの受信信号をアナログ信号からデジタル信号s(n,h)に変換する。
 A/Dコンバータ28は、それぞれのデジタル信号s(n,h)をデジタル信号格納部13に出力する。
 nは、レンジセル番号を示し、hは、パルス番号を示している。デジタル信号s(n,h)は、レンジ-ヒットの次元で表現している。
The filter unit 27 suppresses out-of-band components contained in the down-converted received signals output from the multiplication unit 26, and outputs the out-of-band component-suppressed received signals to the A/D converter 28. Output.
When the A/D converter 28 receives the received signal after out-of-band component suppression from the filter unit 27, it converts the received signal from an analog signal to a digital signal s 0 (n, h).
The A/D converter 28 outputs each digital signal s 0 (n, h) to the digital signal storage section 13 .
n indicates the range cell number and h indicates the pulse number. The digital signal s 0 (n,h) is expressed in range-hit dimensions.
 レーダ信号処理装置40のフーリエ変換部42は、デジタル信号格納部13から、それぞれのデジタル信号s(n,h)を取得する。
 フーリエ変換部42は、それぞれのデジタル信号s(n,h)をレンジ方向にフーリエ変換する(図7のステップST1)。
 デジタル信号s(n,h)をフーリエ変換する手段として、フーリエ変換部42は、FFT(Fast Fourier Transform)を用いることができる。ただし、これは一例に過ぎず、フーリエ変換部42は、例えば、DFT(Discrete Fourier Transform)を用いて、デジタル信号s(n,h)をレンジ方向にフーリエ変換するようにしてもよい。
 フーリエ変換部42は、それぞれのフーリエ変換後の信号S(n,h)をレンジ圧縮部43に出力する。
The Fourier transform unit 42 of the radar signal processing device 40 acquires each digital signal s 0 (n, h) from the digital signal storage unit 13 .
The Fourier transform unit 42 Fourier transforms each digital signal s 0 (n, h) in the range direction (step ST1 in FIG. 7).
As means for Fourier transforming the digital signal s 0 (n, h), the Fourier transform unit 42 can use FFT (Fast Fourier Transform). However, this is only an example, and the Fourier transform unit 42 may use, for example, DFT (Discrete Fourier Transform) to Fourier transform the digital signal s 0 (n, h) in the range direction.
The Fourier transform unit 42 outputs each Fourier-transformed signal S 0 (n, h) to the range compression unit 43 .
 レンジ圧縮部43は、フーリエ変換部42から、それぞれのフーリエ変換後の信号S(n,h)を取得する。
 レンジ圧縮部43は、以下の式(1)に示すように、それぞれのフーリエ変換後の信号S(n,h)にレンジ圧縮用の参照関数G(n)を乗算することで、それぞれのフーリエ変換後の信号S(n,h)をレンジ圧縮する(図7のステップST2)。レンジ圧縮用の参照関数G(n)は、公知の関数であるため、詳細な説明を省略する。
 レンジ圧縮部43は、レンジ圧縮後の信号Scomp(n,h)を補償処理部44に出力する。
The range compression unit 43 acquires the signal S 0 (n, h) after each Fourier transform from the Fourier transform unit 42 .
The range compression unit 43 multiplies each Fourier-transformed signal S 0 (n, h) by a reference function G(n) for range compression, as shown in the following equation (1). The signal S 0 (n, h) after the Fourier transform is range-compressed (step ST2 in FIG. 7). Since the reference function G(n) for range compression is a known function, detailed description thereof will be omitted.
The range compression unit 43 outputs the range-compressed signal S comp (n, h) to the compensation processing unit 44 .

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000001
 補償処理部44は、レンジ圧縮部43から、それぞれのレンジ圧縮後の信号Scomp(n,h)を取得し、補助情報記憶部12から、補助情報として、プラットフォームの軌道情報、観測幾何情報及びレーダ諸元等を取得する。
 補償処理部44は、レンジ圧縮部43から、レンジ圧縮後の信号Scomp(n,h)を取得する毎に、補助情報に基づいて、観測領域3の中心点3aと合成開口1の中心点1aとの距離r(h)を算出する。
 ここでは、説明の便宜上、観測領域3の中心点3aの座標が、[0,0,0]であるものとする。合成開口1の中心点1aの座標を表す3次元ベクトルp(h)は、プラットフォームの軌道情報等から得られる。距離r(h)の算出処理自体は、公知の技術であるため詳細な説明を省略する。
The compensation processing unit 44 acquires each of the range-compressed signals S comp (n, h) from the range compression unit 43, and from the auxiliary information storage unit 12, platform trajectory information, observation geometry information, and Acquire radar specifications, etc.
Every time the compensation processing unit 44 acquires the range-compressed signal S comp (n, h) from the range compression unit 43, based on the auxiliary information, the center point 3a of the observation region 3 and the center point of the synthetic aperture 1 Calculate the distance r 0 (h) to 1a.
Here, for convenience of explanation, it is assumed that the coordinates of the central point 3a of the observation area 3 are [0, 0, 0]. A three-dimensional vector p(h) representing the coordinates of the center point 1a of the synthetic aperture 1 is obtained from the trajectory information of the platform or the like. The process of calculating the distance r 0 (h) itself is a known technique, and detailed description thereof will be omitted.
 補償処理部44は、以下の式(2)に示すように、距離r(h)に基づいて、それぞれのレンジ圧縮後の信号Scomp(n,h)に対するレンジセルマイグレーション補償を行う(図7のステップST3)。それぞれのレンジ圧縮後の信号Scomp(n,h)に対するレンジセルマイグレーション補償が行われることで、全てのヒットにおいて、同じ観測対象2のレンジセルが、同一のレンジセルに位置するように補償される。
 補償処理部44は、それぞれのマイグレーション補償後の信号Smig(n,h)を逆フーリエ変換部45に出力する。
The compensation processing unit 44 performs range cell migration compensation for each range-compressed signal S comp (n, h) based on the distance r 0 (h), as shown in the following equation (2) (Fig. 7 step ST3). By performing range cell migration compensation for each range-compressed signal S comp (n, h), all hits are compensated so that the range cells of the same observation target 2 are located in the same range cells.
The compensation processing unit 44 outputs the migration-compensated signals S mig (n, h) to the inverse Fourier transform unit 45 .

Figure JPOXMLDOC01-appb-I000002
 式(2)において、f(n)は、レンジ圧縮後の信号Scomp(n,h)のレンジ周波数であり、cは、光速である。

Figure JPOXMLDOC01-appb-I000002
In equation (2), f(n) is the range frequency of the signal S comp (n,h) after range compression, and c is the speed of light.
 図3に示すレーダ信号処理装置40では、補償処理部44が、観測領域3の中心点3aを基準にして、レンジセルマイグレーション補償を行っている。しかし、これは一例に過ぎず、補償処理部44が、観測領域3の中心点3a以外の点を基準にして、レンジセルマイグレーション補償を行うようにしてもよい。 In the radar signal processing device 40 shown in FIG. 3, the compensation processing unit 44 performs range cell migration compensation using the center point 3a of the observation area 3 as a reference. However, this is only an example, and the compensation processing unit 44 may perform range cell migration compensation using a point other than the center point 3a of the observation area 3 as a reference.
 逆フーリエ変換部45は、補償処理部44から、それぞれのマイグレーション補償後の信号Smig(n,h)を取得する。
 逆フーリエ変換部45は、それぞれのマイグレーション補償後の信号Smig(n,h)をレンジ方向に逆フーリエ変換する(図7のステップST4)。
 マイグレーション補償後の信号Smig(n,h)を逆フーリエ変換する手段として、逆フーリエ変換部45は、IFFT(Inverse Fast Fourier Transform)を用いることができる。ただし、これは一例に過ぎず、逆フーリエ変換部45は、例えば、IDFT(Inverse Discrete Fourier Transform)を用いて、それぞれのマイグレーション補償後の信号Smig(n,h)をレンジ方向に逆フーリエ変換するようにしてもよい。
 逆フーリエ変換部45は、それぞれの逆フーリエ変換後の信号s(n,h)を位相補償部46に出力する。
The inverse Fourier transform unit 45 acquires the migration-compensated signals S mig (n, h) from the compensation processing unit 44 .
The inverse Fourier transform unit 45 inverse Fourier transforms the migration-compensated signals S mig (n, h) in the range direction (step ST4 in FIG. 7).
The inverse Fourier transform unit 45 can use IFFT (Inverse Fast Fourier Transform) as means for inverse Fourier transforming the migration-compensated signal S mig (n, h). However, this is only an example, and the inverse Fourier transform unit 45 uses, for example, IDFT (Inverse Discrete Fourier Transform) to inverse Fourier transform each migration-compensated signal S mig (n, h) in the range direction. You may make it
The inverse Fourier transform unit 45 outputs each signal s(n, h) after the inverse Fourier transform to the phase compensation unit 46 .
 位相補償部46は、逆フーリエ変換部45から、それぞれの逆フーリエ変換後の信号s(n,h)を取得し、補助情報記憶部12から、補助情報として、プラットフォームの軌道情報、観測幾何情報及びレーダ諸元等を取得する。
 位相補償部46は、グランドレンジ線GRL上に存在している複数の点の中で、それぞれの逆フーリエ変換後の信号s(n,h)のレンジセルnに対応する点の座標を表す3次元ベクトルp(n)を特定する。逆フーリエ変換後の信号s(n,h)のレンジセルnに対応する点は、グランドレンジ線GRL上に存在している複数の点の中で、例えば、逆フーリエ変換後の信号s(n,h)の等レンジ面に含まれている点である。例えば、観測点がCであれば、レンジセルnに対応する点は、Rであり、観測点がCであれば、レンジセルnに対応する点は、Rである。レンジセルnに対応する点の座標を表す3次元ベクトルp(n)は、補助情報から得られる。
 また、位相補償部46は、合成開口1の中心点1aの座標を表す3次元ベクトルp(h)を特定する。3次元ベクトルp(h)は、プラットフォームの軌道情報等から得られる。
 位相補償部46は、以下の式(3)に示すように、それぞれの逆フーリエ変換後の信号s(n,h)のレンジセルnに対応する点と、合成開口1の中心点1aとの距離r(n,h)を算出する。
The phase compensator 46 acquires the signals s(n, h) after the respective inverse Fourier transforms from the inverse Fourier transform unit 45, and from the auxiliary information storage unit 12, platform trajectory information and observation geometric information as auxiliary information. and obtain radar specifications, etc.
The phase compensator 46 calculates the coordinates of the points corresponding to the range cells n of the signals s(n, h) after the inverse Fourier transform among the plurality of points existing on the ground range line GRL. Identify the vector p g (n). The point corresponding to the range cell n of the signal s(n, h) after the inverse Fourier transform is, among a plurality of points present on the ground range line GRL, the signal s(n, h) after the inverse Fourier transform. h) is included in the isorange surface. For example, if the observation point is C1, the point corresponding to range cell n is R1 , and if the observation point is C3 , the point corresponding to range cell n is R3. A three-dimensional vector p g (n) representing the coordinates of the point corresponding to range cell n is obtained from the auxiliary information.
The phase compensator 46 also identifies a three-dimensional vector p(h) representing the coordinates of the center point 1 a of the synthetic aperture 1 . The three-dimensional vector p(h) is obtained from platform trajectory information or the like.
The phase compensator 46 calculates the distance between the point corresponding to the range cell n of the signal s(n, h) after each inverse Fourier transform and the center point 1a of the synthetic aperture 1, as shown in the following equation (3). Calculate r(n,h).

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000003
 位相補償部46は、以下の式(4)に示すように、距離r(n,h)に基づいて、それぞれの逆フーリエ変換後の信号s(n,h)の位相を補償する(図7のステップST5)。
 位相補償部46は、それぞれの位相補償後の信号sph(n,h)を画像生成部47に出力する。
The phase compensator 46 compensates the phase of each inverse Fourier transformed signal s(n, h) based on the distance r(n, h) as shown in the following equation (4) (FIG. 7 step ST5).
The phase compensator 46 outputs each phase-compensated signal s ph (n, h) to the image generator 47 .

Figure JPOXMLDOC01-appb-I000004
 式(4)において、fは、逆フーリエ変換後の信号s(n,h)の中心周波数である。

Figure JPOXMLDOC01-appb-I000004
In equation (4), f c is the center frequency of the signal s(n,h) after inverse Fourier transform.
 画像生成部47は、位相補償部46から、それぞれの位相補償後の信号sph(n,h)を取得する。
 画像生成部47は、それぞれの位相補償後の信号sph(n,h)をアジマス方向にフーリエ変換することで、DBS画像Sdbs(n,h)を生成する(図7のステップST6)。
 即ち、画像生成部47は、それぞれの位相補償後の信号sph(n,h)をアジマス方向にフーリエ変換することで、それぞれの観測点2のドップラー周波数を算出し、それぞれの観測点2のドップラー周波数の強度を示すDBS画像Sdbs(n,h)を生成する。
 画像生成部47は、DBS画像Sdbs(n,h)をDBS画像記憶部14に出力する。
 DBS画像記憶部14に記憶されたDBS画像Sdbs(n,h)は、例えば、図示せぬ表示器に表示される。
The image generation unit 47 acquires the phase-compensated signals s ph (n, h) from the phase compensation unit 46 .
The image generator 47 generates a DBS image S dbs (n, h) by Fourier transforming each phase-compensated signal s ph (n, h) in the azimuth direction (step ST6 in FIG. 7).
That is, the image generation unit 47 calculates the Doppler frequency of each observation point 2 by Fourier transforming each phase-compensated signal s ph (n, h) in the azimuth direction, and calculates the Doppler frequency of each observation point 2 . Generate a DBS image S dbs (n,h) showing the intensity of the Doppler frequency.
The image generation unit 47 outputs the DBS image S dbs (n, h) to the DBS image storage unit 14 .
The DBS image S dbs (n, h) stored in the DBS image storage unit 14 is displayed, for example, on a display (not shown).
 位相補償後の信号sph(n,h)をフーリエ変換する手段として、画像生成部47は、FFTを用いることができる。ただし、これは一例に過ぎず、画像生成部47は、例えば、DFTを用いて、それぞれの位相補償後の信号sph(n,h)をレンジ方向にフーリエ変換するようにしてもよい。 The image generator 47 can use FFT as means for Fourier transforming the signal s ph (n, h) after phase compensation. However, this is only an example, and the image generation unit 47 may use DFT to Fourier transform each phase-compensated signal s ph (n, h) in the range direction.
 以上の実施の形態1では、レーダ装置の観測領域3に含まれている複数の観測点のそれぞれによる散乱後のパルス信号を取得するパルス信号取得部41と、観測領域3内の一点と、レーダ装置が有する合成開口1内の一点とを結ぶ線が地表面に投影された線である投影線上に存在している複数の点の中で、パルス信号取得部41により取得されたそれぞれのパルス信号のレンジセルに対応する点と、合成開口1内の一点との距離に基づいて、それぞれのパルス信号の位相を補償する位相補償部46とを備えるように、レーダ信号処理装置40を構成した。したがって、レーダ信号処理装置40は、ドップラー周波数の変位差分量がPRFの半分よりも大きい観測点2の数を減らせることができる。 In the first embodiment described above, the pulse signal acquisition unit 41 acquires the pulse signal after being scattered by each of the plurality of observation points included in the observation area 3 of the radar device, one point in the observation area 3, and the radar Each pulse signal obtained by the pulse signal obtaining unit 41 among a plurality of points existing on a projection line, which is a line projected onto the ground surface connecting a point in the synthetic aperture 1 of the apparatus. and a phase compensator 46 for compensating the phase of each pulse signal based on the distance between the point corresponding to the range cell and one point in the synthetic aperture 1. Therefore, the radar signal processing device 40 can reduce the number of observation points 2 having a Doppler frequency displacement difference amount larger than half the PRF.
実施の形態2.
 実施の形態2では、投影線が複数の領域に分割されているレーダ信号処理装置40について説明する。
 実施の形態2に係るレーダ信号処理装置40の構成は、実施の形態1に係るレーダ信号処理装置40の構成と同じであり、実施の形態2に係るレーダ信号処理装置40を示す構成図は、図3である。
Embodiment 2.
Embodiment 2 describes a radar signal processing device 40 in which a projection line is divided into a plurality of regions.
The configuration of the radar signal processing device 40 according to Embodiment 2 is the same as the configuration of the radar signal processing device 40 according to Embodiment 1, and the configuration diagram showing the radar signal processing device 40 according to Embodiment 2 is as follows: FIG.
 図8は、観測領域3を含む地表面のドップラー周波数の計測例を示す説明図である。
 図8において、投影線であるグランドレンジ線GRLは、M個の領域G~Gに分割されている。Mは、2以上の整数である。g(m=1,・・・,M)は、領域Gに存在している複数の点の中の代表点である。代表点gは、領域Gに存在している複数の点の中のいずれの点でもよいが、例えば、領域Gの中心に位置している点が、代表点gとして用いられる。
 実施の形態2に係るレーダ信号処理装置40では、位相補償部46は、M個の領域G~Gの中で、それぞれの観測点2による散乱後のパルス信号のレンジセルに対応する点が属する領域Gを特定する。
 図8では、例えば、観測点がCであれば、パルス信号のレンジセルに対応する点が属する領域がGであると特定され、観測点がCであれば、パルス信号のレンジセルに対応する点が属する領域がGであると特定される。領域Gの代表点はgであり、領域Gの代表点はgである。
 位相補償部46は、特定したそれぞれの領域Gの代表点gと、合成開口1内の一点である中心点1aとの距離に基づいて、パルス信号の位相を補償する。
FIG. 8 is an explanatory diagram showing a measurement example of the Doppler frequency of the ground surface including the observation area 3. In FIG.
In FIG. 8, the ground range line GRL, which is a projection line, is divided into M regions G 1 to G M . M is an integer of 2 or more. g m (m=1, . . . , M) is a representative point among a plurality of points existing in the area G m . The representative point gm may be any point among a plurality of points existing in the area Gm , but for example, a point located in the center of the area Gm is used as the representative point gm .
In the radar signal processing device 40 according to Embodiment 2, the phase compensator 46 determines that points corresponding to the range cells of the pulse signal after scattering by the respective observation points 2 in the M regions G 1 to G M are Identify the region G m to which it belongs.
In FIG. 8, for example, if the observation point is C1, the region to which the point corresponding to the range cell of the pulse signal belongs is identified as GM , and if the observation point is C3 , it corresponds to the range cell of the pulse signal. G2 is identified as the region to which the points that The representative point of the area G2 is g2 , and the representative point of the area GM is gM .
The phase compensator 46 compensates the phase of the pulse signal based on the distance between the representative point gm of each specified area Gm and the central point 1a, which is one point in the synthetic aperture 1. FIG.
 以下、位相補償部46による位相補償処理を具体的に説明する。
 位相補償部46は、特定したそれぞれの領域Gの代表点gの座標を表す3次元ベクトルp’(n)を特定する。3次元ベクトルp’(h)は、補助情報から得られる。
 位相補償部46は、以下の式(5)に示すように、特定したそれぞれの領域Gの代表点gと、合成開口1の中心点1aとの距離r’(n,h)を算出する。
The phase compensation processing by the phase compensator 46 will be specifically described below.
The phase compensator 46 identifies a three-dimensional vector p g ′(n) representing the coordinates of the representative point g m of each identified region G m . A three-dimensional vector p g '(h) is obtained from the auxiliary information.
The phase compensator 46 calculates the distance r'( n , h ) between the representative point gm of each specified area Gm and the center point 1a of the synthetic aperture 1, as shown in the following equation (5). do.

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000005
 位相補償部46は、以下の式(6)に示すように、距離r’(n,h)に基づいて、それぞれの逆フーリエ変換後の信号s(n,h)の位相を補償する。
 位相補償部46は、それぞれの位相補償後の信号sph(n,h)を画像生成部47に出力する。
The phase compensator 46 compensates the phase of each signal s(n, h) after the inverse Fourier transform based on the distance r'(n, h), as shown in Equation (6) below.
The phase compensator 46 outputs each phase-compensated signal s ph (n, h) to the image generator 47 .

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000006
 実施の形態2に係るレーダ信号処理装置40でも、実施の形態1に係るレーダ信号処理装置40と同様に、ドップラー周波数の変位差分量がPRFの半分よりも大きい観測点2の数を減らせることができる。 In the radar signal processing device 40 according to the second embodiment, as in the radar signal processing device 40 according to the first embodiment, the number of observation points 2 having a Doppler frequency displacement difference larger than half the PRF can be reduced. can be done.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that the present disclosure allows free combination of each embodiment, modification of arbitrary constituent elements of each embodiment, or omission of arbitrary constituent elements in each embodiment.
 本開示は、レーダ信号処理装置、レーダ信号処理方法及びレーダ装置に適している。 The present disclosure is suitable for radar signal processing devices, radar signal processing methods, and radar devices.
 1 合成開口、1a 中心点、2 観測点、3 観測領域、3a 中心点、10 信号生成部、11 パルス信号生成器、12 補助情報記憶部、13 デジタル信号格納部、14 DBS画像記憶部、20 アナログ回路部、21 発振部、22 乗算部、23 増幅部、24 切換部、25 増幅部、26 乗算部、27 フィルタ部、28 A/Dコンバータ、30 アンテナ部、40 レーダ信号処理装置、41 パルス信号取得部、42 フーリエ変換部、43 レンジ圧縮部、44 補償処理部、45 逆フーリエ変換部、46 位相補償部、47 画像生成部、51 フーリエ変換回路、52 レンジ圧縮回路、53 補償処理回路、54 逆フーリエ変換回路、55 位相補償回路、56 画像生成回路、61 メモリ、62 プロセッサ。 1 Synthetic aperture 1a Center point 2 Observation point 3 Observation area 3a Center point 10 Signal generator 11 Pulse signal generator 12 Auxiliary information storage 13 Digital signal storage 14 DBS image storage 20 Analog circuit section, 21 oscillation section, 22 multiplication section, 23 amplification section, 24 switching section, 25 amplification section, 26 multiplication section, 27 filter section, 28 A/D converter, 30 antenna section, 40 radar signal processing device, 41 pulse signal acquisition unit, 42 Fourier transform unit, 43 range compression unit, 44 compensation processing unit, 45 inverse Fourier transform unit, 46 phase compensation unit, 47 image generation unit, 51 Fourier transform circuit, 52 range compression circuit, 53 compensation processing circuit, 54 inverse Fourier transform circuit, 55 phase compensation circuit, 56 image generation circuit, 61 memory, 62 processor.

Claims (7)

  1.  レーダ装置の観測領域に含まれている複数の観測点のそれぞれによる散乱後のパルス信号を取得するパルス信号取得部と、
     前記観測領域内の一点と、前記レーダ装置が有する合成開口内の一点とを結ぶ線が地表面に投影された線である投影線上に存在している複数の点の中で、前記パルス信号取得部により取得されたそれぞれのパルス信号のレンジセルに対応する点と、前記合成開口内の一点との距離に基づいて、それぞれのパルス信号の位相を補償する位相補償部と
     を備えたレーダ信号処理装置。
    a pulse signal acquisition unit that acquires a pulse signal after being scattered by each of a plurality of observation points included in an observation area of the radar device;
    The pulse signal is obtained from among a plurality of points existing on a projection line, which is a line connecting one point in the observation area and one point in the synthetic aperture of the radar device, which is a line projected onto the ground surface. A radar signal processing apparatus comprising .
  2.  前記投影線が複数の領域に分割されており、
     前記位相補償部は、
     前記複数の領域の中で、それぞれのパルス信号のレンジセルに対応する点が属する領域を特定し、特定したそれぞれの領域の代表点と、前記合成開口内の一点との距離に基づいて、それぞれのパルス信号の位相を補償することを特徴とする請求項1記載のレーダ信号処理装置。
    wherein the projection line is divided into a plurality of regions;
    The phase compensator is
    Among the plurality of regions, the region to which the point corresponding to the range cell of each pulse signal belongs is specified, and based on the distance between the representative point of each specified region and one point in the synthetic aperture, each 2. The radar signal processing device according to claim 1, wherein the phase of the pulse signal is compensated.
  3.  前記観測領域内の一点は、前記観測領域の中心点であり、前記合成開口内の一点は、前記合成開口の中心点であることを特徴とする請求項1記載のレーダ信号処理装置。 The radar signal processing apparatus according to claim 1, wherein one point within the observation area is the center point of the observation area, and one point within the synthetic aperture is the center point of the synthetic aperture.
  4.  前記位相補償部によるそれぞれの位相補償後のパルス信号をアジマス方向にフーリエ変換することで、画像を生成する画像生成部を備えたことを特徴とする請求項1記載のレーダ信号処理装置。 The radar signal processing apparatus according to claim 1, further comprising an image generation section that generates an image by Fourier transforming the pulse signals after phase compensation by the phase compensation section in the azimuth direction.
  5.  前記パルス信号取得部は、
     それぞれの観測点による散乱後のパルス信号をレンジ方向にフーリエ変換するフーリエ変換部と、
     前記フーリエ変換部によるそれぞれのフーリエ変換後の信号に対するレンジセルマイグレーション補償を行う補償処理部と、
     前記補償処理部によるそれぞれの補償後の信号をレンジ方向に逆フーリエ変換し、それぞれの逆フーリエ変換後の信号を、前記パルス信号取得部により取得されたそれぞれのパルス信号として前記位相補償部に出力する逆フーリエ変換部と
     を備えたことを特徴とする請求項1記載のレーダ信号処理装置。
    The pulse signal acquisition unit is
    a Fourier transform unit that Fourier transforms the pulse signal after scattering by each observation point in the range direction;
    a compensation processing unit that performs range cell migration compensation for each signal after the Fourier transform by the Fourier transform unit;
    Each signal after compensation by the compensation processing unit is subjected to inverse Fourier transform in the range direction, and each signal after inverse Fourier transform is output to the phase compensation unit as each pulse signal obtained by the pulse signal obtaining unit. 2. The radar signal processing apparatus according to claim 1, further comprising an inverse Fourier transform unit for performing
  6.  パルス信号取得部が、レーダ装置の観測領域に含まれている複数の観測点のそれぞれによる散乱後のパルス信号を取得し、
     位相補償部が、前記観測領域内の一点と、前記レーダ装置が有する合成開口内の一点とを結ぶ線が地表面に投影された線である投影線上に存在している複数の点の中で、前記パルス信号取得部により取得されたそれぞれのパルス信号のレンジセルに対応する点と、前記合成開口内の一点との距離に基づいて、それぞれのパルス信号の位相を補償する
     レーダ信号処理方法。
    A pulse signal acquisition unit acquires a pulse signal after scattering by each of a plurality of observation points included in an observation area of the radar device,
    Among a plurality of points where the phase compensating unit is located on a projection line, which is a line that connects one point in the observation area and one point in the synthetic aperture of the radar device and is a line projected onto the ground surface. and compensating the phase of each pulse signal based on the distance between the point corresponding to the range cell of each pulse signal acquired by the pulse signal acquisition unit and one point within the synthetic aperture.
  7.  請求項1から請求項5のうちのいずれか1項記載のレーダ信号処理装置を備えたレーダ装置。 A radar device comprising the radar signal processing device according to any one of claims 1 to 5.
PCT/JP2021/022426 2021-06-14 2021-06-14 Radar signal processing device, radar signal processing method, and radar device WO2022264187A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021545860A JP6961135B1 (en) 2021-06-14 2021-06-14 Radar signal processing device, radar signal processing method and radar device
PCT/JP2021/022426 WO2022264187A1 (en) 2021-06-14 2021-06-14 Radar signal processing device, radar signal processing method, and radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022426 WO2022264187A1 (en) 2021-06-14 2021-06-14 Radar signal processing device, radar signal processing method, and radar device

Publications (1)

Publication Number Publication Date
WO2022264187A1 true WO2022264187A1 (en) 2022-12-22

Family

ID=78409787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022426 WO2022264187A1 (en) 2021-06-14 2021-06-14 Radar signal processing device, radar signal processing method, and radar device

Country Status (2)

Country Link
JP (1) JP6961135B1 (en)
WO (1) WO2022264187A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198275A (en) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp Synthetic aperture radar system, and image reproducing method
CN102819020A (en) * 2012-08-17 2012-12-12 北京航空航天大学 Synthetic aperture radar imaging method for azimuth-direction nonlinear chirp scaling of diving model
JP2016161386A (en) * 2015-03-02 2016-09-05 三菱電機株式会社 Image radar device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198275A (en) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp Synthetic aperture radar system, and image reproducing method
CN102819020A (en) * 2012-08-17 2012-12-12 北京航空航天大学 Synthetic aperture radar imaging method for azimuth-direction nonlinear chirp scaling of diving model
JP2016161386A (en) * 2015-03-02 2016-09-05 三菱電機株式会社 Image radar device

Also Published As

Publication number Publication date
JPWO2022264187A1 (en) 2022-12-22
JP6961135B1 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6320577B2 (en) Synthetic aperture radar signal processor
US9329264B2 (en) SAR image formation
WO2018076884A1 (en) Close range microwave imaging method and system
WO2018196254A1 (en) Amplitude-phase correction method and system for microwave imaging system
US20130300599A1 (en) On-Board INS Quadratic Correction Method Using Maximum Likelihood Motion Estimation Of Ground Scatterers From Radar Data
US20200150265A1 (en) Close-range microwave imaging method and system
RU2568286C2 (en) Super-resolution imaging radar
JP2011169869A (en) Apparatus for processing radar signal
US10921441B2 (en) Synthetic aperture radar signal processing device
RU2661941C1 (en) Method for radar imaging using the radar station with the synthesized aperture
KR102151362B1 (en) Image decoding apparatus based on airborn using polar coordinates transformation and method of decoding image using the same
US11474236B2 (en) Radar image processing device and radar image processing method
WO1992016856A1 (en) A synthetic aperture radar
KR20230090853A (en) Method for calculating power level reflectivity of object on ground using SAR image
WO2022264187A1 (en) Radar signal processing device, radar signal processing method, and radar device
JP5634244B2 (en) Radar image processing device
Dong et al. Vibration Error Compensation Imaging Algorithm for Arc Array SAR Besed on Parameter Estimation
CN114002666B (en) Method and equipment for extracting satellite-borne ATI-SAR ocean current flow velocity under any antenna configuration
CN109917384B (en) Medium and long distance frequency domain fast imaging method and device for cantilever scanning foundation SAR
CN116299227A (en) SAR radar two-dimensional antenna pattern measurement method, system, medium and equipment
CN114384519B (en) Ultrahigh-resolution satellite-borne synthetic aperture radar imaging method and device
CN113671497B (en) Single-channel SAR target three-dimensional coordinate extraction method based on cylindrical symmetry model
CN110297240B (en) Imaging method and device of azimuth wide-beam synthetic aperture radar
Shen et al. An autofocus algorithm for multi-rotor UAV SAR
WO2024042675A1 (en) Signal processing device and signal processing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545860

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945867

Country of ref document: EP

Kind code of ref document: A1